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Abstract

Causal structure learning (CSL) refers to the estimation of causal graphs from data. Causal versions of tools such as ROC
curves play a prominent role in empirical assessment of CSL methods and performance is often compared with “random”
baselines (such as the diagonal in an ROC analysis). However, such baselines do not take account of constraints arising from
the graph context and hence may represent a “low bar”. In this paper, motivated by examples in systems biology, we focus on
assessment of CSL methods for multivariate data where part of the graph structure is known via interventional experiments.
For this setting, we put forward a new class of baselines called graph-based predictors (GBPs). In contrast to the “random”
baseline, GBPs leverage the known graph structure, exploiting simple graph properties to provide improved baselines against
which to compare CSL methods. We discuss GBPs in general and provide a detailed study in the context of transitively
closed graphs, introducing two conceptually simple baselines for this setting, the observed in-degree predictor (OIP) and
the transitivity assuming predictor (TAP). While the former is straightforward to compute, for the latter we propose several
simulation strategies. Moreover, we study and compare the proposed predictors theoretically, including a result showing that
the OIP outperforms in expectation the “random” baseline on a subclass of latent network models featuring positive correlation
among edge probabilities. Using both simulated and real biological data, we show that the proposed GBPs outperform random
baselines in practice, often substantially. Some GBPs even outperform standard CSL methods (whilst being computationally
cheap in practice). Our results provide a new way to assess CSL methods for interventional data.

Keywords Causality - Causal structure learning - Interventional data - Transitively closed graphs - Gene regulatory networks -
Null models

1 Introduction

Causal structure learning (CSL) refers to the task of estimat-
ing a graph encoding causal relationships from data (Pearl
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2009; Spirtes 2010). CSL is an important and challenging
topic in its own right and has attracted a great deal of recent
research attention in a number of fields including statistics,
machine learning and philosophy (reviewed in Heinze-Deml
et al. 2018). Broadly speaking, given data X (which might
be observational and/or interventional), CSL methods pro-
vide a graph estimate G(X) (or probabilistic analogue) with
edges intended to encode causal relationships. The seman-
tics of such graphs can be complex and depend on the precise
model and application domain but for the present it is impor-
tant only to emphasize that such estimators use data X to infer
relationships between entities and can be viewed as encoding
such information as a directed graph G.

CSL methods necessarily require assumptions on the
underlying causal system that may or may not hold in real
applications and whose validity may be difficult to check in
practice. As a result the behaviour of CSL methods under
realistic conditions (noise levels, limited sample sizes etc.)
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may not be clear in advance. As such, in practical settings it is
important to empirically assess the efficacy of CSL methods.
To this end a number of studies have focused on such assess-
ment (including, among others, Hill et al. 2016; Heinze-Deml
et al. 2018; Eigenmann et al. 2020). In the empirical assess-
ment of CSL methods, a common strategy is to compare the
estimated graph G witha “ground truth" graph G* (depend-
ing on context either the true data-generating graph in a
simulation, or an scientifically/experimentally-defined gold
standard). Such quantitative comparisons are usually made
alongside baselines, which provide a way to contextualize
the performance of the estimator G on the specific problem.
Random baselines, such as the diagonal in an ROC analysis,
are widely used, motivated by the idea that large deviations
from the random case are an indicator that the estimator is
successfully identifying causal structure.

In this paper we put forward a new class of baselines for
the assessment of CSL methods in the setting that (some)
interventional data is available. While random baselines are
a good and useful tool, they ignore structure that might be
inherent in the problem, in the sense of regularities in the
ground truth graph G*. In the interventional data setting,
some information on G* is available at the outset. We argue
that such information can constrain possible solutions such
that random baselines are in a way too general for this set-
ting and provide only a “low bar" against which to assess
CSL methods. Instead, we propose to exploit the knowl-
edge of part of the ground truth graph in combination with
straightforward graph properties, to define new baselines
called graph-based predictors (GBPs), that share concep-
tual simplicity with classical baselines but that constitute a
demonstrably stronger test.

A related line of work, developing and utilizing null mod-
els for networks seeks to contextualise interesting network
features with reference to default, background models, see
e.g. the surveys Fosdick et al. (2018) and Gauvin et al. (2018)
as well as Chapter 11 in Fornito et al. (2016) and references
therein. The key idea in these approaches is to understand
whether a seemingly salient feature of a network (e.g. high
levels of connectivity within specific subsets of the graph
leading to the thriving area of community detection, see e.g.
Newman and Girvan (2004) and the survey Fortunato (2010)
and the references therein) is really unusual or noteworthy. In
a similar fashion, we seek to contextualise the performance
of CSL methods, using certain graph properties to define suit-
able baselines. However, a key difference is that in the null
models literature the network itself is assumed known; in
contrast, in our paper and CSL in general, the network itself
is (partially) inferred.

Our work is motivated by, and illustrated in the context
of, interventional experiments that have become feasible in
recent years in molecular biology (see, among others, Sachs
et al. 2005; Kemmeren et al. 2014; Shalem et al. 2015; Dixit
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etal.2016; Ursu et al. 2022). Such experiments are crucial for
the inference of molecular networks, encoding causal rela-
tionships between entities such as genes or proteins, which
in turn play a central role in disease and systems biology (see
e.g. Phillips 2008; Parikshak et al. 2015). The inference of
molecular networks from data is a long-standing problem at
the intersection of statistics, machine learning and systems
biology (for introductions see e.g. Ideker et al. 2001; Babu
etal. 2004; Sanguinetti and Huynh-Thu 2019; Nogueira et al.
2022).

In practice the interventional experiments in biology
involve perturbation of molecular nodes (for example genes)
and subsequent measurement of a high-dimensional readout
(such as gene expression), specific examples of these include
gene knock-out /-down, /-up, /-in experiments. Such data are
relevant for causal learning because the measurement of a
gene expression level for a gene B after perturbation of a
gene A gives information on the (total) causal effect of A
on B. Hence, if available, incorporating interventional data
alongside observational data in CSL methods is desirable,
and this has been studied from a number of perspectives (rel-
evant literature includes Hauser and Biihlmann 2012; Rau
et al. 2013; Spencer et al. 2015; Peters et al. 2016; Magli-
acane et al. 2016a,b; Meinshausen et al. 2016; Magliacane
and van Ommen 2017; Wang et al. 2017; Hill et al. 2019;
Rothenhiusler et al. 2019; Brouillard et al. 2020).

At the same time, interventional data are widely used
to obtain gold standards to assess CSL methods (see e.g.
Colombo and Maathuis 2014; Meinshausen et al. 2016; Wang
et al. 2017). Notably, in practice, it is usually not feasible to
perform all possible perturbation experiments due to time-
and cost-constraints, rather only a subset can be performed.
As we discuss in detail in Sect. 2, this can be viewed as pro-
viding information on a partial observation of the ground
truth graph G* and this practical scenario is the one we focus
on.

A particularly interesting and relevant special case con-
cerns transitively closed graphs. As noted above, in real-
world gene perturbation experiments, one observes the total
causal effect of perturbing one gene (the target A) on another
gene B (usually many such genes are measured in contempo-
rary “omics” designs, we refer to such data in the following
as omics readouts or simply as omics data). An effect of A on
B may be mediated by other genes intermediate in the under-
lying causal path. For this reason, such effects are transitive
in the sense that if A has a causal edge to B (in the underly-
ing causal graph) and B to C, then an intervention on A may
change C (this corresponds to the total causal effect of A on
C), resulting in an edge from A to C in a graph constructed
directly from the perturbation experiments. The assumption
of observing transitively closed or ancestral causal graphs
has also been made in Magliacane et al. (2016a) who consider
estimating transitively closed graphs and in Heinze-Deml
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et al. (2018) and Eigenmann et al. (2020) where CSL meth-
ods were evaluated with respect to ancestral relations of this
kind.

The contributions of this paper are as follows:

e New class of baselines. We propose a new class of base-
lines for CSL that take account of graph properties in
the case that interventional data is available. The pro-
posed baselines leverage structural properties rooted in
the underlying causal graph.

e Methods for transitively closed graphs. Motivated by
the nature of real-world gene perturbation experiments,
we focus particular attention on transitivity and related
properties and put forward specific baselines that exploit
constraints derived from these properties.

e Theoretical results of superiority and delineation. We
show for a particular baseline a superiority-statement
in the context of latent-network models. Moreover, we
delineate the proposed baselines from each other theo-
retically.

e Empirical results using real gene/protein perturbation
data. Using real data from large-scale gene and protein
perturbation experiments we study the behaviour of the
proposed methods to understand whether they can actu-
ally provide improved baselines in practice.

Taken together, our results provide a framework for con-
structing improved baselines for CSL and thereby to more
thoroughly assess the capabilities of CSL methods, with a
focus on the use of interventional data, an area of key rele-
vance for ongoing efforts at the interface between systems
biology and large-scale perturbation designs.

The remainder of the paper is organized as follows. We
begin in Sect.2 with notation and background, defining the
precise set-up for which the proposed baselines are intended.
In Sects.3.1 and 3.2 we introduce two general ways to
construct graph-based predictors, based respectively on in-
degree information and constraints rooted in transitivity.
These two classes are illustrated with specific implemen-
tations — the observed indegree predictor (OIP) and several
transitivity assuming predictors (TAPs) respectively — which
are specifically derived for their use as baselines in sys-
tem biology experiments. For the OIP a theoretical result
of superiority over random baselines is given. Moreover, in
Sect.3.2 we propose simulation strategies for the TAPs as
their direct computation is infeasible. In Sect.3.3 combina-
tions of the OIP and the TAPs are discussed. We detail in
Sect. 3.4 the theoretical differences of all introduced candi-
date baselines and outline potential similarities. Section4.1
provides detailed analysis of a simulation study of the pro-
posed GBPs. In Sect. 4.2 we then study the behaviour of the
proposed GBPs using real transcriptomics and proteomics
data including observational and interventional experiments,

alongside application of standard CSL methods from the
literature to the same data sets. We conclude with a brief
discussion on open questions and possible future work in
Sect. 5.

2 Notation and background

In this section we give some background on CSL and intro-
duce notation and the general set-up. In particular, we detail
the structure of the data X and its underlying causal graph G
in the context of CSL on interventional data.

2.1 Contextualization within CSL

We focus on the setting in which interventional and obser-
vational data are included in X. For example in the case
of omics data X includes rows of readouts after targeted
gene perturbations (interventional) and after control exper-
iments (observational). In practice a gold standard ground
truth graph G* might be obtained by comparing interven-
tional and observational data, either in the current set of
experiments or using previous experimental data. Given mea-
surement of a variable B after perturbation of variable A, the
causal relationship (A, B) (“from” A “to” B) is inferred by
comparing the empirical distribution of B under the control
experiments with the corresponding distribution under inter-
vention on A. Since omics designs usually involve measuring
many variables in parallel we consider here the common case
that given a perturbation is performed on A we measure all
other genes, i.e. each intervention experiment corresponds to
a whole row of readouts in X. We consider only single inter-
ventions (i.e. only one node A is intervened upon in a given
experiment). It is important in the below detailed set-up that
we have access to interventional data in which some (but not
all) genes are intervened upon, which is the common case in
practice.

Some clarifications regarding our set-up are as follows:
(1) We do not a priori rule out cycles in directed graphs.
This is because in practice an intervention on a variable A
may change B and vice versa (see also below). (2) For ease of
discussion we assume that the type of intervention is fixed and
that causal claims relate to the specific type of intervention.
This is motivated by the fact that in practice, the precise nature
of an intervention is defined by the experimental protocol,
hence claims and predictions are limited to changes under
the specific protocol. As a concrete example, if a knock-out
of a gene A changes gene B, this does not imply that a knock-
down of A would change B (since the latter experiment might
induce a sub-threshold change to A) and so on. (3) For ease
of computation we consider self-edges to be present at every
node (compare Mk, k] = 1 for all k in (2.1) further below).
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Fig. 1 A causal graph G = (V, E) (left) and its induced ancestral
causal graph Gt = (V, E™T) (right, “new” edges are depicted in red,
ie. EY[k, €] =1#0= E[k, £])

Point (1) stands in contrast to some of the classical CSL
literature, in particular to methods based on directed acyclic
graphs (DAGs), where the assumption of acyclicity plays
a crucial role (Spirtes et al. 2000; Maathuis et al. 2009;
Colombo and Maathuis 2014). Cyclic models have been dis-
cussed in the literature (see e.g. Richardson 1996; Hyttinen
et al. 2014; Hill et al. 2019). In the applied context of pertur-
bation omics experiments, cyclic models are natural, because
an intervention on one gene A may lead to a change in another
gene B, but an intervention on B may vice versa lead to a
change in A. This is essentially due to the fact that real omics
data are measurements at a given time in a dynamic system
(with the causal effects always forward-in-time in the under-
lying system).

