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We consider dynamic random trees constructed using an attachment
function f : N — R, where, at each step of the evolution, a new vertex at-
taches to an existing vertex v in the current tree with probability propor-
tional to f(degree(v)). We explore the effect of a change point in the sys-
tem; the dynamics are initially driven by a function f until the tree reaches
size 7(n) € (0,n), at which point the attachment function switches to an-
other function, g, until the tree reaches size n. Two change point time
scales are considered, namely the standard model where t(n) = yn, and
the quick big bang model where t(n) = n?, for some 0 <y < 1. In the for-
mer case, we obtain deterministic approximations for the evolution of the
empirical degree distribution (EDF) in sup-norm and use these to devise
a provably consistent non-parametric estimator for the change point y.
In the latter case, we show that the effect of pre-change point dynamics
asymptotically vanishes in the EDE although this effect persists in func-
tionals such as the maximal degree. Our proofs rely on embedding the dis-
crete time tree dynamics in an associated (time) inhomogeneous contin-
uous time branching process (CTBP). In the course of proving the above
results, we develop novel mathematical techniques to analyze both homo-
geneous and inhomogeneous CTBPs and obtain rates of convergence for
functionals of such processes, which are of independent interest.

1. Introduction. Driven by the explosion in the amount of data on various real world
networks, the last few years have seen the emergence of many new mathematical network
models. Motivations behind these models are diverse [1,15,25,38,39,47] including (a) ex-
tracting unexpected patterns in the network (e.g. community detection); (b) understand-
ing properties of dynamics (e.g. the spread of epidemics); (c) understanding mechanistic
reasons for the emergence of empirically observed properties of real world systems. An
important niche is the setting of networks that evolve over time. In the context of prob-
abilistic combinatorics, these models have been studied for decades in the vast field of
recursive trees, e.g. see [12,24,26,35] and the references therein.

To fix ideas, consider the general random tree model called non-uniform random re-
cursive trees [45]. Fix n = 1 and an attachment function f:{0,1,2...} — (0,00). A sequence
of random trees {9 : 1 < k < n} is grown as follows (J% has k vertices labelled by the inte-
gers [k]:={1,..., k}). For k =1, 97 has one vertex, which we call the “root.” For fixed k = 2,
I} is constructed conditional on J_; as follows. A new vertex, k, is born into the sys-
tem and attaches to a previously existing vertex v € [k — 1] with probability proportional
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to f(deg(v)), where deg(v) denotes the number of children of v (which is one less than its
graph degree in 9%_;). Thus,

P (k attachesto ve [k—1] | Tj_1) := M.

Yo £ (deg(w)

The vertex that k selects is called the “parent" and the edge is directed from the parent
to the new “child" vertex. The case of f(-) =1 corresponds to the famous class of random
recursive trees [44]. The specific case of “linear preferential attachment" when f is affine
was considered in [10] to provide a generative story for heavy tailed degree distributions
of real networks.

Next, consider the non-uniform random recursive tree model with a change point. Here,
the random tree is grown according to one rule till some (possibly random) time called the
change point, after which the dynamics switch to another rule. In detail, let 1 <7 < n and
fo, f1:40,1,2,...} — (0,00) be two attachment functions. For 1 < k < 7 the process evolves
according to the initializer function fj i.e. node k attaches to pre-existing vertex v € [k—1]
with probability proportional to fy(deg(v)). After the change point for k € [t +1, ] the pro-
cess evolves according to f;. We denote this sequence of random trees by {7, k” :1<k<n},
where @ = (f, f1, 7). While the focus of this paper is on one change point, the methodology
allows one to derive analogous results for multiple change points.

1.1. Informal description of our aims and results. This paper has the following two
major aims for the models described above:

(a) Asymptotics in the large network limit as well as corresponding functionals have been
derived for a host of random tree models [2, 13, 28]. One major driver of research has
been proving convergence of the empirical distribution of these functionals to model
dependent constants. Establishing (even suboptimal) rates of convergence for these
models has been non-trivial other than for models related to urn models e.g. see the
seminal work of Janson [32]. The aim of this paper is to develop robust methodology
for proving such error bounds for general models. These error bounds play a key role
in understanding robustness properties of network source detection problems, see e.g.
[9].

(b) We aim to understand the effect of change points on structural properties of the net-
work. Analogous to classical change point detection, we start by considering models
with a change point at time 7 = |yn/| for 0 <y < 1 (referred to as the standard model in
the sequel ). Using techniques involving embedding into inhomogeneous continuous
time branching processes, we approximate the empirical degree distribution (EDF) as
it evolves in time by deterministic curves derived from the attachment functions f, and
f1. Using this, we devise a non-parametric estimator for y. Counter-intuitively, we find
that irrespective of the value of y, structural properties of the network such as the tail
of the degree distribution are only determined by model parameters before the change
point. Motivated by this we consider other time scales of the change point, namely,
when the change happens at time 7 = [n"] for 0 <y < 1 (the quick big bang model)
to understand the extent of this long range dependence phenomenon. In this case, we
show that the effect of the pre-change point dynamics asymptotically vanishes in the
EDE However, for specific examples of attachment functions fy and f;, we conclude
that this change point has a drastic effect on asymptotics for the maximal degree.

2. Preliminaries. We use =<y for stochastic domination between two real valued
probability measures. For J = 1, let [J] := {1,2,...,]}. A random variable Y with rate 1
exponential distribution is denoted by Y ~ exp(A1). Write Z for the set of integers, R for
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the real line, N for the set of natural numbers and let Z, := {0,1,2,...}, R, := (0,00).

Write &5, i», 2, for convergence almost surely, in probability and in distribution re-
spectively. For non-negative function g and another function f both defined on N, we
write f(n) = O(g(n)) when |f(n)|/g(n) is uniformly bounded, and f(n) = o(g(n)) when
lim,,_.o f(n)/g(n) = 0. Furthermore, write f(n) = ©(g(n)) if f(n) = O(g(n)) and g(n) =
O(f(n)). A sequence of events (A;),>1 occurs with high probability (whp) when P(A;) —
1. For some o-field &, an integrable random variable X and non-random constant C,
when we write E (X|%) < C, this will formally mean that the bound holds with probability
one. For a sequence of increasing rooted trees {7, : n = 1} (random or deterministic), we
assume that edges are directed from parent to child (with the root as the original progeni-
tor). For exposition purposes we will write degree for out-degreei.e. the number of children
of a vertex. This should not be confused with the total degree or graph degree, which is the
sum of incoming and outgoing edges (and thus the graph degree of a vertex is always one
more than the out-degree in our tree networks). For n = 1 and k = 0, let D, (k) be the
number of vertices in 9, with degree k; thus D, (0) counts the number of leaves in 97,.

2.1. Organization of the paper. The rest of Section 2 defines key objects required to
state our main results. Section 3 contains the main results. In Section 4 we discuss the
relevance of this work and related literature. The remaining sections are devoted to the
proofs of the main results.

2.2. Branching processes. Fix an attachment function f. For i = 0let E; ~ exp(f(i)),i =
0 be a sequence of independent exponential random variables. Define for i = 1, L; :=
Z};B Ej. Let { ¢ be the point process on R

2.1) $pi=(Ly, La,...).

Abusing notation, write for t = 0,

2.2) $rlo,eli=#{i:L; < 1}, urlo, 1 :=E [0, £]).

Here we view ¢ as a measure on (R, %(R,)). We will also need variants of the above
objects: for fixed k = 0, let E}k) denote the k-shifted version of the point process ¢ f where
the first inter-arrival time is Ej i.e. define the sequence, Ls.k) =Ex+Egs1+ - Epyi—1,i =1

and then let
(2.3) (=@ rP, 0, uPr,0:=EEPro,m.

As above, f}k) [0,¢] := #{i : Li.k) < t}. We abbreviate {¢[0, f] as {¢(#) and similarly pz(7),

f}k)(t), ,u}k)(t). Define the Ulam-Harris set .# := u‘;"zol\ld where N ={1,2,...} and N° = {@}
for the root of the tree.

DEFINITION 2.1 (Continuous time Branching process (CTBP) [4,29]). Fix an attach-
ment function f : Z, — R.. A continuous time branching process driven by f, written as
{BP (1) : t 2 0}, is a ¥ -valued process, started with one individual ¢ (the root) at timet =0,
such that every individual x € .# born into the system gives birth to offspring {(x,1) : i € N}
with birth times given by an independent copy of the point process ¢ ¢ defined in (2.1). For
t =0, BP¢(1) denotes the set of individuals alive at time t and Z¢(t) := |BP ¢ (t)| denotes the
size of this set. For x € .#, let 0 denote the birth time of x.

In analogy with the original tree model, we will often refer to individuals in the branch-
ing process as vertices and the number of children of an individual in the population at
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time ¢ as its degree at time ¢. In our construction, by the strict positivity assumption on the
attachment function, individuals continue to reproduce forever. Let

(2.4) me() :=E(Zp(1)), 20,

If limsupy._., f(k)/k < oo, it can be shown [29, Chapter 3] that for all £ > 0, m¢(f) < oo,
and that my(-) is strictly increasing with m¢(f) 1 co as ¢ 1 co. In the sequel, to simplify
notation we will suppress dependence on f and write BP(:), m(-) etc. The connection be-
tween CTBP and the discrete random tree models is given by the following result and is
the starting point of the Athreya-Karlin embedding [3].

LEMMA 2.2. Fix an attachment function f and consider the sequence of random
trees {J,,:2 < m< n} constructed using attachment function f. Consider the continu-
ous time construction in Definition 2.1 and define for m = 1 the stopping times Ty, :=
inf{r=0:|BP (0= m}. Then viewed as a sequence of growing random labelled rooted

trees we have, {BP(Tp,) : 2 < msn}g{f/'m:Zs m<n}.

2.3. Continuous embedding of model with single change point. The continuous time
embedding of the tree model without change point has a natural extension to the model
with a single change point 7 € N. Individuals in the population reproduce according to
independent copies of the point process ¢, up till the time #(7) when the total popu-
lation size is 7. After this time, individuals continue to reproduce independently as fol-
lows. An individual of degree ¢ at time #(7) reproduces according to the point process 5%).

New individuals born into the system after time #(7) reproduce according to ¢ . Recall-
ing the notation for driving parameters 8 = (fy, f1,7) and denoting this inhomogeneous
branching process by BPy(-), the same approach used to prove Lemma 2.2 shows that

{BPg(T8):2<m=n}t £ {F9:2<m=n}, where T® := inf{t=0:|BPg(f) = m},m = 1.
Note that £(r) = T9. We will refer to this random time #(t) as the change point for the
branching process BPg(:). When @ is clear from context, we will often drop the superscript
(or subscript) 8 from associated quantities for notational convenience.

REMARK 2.3. There exists a common probability space (Q*,%*,P*) on which the
process {BPg(T9):2 < m < n}, and hence {79 : 2 < m < n}, can be constructed for all 7.
(Q*,*,P*) can be taken to be a probability space on which the countable i.i.d. collection
{¢ fp,x : x € #} and i.i.d. collection {S, , : x € #} of point processes are defined. Individual
x with g < £(7) uses ¢y, » to reproduce until the stopping time #(7) when the total pop-
(k) f

)
fix
the point process ¢ 7 x for future reproduction. For x € .# with o, = £(7), x has all its re-

production according to ¢ 1, . Future references to convergence in probability and almost
sure convergence for the associated branching processes and trees with change point will
all be implicitly assumed to take place on (Q*, % *,P*).

ulation size hits 7. If x has k children at time #(7), it uses the k-shifted version ¢

2.4. Assumptions on attachment functions. Here we set up assumptions as well as
constructions needed to state the main results. We mainly follow [29, 30, 37,43].

ASSUMPTION 2.4. (i) Every attachment function f is strictly positive and can grow at
most linearly,

sup f(k)/(k+1)=C < oco.
k=0



CTBP AND EVOLUTION OF NETWORKS UNDER CHANGE POINT 5

(i) Consider the following function p : (0,00) — (0,00] defined via,

oo k-1 .

R f@
2.5 A) = .
®5 =2 3576

Define A :=inf{1 > 0: p(A) < oo}. We assume,
2.6) limp) > 1.
AlA

Using (ii) of the above Assumption, let 1* := A*(f) be the unique A such that
@2.7) pAA*) =1.

The Malthusian rate of growth parameter, A*, is intricately tied to the growth rate of
a continuous time branching process. In fact, recalling that Z¢(¢) denotes the size of the
branching process at time ¢, under Assumption 2.4, e 1 Z (1) converges in probability
as t — oo to a finite random variable [37, Theorem 3.1] (see also Lemma 6.6 below). While
not obvious, 1* plays an essential role in all law of large number results about the discrete
time tree model with attachment function f (see, for example, (3.1) below).

REMARK 2.5. The requirement (2.6) is a standard assumption in branching process
literature that implies almost sure convergence of a broad collection of branching process
statistics of ratio-type [37, Theorem 6.3]. It is algebraic in nature and can be checked for a
given attachment function using the explicit form of p(:) given in (2.5). In particular, (2.6)
is satisfied for f(-) = 1 (easy to check that p(1) = 17,1 > 0), f(k) = k+1+ B,k =0, for
any > 0 [43, Section 4.2] and f(k) = (k+1)%,k =0, for any « € (0,1) [34, Lemma 10]. See
[8, Lemma 7.8] for additional checkable conditions for (2.6) to hold.

3. Main Results.

3.1. Convergence rates for model without change point. Consider a continuous time
branching process with attachment function f and Malthusian rate A*. For k = 0,¢ = 0,
let D(k, t) denote the number of vertices in BP ¢(¢) with degree k and abbreviate Z¢ () to
Z(t).Let A* = 1*(f) be as in (2.7). Define the probability mass function p(f) := {p : k = 0}
via, -

o] * — 7
3.1) pk:pk(f):zfo Ve MIp(Epn) = k)dt = A A0

k=0
A+ f ) ].1:[01* T F() .

For k=0, H’;;é is taken to be 1. The last equality above follows from standard calculations

involving exponential distributions (see, for example, the proof of Theorem 2 (a) in [43]).
Following the seminal work of [29, 30, 37,43] for each k = 0, D(k, t)/ Z(t) — pi in proba-
bility as ¢ — co. However to get consistent change point estimators we need to strengthen
this convergence to a sup-norm convergence on a time interval whose size goes to infinity
with growing ¢ as well as obtain a quantitative rate for this convergence. Such results have
been obtained for very specific attachment functions via functional central limit theorems
but do not extend to the setting of general attachment functions; see e.g. [32]; specific to
linear attachment see [16,42,47]. The following assumptions on the attachment function
will play a crucial role in this section.

ASSUMPTION 3.1. There exists C* = 0 such thatlimy_... f(k)/k=C".

ASSUMPTION 3.2. Var (f(f" eV ‘p(d t)) < 0o0.
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REMARK 3.3. Assumption 3.2 might at first sight seem opaque. Here we give three con-
ceptually easier sufficient conditions that cover a wide array of functions. Throughout we
assume Assumption 2.4. Assumption 3.2 holds if any of the following three conditions
hold.

(a) Diverging attachment functions: f (k) — oo as k — oco. See [43, Proof of Lemma 1].

(b) Finite variance of the degree distribution: } ;| k?pr(f) < co. To see this note

oo 2 ) 2
[E[U e’l*tff(dt)) ]=[E[(f A*e"*fff(r)dt)
0 0
:foo/l*e—“ 5 KP(Ep() =k)dt = 3 K2 (‘[oo/l*e_)l*tﬂ:"(ff(t) = k)dt) = S KEpelf) <o
0 k=1 k=1 0 k=1

where the last equality follows from (3.1). For a given f, the finiteness of the above sum
can possibly be checked using the explicit formula for pi(f) given in (3.1).

(c) Lower boundedness and asymptotic linearity: If inf;.-o f(k) > 0 and limy_., f(k)/ k =
C* =0 (Assumption 3.1).
This assertion was largely proven in [9] which we now explain. In Lemma 9.1 we show
that under these assumptions, limy_«, f(k)/k < 1* and hence p (limy_ f(k)/k) > 1.
Then [9, Proposition 5.7] shows that in this case ;- e Nt r(dt) has finite exponential
moments and thus, in particular, Assumption 3.2 on finiteness of the second moment
holds.

s[EU A*e‘*ffi(r)dt)
0

Fix a sequence of growing trees {7, : m =2} and recall that for any N = 2 and k = 0,
Dy (k) denotes the number of vertices in 9y with degree k. The following theorem estab-
lishes convergence of the empirical degree distribution to its limit in a certain ‘uniform’
sense and furnishes a rate for this convergence.

