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Abstract

Causal structure learning (CSL) refers to the estimation of causal graphs from data. Causal versions of tools such as ROC

curves play a prominent role in empirical assessment of CSL methods and performance is often compared with “random”

baselines (such as the diagonal in an ROC analysis). However, such baselines do not take account of constraints arising from

the graph context and hence may represent a “low bar”. In this paper, motivated by examples in systems biology, we focus on

assessment of CSL methods for multivariate data where part of the graph structure is known via interventional experiments.

For this setting, we put forward a new class of baselines called graph-based predictors (GBPs). In contrast to the “random”

baseline, GBPs leverage the known graph structure, exploiting simple graph properties to provide improved baselines against

which to compare CSL methods. We discuss GBPs in general and provide a detailed study in the context of transitively

closed graphs, introducing two conceptually simple baselines for this setting, the observed in-degree predictor (OIP) and

the transitivity assuming predictor (TAP). While the former is straightforward to compute, for the latter we propose several

simulation strategies. Moreover, we study and compare the proposed predictors theoretically, including a result showing that

the OIP outperforms in expectation the “random” baseline on a subclass of latent network models featuring positive correlation

among edge probabilities. Using both simulated and real biological data, we show that the proposed GBPs outperform random

baselines in practice, often substantially. Some GBPs even outperform standard CSL methods (whilst being computationally

cheap in practice). Our results provide a new way to assess CSL methods for interventional data.

Keywords Causality · Causal structure learning · Interventional data · Transitively closed graphs · Gene regulatory networks ·

Null models

1 Introduction

Causal structure learning (CSL) refers to the task of estimat-

ing a graph encoding causal relationships from data (Pearl
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2009; Spirtes 2010). CSL is an important and challenging

topic in its own right and has attracted a great deal of recent

research attention in a number of fields including statistics,

machine learning and philosophy (reviewed in Heinze-Deml

et al. 2018). Broadly speaking, given data X (which might

be observational and/or interventional), CSL methods pro-

vide a graph estimate Ĝ(X) (or probabilistic analogue) with

edges intended to encode causal relationships. The seman-

tics of such graphs can be complex and depend on the precise

model and application domain but for the present it is impor-

tant only to emphasize that such estimators use data X to infer

relationships between entities and can be viewed as encoding

such information as a directed graph Ĝ.

CSL methods necessarily require assumptions on the

underlying causal system that may or may not hold in real

applications and whose validity may be difficult to check in

practice. As a result the behaviour of CSL methods under

realistic conditions (noise levels, limited sample sizes etc.)
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may not be clear in advance. As such, in practical settings it is

important to empirically assess the efficacy of CSL methods.

To this end a number of studies have focused on such assess-

ment (including, among others, Hill et al. 2016; Heinze-Deml

et al. 2018; Eigenmann et al. 2020). In the empirical assess-

ment of CSL methods, a common strategy is to compare the

estimated graph Ĝ with a “ground truth" graph G∗ (depend-

ing on context either the true data-generating graph in a

simulation, or an scientifically/experimentally-defined gold

standard). Such quantitative comparisons are usually made

alongside baselines, which provide a way to contextualize

the performance of the estimator Ĝ on the specific problem.

Random baselines, such as the diagonal in an ROC analysis,

are widely used, motivated by the idea that large deviations

from the random case are an indicator that the estimator is

successfully identifying causal structure.

In this paper we put forward a new class of baselines for

the assessment of CSL methods in the setting that (some)

interventional data is available. While random baselines are

a good and useful tool, they ignore structure that might be

inherent in the problem, in the sense of regularities in the

ground truth graph G∗. In the interventional data setting,

some information on G∗ is available at the outset. We argue

that such information can constrain possible solutions such

that random baselines are in a way too general for this set-

ting and provide only a “low bar" against which to assess

CSL methods. Instead, we propose to exploit the knowl-

edge of part of the ground truth graph in combination with

straightforward graph properties, to define new baselines

called graph-based predictors (GBPs), that share concep-

tual simplicity with classical baselines but that constitute a

demonstrably stronger test.

A related line of work, developing and utilizing null mod-

els for networks seeks to contextualise interesting network

features with reference to default, background models, see

e.g. the surveys Fosdick et al. (2018) and Gauvin et al. (2018)

as well as Chapter 11 in Fornito et al. (2016) and references

therein. The key idea in these approaches is to understand

whether a seemingly salient feature of a network (e.g. high

levels of connectivity within specific subsets of the graph

leading to the thriving area of community detection, see e.g.

Newman and Girvan (2004) and the survey Fortunato (2010)

and the references therein) is really unusual or noteworthy. In

a similar fashion, we seek to contextualise the performance

of CSL methods, using certain graph properties to define suit-

able baselines. However, a key difference is that in the null

models literature the network itself is assumed known; in

contrast, in our paper and CSL in general, the network itself

is (partially) inferred.

Our work is motivated by, and illustrated in the context

of, interventional experiments that have become feasible in

recent years in molecular biology (see, among others, Sachs

et al. 2005; Kemmeren et al. 2014; Shalem et al. 2015; Dixit

et al. 2016; Ursu et al. 2022). Such experiments are crucial for

the inference of molecular networks, encoding causal rela-

tionships between entities such as genes or proteins, which

in turn play a central role in disease and systems biology (see

e.g. Phillips 2008; Parikshak et al. 2015). The inference of

molecular networks from data is a long-standing problem at

the intersection of statistics, machine learning and systems

biology (for introductions see e.g. Ideker et al. 2001; Babu

et al. 2004; Sanguinetti and Huynh-Thu 2019; Nogueira et al.

2022).

In practice the interventional experiments in biology

involve perturbation of molecular nodes (for example genes)

and subsequent measurement of a high-dimensional readout

(such as gene expression), specific examples of these include

gene knock-out /-down, /-up, /-in experiments. Such data are

relevant for causal learning because the measurement of a

gene expression level for a gene B after perturbation of a

gene A gives information on the (total) causal effect of A

on B. Hence, if available, incorporating interventional data

alongside observational data in CSL methods is desirable,

and this has been studied from a number of perspectives (rel-

evant literature includes Hauser and Bühlmann 2012; Rau

et al. 2013; Spencer et al. 2015; Peters et al. 2016; Magli-

acane et al. 2016a, b; Meinshausen et al. 2016; Magliacane

and van Ommen 2017; Wang et al. 2017; Hill et al. 2019;

Rothenhäusler et al. 2019; Brouillard et al. 2020).

At the same time, interventional data are widely used

to obtain gold standards to assess CSL methods (see e.g.

Colombo and Maathuis 2014; Meinshausen et al. 2016; Wang

et al. 2017). Notably, in practice, it is usually not feasible to

perform all possible perturbation experiments due to time-

and cost-constraints, rather only a subset can be performed.

As we discuss in detail in Sect. 2, this can be viewed as pro-

viding information on a partial observation of the ground

truth graph G∗ and this practical scenario is the one we focus

on.

A particularly interesting and relevant special case con-

cerns transitively closed graphs. As noted above, in real-

world gene perturbation experiments, one observes the total

causal effect of perturbing one gene (the target A) on another

gene B (usually many such genes are measured in contempo-

rary “omics” designs, we refer to such data in the following

as omics readouts or simply as omics data). An effect of A on

B may be mediated by other genes intermediate in the under-

lying causal path. For this reason, such effects are transitive

in the sense that if A has a causal edge to B (in the underly-

ing causal graph) and B to C , then an intervention on A may

change C (this corresponds to the total causal effect of A on

C), resulting in an edge from A to C in a graph constructed

directly from the perturbation experiments. The assumption

of observing transitively closed or ancestral causal graphs

has also been made in Magliacane et al. (2016a) who consider

estimating transitively closed graphs and in Heinze-Deml
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et al. (2018) and Eigenmann et al. (2020) where CSL meth-

ods were evaluated with respect to ancestral relations of this

kind.

The contributions of this paper are as follows:

• New class of baselines. We propose a new class of base-

lines for CSL that take account of graph properties in

the case that interventional data is available. The pro-

posed baselines leverage structural properties rooted in

the underlying causal graph.

• Methods for transitively closed graphs. Motivated by

the nature of real-world gene perturbation experiments,

we focus particular attention on transitivity and related

properties and put forward specific baselines that exploit

constraints derived from these properties.

• Theoretical results of superiority and delineation. We

show for a particular baseline a superiority-statement

in the context of latent-network models. Moreover, we

delineate the proposed baselines from each other theo-

retically.

• Empirical results using real gene/protein perturbation

data. Using real data from large-scale gene and protein

perturbation experiments we study the behaviour of the

proposed methods to understand whether they can actu-

ally provide improved baselines in practice.

Taken together, our results provide a framework for con-

structing improved baselines for CSL and thereby to more

thoroughly assess the capabilities of CSL methods, with a

focus on the use of interventional data, an area of key rele-

vance for ongoing efforts at the interface between systems

biology and large-scale perturbation designs.

The remainder of the paper is organized as follows. We

begin in Sect. 2 with notation and background, defining the

precise set-up for which the proposed baselines are intended.

In Sects. 3.1 and 3.2 we introduce two general ways to

construct graph-based predictors, based respectively on in-

degree information and constraints rooted in transitivity.

These two classes are illustrated with specific implemen-

tations – the observed indegree predictor (OIP) and several

transitivity assuming predictors (TAPs) respectively – which

are specifically derived for their use as baselines in sys-

tem biology experiments. For the OIP a theoretical result

of superiority over random baselines is given. Moreover, in

Sect. 3.2 we propose simulation strategies for the TAPs as

their direct computation is infeasible. In Sect. 3.3 combina-

tions of the OIP and the TAPs are discussed. We detail in

Sect. 3.4 the theoretical differences of all introduced candi-

date baselines and outline potential similarities. Section 4.1

provides detailed analysis of a simulation study of the pro-

posed GBPs. In Sect. 4.2 we then study the behaviour of the

proposed GBPs using real transcriptomics and proteomics

data including observational and interventional experiments,

alongside application of standard CSL methods from the

literature to the same data sets. We conclude with a brief

discussion on open questions and possible future work in

Sect. 5.

2 Notation and background

In this section we give some background on CSL and intro-

duce notation and the general set-up. In particular, we detail

the structure of the data X and its underlying causal graph G

in the context of CSL on interventional data.

2.1 Contextualization within CSL

We focus on the setting in which interventional and obser-

vational data are included in X . For example in the case

of omics data X includes rows of readouts after targeted

gene perturbations (interventional) and after control exper-

iments (observational). In practice a gold standard ground

truth graph G∗ might be obtained by comparing interven-

tional and observational data, either in the current set of

experiments or using previous experimental data. Given mea-

surement of a variable B after perturbation of variable A, the

causal relationship (A, B) (“from” A “to” B) is inferred by

comparing the empirical distribution of B under the control

experiments with the corresponding distribution under inter-

vention on A. Since omics designs usually involve measuring

many variables in parallel we consider here the common case

that given a perturbation is performed on A we measure all

other genes, i.e. each intervention experiment corresponds to

a whole row of readouts in X . We consider only single inter-

ventions (i.e. only one node A is intervened upon in a given

experiment). It is important in the below detailed set-up that

we have access to interventional data in which some (but not

all) genes are intervened upon, which is the common case in

practice.

Some clarifications regarding our set-up are as follows:

(1) We do not a priori rule out cycles in directed graphs.

This is because in practice an intervention on a variable A

may change B and vice versa (see also below). (2) For ease of

discussion we assume that the type of intervention is fixed and

that causal claims relate to the specific type of intervention.

This is motivated by the fact that in practice, the precise nature

of an intervention is defined by the experimental protocol,

hence claims and predictions are limited to changes under

the specific protocol. As a concrete example, if a knock-out

of a gene A changes gene B, this does not imply that a knock-

down of A would change B (since the latter experiment might

induce a sub-threshold change to A) and so on. (3) For ease

of computation we consider self-edges to be present at every

node (compare M[k, k] = 1 for all k in (2.1) further below).
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Fig. 1 A causal graph G = (V , E) (left) and its induced ancestral

causal graph G+ = (V , E+) (right, “new” edges are depicted in red,

i.e. E+[k, ℓ] = 1 �= 0 = E[k, ℓ])

Point (1) stands in contrast to some of the classical CSL

literature, in particular to methods based on directed acyclic

graphs (DAGs), where the assumption of acyclicity plays

a crucial role (Spirtes et al. 2000; Maathuis et al. 2009;

Colombo and Maathuis 2014). Cyclic models have been dis-

cussed in the literature (see e.g. Richardson 1996; Hyttinen

et al. 2014; Hill et al. 2019). In the applied context of pertur-

bation omics experiments, cyclic models are natural, because

an intervention on one gene A may lead to a change in another

gene B, but an intervention on B may vice versa lead to a

change in A. This is essentially due to the fact that real omics

data are measurements at a given time in a dynamic system

(with the causal effects always forward-in-time in the under-

lying system).

2.2 Notation and basic definitions

Denote a directed, unweighted graph by G = (V , E) with

vertex set V =
{
v1, v2, . . . , vp

}
and edge matrix E ∈ E

with,

E :=
{

M ∈ {0, 1}p×p : M[k, k] = 1, for all k
}

. (2.1)

As the graphs of interest encode causal relationships between

entities in V where useful we refer to them as causal graphs.

Definition 2.1 Let G = (V , E) be a causal graph.

(1) We say there exists a causal path from vk to vℓ in G with

vk �= vℓ ∈ V , if, for some T ∈ N0 there exist vertices

vk = w0, w1, . . . , wT , wT +1 = vℓ ∈ V such that

E[wt , wt+1] = 1 for all 0 ≤ t ≤ T .

(2) Call G+ = (V , E+) the ancestral causal graph (or the

causal transitive closure) of G if

(∃ causal path fromvk tovℓ) ⇔ E+[k, ℓ] = 1

holds. Moreover, call G an underlying causal graph of

G+. For an example see Fig. 1.

(3) Call G ancestral or transitively closed if G+ = G holds.

(4) For a node vk ∈ V define the indegree of vk by

deg−(vk) := | {vℓ ∈ V \ {vk} : E[ℓ, k] = 1} |

and the outdegree of vk by

deg+(vk) := | {vℓ ∈ V \ {vk} : E[k, ℓ] = 1} |.

We note that ancestral causality has been studied in the

literature using a variety of models (see e.g. Zhang 2008;

Magliacane et al. 2016b; Malinsky and Spirtes 2016; Mooij

and Claassen 2020) and is a complex topic in its own right.

The purpose of the above definition is simply to introduce

the notion of a transitive closure and make the connection to

indirect causation to facilitate introduction of specific, tran-

sitivity assuming baselines below.