2.2 Notation and basic definitions

Denote a directed, unweighted graph by G = (V, E) with
vertex set V = {v1, vy, ..., vp} and edge matrix E € £
with,

E:={M e {0, }P*P : M[k, k] =1, forall k} . (2.1

As the graphs of interest encode causal relationships between
entities in V where useful we refer to them as causal graphs.

Definition 2.1 Let G = (V, E) be a causal graph.

(1) We say there exists a causal path from v to vy in G with
vy # ve € V, if, for some T € Ny there exist vertices
Vg = wo, W1, ..., Wr, wWr4+1] = vp € V such that

Elws, wipi]=1forall0 <t <T.

(2) Call Gt = (V, E™") the ancestral causal graph (or the
causal transitive closure) of G if

(3 causal path fromuvgtovy) < E1[k, €] =1

holds. Moreover, call G an underlying causal graph of
G™. For an example see Fig. 1.

@ Springer

(3) Call G ancestral or transitively closed if Gt = G holds.
(4) For anode v € V define the indegree of vy by

deg™ (vr) == [{ve € V\ {wi} @ E[€, k] = 1}
and the outdegree of vy by
deg™(v) == [{ve € V\ {ui} : E[k, €] = 1}|.

We note that ancestral causality has been studied in the
literature using a variety of models (see e.g. Zhang 2008;
Magliacane et al. 2016b; Malinsky and Spirtes 2016; Mooij
and Claassen 2020) and is a complex topic in its own right.
The purpose of the above definition is simply to introduce
the notion of a transitive closure and make the connection to
indirect causation to facilitate introduction of specific, tran-
sitivity assuming baselines below.

We will use directed graphs that are random in an edge-
wise Erdds-Rényi sense as defined next (such graphs are
studied in Karp 1990).

Definition 2.2 Define a random directed graph (RDG) of
size p, with edge probability g and denoted by RDG, (p) =
(V, E), as a directed graph with |V| = p nodes, where all
off-diagonal entries of E are iid draws from a Bernoulli
distribution with success probability g. Moreover, given a
graph G = (\7, E) and a subset of edges Kc{lk.(1}<xze<p
we construct as RDGy g (G) = (V, E) the partially random
directed graph with underlying G and edge probability ¢ by
drawing

Elk. £] ~ S(E[k, €]) if[k, €] €K,
’ B(1,q) else. '

with § denoting the Dirac delta distribution and with iid draws
from the Bernoulli distribution B(1, g).

Assumption 2.3 below specifies the set-up of the CSL
problem on interventional data.

Assumption 2.3 Let G = (V, E) be a causal graph with
|V| = p. Given available interventional data X| € R"1*?
and observational data X» € R *? as well as latent, unavail-
able interventional data Y7 € R"2*? and latent, unavailable
observational data Y, € R™2*P on the nodes V with
ny,no,mp,my € N.g. We assume there exists a set of
indices/vertices Z C {1, 2, ..., p}, called the set of avail-
able interventions, such that all interventional measurements
in X correspond to an intervention on a node vy withk € 7
and all interventional measurements in Y7 correspond to an
intervention on a node v, with £ ¢ Z. Moreover, we assume
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the existence of two ground truth functions

g1 : (X1, X2) = (Elk, LDk, 01e8, »
where Sy := ([k, £Dkez eefl, ..., p). ks
g2 (Y1, V2) > (Elk, €Dk 01es, »
where S5 := ([k, €DieT ce(1,..., p) ke

Define by

the available data and the latent data, respectively. We
denote by

Ex := (Elk, D)x.e1es5, = 81(X)
the partial observation of G w.r.t. Z. Define analogously
Ey := (E[k, LDk, 01es, = 82(Y)

the unobserved causal relationships of G.Note that we have
after possibly reordering of the rows of E the relationship

Ex
E__<EY>’
by slight abuse of notation as we consider only off-diagonal
entries.

Let a partial observation Ex of a causal graph G based on
available observational and interventional data X be given.
We call a predictor

@ : {0, 1151 - [0, 172!,

s (2.2)
Ex — ©(Ex) € [0, 11",
assigning to each unobserved causal relationship a probabil-
ity of its existence, based solely on the partial observation E x
a graph-based predictor (GBP). Meanwhile, a predictor

& ROtmoOxp _ [0, 1]\52| ,

(2.3)
X > ®(X) € [0, 115,
assigning to each unobserved causal relationship a probabil-
ity of its existence, based on the available data matrix X will
be called a data-based predictor (DBP).

The foregoing assumptions essentially ensure that the
graph estimand is operationally well-defined as it is assumed
that there exists some oracle procedure by which the edge
structure could be determined from idealized data. In the
terms above, CSL methods would usually be classified as

DBPs, since they use empirical data to obtain a graph esti-
mand.

For the sake of completeness, we introduce here notation
and nomenclature for the ROC curve and the AUC in terms
of our set-up, as it is a widely used performance measure for
predictors such as ® and W given in (2.2) and (2.3), respec-
tively. The ROC curve has to be defined with respect to a
gold standard; accordingly for Definition 2.4 we assume that
the entire graph is known for the purpose of computing the
ROC curve and related quantities (of course only part of the
graph is available to any estimator/CSL method; specifically,
Ey is unavailable).

Definition 2.4 Let Ex be a partial observation of a non-trivial
causal graph G = (V, E) and S, be the indices of the unob-
served causal relationships. Let R € [0, 1]'52‘ be the output of
apredictorof Ey.Letl =cp >c1 > -+ > cy = cy41 =0
be the ordered, unique values of {R[k, €]} ¢es, U {0, 1},
with N < |S2|. The receiver operator characteristic (ROC)
curve ROC(R) is given as the linear interpolation of the
points,

{(FPRR(c;), TPRR(cONE!,

where

FPRg(c;)
_ |{lk. €] € Sy : R[k, £] > ¢; and E[k, £] = 0} |
- [{[k,£] € Sy : E[k, £] = 0} ] ’

TPRg(c))
_ |{[k, €1 € S>: R[k, £] > ¢; and E[k, £] = 1}|
h [{[k, €1 € S, : E[k, £] =1}]

’

for ¢; # 0 and FPRR(0) = 1 = T PRr(0), note that both
denominators are not O by non-triviality of G. We define
the area under curve (AUC) of the ROC curve as the finite
area enclosed in ROC(R), the x-axis and the line {x = 1}.
Note, that by definition (F'PRg(co), T PRr(co)) = (0,0),
(FPRR(cN+1), TPRR(cn+1)) = (1, 1) and FPRR(cy),
T PRg(cy) € [0, 1] and hence the AUC of ROC(R) is well
defined.

Remark 2.5 (Hanley and McNeil 1982; Cortes and Mohri
2004) Let Ey,1 := {[k,£] € S2 : E[k, €] = 1} and Ey o :=
{[k, 2] € Sp : E[k, £] = 0}, then the AUC of the ROC curve
of predicted relationships R € [0, 1]'2! is given by the
Wilcoxon-Mann—Whitney statistic

A Ry = ——M—
VR = T TTErl

1
x Z Z (8R[k,6]>R[k’,€’]+§5R[k,£]_R[k’,£’])

[k,l]leEy 1 [k’ ']eEy o
2.4)
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By the above definition the random predictor given by
R[k, €] = 0.5 for all [k, £] € S> induces a diagonal ROC
curve, as it is the linear interpolation of the points (0, 0) and
(1, 1), yielding an AUC of 0.5.

3 Construction and theory

In the following section we propose two general forms
of graph-based predictors and derive special cases thereof.
Moreover, we propose computation and simulation strategies
and delineate the proposed GBPs from each other. R-code
for the proposed GBPs is available at github.com/richterrob/
GraphBasedPredictors.

3.1 Observed indegree predictor

We start in this subsection with the idea that a node-level
statistic which is partially observed in Ey can carry non-
trivial information about edge labels in Ey. We go on to
provide a specific instance of this general approach that uses
the indegree as the node level statistic, leading to the observed
indegree predictor (OIP).

GBPs based on a node-level statistic To utilize a node-level
statistic to predict the unknown entries of Ey, we need it
to be both estimable from the partial observation Ey and to
carry information about Ey. Suppose G = (V, E) is acausal
graph and that we are given a statistic yg : V — W mapping
the nodes of G to some feature space, e.g. W = R, Z. We
desire of y¢ that it,

(1.) depends only on G = (V, E);
(2.) is not constant on V; and,
(3.) given y6(V) = (¥6(v1). v6(v2). ... ¥G(vp))" there
exists a predictor
6: WP — [0, 1]%!, (3.1
predicting the edge labels in Ey “better than random"
given (1.) and (2.) are satisfied, with “better than random"

meaning that the AUC as defined in Definition 2.4 for
R = 0(yg(V)) is strictly larger than 0.5.

Examples of such a statistic yg might include
e mappings to the respective in- and outdegrees;
e mappings to the respective number of ancestors and/or
descendants;
Let us give an example how (3.) might be satisfied for the

above given node-level statistics. Consider a graph G with p
nodes, featuring nodes vy, ..., v¢ € V withno incoming and
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no outgoing edge and nodes v¢11, ..., v, with at least one
incoming and one outgoing edge (here 1 < ¢ < p — 1). In
this case for vy, ..., v, the statistics mentioned above would
either convey the information that there are no incoming
edges or that there are no outgoing edges. Considering as
an example the first case with y assigning to each node the
number of its ancestors, we can set

0 if \% /1=0,
sV K =10 el =0..
0.5 else

to obtain a predictor performing better than random with
respect to the area under the curve of R = 6(yg(V)). We for-
malize a graph-based predictor based on a node-level statistic
in the following definition.

Definition 3.1 Let Ey be a partial observation of a causal
graph G, yg : V — W astatistic on the nodes of G and 6 as
in (3.1). Define by yx (vr) := vz (vi) the partial observation
of yc from available data X, where G is the graph given by
setting E[k, £] = O for all [k, £] € S;. Furthermore, assume
there exists an estimator 8 : W — W of y5 (V) taking as an
input yx (V). A graph-based predictor based on a node-level
statistic is defined by
ONLs (Ex) =0 (B (yx(V))) . (3.2)
Assume that G, yg and 6 of the above Definition 3.1 sat-
isfy the desiderata (1.), (2.) and (3.) stated further above.
Then, given that B predicts yg (V) sufficiently well it is rea-
sonable to claim ®ngg is performing better than random with
respect to the AUC. A concrete example follows in the fol-
lowing subsection with the OIP including a discussion under
which regime the given GBP performs better than random.
For the moment let us make the following remark.

Remark 3.2 The construction of the GBP ®nLs as a gen-
eral construct given in (3.2) encodes the idea “The partial
observation of a node-level statistic can carry information on
unseen edges”. Under which conditions the ®nps performs
“better” than the random baseline depends on its actual con-
struction (i.e. choices of yg, 6, 8,7) and is subject to an
underlying distribution on the sets of graphs, i.e. G ~ D.

Observed indegree predictor In the following we consider
the indegree statistic by setting yg(vr) = deg™ (vx). Con-
sider the desiderata on yg of Sect. 3.1, then, given that (2.) is
satisfied, we have by construction that y satisfies (1.) and
(3.). To see this for (3.) consider any predictor 6 in (3.1)
that is strictly increasing with respect to the indegree of the
potential effect. It remains to assume (2.), given below as
Assumption 3.3.
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Assumption 3.3 Given the set-up of Assumption 2.3, deg™
is not a constant function on the vertex set V.

Note, that Assumption 3.3 is arguably a weak assumption,
especially for large p. Thus, the indegree yields the following
graph-based predictor, as a special case of (3.2).

Definition 3.4 Given a partial observation Ex of a causal
graph G, define via

deﬁ?zf”f) ife¢T,

degy (vg) .
II}I(—l iftel

Oorp(Ex)[k, £] := ; (3.3)

the observed indegree predictor (OIP), where degy (ve) :=
[{r e Z\ {£}: Elr, £] = 1} | is the observed indegree.

The OIP is a good candidate for a graph-based predictor
under Assumption 3.3 due to the following heuristic. Assum-
ing that the set of performed interventions Z was chosen
independently of the edge matrix E, we have that deg (vi)
is the sample mean of a hypergeometric distribution (popula-
tionsize p—1, number of success states deg™ (v ) and number
of draws |Z|, with sample size 1), yielding in (#/|Z1)deg (vi)
an unbiased estimator of deg™ (vg) forall 1 < k < p.Infact,
for graphs with positive correlation structure we have the fol-
lowing result on the expected AUC of the OIP on a subset of
Sa.