THEOREM 3.4. Consider a continuous time branching process with attachment func-
tion f that satisfies Assumptions 2.4, 3.1 and 3.2. Let p(f) be the limiting degree distribution
as in (3.1). There exist w* € (0,1),e** € (0,1), such that for anye <e**,

L &0 D(k,Elogn + ¢
n® ZZ’k sup ( 1}5 g ) 2o
k=0 tef0,2elogn/A*] Z( T logn + t)

— Pk

Thus for a sequence of non-uniform recursive trees {J,, : m = 2} grown using attachment
function f,

n® Y 2ok sup |Dn(k)/N-pyl L.o.

k=0 nl-¢<N<pl+e

The analysis of branching processes in continuous time starts via scoring individuals
existing at any fixed time ¢ via so called characteristics, measuring individuals (and their
offspring) in various phases of their life, weighting existing individuals using these scores
and then deriving asymptotics as ¢ — co. Such characteristics can in principle depend on
the entire set of descendants (not just immediate offspring) of an individual, including
ones that are born at future times. We refer the interested reader to [30, 31] for for further
discussion on the importance of such characteristics and [2] for describing the impor-
tance of such results in the context of local weak convergence of large discrete random
structures. An important technical contribution of this paper is the next result, Theorem
3.5, regarding rates of convergence for normalized counts associated with general charac-
teristics.
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We introduce some notation related to functionals of branching processes, closely fol-
lowing [30, 37]. Recall that the individuals in the population are indexed by .# = Ufiozol\ld
and for x € ¢, o, denotes the birth time of x. Let {7 x, x € #} be i.i.d. copies of the point
process ¢ ¢ (see (2.1)), where each ¢, is defined on some probability space (Qy, <fx, Py).
¢ r.x encodes the times of birth of children of x. The underlying probability space for the
branching process (without a change point) is taken to be (Q,of,P) = I ye.¢ (Qy, oy, Py).
Elements of Q are denoted by w = {w, : x € .#}. For each x € .#, define the shift oper-
ator Sy : Q — Q which maps {wy : y € #} to {wyy : y € #}. Thus, the shift operator Sy
maps @ and its descendants to x and its descendants. A characteristic ¢ : R x Q — R, is
a B(R) x of -measurable, separable, non-negative random process. We assume ¢(f,w) =0
for every t < 0,w € Q. Later in (3.3), we will make further assumptions on the stochastic
process {¢(f,w), t € R}.

Informally, for each ¢ = 0, ¢(¢) can be thought of as a ‘score’ assigned to the root at time
t, namely when the root is of age ¢. For each x € .#, the characteristic corresponding to
x, naturally obtained from ¢, is defined by ¢ (¢, w) := ¢(¢, Sx(w)), t = 0. Thus, ¢, (t) can
be thought of as the score given to x based on x and its descendants when x is of age ¢.
We suppress the dependence of ¢, ¢, on w and write ¢(1), P, (1) for ¢(t,w) and ¢, (¢, w)
respectively.

For any characteristic ¢, define Z}p(t) =) s Ox(t—0%) = erBpf(t) ¢x(t—0y). This can
be thought of as the sum of ¢-scores, or aggregate ¢-score, of all individuals in BP¢(). In
particular, the age of individual x in BP¢(¢) is £ — 0y, and hence its contribution to the ag-

gregate ¢-score is ¢ (£ — o'x). Write m?(t) = [E(Z}”(r)) and Mf(r) =E(e™ fzj‘f(t)). Note the
characteristics ¢(t) = 1 {t = 0} and ¢(¢) = 1 {£(¢) = k}, k = 0, count the total number of ver-

tices and number of vertices of degree k at time ¢ respectively. For these two specific char-
acteristics we write the associated scores as Z¢(f) and Z}k) (1) respectively; analogously we

write my (1), m;f)(t) and M f(t),M}’“)(t). It is easy to check that for a general (integrable)

characteristic ¢, M?(t) satisfies the renewal equation
* t *
(3.2) Mf(r) =e* f[E(<p(r))+f M?(t—s)e_)l Spp(ds).
0

Write M?(oo) = lim;_ M?(t) when the limit exists. Following [37], for ¢ = 0, let .#(¢) =
{x=(x",i):0, < tand t < 0, < oo} denote the set of individuals born after time  to par-
ents who were born at or before time ¢. Write W; 1=} ;c 4y e~} 9x By Corollary 2.5 of [37],
W; converges almost surely to a finite random variable W, as t — co. By Theorem 3.1 of
137), 128 (1) = Woo MY (00) for any ¢ € 6.

For this article, we are interested in the following class of characteristics (where once
again recall @ denotes the root of the tree):
3.3)
% := {¢ with cadlag paths : 3 a non-random by > 0 such that ¢(#) < by (7,4 ()+1) for all ¢ = 0}.

THEOREM 3.5. Consider a continuous time branching process with attachment func-
tion f that satisfies Assumptions 2.4 and 3.2. There exist positive constants Cy,C, such that
forany by > 1 and any characteristic ¢ € € satisfying () < by(S f,6(£) +1) forallt =0,

Ele "' 27 (1) = Wao M} (00)| < Cibpe™ ', 120,

REMARK 3.6. The constants w* in Theorem 3.4 and C;, C, in Theorem 3.5 are explicitly
computable from our proof techniques. However, they depend on the Malthusian rate and
A (see (2.6)) and thus we have not tried to derive an explicit form of these objects.
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3.2. Sup-norm convergence of degree distribution for the standard model. We start by
studying the model under the following assumption which we refer to as the “standard”
model owing to the analogous assumptions for change point methodology in time series:

ASSUMPTION 3.7. There exist0 <y < 1 such that the change point ist = |ny].

To simplify notation we will drop | |. Recall the sequence of random trees {7, ,z :2<m<n}.
Forany 0 < ¢ < 1 and k > 0, write D, (k, 7,2) for the number of vertices with degree k when
the tree is of size n¢. Fix initializer attachment function fy andlet Aj = 1*(fo) be asin (2.7).
Define the probability mass function {p} : k = 0} via (3.1) with (A3, fo) in place of (1%, f).
As before write f; for the attachment function after change point.

Recall the continuous time embedding of {7,¢:2 < m < n} into an inhomogeneous
branching process BPg(:) as described in Section 2.3. At the change point of BPg(-), dif-
ferent individuals have different degrees, and their offspring process after the change
point need to be quantified in terms of their degree at the change point. We now in-
troduce some key quantities required in this quantification. Recall my () from (2.4).

For fixed k = 0, recall the functions ,u}]f) [0,-] from (2.3) and define, for ¢ = 0, m(f]f)(t) =

E (Z xeBPy, (1 1 {Epxt—0y) = k}) , which denotes the expected number of individuals with
k children in BP, (#). It can be checked (using the continuity estimates obtained in Lem-
mas 7.2 and 7.9) that for any k >0, >0, m}]f)(t) = JoP(Epw =k)my (t—duw).

For ¢,k =0, define

(3.4)
t t
_ © ® )~ p[eO g = ®) ©
M(t)_1+f0 mp (- 9uds), AP0 =p (Y (t)—k—€)+f0 mP (-9 ds).

Given that an individual is of degree ¢ at the change point, 1,(¢) (respectively, /l(gk)(t))
denotes the expected number of descendants (respectively, the expected number of de-
scendants having degree k), including possibly itself, ¢ time units after the change point.
Let 22 denote the collection of all probability measures on Z... For each a > 0, consider
the functional ®, : & — 22 given by

o0 o0
(3.5) ®4(p) = (Z pﬂl;k)(a)/ ) WM(a))

=0 =0 k=0
where p = (pg, p1,...) € &2. Write (®,(p))r for the k-th co-ordinate of the above map.
Let p' = p(f)) := (p(’;,p{,...) for i = 0,1 denote the limiting degree distribution for a
non-uniform random recursive tree grown with attachment function f; (i.e. without any
change point). Informally, ®,(p°) shows how the degree distribution in the continuous
time embedding evolves in a units of time after the change point. Corollary 8.2 shows that
for each t > vy, there is a unique 0 < a; < co such that

(3.6) Zp‘,’cfo mfl(at—s)u}’f)(ds) =(t-7)y.
k=0

Recall the continuous time embedding of {79 :2 < m < n} in BPy described in Section
2.3. Conceptually here, for ¢ >y, a; denotes (in the large n limit) the time required in the
continuous time embedding for the process starting at 97, (i.e. at the change point) to
reach size nt.Set a;, =0for t<y.

Suppose fo, f1 satisfy Assumption 2.4. The following theorem shows that the empirical
degree distribution of the (discrete) standard model can be approximated uniformly on
compact time intervals after the change point by a deterministic curve, obtained using
the continuous time embedding.
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THEOREM 3.8.  Foreach fixedk = 0 and s € [y,1],Sup ¢y, |Dn(k, Tn%)/nt— (Dg, (p“))k’ L,
0.

There is a probabilistic way to view the limit. Write « for a;.

CONSTRUCTION 3.9 (Xgc). Generate D ~ {pS, : k = 0}. Conditional on D = k, generate
point process E%“) and let € = E%“) [0, @]. Now set Xgc = D + €.

CONSTRUCTION 3.10 (Xac, Age). (a) Generate D ~{p} : k = 0}. Conditional on D = k,
generate Age supported on the interval [0, a] with distribution

a—u a
k k
P(Age > Lt)::f0 mfl(a—u—s)dy}l)(ds)/fo mfl(a—s)y}l)(ds), 0O<su=<a.
(b) Conditional on D and Age, let Xac = ¢ £, 10, Agel, with &y, asin (2.2).

Conceptually in the above notation, ‘BC’ stands for ‘before change’ and ‘AC’ stands for
‘after change’. Thus (in the large n limit), Xpc denotes the final degree (when the tree is
of size n) of an individual which had degree D at the change point. X4¢ denotes the final
degree of an individual born a — Age time units after the change point. Now, slightly abus-
ing notation, let 8 = (fo, f1,7). Let Dg be the integer valued random variable defined as
follows: with probability y, Dg = Xgc and with probability 1 —y, Dg = Xac. The following
is a restatement of the convergence result implied by Theorem 3.8 for time ¢ = 1.

THEOREM 3.11 (Standard model). Fix k = 0 and let D, (k) denote the number of vertices
with degree k in the tree I, n"’. Under Assumption 2.4 on the attachment functions fy, fi and

Assumption 3.7 on the change pointy, we have that D, (k)/n L, P(Dg = k).

Write p(0) for the pmf of Dg. The next result, albeit intuitively reasonable, is non-trivial
to prove in the generality of the models considered in the paper.

COROLLARY 3.12.  Assume that p° # p'. Then for any 0 <y < 1 one has p° # p(@). Thus
the change point always changes the degree distribution.

For the following corollary, we say that a random variable X has an exponential tail if
there exist positive constants Ci, Cy such that P(X > x) < C; exp{—C,x} for all x = 0. We say
X has a power law tail with exponent x > 0 if there exist positive constants Cj, C, such that
Cix *<=sPX>x)<Cyx “foral x=1.

COROLLARY 3.13 (Initializer wins under the standard model). The initializer function
fo determines the tail behavior of Dg in the sense that

(i) Ifin the model without change point using fo, the degree distribution has an exponential
tail then so does the model with change point irrespective of y >0 and fi.

(i) Ifin the model without change point using fy, the degree distribution has a power law
tail with exponent x > 0 then so does model with change point irrespective of y > 0 and

f.

COROLLARY 3.14 (Maximum degree under the standard model). Suppose the initial-
izer is linear with fy(i) =i+ 1+a for i 2 0. For k = 1, let M,,(k) be the size of the k-th
maximal degree. If f, satisfies Assumption 2.4 then My(k)/n'®*? is a tight collection of
random variables bounded away from zero as n — co.
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REMARK 3.15. Corollary 3.14 shows the initializer determines the behavior of the max-
imal degree in the case of a linear initializer under the standard model. In the absence of a

change point, for each fixed k = 1, My, (k)/n"'@*? L, X, (a) for a non-degenerate random

variable X (a) with P(Xj(a) > 0) = 1 [36]. Thus the above result shows that irrespective of
the second attachment function f;, the maximal degree asymptotics for linear preferential
attachment remain unaffected. Proof of the above result follows via analogous arguments
as [14, Proof of Theorem 2.2] and thus is not provided in this paper.

3.3. The quick big bang model. Now consider the case where the change point scales
like o(n) i.e. happens “early” in the evolution of the process. We call this version of the
process “quick big bang” to fix the idea that the change happens way back in the origin
of the process (akin to the “big bang”), but despite this change close to the origin of the
process (relative to the entire time scale), the effect of this can be felt and observed all
the way till the present via carefully chosen functionals. Let { p]lC : k = 0} be the probability
mass function as in (3.1), but using the function f; in place of f to obtain A* in (2.7) and
in (3.1). For a > 0 and any non-negative measure y, let i(a) := [;° ae™* u(t)dt. We work
under the following assumption.

AsSUMPTION 3.16.  E(7(1*)|log(éf(A)]) <oo.

REMARK 3.17. Assumption 3.16 is, in some sense, the ‘minimal assumption’ required
to ensure non-degeneracy of the random variable W, := limsup,_, e"l*th(t) (37,
Proposition 1.1]. In particular, W, > 0 almost surely if Assumption 3.16 is satisfied and
Wso = 0 almost surely if Assumption 3.16 fails.

Recall that in the previous section, one of the messages was that the initializer function
fo determined various macroscopic properties of the degree distribution for the standard
model.

THEOREM 3.18 (Initializer loses under the quick big bang). Suppose 1, = n" for fixed
0 <y < 1. If fo satisfies Assumption 2.4 and fi satisfies Assumptions 2.4, 3.1 and 3.16, the
limiting degree distribution does not feel the effect of the change point or the initializer

attachment function fy in the sense that for any fixed k = 0, D, (k)/n 2, p]lC as n— oo.

REMARK 3.19. The form 7, := n¥ was assumed for simplicity. We believe the proof
techniques are robust enough to handle any 7, = w,, where w, = o(n) and w, 1 co. We
defer this to future work.

The next result implies the maximal degree does feel the effect of the change point. In-
stead of proving a general result we consider the following special cases. Let M}, (1) denote
the maximal degree in 7, ,f . Fix two deterministic positive sequences {a,};>1, {bn} ;=1 with
an, by, 1 oo and a, /b, — 0 as n — oco. For a sequence of non-negative random variables

{My},=1, say that a,, <« M, <« b, with high probability as n — co if M,/a, x, oo and
M, /b, i»0as n— oo.

THEOREM 3.20 (Maximal degree under quick big bang). Assume 1, = n' and consider:

(a) Uniform ~» Linear: Suppose fo(-) = 1 whilst fi(k) = k+ 1+ «a for fixed a > 0. Then
1,

for any sequence w, 1 co, with high probability as n — oo, nr logn/w, < M,(1) <

nre (logn)?.
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(b) Linear ~» Uniform: Suppose fo(k) = k+ 1+ a for fixed a > 0 whilst fi(-) = 1. Then
for any sequence w, 1 oo, with high probability as n — oo, nria logn/w, < M,Q1) <
n7i (log n)>.

(c) Linear ~» Linear: Suppose fy(k) = k+1+ a whilst fi(k) = k+ 1+ 8 where a # . Then
M, (1)/ n"®P) s tight and bounded away from zero where

na@p):=rC+p+1-y2+a)/2C+a)2+p).