We will use directed graphs that are random in an edge-

wise Erdős-Rényi sense as defined next (such graphs are

studied in Karp 1990).

Definition 2.2 Define a random directed graph (RDG) of

size p, with edge probability q and denoted by RDGq(p) =

(V , E), as a directed graph with |V | = p nodes, where all

off-diagonal entries of E are iid draws from a Bernoulli

distribution with success probability q. Moreover, given a

graph G̃ = (Ṽ , Ẽ) and a subset of edges K⊂{[k,ℓ]}1≤k �=ℓ≤p

we construct as RDGq,K (G̃) = (V , E) the partially random

directed graph with underlying G̃ and edge probability q by

drawing

E[k, ℓ] ∼

{
δ(Ẽ[k, ℓ]) if [k, ℓ] ∈ K ,

B(1, q) else.
,

with δ denoting the Dirac delta distribution and with iid draws

from the Bernoulli distribution B(1, q).

Assumption 2.3 below specifies the set-up of the CSL

problem on interventional data.

Assumption 2.3 Let G = (V , E) be a causal graph with

|V | = p. Given available interventional data X1 ∈ Rn1×p

and observational data X2 ∈ Rm1×p as well as latent, unavail-

able interventional data Y1 ∈ Rn2×p and latent, unavailable

observational data Y2 ∈ Rm2×p, on the nodes V with

n1, n2, m1, m2 ∈ N>0. We assume there exists a set of

indices/vertices I ⊂ {1, 2, . . . , p}, called the set of avail-

able interventions, such that all interventional measurements

in X1 correspond to an intervention on a node vk with k ∈ I

and all interventional measurements in Y1 correspond to an

intervention on a node vℓ with ℓ /∈ I. Moreover, we assume
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the existence of two ground truth functions

g1 : (X1, X2) 
→ (E[k, ℓ])[k,ℓ]∈S1 ,

where S1 := ([k, ℓ])k∈I,ℓ∈{1,...,p},k �=ℓ,

g2 : (Y1, Y2) 
→ (E[k, ℓ])[k,ℓ]∈S2 ,

where S2 := ([k, ℓ])k /∈I,ℓ∈{1,...,p},k �=ℓ.

Define by

X :=

(
X1

X2

)
, and, Y :=

(
Y1

Y2

)

the available data and the latent data, respectively. We

denote by

EX := (E[k, ℓ])[k,ℓ]∈S1 = g1(X)

the partial observation of G w.r.t. I. Define analogously

EY := (E[k, ℓ])[k,ℓ]∈S2 = g2(Y )

the unobserved causal relationships of G. Note that we have

after possibly reordering of the rows of E the relationship

E =

(
EX

EY

)
,

by slight abuse of notation as we consider only off-diagonal

entries.

Let a partial observation EX of a causal graph G based on

available observational and interventional data X be given.

We call a predictor

� : {0, 1}|S1| → [0, 1]|S2| ,

EX 
→ �(EX ) ∈ [0, 1]|S2| ,
(2.2)

assigning to each unobserved causal relationship a probabil-

ity of its existence, based solely on the partial observation EX

a graph-based predictor (GBP). Meanwhile, a predictor

� : R(n1+m1)×p → [0, 1]|S2| ,

X 
→ �(X) ∈ [0, 1]|S2| ,
(2.3)

assigning to each unobserved causal relationship a probabil-

ity of its existence, based on the available data matrix X will

be called a data-based predictor (DBP).

The foregoing assumptions essentially ensure that the

graph estimand is operationally well-defined as it is assumed

that there exists some oracle procedure by which the edge

structure could be determined from idealized data. In the

terms above, CSL methods would usually be classified as

DBPs, since they use empirical data to obtain a graph esti-

mand.

For the sake of completeness, we introduce here notation

and nomenclature for the ROC curve and the AUC in terms

of our set-up, as it is a widely used performance measure for

predictors such as � and � given in (2.2) and (2.3), respec-

tively. The ROC curve has to be defined with respect to a

gold standard; accordingly for Definition 2.4 we assume that

the entire graph is known for the purpose of computing the

ROC curve and related quantities (of course only part of the

graph is available to any estimator/CSL method; specifically,

EY is unavailable).

Definition 2.4 Let EX be a partial observation of a non-trivial

causal graph G = (V , E) and S2 be the indices of the unob-

served causal relationships. Let R ∈ [0, 1]|S2| be the output of

a predictor of EY . Let 1 = c0 ≥ c1 ≥ · · · ≥ cN ≥ cN+1 = 0

be the ordered, unique values of {R[k, ℓ]}(k,ℓ)∈S2
∪ {0, 1},

with N ≤ |S2|. The receiver operator characteristic (ROC)

curve ROC(R) is given as the linear interpolation of the

points,

{(F P RR(ct ), T P RR(ct ))}
N+1
t=0 ,

where

F P RR(ct )

=
| {[k, ℓ] ∈ S2 : R[k, ℓ] > ct and E[k, ℓ] = 0} |

| {[k, ℓ] ∈ S2 : E[k, ℓ] = 0} |
,

T P RR(ct )

=
| {[k, ℓ] ∈ S2 : R[k, ℓ] > ct and E[k, ℓ] = 1} |

| {[k, ℓ] ∈ S2 : E[k, ℓ] = 1} |
,

for ct �= 0 and F P RR(0) = 1 = T P RR(0), note that both

denominators are not 0 by non-triviality of G. We define

the area under curve (AUC) of the ROC curve as the finite

area enclosed in ROC(R), the x-axis and the line {x = 1}.

Note, that by definition (F P RR(c0), T P RR(c0)) = (0, 0),

(F P RR(cN+1), T P RR(cN+1)) = (1, 1) and F P RR(ct ),

T P RR(ct ) ∈ [0, 1] and hence the AUC of ROC(R) is well

defined.

Remark 2.5 (Hanley and McNeil 1982; Cortes and Mohri

2004) Let EY ,1 := {[k, ℓ] ∈ S2 : E[k, ℓ] = 1} and EY ,0 :=

{[k, ℓ] ∈ S2 : E[k, ℓ] = 0}, then the AUC of the ROC curve

of predicted relationships R ∈ [0, 1]|S2| is given by the

Wilcoxon-Mann–Whitney statistic

AUC(R) =
1∣∣EY ,1

∣∣ ∣∣EY ,0

∣∣

×
∑

[k,ℓ]∈EY ,1

∑

[k′,ℓ′]∈EY ,0

(
δR[k,ℓ]>R[k′,ℓ′] +

1

2
δR[k,ℓ]=R[k′,ℓ′]

)

(2.4)
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By the above definition the random predictor given by

R[k, ℓ] = 0.5 for all [k, ℓ] ∈ S2 induces a diagonal ROC

curve, as it is the linear interpolation of the points (0, 0) and

(1, 1), yielding an AUC of 0.5.

3 Construction and theory

In the following section we propose two general forms

of graph-based predictors and derive special cases thereof.

Moreover, we propose computation and simulation strategies

and delineate the proposed GBPs from each other. R-code

for the proposed GBPs is available at github.com/richterrob/

GraphBasedPredictors.

3.1 Observed indegree predictor

We start in this subsection with the idea that a node-level

statistic which is partially observed in EX can carry non-

trivial information about edge labels in EY . We go on to

provide a specific instance of this general approach that uses

the indegree as the node level statistic, leading to the observed

indegree predictor (OIP).

GBPs based on a node-level statistic To utilize a node-level

statistic to predict the unknown entries of EY , we need it

to be both estimable from the partial observation EX and to

carry information about EY . Suppose G = (V , E) is a causal

graph and that we are given a statistic γG : V → W mapping

the nodes of G to some feature space, e.g. W = R, Z. We

desire of γG that it,

(1.) depends only on G = (V , E);

(2.) is not constant on V ; and,

(3.) given γG(V ) := (γG(v1), γG(v2), . . . γG(vp))
T there

exists a predictor

θ : W p → [0, 1]|S2| , (3.1)

predicting the edge labels in EY “better than random"

given (1.) and (2.) are satisfied, with “better than random"

meaning that the AUC as defined in Definition 2.4 for

R = θ(γG(V )) is strictly larger than 0.5.

Examples of such a statistic γG might include

• mappings to the respective in- and outdegrees;

• mappings to the respective number of ancestors and/or

descendants;

Let us give an example how (3.) might be satisfied for the

above given node-level statistics. Consider a graph G with p

nodes, featuring nodes v1, . . . , vℓ ∈ V with no incoming and

no outgoing edge and nodes vℓ+1, . . . , vp with at least one

incoming and one outgoing edge (here 1 ≤ ℓ ≤ p − 1). In

this case for v1, . . . , vℓ the statistics mentioned above would

either convey the information that there are no incoming

edges or that there are no outgoing edges. Considering as

an example the first case with γG assigning to each node the

number of its ancestors, we can set

θ(γG(V ))[k, k′] =

{
0 if γG(V )[vk′ ] = 0,

0.5 else
,

to obtain a predictor performing better than random with

respect to the area under the curve of R = θ(γG(V )). We for-

malize a graph-based predictor based on a node-level statistic

in the following definition.

Definition 3.1 Let EX be a partial observation of a causal

graph G, γG : V → W a statistic on the nodes of G and θ as

in (3.1). Define by γX (vk) := γ
G̃
(vk) the partial observation

of γG from available data X , where G̃ is the graph given by

setting E[k, ℓ] = 0 for all [k, ℓ] ∈ S2. Furthermore, assume

there exists an estimator β : W → W of γG(V ) taking as an

input γX (V ). A graph-based predictor based on a node-level

statistic is defined by

�NLS (EX ) := θ (β (γX (V ))) . (3.2)

Assume that G, γG and θ of the above Definition 3.1 sat-

isfy the desiderata (1.), (2.) and (3.) stated further above.

Then, given that β predicts γG(V ) sufficiently well it is rea-

sonable to claim �NLS is performing better than random with

respect to the AUC. A concrete example follows in the fol-

lowing subsection with the OIP including a discussion under

which regime the given GBP performs better than random.

For the moment let us make the following remark.

Remark 3.2 The construction of the GBP �NLS as a gen-

eral construct given in (3.2) encodes the idea “The partial

observation of a node-level statistic can carry information on

unseen edges”. Under which conditions the �NLS performs

“better” than the random baseline depends on its actual con-

struction (i.e. choices of γG, θ, β, I) and is subject to an

underlying distribution on the sets of graphs, i.e. G ∼ D.

Observed indegree predictor In the following we consider

the indegree statistic by setting γG(vk) = deg−(vk). Con-

sider the desiderata on γG of Sect. 3.1, then, given that (2.) is

satisfied, we have by construction that γG satisfies (1.) and

(3.). To see this for (3.) consider any predictor θ in (3.1)

that is strictly increasing with respect to the indegree of the

potential effect. It remains to assume (2.), given below as

Assumption 3.3.
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Assumption 3.3 Given the set-up of Assumption 2.3, deg−

is not a constant function on the vertex set V .

Note, that Assumption 3.3 is arguably a weak assumption,

especially for large p. Thus, the indegree yields the following

graph-based predictor, as a special case of (3.2).

Definition 3.4 Given a partial observation EX of a causal

graph G, define via

�OIP(EX )[k, ℓ] :=

⎧
⎨
⎩

deg−
X (vℓ)

|I|
if ℓ /∈ I ,

deg−
X (vℓ)

|I|−1
if ℓ ∈ I

, (3.3)

the observed indegree predictor (OIP), where deg−
X (vℓ) :=

| {r ∈ I \ {ℓ} : E[r , ℓ] = 1} | is the observed indegree.

The OIP is a good candidate for a graph-based predictor

under Assumption 3.3 due to the following heuristic. Assum-

ing that the set of performed interventions I was chosen

independently of the edge matrix E , we have that deg−
X (vk)

is the sample mean of a hypergeometric distribution (popula-

tion size p−1, number of success states deg−(vk) and number

of draws |I|, with sample size 1), yielding in (p/|I|)deg−
X (vk)

an unbiased estimator of deg−(vk) for all 1 ≤ k ≤ p. In fact,

for graphs with positive correlation structure we have the fol-

lowing result on the expected AUC of the OIP on a subset of

S2.

Theorem 3.5 Let G = (V , E) be such that E is drawn at

random with marginal probabilities

E[k, ℓ] ∼

{
δ(1) if k = ℓ

B(1, q) else
,

where q ∈ (0, 1), with E[k, ℓ] and E[k′, ℓ′] drawn indepen-

dently for all k, k′ and all ℓ �= ℓ′, and with a covariance

structure given by

Cov
(

E[k, ℓ], E[k′, ℓ]
∣∣∣(E[k̃ j , ℓ])

J
j=1

)
= κN ,J > 0 , (3.4)

with N :=
∑J

j=1 E[k̃ j , ℓ], for all ℓ and any pairwise distinct

k, k′, k̃1, . . . , k̃J ∈ {1, 2, . . . , p}, with 0 ≤ J ≤ p − 2. Let

furthermore deg−
Y be not constant on V \ I.

Then, for any realization of the unknown relationships

MY ∈ {0, 1}|S2| we have

EEX |EY =MY
[AUCIC (�OIP)] > 0.5 , (3.5)

where AUCIC is the AUC on {[k, ℓ] ∈ S2 : ℓ /∈ I}.

The proof of Theorem 3.5 can be found in “Appendix 1”.

Furthermore, we show that a subclass of latent network mod-

els (e.g. Hoff et al. 2002; Bollobás et al. 2007) fall in the

setting of Theorem 3.5 (see Lemma 3 in “Appendix 1”).

Remark 3.6 To extend Theorem 3.5 to the AUC on all of S2

(the complete predicted EY by �OIP) is at this point open.

Considering the proof of Theorem 3.5 additional assumptions

on the distributions of deg−
Y and/or additional assumptions

on q and κN ,J seem to be needed. For more details we refer

the reader to “Appendix 1”.

Notably, the outdegree on the other hand is not a suit-

able candidate for a graph-based predictor in the context of

Assumption 2.3: Consider any unknown relationship [k, ℓ] ∈

S2, since EX is formed by complete rows of E we have no

observations on the outgoing edge-labels of vk helping us to

estimate deg+(vk).

3.2 Transitivity assuming predictor

In this section we introduce a second way to construct a

graph-based predictor by assuming that the graph satisfies

some property relating to a non-trivial constraint(s) on its

edge matrix such that EX carries information on EY . More-

over, a special case of such a graph-based predictor based on

transitive closedness will be derived.

GBPs based on a graph property Let the graph G in

Assumption 2.3 satisfy some constraint(s) denoted by (C),

such that the partial observation EX carries information on

EY . We then construct a graph-based predictor via the matrix

of expected values of the existence of an edge given a random

draw from all graphs that satisfy (C) and are consistent with

EX . Examples of (C) might include

• the graph being transitively closed;

• the graph being a k-reachability graph;

• the nodes of the graph having an upper/lower bound on

its in- and/or outdegrees.