Theorem 3.5 Ler G = (V, E) be such that E is drawn at
random with marginal probabilities

5(1) ifk=¢

Elk, £] ~
L& £] {B(l,q) else

where g € (0, 1), with E[k, £] and E[k’, £'] drawn indepen-
dently for all k, k' and all £ # (', and with a covariance
structure given by

Cov (E[k, €1, EIK', €1|(EIk;, e])jf.zl) =kny >0, (34)

with N = ij-zl E[Igj, L], for all £ and any pairwise distinct
k k' ki,....,k;y e {1,2,....,p}, withO < J < p — 2. Let
furthermore deg,, be not constant on V \ L.

Then, for any realization of the unknown relationships
My € {0, 1}/52I we have

Egy|Ey=my [AUCzc(Ogp)] > 0.5, (3.5)

where AU Cyc is the AUC on {[k, €] € S> : £ ¢ I}

The proof of Theorem 3.5 can be found in “Appendix 1.
Furthermore, we show that a subclass of latent network mod-
els (e.g. Hoff et al. 2002; Bollobds et al. 2007) fall in the
setting of Theorem 3.5 (see Lemma 3 in “Appendix 17).

Remark 3.6 To extend Theorem 3.5 to the AUC on all of S,
(the complete predicted Ey by ®qjp) is at this point open.
Considering the proof of Theorem 3.5 additional assumptions
on the distributions of deg, and/or additional assumptions
on g and «k ; seem to be needed. For more details we refer
the reader to “Appendix 1”.

Notably, the outdegree on the other hand is not a suit-
able candidate for a graph-based predictor in the context of
Assumption 2.3: Consider any unknown relationship [k, £] €
$>, since Ey is formed by complete rows of E we have no
observations on the outgoing edge-labels of vy helping us to
estimate deg™ (vg).

3.2 Transitivity assuming predictor

In this section we introduce a second way to construct a
graph-based predictor by assuming that the graph satisfies
some property relating to a non-trivial constraint(s) on its
edge matrix such that Ex carries information on Ey. More-
over, a special case of such a graph-based predictor based on
transitive closedness will be derived.

GBPs based on a graph property Let the graph G in
Assumption 2.3 satisfy some constraint(s) denoted by (C),
such that the partial observation Ex carries information on
Ey. We then construct a graph-based predictor via the matrix
of expected values of the existence of an edge given arandom
draw from all graphs that satisfy (C) and are consistent with
Ex. Examples of (C) might include

e the graph being transitively closed;

e the graph being a k-reachability graph;

e the nodes of the graph having an upper/lower bound on
its in- and/or outdegrees.

Definition 3.7 Let Ex be a partial observation of a causal
graph G = (v, E ). Suppose G satisfies constraint(s) denoted
by (C). Then a graph-based predictor based on a graph prop-
erty (direct version) is defined by

Oace (Ex) . ]

HG . G satisfies (C, Ex) and E[k, £] = 1” (3.6)

’

HG : G satisfies (C, EX)H

where G = (V, E) satisfying (E" x) is short for E is equal to
E on .

We have at once the following remark.

@ Springer
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Remark 3.8 Let G = (V, E) be drawn uniformly from the
set of all graphs satisfying (C), then

Oucp(Ex) =E I:EY’EX = Ex] . 3.7

In general ®4.gp can be very hard to compute or even
to simulate. For a feasible example consider (C) = (G
is undirected (i.e. E is symmetric) and features degree
sequence d € R?) of prescribed edge degrees. In this case
there exists a broad literature on how to draw (asymptoti-
cally) uniformly at random from the set {G : G satisfies (C)}
(see e.g. Artzy-Randrup and Stone 2005; Newman 2003;
Blitzstein and Diaconis 2011; Milo et al. 2003; Greenhill
2014), allowing in the worst case for Monte Carlo rejection
sampling of (3.6), and, in the best case for direct sampling
via a suitable adaptation of the Maslov—Sneppen MCMC
algorithm. Unfortunately, similar strategies are not known,
to the best of the authors’ knowledge, for drawing uni-
formly at random out of the set of all transitively closed
graphs, not to mention the denominator set of (3.6) with
(C) = (G is transitively closed). However, as elaborated
in the introduction, the case of transitively closed graphs
is of particular interest in the context of omics readouts
after gene perturbation experiments due to the fact that in
conventional designs for such experiments, direct causal
relationships are in general not easily distinguished from
ancestral relationships. Thus, to the end of obtaining an easier
to compute/simulate GBP we construct an indirect version
of (3.6) described in Eq. (3.8), below.

Definition 3.9 Let Ex be a partial observation of a causal
graph G. Let G satisfy constraint(s) denoted by (C) and let
¢ be a surjective mapping from the space of all graphs to the
space of all graphs satisfying (C). A graph-based predictor
based on a graph property (indirect version) is defined by

Orcr (Ex) Ik, ¢]

HG - $(G) satisfies (Ex) and ¢ (E)[k, ] = 1”

HG : ¢(G) satisfies (Ex)” ;
(3.8)

where ¢ (E) is the edge matrix corresponding to ¢ (G).

The special case of (3.8) considered in the remainder of
this Section is

C) = (G is transitively closed)

for which weuse ¢ (G) = G . Moreover, also for the indirect
version we can make a remark in the spirit of Remark 3.8.
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Remark 3.10 Let G = (V, E ) be drawn uniformly from the
set of all graphs and let ¢ be as in Definition 3.9 mapping
into the set of all graphs satisfying (C), then

Orce(Ex) =E [¢(E)y[o(E)x = ¢(E)x] . (3.9)
Transitivity assuming predictors As an instance of a graph-
based predictor arising from a graph property we consider
in this section predicting Ey of ancestral causal graphs. As
mentioned earlier, this is motivated by the nature of omics
readouts after intervention, since in such experiments what
is seen is the total causal effect of perturbing gene A on

gene B—potentially via mediators—rather than a necessarily
direct causal effect.

Assumption 3.11 Given the set-up of Assumption 2.3, the
causal graph G is ancestral.

Following Assumption 3.11, as a special case of (3.8), we
define the following graph-based predictor.

Definition 3.12 Let Ex be a partial observation of an ances-
tral causal graph G = (V, E) with S, being the indices of
the unobserved causal relationship of G. Define by

X =XV, Ex)
:={Eo € £: Ef [k, €] = E[k, €] for all [k, £] € S},

the set of all edge matrices E(, whose transitive closure EO+
coincides with E on the index set S, i.e. the set of all edge
matrices that are consistent with the partial observation Ey.
We define

{Eo € X : Ef [k, €] = 1}]
X ’

Otar(Ex)[k, £] = (3.10)

calling ®tap the transitivity assuming predictor (TAP).

In contrast to the OIP, for which computation is straight-
forward, computing/simulating the TAP is non-trivial. Given
anon-trivial scenario, i.e. S1, S2 # @, the set X is determined
by constraints on the (p — 1)-th power of E(. Concretely, two
types of constraints surface, in detail we have Eg € X if and
only if Egs. (3.11) and (3.12) below are both satisfied.

@3.11)
(3.12)

E}7'[k, €1=0, V[k, £] € Sy st. E[k, €] =0,
ED7 'k, 0140, VIk, €] € Sy st E[k, €] = 1.

A closed form for (3.10) can, to the best of the authors’
knowledge, only be given for those entries [k, £] € S> which
features Otap(Ex)[k, £] = 0, as they are induced by the
constraint (3.11) as Lemma 3.13 below implies, the proof of
which is given in “Appendix 1”.
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Algorithm 1 TAP - Monte-Carlo Rejection Sampling

Algorithm 2 B-TAP - Biased Sampling from X’

Input: Ex partial observation of G, T € N number of required
successful draws, ¢ € [0, 1] edge probability for drawing the partial
RDG.
1.Set T = 0 and Orap(Ex) D[k, ¢] = 0 for all [k, £] € S».

2. Compute the set of impossible edges K C S§1 U S using the
characterization in Lemma 3.13.
while T < T do

3.A Let G be an edgeless graph with p vertices. Draw Ej as
RDGy k (G), using Definition 2.2.
if £y € X then
3.B Set for all [k, £] € S>:

Omap(Ex) D[k, 0]
TOTAP(Ex) @Dk, €] + Ef [k, €]

T+ 1
3.CSett=1+1
end if
end while

Output: ®TAP (Ex)(T‘q)

Lemma 3.13 Given Ex a partial observation of an ancestral
causal graph G = (V, E) and let O7sp be the TAP defined
in (3.10). Then we have

Onp(Ex)k, l1=0 < A, ZA,. (3.13)
where A, denotes the set of known parents of v € V given

in Ex. We call edges satisfying the right hand side of (3.13)
impossible edges.

To compute Otap(Ex)[k, £] beyond impossible edges,
we are left with brute-force calculation with unfavourable
computational complexity such that already for p > 10 cal-
culations may be intractable. In the remainder of the chapter
we propose simulation strategies of the TAP and variants
thereof, which are computationally less expensive.

Rejection sampling and choice of q Algorithm 1, given
below, simulates for ¢ = 0.5 the TAP defined in (3.10) by
straightforward Monte Carlo rejection sampling, with edge
probability O for impossible edges, cf. Lemma 3.13. In gen-
eral, it sets impossible edges to zero, draws the rest of the
edge matrix entries as a partial RDG with edge probability
q € (0, 1), see Definition 2.2, and, rejects the so drawn edge
matrix E if Eg ¢ X. This procedure is repeated until a fixed
number of 7 € N non-discarded graphs have been drawn. By
construction the so obtained @\, is a consistent estimator
of ®TAP-

The rationale for introducing parameter g in Algorithm 1
is as follows. Since the probability that an RDG features the
complete graph as its transitive closure goes to 1 as p — oo
(see Karp 1990; Krivelevich and Sudakov 2013), we have
to scale the parameter 7 with p for sufficient convergence,
increasing the computational costs. Meanwhile, letting g —

Input: Ex partial observation of G, T € N number of draws, ¢ €
[0, 1] edge probability for drawing the partial RDG.

1. Set Op.tap(Ex) [k, £] = 0 for all [k, £] € S,.

2. Compute the set of impossible edges K C S§1 U S» using the
characterization in Lemma 3.13.

3.Let G = (V, E) be given by |V| = p and

0 if[k,¢]le K,

Elk. 0= {1 else

fort=1,2,...,T do

4.A Draw E_; as RDGy g (G), using Definition 2.2.

4.B For each node vy with k € Z let G be the subgraph on the
nodes {vi} U D,,, where D,, denotes the set of known descendants
of v. Draw modified RSTs 7,%) of Gy rooted in vy, cf. Sect. 3.2.

4.C Set

1 if3reZstk e

E_i[k, €] else G.13)

Eolk, 0] := {

4.D Set for all [k, £] € S»:

Op-tap(Ex) [k, €]

_ tOprap(EX) D[k, £] + Ef [k, ]
- T+ 1 ’

end for
Output: Op_tap(Ex) T

0 as p — oo reduces the convergence time of Algorithm 1,
as we will see in Fig. 12 in “Appendix 1” (in particular with
regards to Algorithm 2 further below) where g is chosen with
respect to the sparsity of the observed graph. The caveat of
choosing g # 0.5 is that 659" =%, which in general is
not equal to Omp, i.e. O is for ¢ # 0.5 not a consistent

estimator of ®1ap, as shown in Lemma 3.22 in Sect. 3.4.

Biased sampling from X Even for ¢ selected smaller and
smaller as the size of the graph p grows, since the rejection
sampler of Algorithm 1 draws an ever growing number of
discarded edge matrices, the computational costs of Algo-
rithm 1 sill grow with p — o0, see Fig. 12 in “Appendix 1”.
To the end of reducing computational costs of Algorithm 1
further, consider Algorithm 2 avoiding rejections all together.
Additional to the exclusion of impossible edges, Algorithm 2
includes a step drawing spanning trees to ensure the inequal-
ity constraints of (3.12) are met by pasting them in the partial
RDGs drawn in Step 3.A. To this end introduce the Broder
Algorithm below.

Definition 3.14 (Broder 1989) Given an un-directed graph
G = (V,E), ie. a graph as introduced in Sect.2.2 with
symmetric E. Assume G to be connected. Draw a random
spanning tree (RST) rooted in v; by simulating a random
walk x1, x2,x3,...,x7 on G with x; = v; and stopping
time 7 € N such that every vertex is visited at least once.
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Denote for each vertex vy # v; the index #; featuring
Xmin({1<¢<T:xy=w;})—1 = Vg, 1.€. ¥y, is the predecessor of the
first visit of the random walk to v;. Then, the RST is given
by the set of edges

T :={tx, k1 :2 <k < p}.