REMARK 3.21. Writing M, := M,(1)/n"®#) in (c) by bounded away from zero we
mean {1/M,: n>1} is tight. This result shows that while the initializer does not affect
the limiting degree distribution in the quick big bang model (Theorem 3.18), it can in-
fluence the maximal degree. It is instructive to compare the above results to the setting
without change point. For the uniform f =1 model, it is known [23,46] that the maximal
degree scales like log n whilst for the linear preferential attachment, the maximal degree
scales like n!'/(@*? [36]. Thus, for example, in the ‘Linear ~» Uniform’ case, Theorem 3.18
implies that the limiting degree distribution in this case is the same as that of the uniform
random recursive tree (URRT) namely Geometric with parameter 1/2; however Theorem
3.20 (b) implies that the maximal degree scales polynomially in n and not like logn as in
the URRT.

3.4. Change point detection. In the context of the standard model, now consider the
issue of change point detection from an observation of the network. Consider any two
sequences h; — oo, b, — oo satisfyinglog h,/logn — 0,logb,,/logn — 0 as n — co. Define:

0 0
P e e TR
" T hy o nt nlhy, by [

The following theorem establishes the consistency of the above estimator.

THEOREM 3.22. Assume thatp® # p'. Suppose fy satisfies Assumptions 2.4, 3.1 and 3.2,
and f satisfies Assumptions 2.4 and 3.16. Then T, =2 Y.

4. Discussion. (i) Random recursive trees: Random recursive trees have now been
studied for decades [22, 24,27, 35, 44]. For specific examples such as the uniform attach-
ment or the linear attachment model with f(i) := i + 1, one can use the seminal work of
Janson [32] via a so-called “super ball” argument to obtain functional central limit theo-
rems for the degree distribution. Obtaining quantitative error bounds let alone weak con-
vergence results in the general setting considered in this paper is much more involved. Re-
garding proof techniques, we proceed via embedding the discrete time models into con-
tinuous time branching processes and then using martingale/renewal theory arguments
for the corresponding continuous time objects; this approach goes back all the way to [3].
Limit results for the corresponding CTBPs in the setting of interest for this paper were de-
veloped in [29, 30, 37]. One contribution of this work is to derive quantitative versions for
this convergence, a topic less explored, but required to answer questions regarding sta-
tistical estimation of the change point. In the context of growing random trees (without
change point) with either uniform or linear attachment functions, understanding the ef-
fect of the initial seed graph and in particular constructing algorithms to estimate the root
(the so-called “Adam problem”) has inspired intense activity over the last decade. See for
example [18,19,21] for more details.

(ii) General change point: Change point detection, especially in the context of univari-
ate time series, has matured into a vast field, see [17, 20]. Even in this context, consistent
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estimation especially in the setting of multiple change points is non-trivial and requires
specific assumptions see e.g. [48]; in the context of econometric time series see [5-7]; for
applications in the biological sciences see [41,49]. The only pre-existing work on change
point in the context of growing networks formulated in this paper that we are aware of was
carried out in [14] where one assumed linear attachment functions. Regarding the estima-
tor proposed in this paper in Theorem 3.22, we do not believe the estimator is “optimal”
in terms of rates of convergence. These issues are deferred to future work.

5. Overview of the proofs. The rest of the paper proves the main results. Section 6
lays out some preliminary constructions and estimates used subsequently in the paper.
Section 7 deals with the continuous time version of the change point model analyzed for
a fixed time a after the change point. Theorem 7.1 proved in this section estimates, for a
general characteristic ¢ € €, the L! -error in approximating the aggregate ¢-score at time
a of all individuals born after the change point with a weighted linear combination of the
degree counts at the change point. This estimate, apart from directly yielding a law of large
numbers (see second part of Theorem 7.1), turns out to be crucial in most subsequent
proofs.

The estimates derived in Section 7 are then used in Section 8 to analyze the standard
model and prove the main theorems in this setting (Theorems 3.8 and 3.11) as well as
Corollary 3.13. Corollary 3.12 follows directly from Lemma 11.3 and requires an in-depth
analysis of the fluid limits derived in Theorem 3.8 and is postponed to Section 11.

Section 9 contains proofs of the quick big bang model. We note here that all the es-
timates obtained in Sections 7 and 8 to analyze the model for a fixed time a after the
change point explicitly exhibit the dependence on a. This turns out to be crucial in Sec-
tion 9 where we take a = nglogn and the estimates above still hold if 7¢ is sufficiently
small. Roughly speaking, we partition the interval [Ty, T;,] into finitely many subintervals
of size at most 179log n and ‘bootstrap’ the estimates obtained in Sections 7 and 8 to prove
Theorem 3.18.

In Section 10, we prove Theorems 3.4 and 3.5. We conclude in Section 11 with the proof
of Theorem 3.22 on the change point detection estimator.

6. Initial constructions. This section is devoted to some preliminary constructions
and estimates that will then be repeatedly used in the proofs. The first set of lemmas deal
with properties of linear preferential attachment and an important class of offspring pro-
cesses associated to it.

DEFINITION 6.1 (Rate v Affine k PA model). Fixv > 0,x = 0. A branching process with
attachment function f(i) = v(i +1) +«,i = 0, will be called a linear PA branching process
with rate v and affine parameter k. Denote this as {PAV,K(t) = 0}.

DEFINITION 6.2 (Rate v Yule process). The offspring process ¢, 0(t) associated with a
PA, o(-) process is called a rate v Yule process. Thus, the rate of birth of new individuals in a
Yule process is proportional to the size of the current population. We write{Y, (t) : t = 0} for
this process.

LEMMA 6.3 ([40, Section 2.5]). Fix t > 0 and ratev > 0. Then Y, (t) has a Geometric
distribution with parameter p = e~"*. Precisely, P(Y,(t)=k)=e "'(1—e ) 1 k= 1. The
process {Y, (1) exp(—v1): t = 0} is an L? bounded martingale and thus 3 W > 0 such that
Y, (t) exp(—vt) 2% W. Further W ~ exp(l).
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Next we derive moment bounds for the attachment point processes for linear preferen-
tial attachment.

LEMMAG6.4. Fixv>0,x =0. Let&, « (1) be the offspring process associated with aPA, « ()
process. Then with respect to the natural filtration the following two processes are martin-
gales which give the proceeding two expectations:

My (1) = e~V Ty () — X

(e"'-1), r=0

V+K

t
My(8):= e 2V1E, ()% - f @2k +3V)Eyk(s)e 2 ds— oy (1-e72""), t=0.
0

FINOE ”TK (€' ~1), and E (& (1)? = W (e~ 1)+

vV+K

> (eZ’Vt _ 1) .

PrROOE. We sketch the proof. Let Z(t) be the natural filtration corresponding to the
continuous time branching process with attachment function f. Note that &, ,(#) ~
&y (t) +1 at rate v(E, () + 1) + k. This can be used to check E [d M, (£)|.% (£)] = 0 show-
ing M, (t) is amartingale. Similarly, fv,K(t)2 ~ (fV,K(t)2 +2&y () +1 atrate v(y (1) +1) +x.
This expression can similarly be used to check M>(#) is a martingale. The first expecta-
tion claimed in the lemma follows immediately by setting the expectation of M;(t) equal
to zero. The second expectation follows by computing the expectation of M (¢) and then
using the expectation of ¢, . (1). [ ]

We now derive expressions for moments of the process PA, .. To simplify notation,
when possible we will suppress dependence on v,x and write the above as PA(-). Note
the proof of Proposition 6.5 is similar to the proof of Lemma 6.4 and is therefore omitted.

PROPOSITION 6.5. Fix v > 0,x = 0. With respect to the natural filtration the following
processes are martingales:

vV+K
My (t) := e @ N(PA, (5] - 1) - o0 e @VHIn >0

t
My(1) = (|PA1,,,<(t)I—1)2—f0 ((4v+21<)(|PAV,K(S)|—1)2+(4V+3K)(IPAV,K(S)|—1)+(V+1<))ds, t=0.

In particular, for any fixed a > 0,3 C (dependent on v and x) such that forO<t<a
(6.1) E(IPA, (D)) =1 < Ce®V™%%;  E((PA, ()] —1)%) < Ce®V+2¥ay,

Recall the class of characteristics ¢ defined in (3.3), the Malthusian rate of growth 1*
and the mean measure of the offspring process pr. Let m* := f[R+ ue* “ur(du). For any
fixed characteristic y € ¢ and any a > 0, define,

)Z(d)::f ae 'y (pdt, /Jf(a):zf ae Y up(t)dr.
0 0

It can be checked that for any a > 0, recalling ¢ from Assumption 2.4 (i), p(a) = fif(a) =
Jo e ' up(dn). Recall the definitions of Z{(r), M (1), Zs(1) and M(t) = [E(e*’“fzf(r)

from Section 3.1. The first part of the following lemma is a consequence of [37, Theorem
6.3] and the second part follows from [37, Theorem 5.4 and Corollary 3.3].

LEMMA 6.6. (i) UnderAssumption 2.4 (ii), for any characteristic y € €, Z}’f(t)/Zf(t) 25

E(Z(A7)).
(il) Under Assumptions 2.4 and 3.16, there exists a strictly positive random variable W,
a.s., !

withE(Wyo) = 1 such that for characteristics y € €, e~V tZ}’f(t) = Woo E(RAA) A m™.
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7. Change point model run for fixed time a after change point: point-wise conver-
gence for general characteristics. In this section we consider growing the tree (in con-
tinuous time) using attachment function f; till it reaches size yn, and using the second
attachment function fj for a constant time a after the change point i.e. f; is used for
t € [Tyn, Tyn + al. We will also assume throughout this section that fy, f; satisfy Assump-
tion 2.4. We count vertices born after the change point according to a general characteris-
tic ¢ € € (defined in (3.3)) and prove a law of large numbers for this aggregate ¢-score at
time a as n — oo (see Theorem 7.1). This will be a key tool in the rest of the paper. For no-
tational convenience we consider the change point as time ¢ =0 (i.e. £ = s corresponds to
actual time Ty, + s for any s € [0, a]). Recall the continuous time embedding of the model
in an inhomogeneous branching process BPg(:) described in Section 2.3. For ¢ = 0, we will
write BP, () := BPg(t + Ty,) to denote the branching process at time ¢ (i.e. time ¢ after the
change point).

7.1. Notation. LetA; be the Malthusian parameter for the branching process with at-
tachment function f;,i =0,1. For k=0, i = 0,1, recall f}’f) () and ,u}’f) (-) from (2.3) with f;

in place of f. For0 < s < ¢, let f}];)[s, t]:= f}lf)(t) - cf%f) (s) and ,u%,“’[s, t]:= ,u%,“’(t) —p}’f) (s).
For the branching process (without change point) with attachment function f;, and for

any characteristic ¢, recall Z}f (), m](fl (1), Zg, from Section 3.1 (just after (3.3)). Let v]‘fl (1=
Var(Z}ﬁ (t)). Recall the class of characteristics defined in (3.3). For ¢ € €, an easy com-

putation implies there exists non-random by > 0 such that Z}ﬁ (1) < 2by Zy, (1) for every

t = 0. Moreover, by Assumption 2.4(i) on fi, Zp, () is stochastically dominated by | PA2¢,0 (-)|
(see Definition 6.1), in the sense that there exists a coupling (Zf, (-), [PA2¢,0(-)|) satisfying
Zp, (1) = |PAaco(9)] for all £ = 0. Combining these observations and using (6.1), we obtain
forany ¢ € 6,

(7.1) sup m](fl(t) <2byE(Zf, (@) < C1e%?, sup v

? (1) <4y E(Z} (@) < Cre™
tel0,al tef0,a] ! !

f

where C;, C, depend on ¢ but not on a. For ¢ € €, let quf (a) denote the aggregate ¢p-score
at time a (see Section 3, just after (3.3)) of all individuals born after the change point,
namely

ZPa@:= Y ¢ula—oy).
X€BP,,(@)\BP,(0)
Fork=0,0<t<a,let A(]f(t) = fot mjfl (t—9) ,u%“) (ds) denote the expected aggregate ¢-score

at time ¢ of all descendants that are born in (0, f] to a vertex with degree k at time 0. For
k=0, let D, (k,0) denote the number of vertices with degree k at the change point time 0.
Let #,(0) denote the o—field containing the information on the entire branching process
till time T}y, the change point.

The following is the main result proved in this section.

THEOREM 7.1. Suppose fy, fi satisfy Assumption 2.4. Fix any ¢ € €. There exist deter-
ministic positive constants C,C’ < oo such that for everya>0 and n =2,
<ceC*yn.

E||Z0 @~ Y Dulk,0A%(a)

k=0

|3;n 0)

Furthermore, as n — oo, Z,(f(a)/n 2, Y%, pgxlf(a).
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7.2. Definitions. In this section we define constructs for the branching process BP,(-)
which will be used in the proof of Theorem 7.1 (and are motivated by the proof outline
in Section 7.3). For notational simplicity, since a is fixed in this section, we will write Zf
for Z,‘f (a) and A‘]f for )L(If(a). For the rest of this section, unless specified otherwise, we
always work conditional on %;,(0) so that expectation operations such as E(-) and Var(-)
for the associated branching process statistics post change point in the ensuing results
mean E(-|%,(0)) and Var(-|%,(0)). Divide the interval [0, a] := U;’jal lian~%, (G +a)yn=°]
into subintervals of size an~°. We will eventually take limits as § — oco.

(i) System at change point: Define the filtration {%(¢) : t = 0} := {0 (BP,(?)) : t = 0} (in-
formation till ¢ time units after change point). For fixed k = 0, we write 9, (k, t) for the
set of vertices with degree k at time ¢ and let D, (k, t) := |9, (k, £)|. The initial set 2,,(k,0)
which arose from the pre-change point dynamics will play a special role. Label the vertices

in 2,,(k,0) in the order they were born into BP,,(0) as 2, (k,0) := { v, v, Vg),,(k,m } Let
(ii) Descendants in small intervals: For 0 < i < n® — 1, k = 0 and vertex v;.’“) € 92,(k,0),

let 7 (i, j) denote the set of children born in the interval [ian~, (i +1)an~?] to v;.’“). Let

NP, j) =%, j)| be the number of such vertices. Write N¥ (i) := Z?:”l(k’o) NP (i, j) for
the total number of children of vertices that were of degree k at the change point, born in
the time interval [ian~?, (i + 1)an™].

(iii) Good and bad vertices: Call a vertex in V,Z(k)(i, J) a good vertex if it does not
give birth to any children by time (i + 1)an™°. Let 77,,““)(1’,]) c V,,(k)(i,j) denote the set of
good children of v;.’“) born in the interval [ian=?, (i + )an™®]. Let N (i, j) := [V,° (i, j)I
be the number of such vertices. Let N (i) := Z?:”l(k’o) N®(i, j) be the total number of
good children of vertices which originally had degree k at the change point born in
the interval [ian=?, (i + Dan~%]. Let BY (i, j) := ¥, ) \ V¥ (i, j) be the collection of
bad children namely those in 7% (i, j) who have reproduced by time (i + 1)an°. Let
BR @, ) =189, j)|. Let ZY (i, j) be the set of descendants of vertices in B (i, j) (ex-
cluding the parent vertices in 2% (i, j)) born in the time interval [ian0,(i+1)an~?] and
let RW (i, j):=12¥ (i, ).

(iv) Vertices counted by a characteristic: For 0 < i <n’—-1, k>0, 1< j < D,(k,0)
and x € 0 (i, j), let Z%?(i, j, x) be the aggregate ¢-score (defined in Section 3, just af-
ter (3.3)) of x and its descendants at time a. More precisely, denoting the set of x and
its descendants at time a by %X (i, j,x), Z2 %, j,x) == ¥ ,$yla—oy). Write

ye%,(lk)(i,j,x
1] .. .
709 _ ZP:Vll(k'O) Y w2 (i, j,x) for the aggregate ¢-score at time a of all
J X€Vy™ (0, )

vertices of degree k at the change point along with their descendants at time a. Thus,

78 =¥ ZiP For k= 0, let Z{"? = zfg‘k'o’zg’ﬁglzmﬁm(i’ jyZn’ (i, j,x) denote the
aggregate ¢-score at time a of all good vertices born in [0, a] which are descendants of
vertices of degree k at the change point.

(v) Technical conditioning tool: For 0 < s < t < 0o, let 4[5, t] be the o-field generated

by the biographies of all individuals born in [s, ¢] over the same time interval. Formally,
Gls,tl:=0({s<sox<t—-uniyp W) =k}, x€ I\ 2,(0),uc0,t-sl,keZ,).