Definition 3.7 Let ẼX be a partial observation of a causal

graph G̃ = (V , Ẽ). Suppose G̃ satisfies constraint(s) denoted

by (C). Then a graph-based predictor based on a graph prop-

erty (direct version) is defined by

�d-GP

(
ẼX

)
[k, ℓ]

:=

∣∣∣
{

G : G satisfies (C, ẼX ) and E[k, ℓ] = 1
}∣∣∣

∣∣∣
{

G : G satisfies (C, ẼX )

}∣∣∣
,

(3.6)

where G = (V , E) satisfying (ẼX ) is short for E is equal to

Ẽ on S1.

We have at once the following remark.
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Remark 3.8 Let G̃ = (V , Ẽ) be drawn uniformly from the

set of all graphs satisfying (C), then

�d-GP(ẼX ) = E
[

EY

∣∣EX = ẼX

]
. (3.7)

In general �d-GP can be very hard to compute or even

to simulate. For a feasible example consider (C) = (G

is undirected (i.e. E is symmetric) and features degree

sequence d ∈ Rp) of prescribed edge degrees. In this case

there exists a broad literature on how to draw (asymptoti-

cally) uniformly at random from the set {G : G satisfies (C)}

(see e.g. Artzy-Randrup and Stone 2005; Newman 2003;

Blitzstein and Diaconis 2011; Milo et al. 2003; Greenhill

2014), allowing in the worst case for Monte Carlo rejection

sampling of (3.6), and, in the best case for direct sampling

via a suitable adaptation of the Maslov–Sneppen MCMC

algorithm. Unfortunately, similar strategies are not known,

to the best of the authors’ knowledge, for drawing uni-

formly at random out of the set of all transitively closed

graphs, not to mention the denominator set of (3.6) with

(C) = (G is transitively closed). However, as elaborated

in the introduction, the case of transitively closed graphs

is of particular interest in the context of omics readouts

after gene perturbation experiments due to the fact that in

conventional designs for such experiments, direct causal

relationships are in general not easily distinguished from

ancestral relationships. Thus, to the end of obtaining an easier

to compute/simulate GBP we construct an indirect version

of (3.6) described in Eq. (3.8), below.

Definition 3.9 Let ẼX be a partial observation of a causal

graph G̃. Let G̃ satisfy constraint(s) denoted by (C) and let

φ be a surjective mapping from the space of all graphs to the

space of all graphs satisfying (C). A graph-based predictor

based on a graph property (indirect version) is defined by

�i-GP

(
ẼX

)
[k, ℓ]

:=

∣∣∣
{

G : φ(G) satisfies (ẼX ) and φ(E)[k, ℓ] = 1
}∣∣∣

∣∣∣
{

G : φ(G) satisfies (ẼX )

}∣∣∣
,

(3.8)

where φ(E) is the edge matrix corresponding to φ(G).

The special case of (3.8) considered in the remainder of

this Section is

(C) = (G̃ is transitively closed)

for which we use φ(G̃) = G̃+. Moreover, also for the indirect

version we can make a remark in the spirit of Remark 3.8.

Remark 3.10 Let G = (V , Ẽ) be drawn uniformly from the

set of all graphs and let φ be as in Definition 3.9 mapping

into the set of all graphs satisfying (C), then

�i-GP(ẼX ) = E
[
φ(E)Y

∣∣φ(E)X = φ(Ẽ)X

]
. (3.9)

Transitivity assuming predictors As an instance of a graph-

based predictor arising from a graph property we consider

in this section predicting EY of ancestral causal graphs. As

mentioned earlier, this is motivated by the nature of omics

readouts after intervention, since in such experiments what

is seen is the total causal effect of perturbing gene A on

gene B—potentially via mediators—rather than a necessarily

direct causal effect.

Assumption 3.11 Given the set-up of Assumption 2.3, the

causal graph G is ancestral.

Following Assumption 3.11, as a special case of (3.8), we

define the following graph-based predictor.

Definition 3.12 Let EX be a partial observation of an ances-

tral causal graph G = (V , E) with S2 being the indices of

the unobserved causal relationship of G. Define by

X = X (V , EX )

:=
{

E0 ∈ E : E+
0 [k, ℓ] = E[k, ℓ] for all [k, ℓ] ∈ S1

}
,

the set of all edge matrices E0, whose transitive closure E+
0

coincides with E on the index set S1, i.e. the set of all edge

matrices that are consistent with the partial observation EX .

We define

�TAP(EX )[k, ℓ] =

∣∣{E0 ∈ X : E+
0 [k, ℓ] = 1

}∣∣
|X |

, (3.10)

calling �TAP the transitivity assuming predictor (TAP).

In contrast to the OIP, for which computation is straight-

forward, computing/simulating the TAP is non-trivial. Given

a non-trivial scenario, i.e. S1, S2 �= ∅, the set X is determined

by constraints on the (p−1)-th power of E0. Concretely, two

types of constraints surface, in detail we have E0 ∈ X if and

only if Eqs. (3.11) and (3.12) below are both satisfied.

E
p−1
0 [k, ℓ] = 0 , ∀ [k, ℓ] ∈ S1 s.t. E[k, ℓ] = 0 , (3.11)

E
p−1
0 [k, ℓ] �= 0 , ∀ [k, ℓ] ∈ S1 s.t. E[k, ℓ] = 1 . (3.12)

A closed form for (3.10) can, to the best of the authors’

knowledge, only be given for those entries [k, ℓ] ∈ S2 which

features �TAP(EX )[k, ℓ] = 0, as they are induced by the

constraint (3.11) as Lemma 3.13 below implies, the proof of

which is given in “Appendix 1”.
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Algorithm 1 TAP - Monte-Carlo Rejection Sampling

Input: EX partial observation of G, T ∈ N number of required

successful draws, q ∈ [0, 1] edge probability for drawing the partial

RDG.

1. Set τ = 0 and �̂TAP(EX )(0,q)[k, ℓ] = 0 for all [k, ℓ] ∈ S2.

2. Compute the set of impossible edges K ⊂ S1 ∪ S2 using the

characterization in Lemma 3.13.

while τ < T do

3.A Let G be an edgeless graph with p vertices. Draw E0 as

RDGq,K (G), using Definition 2.2.

if E0 ∈ X then

3.B Set for all [k, ℓ] ∈ S2:

�̂TAP(EX )(τ+1,q)[k, ℓ]

:=
τ�̂TAP(EX )(τ,q)[k, ℓ] + E+

0 [k, ℓ]

τ + 1
,

3.C Set τ = τ + 1

end if

end while

Output: �̂TAP(EX )(T ,q)

Lemma 3.13 Given EX a partial observation of an ancestral

causal graph G = (V , E) and let �TAP be the TAP defined

in (3.10). Then we have

�TAP(EX )[k, ℓ] = 0 ⇔ Avk
� Avℓ

, (3.13)

where Av denotes the set of known parents of v ∈ V given

in EX . We call edges satisfying the right hand side of (3.13)

impossible edges.

To compute �TAP(EX )[k, ℓ] beyond impossible edges,

we are left with brute-force calculation with unfavourable

computational complexity such that already for p ≫ 10 cal-

culations may be intractable. In the remainder of the chapter

we propose simulation strategies of the TAP and variants

thereof, which are computationally less expensive.

Rejection sampling and choice of q Algorithm 1, given

below, simulates for q = 0.5 the TAP defined in (3.10) by

straightforward Monte Carlo rejection sampling, with edge

probability 0 for impossible edges, cf. Lemma 3.13. In gen-

eral, it sets impossible edges to zero, draws the rest of the

edge matrix entries as a partial RDG with edge probability

q ∈ (0, 1), see Definition 2.2, and, rejects the so drawn edge

matrix E0 if E0 /∈ X . This procedure is repeated until a fixed

number of T ∈ N non-discarded graphs have been drawn. By

construction the so obtained �
(T ,0.5)
TAP is a consistent estimator

of �TAP.

The rationale for introducing parameter q in Algorithm 1

is as follows. Since the probability that an RDG features the

complete graph as its transitive closure goes to 1 as p → ∞

(see Karp 1990; Krivelevich and Sudakov 2013), we have

to scale the parameter T with p for sufficient convergence,

increasing the computational costs. Meanwhile, letting q →

Algorithm 2 B-TAP - Biased Sampling from X

Input: EX partial observation of G, T ∈ N number of draws, q ∈

[0, 1] edge probability for drawing the partial RDG.

1. Set �̂B-TAP(EX )(0,q)[k, ℓ] = 0 for all [k, ℓ] ∈ S2.

2. Compute the set of impossible edges K ⊂ S1 ∪ S2 using the

characterization in Lemma 3.13.

3. Let G = (V , E) be given by |V | = p and

E[k, ℓ] =

{
0 if [k, ℓ] ∈ K ,

1 else .

for τ = 1, 2, . . . , T do

4.A Draw E−1 as RDGq,K (G), using Definition 2.2.

4.B For each node vk with k ∈ I let Gk be the subgraph on the

nodes {vk} ∪ Dvk
, where Dvk

denotes the set of known descendants

of vk . Draw modified RSTs T
(k)

mod of Gk rooted in vk , cf. Sect. 3.2.

4.C Set

E0[k, ℓ] :=

{
1 if ∃ r ∈ I s.t. [k, ℓ] ∈ T

(r)
mod

E−1[k, ℓ] else
. (3.13)

4.D Set for all [k, ℓ] ∈ S2:

�̂B-TAP(EX )(τ+1,q)[k, ℓ]

:=
τ�̂B-TAP(EX )(τ,q)[k, ℓ] + E+

0 [k, ℓ]

τ + 1
.

end for

Output: �̂B-TAP(EX )(T ,q)

0 as p → ∞ reduces the convergence time of Algorithm 1,

as we will see in Fig. 12 in “Appendix 1” (in particular with

regards to Algorithm 2 further below) where q is chosen with

respect to the sparsity of the observed graph. The caveat of

choosing q �= 0.5 is that �̂
(T ,q)
TAP

T →∞
−→ �

(q)
TAP which in general is

not equal to �TAP, i.e. �̂
(T ,q)
TAP is for q �= 0.5 not a consistent

estimator of �TAP, as shown in Lemma 3.22 in Sect. 3.4.

Biased sampling from X Even for q selected smaller and

smaller as the size of the graph p grows, since the rejection

sampler of Algorithm 1 draws an ever growing number of

discarded edge matrices, the computational costs of Algo-

rithm 1 sill grow with p → ∞, see Fig. 12 in “Appendix 1”.

To the end of reducing computational costs of Algorithm 1

further, consider Algorithm 2 avoiding rejections all together.

Additional to the exclusion of impossible edges, Algorithm 2

includes a step drawing spanning trees to ensure the inequal-

ity constraints of (3.12) are met by pasting them in the partial

RDGs drawn in Step 3.A. To this end introduce the Broder

Algorithm below.

Definition 3.14 (Broder 1989) Given an un-directed graph

G = (V , E), i.e. a graph as introduced in Sect. 2.2 with

symmetric E . Assume G to be connected. Draw a random

spanning tree (RST) rooted in v1 by simulating a random

walk x1, x2, x3, . . . , xT on G with x1 = v1 and stopping

time T ∈ N such that every vertex is visited at least once.
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Denote for each vertex vk �= v1 the index tk featuring

xmin({1≤ℓ≤T :xℓ=vk })−1 = vtk , i.e. vtk is the predecessor of the

first visit of the random walk to vk . Then, the RST is given

by the set of edges

T := {[tk, k] : 2 ≤ k ≤ p} .

In Broder (1989) it is shown that an RST of Definition 3.14

is drawn uniformly at random out of the set of all spanning

trees of G rooted inv1. However, for a directed graph G which

is not strongly connected, a random walk as in Definition 3.14

could get “stuck” (compare also Anari et al. 2020). Consider

in the following a directed graph G = (V , E) featuring a

path from v1 to any other vertex. To the end of drawing a

computationally feasible spanning tree in G rooted in v1 we

use a modified version of the RST:

1. Set Y := {[k, ℓ] ∈ {1, 2, . . . , p}2 : E[k, ℓ] = 0} to be

the set of all non-edges in G.

2. Set W = {2, 3, . . . , p} to be the set of all non-visited

vertices.

3. Set κ = 0 and set Tmod := ∅.

4. while κ = 0:

(a) Consider the complete graph G̃ on V .

(b) Draw a RST of G̃ rooted in v1 denoted by T0 :={
[k1, ℓ1], [k2, ℓ2], . . . , [kp−1, ℓp−1]

}
sorted by their

appearance in the random walk of Definition 3.14.

(c) Let

m := min({1 ≤ r ≤ p − 1 :

ℓr ∈ W and [kr , ℓr ] ∈ Y} ∪ {p} )

and set

Tmod = Tmod∪

{[ks, ℓs] ∈ T0 : ℓs ∈ W and s < m)} .

(d) Set

W = {2 ≤ ℓ ≤ p : ∄ k s.t. [k, ℓ] ∈ Tmod}

and if W = ∅ set κ = 1.

We call the so obtained Tmod a modified RST (m-RST).

Note that the above construction does not vouch for Tmod

being drawn uniformly at random out of the set of all span-

ning trees rooted in v1. In the case that Y = ∅ however the

draw of the modified RST coincides with the draw of an

RST. Since, as we will show in Sect. 3.4, Algorithm 2 does

not draw uniform at random from X even if the spanning tree

was drawn uniformly at random from all spanning trees, we

except this caveat for the sake of computational simplicity. In

particular, we have that �̂
(T ,q)
B-TAP

T →∞
−→ B-TAP(q) which is in general

not equal to �
(q)

TAP, for any q ∈ [0, 1]. We call the predictor

B-TAP(q) biased transitivity assuming predictor (B-TAP) with

edge-probability q ∈ (0, 1). As for Algorithm 1 with grow-

ing p we propose to choose q according to the sparsity of the

observed graph for feasible run times.

3.3 Extensions

The graph-based predictors defined in (3.2), (3.6) and (3.8)

are related. Furthermore, additional graph-based predictors

could be constructed. In the following section we exemplify

this.

First, given Assumption 3.11 the graph G has to stem from

a quite restrictive subset of all graphs in order not to satisfy

Assumption 3.3, as Lemma 3.15 below shows.

Lemma 3.15 Let G = (E, V ) be a transitively closed graph

such that deg−(vk) = n for all vk ∈ V . Then there exists

m, K ∈ N with K m = n such that G has K strongly con-

nected components of cardinality m that each form complete

subgraphs.

The proof of Lemma 3.15 can be found in “Appendix 1”.