In Broder (1989) it is shown that an RST of Definition 3.14
is drawn uniformly at random out of the set of all spanning
trees of G rooted in v;. However, for adirected graph G which
is not strongly connected, arandom walk as in Definition 3.14
could get “stuck” (compare also Anari et al. 2020). Consider
in the following a directed graph G = (V, E) featuring a
path from v; to any other vertex. To the end of drawing a
computationally feasible spanning tree in G rooted in v| we
use a modified version of the RST:

1. Set Y := {[k, €] € {1,2,..., p}*> : E[k,£] = 0} to be

the set of all non-edges in G.

2. Set W = {2,3,..., p} to be the set of all non-visited

vertices.
3. Set k = 0 and set Typoq = 9.
4. while « = 0:

(a) Consider the complete graph G on V.

(b) Draw a RST of G rooted in vy denoted by 7y :=
{[ki. €1], k2, €2], ..., [kp—1, £p—1]} sorted by their
appearance in the random walk of Definition 3.14.

(c) Let

m:=min({l <r<p-—1:
¢ € Wand [k, £,] € V}U {p})

and set

Tmod = TmodU
{[ks, 51 €Ty : by € Wands < m)}.

(d) Set
W={2<t<p:Pkst [k ] € Tmod)
andif W =@ setx = 1.

We call the so obtained 7,04 @ modified RST (m-RST).
Note that the above construction does not vouch for Tp0q
being drawn uniformly at random out of the set of all span-
ning trees rooted in vy. In the case that ) = ) however the
draw of the modified RST coincides with the draw of an
RST. Since, as we will show in Sect. 3.4, Algorithm 2 does
not draw uniform at random from A" even if the spanning tree
was drawn uniformly at random from all spanning trees, we
except this caveat for the sake of computational simplicity. In

particular, we have that &{;4,"~°B-TAP@ which is in general
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not equal to ®(T(QP, for any ¢ € [0, 1]. We call the predictor

B-TAPY biased transitivity assuming predictor (B-TAP) with
edge-probability ¢ € (0, 1). As for Algorithm 1 with grow-
ing p we propose to choose ¢ according to the sparsity of the
observed graph for feasible run times.

3.3 Extensions

The graph-based predictors defined in (3.2), (3.6) and (3.8)
are related. Furthermore, additional graph-based predictors
could be constructed. In the following section we exemplify
this.

First, given Assumption 3.11 the graph G has to stem from
a quite restrictive subset of all graphs in order not to satisfy
Assumption 3.3, as Lemma 3.15 below shows.

Lemma3.15 Let G = (E, V) be a transitively closed graph
such that deg™ (vy) = n for all vy € V. Then there exists
m, K € N with Km = n such that G has K strongly con-
nected components of cardinality m that each form complete
subgraphs.

The proof of Lemma 3.15 can be found in “Appendix 1”.
Due to Lemma 3.15 we can motivate the OIP not only by
the type of observations Ey — complete rows — but also by
the heuristic of observing ancestral graphs. This leads to a
combination of the TAP and the OIP given below.

Definition 3.16 Given a partial observation Ex of a causal
graph G, let K be the set of impossible edges as given by
Lemma 3.13. Define the transitivity-assuming observed inde-
gree predictor (T-OIP) by

Or.owp(Ex)lk, €]
0 if [k, 4] € K,

_ . (3.14)
= S ik ¢ Kand ¢ T, .
deg}l(Ivle)+l clse

Note, that to define the T-OIP, the assumption of transi-
tivity is not needed.

Second, we can extend the definition of the TAPs, from
ancestral causal graphs to all possible causal graphs. This is
particularly important for omics data: First, because the TAPs
should be computable even if Assumption 3.11 does not hold,
for example when assuming that the causal effect dies out
over long causal chains. Second, because we need to be able
to compute TAPs also in the case of faulty assignmentsin E'y,
e.g. due to measurement errors. To this end we introduce the
following relaxed versions.
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Definition 3.17 Given a partial observation Ex of a causal
graph G, let G = (V, E) be given by

i if [k. ¢
Bk o= 1° itk €] e s,

3.15
E[k,£] else ( )

and let E5Y = (E*[k, £])x,¢jes, - Define the TAP of Ex by

OmAp(Ex) = O1ap(EY) (3.16)

and define analogously @SF'QP and ®(T‘£P. Moreover, using
(3.15) we can define pre-processed versions of the ®orp and
the OT.orp by

Op.or(Ex) := Oom(E}),

and,

Op.rop(Ex) := Orom(E).

3.4 Non-equivalence of the proposed predictors

Having introduced multiple predictors, using closely related
heuristics, cf. Lemma 3.15, the question arises whether the
respective ROC curves of the predictors are related or even
coincide. To this end, we provide a set of counterexamples
demonstrating the differences in predicted values and, when
applicable, differences in induced ROC curves between the
predictors. The first example shows that ©map£6521, and in
particular that the random draw from X described in Algo-
rithm 2 is not uniform even if the RST are drawn uniformly at
random. To compare the marginal distribution on the edges

of the drawn graphs from X introduce

Orap(Ex)[k, €] = P[Eo[k, ] = 1|Eg € X]
[{Eo € X : Eplk, £] = 1}
|X] ’

(3.17)

as the marginal conditional probability of the existence of an
edge when drawing E( according to Algorithm 1 with g =
0.5 conditioned on Ey € X. We have at once the following
Corollary to Lemma 3.13, for a proof see “Appendix 1”.

Corollary 3.18 Given Ex a partial observation of an ances-
tral causal graph G and let Opap(Ex) be given as in (3.17).
Then we have for [k, £] € S that

Op(Ex)k, 1=0 & A, ¢ A,

holds, where A, is the set of known parents of v € V in G.

Moreover, the following Lemma shows that edges that
are “not-impossible” edges between nodes without a known
ancestor in common feature 6tap = 1/2.

Lemma 3.19 Given Ex a partial observation of an ancestral
causal graph G and let Orap be as in (3.17). Then we have
for [k, £] € Sy with Ay, € Ay, that

1
Orap(Ex)[k, ] = 3 © (A \ {ve}) N Ay, =9,

where A, is the set of known parents of v € V in G given in
Ex.

The proof is given in “Appendix 1”. Given the above we
state below the counterexample for @rap#64 .. Note that in
the following, for the sake of readability, we will augment the
image space of the predictors to [0, 1]7*? instead of [0, 171521,

Example Given a set of nodes V = {v, vz, v3, v4} and a
partial observation Ey of G = (V, E) as depicted in Fig. 2a.
Brute force calculation of all graphs in X yields

241818 0
1 11224150
4 = —
(Orap(Ex)[k, €1); o= = |12 159 0
1212 1224
242020 0
1 |122416 0 03) )
7 52| 121624 0 | = Esrap(Ex)lk. £ oy -
121212 24

(3.18)

where 0% (Ex)lk.¢] denotes the marginal probability of
Eolk, €] = 1 when drawing E( according to Algorithm 2.
Note that there are no impossible edges present in the sub-
graph on {v1, v2, v3} and thus when drawing a tree from
Fig.2c we draw uniformly at random from the set of all span-
ning trees rooted in vy, cf. Sect. 3.2. Computing furthermore

the predictors ©rsp and 05, yields

768 768 768 0
1 |504768 624 0
768 | 504 624 768 0
582 654 654 768

768 768 768 0
1 [512768640 0
7 763 | 512 640 768 0
584 656 656 768

OTap(Ex) =

(3.19)

(0.5)
= Op.1ap(EX) -

A detailed computation of the above matrices is given in
“Appendix 17, consider to this end also (b) and (c) of Fig.2.
In this example we observe:

1. The marginal distributions ) (Ex) of Algorithm 2

and the resulting prediction {2, (Ex) are not equal to

Orap(Ex) and O1ap(Ex ), respectively. Hence, 0.0 (Ex)

does not converge to Otap for T — oo.
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Fig.2 The partial observation
Ex of the ancestral causal graph
G given in the Example (Z and
known edges in blue, known

B

non-edges in red) (a). The eight Vi
possible edge label
configurations on

{1, 21, [1, 3], [2, 3], [3, 2]} for
an edge matrix Eg € X, i.e.
consistent with the ancestral
causal relationships given in Ex
(b). Possible spanning trees on
Dy, U {v1} ensuring consistency
with Ex (¢)

<

2. In this example, the order of matrix entries of @tap(Ex)
is preserved by ©{:2) (Ex), hence, the induced ROC
curves and thus AUC scores are the same by Defini-
tion 2.4.

To the best of the authors’ knowledge a counterexample
of different ROC curves for the TAP and the B-TAP is not
known. As a consequence we make the following conjecture.

Conjecture 3.20 Given apartial observation Ex of an ances-
tral causal graph G. Under (possibly quite restrictive)
conditions on the descendant sets D,, for k € T we have
that the ROC curves induced by O1ap and 03>, coincide.

Staying with the above Example we show OT.op(Ex) #
Otap(Ex) and, even more, that the induced ROC curves
might differ.

Example (cont’d) Let G and its partial observation Ex be as
before. Compute

6660
3660
3660
3666

1
(Orop(Ex)lk, f])i,gzl =5

768 768 768 0

_ 1 [384768768 0

~ 768 | 384 768 768 0
384 768 768 768

# Otap(Ex).

This yields,

Otar(Ex)[4, 1] > O1ap(Ex)[2, 1],
while,

Orow(Ex)[4, 1] = Orow(Ex)[2, 1].

Hence, given a that E[4, 1] = 1 # 0 = E[2, 1] the T-OIP
and the TAP induce different ROC curves.
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Analogously to Conjecture 3.20 we conjecture that T-OIP
is a “coarser” predictor than the TAP in the following.

()

Conjecture 3.21 Given apartial observation Ex of an ances-
tral causal graph G underlying (possibly quite restrictive)
conditions. We have for edges [k, £], [r,s] € Sy (possibly
underlying some condition) that

(O101P(Ex)[k, €] > Orop(Ex)Ir, s])
= (Onup(Ex)lk, L] > Opap(Ex)[r, s]).

Last, Lemma 3.22, below, shows that changing ¢ in Algo-
rithm 1 may lead to potentially different ROC curves.

Lemma 3.22 There exists an ancestral causal graph G and
a partial observation Ex of G, as well as, qy € (0, 1) and
edges [k, 0], [k, €] € Sy, such that

Ok, €1 > 00K, £'],
and,

(90) (9011 pr
Ok, €] < OSIK', £'].

The proof can be found in “Appendix 1”. Similarly we
can deduce that changing g in Algorithm 2 with RST drawn
uniformly at random may lead to potentially different ROC
curves, leading us to conjecture that one can also find a coun-
terexample for Algorithm 2 with RSTs drawn as m-RSTs, we
refer again to “Appendix 1” for details.

4 Simulation study

In this section we study the use of the graph-based predictors
as baselines in the case where the underlying ground truth
graph satisfies Assumption 3.11 and beyond. To this end, we
use simulated and real graphs.
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4.1 On simulated graphs

We simulate graphs of cardinality p as transitive closures
of RDGs with edge probability ¢/p governed by a sparsity
parameter o € (0, 1). Note that the dependence of the spar-
sity on p is needed in order not to draw only graphs featuring
the complete graph as their transitive closure (Krivelevich
and Sudakov 2013).

In Fig.3 box plots of the AUC performance of the ROC
curves for 20 runs are presented for varying graph size p.
In Fig.3 the parameter o was set to 0.7 and the amount
of known rows was given by |Z| = r/s. Compared are the
predictors TAP (Algorithm 1, (T, ¢) = (100, 0.5)), TAP-q
(Algorithm 1, (100, ¢/p)), B-TAP (Algorithm 2, (100, 0.5)),
B-TAP-q (Algorithm 2, (100, «/p)), T-OIP and the OIP.
The TAP, TAP-q, B-TAP and B-TAP-q are only computed
until p = 25,p = 100,p = 1000 and p = 1000,
respectively, due to their exploding computational costs (see
“Appendix 17). For all p and all predictors the respective
performance is on average better than random. While the vari-
ability in AUC performance decreases with growing p, the
mean performance increases for all but the B-TAP and TAP.
For large p the B-TAP and the TAP suffer from their slow
convergence, which is especially visible when compared to
the B-TAP-q and TAP-q, respectively. It stands out that the
OIP, T-OIP and the B-TAP-q have a similar performance and
substantially outperform the classic random baseline (at 0.5
AUC). Moreover, the OIP and the T-OIP were by a margin
the fastest to compute, see for a comparison of computation
times Fig. 12 in “Appendix 1”.

For the influence of @ and |Z| on the B-TAB, B-TAB-
g, OIP and T-OIP performance we refer the reader to
Figs.9 and 10 in “Appendix 1”. In summary, the order in
performance of the methods remains mainly unchanged. Fur-
thermore, for some example mean ROC curves of Fig.3 we
refer to Fig. 8 in “Appendix 1.