Moreover, let ¢4, denote the o-field generated by the entire biographies of the individuals
at time 0, namely,

%Go:= 0 (&, (W) =k}, x€2,(0), u€[0,00),keZ,).
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The following o-field will play a crucial role in controlling fluctuations of aggregate ¢-
scores of good vertices

G, = a(‘ﬁo U Glian™, (i + l)an_‘s]).

0<i<nd-1

7.3. Proof of Theorem 7.1. We first give an outline of the proof. We discretize the time
interval [0, a] into small subintervals of the form {[ian =%, (i + @) n"°1}y<;<,.6_,, for 8 > 0.
For an individual born in the interval [ian~?, ((i + 1)a)n~%], the final aggregate ¢-score of
its descendants at time a (counting the parent) is estimated by the expected aggregate ¢-
score of a degree zero parent and its descendants tracked till time a — ((i +1)a)n~%, which

equals m]d:l (a - (’;#) For this approximation to be valid, we need to show that the total

number of bad vertices defined above is small in an appropriate sense. In fact, a number of
lemmas below are ‘continuity estimates’ that validate this discrete approximation. These
lemmas are very general and are also used in subsequent sections. As the expected num-

ber of children born in the time interval [ian~?, ((i+1)a)n~?] to a vertex having degree k at
time zero equals p}’l‘) ig (itha itla

is thus estimated by the Riemann sum ¥-%° \ D, (k, 0) ¥~ 51mf( — ””“)ufl [;g,“*”“ )

, and there are D, (k,0) degree k vertices at time zero, Z¢

This Riemann sum can then be shown to be close to Zfzo D, (k, 0)/19]5.

We fix a characteristic ¢ € € throughout the proof. The main tools used are Lemmas
7.10, 7.11 below. We will need a number of supporting results which we now embark upon.
For the rest of this section we write Cy, C,, Cs3, Cy, C,C’, ¢, ay for generic non-random con-
stants which are independent of a, n,6, k, whose values might change between lines and
inequalities. We start with a technical lemma controlling the number of children a vertex
with degree k at time 0 can produce within a fixed interval.

LEMMA 7.2. Forany k =0 and any interval [b,b+n] < [0, al,

E[¢®1b,b+1| < Cre® (k+ 1y, [E[cf (b, b+17] ]<C36C4a{(k+1)21]2+(k+1)n}.

PROOE. By Assumption 2.4(i), the process {U () := 6;’1@ (t/IC):t= 0} is stochastically
dominated by the offspring process {Py(#) : t = 0} of a rate 1 affine k PA model (see Defini-
tion 6.1), namely a point process constructed using attachment function f® (i) = k+1+i
for i = 0 with initial condition P (0) = 0. From the first moment computed in Lemma 6.4
(with v = 1 and x = k) we obtain E(Px(2)) = (1 + k)(e’ — 1). We show how to use the first
moment of Py(-) to obtain the first assertion in the lemma. The second assertion follows
from the same argument using the second moment of Pi(-) which is also obtained from

Lemma 6.4. Conditioning on & fi () and using the Markov property we get,

7.2) £SO, b+ = Z (P ) = a) e
d=

Now for any fixed k = 0 and ¢ < a, using domination by the corresponding linear PA pro-
cess, we get

(7.3) [E[E%“)(t)] <E(P(tC) =e'C(1+ k)1 -e C)<eCc + k)t

Using this bound twice in (7.2) gives,
[Eé(k) b,b+n < Ce®n Y P(f}’f)(b) = d) (A+k+d) = CeC“n(1+k+[E(€(k) 1)) = C'eC *(k+1)n
d=0

where C’, C" are constants that do not depend on k, a. This completes the proof. |
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Recall from Section 7.2 (ii) the random variable N (i, j) £ 94 [ian=0, (i +1)an~?]. Us-
ing Lemma 7.2 now gives the following result.

COROLLARY 7.3. Foralll < j < D,(k,0), ENP (i, j) < C1e%%k+1)n~% and
E[NP G, 2| < CaeCra {(e+ 120720 + (k+ Dm0}

The next Lemma bounds the number of “bad” vertices and their descendants born
within small intervals.

LEMMA 7.4. Foranyk,i, j, ERP (i, j) < C1eC%(k+1)n~20.

PROOE. For every child u € 7%\°(i, j), write BP(; u) for the branching process lineage
emanating from u. Conditional on %" (i, j), using Assumption 2.4(i) on f}, generate a col-
lection of independent rate C affine 0 linear PA branching processes (see Definition 6.1)
1Y, : 1= €< 173, j)I} such that |BP(;; u)| < |Y,()|. Now note that X, () := |Y,(£)| -1 is the
number of descendants of the root for this branching process by time ¢. Using this con-

k) (s
struction we have the trivial inequality R}, (i, j) < Z?]:”I “D X, [0,an"?]. This implies

ERP(i, ) < [E(N,(,k](i,j))[E(Xl [O,an_‘s]).

The lemma follows from this bound upon using Corollary 7.3 for moments of N (i, j) and
(6.1) for moments of X; [0, an~%]. [

The next lemma bounds fluctuations of aggregate ¢-scores of good descendants of an-
cestors who were of degree k at the change point.

LEMMA 7.5, Forany k=0, Var(Z,"%) < Ce® ((k+1)2n0 + (k+ 1)) Dy (k,0),

PROOE. By construction we have

Dy (k,0) nd-1

(7.4) Var(Z,(,k)’¢):Var( DI Z;(zk)’(p(i,j,x))
=1

=0 xe7 0, )

n®-1
(7.5) =D,(ko)Var[ ¥ Y ZFaG 1,0
=0 xe7 0,1

We analyze the variance term on the right by first conditioning on <%,,. Note that,

n®-1
Var(z Y ZP%a61,x %)

n®-1 _
Y N®G, 1)1}}‘{’1 (a— (i+ l)an_‘s)
=0 xe7® (1)

i=0

E =k

(7.6) <C1e%k+1)n0n’ [E(Z]%1 (@) < CeC %k +1).

The first equality comes from noting that 77n(k)(i,1) is ¥, measurable, the collection
{Z,(lk)'(/’(i, L,x) | x€ 77,1(")(1', 1),1 < i < n® —1} are conditionally independent given ¢, and
further, conditionally on ¥, foreach 0<i<n®-1and x € 77;1(")(1', 1), Z,(,k)’¢(i, 1, x) is dis-

tributed as Z}f (a- (i +1)an™0), since x has no children by time (i + 1)an™°. The second
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inequality follows by using Corollary 7.3 for N'’(i, 1) and (7.1). Similarly

) = Var

(N,(P(i, 1))2

n’-1
N YT T G -5
I;O N, (G, m (a (i+1)an ))

n®-1
(7.7) Var([E D Z,(,k)’¢(i,1,x)|<£n

=0 xe7®(i,1)

n5—

1
<4 (E(Z; (@))* Y E < Ce((k+ 12~ + (k+1)).
i=0

Here we use Corollary 7.3 in the second inequality. Using (7.6) and (7.7) to bound the vari-
ance term in the right of (7.5) completes the proof. |

The next lemma provides tight bounds on expectations of aggregate ¢-scores of de-
scendants of good vertices. Recall ,u““l’ denotes the mean measure for the offspring process

of a vertex which had degree k at the change point.

LEMMA 7.6. Forany k=0,

-1

Z,(lk)'(/’] - D, (k,0) i;) m;fl (a—(i+1)an’5)y(k) ianf‘s,(i+1)dn76]

E h

RE

<Ce® Uk +1)D,k,0)n"°.

PROOE. First note,

Kb, .
S 2%, %)
xe7® (i, j)

E|Z,7?) = ;0 ) E

n5—1 Dn(kyo)
j=1

n®-1
= Y Dyu(k,0)E
i=0

E [ Y 20%601,0|9,
xe7®(i,1)

nd—1

=D,k,0) Y m?(a-(i+Dan°|E
;) fl( )

NP D]

Here the third equality follows from the fact that 77,1(")(1', 1) is ¢¥,, measurable and for
fixed i and, conditional on %, for each x € 77;,(k)(i, 1), Z,(lk)’d’(i,j,x) 4 Z](f: (a-G+ 1)a/n5).

Applying equation (7.1), the error term g, in the statement of the lemma can be bounded
as,

n’-1
(7.8) en<2cDy(k,0)mp(a) ) E
i=0

NP1 - NP6 D).

Next using that the total number of descendants of bad vertices in an interval bounds the
number of bad vertices in this interval since each bad vertex has at least one child, we get
using Lemma 7.4,

0<E|{NP,1)-NF G, 1)| =EBF (i, 1)] <E[RP (i, )] < C1e®%(k+1)n~?.

Using this and (7.1) in (7.8) completes the proof. |

LEMMA 7.7. There exists a positive constant ay < oo independent of n,6 such that for
k=z0anda< %logn,

E|zP¢_ 709 < ceC'ay=0(k+1)D, (K, 0).
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PROOFE
B 00 Dy (k,0) n® -1 .
@9 E|z?-2?) <k Y Z®e, j, x)1 By
J=1 =0 xey, M, j)
nd-1
=Dn(k,0) Y E| Y. z®%3,1,01{By],
=0 | xer® 1)

where By is the event that the vertex x is bad namely has one or more descendants in the
interval that it was born. Now, recalling that ¢ € €, note that for a fixed 7, conditional on
the number of births NP (i, 1), we have

NFG,1)
(7.10) Y ZW03G,1,01(Bd =s Y. 2bg|PA”(0,alll{B;},
xe% i) =1

where {PA” : [ > 1} is a collection of linear PA branching processes with parameters v = C
and x = 0 (independent of NY'(i,1)) and B := {|PA? [0, a/n°]| = 2}, namely the root of
PA"” has at least one child by time a/n° (here C can be taken to be the same constant
appearing in Assumption 2.4(i)). Using this in (7.9) implies,

n®-1
@1 E[20?- 2% <2eD,(k,0) ¥ NG, 1) EIPAY (0, all1{B1}),
i=1

Conditioning on the number of births ¥ (a/n?) of the root of PA® in [0, a/n°] and by the
Markov property,

o0
E(PAV(0,allT {Bi}) < Y. P(Y (an™®) = j)EPA[0,a)),

j=1
where PA" is a modified linear PA process with v = C,x = 0 with the modification that
the offspring process of the root of PA"/ is constructed using attachment function f(i) :=
C(j+i+1) for i = 0. Comparing rates, it is easy to see that for each j = 1, PAV/[0, a] =4
Uj(a), where Uj(a) is constructed by first running a linear PA process PA, x with v = C and
x = Cj and then setting Uj(a) = |PA, [0, a]|. By Lemma 6.3 for Y (a/ n®) and Proposition
6.5 for E(Uj(a)), we get ag > 0 such that whenever a < a% logn,

[eS) ; . ,
(7.12) E(PAV(0,allL {Bih) < Y (Can~)' e®®+CD < ceCan™°.,
=1
In (7.11), using this bound and using Corollary 7.3 for E(N¥’ (i,1)) completes the proof. B
LEMMA 7.8. Forany k =0, whenever a < a% logn,

00 -1
o, :=E Z,‘f— Z D, (k,0) Z m% (a— (i+ l)an"s)y%‘) ian"s,(i + l)an"s]
k=0 i=0

o 1/2
< el n16+\/ﬁ+n5/2( (k+1)2Dn(k,0)) )

k=1
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PROOE. We can write @, := @ + @2 + @® where @ := Z¥ - Z% @? := Z? ~£(Z%) and

00 n’-1
@y = E(ZY) - Y Du(k,0) ). m? (a— (i + 1)an_5),u(fk) ian, (i +an™?|.
k=0 i=0 ! '
Now fix € > 0. Using Lemma 7.7 we get,
! o !
(7.13) E(@P) < CeCn0 Y (k+1)Dy(k,0) < 2yCe®“n'™0,

k=0
since Zi"zl (k+1)Dy(k,0) = 2yn—1 for tree 7. Next using Lemma 7.5 and Jensen’s in-
equality,

0o 1/2
E(lo?]) < Cec’“(z ((k+ D?n 0+ (k+ 1))Dn(k,0))
k=1

oo 1/2
(7.14) < Cec’“(n‘5’2 (Z(k+ 1)2D,,(k,0)) +\/ﬁ).
k=1

Finally using Lemma 7.6 gives,

! o) !
(7.15) @91 < Ce® Y (k+1)Dy(k,0)n % < Ce®“n'™0.
k=0

Combining (7.13), (7.14) and (7.15) completes the proof. |

The next lemma establishes Lipschitz continuity of m](fl (H)intforany ¢ € 6.

LEMMA 7.9. Forany k=0 and anyn € [0,1], sup;c(g 4 Im](lf1 (t+m)— m]dfl (D= CeC'“n.

PROOE. Let 7; be the time of the first birth for the branching process with attachment
function f;. For any ¢ € [0, a] and 7} € [0, 1], using the Markov property at time 7, we obtain

(7.16) mf (t+m) =E [Zj‘fi(tJrn)] =F [Z}f(mn)]l (1 >n)] +E [Zj‘fi(t+n)]l (f1= n)]

=E[ 2 0] E[1 (71 >n)]+E | 28 (t+ 1 (71 = )| = m (00-P (71 < n)+E | 28 (¢ + )1 (71 =7) |

Using the strong Markov property at 7;, we can write the second term above as
E [Zj‘fi(t+17)]1 (71 = 17)] = [E[[E(Z}f(t+n) |9«}1)]l (11 Sn)], where Z;, denotes the associ-
ated stopped sigma field. Note that at time 7, there are two vertices, one with degree one
and the other with degree zero. Thus, conditional on %, , for i = 1,2, if U; () is distributed

as the size of the linear PA process PA, x; with v = C and x; = C(i — 1) at time ¢ (where C is
the same constant appearing in Assumption 2.4(i)), we have

[E(Z}f(mn) |£;f1) <2cE(Zj(t+m) | Fz,) <2cEUr(a+1)+ Uz (a+1) < CeC'

for constants C,C’ not depending on 7, a, t, where we used Proposition 6.5 to get the last
inequality. Using this bound and (7.1) in (7.16), we obtain

im (41 = m ()] = |-m%, (9P (71 <) + Ce“ P (71 < )| < 2Ce P (71 <) = C"eCn

for a constant C” not depending on 7, a, t, where the last equality comes from the fact
71 ~ Exp(£1(0)). ]
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LEMMA 7.10. Recall /1¢ Joim (a - s)p(k) (ds). For any k = 0, whenever a < 2 20 logn,

E(Z0 - Y Du(k,0)A?

o 1/2
SCeC'“(n15+\/ﬁ+ n‘”z(Z(kﬂ)ZDn(k,O)) )
k=0

k=1

PROOE. By Lemma 7.8 it is enough to show, for positive constants C, C’' not depending
on a,n,d,

(7.17)
n®-1 :
¢ (i+1a 105 ia (i+1a Ca 1-6

kZODn(k LO)A} — ZDn(k 0) Z ( 5| ||| S G
Using Lemma 7.9,

© an’- . . ,

o, o~ ¢ (+1a ia (i+Dal) x
skgoDn(k,O) i mg (a=s) mfl(a 5 1fse T Ky, (ds)
ia (i+1)a

an’-1
< CeC ‘5ZD,,(I¢0) i Y ]1(
i=0

B ) W(ds) =ce ‘5ZDn(k 010, al

< (€e€P2an™ Y (k+ 1)Dy(k,0) = (CeC2an~0 @yn 1),
k=0
where the last inequality uses Lemma 7.2 and the last equality uses Y77 ((k + 1) Dy, (k,0) =
2yn-1. ]

LEMMA 7.11. Letp € 6. Asn— oo, n™ ' Y32 Dy(k, 0)/1¢—'Y2k1190/1¢

PROOE. Let y be the characteristic y(¢) = X.3° Oxlqlf]l {¢ 1, () = k}. Note by equation (7.1)

and Lemma 7.2 that /lqlf < CeC%(k+1) and thus X € 6. Now apply Lemma 6.6 (i). |

Completing the proof of Theorem 7.1: By letting 6 — co and keeping n = 2 fixed in Lemma
7.10, the first claim follows. Lemma 7.11 then gives the second claim.