Due to Lemma 3.15 we can motivate the OIP not only by

the type of observations EX – complete rows – but also by

the heuristic of observing ancestral graphs. This leads to a

combination of the TAP and the OIP given below.

Definition 3.16 Given a partial observation EX of a causal

graph G, let K be the set of impossible edges as given by

Lemma 3.13. Define the transitivity-assuming observed inde-

gree predictor (T-OIP) by

�T-OIP(EX )[k, ℓ]

:=

⎧
⎪⎪⎨
⎪⎪⎩

0 if [k, ℓ] ∈ K ,

deg−
I

(vℓ)+1

|I|+1
if [k, ℓ] /∈ K and ℓ /∈ I ,

deg−
I

(vℓ)+1

|I|
else

.
(3.14)

Note, that to define the T-OIP, the assumption of transi-

tivity is not needed.

Second, we can extend the definition of the TAPs, from

ancestral causal graphs to all possible causal graphs. This is

particularly important for omics data: First, because the TAPs

should be computable even if Assumption 3.11 does not hold,

for example when assuming that the causal effect dies out

over long causal chains. Second, because we need to be able

to compute TAPs also in the case of faulty assignments in EX ,

e.g. due to measurement errors. To this end we introduce the

following relaxed versions.
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Definition 3.17 Given a partial observation EX of a causal

graph G, let G̃ = (V , Ẽ) be given by

Ẽ[k, ℓ] :=

{
0 if [k, ℓ] ∈ S2 ,

E[k, ℓ] else
, (3.15)

and let Ẽ+
X = (Ẽ+[k, ℓ])[k,ℓ]∈S1 . Define the TAP of EX by

�TAP(EX ) = �TAP(Ẽ+
X ) , (3.16)

and define analogously �
(q)

TAP and �
(q)

TAP. Moreover, using

(3.15) we can define pre-processed versions of the �OIP and

the �T-OIP by

�P-OIP(EX ) := �OIP(Ẽ+
X ),

and,

�P-T-OIP(EX ) := �T-OIP(Ẽ+
X ).

3.4 Non-equivalence of the proposed predictors

Having introduced multiple predictors, using closely related

heuristics, cf. Lemma 3.15, the question arises whether the

respective ROC curves of the predictors are related or even

coincide. To this end, we provide a set of counterexamples

demonstrating the differences in predicted values and, when

applicable, differences in induced ROC curves between the

predictors. The first example shows that �TAP �=�
(0.5)
B-TAP and in

particular that the random draw from X described in Algo-

rithm 2 is not uniform even if the RST are drawn uniformly at

random. To compare the marginal distribution on the edges

of the drawn graphs from X introduce

θTAP(EX )[k, ℓ] = P[E0[k, ℓ] = 1|E0 ∈ X ]

=
| {E0 ∈ X : E0[k, ℓ] = 1} |

|X |
,

(3.17)

as the marginal conditional probability of the existence of an

edge when drawing E0 according to Algorithm 1 with q =

0.5 conditioned on E0 ∈ X . We have at once the following

Corollary to Lemma 3.13, for a proof see “Appendix 1”.

Corollary 3.18 Given EX a partial observation of an ances-

tral causal graph G and let θTAP(EX ) be given as in (3.17).

Then we have for [k, ℓ] ∈ S2 that

θTAP(EX )[k, ℓ] = 0 ⇔ Avk
� Avℓ

holds, where Av is the set of known parents of v ∈ V in G.

Moreover, the following Lemma shows that edges that

are “not-impossible” edges between nodes without a known

ancestor in common feature θTAP = 1/2.

Lemma 3.19 Given EX a partial observation of an ancestral

causal graph G and let θTAP be as in (3.17). Then we have

for [k, ℓ] ∈ S2 with Avk
⊆ Avℓ

that

θTAP(EX )[k, ℓ] =
1

2
⇔

(
Avk

\ {vℓ}
)
∩ Avℓ

= ∅,

where Av is the set of known parents of v ∈ V in G given in

EX .

The proof is given in “Appendix 1”. Given the above we

state below the counterexample for �TAP �=�
(0.5)
B-TAP. Note that in

the following, for the sake of readability, we will augment the

image space of the predictors to [0, 1]p×p instead of [0, 1]|S2|.

Example Given a set of nodes V = {v1, v2, v3, v4} and a

partial observation EX of G = (V , E) as depicted in Fig. 2a.

Brute force calculation of all graphs in X yields

(θTAP(EX )[k, ℓ])4
k,ℓ=1 =

1

24

⎛
⎜⎜⎝

24 18 18 0

12 24 15 0

12 15 24 0

12 12 12 24

⎞
⎟⎟⎠

�=
1

24

⎛
⎜⎜⎝

24 20 20 0

12 24 16 0

12 16 24 0

12 12 12 24

⎞
⎟⎟⎠ = (θ

(0.5)
B-TAP(EX )[k, ℓ])4

k,ℓ=1 ,

(3.18)

where θ
(0.5)
B-TAP(EX )[k,ℓ] denotes the marginal probability of

E0[k, ℓ] = 1 when drawing E0 according to Algorithm 2.

Note that there are no impossible edges present in the sub-

graph on {v1, v2, v3} and thus when drawing a tree from

Fig. 2c we draw uniformly at random from the set of all span-

ning trees rooted in v1, cf. Sect. 3.2. Computing furthermore

the predictors �TAP and �
(0.5)
B-TAP yields

�TAP(EX ) =
1

768

⎛
⎜⎜⎝

768 768 768 0

504 768 624 0

504 624 768 0

582 654 654 768

⎞
⎟⎟⎠

�=
1

768

⎛
⎜⎜⎝

768 768 768 0

512 768 640 0

512 640 768 0

584 656 656 768

⎞
⎟⎟⎠ = �

(0.5)
B-TAP(EX ) .

(3.19)

A detailed computation of the above matrices is given in

“Appendix 1”, consider to this end also (b) and (c) of Fig. 2.

In this example we observe:

1. The marginal distributions θ
(0.5)
B-TAP(EX ) of Algorithm 2

and the resulting prediction �
(0.5)
B-TAP(EX ) are not equal to

θTAP(EX ) and�TAP(EX ), respectively. Hence, �
(T ,0.5)
B-TAP (EX )

does not converge to �TAP for T → ∞.
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Fig. 2 The partial observation

EX of the ancestral causal graph

G given in the Example (I and

known edges in blue, known

non-edges in red) (a). The eight

possible edge label

configurations on

{[1, 2], [1, 3], [2, 3], [3, 2]} for

an edge matrix E0 ∈ X , i.e.

consistent with the ancestral

causal relationships given in EX

(b). Possible spanning trees on

Dv1 ∪ {v1} ensuring consistency

with EX (c)

2. In this example, the order of matrix entries of �TAP(EX )

is preserved by �
(0.5)
B-TAP(EX ), hence, the induced ROC

curves and thus AUC scores are the same by Defini-

tion 2.4.

To the best of the authors’ knowledge a counterexample

of different ROC curves for the TAP and the B-TAP is not

known. As a consequence we make the following conjecture.

Conjecture 3.20 Given a partial observation EX of an ances-

tral causal graph G. Under (possibly quite restrictive)

conditions on the descendant sets Dvk
for k ∈ I we have

that the ROC curves induced by �TAP and �
(0.5)
B-TAP coincide.

Staying with the above Example we show �T-OIP(EX ) �=

�TAP(EX ) and, even more, that the induced ROC curves

might differ.

Example (cont’d) Let G and its partial observation EX be as

before. Compute

(�T-OIP(EX )[k, ℓ])4
k,ℓ=1 =

1

6

⎛
⎜⎜⎝

6 6 6 0

3 6 6 0

3 6 6 0

3 6 6 6

⎞
⎟⎟⎠

=
1

768

⎛
⎜⎜⎝

768 768 768 0

384 768 768 0

384 768 768 0

384 768 768 768

⎞
⎟⎟⎠ �= �TAP(EX ).

This yields,

�TAP(EX )[4, 1] > �TAP(EX )[2, 1],

while,

�T-OIP(EX )[4, 1] = �T-OIP(EX )[2, 1].

Hence, given a that E[4, 1] = 1 �= 0 = E[2, 1] the T-OIP

and the TAP induce different ROC curves.

Analogously to Conjecture 3.20 we conjecture that T-OIP

is a “coarser” predictor than the TAP in the following.

Conjecture 3.21 Given a partial observation EX of an ances-

tral causal graph G underlying (possibly quite restrictive)

conditions. We have for edges [k, ℓ], [r , s] ∈ S2 (possibly

underlying some condition) that

(�T-OIP(EX )[k, ℓ] > �T-OIP(EX )[r , s])

⇒ (�TAP(EX )[k, ℓ] > �TAP(EX )[r , s]).

Last, Lemma 3.22, below, shows that changing q in Algo-

rithm 1 may lead to potentially different ROC curves.

Lemma 3.22 There exists an ancestral causal graph G and

a partial observation EX of G, as well as, q0 ∈ (0, 1) and

edges [k, ℓ], [k′, ℓ′] ∈ S2, such that

�
(0.5)
TAP [k, ℓ] > �

(0.5)
TAP [k′, ℓ′],

and,

�
(q0)
TAP[k, ℓ] < �

(q0)
TAP[k′, ℓ′].

The proof can be found in “Appendix 1”. Similarly we

can deduce that changing q in Algorithm 2 with RST drawn

uniformly at random may lead to potentially different ROC

curves, leading us to conjecture that one can also find a coun-

terexample for Algorithm 2 with RSTs drawn as m-RSTs, we

refer again to “Appendix 1” for details.

4 Simulation study

In this section we study the use of the graph-based predictors

as baselines in the case where the underlying ground truth

graph satisfies Assumption 3.11 and beyond. To this end, we

use simulated and real graphs.
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4.1 On simulated graphs

We simulate graphs of cardinality p as transitive closures

of RDGs with edge probability α/p governed by a sparsity

parameter α ∈ (0, 1). Note that the dependence of the spar-

sity on p is needed in order not to draw only graphs featuring

the complete graph as their transitive closure (Krivelevich

and Sudakov 2013).

In Fig. 3 box plots of the AUC performance of the ROC

curves for 20 runs are presented for varying graph size p.

In Fig. 3 the parameter α was set to 0.7 and the amount

of known rows was given by |I| = p/5. Compared are the

predictors TAP (Algorithm 1, (T , q) = (100, 0.5)), TAP-q

(Algorithm 1, (100, α/p)), B-TAP (Algorithm 2, (100, 0.5)),

B-TAP-q (Algorithm 2, (100, α/p)), T-OIP and the OIP.

The TAP, TAP-q, B-TAP and B-TAP-q are only computed

until p = 25, p = 100, p = 1000 and p = 1000,

respectively, due to their exploding computational costs (see

“Appendix 1”). For all p and all predictors the respective

performance is on average better than random. While the vari-

ability in AUC performance decreases with growing p, the

mean performance increases for all but the B-TAP and TAP.

For large p the B-TAP and the TAP suffer from their slow

convergence, which is especially visible when compared to

the B-TAP-q and TAP-q, respectively. It stands out that the

OIP, T-OIP and the B-TAP-q have a similar performance and

substantially outperform the classic random baseline (at 0.5

AUC). Moreover, the OIP and the T-OIP were by a margin

the fastest to compute, see for a comparison of computation

times Fig. 12 in “Appendix 1”.

For the influence of α and |I| on the B-TAB, B-TAB-

q, OIP and T-OIP performance we refer the reader to

Figs. 9 and 10 in “Appendix 1”. In summary, the order in

performance of the methods remains mainly unchanged. Fur-

thermore, for some example mean ROC curves of Fig. 3 we

refer to Fig. 8 in “Appendix 1”.

In Fig. 4 we present the AUC performance of the B-TAP,

B-TAP-q, OIP and T-OIP in the case the ground truth graph

is a k-reachability graph and thus violates Assumption 3.11

to various extends. A graph G = (V , E) is the k-reachability

graph of a graph G̃ = (V , Ẽ) if we have

(E[k, ℓ] = 1)

⇔ (∃ a path of length ≤ kfrom vk to vℓ).

In particular, k = 1 yields G = G̃ and k ≥ p − 1 yields

G = G̃+. For Fig. 4 we drew a RDG with edge probability
0.7/p and graph size p = 1000 and computed the respective

k-reachability graph. For each, the number of known rows

was set to |I| = 200. We observe that already for k = 25 the

AUC performance was comparable to the AUC performance

on the transitively closed graph (k = 1000). Meanwhile,

performance did not decrease drastically for k = 2, 5 and

prediction performance for all predictors remains better than

random. One reason might be that Assumption 3.3 continues

to hold even if Assumption 3.11 is violated. Additionally,

drawing k-reachability graphs in this way the probabilities

of existence of incoming edges at a particular node are posi-

tively correlated relating to our findings in Theorem 3.5. Note

that the T-OIP looses its advantage over the OIP from incor-

porating the impossible edges the more Assumption 3.11 is

violated. As in Fig. 3 we see that the B-TAP performs sig-

nificantly worse compared to the B-TAP-q due to its slower

convergence with respect to T . Last, for k = 1 we see a per-

formance of all predictors around random, which could be

expected, as for randomly drawn graphs the expected inde-

gree of each node is equal, possibly violating Assumption 3.3.

4.2 On graphs derived from“omics”-data

In the following we test the new predictors on real yeast

gene expression data1 from Kemmeren et al. (2014) (used

for CSL by Meinshausen et al. 2016) and on proteomics

data2 from Sachs et al. (2005) (used for CSL by Wang

et al. 2017). Compared are the baselines proposed in this

paper with the performance of the PC and IDA algorithms

(see Spirtes et al. 2000; Maathuis et al. 2009, respectively),

the MCMC-Mallow approach by Rau et al. (2013), the

GIES algorithm (Hauser and Bühlmann 2012) (using the R-

package pcalg Kalisch et al. 2012) and the IGSP algorithm

of Wang et al. (2017).

As the backgrounds of all approaches vary let us make

some remarks on their usage in this study:

• For PC, GIES and IGSP the output is an estimated graph

(rather than a matrix of scores) and as such only points

(one for each run) on the ROC plane are depicted in Fig. 7

and comparison via the AUC is not possible.

• The PC and IDA algorithms are considering any mea-

surement as observational, as they are not designed to

deal with interventional measurements. To the end of a

fair comparison, we report their performance when only

the available observational measurements (i.e. X2) are

passed to the algorithms (denoted by (obs)) and their

performance when all available measurements (i.e. X )

are passed to the respective algorithms (denoted by (int-

obs)). Note, that even when interventional measurements

are passed, they are treated by PC and IDA as observa-

tional.

1 The data can be found at https://deleteome.holstegelab.nl/ under the

tab Downloads>Causal inference.