In Fig.4 we present the AUC performance of the B-TAP,
B-TAP-q, OIP and T-OIP in the case the ground truth graph
is a k-reachability graph and thus violates Assumption 3.11
to various extends. A graph G = (V, E) is the k-reachability
graph of a graph G = (V, E) if we have

(E[k, €] =1)
& (Japath of length < kfrom wv; to wy).

In particular, k = 1 yields G = G and k > p — 1 yields
G = G*. For Fig.4 we drew a RDG with edge probability
0.7/p and graph size p = 1000 and computed the respective
k-reachability graph. For each, the number of known rows
was set to |Z| = 200. We observe that already for k = 25 the
AUC performance was comparable to the AUC performance
on the transitively closed graph (k = 1000). Meanwhile,

performance did not decrease drastically for k = 2,5 and
prediction performance for all predictors remains better than
random. One reason might be that Assumption 3.3 continues
to hold even if Assumption 3.11 is violated. Additionally,
drawing k-reachability graphs in this way the probabilities
of existence of incoming edges at a particular node are posi-
tively correlated relating to our findings in Theorem 3.5. Note
that the T-OIP looses its advantage over the OIP from incor-
porating the impossible edges the more Assumption 3.11 is
violated. As in Fig.3 we see that the B-TAP performs sig-
nificantly worse compared to the B-TAP-q due to its slower
convergence with respect to 7. Last, for k = 1 we see a per-
formance of all predictors around random, which could be
expected, as for randomly drawn graphs the expected inde-
gree of each node is equal, possibly violating Assumption 3.3.

4.2 On graphs derived from “omics”-data

In the following we test the new predictors on real yeast
gene expression data! from Kemmeren et al. (2014) (used
for CSL by Meinshausen et al. 2016) and on proteomics
data® from Sachs et al. (2005) (used for CSL by Wang
et al. 2017). Compared are the baselines proposed in this
paper with the performance of the PC and IDA algorithms
(see Spirtes et al. 2000; Maathuis et al. 2009, respectively),
the MCMC-Mallow approach by Rau et al. (2013), the
GIES algorithm (Hauser and Biihlmann 2012) (using the R-
package pcalg Kalisch et al. 2012) and the IGSP algorithm
of Wang et al. (2017).

As the backgrounds of all approaches vary let us make
some remarks on their usage in this study:

e For PC, GIES and IGSP the output is an estimated graph
(rather than a matrix of scores) and as such only points
(one for each run) on the ROC plane are depicted in Fig. 7
and comparison via the AUC is not possible.

e The PC and IDA algorithms are considering any mea-
surement as observational, as they are not desi_gned to
deal with interventional measurements. To the end of a
fair comparison, we report their performance when only
the available observational measurements (i.e. X,) are
passed to the algorithms (denoted by (obs)) and their
performance when all available measurements (i.e. X)
are passed to the respective algorithms (denoted by (int-
obs)). Note, that even when interventional measurements
are passed, they are treated by PC and IDA as observa-
tional.

! The data can be found at https://deleteome.holstegelab.nl/ under the
tab Downloads>Causal inference.

2 The data can be found at https://github.com/yuhaow/sp-intervention.
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AUC Comparison for Varying Graph Size
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Fig.3 Simulation study, AUC performance for varying graph size p

AUC Comparison on k-reachability Graphs
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Fig.4 Simulation study, AUC performance on k-reachability graphs

e The IGSP requires more than one interventional mea-
surement per intervention, as this is not available for
the Kemmeren et al. (2014) dataset the IGSP is only eval-
uated on the Sachs et al. (2005) dataset.

e Default parameter choices have been used. In detail for
PC (and thus IDA) we chose apc to be 0.01 as proposed
in Kalisch et al. (2012), for IGSP «ajgsp has been set
to 0.2 as it was among the best performing « ‘s in the
corresponding experiment in Wang et al. (2017) and the
MCMC-Mallow algorithm has been used with constants
set as in the accompanying R-code of Rau et al. (2013).
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Transcriptomics data (Kemmeren et al.) The data consists
of gene expression readouts of 262 observational experi-
ments (i.e. with no intervention) and 1479 interventional
experiments (each interventions is on a single gene, specif-
ically knock-outs; each intervention targeting a different
gene), measured are 6170 genes in total (including the 1479
intervened upon genes). We consider in this evaluation the
“square" graph using only the readouts of the 1479 genes that
have been intervened upon. Denote by X| € R?*? the avail-
able interventional measurements and by X, € RV 7 the
available observational measurements, denote furthermore
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AUC Comparison for Varying Graph Size
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Fig.6 AUC performance on the yeast transcriptomics data of Kemmeren et al. (2014) with varying gold-standard-threshold, the size of the graph

is fixed at p = 500

by Yy € R(P=P)*P and YZN 2%P their unavailable counterparts,
cf. Assumption 2.3, and assume (if necessary via reordering)
that row k and column k correspond to gene vi. Then the
partial observation Ey is constructed by the following gold-
standard-rule:

(Elk, €] =1) & (IX1[k, £] = Med(X2[-, £])| > Z - IQR(X2[-, £])) ,

where X[k, £] is the readout of gene v, after the interven-
tion on vg, Med(-) assigns its median to a vector, Z > 0
is the gold-standard-threshold and IQR(-) assigns its inter-
quartile-distance to a vector, i.e. there exists an edge from A

to B if and only if the readout of B under intervention on
A has an absolute z-score higher than Z with respect to the
empirical distribution of readouts of B under no intervention.
The unobserved causal relationships E'y are constructed anal-
ogously via Y| and Y, with the same gold-standard-threshold
Z. Given a graph size p, the following protocol was used to
obtain available and unavailable data:

1. Pick p of the 1479 genes at random and discard the rest.

2. Pick p = [p/5] rows of the interventional readouts at ran-
dom, those constitute X . The remaining rows constitute
Y.
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ROC Curves (Kemmeren et al., p = 250, Z = 5)
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Fig.7 Mean ROC curves on the Kemmeren et al. (2014) data for p = 250 (a zoomed in at [0, 0.02]%) and p = 500 (b zoomed in at [0, 0.11%) and

on the Sachs et al. (2005) data, complete (¢) and zoomed in at [0, 0.5

3. Pick Ny = 131 (half) of the rows of the observational
readouts at random, those constitute X,. The remaining
rows constitute Y.

For Figs. 5 and 6 the above protocol was repeated 10 times,
T was set to 100 for TAP, TAP-q, B-TAP and B-TAP-q, and,
g of TAP-q and B-TAP-q was set to the sparsity of the par-
tial observation provided. While in Fig.5 the graph size p
varies and Z is set to 5, in Fig. 6 p is set to 500 and Z varies.
Due to computational demands it was not feasible to apply
all methods for all p. Figures5 and 6 show that the pro-
posed graph-based predictors clearly outperform the classical
random baseline on the given data set. Moreover, they outper-

@ Springer

form IDA and MCMC-Mallow (where the latter ones were
computed). The order of performance holds generally also
for varying Z, in particular the OIP consistently outperforms
IDA. Interestingly, for large Z corresponding to considering
only “large” effects the differences in performance between
the OIP and TAPs seem to slightly diminish, while as Z
decreases only the OIP achieves a performance clearly better
than random. This suggests that Assumption 3.11 may hold
in practice in particular when considering larger effects.

In (a) and (b) of Fig. 7 close-ups of the mean ROC curves
for p = 250 and p = 500 are displayed. For methods pro-
ducing an estimated graph results are shown as points on the
ROC plane. For both, PC and GIES, we observe a perfor-



Statistics and Computing (2023) 33:93

Page170f33 93

mance slightly above random which is outperformed by the
OIPs and the TAPs. Moreover, on closer inspection the ascent
of the OIPs and TAPs is particularly steep at the start of the
ROC curves in the bottom left corner, a region often consid-
ered important when CSL methods are used for hypothesis
generation (see e.g. Colombo et al. 2012; Meinshausen et al.
2016).

Proteomics data (Sachs et al.) The data consists of pro-
tein measurements of 992 observational experiments (i.e.
with no interventions) and in total 13435 interventional
experiments, each targeting a single protein, spread over 8
target-proteins (the number of interventional measurements
per target-protein varies between 301 and 3602). In total 24
proteins are measured (among them the 8§ targeted in the
interventions).

As sample size for the interventional experiments is far
larger compared to the data from Kemmeren et al. the two-
sided Wilcoxon-ranksum test is used to construct the ground
truth as done in Wang et al. (2017). In detail, given available
observational measurements X, and available interventional
measurements X, with k corresponding to the targeted
intervention, i.e. X| = (X1T71 . XlTﬁl)T (forsome 1 <m <
7), we say that there is an edge from protein k to protein £,
i.e. Exlk, €] = 1, if the two-sided Wilcoxon-ranksum test
rejects (at significance level 0.05) the null hypothesis that the
samples (X3[-, £]) and (X k[, £]) stem from the same dis-
tribution. Via the same gold standard rule Ey is constructed
from Y7 and Y,. We followed the protocol below:

1. Pick m = 4 = 8/2 interventional targets at random, all of
their interventional measurements combined constitute
X 1. The remaining measurements, namely those target-
ing one of the other four interventional targets, constitute
Yy.

2. Pick496 = 992/2 rows of the observational measurements
at random, those constitute X». The remaining rows con-
stitute Y».

In(c) and (d) of Fig. 7 the mean ROC curves over 10 runs of
the protocol are compared. Again, for methods producing an
estimated graph results are shown as points on the ROC plane.
Even on this graph with a few number of nodes and with only
|Z] = 4 we observe a better performance than random of
the GBPs, in particular the variants of the OIP and the TAP
even outperform the IDA and perform comparably or slightly
better than the MCMC-Mallow approach, compare also the
AUC comparison in Fig. 11 in “Appendix 1”. Moreover, we
see that CSL methods outputting an estimated graph in fact

lie only in a minority of runs over the mean OIP ROC curve
(PC (obs-int) (2-3/10), IGSP (1-2/10)), or in fact, never as is
the case for PC (obs) and GIES.

Furthermore, in Fig. 12 of “Appendix 1” the computational
costs of Figs. 5 and 7 are reported. In particular the OIPs have
very low computation times, while the MCMC-Mallow and
IGSP take considerable longer to compute.

5 Discussion

In this paper we have argued for new baselines to evalu-
ate causal structure learning methods on interventional data,
as a complement to random baselines that in some settings
may represent a “low bar”. The inclusion of interventional
measurements carries information not only on the edges of
the causal graph corresponding to the available interven-
tional measurements, but also, to some extent, on remaining
edges in the graph. This is why in settings where such data
are available, simple heuristics to account for the available
information can provide improved baselines. For these set-
tings we introduced three general graph-based predictors,
cf. (3.2), (3.6) and (3.8). Motivated by large-scale systems
biology experiments we went on to consider special cases
of (3.2) and (3.8) in the observed indegree predictor (OIP)
and the transitivity assuming predictor (TAP) and extensions
thereof. We showed that the OIP will perform under quite
general conditions better than the random baseline and we
showed theoretical differences of the introduced predictors.
The potential of the OIPs and TAPs as more challenging
baselines were demonstrated in a simulation study as well as
on real data. In fact on real data the newly defined baselines
can outperform standard CSL methods (with default tuning
parameter values), although it should be emphasized that in
the particular application studied, the assumptions underpin-
ning some of the methods may not hold and furthermore in
some examples we had to apply the methods in ways that
deviate from their intended use.

In the future new graph-based predictors could be defined
for specific use-cases. Moreover, an evaluation of the base-
line’s performance on further metrics, beyond the ROC,
might be desirable. In its general nature, this paper focussed
on ROC curves and their accompanying AUCs. As GBPs
estimate only the graph structure and not underlying distribu-
tions, recently proposed evaluations of CSL methods taking
in account estimated distributions of the measurements X can
not be considered (O’Donnell et al. 2021). However, for par-
ticular use-cases evaluation on a more specific metric and/or
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forcing the GBPs to predict binary graphs - as PC, IGSP and
GIES do, for example via cross-validation - might be insight-
ful. This is in particularly true for the OIP as it performed
best on the real data in Sect.4.2.

Regarding the computation of the TAP, it remains to be
seen whether for large p one can devise a feasible, consis-
tent simulation procedure, or, if resorting to the B-TAP or a
changed g remains necessary. Moreover, it would be of inter-
est to study whether the resulting ROC curves of the TAP,
B-TAP and OIP can in general be related as conjectured in
Sect.3.4.
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Appendix A: Proofs
Appendix A.1: Proof of Theorem 3.5

To prove Theorem 3.5 we need the following preliminary
result.