8. Proofs: Sup-norm convergence of degree distribution for the standard model.
We will assume throughout this section that fj, fi satisfy Assumption 2.4.

8.1. Proof of Theorems 3.8 and 3.11. Here we prove convergence results for the em-
pirical degree distribution post change-point. As before, time starts at the change point,
i.e. r = 0 represents the time T,. We focus on the characteristic ¢(1) = ]l {&5 (1) =k} for

fixed k = 0 and denote the corresponding Z}b and m? i by Z}k) and m! f ). BP, (1) denotes

the branching process at time ¢ (i.e. ¢ time units after the change point).

8.1.1. Notation. We will use the following notation for fixed ¢ = 0 in this section.

(i) Recall ny is the number of vertices born before the change point. Let Z4¢ () := num-
ber of vertices at time ¢ who were born after the change point. Z,(f) := ny + Zac,n(?)
denotes the total number of vertices in the system at time ¢.

(ii) Let 2B€(k, r) be the set of vertices with degree k at time ¢ who were born before the
change point Ty,. Let DBC(k, 1) = 12BC (k, p)|. Similarly, let 2/ (k, t) be the set of ver-
tices with degree k at time t who were born after the change point. Let DA€ (k, t) =
|DAC (K, 1)|. Let D, (k, t) = DBC (k, t) + DA€ (k, t) be the total number of vertices with de-
gree k at time ¢.
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(iii) Let AJC(0) = fg mp (1= 9p) (ds) and 439O 1) = [y mP 2 - 9 (ds). Let Ao(1) =
142460 and AP (10 =P (60 (1) = k- €] + A]9P (1),

() Let qi(t):=P(¢P (1) >1).

The following is the main theorem proved in this section. As will be seen below, Theorems
3.8 and 3.11 are consequences of this theorem.

THEOREM 8.1. Foranyk=0,a>0,e¢>0,asn— oo,

Zn(O =1y ypoAe(D)
/=0

Dulk,t)-ny ypIAP (1)
/=0

P| sup

tel0,al

>€n)—>0, P(sup >€n)—>0.

tel0,al

Assuming the above result for the time being, we now describe how Theorem 8.1 (cou-
pled with a technical continuity result, Lemma 8.4) is enough to prove Theorems 3.8 and
3.11.Recallfor m=1, T), =inf{t = 0:|BP,(1)| = m}.

COROLLARY 8.2. LerG(1):=%%2, p‘,}/l?c(t), t=0. Forany s € [y,1], let as be the unique
solution to G(as) = (s —y)/y. Then for any s € [y, 11, Sup e(y, g | Tien) — @t L. 0asn—oco.

PROOE. As fj is a strictly positive function, it is easy to see that G(t) is strictly increasing
in t and G(y) = 0. By Lemma 8.4 proved below, G (hence G™!) is continuous. Moreover

since mg, () = 1 and )L?C(t) = ,u%)(t) 1 cowe see G(f) — oo as t — oo. Therefore G(ay) = %
has a unique solution for s € [y, 1].
Next fix s € [y, 1] and let a; be as above. For any 1 > 0, choosing € = %},—G(“S), the

second assertion in Theorem 8.1 readily implies P(Z, (a5 +n) > sn+1) — 1. Similarly, it

follows that P(Z,(as —n) < sn—1) — 1. Therefore, T|sy x a,. From this, Theorem 8.1,
and the definition of G, 19, we conclude that

%SuptE[O,Tlan] | Zn () —yn 1+ G(1))] 2. 0 which implies sup ¢/,
o [53)- 1

LY — G(Tyun)| = 0. By

. _ S P .
continuity of G1, this implies sup tely,s] % — 0 which proves the corol-

lary. |

PrOOF OF THEOREM 3.8. Fix s € [y,1]. It follows from Lemma 8.4 and Corollary 8.6
proved below that ¢ — @, (p°) is continuous and hence, from Corollary 8.2 for each fixed
k=0,

(8.1) sup
tely,s]

P
(@1, (8°)) ~ (@, %) | 0.
It is easy to see that

D, (k, T
(8.2) sup 7'1( U"J)—

((DTLth (po))k

tely,sl n
€ N0, =N P
< sup Dp(k,0)—n) ypoA,  (0|+ sup |Z,()—n) ypyAe)||—0.
Y1 \tel0, Tn) =0 1€10,Tsp] £=0
The theorem follows from (8.1) and (8.2). [ |

PROOF OF THEOREM 3.11. Follows immediately from Theorem 3.8. |



CTBP AND EVOLUTION OF NETWORKS UNDER CHANGE POINT 23

Proof of Theorem 8.1: The rest of this Section is devoted to the proof of this result.
We start with a brief outline of the proof. We start by partitioning the interval [0, a]
into subintervals [, fj11] 1<j<ani—1 and showing by means of some continuity estimates
that D, (k,t) and Z,(f) do not vary too much as ¢ varies within each such subinterval
(see Lemmas 8.8 and 8.10). We then use Theorem 7.1 (for vertices born post-change
point) and a variance computation (8.17) (for vertices born pre-change point) to show

that | D, (k, )~ X2, Da(€,0A% ()] and | Z,(6) = £, Da(¢,004¢()| are small for each
t = tj. This, combined with the continuity estimates, implies that the above quanti-
ties are small uniformly for all ¢ € [0, a] for appropriately chosen partitions. Finally, a
law of large numbers type argument along with continuity estimates is used to show
1 ‘;‘;Oan,om;")m—vz;‘;op%;")mﬂ and |1 Y% Du(€,00A,(t) ~y X2, pIAs(1)| are
uniformly small in ¢, which proves Theorem 8.1.

For the remaining portion of this section C,C’,C", ny will denote generic positive con-
stants not depending on n, a, k, ¢, t whose values might change from line to line and be-
tween inequalities.

LEMMA 8.3. qi(t) < C(k+ 1)t where C is the constant appearing in Assumption 2.4(i)
on f.

PROOE. Let ff be the time of the first birth to a vertex started with degree k. Note ff ~
Exp(fi (k). Thus P(FF < 1) = 1- e AW < (k)¢ < C(k + 1)¢. The final inequality comes
from Assumption 2.4(i) on fj. |

LEMMA 8.4. Foranyl,k=0andt t+s<a,

Ae(t+5)=Ar(0)] < CeCC+ s, AP (145 -22P (1)< ceC (0 +1)s.

PrOOE. We will only prove the first inequality. The second one follows similarly.

t t+s
|M(t+s)—/1[(t)|sf0 |mf1(t+s—x)—mfl(t—x)|p%)(dx)+ft mfl(t+s—x)ﬂ%)(dx)

< Ce“USE[¢010, 11|+ Ce®Umy (£ + D [¢011, 1+ 51| < Ce*T a0+ s+ CACUC+ 1)

where the second inequality uses Lemma 7.9 and the third inequality uses Lemma 7.2 and
(7.1). [ ]

LEMMA 8.5. For k= ¢ and t,t+s < a, |P(£%)(t+s):k—!)—P(E}?(t):k—()‘ <
CeC'%k+1)s.

PROOFE. We prove this inequality in two steps. By repeated applications of the Markov
property, Markov’s inequality and Lemma 7.2,

P@fu+g=k—4

=k§01ﬂ3(6}?(t) =d)p (e 0 = k-0-d)+P (L (0= k- )P (P () =0)
<k471P(§(€)(t) =d)[Ef(d+m(s)+|P(§M)(t) :k—ﬁ)

4o h fi h
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< Ce®s(E(¢¥ ) +e+1) +P (D0 = k- ¢)

<"+ s +P(eP 0 =k-0).
We now show the opposite inequality.

P(¢0+9=k-0) 2P (00 =k-0)P (P =0) =P (L0 =k-¢)[1-P (P 21))
Thus
P(eC+s)=k-0)-P(0w0) =k- ) P(em=k-)p(cPs)21)
~EEP ()= ~Ce“(k+ Ds.

The second inequalityuses Markov’s inequality and the last inequality comes from Lemma
7.2. ]

An immediate consequence of Lemmas 8.4 and 8.5 is

COROLLARY 8.6. Foranyk,¢>0andt,t+s<a, A" (t+5)-AP (1) = CeC*(k+0+2)s.

COROLLARY 8.7. Foranykandt,t+s<a, ¥, Dn(f,O)l/l(gk) (t+5) —A(gk) ()] < CeC'%(k+
3)sn.

PROOE. By the above Corollary 8.6 (with k fixed)

Y Du@,0AP (1) - AP (1+9) = Ce€ s Y (k+€+2)D,(£,0) < CeC(k+3)syn
£=0 =0

since Z‘;‘;ODH(&O) =vyn and Zofzo ¢Dy(¢,0)=yn—1. [ ]

For the rest of this section, unless specified otherwise, we always work conditional
on %, (0) so that expectation operations such as P(:), E(-) and Var(-) in the ensuing results
mean P(-|%,(0)), E(:|%,(0)) and Var(-|%,(0)) respectively.

We will use Theorem 7.1 crucially in what follows for two significant characteristics.
Taking ¢(¢) = 1 {t = 0} in Theorem 7.1, there exist deterministic positive constants C,C’ <
oo independent of a, n such that for every n = 2,

(8.3) sup E| Zc,n(1) - Z Dk, )AL (0)] < CeC v/,
t€[0,a]
Taking any k > 0 and setting ¢p(£) = 1 {¢ 7, (1) = k} in Theorem 7.1, there exist deterministic

positive constants C,C’ < co independent of a, i, k such that for every n > 2,

(8.4) sup E|D/C(k, )= 3 Dy(6,011 ®o|<cevn,
te(0,al =0

Take any 6 € (0,1/2). Take w € (0, 1) such that @ > max(1 -6,

equispaced partition of [0, a] of mesh an=0

NI»—‘

+6). Now let {t,}"_o1 be an

LEMMA 8.8. Let {tj},g and w be as above. Fixe € (0,1) and k. Then we have

n?-1 ~
Y IP( sup |Dy(k, D)= Dy (k, ;)] > en® | < CeC % 2n~@ 0=,
i

teftj,tjn]
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PRrOOE. Condition on %,(t;). Fix j and consider 7 € [¢}, fj11]. We clearly have the fol-
lowing lower bound on Dy, (k, £):
where Y7 is the number of degree k vertices at time ¢; which have given birth by time

tj+1. Note that Y3 d Bin (D,, (k,t), qk(an’é)) . We also have the following upper bound on
D, (k,1):

(8.5) Dy(k, 1) < (Zac,n(tj+1) = Zacn(t))) + Yo+ Dy (k, t})

where Y> denotes the number of vertices existing at time ¢; of degree strictly less than k
which have given birth by time #;,. Note that Y d Z’;;é Bin (Dn(f, £, qe (an‘e)) . To see
this upper bound, note that the degree k vertices at time ¢ originate from vertices either
existing at time £; or new vertices born in the time interval ¢, f]. The latter is bounded
by Zac,n(tj+1) — Zac,n(tj), namely, the total number of new births in the time interval
(£}, tj+1]. The former is bounded by the sum of the number of vertices which are of de-
gree k at time #; and have not given birth by time ¢ (which is bounded by D (k, ;)) and

the number of vertices of lower degree at time #; which have grown to degree k at time ¢
(which is bounded by Y»). These two bounds give the following

IDu(k, ©) = Dy (k, t))| < (Zac,n(tj+1) = Zac,n(t))) + Y1 + Ya.

Note the right hand side does not depend on . We now have for all 0 < j < n? -1 and
te [tj, tj+1].

sup [P’( sup IDn(k,t)—Dn(k,tj)|>en‘“)

jenf-1  \t€lt)tj]
k —~
< SUP [FD(Z Bin (Dn ([, t]) »Clé (anie)) > €nw/2) +|P (lZAC,n(thrl) — ZAC,n(t]” > enw/Z)
jsngfl =0

a2 1§ a1, 1=
<Ce“%2nz 00 4 ceCcInz?

where the second inequality comes from Lemmas 8.9 and 8.10 which are proved below.
The result now follows after taking the sum of these terms. |

LEMMA 8.9. Let {tj},g and w be as above and let € € (0,1). Then there exist constants
C", ng such that for all n = ny and all a < C"logn,

suHIP(

jsnt

k ~ / .
Z Bin(Dn(& tj), qe (dnie)) > enw/z) < CeC fl(_fzn%797w_
/=0

PROOF. Let Aj = {Z, (1)) < (y +¢/8) n?*@}. Note £ (¢ + 1)Du (0, 1)) = 2Z,(t) - 1, 50
on the event Aj,

(8.6) Y (C+1)Dy (0, 1)) <2 (y+el8)nf*e.
=0
Applying Chebyshev’s inequality, on the event A;, we have

p ([é)Bin (Dn(ﬁ, t), de (an*é)) > gn"’|9>n(tj))
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ZVar(Bm(Dn(ﬁ ), qr (an ))‘9n(tj))

~e2n?
4 -0 -9 4 Ca
< 2% [;)Dn(ﬁ, tj)q[(an 9)(1—07[ (an 9)) < R ZDn(ﬁ t)(0+1)
4 Ca €\ 7+ C'a
8.7) Seznzwﬁ[z(ﬂg)” e

for C’ not depending on j, where the first inequality is from Chebyshev’s inequality the
third inequality is a consequence of Lemma 8.3, and the fourth inequality follows from
the definition of A;. We now have

(Zatp) = (y +er8) n?).

k ~
(8.8) IP(ZBin(D,,(f,tj),qg(an‘e))>enw/2)s 5

Now, we control the second term above. By Lemma 7.2 (and the fact the integral is over a
bounded interval) A,(a) < ce® 4(¢+1).As 0+w > 1, we can clearly choose C”, ngy such that

for all n> ng and all a < C"logn, Enm‘“ > (1 +7)Ce€ %n. For such n, a,

Y Dpll,0A0(t)) < Ce€* Y (0 +1)D,(£,0) = CeC%2yn—1) <en**116.
=0 =0

Consequently,

(8.9)
P (Zn(tj) > (y+ %) né“”) < [P’(Zn(tj) -yn= (y+ g) nd+e —yn) (Zn(t]) -yn> SHGW)

€ =
> _n0+w
16

< _CeCa

Zacn(tj) = Y_ Du(€,0)A0(t)

.
_p (ZAC,,,(tj) > §n0+‘”) <P

1

1
9+(l)—§

16 1
< E
€ n9

Zac,n(t)) - Zan 0)A,(t))
/=0

for C,C’ not depending on j, where the last inequality comes from (8.3). (8.7) and (8.9)
and the fact that 6 < 1/2. The result now follows. ]

LEMMA 8.10. Let {t;}, 0 and w be as above and lete > 0. Then

! 1
sup [P’(’ZACn(t]+1)—ZACn(t])’> n”) < Cee na .
]<n9 1

PROOE. Applying the triangle inequality,

Zacn(tj) = Y_ Du(€,0)A0(t;)

| Zac,n(tj41) = Zac,n(t))] <

ZAC,n(tj+1) - Z Dn([,())/lg(tj+1) +
/=0

+ 3 Du(l,0) | Ap(tjn) = Ag(2))].
/=0

Note by Lemma 8.4 and the fact that ¢j,1 — ¢; = an™?

(8.10)

Y Du(l,0)|Ag(tj41) = Ag(t))]| < CeC 4= Z Du(€,0)(0+1) = Cec'“%(zyn—n < C"aeCn'.
=0 n =0 n
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From equation (8.3) we get sup .

ieni1 E1Zn(1)) = Z32 Du(£,00A¢(1))| < Ce® */n. Putting
this all together, using (8.10), the fact that w > (1 —0) and Markov’s inequality we get for
large enough n

€ €
[FD(|ZAC,n(tj+1 _ZAC,n(tj)| > Enw) = P(|Zn(tj+1 _Zn(tj)| > Enw)

Zn(tj) = Y Dp(€,0)A0(1))| +

Zn(t]+1) ZDn(f O)A[(t]ﬂ) > — n )
=0 =0
2 o0
<= “UNE|Zn(t)) = Y. Dp(€,00A,(tj)| +E
=0

Zn(tjs1) = Y Du(€,0)A0(2j41)
/=0

<2CeC %I nze
for C,C’' not depending on j, which proves the lemma

LEMMA 8.11.
sup
tel0,al

P| sup
te[0,al

PROOE. Fix k and € € (0,1). Note that
sup >en®
te[0,al

ngfl 00
<y [FD( sup  [Du(k,t)= Y Du(€,00A% (1)

=0 l’E[tj,thrl] =

]
There exist positive constants C,C' such that for each k and € € (0,1),

Datk,0- ¥ D0, 0A% (1)

>ek+1)n?
/=0

_2 fgal_
<C6Ca€ 2,194—2 w

Zn(t) = Y Du(€,0)A(2)

1
>en‘”)SC Clag=2pfty-o,

Dy(k, 1) - Z D (,01 (1)

~.