2 The data can be found at https://github.com/yuhaow/sp-intervention.
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Fig. 3 Simulation study, AUC performance for varying graph size p

Fig. 4 Simulation study, AUC performance on k-reachability graphs

• The IGSP requires more than one interventional mea-

surement per intervention, as this is not available for

the Kemmeren et al. (2014) dataset the IGSP is only eval-

uated on the Sachs et al. (2005) dataset.

• Default parameter choices have been used. In detail for

PC (and thus IDA) we chose αPC to be 0.01 as proposed

in Kalisch et al. (2012), for IGSP αIGSP has been set

to 0.2 as it was among the best performing α‘s in the

corresponding experiment in Wang et al. (2017) and the

MCMC-Mallow algorithm has been used with constants

set as in the accompanying R-code of Rau et al. (2013).

Transcriptomics data (Kemmeren et al.) The data consists

of gene expression readouts of 262 observational experi-

ments (i.e. with no intervention) and 1479 interventional

experiments (each interventions is on a single gene, specif-

ically knock-outs; each intervention targeting a different

gene), measured are 6170 genes in total (including the 1479

intervened upon genes). We consider in this evaluation the

“square" graph using only the readouts of the 1479 genes that

have been intervened upon. Denote by X1 ∈ R p̃×p the avail-

able interventional measurements and by X2 ∈ RN1×p the

available observational measurements, denote furthermore
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Fig. 5 AUC on the yeast transcriptomics data of Kemmeren et al. (2014) performance with varying graph size, the gold-standard-threshold is fixed

at Z = 5

Fig. 6 AUC performance on the yeast transcriptomics data of Kemmeren et al. (2014) with varying gold-standard-threshold, the size of the graph

is fixed at p = 500

by Y1 ∈ R(p− p̃)×p and Y
N2×p

2 their unavailable counterparts,

cf. Assumption 2.3, and assume (if necessary via reordering)

that row k and column k correspond to gene vk . Then the

partial observation EX is constructed by the following gold-

standard-rule:

(E[k, ℓ] = 1) ⇔ (|X1[k, ℓ] − Med(X2[·, ℓ])| > Z · IQR(X2[·, ℓ])) ,

where X1[k, ℓ] is the readout of gene vℓ after the interven-

tion on vk , Med(·) assigns its median to a vector, Z > 0

is the gold-standard-threshold and IQR(·) assigns its inter-

quartile-distance to a vector, i.e. there exists an edge from A

to B if and only if the readout of B under intervention on

A has an absolute z-score higher than Z with respect to the

empirical distribution of readouts of B under no intervention.

The unobserved causal relationships EY are constructed anal-

ogously via Y1 and Y2 with the same gold-standard-threshold

Z . Given a graph size p, the following protocol was used to

obtain available and unavailable data:

1. Pick p of the 1479 genes at random and discard the rest.

2. Pick p̃ = ⌈p/5⌉ rows of the interventional readouts at ran-

dom, those constitute X1. The remaining rows constitute

Y1.

123



   93 Page 16 of 33 Statistics and Computing            (2023) 33:93 

Fig. 7 Mean ROC curves on the Kemmeren et al. (2014) data for p = 250 (a zoomed in at [0, 0.02]2) and p = 500 (b zoomed in at [0, 0.1]2) and

on the Sachs et al. (2005) data, complete (c) and zoomed in at [0, 0.5]2

3. Pick N1 = 131 (half) of the rows of the observational

readouts at random, those constitute X2. The remaining

rows constitute Y2.

For Figs. 5 and 6 the above protocol was repeated 10 times,

T was set to 100 for TAP, TAP-q, B-TAP and B-TAP-q, and,

q of TAP-q and B-TAP-q was set to the sparsity of the par-

tial observation provided. While in Fig. 5 the graph size p

varies and Z is set to 5, in Fig. 6 p is set to 500 and Z varies.

Due to computational demands it was not feasible to apply

all methods for all p. Figures 5 and 6 show that the pro-

posed graph-based predictors clearly outperform the classical

random baseline on the given data set. Moreover, they outper-

form IDA and MCMC-Mallow (where the latter ones were

computed). The order of performance holds generally also

for varying Z , in particular the OIP consistently outperforms

IDA. Interestingly, for large Z corresponding to considering

only “large” effects the differences in performance between

the OIP and TAPs seem to slightly diminish, while as Z

decreases only the OIP achieves a performance clearly better

than random. This suggests that Assumption 3.11 may hold

in practice in particular when considering larger effects.

In (a) and (b) of Fig. 7 close-ups of the mean ROC curves

for p = 250 and p = 500 are displayed. For methods pro-

ducing an estimated graph results are shown as points on the

ROC plane. For both, PC and GIES, we observe a perfor-
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mance slightly above random which is outperformed by the

OIPs and the TAPs. Moreover, on closer inspection the ascent

of the OIPs and TAPs is particularly steep at the start of the

ROC curves in the bottom left corner, a region often consid-

ered important when CSL methods are used for hypothesis

generation (see e.g. Colombo et al. 2012; Meinshausen et al.

2016).

Proteomics data (Sachs et al.) The data consists of pro-

tein measurements of 992 observational experiments (i.e.

with no interventions) and in total 13435 interventional

experiments, each targeting a single protein, spread over 8

target-proteins (the number of interventional measurements

per target-protein varies between 301 and 3602). In total 24

proteins are measured (among them the 8 targeted in the

interventions).

As sample size for the interventional experiments is far

larger compared to the data from Kemmeren et al. the two-

sided Wilcoxon-ranksum test is used to construct the ground

truth as done in Wang et al. (2017). In detail, given available

observational measurements X2 and available interventional

measurements X1,k with k corresponding to the targeted

intervention, i.e. X1 = (X T
1,1 · · · X T

1,m̃
)T (for some 1 ≤ m̃ ≤

7), we say that there is an edge from protein k to protein ℓ,

i.e. EX [k, ℓ] = 1, if the two-sided Wilcoxon-ranksum test

rejects (at significance level 0.05) the null hypothesis that the

samples (X2[·, ℓ]) and (X1,k[·, ℓ]) stem from the same dis-

tribution. Via the same gold standard rule EY is constructed

from Y1 and Y2. We followed the protocol below:

1. Pick m̃ = 4 = 8/2 interventional targets at random, all of

their interventional measurements combined constitute

X1. The remaining measurements, namely those target-

ing one of the other four interventional targets, constitute

Y1.

2. Pick 496 = 992/2 rows of the observational measurements

at random, those constitute X2. The remaining rows con-

stitute Y2.

In (c) and (d) of Fig. 7 the mean ROC curves over 10 runs of

the protocol are compared. Again, for methods producing an

estimated graph results are shown as points on the ROC plane.

Even on this graph with a few number of nodes and with only

|I| = 4 we observe a better performance than random of

the GBPs, in particular the variants of the OIP and the TAP

even outperform the IDA and perform comparably or slightly

better than the MCMC-Mallow approach, compare also the

AUC comparison in Fig. 11 in “Appendix 1”. Moreover, we

see that CSL methods outputting an estimated graph in fact

lie only in a minority of runs over the mean OIP ROC curve

(PC (obs-int) (2-3/10), IGSP (1-2/10)), or in fact, never as is

the case for PC (obs) and GIES.

Furthermore, in Fig. 12 of “Appendix 1” the computational

costs of Figs. 5 and 7 are reported. In particular the OIPs have

very low computation times, while the MCMC-Mallow and

IGSP take considerable longer to compute.

5 Discussion

In this paper we have argued for new baselines to evalu-

ate causal structure learning methods on interventional data,

as a complement to random baselines that in some settings

may represent a “low bar”. The inclusion of interventional

measurements carries information not only on the edges of

the causal graph corresponding to the available interven-

tional measurements, but also, to some extent, on remaining

edges in the graph. This is why in settings where such data

are available, simple heuristics to account for the available

information can provide improved baselines. For these set-

tings we introduced three general graph-based predictors,

cf. (3.2), (3.6) and (3.8). Motivated by large-scale systems

biology experiments we went on to consider special cases

of (3.2) and (3.8) in the observed indegree predictor (OIP)

and the transitivity assuming predictor (TAP) and extensions

thereof. We showed that the OIP will perform under quite

general conditions better than the random baseline and we

showed theoretical differences of the introduced predictors.

The potential of the OIPs and TAPs as more challenging

baselines were demonstrated in a simulation study as well as

on real data. In fact on real data the newly defined baselines

can outperform standard CSL methods (with default tuning

parameter values), although it should be emphasized that in

the particular application studied, the assumptions underpin-

ning some of the methods may not hold and furthermore in

some examples we had to apply the methods in ways that

deviate from their intended use.

In the future new graph-based predictors could be defined

for specific use-cases. Moreover, an evaluation of the base-

line’s performance on further metrics, beyond the ROC,

might be desirable. In its general nature, this paper focussed

on ROC curves and their accompanying AUCs. As GBPs

estimate only the graph structure and not underlying distribu-

tions, recently proposed evaluations of CSL methods taking

in account estimated distributions of the measurements X can

not be considered (O’Donnell et al. 2021). However, for par-

ticular use-cases evaluation on a more specific metric and/or
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forcing the GBPs to predict binary graphs - as PC, IGSP and

GIES do, for example via cross-validation - might be insight-

ful. This is in particularly true for the OIP as it performed

best on the real data in Sect. 4.2.

Regarding the computation of the TAP, it remains to be

seen whether for large p one can devise a feasible, consis-

tent simulation procedure, or, if resorting to the B-TAP or a

changed q remains necessary. Moreover, it would be of inter-

est to study whether the resulting ROC curves of the TAP,

B-TAP and OIP can in general be related as conjectured in

Sect. 3.4.
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Appendix A: Proofs

Appendix A.1: Proof of Theorem 3.5

To prove Theorem 3.5 we need the following preliminary

result.

Lemma 1 Let G = (V , E) be such that E is drawn at random

with marginal probabilities

E[k, ℓ] ∼

{
δ(1) if k = ℓ

B(1, q) else
,

where q ∈ (0, 1), with E[k, ℓ] and E[k′, ℓ′] drawn indepen-

dently for all k, k′ and all ℓ �= ℓ′, and with a covariance

structure given by

Cov
(

E[k, ℓ], E[k′, ℓ]
∣∣∣(E[k̃ j , ℓ])

J
j=1

)
= κN ,J > 0 , (A1)

with N :=
∑J

j=1 E[k̃ j , ℓ], for all ℓ and any pairwise distinct

k, k′, k̃1, . . . , k̃J ∈ {1, 2, . . . , p}.

Fix ℓ �= ℓ′ and disjoint sets Q1,Q2 ⊂ {1, 2, . . . , p}

and disjoint sets Q̃1, Q̃2 ⊂ {1, 2, . . . , p} such that ℓ /∈

Q1 ∪ Q2, ℓ
′ /∈ Q̃1 ∪ Q̃2, |Q1| = |Q̃1| and |Q2| = |Q̃2|.

Furthermore, fix m, m̄ ∈ {0, 1}|Q2|.

Then, we have

P
[ ∑

k∈Q1

E[k, ℓ] >
∑

k∈Q̃1

E[k, ℓ′]

∣∣∣∣

(E[k, ℓ])k∈Q2
= m,

(
E[k, ℓ′]

)
k∈Q̃2

= m̄

]

> P
[ ∑

k∈Q1

E[k, ℓ] <
∑

k∈Q̃1

E[k, ℓ′]

∣∣∣∣

(E[k, ℓ])k∈Q2
= m,

(
E[k, ℓ′]

)
k∈Q̃2

= m̄

]
,

(A2)

if and only if

||m||1 > ||m̄||1.

Proof First note that by construction we have for x, x̃ ∈

{0, 1}|Q1| and y, ỹ ∈ {0, 1}|Q2| that

P
[
(E[k, ℓ])k∈Q1

= x

∣∣∣(E[r , ℓ])3∈Q2
= y

]

= P
[
(E[k, ℓ′])k∈Q̃1

= x̃

∣∣∣(E[r , ℓ′])r∈Q̃2
= ỹ

]
.

(A3)

Second, let ℓ and Q � {1, . . . , p} be arbitrary such that

ℓ /∈ Q, and m = (m j ) ∈ {0, 1}|Q| a vector such that∑
j m j ≥ 1. Suppose furthermore without loss of gener-

ality that 1 ∈ Q and m1 = 1. We have for ℓ �= k /∈ Q that

P
[
E[k, ℓ] = 1|(E[r , ℓ])r∈Q = m

]

=
P
[

E[k, ℓ] = 1, E[1, ℓ] = 1

∣∣∣(E[r , ℓ])r∈Q\{1} = m̃
]

P
[

E[1, ℓ] = 1

∣∣∣(E[r , ℓ])r∈Q\{1} = m̃
] ,

(A4)
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where m̃ is the vector m without its first entry. For ease of

notation denote

Z0 =
{
(E[r , ℓ])r∈Q\{1} = m̃

}
.

Then, using (A1) we have

P [E[k, ℓ] = 1, E[1, ℓ] = 1|Z0]

P [E[1, ℓ] = 1|Z0]

>
P [E[k, ℓ] = 1|Z0] P [E[1, ℓ] = 1|Z0]

P [E[1, ℓ] = 1|Z0]

=
P [E[k, ℓ] = 1|Z0] P [E[1, ℓ] = 0|Z0]

P [E[1, ℓ] = 0|Z0]

>
P [E[k, ℓ] = 1, E[1, ℓ] = 0|Z0]

P [E[1, ℓ] = 0|Z0]

= P [E[k, ℓ] = 1|Z0 and E[1, ℓ] = 0] . (A5)

By symmetry of the covariance structure yielding (A3)

we follow that for any k, k′, ℓ, ℓ′ s.t. k �= ℓ and k′ �= ℓ′ and

subsets Q, Q̃ with |Q| = |Q̃| that

P
[
E[k, ℓ] = 1|(E[r , ℓ])r∈Q = m

]

> P
[
E[k′, ℓ′] = 1|(E[r , ℓ′])r∈Q̃ = m̄

]
,

(A6)

if and only if

||m||1 > ||m̄||1 . (A7)

In particular, by (A1) we have that if equality holds in (A6),

equality holds in (A7), yielding the “if and only if” part of

the statement.

Moreover, we obtain analogously the opposite statement

that for any k, k′, ℓ, ℓ′ s.t. k �= ℓ and k′ �= ℓ′ and subsets

Q, Q̃ with |Q| = |Q̃| we have

P
[
E[k, ℓ] = 0|(E[r , ℓ])r∈Q = m

]

> P
[
E[k′, ℓ′] = 0|(E[r , ℓ′])r∈Q̃ = m̄

]
,

(A8)

if and only if

||m||1 < ||m̄||1.