Lemma 1 LetG = (V, E) be suchthat E is drawn at random
with marginal probabilities
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s(1 ifk =¢

Elk, £] ~ M U
B(1,q) else

where g € (0, 1), with E[k, £] and E[k’, £'] drawn indepen-
dently for all k, k' and all £ # (', and with a covariance
structure given by

Cov (E[k, 0. E[K, 0)|(E[k;. e])jle) —kny >0, (Al

with N = ij‘=1 E[lzj, L], for all £ and any pairwise distinct
k,k/,kl,...,kj € {1,2,...,1)}.

Fix £ # (' ancfivdisloint sets Q1,9 C {1,2,...,p}
and disjoint sets~Q1, %2 c {1,2, e p} such that é ¢
QU t' ¢ Q1 U Q) [Q1] = |Q1] and |Q2] = Q2]

Furthermore, fixm, m € {0, 1}/<2.
Then, we have

IP[ Z Elk, €] > Z Elk, 0]

keQ ked,

(Elk, g])keQz =m, (E[k’ E/])kE@z =

> IP’[ Z Elk, €] < Z Elk, €]

keQ kG@]

B

(A2)

(ELk Dgeg, = m, (E[k. £']), 5, = ﬁ,} ,

if and only if
[fmffy > [[m];.

Proof First note that by construction we have for x,X €
{0,1}'© 1l and y, § € {0, 1}/<2! that
P[(Elk, Dreo, = X|(ELr, thaco, = V]

(A3)
= P[(Elk, €5, = ¥ Bl 0,05, = 7] -

Second, let £ and Q C {1,..., p} be arbitrary such that
t ¢ Q,and m = (mj) € {0, 1}‘Q‘ a vector such that
3 jmj = 1. Suppose furthermore without loss of gener-
ality that 1 € Q and m| = 1. We have for ¢ # k ¢ Q that

P[Elk, €] = 1|(E[r, £]);eq = m]
]P’[E[k, 0 =1,E[1,¢0= 1‘(E[r,€])reg\{1} — ﬁl]

B IP[E[I,Z] - 1‘(E[r,£])r€Q\{1} =m]

’

(A4)
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where m is the vector m without its first entry. For ease of
notation denote

Zo = {(E[r, £Dre0\p1y = m} .
Then, using (A1) we have

P[E[k, €] =1, E[1,£] = 1|Zo]
P[E[1, £] = 1|Z]
P[E[k, €] = 1|Zo]P[E[1, €] = 1|Zo]
P[E[1, £] = 1|Z]
P[E[k, £] = 1|Zo] P[E[1, £] = 0| Zo]
B PLE[L, €] = 0] Zo]
P[E[k, £] = 1, E[1, €] = 0| Z]
P[EL, £] = 01Z]
=P[E[k,£] =1|Zyand E[1,£] =0] .

(AS)

By symmetry of the covariance structure yielding (A3)
we follow tllat for any k, k;ﬁ, O stk #Land k' # ¢ and
subsets Q, Q with |Q| = | Q)| that

P[E[k, €] = 1|(E[r. ]);c0 = m]

A6
>P[EIK, 1= 1[(Elr, ']),.5=m], (A0)

if and only if
[fm{[y > [[mf]; . (AT)

In particular, by (A1) we have that if equality holds in (A6),
equality holds in (A7), yielding the “if and only if” part of
the statement.

Moreover, we obtain analogously the opposite statement
that for any k, k', £, ¢ s.t. k # € and k' # €' and subsets
Q, O with |Q| = || we have

P[E[k, €] = O|(E[r, £]);c0 = m] A8
> P[EIK, £1=0[(Elr, £]),.5=m],

if and only if
[Im][; < [[m]];.

Again, with equality holding either in both, or in none of the
equations by virtue of (A3).

Let us in the following assume without loss of generality
by symmetry of the covariance structure and independence
between columns that 9, = @x forx =1, 2.

The claim of Lemma 1 can now be proven via induction on
the size of the set Qj, while keeping Q; fixed. To this end,
¢,¢,m,m, Q) and Q; be as in the assumption (including
¢ ¢ Qp, Q). We initialize the induction hypothesis with
[Qi| = | {k} | = 1. Define

A= P[E[k, 0] > E[k. €]

(Elr, D)reg, = m, (E[r, g/])rGQZ = ﬁl]
_Pp [E[k, 0 = 1| (Elr, )0, = m]

x P|Elk, €1 =0 (Elr, ), .o, =]

In the case ||m||; > ||m]||; we have by (A6) and (A8) that

A=P[Ek €)= 1] (Elr, ),.q, = 0]

x P[Elk, ¢] = 0| (EIr, €]),c0, = m]

(A9)
= P[EIk 0] < EIk, €]
(Elr, g, =m, (Elr, £1), o, = ﬁl] ,
In the same way we have that if [[m]||; = ||/m]||; we obtain

equality in (A9) by using that equality in (A7) yields equality
in (A6), yielding the base case of the induction.

It remains to show the induction step. Let the claim be
shown for |Qi] = N € N and consider now |Q;| =
| {k1,...,ky41}| = N + 1 and ||m||; > ||m||;. For ease
of notation let us define for x, y = 0, 1 the events

Z:= {(E[r, yeq, = m. (Elr. 01), o, = rh} :
Ziey) = {Elkn41. 0] = x, Elky11, 01 =y},
Zixy):=2ZN Z(x,y)-

We have

N+1 N+1

B:= IP’[ > Elkn.£1> Y Elkn. ']
n=1

n=1

(Elr.DreQ, =m. (Elr.£]), o, = 'h]

N N
=P {Z Elkn. 61> Y Elky, z/]'z(o,o)} P [Z(O,O) ‘z}

n=1 n=1
:=P(()‘())
Y N }
+P| Y Ethy. 01> Y Elka. e/]z(“)} P[z(l,l)‘z]
| n=1 n=1
Z=P(1‘1)
Y N }
+P| Y Elkn 012 Y Elka, e’]‘z(l,m} P[Za.0|7]
| n=1 n=1
=Pq,0)
Y N )
+P| 3 Elkn, 01> 1+ Elkn, 5/1‘2(0,1)} ?[Zon|7]
| n=1 n=1
Z=P(()Y1)

(A10)
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in order that we can drop it. We start by using the induction

Using the induction assumption we have immediately
assumption to show:

N N
Pog > P [Z Elky. 0] < Y Elkn, e’]‘z(o,o)} ,

n=1 n=1
(A11) .
N SEae
Py >P| Y Elk,. €] < ZE[kn,E]‘Z(M) : N v
= "= =P [Z Elkn. 01= Y Elkn. €1 Z(1.0) Z]
n=1 n=1

Moreover we obtain by induction assumption as |[m||; +1 >

[lm][; that 3 3
mj|; tha =IP|:Z(170) ZE[kn,Z] ZZE[kny Z/],Z:|
n=l1 n=1
N N N N
Puo >P [Z Elky, €] < Z Elky, E’]'Z(m)} x P [Z Elky, ] = Z Elky, '] z} (A14)
n=1 n=1 n=1 n=1
N N N N
=P [1 + Z Elkn, €] < Z Elky, E’]‘Za,(»} >P| Zo. Z Elky, ] = Z Elkn, 01, Z
n=1 n=1 n=1 n=1
— N / N N
+P| ) Elky, £]=)_ Elky, ¢ ]'Za,m xP| Y Elky.£1=_ Elk,, U1|Z
Ln=1 n=1 n=1 n=1
=Y — 7 v
) v v _]PI:Z(O'I)‘Z] Y1 .
+P|1+ ZE[kn, 0] = ZE[kn, 5']‘2(1,0):| ,
n=1 n=1

For the second term we use the symmetry of the covariance
(A12)  structure, yielding (A3), and the independence between the
columns of the edge matrix:

=12

and by ||m||; > ||m||; + 1 we have,

N N ~
Po1y =P [Z Elky. 01> Y Elkn, Z/]‘Z(o,l)} ?[Za07]
n=1

n=1 N N
N N =IP’|:1+ZE[k,,,£] = ZE[k,,,e/],Z(LO)’z}
_p[z Elkn, €] =1 +ZE[kn,£’]‘Z(0,1):| n=1 =1
n=1 n=1 N—1 N
N N =Y P|:ZE[kn,£]:t,E[kN+1,£]=I‘Z:|
> P [Z Elky, €] < Z Elky, E/]'Z(O,l)j| =0 n=1
n=1 n=1 Y
r N N xP Elkn, 1=t +1,E[kn1, €] =0‘ZD (A15)
~P| > Elkn.t]= ) Elkn. e’]'zm,n} =]
Ln=1 n=l1 N—1 N
e = P |:ZE[I<,,,(Z’] =1, Elkyg1. 0] = 1‘2}
- N N =0 n=1
—P| Y Elky =1+ E[k,g/]‘zo,l : R
_; " ,; " b xP ZE[kn,E]=t+1,E[kN+1,£]=O‘Z
n=1
=P - .
(A13) =#[Zo|2] 7
Now we need to show that
. . Using (Al4) and (Al5) and plugging (All), (Al2)
P [2(1,0)‘2] vi+wr)-—P [2(0,1)‘2] 1+ =0, and (A13) in (A10) we get
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N N
B>P [Z Elkn, €] < ) Elkn, 6/]‘2«),0)} P [Zw.m‘z]
n=1

n=1

TN N
+ P> Elky. €] < ZE[kn,f’]Z(u)} P[Z(l,l)‘z]

Ln=1 n=1

N N
+P |1+ Elk. €] < ZE[k,,,Z/]‘Z(LO)} P[Za.0|7]
n=1

L n=1

r N N
+P | Elky. 0] < ZE[kn,e/]‘z@,l)}P[Zm,l)}Z]

Ln=1 n=1
N+1 N+1

= ]p[ > Elky 01 < Y Elkn. 0]

n=1 n=1

(Elr, Dreg, =m, (E[r, E,])rEQZ = ﬁl] i

(A16)

showing the induction step for ||m||; > ||m||;. Which leaves
the case ||m||; = ||m||;. First, by induction assumption we
have equality in both displays of (A11). Second, by (A3) and
symmetry of construction we have that

P [2(1’0)‘2] =P [2(0)1)‘2] ,

N N
P =P [Z Elky. 1 < Y Elkn. z/]'zm,l)} ,

n=1 n=1

N N
Po.y =P [1 + Y Elkn, €] < Y Elky, E’]‘Zu,m} :
n=1 n=1

Hence, putting both observations together we have equality
in (A16) for ||m||; = ||m||, finishing the proof.

Proof of Theorem 3.5 Let us start by stating the expected
value for the AU Czc derived from Remark 2.5.

1
|Ey1l|Ey ol

x Y Y Egyey=my [ox (Ik 01K, €1)]

[k,01Ey 1 [K',¢'1€Ey o

EEX|EY:MY [AUCIC (®OIP(EX))] =

(A17)
where

ox ([k, €1, [k, €1)
(A18)

= Seoplk, 01> O0pk, ] T §5®om[k,a:®omkam

and Ey , = {[k, ] € Ey» : £ ¢ I} forx =0, .
Casel: ¢ = ("

We have by construction ®op(Ex)[k, £] = Oop(Ex)[K/,
€] for all k # k’, hence

1
Eey Ey=my [ox (k. €1, K, £])] = 5 (A19)

for all k # k' such that E[k, £] # E[k’, £].
Case2: ¢ £ (:

By assumption we have £, £’ ¢ T. Let us first consider the
case

> Mylr, 01> Mylr, 1, (A20)
o2 ]

then we have for any ko, k, ¢ Z such that E[ko, £] = 1 #
0 = E[k{, £'] that

Eey Ey=my [0x ([ko, €], [kg, €'T)]

= Egy Ey=my [5deg;(e)>deg;(zf>]

1
+ E]EEX\EFMY [5deg;(a=deg;(z')]
= P[degy (¢) > degy (¢)|Ey = My]

1
+ 5 P[degy (&) = degy (¢)| Ey = My]

=P |:ZE[r,E] > ZE[r,e’]

Ey = My>

rel rel
1 /
+ EP [Z Elr,l] = ZE[V,Z] Ey = MY:|
rel rel
>P |:ZE[r,€] < ZE[r,z’] Ey = My}
rel rel
1 /
+§P[2E[r,ﬂ] = ZE[F,E] Ey =MY:| )
rel reZ

(A21)
where the last inequality holds true by Lemma 1. Since the

sum of the last two lines in (A21) is 1 by construction, we
have

1
Egyiey=my [ox (ko, €], [ko, €1)] > 3 (A22)

Moreover we have by the last line of (A21) that for ky, k| ¢ Z
with E[ky, £] = 0 # 1 = E[k], £'] the following holds:

Eey Ey=my [ox (k1. €], [k}, €]

A23
=1—Egy gy=my [ox(lko, €1, [k, £'D] (A23)

recall to this end also Eq. (A3) of Lemma 1.
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By (A20) there exist more pairs (ko, k(’)) yielding (A22)
than pairs (k1, k}) yielding (A23), hence,

> > Ekyiey=my [ox (k. 01K, 0)]

[k.s1€Ey 1 [k,s1€Ey o
sefed'}  sefel'}

1

= 2 2 5
[k,s]1€Ey 1 [k,s1€Ey o
sefe '} se{ee'}

(A24)

Note, that in the case the inequality in (A20) is inverted
Eq. (A24) still holds.
In the case that

D Mylr, 1= Mylr, (], (A25)
] ot
We have by Lemma 1 equality in (A21) and thus
1
Egy Ey=my [ox ([k, €], [k, €D)] = ok (A26)

Plugging Egs. (A19), (A24) and (A26) into (A17) and
since by assumption there exists at least one pair £, ¢’ ¢ T
such that (A20) holds, we obtain

1
Eky Ey=my [AUCzc(®op(Ex))] > 7

Last, let us give an example of a graph generation process
that falls under Theorem 3.5.