>en‘”)

( sup |Dn(k,t)—Dy(k, tj)|> n )+u1>(
teltj,tjy1l

+u:>( sup 3 Dall, 0 [AP @ -2Pwp|> 2 n)
te(tj,tjv1l =0
(8.11)

ngfl
=y
j=0

Dn(k, tj) = Y Du(¢,0AP(2))
/=0

€
>—n?
3

By Lemma 8.8,

ngfl , ~
(8.12) Yp ( sup |Dyu(k, ) = Dyl(k, r,)|> n ) < el 2pfta,
j=0 te(tj,tjy]

By Corollary 8.7, SUp ;51 SUPse(s;, t,+1]Z/ oDn(¢, 0)'1(16)(1*) /l(k)(t])' < Cec“(k+y+
2)nl- -0 and hence, as w > 1 —0, there exists no not depending on k such that for all n = ny,
ngfl

€(k+1)
(8.13) Y P ( sup ZD,,(E 0)’A(k O /l(k)(t])’ arry w) =0.
j=0  \reltjtjal=0
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Finally we control the second term appearing in the sum (8.11). It is sufficient to show

Dy(k,tj) = Y. Dn(¢,0AP(2))

(8.14) supP (
o =0

jsnt

> (e/3)n‘”) <CeCl% 230

By the triangle inequality and definitions of D (k, t), and A([k) (1), we see that for each fixed
j; k;

Dk, )= Y. Dp(¢, 00 (1))| =
/=0

< |DBC(k, 1)) - Z D6, 0P (¢ (2)) k—z)‘
=0

+|DaC ke, ) = Y. Dp@, A (1)
/=0

(8.15)

By (8.4) and Markov’s inequality,

DpC(k, t)) = Y. Dp(0,004,% P 2))

(8.16) sup P (
o £=0

jsnt

> gn‘”) <6CeC% 1 n2,
We now control the first term appearing in the bound in equation (8.15) by showing

(8.17) sup E
te[0,al

<Cn.

2
(Dgc(k, £ - Z D,(,0P (¢ (1) = k—z))

Fix k and t € [0, a]. Define a collection of mutually independent random variables
{6,011 =m=D,0,0,0=¢ <k} where ¢ (1)~ ¢ (5). Note that

e 4 k Du(0,0) o o
DI ndy Y (e m=k-¢),

/=0 m=1

i.e. a vertex that was born before the change point and was of degree ¢ at the change point
has to add k — ¢ new births to reach degree k at time ¢. Therefore,

2
(DBC(k - ZDn(ﬁ O)P(f(”(t):k—z)) ]
=0

Dy(¢
)3

,0)
m=1

2
(e, (0 =k-¢)- ZDn(z O)P(f“’)(r):k—z))]

=0

e[ 1=k #(epo=e-g) | |

/=0 m=1

_E (é

Note that
Dl

)

,0) Dy (4,0)

i ( ((/)m(t):k—ﬁ)—lP(f%)(t)=k—[))gi Zi Yom
/=0 .

Where the random variables {Yg, mllsm<D,{0),0=¢< k} are mutually independent,
supported on [-1,1] and EYy ;, = 0. Thus,

ﬁl\/l

2 D

Z Y[,m

n(£,0)
Y E[vE,|= CZD,Z(! 0)=Cyn
/=0 m=1

m=1

( Dy (£,0)

k
=2
=0
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which proves (8.17). Using (8.17) and Chebychev’s inequality, we get

(8.18) sup P (

j=nt

DEC(k, 1)) - Z D, (,0P (¢€ (1) = k- ¢)

> (e/6) n‘”) <Ce%n'~2%¢,

Using (8.16) and (8.18) in (8.15), we obtain (8.14). The first assertion in the lemma follows
by using (8.12), (8.13) and (8.14) in (8.11). The second assertion follows similarly upon
noting that Zyc , () is increasing in ¢ and using (8.3), Lemma 8.10 and the first bound in
Lemma 8.4. |

Now, we proceed towards removing the conditioning on %,,(0) to complete the proof of
Theorem 8.1. We need the following Corollary to Lemma 7.11.

COROLLARY 8.12. Fixk=0,e>0 and letsy,..., sy € [0, al be m fixed time points. Then,
almost surely, there exists nyg = 1 such that that for all n = ny,

Z D, (¢, O)/l(k)(s]) —yz pgxl(k)(s]) <e,

1sj=sm| " ¢=o

<E€.

LS Da oA s -y Z Pole(s))

1<]<m l’l[ 0

PROOF. Follows from Lemma 7.11 and the union bound. [ ]

LEMMA 8.13.  Let {pi(f) : k =0} as in (3.1) be the asymptotic degree distribution using
attachment function f satisfying Assumption 2.4. Then } .3 kpr(f) = 1.

PROOE. Recall that py(f) = tx—1 — tx where t := ]'[l o ,1*f+(})(z and 1* is the Malthusian
parameter for the corresponding preferential attachment branching process. Therefore,
Yo kpr(f) = Z,’C‘:O k(tx—1—tr) = X732, tk- By the definition of 1* and 7, wesee .77, ix = 1,
proving the lemma. |

LEMMA 8.14. Foranyk =0,

sup
tel0,al

Z D (,0A (1) -y Z poAP (1)
1=

230, sup
t€[0,al

Z Dy (£,0)0A¢(1)—y Z PN (D] £
/=0

PROOF. Fixe>0.Let0=s; <sy <---< s, = abe apartition such that |s;,; — sj| < €. By
Corollary 8.7,

sup  sup < Ce® Uk +3)e.

l<jsm tE[S] s]+1]

Z Dn(¢,0AF (1) - Z Dn(¢,0AF (s)
n oo n oo

Similarly, using Corollary 8.6,

sup sup
lsjsm-1 tG[Sj,Sj+1]

o0
Y Z poA R0 -y Y pIAP(s))
/=0 /=0

< sup sup )/Zp[’/l(k)(t) A(k)(s])
1=j<k-1[sjsj1] =0

] oo !
<Ce %y Y pY(k+0+2)=Ce" “y(k+3e.
/=0
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By Corollary 8.12, almost surely, there exists ng = 1 such that that for all n = ny,

1 o0
= Dn(ﬁ,O)/l([k) (s)-vy Z po/l(k (s))

sup
n o

l<j<sm

From the above, we now have that for n = ny,

sup
t€(0,al

Z Dn(¢,0A (1) -y Z pIA® (1)
n =0 =0

Z Dy, 04 (1) - = Z Dy (€001 (s)

= Ssup sup
1=js=m-1r1elsj,sj41]

+ sup sup
1=j=m-1t€lsj,sj41]

Y 2 PP 0=y Y ppAP (sp)
=0 =0

+ sup < Ce®(k+3)e

l=sj=sm

1§ K)oy v > 10400 .
Y D, 04,7 (s) =y ) poA,” (s))
n =0 (=0

which proves the first assertion of the lemma. The second assertion follows similarly using
Corollary 8.12 and the first bound in Lemma 8.4. |

PROOF OF THEOREM 8.1. The theorem follows from Lemmas 8.11 and 8.14. [ ]

PROOF OF COROLLARY 3.13. The essential message of this Corollary 3.13 is that the tail
of the distribution prescribed by the initializer function always wins. Recall that the limit
random variable Dy is a mixture of the distributions of Xgc and Xac. [ ]

LEMMA 8.15. The random variable Xpc always has an exponential tail.

Proof: By construction, note that Xac =< ¢, [0, @]. Assumption 2.4 on the attachment
functions implies that there exists k > 0 such that max(fy(i), f1(i)) < k(i + 1) for all i. In
particular ¢ 7, [0, a] <5 Yz[0,a] where Yz (-) is a rate k¥ Yule process (Definition 6.2). Using
Lemma 6.3 completes the proof. |

Thus is is enough to consider Xgc and show that this random variable has the same
tail behavior as the random variable D ~ { p](z k= 1}. Once again by construction, Xgc =g
D+ Z?: 1 Y%,i0, a], where {Y,—Qi(-) = 1} is an infinite collection of independent Yule pro-
cesses (independent of D) having the same distribution as Yi(:). Let p := E(Y%,;[0, al).
Note p > 1. Conditioning on the value of D we see that for x = 1, P(Xgc > x) = & where
&= zx’z”P(D NP Y,i[0,a] > x— j) +P(D > x/2p). Further for x> 1,

x/2p

(8.19) é"sIP(Z Y%,il0,a] > x
i=1

1
1-— P(D 2u).
Z,U))+ (D> x/2u)

Standard large deviation bounds for the law of Y; ; implies that there exists constants
C;, C, such that for all x, P (me“ Yz,i10,a] > x(l - ﬁ)) < C; exp(—C>x). Thus in the set-
ting of Corollary 3.13(i), assuming D has exponential tails, one finds using (8.19) that
there exist finite constants Cj, C;, such that P(Xgc > x) < C] exp(-C,x). This completes
the proof of Corollary 3.13(i). A similar argument, along with the obvious inequality
P(D > x) < P(Xpc > x), verifies Corollary 3.13(ii). ]

9. Proofs: Quick Big bang.
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9.1. Proof of Theorem 3.18. Throughout this section we assume that f; satisfies As-
sumption 2.4 and fj satisfies Assumptions 2.4, 3.1 and 3.16. For notational convenience,
instead of considering the change point at n¥ and evolving the tree till size n, we will con-
sider the problem of the change point being at n and evolving the tree till size n!**1? for
some 6 > 0 (where A} is the Malthusian rate corresponding to fi). For this section, ¢ =0
represents time T, (the first time the total population size of the associated continuous
time branching process has n vertices). It is easy to see that Theorem 3.18 is equivalent to
Theorem 9.14 proved below.

We first give a proof outline. We again use the embedding of the discrete time network
model into the associated continuous time branching process. Recall the notation from
Section 8. From Lemma 8.11, for k = 0, there exists ng > 0 such that for n < no,

Dutk, )= Y. Du(6,0AP (1] L0, as n— co.

=0

1
9.1 — sup
n te[0,nlognl

Similarly, using Lemma 8.11, we obtain 1y > 0 such that for all < 1y,

Zn(t)= Y. Dp(l,00A¢(1)| <=0, asn— oo.

=0

1
(9.2) — sup
n te[0,nlognl

(9.1) and (9.2) immediately imply for any 1 < 1y,

1
——Dy(k,nlogn) - Z D,(6,0AP (nlogn) -0,

9.3) pl+nAf
mEmT ————Z,(nlogn) — ot Z D, (¢,0)A¢(nlogn) 2.0
as n — oo. Thus, before the total population has grown too big, i.e. is of size n!*"1 for

some 7 < 79, one can approximate the empirical degree distribution and rescaled total
population size by the normalized sums appearing in (9.3). For each ¢ =0, n™'D,,(¢,0),
converges to the classical limit degree distribution of the system without change pointi.e.
p? = pi(fo) as in (3.1). Thus, in lieu of (9.3), one needs to understand how the quantities

n‘”AT/I([k) (nlogn) and n~"1 A,(nlogn) behave for large n. Lemmas 9.1 to 9.7 use tech-
niques from renewal theory to quantify rates of convergence and characterize properties
of the limits of these quantities in this general setup. This can be used to prove an analogue
of Theorem 3.18 for the branching process in the regime where the approximation (9.3) is
valid i.e. for n < ng. To extend this proof to the general case, we develop a ‘bootstrapping
procedure’ laid out in Lemma 9.11 where we use results from Section 7 and the lemmas
proved in this section to show that for each j = 0, the ‘quick big bang’ phenomenon holds
when the population is of size n'*" for some 7 < (j j+ 1no ifit holds for all n < jng. The
rest of the section translates these results to the network model in discrete time.
Define for each ¢ = 0 and 8 > 0, the fB-Laplace transform of the measure ,u%) given by

we(p) := fo h e U ds).

We will simply write w, for w,(A]). We need the following technical lemmas. Recall from
Assumption 2.4 (ii) that there exists §; € (0,A]) such that p(f;) < co. Recall C* from As-
sumption 3.1 applied to f;.

LEMMA 9.1. B, =C".
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PROOE. If C* =0, there is nothing to prove. So we assume C* > 0. For any € € (0,C*), by
Assumption 3.1, there exists jo = 1 such that for all j = jo, f1(j) = (C* —¢€)j. Finiteness of
0(B1) implies that

oo k-1 o
fi(i+ jo)
64 X:: 1:[ B1+ i+ jo)

X

For any k = 1, noting that x — ﬁ —

is a strictly increasing function and, log(1 + x) < x for

any x =0, ande2 h% ]]12 (Eforany jo= j1 =1,
k-1 i+ ] k-1 i k-1
log | [ f1(l+.]o)‘ i+ jo =Y log|14 — ﬁl. ‘
i=0 B+ fili + jo) =0 i+ oy = (C*—€)(i + jo)
__ B kil.l‘ b fj‘”kl@:_ p J’o‘-i-k—l)
C*—eizpi+jo Cc jo-1 b C*-¢ Jo—1
and thus
B
OAG ) >( jo—1 )c—l
o Bi+fAli+jo) \jo+k-1
Thus, (9.4) holds only if §; > C* —e¢. As € > 0 is arbitrary, this proves the lemma. |

REMARK 9.2. Lemma 9.1 shows that if f satisfies Assumptions 2.4 and 3.1, then
A* > C*. In addition, if f satisfies inf;>q f(i) > 0, then [9, Proposition 5.7], implies
[E(exp {6 I e’l*‘ff(d t)}) < oo for some 6 > 0 and, in particular, Assumption 3.2.

LEMMA 9.3. For any f € (f1,A]], there exists a constant C(f) > 0 such that w,(f) <
C(B)(¢+1) for¢ =0.
PROOE. Fix any f € (f1,4}] and £ = 0. Since [5° e Puy, (ds) = l'[ic oy ﬁfjﬁfz”, the
sum on the right hand side is finite. Note that
fi@)
0o oo (+k—-1 fl(l) H[+k 1ﬁ+f1(l)
W(ﬁ):f e Ps w)(ds) Z 1—[ = <
4 Al
0 B+ fili) Hz 5ﬁ+1f1‘(l

Choose and fix € > 0 such that C*+2¢ < § (which is possible by Lemma 9.1). By Assumption
3.1, there exists jy = 1 such that for all j = jy, fi(j) < (C* +¢)j. For any ¢ = jy, using the
facts that x — ﬁ% is a strictly increasing function and, log(1 + x) = 135 for any x = 0, and

Z”

szﬂ dx for any j» = j; = 1, we obtain for any ¢ = j,

= ]
201 f(i 20-1 20-1
1(7) B
lo — | =1 lo
8 i:H[ B+ fi@) o8 ,l:[ C*+e+l Z 8! (C*+€)l
- B B - B B
K e o A1 o (Mdx o log?
T & B~ B — 0 B X B ’
= I+ g 1t ©rar = 1+ o * 1+ ©5ar
/i
Take ¢; = jy such that C“;; > c*ﬁ+ze- From the above calculation, for all ¢ = ¢;,
+
(C*+ref]
20-1 _fi(}) = 214 1_A®
152, B = < 2 ¢¥+2. Using this bound iteratively, we obtain forany j > 1, [];_ B =
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N
2~z Thus, forall £ = ¢},

co O+k-1 f1(l) co 2/t 0—10+k-1 fl(l) 00 2/¢-1 A

we(P) = Z H B+ A =l+ Z Z H ﬁ.,.f(,) sz l:[€ﬁ+f1(i)

j=0 k=2i¢ i= j=0
o)
2-2 C*+2 )[

)

=/ 1+§2(1%)"] =
Jj=0

where the sum converges as C* +2¢ < . This proves the lemma. |

Recall the class of characteristics € defined in (3.3). For given ¢ € € and initial values
{/19; (0)€[0,1]: ¢ = 0}, define for each £ = 0,

t
9.5) A0 =220 +f0 my (1= ) (ds).