Again, with equality holding either in both, or in none of the

equations by virtue of (A3).

Let us in the following assume without loss of generality

by symmetry of the covariance structure and independence

between columns that Qx = Q̃x for x = 1, 2.

The claim of Lemma 1 can now be proven via induction on

the size of the set Q1, while keeping Q2 fixed. To this end,

ℓ, ℓ′, m, m̄,Q1 and Q2 be as in the assumption (including

ℓ′ /∈ Q1,Q2). We initialize the induction hypothesis with

|Q1| = | {k} | = 1. Define

A := P
[

E[k, ℓ] > E[k, ℓ′]
∣∣∣

(E[r , ℓ])r∈Q2
= m,

(
E[r , ℓ′]

)
r∈Q2

= m̄
]

= P
[

E[k, ℓ] = 1

∣∣∣ (E[r , ℓ])r∈Q2
= m

]

× P
[

E[k, ℓ′] = 0

∣∣∣
(
E[r , ℓ′]

)
r∈Q2

= m̄
]
.

In the case ||m||1 > ||m̄||1 we have by (A6) and (A8) that

A > P
[

E[k, ℓ′] = 1

∣∣∣
(
E[r , ℓ′]

)
r∈Q2

= m̄
]

× P
[

E[k, ℓ] = 0

∣∣∣ (E[r , ℓ])r∈Q2
= m

]

= P
[

E[k, ℓ] < E[k, ℓ′]
∣∣∣

(E[r , ℓ])r∈Q2
= m,

(
E[r , ℓ′]

)
r∈Q2

= m̄
]
.

(A9)

In the same way we have that if ||m||1 = ||m̄||1 we obtain

equality in (A9) by using that equality in (A7) yields equality

in (A6), yielding the base case of the induction.

It remains to show the induction step. Let the claim be

shown for |Q1| = N ∈ N and consider now |Q1| =

| {k1, . . . , kN+1} | = N + 1 and ||m||1 > ||m̄||1. For ease

of notation let us define for x, y = 0, 1 the events

Z :=
{
(E[r , ℓ])r∈Q2

= m,
(
E[r , ℓ′]

)
r∈Q2

= m̄
}

,

Z̃(x,y) :=
{

E[kN+1, ℓ] = x, E[kN+1, ℓ
′] = y

}
,

Z(x,y) := Z ∩ Z̃(x,y).

We have

B := P
[ N+1∑

n=1

E[kn , ℓ] >

N+1∑

n=1

E[kn , ℓ′]

∣∣∣∣

(E[r , ℓ])r∈Q2
= m,

(
E[r , ℓ′]

)
r∈Q2

= m̄

]

= P

⎡
⎣

N∑

n=1

E[kn , ℓ] >

N∑

n=1

E[kn , ℓ′]

∣∣∣∣Z(0,0)

⎤
⎦

︸ ︷︷ ︸
:=P(0,0)

P
[

Z̃(0,0)

∣∣∣Z
]

+ P

⎡
⎣

N∑

n=1

E[kn , ℓ] >

N∑

n=1

E[kn , ℓ′]

∣∣∣∣Z(1,1)

⎤
⎦

︸ ︷︷ ︸
:=P(1,1)

P
[

Z̃(1,1)

∣∣∣Z
]

+ P

⎡
⎣

N∑

n=1

E[kn , ℓ] ≥

N∑

n=1

E[kn , ℓ′]

∣∣∣∣Z(1,0)

⎤
⎦

︸ ︷︷ ︸
:=P(1,0)

P
[

Z̃(1,0)

∣∣∣Z
]

+ P

⎡
⎣

N∑

n=1

E[kn , ℓ] > 1 +

N∑

n=1

E[kn , ℓ′]

∣∣∣∣Z(0,1)

⎤
⎦

︸ ︷︷ ︸
:=P(0,1)

P
[

Z̃(0,1)

∣∣∣Z
]

(A10)
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Using the induction assumption we have immediately

P(0,0) > P

[
N∑

n=1

E[kn, ℓ] <

N∑

n=1

E[kn, ℓ
′]

∣∣∣∣Z(0,0)

]
,

P(1,1) > P

[
N∑

n=1

E[kn, ℓ] <

N∑

n=1

E[kn, ℓ
′]

∣∣∣∣Z(1,1)

]
.

(A11)

Moreover we obtain by induction assumption as ||m||1+1 >

||m̄||1 that

P(1,0) > P

[
N∑

n=1

E[kn, ℓ] ≤

N∑

n=1

E[kn, ℓ
′]

∣∣∣∣Z(1,0)

]

= P

[
1 +

N∑

n=1

E[kn, ℓ] <

N∑

n=1

E[kn, ℓ
′]

∣∣∣∣Z(1,0)

]

+ P

[
N∑

n=1

E[kn, ℓ] =

N∑

n=1

E[kn, ℓ
′]

∣∣∣∣Z(1,0)

]

︸ ︷︷ ︸
:=γ1

+ P

[
1 +

N∑

n=1

E[kn, ℓ] =

N∑

n=1

E[kn, ℓ
′]

∣∣∣∣Z(1,0)

]

︸ ︷︷ ︸
:=γ2

,

(A12)

and by ||m||1 ≥ ||m̄||1 + 1 we have,

P(0,1) = P

[
N∑

n=1

E[kn, ℓ] >

N∑

n=1

E[kn, ℓ′]

∣∣∣∣Z(0,1)

]

− P

[
N∑

n=1

E[kn, ℓ] = 1 +

N∑

n=1

E[kn, ℓ
′]

∣∣∣∣Z(0,1)

]

≥ P

[
N∑

n=1

E[kn, ℓ] ≤

N∑

n=1

E[kn, ℓ
′]

∣∣∣∣Z(0,1)

]

− P

[
N∑

n=1

E[kn, ℓ] =

N∑

n=1

E[kn, ℓ
′]

∣∣∣∣Z(0,1)

]

︸ ︷︷ ︸
:=γ̃1

− P

[
N∑

n=1

E[kn, ℓ] = 1 +

N∑

n=1

E[kn, ℓ
′]

∣∣∣∣Z(0,1)

]

︸ ︷︷ ︸
:=γ̃2

,

(A13)

Now we need to show that

P
[

Z̃(1,0)

∣∣∣Z
]
(γ1 + γ2) − P

[
Z̃(0,1)

∣∣∣Z
]
(γ̃1 + γ̃2) ≥ 0,

in order that we can drop it. We start by using the induction

assumption to show:

P
[

Z̃(1,0)

∣∣∣Z
]
γ1

= P

[
N∑

n=1

E[kn, ℓ] =

N∑

n=1

E[kn, ℓ
′], Z̃(1,0)

∣∣∣∣Z
]

= P

[
Z̃(1,0)

∣∣∣∣
N∑

n=1

E[kn, ℓ] =

N∑

n=1

E[kn, ℓ′], Z

]

× P

[
N∑

n=1

E[kn, ℓ] =

N∑

n=1

E[kn, ℓ
′]

∣∣∣∣Z
]

> P

[
Z̃(0,1)

∣∣∣∣
N∑

n=1

E[kn, ℓ] =

N∑

n=1

E[kn, ℓ′], Z

]

× P

[
N∑

n=1

E[kn, ℓ] =

N∑

n=1

E[kn, ℓ
′]

∣∣∣∣Z
]

= P
[

Z̃(0,1)

∣∣∣Z
]
γ̃1 .

(A14)

For the second term we use the symmetry of the covariance

structure, yielding (A3), and the independence between the

columns of the edge matrix:

P
[

Z̃(1,0)

∣∣∣Z
]
γ2

= P

⎡
⎣1 +

N∑

n=1

E[kn, ℓ] =

N∑

n=1

E[kn, ℓ′], Z̃(1,0)

∣∣∣∣Z

⎤
⎦

=

N−1∑

t=0

⎛
⎝P

⎡
⎣

N∑

n=1

E[kn, ℓ] = t, E[kN+1, ℓ] = 1

∣∣∣∣Z

⎤
⎦

×P

⎡
⎣

N∑

n=1

E[kn, ℓ′] = t + 1, E[kN+1, ℓ′] = 0

∣∣∣∣Z

⎤
⎦
⎞
⎠

=

N−1∑

t=0

⎛
⎝P

⎡
⎣

N∑

n=1

E[kn, ℓ′] = t, E[kN+1, ℓ′] = 1

∣∣∣∣Z

⎤
⎦

×P

⎡
⎣

N∑

n=1

E[kn, ℓ] = t + 1, E[kN+1, ℓ] = 0

∣∣∣∣Z

⎤
⎦
⎞
⎠

= P
[

Z̃(0,1)

∣∣∣Z
]
γ̃2

(A15)

Using (A14) and (A15) and plugging (A11), (A12)

and (A13) in (A10) we get
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B > P

[
N∑

n=1

E[kn, ℓ] <

N∑

n=1

E[kn, ℓ′]

∣∣∣∣Z(0,0)

]
P
[

Z̃(0,0)

∣∣∣Z
]

+ P

[
N∑

n=1

E[kn, ℓ] <

N∑

n=1

E[kn, ℓ′]

∣∣∣∣Z(1,1)

]
P
[

Z̃(1,1)

∣∣∣Z
]

+ P

[
1 +

N∑

n=1

E[kn, ℓ] <

N∑

n=1

E[kn, ℓ′]

∣∣∣∣Z(1,0)

]
P
[

Z̃(1,0)

∣∣∣Z
]

+ P

[
N∑

n=1

E[kn, ℓ] ≤

N∑

n=1

E[kn, ℓ′]

∣∣∣∣Z(0,1)

]
P
[

Z̃(0,1)

∣∣∣Z
]

= P
[ N+1∑

n=1

E[kn, ℓ] <

N+1∑

n=1

E[kn, ℓ′]

∣∣∣∣

(E[r , ℓ])r∈Q2
= m,

(
E[r , ℓ′]

)
r∈Q2

= m̄

]
,

(A16)

showing the induction step for ||m||1 > ||m̄||1. Which leaves

the case ||m||1 = ||m̄||1. First, by induction assumption we

have equality in both displays of (A11). Second, by (A3) and

symmetry of construction we have that

P
[

Z̃(1,0)

∣∣∣Z
]

= P
[

Z̃(0,1)

∣∣∣Z
]
,

P(1,0) = P

[
N∑

n=1

E[kn, ℓ] ≤

N∑

n=1

E[kn, ℓ′]

∣∣∣∣Z(0,1)

]
,

P(0,1) = P

[
1 +

N∑

n=1

E[kn, ℓ] <

N∑

n=1

E[kn, ℓ′]

∣∣∣∣Z(1,0)

]
.

Hence, putting both observations together we have equality

in (A16) for ||m||1 = ||m̄||1, finishing the proof.

Proof of Theorem 3.5 Let us start by stating the expected

value for the AUCIC derived from Remark 2.5.

EEX |EY =MY

[
AUCIC (�OIP(EX ))

]
=

1

|ẼY ,1||ẼY ,0|

×
∑

[k,ℓ]∈ẼY ,1

∑

[k′,ℓ′]∈ẼY ,0

EEX |EY =MY

[
σX

(
[k, ℓ], [k′, ℓ′]

)]
,

(A17)

where

σX

(
[k, ℓ], [k′, ℓ′]

)

= δ�OIP[k,ℓ]>�OIP[k′,ℓ′] +
1

2
δ�OIP[k,ℓ]=�OIP[k′,ℓ′]

(A18)

and ẼY ,x =
{
[k, ℓ] ∈ EY ,x : ℓ /∈ I

}
for x = 0, 1.

Case 1: ℓ = ℓ′:

We have by construction�OIP(EX )[k, ℓ] = �OIP(EX )[k′,

ℓ] for all k �= k′, hence

EEX |EY =MY

[
σX

(
[k, ℓ], [k′, ℓ]

)]
=

1

2
, (A19)

for all k �= k′ such that E[k, ℓ] �= E[k′, ℓ].

Case 2: ℓ �= ℓ′:

By assumption we have ℓ, ℓ′ /∈ I. Let us first consider the

case

∑

r /∈I
r �=ℓ

MY [r , ℓ] >
∑

r /∈I
r �=ℓ′

MY [r , ℓ′] , (A20)

then we have for any k0, k′
0 /∈ I such that E[k0, ℓ] = 1 �=

0 = E[k′
0, ℓ

′] that

EEX |EY =MY

[
σX

(
[k0, ℓ], [k

′
0, ℓ

′]
)]

= EEX |EY =MY

[
δdeg−

X (ℓ)>deg−
X (ℓ′)

]

+
1

2
EEX |EY =MY

[
δdeg−

X (ℓ)=deg−
X (ℓ′)

]

= P
[
deg−

X (ℓ) > deg−
X (ℓ′)

∣∣EY = MY

]

+
1

2
P
[
deg−

X (ℓ) = deg−
X (ℓ′)

∣∣EY = MY

]

= P

[
∑

r∈I

E[r , ℓ] >
∑

r∈I

E[r , ℓ′]

∣∣∣∣EY = MY

)

+
1

2
P

[
∑

r∈I

E[r , ℓ] =
∑

r∈I

E[r , ℓ′]

∣∣∣∣EY = MY

]

> P

[
∑

r∈I

E[r , ℓ] <
∑

r∈I

E[r , ℓ′]

∣∣∣∣EY = MY

]

+
1

2
P

[
∑

r∈I

E[r , ℓ] =
∑

r∈I

E[r , ℓ′]

∣∣∣∣EY = MY

]
,

(A21)

where the last inequality holds true by Lemma 1. Since the

sum of the last two lines in (A21) is 1 by construction, we

have

EEX |EY =MY

[
σX ([k0, ℓ], [k

′
0, ℓ

′])
]

>
1

2
. (A22)

Moreover we have by the last line of (A21) that for k1, k′
1 /∈ I

with E[k1, ℓ] = 0 �= 1 = E[k′
1, ℓ

′] the following holds:

EEX |EY =MY

[
σX ([k1, ℓ], [k

′
1, ℓ

′])
]

= 1 − EEX |EY =MY

[
σX ([k0, ℓ], [k

′
0, ℓ

′])
]

,
(A23)

recall to this end also Eq. (A3) of Lemma 1.
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By (A20) there exist more pairs (k0, k′
0) yielding (A22)

than pairs (k1, k′
1) yielding (A23), hence,

∑

[k,s]∈EY ,1

s∈{ℓ,ℓ′}

∑

[k,s]∈EY ,0

s∈{ℓ,ℓ′}

EEX |EY =MY

[
σX

(
[k, ℓ], [k′, ℓ]

)]

>
∑

[k,s]∈EY ,1

s∈{ℓ,ℓ′}

∑

[k,s]∈EY ,0

s∈{ℓ,ℓ′}

1

2
.