Definition 2 (compare e.g. Hoff et al. 2002; Bollobas et al.
2007) We define a directed latent network model with fixed
outgoing and node depending incoming propensities (LNM-
fix-O) by drawing

ol " Do, 1), (A27)

from some non-degenerate distribution D on (0, 1) (i.e. D
is not a Dirac delta distribution). Subsequently, draw G =
(V, E) by iid draws

s(1) ifk = ¢

Elk, €] ~
Lk, £] B(1,z¢) else

Lemma 3 The probability distribution of the LNM-fix-O
given in Definition 2 satisfies the assumptions of Theorem 3.5
and Lemma 1.

Proof First, by construction the marginal distributions are
Bernoulli random draws, moreover, we have

Elk, €] ~ B(1, Eplz¢]),

@ Springer

for all 1 < ¢ < p. Hence, by (A27) we have, setting
q = Epl[z¢], that all marginal distributions feature the same
success probability.

Second, by construction E[k, £] and E[k’, £'] are inde-
pendent for all £ # ¢'.

Third, we are lefttoshow (3.4). Let1 < k, k', ky, ..., kj <
p be pairwise different and m € {0, 1}/ with ||m||; = N,
we have

cov (E[k, ¢, E[K, E]’(E[kj’ E])JJ'ZI - m)
) [E[k, QE[K, ﬁ]‘(E[kj’ iy = m]
_ (E [E[k, Z]‘(E[kj, 5])jl'=1 = m]
sl ]
- P[E[k, 0=1E[K (= 1’(5[1«,-,5]){:1 = m]
_ (]p [E[k,e] = 1’(E[kj,f])f'=1 = ]

- (]P’ Elk, €)= 1[(Elk;, €D]_y =m, EK, €] = 1]

—-P :E[k, ] = 1)(E[kj,£])jj':1 = m])

x P EIK, €] = 1|(Elk;, D], = m|

(A28)

Let us assume for now that D is a discrete random variable.
In this case consider

IP[E[k, 0= 1’(1&:[19-,6]){:1 - m]
:/0] (P[E[k,e] - 1)@ :z]
x P[0 = |(Elky, €D, = m] )d/w(z) (A29)

= /01 zP [Zz = Z‘(E[kj, i, = m] dup(z)
= [af| (Elk;, 7 =m] .

Second by Bayes theorem we have
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P [z = 2| (Elkj. D7, = m]
P[(ElK;, D, =m|ee = 2] Plze = 2]
P[(E[kj,ﬁ])jj.zl = m]
N —2)/ VP2 = 2]

TN = Ndpp @)

(A30)

we have that (A29) only depends on J and N and not on the
exact configuration of m. Hence the covariance of (A28)
depends only on J and N and by construction not on
k, k', £ and the exact configuration of m. It remains to show
that (A28) is strictly greater than 0. To this end, consider

= (m, 1) € {0, 1}’*!. We have by (A29), (A30) and
renaming k' = kj41,

P[Elk, 0 = 1[(Elk;, €72} =]
=B [2|(Elkj, I2] =]
o (Bt enI2) = fee = 2| Pz = 2] dup (@)
P[(Elk;, D2} =]
Jy 2P [(Elkj. D7) =1i|ze = 2| P [z = 2] dup (@)

PEW. 0 =1|(Elk;, e)]_, =m]|P[(Elk;. DI, =m]

fo ZP[(E[k Z])Hf —ﬁl‘u }P[Zz=2]dﬂp(z)
[zz’(E[k iy =m|P[Elk;, D_; =m]
o[l ]

[ze]u:“[kj, ol =m]’

(A31)

where the last equality is by virtue of

P[(Elky, ODIH =z =z] =M -V

= 2P| (Elk;, D)) = mlze = z].
By the non-degenerate nature of D we can use the strict form

of Jensen’s inequality to conclude from (A31) that

[E[k 0= 1{(Elk;, eI = ﬁl]

~E [zg‘(E[kj, o, = m] (A32)
=P [EK, 0 = 1|(Elk;, D), =m] .

By plugging (A32) into (A28) we obtain

cov (EIk. 1, EIK', €1|(Elkj, D/, =m) > 0, (A33)

finishing the proof for discrete distributions D. For general
distributions the proof follows analogously using standard

conditional expectation operations. For space considerations
we omit the details.

Appendix A.2: Proof of Lemma 3.13

Proof Let [k, €] € S» and A,, ¢ A,,, then there exists a
parent v, € Ay, such that E[r, €] = 0 and E[r, k] = 1. Let
E be an edge matrix whose transitive closure is consistent
with E'y, then there exists a causal path from v, to vr. Assume
moreover £+ [k, €] = 1 then there would exist a causal path
from v, to v, violating the constraint E Tlr, €] = E[r, ] =
0. Hence, the nominator of (3.10) is equal to 0.

Vice versa, let [k, £] € S, be such that A,, € A,,. Then,
define

Elr,s] if[r,s] e S
Elr,sl=11 if [r, s] = [k, €] .
0 else

It is straight-forward to check that E € X and features
E*[k, €] = 1. Hence Otap(Ex)[k, €] > 0.

Appendix A.3: Proof of Lemma 3.15

Proof Assume that E is not symmetric: Let vg, vy € V such
that E[k,¢] = 1 and E[¢, k] = 0. Since G is transitively
closed we have P, C Py \ {vr}, where Pk is the set of par-
ents of the node vi. Yielding deg™ (vx) < deg™ (v¢) — 1,
a contradiction to the assumption deg™ (vr) = deg™ (vy).
Hence if Assumption 3.3 holds, E is symmetric. By G being
transitively closed we have Ay = Py = Dy, where Ay and
Dy denote the respective sets of ancestors and descendants,
for every vy € V. Hence, for any vy € V we have that
{vr} U Py form a connected component and a complete sub-
graph, yielding the claim by the fact that deg™ is constant on
V.

Appendix A.4: Proof of Corollary 3.18
Proof By definition of 6tap(E x) we have that from @ap(Ex)
[k, £] = O follows 6tap(Ex)[k, £] = ()’,vyielding one direc-

tion. For the other direction consider E from the proof of
Lemma 3.13 to yield érap(Ex)[k, £] > 0if A,, C A,,.

Appendix A.5: Proof of Lemma 3.19

Proof Let [k, £] € S, be an edge with A,, € A,,. Define

O, :={Ey e X(V,Ex) : Eolk, €] =1},
O, :={Eg € X(V, Ex) : Eolk, £] =0},

@ Springer
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Let M € ®,, then we define by M ¢ the edge matrix with

1 if [r, s] = [k, £]
My olr, sl = .

A34
Mlr,s] else ( )

i.e. adding the edge [k, £] to M. Note that by definition of @,
we have M|k, ¢] = 0. Define furthermore a mapping

o Py —> O, ¢: M Migan.

Since M € X(V, Ex) and A,, € A,, adding the edge [k, ¢]
will not interfere with the zero-constraints given by (3.11)
and as adding edges can never interfere with the # 0 con-
straints in (3.12), we have M ¢) € X(V, Ex) and thus ¢
is well-defined. Moreover, ¢ is by definition injective.
Given (Avk \ {vg}) N A,, = ¥ we define additionally

w : (D] — Cbz, Tﬁ M~ M_[k,g],

with M_j; ¢) being defined as in A34 with M|k, £] set to
0, i.e. deleting the edge [k, £] from M. If deleting the edge
[k, £] would break a path from v, withr € Zto vy € V
we would have v, v, € D,, since k ¢ Z, a contradiction to
(A \{veh NA,y, = 9. Hence, ¢ (Ex) is well defined, since
deleting an edge can not interfere with the zero-constraints
given by Ey. By definition v is the inverse function of ¢,
making ¢ a bijection. Hence, we have

1
Orap(Ex)[k, L] = 3

Vice versa, if there were to exist v, € (Ay, \ {ve}) N Ay,
define My by

1 ifxeZ, vy, e Ay, and [x, y] # [r, €]
Molx, yl =11 if[x,y] = [k, ]

0 else

Then by definition My € &1, but (Mo)—y,uw) ¢ X(V, Ex),

hence My is not in the image of ¢, yielding by injectivity of

®,

#D| > #Dyp,

i.e. Oraplk, (1(Ex) > 3.

@ Springer

Appendix A.6: Computation of the example

Consider G and Ey of the Example in Sect. 3.2 detailed in
Fig.2a. We have by Lemma 3.19 that

Orar(Ex)[2, 1] = Orap(Ex)([3, 1]
= Orap(Ex)[4, 1]
= Orap(Ex)[4, 2]

1
= Orap(Ex)[4, 3] = 7

Moreover, we can compute by Fig. 2b that Otap(Ex)[2, 3] =
Orap(Ex)[3, 2] = 5/8and Orap(Ex)[1, 2] = Orap(Ex)[1, 3] =
6/8. Last, by Corollary 3.18 we have that the edge matrix
entries [1, 4], [2, 4] and [3, 4] are zero, yielding

8660
114850
4 —
(Orap(Ex)k, €Dy o=y = slas580
4448

As given in Fig.2b the edge matrix entries
{[1, 2], [1, 3], [2, 3], [3, 2]} ofanedge matrix Eg € X(V, Ex)
have 8 different possible configurations. Additionally, the
five edge matrix entries [2, 1], [3, 1], [4, 1], [4, 2], [4, 3] can
be in 25 = 32 different configurations. Hence, we have
#X(V,Ex) = 32 -8 = 256. In the following we collect
for each edge all graphs E € X featuring the given edge in
their respective transitive closure.

e Omap(Ex)[2,1]:
Count all the edge matrices in X (V, Ex) featuring
ET[2,1]1=1:

— All 128 edge matrices with E[2, 1] = 1.

— Among the 128 edge matrices with E[2, 1] = 0, there
is none with E[2, 4] = 1, and there are 5/8- 128 = 80
with E[2, 3] = 1. Among those 80 we have 40 with
E[3,11=1.

— Among the remaining 40 with E[2,3] = 1 and
E[2,1] = E[3, 1] = 0 we have none with E[3,4] =
1.

Hence, we obtain

128440 168 21

Orap(Ex)[2, 1] = _ e _ 2l
tap(Ex)[2, 1] 756 756 — 32

o Omap(Ex)[4. 1]:
Count all the edge matrices in X'(V, Ex) featuring
ET[4,1]=1:

— All 128 edge matrices with E[4, 1] = 1.
— Among the 128 edge matrices with E[4, 1] = 0 we
have 64 graphs with E[4, 2] = 1 from which...
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o .. 32feature E[2,1] =1, hence ET[4,1] = 1.
e ... 32 feature E[2, 1] = 0. Of those there are
- 5/8-32 = 20 which feature E[2, 3] = 1. And
half of those 20 feature E[3, 1] = 1. Hence,
there are 10 additional edge matrices with
Et[4,1]1=1.
- Oftheremaining 12 which feature E[2, 3] =
0 we have 3 featuring E[4, 3] = E[3,1] =
1.
— Among the 64 with E[4, 1] = E[4, 2] = O there are
32 with E[4, 3] = 1 from which...
o ... 16 feature E[3,1] =1, hence ET[4,1] = 1.
e ... 16 feature E[3, 1] = 0. Of those there are
5/8 x 16 = 10 which feature E[3,2] = 1. And
half of those 10 feature E[2, 1] = 1. Yielding 5
additional edge matrices with E*[4, 1] = 1.