Note that this definition generalizes the expected aggregate ¢-score of offsprings of a de-
gree ¢ parent defined in Section 7 (see just before Theorem 7.1) in that we allow for a

general initial value Af(O) € [0,1]. Hence, we keep the same notation. Two special in-

stances of /l(f(-) that we have already used extensively are given by taking ¢(¢) = 1 {¢ =0},

t=0, 1%(0) = 1,£ = 0, which we denoted by A,(-), and ¢(1) = 1E(#) =k}, £ = 0, 19(0) =
P (£ (1) = ke~ £) for £ 20,k = 0, denoted by 1" () (see (3.4)).

LEMMA 9.4. Let ¢ € € such thatlim;_. e’”tm](fl (1) = ¢y. Recall /1‘;(-) defined in (9.5).
There is a constant C > 0 for which the following holds: for any € > 0, there exists t(e) > 0
such that for any ¢ = 0,

sup e’”%?(t) —wpcp| < Ce(l+1).
t=t(€)

PROOF. In this proof, C,C’, C" will denote generic positive constants not depending on
t,¢ whose values might change from line to line. From (9.5) and the definition of w,, we
have for any ¢ = 0,

(9.6)
e_ATtA(f(t)—wec(/, = )Lf(O)e_’m—cd,f “Arsylo (ds)+f (e_’lf(t_s)m%(t—s) —c(/,) “Ars M )(ds).

Choose any € > 0. Fixany 9 > 0 such that A] —9 > ;. As lim; .o, e"lftm¢ (f) = ¢ and

sup, ., e M! m () < o0 (which holds because the limit as t — oo exists and as ¢ € €,

therefore for each a>0,Sup;co g m? i (1) = Csupy¢g,q Mf; (1) < oo by virtue of (7.1)), there

-A¥ -z

exists fp > 0 such thatforall ¢ = £, )e ltmjfl (1) - C(b’ <ecande ¥’ (supz<oo m . (2) + c¢,)

€. Thus, for any t = 2,

9s e—/li‘(t—s)

supe”
S<t

Thus, applying Lemma 9.3 with § = A] — 9, we conclude that for any ¢ = 21,

t t
A=) P p -Ays, () _ —0Os
fo’e S =9 = g e i (dS)‘foe

¢
mfl(t—s)—c¢|se.

efiti‘(tfs)

¢ -Ay-9)s,,(0)
m, (1=3s)=cy|e “h )S,uf1 (ds)

<ewp(A] —9) = Ce(£ +1).
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Moreover, as [;° e’m’ﬁ)sy%) (ds) < C+1),for t=0,cp [P Ms %)(ds) <C'(+1e .
Using these in (9.6) and recalling A,(0) € [0, 1] for each ¢, we obtain for ¢ = 21,

’e’liﬁ%f(t) —wycp| < e M4 C'(0+1)e I+ Ce(l +1).

Thus, there exists #; = 2ty such thatforall # = 0andall ¢ = 17, 'e’ﬂf ‘A‘f(t) —wecy| < C'e(l+
1). [ ]

LEMMA 9.5. Let ¢ € € such thatlim;_., e"m‘m;fl (1) = cg. Fixanyn >0,a € R. Then as
n— oo,

o0 o0
p~ Ay Dn(ﬁ,O)/l?(nlogn +a) 2 cpeM Y pOwy.
=0 =0

PROOE. In this proof, once again C,C’,C"” will denote generic positive constants not
depending on n, t, ¢ whose values might change from line to line. Note that

o0 o0
p~ A 3" Dn(i,O)/lf(nlogn +a)-cpeM® Y pdw,
=0 =0

9.7)

Y n7'Dy (0w, - Y pywel.

o0
<n"') Dy(,0) )Af(nlogn+ ayn "™ —wpcpet®
=0 =0

/=0

+c¢,e/11“

To show that the second term goes to zero in probability, consider the characteristic y(t) =
Z‘;":O wel {(ffl (1) = f}. By Lemma 9.3, w, < C(¢ +1) and hence, y € €. Thus, by Lemma 6.6
@,

o o0 P
Y n'D,u (00w, - Y. phwe| — 0 asn—oco.

/=0 /=0

(9.8)

To show that the first term in the bound (9.7) goes to zero in probability, take any € > 0.
Recalling

2 720Dn¢,0) = nand 37 (¢ +1)Dy(¢,0) = 2n -1, and taking ¢ = nlogn + a for any n >
1@~/ jn Lemma 9.4, we obtain

o0 o0

Y n'D,(2,0) |A‘£(nlogn +ayn "™ - w[c(/,e’lf“ <n-1C"eM% Y (¢+1)D,(4,0) < 2C" M %,
=0 =0

As € > 0 is arbitrary, the first term in (9.7) converges to zero as n — co and completes the
proof. |

Define m} := [f°ue "1 “pup, (du). For €20,k =0, recall A,(-) and )L;k) () from (3.4).
COROLLARY 9.6. Fixanyn>0andk=0. Then as n — oo

n~0AD N DL0,00A,(plogn) = Y. plwel At m},
=0 =0

o o0
n~ D Y D, (0,0AP (logn) < pL Y plwel Ay my.
=0 (=0
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PrOOE. Follows from Lemma 9.5 upon using the explicit formulas
t t
— _ 4] 0 gy — @O _1-_ ) (p_ 4]
Ae(2) —1+[0 mp (t=S)pg (ds), A, (1) —P(ffl =k €)+f0 me (t=S)pp (ds), t=0,

and observing by Lemma 6.6 (ii)

9.9) lim e i'mp (1= A7mH™, lim e mP (1) = prAymPH ™.

LEMMA 9.7. There exists g > 0 such that for any n < 1y, the following limits hold as
n— 0o
M n= 014D Z, (log n) = Y2, pOwe/ A} m?,

(i) Foranyk=0, n~*7") D, (k,nlogn) — PLI, Powel Aymy.
PROOE. (i) and (ii) follow from (9.2) and (9.1) respectively along with Corollary 9.6. W
COROLLARY 9.8. Y% pjw,=A;m}.

PrOOF. Note that Lemma 9.7 (i) holds in the special case where fj is taken to be f;

(the model without change point). In this case, pg = p} for all ¢ = 0. By Lemma 6.6 (ii),
Zn(mologn)e M Tntmologn) 23 Woo! A} my. Moreover, as Z(T,) = n, therefore, applying
Lemma 6.6 (i) again, n~'eMTn = eM1Tn/ Z (T,,) “% A m¥/ Weo. Using these observations,
we obtain

n~ 104D 7 nologn) = n~ eM T Z,, (o log n) e (Tntmologn) 51

Comparing this with Lemma 9.7 (i) with fy = f gives the result. |

Recall that for any k = 0, E%c) (-) is the point process denoting the distribution of birth
times of children of a vertex which is of degree k at time zero. The following lemma gives
an estimate on the second moment of f}lf) () under Assumption 3.1.

2
LEMMA 9.9. There exists C > 0 and ' < A} such that for any k =0,t =0, [E(cf}’f)(t)) <
Clk+1)2e2P't,

PROOE. By Assumption 3.1 and Lemma 9.1, for any f’ € (81, A]), there exists £y = 0 such
that for all £ = ¢, fi(¢) < p'¢. Let m = maxy<y, fi(¢). It is clear that E%“)(-) is stochastically
dominated by the offspring process of a continuous time branching process with linear
attachment function f*(¢) = /¢ +1+ (m+ f'k),¢ = 0. Applying the second moment ob-
tained in Lemma 6.4 (with v = ' and x =1+ m+ ' (k — 1)) the lemma follows.

]

Forn>0,j =0, let D,(k, j,n) denote the number of vertices of degree k at time (j +
1)nlog n that were born before time jnlogn (including possibly the ones at time zero).

o0
LEMMA9.10. Foranyn>0,j=0,asn—oo, 3. (k+ l)Dn(k,j,n)/ (Za(jmlog n)n%") Lo,
k=0
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PrOOE. We will condition on %, (jnlog n) throughout the proof. For 1 < m < D, (¢, jnlogn),
denote by f%)m(t) the degree at time ¢ + jnlogn of the m-th vertex of degree ¢ at time
jnlogn. Observe that

k Dn(¢,jnlogn) ’
Z(k+1)Dn(k im= Z(k+1)z Z 149 (mlogn)=k-¢
fim
k=0
o) ,jnlogn) oo oo Dpn(4,jnlogn)
= Z Z Z(k+1)]1 {5(5) (nlogn) = k—[} = Z (€+1+€m (nlogn))
/=0 m=1  k=¢ =0 m=1

oo Dp(4,jnlogn)
= Z (¢+1)Dy(, jnlogn)+ > >, é(?m(nlogn)
£=0 /=0  m=1 '

oo Dn(4,jnlogn)

=2Z,(jnlogn) -1+ ). f}?m(nlogn).
=0 m=1

Thus, it suffices to show that as n — oo,

1 co Dyn(¢,jnlogn)

(9.10) f([) (nlogn) L.o.

Zy(jnlogn) ;= gm=1 oM

Note that using Lemma 9.9,

1 oo Dn(¢,jnlogn)

1 o
r ; P (nlogn)
Zn(JTIIOgn);o mzzl nM i fum 1108 )

1 oo Dn(l,jnlogn) o 2 anﬁ’ﬂ
E|¢, (nlogn)| < - (¢+1)?D, (¢, jnlogn).
ZZ(]nlogn)nZ/llﬂ Z mX::l ( fim nlog ) Zz(]nlogn)nz’l Z n(, jnlog

Denoting the maximum degree at time jnlogn of the branching process by D™, note
that D™ +1 < Z,,(jnlogn) and hence,

Y (¢+1)*D, (¢, jnlogn) < (D™*+1) Y_ (¢+1)D, (¢, jnlogn) < Z,(jnlogn)(2Z,(jnlogn)-1).
=0 =0

Using this in the above variance bound, we get

1 oo Dul,jnlogn) 2Cn?Pn 72(jnl 2C
NV Z Z — ¢ o m(nlogn)| < ) ol O%H) - —p 0
Zu(jnlogn) (=) gz nhin fiom Z2(jnlogmn?hin - pAi=hm

as n — oo and hence,

oo Dn(4,jnlogn)

1
9.11) — —& (nlogn)
Zigmiogn & A it hm(o8

0201 Dn(”JXﬂ:lOg") ! (fw) (nlog n)) ..
Zn(]nlogn) nt fm
By Lemma 9.3, we obtain § € (A} —1,A}) such that w,(B) = [;° e Ps (f) ds)<=C(P+1).
This implies for any m, ¢, E (f @ n(1n1og n)) < C(B)nP7(¢ +1) and consequently,

oo Dn(4,jnlogn)

1
9.12) —44M8M —— 0 |
9.12) Zn(jnlogn) Z{) mX::1 o (f n(mlog n))
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1 0[(5)] S . 2C(P)
< ¢+1)D, (¢, jnl <———0
nAi-Bn Z,(jnlogn) ;0( TDDa(, jnlogn) nA =P

as n — oo. From (9.11) and (9.12), the proof of (9.10), and hence the lemma, is complete.
[ ]

LEMMA 9.11. Let ¢ € € such that lim;_. e Mim®(r) = cp. Fix any ng € 0,1/2C"),
where C' is the constant appearing in Theorem 7.1. Then for any j = 0,1 € (0,1¢] and a€ R,
as n— oo:

(9.13) ;iD ¢, inologmA? mlo n+a) 2 ¢ e’lrai Yw
. Gmoa; =P »JMolognjA, (17108 ) gzopz iz

PROOE. We will proceed by induction on j = 0. Suppose for some j’ = 0, (9.13) holds

for all 0 < j < j', n € (0,m9] and a € R. Taking ¢(t) = 1{r =0} and n = o and recalling

lim; . e"lf”mfl(t) = 7, we obtain forany 0 < j < j'and any a € R,
1771

o0
Afa 0
ey pLwy.
/=0

1 . P
(9.14) WZn((]+l)nologn+a) —_— /11‘ mf

Fix any ¢ € €. Note that for any n < 1,

1

(9.15) plT (G +Dno+mA]

Y Dull,(j' + Dnolog mAY (logn + a) — cpe™1® Y phuwe
=0 ¢=0

Af(n logn+ a)
n"

PR D, (¢, (j"+1nologn)

_€:O n1+(j'+1)n0/11‘

—c(pe’ll“uw

X D4, (j +1nologn) x

0
E - - wy — E p,we
!
) n1+(] +1noA] )

+ c¢e’11“

For any € > 0, by Lemma 9.4, there exists ny > 1 and C” > 0 such that for all n > ngy, £ =0,

A (nlogn + a) . .
% —cpewy| = C"eM %l +1)
n
and hence,
. 4
i Dy, (4, (j' + Dnologn) | A, (nlogn+a) epeMiuw,
& prGmn; L ¢

<M i (@ +1)D,¢,(j +1)nglogn)
/=0

./
< Zcue/lfae Zﬂ((] + 1)770108 n)
n1+(j’+1)n0)tf n1+(]"+1)770/1f

Therefore, using (9.14) with j = j’, and as € > 0 is arbitrary, the first term in the bound
(9.15) converges to zero in probability. To estimate the second term in (9.15), consider
the characteristic y(¢) = Y92 w1 {¢ 7, (1) = ¢} and note that by Lemma 9.3, y € €. Recall
Z! from Section 7 (see Notation (iv)) with %, (0) replaced by %, (j'nologn) (that is, time
starting at T}, + j'nologn) and take a = nglog n. As Z} denotes the aggregate y-score of all
vertices born in the interval [j'nglogn, (j' + 1)nglognl,
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(9.16)
— LIS Dut,(f + ol VASE _Cd) > (€+1)Dn(l, ]!
IREESIETYE Z’o n(6,(J + Dnolognywy = Zy| < ISETVESIEY [ZO( + DD, 771m0)
_ Zul"mologm) c) S (041D, ') L0
- 1+j'no A% ] noAs n{& M0
n 1 Zu(j'mologn)n™ p=

as n — oo, which follows from Lemma 9.10 and by (9.14) with j = j'—1 for j' = 1 and the

Zn(j'nologn) P

trivial observation that ot
J'noAy

0 when j' = 0. Here C(A]) is the constant appear-

ing in Lemma 9.3. Recall 7 is chosen such that &\/%gn — 0 as n — oo, where C,C’ are

the constants appearing in Theorem 7.1. Thus, recalling /Vlf (1) = fot mjﬁl (t—y3) p([) (ds), by
Theorem 7.1 and (9.14),

(9.17)

1
n1+(j'+1)n0/11‘

CeCnologn

G+ DmoA; V Zn(j'mologn)

- CeCfnologn Zn(],nologn) LO
- \/ﬁ n1+(j’+1)n0/11‘

i D, (¢, (j'+1)nglogn) oy — i Dy, (¢, j'nologn)
G+ Dn0A; ¢ I+ Dn0A}

o0
%= Y D¢, j'nologn) A% (nologn)| <
‘

By (9.16) and (9.17), we obtain

(9.18)

/17; (nologn)

=0 =0
<1 iD ,(j'+Dnologmw, — Z¥
- n1+(jl+1)770/116 = n ) ] T’O g l n
1

% =Y D¢, j'nologn)A%(nologn)| — 0
=0

+
n1+(]’+1)170/11

Next, we will show that
(9.19) e*‘i“mjﬁl(r) —1 as f— oo.