(A24)

Note, that in the case the inequality in (A20) is inverted

Eq. (A24) still holds.

In the case that

∑

r /∈I
r �=ℓ

MY [r , ℓ] =
∑

r /∈I
r �=ℓ′

MY [r , ℓ′] , (A25)

We have by Lemma 1 equality in (A21) and thus

EEX |EY =MY

[
σX ([k, ℓ], [k′, ℓ])

]
=

1

2
. (A26)

Plugging Eqs. (A19), (A24) and (A26) into (A17) and

since by assumption there exists at least one pair ℓ, ℓ′ /∈ I

such that (A20) holds, we obtain

EEX |EY =MY

[
AUCIC (�OIP(EX ))

]
>

1

2
.

Last, let us give an example of a graph generation process

that falls under Theorem 3.5.

Definition 2 (compare e.g. Hoff et al. 2002; Bollobás et al.

2007) We define a directed latent network model with fixed

outgoing and node depending incoming propensities (LNM-

fix-O) by drawing

(zℓ)
p

ℓ=1

i id
∼ D((0, 1)) , (A27)

from some non-degenerate distribution D on (0, 1) (i.e. D

is not a Dirac delta distribution). Subsequently, draw G =

(V , E) by iid draws

E[k, ℓ] ∼

{
δ(1) if k = ℓ

B(1, zℓ) else
.

Lemma 3 The probability distribution of the LNM-fix-O

given in Definition 2 satisfies the assumptions of Theorem 3.5

and Lemma 1.

Proof First, by construction the marginal distributions are

Bernoulli random draws, moreover, we have

E[k, ℓ] ∼ B(1, ED[zℓ]),

for all 1 ≤ ℓ ≤ p. Hence, by (A27) we have, setting

q := ED[zℓ], that all marginal distributions feature the same

success probability.

Second, by construction E[k, ℓ] and E[k′, ℓ′] are inde-

pendent for all ℓ �= ℓ′.

Third, we are left to show (3.4). Let 1 ≤ k, k′, k1, . . . , kJ ≤

p be pairwise different and m ∈ {0, 1}J with ||m||1 = N ,

we have

cov

(
E[k, ℓ], E[k′, ℓ]

∣∣∣(E[k j , ℓ])
J
j=1 = m

)

= E
[

E[k, ℓ]E[k′, ℓ]
∣∣∣(E[k j , ℓ])

J
j=1 = m

]

−

(
E

[
E[k, ℓ]

∣∣∣(E[k j , ℓ])
J
j=1 = m

]

× E
[

E[k′, ℓ]
∣∣∣(E[k j , ℓ])

J
j=1 = m

])

= P
[

E[k, ℓ] = 1, E[k′, ℓ] = 1

∣∣∣(E[k j , ℓ])
J
j=1 = m

]

−

(
P
[

E[k, ℓ] = 1

∣∣∣(E[k j , ℓ])
J
j=1 = m

]

× P
[

E[k′, ℓ] = 1

∣∣∣(E[k j , ℓ])
J
j=1 = m

])

=

(
P
[

E[k, ℓ] = 1

∣∣∣(E[k j , ℓ])
J
j=1 = m, E[k′, ℓ] = 1

]

− P
[

E[k, ℓ] = 1

∣∣∣(E[k j , ℓ])
J
j=1 = m

])

× P
[

E[k′, ℓ] = 1

∣∣∣(E[k j , ℓ])
J
j=1 = m

]

(A28)

Let us assume for now that D is a discrete random variable.

In this case consider

P
[

E[k, ℓ] = 1

∣∣∣(E[k j , ℓ])
J
j=1 = m

]

=

∫ 1

0

(
P
[

E[k, ℓ] = 1

∣∣∣zℓ = z
]

× P
[
zℓ = z

∣∣(E[k j , ℓ])
J
j=1 = m

])
dμD(z)

=

∫ 1

0

zP
[
zℓ = z

∣∣∣(E[k j , ℓ])
J
j=1 = m

]
dμD(z)

= E
[
zℓ

∣∣∣(E[k j , ℓ])
J
j=1 = m

]
.

(A29)

Second by Bayes theorem we have

123



Statistics and Computing            (2023) 33:93 Page 23 of 33    93 

P
[
zℓ = z

∣∣∣(E[k j , ℓ])
J
j=1 = m

]

=
P
[
(E[k j , ℓ])

J
j=1 = m

∣∣∣zℓ = z
]

P [zℓ = z]

P
[
(E[k j , ℓ])

J
j=1 = m

]

=
zN (1 − z)J−N P [zℓ = z]
∫ 1

0 z̃N (1 − z̃)J−N dμD(z̃)
,

(A30)

we have that (A29) only depends on J and N and not on the

exact configuration of m. Hence the covariance of (A28)

depends only on J and N and by construction not on

k, k′, ℓ and the exact configuration of m. It remains to show

that (A28) is strictly greater than 0. To this end, consider

m̃ = (m, 1) ∈ {0, 1}J+1. We have by (A29), (A30) and

renaming k′ = kJ+1,

P
[

E[k, ℓ] = 1

∣∣∣(E[k j , ℓ])
J+1
j=1

= m̃
]

= E
[
zℓ

∣∣∣(E[k j , ℓ])
J+1
j=1 = m̃

]

=

∫ 1
0 zP

[
(E[k j , ℓ])

J+1
j=1

= m̃

∣∣∣zℓ = z
]

P
[
zℓ = z

]
dμD(z)

P
[
(E[k j , ℓ])

J+1
j=1

= m̃
]

=

∫ 1
0 zP

[
(E[k j , ℓ])

J+1
j=1 = m̃

∣∣∣zℓ = z
]

P
[
zℓ = z

]
dμD(z)

P
[

E[k′, ℓ] = 1

∣∣∣(E[k j , ℓ])
J
j=1 = m

]
P
[
(E[k j , ℓ])

J
j=1 = m

]

=

∫ 1
0 zP

[
(E[k j , ℓ])

J+1
j=1

= m̃

∣∣∣zℓ = z
]

P
[
zℓ = z

]
dμD(z)

E
[
zℓ

∣∣∣(E[k j , ℓ])
J
j=1

= m
]

P
[
(E[k j , ℓ])

J
j=1

= m
]

=
E

[
z2
ℓ

∣∣∣(E[k j , ℓ])
J
j=1 = m

]

E
[
zℓ

∣∣∣(E[k j , ℓ])
J
j=1 = m

] ,

(A31)

where the last equality is by virtue of

P
[
(E[k j , ℓ])

J+1
j=1 = m̃

∣∣zℓ = z
]

= zN+1(1 − z)N−J

= zP
[
(E[k j , ℓ])

J
j=1 = m

∣∣zℓ = z
]
.

By the non-degenerate nature of D we can use the strict form

of Jensen’s inequality to conclude from (A31) that

P
[

E[k, ℓ] = 1
∣∣(E[k j , ℓ])

J+1
j=1 = m̃

]

> E
[
zℓ

∣∣∣(E[k j , ℓ])
J
j=1 = m

]

= P
[

E[k′, ℓ] = 1
∣∣(E[k j , ℓ])

J
j=1 = m

]
.

(A32)

By plugging (A32) into (A28) we obtain

cov

(
E[k, ℓ], E[k′, ℓ]

∣∣∣(E[k j , ℓ])
J
j=1 = m

)
> 0 , (A33)

finishing the proof for discrete distributions D. For general

distributions the proof follows analogously using standard

conditional expectation operations. For space considerations

we omit the details.

Appendix A.2: Proof of Lemma 3.13

Proof Let [k, ℓ] ∈ S2 and Avk
� Avℓ

, then there exists a

parent vr ∈ Avk
such that E[r , ℓ] = 0 and E[r , k] = 1. Let

Ẽ be an edge matrix whose transitive closure is consistent

with EX , then there exists a causal path from vr to vk . Assume

moreover Ẽ+[k, ℓ] = 1 then there would exist a causal path

from vr to vℓ violating the constraint Ẽ+[r , ℓ] = E[r , ℓ] =

0. Hence, the nominator of (3.10) is equal to 0.

Vice versa, let [k, ℓ] ∈ S2 be such that Avk
⊆ Avℓ

. Then,

define

Ẽ[r , s] =

⎧
⎪⎨
⎪⎩

E[r , s] if [r , s] ∈ S1

1 if [r , s] = [k, ℓ]

0 else

.

It is straight-forward to check that Ẽ ∈ X and features

Ẽ+[k, ℓ] = 1. Hence �TAP(EX )[k, ℓ] > 0.

Appendix A.3: Proof of Lemma 3.15

Proof Assume that E is not symmetric: Let vk, vℓ ∈ V such

that E[k, ℓ] = 1 and E[ℓ, k] = 0. Since G is transitively

closed we have Pk ⊂ Pℓ \ {vk}, where Pk is the set of par-

ents of the node vk . Yielding deg−(vk) ≤ deg−(vℓ) − 1,

a contradiction to the assumption deg−(vk) = deg−(vℓ).

Hence if Assumption 3.3 holds, E is symmetric. By G being

transitively closed we have Ak = Pk = Dk , where Ak and

Dk denote the respective sets of ancestors and descendants,

for every vk ∈ V . Hence, for any vk ∈ V we have that

{vk} ∪ Pk form a connected component and a complete sub-

graph, yielding the claim by the fact that deg− is constant on

V .

Appendix A.4: Proof of Corollary 3.18

Proof By definition of θTAP(EX )we have that from�TAP(EX )

[k, ℓ] = 0 follows θTAP(EX )[k, ℓ] = 0, yielding one direc-

tion. For the other direction consider Ẽ from the proof of

Lemma 3.13 to yield θTAP(EX )[k, ℓ] > 0 if Avk
⊆ Avℓ

.

Appendix A.5: Proof of Lemma 3.19

Proof Let [k, ℓ] ∈ S2 be an edge with Avk
⊆ Avℓ

. Define

�1 := {E0 ∈ X (V , EX ) : E0[k, ℓ] = 1} ,

�2 := {E0 ∈ X (V , EX ) : E0[k, ℓ] = 0} ,
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Let M ∈ �2, then we define by M+[k,ℓ] the edge matrix with

M+[k,ℓ][r , s] :=

{
1 if [r , s] = [k, ℓ]

M[r , s] else
, (A34)

i.e. adding the edge [k, ℓ] to M . Note that by definition of �2

we have M[k, ℓ] = 0. Define furthermore a mapping

φ : �2 → �1, φ : M 
→ M+[k,ℓ].

Since M ∈ X (V , EX ) and Avk
⊆ Avℓ

adding the edge [k, ℓ]

will not interfere with the zero-constraints given by (3.11)

and as adding edges can never interfere with the �= 0 con-

straints in (3.12), we have M+[k,ℓ] ∈ X (V , EX ) and thus φ

is well-defined. Moreover, φ is by definition injective.

Given
(
Avk

\ {vℓ}
)
∩ Avℓ

= ∅ we define additionally

ψ : �1 → �2, ψ : M 
→ M−[k,ℓ],

with M−[k,ℓ] being defined as in A34 with M[k, ℓ] set to

0, i.e. deleting the edge [k, ℓ] from M . If deleting the edge

[k, ℓ] would break a path from vr with r ∈ I to vs ∈ V

we would have vk, vℓ ∈ Dvr since k /∈ I, a contradiction to

(Avk
\ {vℓ})∩Avℓ

= ∅. Hence, ψ(EX ) is well defined, since

deleting an edge can not interfere with the zero-constraints

given by EX . By definition ψ is the inverse function of φ,

making φ a bijection. Hence, we have

θTAP(EX )[k, ℓ] =
1

2
.

Vice versa, if there were to exist vr ∈
(
Avk

\ {vℓ}
)
∩ Avℓ

define M0 by

M0[x, y] =

⎧
⎪⎨
⎪⎩

1 if x ∈ I, vy ∈ Avx and [x, y] �= [r , ℓ]

1 if [x, y] = [k, ℓ]

0 else

.

Then by definition M0 ∈ �1, but (M0)−(v,w) /∈ X (V , EX ),

hence M0 is not in the image of φ, yielding by injectivity of

φ,

#�1 > #�2,

i.e. θTAP[k, ℓ](EX ) > 1
2

.

Appendix A.6: Computation of the example

Consider G and EX of the Example in Sect. 3.2 detailed in

Fig. 2a. We have by Lemma 3.19 that

θTAP(EX )[2, 1] = θTAP(EX )[3, 1]

= θTAP(EX )[4, 1]

= θTAP(EX )[4, 2]

= θTAP(EX )[4, 3] =
1

2
.

Moreover, we can compute by Fig. 2b that θTAP(EX )[2, 3] =

θTAP(EX )[3, 2] = 5/8 and θTAP(EX )[1, 2] = θTAP(EX )[1, 3] =
6/8. Last, by Corollary 3.18 we have that the edge matrix

entries [1, 4], [2, 4] and [3, 4] are zero, yielding

(θTAP(EX )[k, ℓ])4
k,ℓ=1 =

1

8

⎛
⎜⎜⎝

8 6 6 0

4 8 5 0

4 5 8 0

4 4 4 8

⎞
⎟⎟⎠ .

As given in Fig. 2b the edge matrix entries

{[1, 2], [1, 3], [2, 3], [3, 2]} of an edge matrix E0 ∈ X (V , EX )

have 8 different possible configurations. Additionally, the

five edge matrix entries [2, 1], [3, 1], [4, 1], [4, 2], [4, 3] can

be in 25 = 32 different configurations. Hence, we have

#X (V , EX ) = 32 · 8 = 256. In the following we collect

for each edge all graphs E ∈ X featuring the given edge in

their respective transitive closure.

• �TAP(EX)[2, 1]:

Count all the edge matrices in X (V , EX ) featuring

E+[2, 1] = 1:

– All 128 edge matrices with E[2, 1] = 1.

– Among the 128 edge matrices with E[2, 1] = 0, there

is none with E[2, 4] = 1, and there are 5/8 ·128 = 80

with E[2, 3] = 1. Among those 80 we have 40 with

E[3, 1] = 1.

– Among the remaining 40 with E[2, 3] = 1 and

E[2, 1] = E[3, 1] = 0 we have none with E[3, 4] =

1.

Hence, we obtain

�TAP(EX )[2, 1] =
128 + 40

256
=

168

256
=

21

32
.

• �TAP(EX)[4, 1]:

Count all the edge matrices in X (V , EX ) featuring

E+[4, 1] = 1:

– All 128 edge matrices with E[4, 1] = 1.

– Among the 128 edge matrices with E[4, 1] = 0 we

have 64 graphs with E[4, 2] = 1 from which...
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• ... 32 feature E[2, 1] = 1, hence E+[4, 1] = 1.