Hence, we obtain

128432+ 10+3+1645
256

OTap(Ex)[4, 1]
194
256°

e Omap(Ex)[4.2]:
Count all the edge matrices in X' (V, Ex) featuring
ET[4,2] = 1:

— All 128 edge matrices with E[4, 2] = 1.

— Among the 128 graphs with E[4,2] = 0 we have
64 graphs with E[4, 1] = 1, yielding ET[4,2] = 1
from the constraint ET[1,2] = 1.

— Among the 64 with E[4, 1] = E[4, 2] = O there are
32 with E[4, 3] = 1 from which...

e ... 16 feature E[3,1] = 1, hence ET[4,2] = 1
by the constraint ET[1,2] = 1.

e ... 16 feature E[3, 1] = 0. Of those there are
5/8 x 16 = 10 which feature E[3, 2] = 1, hence
Et[4,2]=1.

Hence, we obtain

128+ 64+ 16+ 10 218

Otap(Ex)[4,2] = 756 = 556"

e Orap(Ex)[2, 3]:
Count all the edge matrices in X(V, Ex) featuring
ET[2,3]=1:

— All5/8 - 256 = 160 edge matrices with E[2, 3] = 1.

— Among the 96 graphs with E[2, 3] = 0 we have no
graph with E[2,4] = 1 and 48 edge matrices with
E[2, 1] = 1, which yield by constraints E¥[2, 3] =
1.

Hence, we obtain

160 +48 208 13

Ex)[2 = = — = —.
Otap(Ex)[2, 3] 756 756 = 16

By symmetry we obtain

256 256 256 0
1 168 256 208 0
4 —

194 218 218 256

To compute ©97) ,(Ex) consider the three spanning trees
ensuringedgesin[1, 2]and[1, 3] givenin Fig. 2c. Each exists
with probability 1/3, all other edges are than added on with
a probability of 1/2. Hence, we have that 6g.-tap(Ex)[k, £]
denoting the marginal distribution of Eg[k, £] = 1 is given
by

6550
3640
3460
3336

1
ETaP(Ex)IK. L)) ooy = ¢

Let us now count how often we draw a graph featuring
E™T[k, €] = 1 for Algorithm 2.

e Op.tar(Ex)[2, 1]:
When drawing E there is a 1/2 probability that E[2, 1] =
1. Given E[2, 1] = 0 we have...

— ... with probability 1/3 that the spanning tree 7 fea-
tures [2, 3] € 7. Then, with probability 1/2 we have
E[3, 1] = 1 (yielding an additional 1/12). If, however
E[3,1] = 0, by E[2,4] = E[3,4] = 0 we have
ET[2,1]1=0.

— ... with probability 2/3 that the spanning tree 7 fea-
tures [2, 3] ¢ 7. Then, with probability 1/4 we have
E[2,3] = E[3, 1] = 1 (yielding an additional 1/12).
If, however either E[3, 1] = 0 or E[2,3] = 0, by
E[2,4] = E[3,4] = 0 we have E*[2,1] = 0.

Yielding in total a probability of

244444 32
Op. Ex)2,1]=——m = —.
B-TAP(EX)[2, 1] 13 13
e Op1ap(Ex)[4,1]:
When drawing E there is a 1/2 probability that E[4, 1] =
1. Given E[4, 1] = 0 we have...

— ... with probability 1/4 that E[4,2] = E[2,1] = 1
(yielding an additional 1/8). However, if E[4,2] =
1 # 0 = E[2, 1] we have with probability 1/6 that
[2,3] € T and E[3, 1] = 1 (yielding an additional
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1/48), or, with probability 1/6 that [2,3] ¢ 7, but
E[2,3] = E[3, 1] = 1 (yielding an additional 1/48),
or last, we have with probability 1/12 that [2, 3] ¢
T,E[2,3] =0and E[4, 3] = E[3, 1] = 1 (yielding
an additional 1/96).

— ... with probability I/ that E[4, 2] = 0,but E[4, 3] =
E[3, 1] = 1 (yielding an additional 1/16). However,
if E[3, 1] = 0 we have as above with probability 1/3
that E[2,3] = E[2, 1] = 1 (yielding an additional
1/48).

Yielding in total a probability of

A8+12+24+2+14+6+2

Op.Tar(Ex)[4,1] = 96

L
96

e Op1ar(Ex)[4,2]:
When drawing E there is a 1/2 probability that E[4, 2] =
1. Given E[4, 2] = 0 we have...

— ... with probability 2/3 that [1, 2] € 7 (which auto-
matically means [3, 2] ¢ 7). Then, with probability
1/2 we have E[4, 1] = 1 (yielding an additional 1/6),
with probability 1/8 that E[4, 1] = 0 and E[4, 3] =
E[3,2] = 1 (yielding an additional 1/24) and with
probability 1/16 we have E[4, 1] = E[3,2] = 0 and
E[4,3] = E[3, 1] = 1 (yielding an additional 1/48).

— ... with probability 1/3 that 7 = {[1, 3][3, 2]}. Then,
with probability 1/2 we have E[4, 3] = 1 (yielding an
additional 1/12), with probability 1/4 that E[4,3] =0
and E[4, 1] = 1 (yielding an additional 1/24).

Yielding in total a probability of
24+8+2+1+442 41

Op.tap(Ex)[4,2] = 13 L

e Op1ar(Ex)(2, 3]:
When drawing E there is...

— ... al/3 probability that [2,3] € 7.

— ... a 1/3 probability that [2,3] ¢ 7 and E[2,3] = 1
(yielding an additional 1/3).

— ... a 1/3 probability that [2,3] ¢ 7 and E[2,3] =
0. Then, with probability 1/2 we have E[2,1] = 1
(yielding an additional 1/6).

Yielding in total a probability of

16+16+8 40

Opap(Ex)[4, 2] = _2
B-TaP(EX)[4, 2] 73 13
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Putting everything together we obtain

96 96 96 0

1 1649680 0

©B1ap (B €D =1 = 5 | 64 50 96 0
73 82 82 96

Appendix A.6: Proof of Lemma 3.22

Proof Let G, be an ancestral causal graph with node set
Vs := {vg, v1, v2, v3, wWo, W1, ..., ws} for s > 2. The set of

available interventions is given by Z = {vp, v3, wo} and the
(s)

partial observation E~ is given by
Elvg, v ] =1 fork=1,2,3,
Elvy,wg] =0 for{ =0,3andk=0,1,...,s,
Elv3, v ] =0 fork=0,1,
Elvz, v2] =1,
Elwg, v ] =0 fork=0,1,2,3,
Elwo, wg] =1 fork=1,...,s,

by abuse of notation. We observe the following impossible
edges by Lemma 3.13

K = {[vk, we] : Vk, £} U {{we, vr] : Vk £}
U{[vk,ve]l 1 k=2,3,£=0,1}..

Let E(, ) be a partial RDG with edge probability g as drawn
in step (3.A) in Algorithm 1. Define

v(q,s) == IP’[E(J{;S)[vl, nl=1Eys € X1,
vi(g,s) ==PLE], j[wi, w2l = 1|E(g) € X].

To show the claim, it suffices to show that there exist go
and s such that (0.5, s9) < y1(0.5, s9) and yp(qo, So) >
v1(q0, 50)-

1. Claim: There exists a so > 2 such that (0.5, s9) <
Y1(0.5, 50).

First, note that by definition yy(q, s) is independent of
the choice of s. Hence there exists yp(q) € [0, 1] such
that

vo(q) = yo(q,s) foralls > 2.

In particular by construction yp(g) < ¢ for some ¢ < 1.
Moreover, by Karp (1990) we have that for a fixed g and
s — oo the number of nodes in the largest component
of the random subgraph on V= {wg, wy, ..., wg} con-
verges exponentially to s, in particular faster than s—1/s.
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Thus, we have that

§—>00

PlE[wg, we] =1forallk,£=0,1,...,s] — 1.
Hence,
(g, s) =31,

yielding the existence of an sg > 2 such that y(0.5, sg) =

10(0.5) < ¥1(0.5, s0).
2. Claim: For fixed s > 2 we have for ¢ — 0 that

yo(q,s) — /2.
Forany s > 2,q < 1/2and x, y € V we compute

PLET[x, yI=1[Egs) € X]
B P[E*[x,y] =1land E, 5 € X]
B PlE(.s) € X]
. ZEOEX st Eg [x,y]=1 IP)[E(q,S) = Eo]

ZEOGX ]P)[E(q,S) = Eol
AEo) (] — q)B(Eo)

(A35)

. ZEQGX st Eflx,yl=19

- > poe 4AEV (1 — g)BED

ﬂ) |{E0€X01E0+[x,y]=1}|
| Xol

)

where Ay C X is the subset of graphs with minimal
edges and

A(Eo) = |{[k, €] : Eolk, €] =1},
B(Eo) = | {[k, £] : Eolk, £] = 0} |

To satisfy the constraints of the partial observation the
graphs with the minimal amount of edges in X" are given
by those that feature an edge E[v3, v2] = 1, that fea-
ture either E[vg, vi] = E[vg, v3] = 1 or E[vg, v1] =
ETvy, v3] = 1 and that feature a spanning tree rooted in
wo on the subset V. Thus, we obtain

g—0 1
v0(qo0, ) 7

3. Claim: For fixed s > 2 there exists a ¢ < 1/2 such that
for ¢ — 0 we have y(q, s) — c.

Consider that for any spanning tree on V rooted in wo that
features a path from w to wy we can switch the labels
of wi and w, to obtain a spanning tree without a path
from w; to wy. By construction, the above assignment is
injective yielding that there are at most as many spanning
trees featuring a path from w; to wy as there are span-
ning trees who do not feature such a path. Furthermore,
consider the spanning tree given by E[wg, wi] = 1 for

allk =1, ..., g to obtain that there exist spanning trees
that feature neither a path from w; to wy, nor from wy
to wi. Hence by (A35) and acyclicity of spanning trees
there exists a ¢ < 1/2 such that

q—0
Y1 (QO’ S) — C.

By Claim 1 we can choose 5o > 2 such that (0.5, s9) <
y1(0.5, s59). Given this so, by Claim 2. and 3. we can choose
qo € (0, 1) small enough such that yy(qo, s0) > v1(qo, 50),
finishing the proof.

To adapt the above proof for Algorithm 2 when the RSTs
in Step 4.B are drawn uniformly at random consider the fol-
lowing step:

e The first claim follows analogously.

e Instead of the second claim it can be shown that
v0(q,s) — 5/8 by considering that E*t[vi, 12] = 1 for
5 of 8 possible spanning trees rooted in vg (note that
ETvz, v2] = 1 in any case). Note moreover, that in the
case the RSTs are drawn via the modified Broder algo-
rithm as given in Sect.3.2 (g, s) — ¢ < 1/2.

e The third claim can be shown to hold also for Algorithm 2
by the analogous arguments. This is true even for the
modified version of the Broder algorithm, as it coincides
on V with the classical one.

Appendix B: Additional plots
Appendix B.1: Additional simulations

InFig. 8 mean ROC curves are displayed for p = 25, 50, 250,
500 relating to Fig.3. In Fig.9 the effect of varying the
sparsity parameter « on the performance of the proposed
graph-based predictors is shown for a graph featuring p =
1000 and #Z = 200. In Fig. 10 the effect of varying the
number of known rows on the performance of the pro-
posed graph-based predictors is shown for a graph featuring
p = 1000 and @ = 0.7. Last, in Fig. 11 the AUC performs
for all predictors outputting a matrix of scores on the Sachs
et al. (2005) proteomics data is reported via box-plots.
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Mean ROC curves for p = 25
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Fig.8 Mean ROC curves for Fig.3
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AUC Comparison on Varying Sparsity Factor
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Fig.9 AUC performance for varying sparsity parameter «. Each experiment was repeated 20 times and all graphs featured p = 1000 and |Z| = 200
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Fig. 10 AUC performance for varying number of known rows |Z|. Each experiment was repeated 20 times and all graphs featured p = 1000 and

a=0.7
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AUC Comparison for the Sachs et al. Data
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Fig. 11 AUC performance for the Sachs et al. (2005) data
Appendix B.2: Computational costs

In Fig.12a—c the computation times® for all predictors
regarding Figs. 3, 5 and 11 are given, respectively. Note that

the computational costs for the IDA (obs) and IDA (int-obs)
are basically the same as for PC (obs) and PC (int-obs),

3 All computations were run on a HP Z840 workstation.

@ Springer

0.2 0.4

respectively, and thus for the ease of presentation the PC
results are omitted in (a) and (b). Moreover, in Fig. 12a the
computation time of a transitive closure is included as a ref-
erence.
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Fig. 12 Mean computation times for Fig. 3 in panel (a TAP and TAP-q reach the time out at 18,000s), Fig.5 in panel (b) and Fig. 11 in panel (c)
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