• ... 32 feature E[2, 1] = 0. Of those there are

· 5/8·32 = 20 which feature E[2, 3] = 1. And

half of those 20 feature E[3, 1] = 1. Hence,

there are 10 additional edge matrices with

E+[4, 1] = 1.

· Of the remaining 12 which feature E[2, 3] =

0 we have 3 featuring E[4, 3] = E[3, 1] =

1.

– Among the 64 with E[4, 1] = E[4, 2] = 0 there are

32 with E[4, 3] = 1 from which...

• ... 16 feature E[3, 1] = 1, hence E+[4, 1] = 1.

• ... 16 feature E[3, 1] = 0. Of those there are
5/8 × 16 = 10 which feature E[3, 2] = 1. And

half of those 10 feature E[2, 1] = 1. Yielding 5

additional edge matrices with E+[4, 1] = 1.

Hence, we obtain

�TAP(EX )[4, 1] =
128 + 32 + 10 + 3 + 16 + 5

256

=
194

256
.

• �TAP(EX)[4, 2]:

Count all the edge matrices in X (V , EX ) featuring

E+[4, 2] = 1:

– All 128 edge matrices with E[4, 2] = 1.

– Among the 128 graphs with E[4, 2] = 0 we have

64 graphs with E[4, 1] = 1, yielding E+[4, 2] = 1

from the constraint E+[1, 2] = 1.

– Among the 64 with E[4, 1] = E[4, 2] = 0 there are

32 with E[4, 3] = 1 from which...

• ... 16 feature E[3, 1] = 1, hence E+[4, 2] = 1

by the constraint E+[1, 2] = 1.

• ... 16 feature E[3, 1] = 0. Of those there are
5/8 × 16 = 10 which feature E[3, 2] = 1, hence

E+[4, 2] = 1.

Hence, we obtain

�TAP(EX )[4, 2] =
128 + 64 + 16 + 10

256
=

218

256
.

• �TAP(EX)[2, 3]:

Count all the edge matrices in X (V , EX ) featuring

E+[2, 3] = 1:

– All 5/8 · 256 = 160 edge matrices with E[2, 3] = 1.

– Among the 96 graphs with E[2, 3] = 0 we have no

graph with E[2, 4] = 1 and 48 edge matrices with

E[2, 1] = 1, which yield by constraints E+[2, 3] =

1.

Hence, we obtain

�TAP(EX )[2, 3] =
160 + 48

256
=

208

256
=

13

16
.

By symmetry we obtain

(�TAP(EX )[k, ℓ])4
k,ℓ=1 =

1

256

⎛
⎜⎜⎝

256 256 256 0

168 256 208 0

168 208 256 0

194 218 218 256

⎞
⎟⎟⎠ .

To compute �
(0.5)
B-TAP(EX ) consider the three spanning trees

ensuring edges in [1, 2] and [1, 3] given in Fig. 2c. Each exists

with probability 1/3, all other edges are than added on with

a probability of 1/2. Hence, we have that θB-TAP(EX )[k, ℓ]

denoting the marginal distribution of E0[k, ℓ] = 1 is given

by

(θB-TAP(EX )[k, ℓ])4
k,ℓ=1 =

1

6

⎛
⎜⎜⎝

6 5 5 0

3 6 4 0

3 4 6 0

3 3 3 6

⎞
⎟⎟⎠

Let us now count how often we draw a graph featuring

E+[k, ℓ] = 1 for Algorithm 2.

• �B-TAP(EX)[2, 1]:

When drawing E there is a 1/2 probability that E[2, 1] =

1. Given E[2, 1] = 0 we have...

– ... with probability 1/3 that the spanning tree T fea-

tures [2, 3] ∈ T . Then, with probability 1/2 we have

E[3, 1] = 1 (yielding an additional 1/12). If, however

E[3, 1] = 0, by E[2, 4] = E[3, 4] = 0 we have

E+[2, 1] = 0.

– ... with probability 2/3 that the spanning tree T fea-

tures [2, 3] /∈ T . Then, with probability 1/4 we have

E[2, 3] = E[3, 1] = 1 (yielding an additional 1/12).

If, however either E[3, 1] = 0 or E[2, 3] = 0, by

E[2, 4] = E[3, 4] = 0 we have E+[2, 1] = 0.

Yielding in total a probability of

�B-TAP(EX )[2, 1] =
24 + 4 + 4

48
=

32

48
.

• �B-TAP(EX)[4, 1]:

When drawing E there is a 1/2 probability that E[4, 1] =

1. Given E[4, 1] = 0 we have...

– ... with probability 1/4 that E[4, 2] = E[2, 1] = 1

(yielding an additional 1/8). However, if E[4, 2] =

1 �= 0 = E[2, 1] we have with probability 1/6 that

[2, 3] ∈ T and E[3, 1] = 1 (yielding an additional
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1/48), or, with probability 1/6 that [2, 3] /∈ T , but

E[2, 3] = E[3, 1] = 1 (yielding an additional 1/48),

or last, we have with probability 1/12 that [2, 3] /∈

T , E[2, 3] = 0 and E[4, 3] = E[3, 1] = 1 (yielding

an additional 1/96).

– ... with probability 1/8 that E[4, 2] = 0, but E[4, 3] =

E[3, 1] = 1 (yielding an additional 1/16). However,

if E[3, 1] = 0 we have as above with probability 1/3

that E[2, 3] = E[2, 1] = 1 (yielding an additional
1/48).

Yielding in total a probability of

�B-TAP(EX )[4, 1] =
48 + 12 + 2 + 2 + 1 + 6 + 2

96

=
73

96
.

• �B-TAP(EX)[4, 2]:

When drawing E there is a 1/2 probability that E[4, 2] =

1. Given E[4, 2] = 0 we have...

– ... with probability 2/3 that [1, 2] ∈ T (which auto-

matically means [3, 2] /∈ T ). Then, with probability
1/2 we have E[4, 1] = 1 (yielding an additional 1/6),

with probability 1/8 that E[4, 1] = 0 and E[4, 3] =

E[3, 2] = 1 (yielding an additional 1/24) and with

probability 1/16 we have E[4, 1] = E[3, 2] = 0 and

E[4, 3] = E[3, 1] = 1 (yielding an additional 1/48).

– ... with probability 1/3 that T = {[1, 3][3, 2]}. Then,

with probability 1/2 we have E[4, 3] = 1 (yielding an

additional 1/12), with probability 1/4 that E[4, 3] = 0

and E[4, 1] = 1 (yielding an additional 1/24).

Yielding in total a probability of

�B-TAP(EX )[4, 2] =
24 + 8 + 2 + 1 + 4 + 2

48
=

41

48
.

• �B-TAP(EX)[2, 3]:

When drawing E there is...

– ... a 1/3 probability that [2, 3] ∈ T .

– ... a 1/3 probability that [2, 3] /∈ T and E[2, 3] = 1

(yielding an additional 1/3).

– ... a 1/3 probability that [2, 3] /∈ T and E[2, 3] =

0. Then, with probability 1/2 we have E[2, 1] = 1

(yielding an additional 1/6).

Yielding in total a probability of

�B-TAP(EX )[4, 2] =
16 + 16 + 8

48
=

40

48
.

Putting everything together we obtain

(�B-TAP(EX )[k, ℓ])4
k,ℓ=1 =

1

96

⎛
⎜⎜⎝

96 96 96 0

64 96 80 0

64 80 96 0

73 82 82 96

⎞
⎟⎟⎠ .

Appendix A.6: Proof of Lemma 3.22

Proof Let Gq be an ancestral causal graph with node set

Vs := {v0, v1, v2, v3, w0, w1, . . . , ws} for s ≥ 2. The set of

available interventions is given by I = {v0, v3, w0} and the

partial observation E
(s)
X is given by

E[v0, vk] = 1 for k = 1, 2, 3,

E[vℓ, wk] = 0 for ℓ = 0, 3 and k = 0, 1, . . . , s,

E[v3, vk] = 0 for k = 0, 1,

E[v3, v2] = 1,

E[w0, vk] = 0 for k = 0, 1, 2, 3,

E[w0, wk] = 1 for k = 1, . . . , s,

by abuse of notation. We observe the following impossible

edges by Lemma 3.13

K = {[vk, wℓ] : ∀ k, ℓ} ∪ {[wℓ, vk] : ∀ k ℓ}

∪ {[vk, vℓ] : k = 2, 3, ℓ = 0, 1}..

Let E(q,s) be a partial RDG with edge probability q as drawn

in step (3.A) in Algorithm 1. Define

γ0(q, s) := P[E+
(q,s)[v1, v2] = 1|E(q,s) ∈ X ],

γ1(q, s) := P[E+
(q,s)[w1, w2] = 1|E(q,s) ∈ X ].

To show the claim, it suffices to show that there exist q0

and s0 such that γ0(0.5, s0) < γ1(0.5, s0) and γ0(q0, s0) >

γ1(q0, s0).

1. Claim: There exists a s0 ≥ 2 such that γ0(0.5, s0) <

γ1(0.5, s0).

First, note that by definition γ0(q, s) is independent of

the choice of s. Hence there exists γ0(q) ∈ [0, 1] such

that

γ0(q) = γ0(q, s) for all s ≥ 2.

In particular by construction γ0(q) ≤ c for some c < 1.

Moreover, by Karp (1990) we have that for a fixed q and

s → ∞ the number of nodes in the largest component

of the random subgraph on Ṽ = {w0, w1, . . . , ws} con-

verges exponentially to s, in particular faster than s−1/s.
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Thus, we have that

P [E[wk, wℓ] = 1 for all k, ℓ = 0, 1, . . . , s]
s→∞
−→ 1.

Hence,

γ1(q, s)
s→∞
−→ 1,

yielding the existence of an s0 ≥ 2 such thatγ0(0.5, s0) =

γ0(0.5) < γ1(0.5, s0).

2. Claim: For fixed s ≥ 2 we have for q → 0 that

γ0(q, s) → 1/2.

For any s ≥ 2, q < 1/2 and x, y ∈ V we compute

P[E+[x, y] = 1|E(q,s) ∈ X ]

=
P[E+[x, y] = 1 and E(q,s) ∈ X ]

P[E(q,s) ∈ X ]

=

∑
E0∈X s.t. E+

0 [x,y]=1 P[E(q,s) = E0]
∑

E0∈X P[E(q,s) = E0]

=

∑
E0∈X s.t. E+

0 [x,y]=1 q A(E0)(1 − q)B(E0)

∑
E0∈X q A(E0)(1 − q)B(E0)

q→0
−→

|
{

E0 ∈ X0 : E+
0 [x, y] = 1

}
|

|X0|
,

(A35)

where X0 ⊂ X is the subset of graphs with minimal

edges and

A(E0) = | {[k, ℓ] : E0[k, ℓ] = 1} |,

B(E0) = | {[k, ℓ] : E0[k, ℓ] = 0} |

To satisfy the constraints of the partial observation the

graphs with the minimal amount of edges in X are given

by those that feature an edge E[v3, v2] = 1, that fea-

ture either E[v0, v1] = E[v0, v3] = 1 or E[v0, v1] =

E[v1, v3] = 1 and that feature a spanning tree rooted in

w0 on the subset Ṽ . Thus, we obtain

γ0(q0, s)
q→0
−→

1

2
.

3. Claim: For fixed s ≥ 2 there exists a c < 1/2 such that

for q → 0 we have γ1(q, s) → c.

Consider that for any spanning tree on Ṽ rooted in w0 that

features a path from w1 to w2 we can switch the labels

of w1 and w2 to obtain a spanning tree without a path

from w1 to w2. By construction, the above assignment is

injective yielding that there are at most as many spanning

trees featuring a path from w1 to w2 as there are span-

ning trees who do not feature such a path. Furthermore,

consider the spanning tree given by E[w0, wk] = 1 for

all k = 1, . . . , q to obtain that there exist spanning trees

that feature neither a path from w1 to w2, nor from w2

to w1. Hence by (A35) and acyclicity of spanning trees

there exists a c < 1/2 such that

γ1(q0, s)
q→0
−→ c.

By Claim 1 we can choose s0 ≥ 2 such that γ0(0.5, s0) <

γ1(0.5, s0). Given this s0, by Claim 2. and 3. we can choose

q0 ∈ (0, 1) small enough such that γ0(q0, s0) > γ1(q0, s0),

finishing the proof.

To adapt the above proof for Algorithm 2 when the RSTs

in Step 4.B are drawn uniformly at random consider the fol-

lowing step:

• The first claim follows analogously.

• Instead of the second claim it can be shown that

γ0(q, s) → 5/8 by considering that E+[v1, v2] = 1 for

5 of 8 possible spanning trees rooted in v0 (note that

E[v3, v2] = 1 in any case). Note moreover, that in the

case the RSTs are drawn via the modified Broder algo-

rithm as given in Sect. 3.2 γ0(q, s) → c < 1/2.

• The third claim can be shown to hold also for Algorithm 2

by the analogous arguments. This is true even for the

modified version of the Broder algorithm, as it coincides

on Ṽ with the classical one.

Appendix B: Additional plots

Appendix B.1: Additional simulations

In Fig. 8 mean ROC curves are displayed for p = 25, 50, 250,

500 relating to Fig. 3. In Fig. 9 the effect of varying the

sparsity parameter α on the performance of the proposed

graph-based predictors is shown for a graph featuring p =

1000 and #I = 200. In Fig. 10 the effect of varying the

number of known rows on the performance of the pro-

posed graph-based predictors is shown for a graph featuring

p = 1000 and α = 0.7. Last, in Fig. 11 the AUC performs

for all predictors outputting a matrix of scores on the Sachs

et al. (2005) proteomics data is reported via box-plots.
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Fig. 8 Mean ROC curves for Fig. 3
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Fig. 9 AUC performance for varying sparsity parameter α. Each experiment was repeated 20 times and all graphs featured p = 1000 and |I| = 200

Fig. 10 AUC performance for varying number of known rows |I|. Each experiment was repeated 20 times and all graphs featured p = 1000 and

α = 0.7
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Fig. 11 AUC performance for the Sachs et al. (2005) data

Appendix B.2: Computational costs

In Fig. 12a–c the computation times3 for all predictors

regarding Figs. 3, 5 and 11 are given, respectively. Note that

the computational costs for the IDA (obs) and IDA (int-obs)

are basically the same as for PC (obs) and PC (int-obs),

3 All computations were run on a HP Z840 workstation.

respectively, and thus for the ease of presentation the PC

results are omitted in (a) and (b). Moreover, in Fig. 12a the

computation time of a transitive closure is included as a ref-

erence.
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Fig. 12 Mean computation times for Fig. 3 in panel (a TAP and TAP-q reach the time out at 18,000 s), Fig. 5 in panel (b) and Fig. 11 in panel (c)
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