To see this, first note that it follows from Assumption 2.4 (ii) that there exists § < A} such
that E (¢ (1)) < CeP!. Moreover, w, < C(¢ +1) for all £ = 0. These observations imply

o0

e M tE(x(t))] <CZ sup
k=0 telk,k+1]

sup
k=0 tel[k,k+1]

e MUY U+ DP(ER (D) =£)]
=0

[e.°] o0
e MIE(Ep (0 + 1)] <C'Y sup |eM teﬁt] <C'ef Y e MiPkco
k=0t€lk,k+1] k=0

o0
=C)_ sup
k=0t€e(k,k+1]

where C,C’ > 0 are constants. Thus, by Proposition 2.2 of [37] and Corollary 9.8, it follows
that

1 o0 o0 «
lim e M t Al Msp =/
fim e Kk (0= e 3 wedi [T e R (e 9 =) s

1
* Z we p[ =L
=
Using this, the definition of A%, the fact that y € ¢ and the induction hypothesis, we obtain

(9.20) Z D, nologn)ﬂtx(nologn) — Z powe asn— oo.

1+(j'+DnoAy
pltU'+hno /=0
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From (9.18) and (9.20), the second term in (9.15) goes to 0 in probability as n — co which
shows

1

o0
; ¢ A 0 P
TGy 2 Dn(6 U+ DnologmAy (ylogn +a) = coe® ). powe| =0

=0

establishing (9.13) for all j < j'+ 1. (9.13) holds for j = 0 by Lemma 9.5. Thus, the lemma
is proved. n

LEMMA 9.12. Foranyk=0,0>0andacR, asn — oco:

Dy(k,0logn+a) p
—ypk_

o0
—1+0A) 7 (9] +a) L M Qwel A} my
n n(@logn+a) e ;OWW 171 Zn(0logn+a)

PrROOE. Note for any ng > 0 we can write 8 = jno+n for some j = 0. The first asser-
tion follows by the argument used to derive (9.14). To prove the second assertion, fix any

k = 0. Take 1o > 0 in Lemma 9.11 small enough so that CeCM0108%¢=2,~©=0-3) _, o where
C,C',0,0 are as in Lemma 8.11. Recall that the bound obtained in Lemma 8.11 condition-

ally on %, (0) was in terms of deterministic constants and 7, the total number of vertices

at time 0. Replacing %, (0) by &, (jnologn) and time starting from T}, + jnologn, Lemma

8.11 (with n replaced by Z,(jnologn), the total number of vertices at time jnglogn) im-

plies,

1 - ; (k) p
D, (k,0logn+a)— Z Dy(¢, jnologm)A,” (nlogn+a) — 0, asn— oo.

Zn(jnologn) Zn(jnologn) /=

From Lemma 9.11 (taking ¢p(¢t) = 1 {t = 0}), Z,(jnologn)/ Z,(@logn + a) L0 ifn >0, and
Zn(jnologn)/ Z,(0logn + a) L e Ma 1 = 0 and thus, multiplying both sides of the
above by
Zn(jnologn)/ Z,(@logn + a), we obtain
(9.21)
D, (k,0logn+ a) 1
Zn(0logn+ a) Zn(Hlogn+a)

ZD,Z(( ]nologn)/l( )(nlogn+a)—>0 as n— oo.

Taking ¢(#) = 1{¢ 7, (£) = k}, we see that /1? = A([k) for each ¢ = 0. Moreover, recall from (9.9)
lim;_o e M tm}’f) (1) = p,lcl/li‘ mf Thus, from Lemma 9.11,

oo
Ala 0
—*e 143" pwe.

(9.22)
Ay mj =0

1+9/1* Z Dy(¢, ]T]ologn)/l( )(nlogn+a) —

Using (9.22) and the first assertion of the lemma in (9.21), the second assertion follows. H

* *
Let ap := == log (%) and T,‘Z = Tn1+)Li‘9 be the first time the branching process has
0 [
n1* M0 vertices.
9 P
LEMMA 9.13. T, —0logn — ap.

PrOOE. Follows immediately from the first assertion of Lemma 9.12. |

THEOREM 9.14. Foranyk=0,0>0, asn — oo, n~ 40D, (k, 70) L P}
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PROOE. In the proof, we will abbreviate z* = ﬁ 2020 pg wy. Fixany k=0, 6 > 0. Take

any € € (0,1). By the same argument as in the proof of Lemma 8.8,
(9.23)
sup|Dy,(k,0logn+ag—e+1)—Dy(k,0logn+ag—e€)| < (Z,(0logn + ap +€) — Z,(@logn + ag —€))+Yy.

1<2e

where, conditionally on %, (@logn + ay —€), Y, has the same distribution as the ran-
dom variable Z’lf: Bin (D, (¢,0logn + ag —€), g (2¢)). Observe that by the first assertion
in Lemma 9.12, for small enough e,

(9.24) n~ (A0 (Z,(0logn+ag+e€)— Z,(0logn+ ag—e)) LM e Ae < 4)]e.

Note that for any C >0,

925 P (Y,, > C\/En”"i‘e) <P (Yn > Cven'* M z,@logn +ag—€) < e*”zn”"i‘e)
+P (Z,,(H logn+ag—e€) > e_”zn“’lf‘g) )

For € sufficiently small, by the first assertion of Lemma 9.12, as n — oo,

(9.26) IP(Zn(Hlogn+a0—e) >€’1/2n1+’1I9) —0.

Let 4, := #,(0logn+ ap —¢). Using Lemma 8.3,

k k

E(Yn| 7)) =) Dy (¢,0logn+ag—e€)qe(2¢)<C'e ) (¢ +1)D,(¢,0logn+ ag—e)
=0 =0

<2C'eZ,(0logn+ ag—e).

Thus, choosing C > 4C’, using Chebychev’s inequality, conditionally on %, on the event
{Zy(0logn+ag—e) < V2n+A0)

* C *
(9.27) P(Yn > Cen' M0 Iifn) <P (Yn —E(Yn | 70) > Ex/En”W | 76,

_AVar(Yy | #,) _ 4Lg_oDn (00107 + ao—€) g, (2€) (1 - 4 (2€)
T C2en204470) C2en21+4;0)

- 4C'€Z’,f:0(f +1)Dy, (¢,0logn + ag—e¢) - 8C'Z,(0logn+ ay—e) _ 8C’
- C2€n2(1+/l;‘9) - C2n2(1+/11‘0) - Cz\/e—,nlwlfe

Using (9.26) and (9.27) in (9.25), we conclude

—0 asn— oo.

(9.28) [P’(Yn > C\/En””@) —0 asn—oo.
Using (9.24), (9.28) and (9.23), we conclude that there exist Cy > 0,€¢ > 0 such that for all
€€ (0,¢€p),
(9.29)
P (sup |D,(k,0logn+ag—€e+t)—D,(k,0logn+ag—e€)| > CO\/En“’lTB) —0 asn-—oo.
t<2e

From (9.29) and Lemma 9.13, as n — oo,
9.30) P (IDalk, T~ D (k,Ologn + ag - €)| > Cov/en' M%) < (|78 — 0logn - ao| > 2¢)

+[P’(sup|Dn(k,910gn+ ag—e€+1)— Dy (k,0logn+ ag—e)| > CO\/En“’lTe) —0.

1<2e
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Foranye >0,

Dn(k, TS | Dn(k,T9) Dy(k,0logn+ag—e)

(9.31) H:D( W_pk >2C0\/(:_' <P n1+1;9 - n1+1;0 >C()\/(:_'
Dy (k,0logn+ay—e) 1

[FD( n1+/1T0 ~— Pr >C0\/E).

By Lemma 9.12,
Dy(k,0logn+ag—€) Dp(k,0logn+ay—e¢) Z,(@logn+ap—€) p Ae

* - * - e »
pltAo Zn(@logn+ ag—e) nltAio Pr
and therefore, there is an €; < €y such that for all € € (0,¢7),
(9.32) Dy (k,6logn + ag—e)n~ 119 — p,lc’ R p,lc(l —e M < p,lcﬂti‘e < Cove.

0
For e € (0,€1), using (9.30) and (9.32) in (9.31), we conclude [FD( D"l(ﬁ’{g) - p}c| > 2C0\/E) -0
n

as n — oo proving the theorem. |

9.2. Proofof Theorem 3.20. We prove (a) of the theorem; (b) and (c) follow via straight-
forward modifications of these arguments. For (a), construct the continuous time branch-
ing process BPy(-) with change point as in Section 2.3 with 7 = n”. To ease notation later
in the section, write BP,(-) := BPg(-). Thus BP,,(T,r) is a random tree obtained by running
a continuous time branching process with attachment function f; = 1 till it reaches size
n? after which all vertices switch to reproducing using attachment function f; as in (a) of
the Theorem. We are interested in the random tree 9, = BP,,(T},), where as before for any
m, Ty, :=inf{t = 0:|BP,(¢)| = m}.

PROPOSITION 9.15.  For the process BP,(-) as constructed above:

(@) Thestoppingtime Ty satisfies, Tpyr—ylogn == W, where W = —log W and W ~ exp(1).
(b) Let w;, — oo arbitrarily slowly. Then there exists a constant C > 0 independent of wy,
such that

P(sup|n e @TONBP,(t+ Tpr)l - 1| > w,n""?| < Clo?.
t=0

In particular whp as n — oo, |(Tn — Tyr) — (L —y)log n/ 2+ a)| < w,n~""2.

PROOE. Part (a) follows from Lemma 6.3 upon noting that T,y has the same distribution
as the hitting time of n” by a Yule process with rate 1. To prove (b), recall that for ¢ > Ty,
all individuals switch to offspring dynamics modulated by fj. For the rest of the proof, we
proceed conditional on BP,,(T}y). Using Proposition 6.5, the following two processes are
martingales

My(8):= (e" D BP,(t+ T - 1)+ (1-e ®Y)/2+a), 20,
t
Mo (t):= e 2t D BP, (£ + Tny)lz—f ae 2EHDIBP, (s + Tyy)lds—e 2T /22+a), 20,
0
Using these expressions, it can be deduced that sup;.oE (Mf(t)) < Cn” for some constant

C > 0. Doob’s [.2-maximal inequality then proves the first assertion of Proposition 9.15 (b)
which then results in the second assertion in (b). |
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We now construct two approximating processes BP} and BP;, for 7, n” (grown com-
pletely in continuous time). Fix constant B > 0 and sequence w, — oo such that w, =

o(logn) 1 oco. For the rest of this Section let i := 8;3 ’1“;72. Define the process

{BP}():0=<t=<ylogn+B+t;} as follows: (a) Run a continuous time branching process
driven by fy(-) = 1 for time ylogn + B; (b) After this time, every vertex switches dynam-
ics so that it reproduces at rate equal to the number of children +1 + a. Run this pro-
cess for an additional time t,}. Write 9, (B,w,) = BP} (ylogn + B + t}) for the random
rooted tree at the end of this process. Analogously define {BP;,(1):0< t <ylogn—-B+t,,}
and 9, (B,w,) := BP, (logn — B + ;) where in the above construction we wait till time
Ylog n — B before switching dynamics and run the new dynamics for additional time z;,.

By Proposition 9.15, given any € > 0 we can choose a constant B = B(¢) for which we can
produce a coupling between J;, and 9, (B, w,,) such that for all large n, with probability
atleast 1 —¢, 9, €9, (B, w,) where we see the object on the left as a subtree of the object
on the right with the same root. A similar assertion holds with , (B,w,) € 9. Using
these couplings, the following proposition completes the proof of part (a) of Theorem 3.20
with part (a) of the proposition proving the lower bound while part (b) proving the upper
bound. In the following, we will denote the root of the respective trees by p*.

logn +

PROPOSITION 9.16. Fix B> 0 and w, = o(logn) 1 co.

(@) Consider the degree of the root D;, (p*) in J,; (B,w,). Then D, (p*) = $n1-1/@+ 0 ]ogp
whp as n — oco. 3

(b) Consider the maximal degree M, (1) in I, (B,wy). Then 3 constant C > 0 such that
whp as n — oo, M (1) < Cn1=12*d (log n)?,

Proof: We start with (a). Each individual in the original branching process driven by f,(-) =
1 before time ylog n — B reproduces according to a rate one Poisson process. In particular
standard bounds for a Poisson random variable imply that the degree of the root in the
branching process at time ylog n — B, denoted by deg,,(p*,ylog n — B), satisfies

. 3
(9.33) deg,(p”,ylogn—-B) = Z)/lognwhp as n— oo.

Now let {Y{;)(-) : i = 1} be a collection of independent rate one Yule processes. Comparing
rates for the evolution of the degree of the root after ylogn — B we get that

deg,(p*,ylogn—-B)
9.34) D, (p") =t > Yooy (£,)
i=1
Using (9.33), (9.34), Lemma 6.3 and standard lower tail bounds for the Geometric distri-
bution [33, Theorem 3.1] finishes the proof.

Let us now prove (b). Recall that after the change point, dynamics are modulated by
fi() :=-+1+a. Let A denote the smallest integer > a + 1. Let {5, be point process as-
sociated with fi as in (2.1). Comparing rates we see that ¢ g (-) < Zf‘:lz Y;)(-), where as
before {Y(;(-) : i = 1} is a collection of independent rate one Yule processes. For every ver-
tex v € 9, (B,w,) write deg,(v) for the final degree of the vertex at time ylogn + B + ;)
when we have finished constructing the process BPj (). As below Theorem 3.4, for any
v € BP;, let 0, denote the time of birth of vertex v into the system. We split the proof
of (b) into two cases (loosely corresponding to the maximal degree of vertices after and
before change point respectively):

(b1) Maximal degree for vertices born after ylog n + B: Define the following collection of
vertices

~ 1-
L,= {veﬂ‘,f(B,wn) :0,€[ylogn+B, ylogn+B+1,], deg,(v) > C(A+2)nﬁ(logn)2},
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where A is above is the smallest integer = @ + 1 and C is an appropriate constant chosen
later in the proof. We now show that we can choose C such that E(|A,|) — 0,as n — oo.
This would then imply

(9.35) PQved, (B,w,),0,=ylogn+B, deg,(v)> C(A+2)nf;_£ (logn)*) — 0.

For the rest of the prooflet k/, := C(A+2)n7e (logn)? and ky, = k/,/ (A+2) = Cnr (logn)?.
Fix s = 0 and consider a vertex born at some time s+ylogn+Be€ [ylogn+ B, ylogn+ B+
ty1. Thus this vertex has time f,; — s to evolve its degree. Using the bound on ¢, namely
the offspring process of each new vertex born at ¢ > ylogn + B by a sum of Yule process
above, by Lemma 6.3 the probability that such a vertex has degree greater than (A +2)k,

by time ¢} is bounded by P(geom(e " 9) = (A+2)ky) < e‘k”et; . Next note that for any
t = ylogn + B, new vertices are produced at rate (2 + a)|BP;,(#)| — 1. As in the proof of
Proposition 9.15, the process M(s) := e” ?*®S|BP} (s+ylogn+B)|+ 2+ a) le ¥ s> 0
is a martingale. Noting E|BP} (ylogn + B)| = e®n" we get that E|BP} (s + ylogn + B)| <
C'nYe@*®s for 0 < s < t;} where C' is a constant depending only on B, a. Thus,

t;; —(t -9
[E(|]Ln|)sC”n7’f e kne T pRr s g o
0

where C” depends only on B, a. The following completes the proof of (9.35).

e—(t;—s

1-y
o 2,7k ) .
LEMMA 9.17. I,:=n" fot" e~ Cllogm“nz+a e@t9sds — 0 for sufficiently large C as

n — oQ.

PROOE. Writing a:= ;% and b := 2+ q, algebraic manipulations result in:

I, < n”(logn)’zz’ebny_zl“(b,C(logn)zefnY_z) =&p.

where I'(b,z) = ["e™! tP=1dt is the upper incomplete Gamma function. It is known that
Wn

iz L, = Wn
" (logn)~2e w2 — 0. [ ]

['(b,z) = Q(zY e %) as z — co. Thus &,, ~ nY~Clogne
(b2) Maximal degree for vertices born before log n + B:

To simplify notation let A, := ylogn + B,Y, := ylogn + B + t;,. For fixed vertex v born
into BP(-) and for time t < Y, let deg(v, t) denote the degree of this vertex v in BP}, (1)
with the convention that deg(v, t) := 0 for ¢ < o,. Write deg, (v) := deg(v,Y ) for the final
degree of v in ;" (B,w,). Fix C > 0 and let B,, be the set of vertices born before ylogn +
B whose final degree is too large i.e. B, := {v € 9, (B,w,) : 0, < ylogn + B,deg,,(v) >

Cn;%«é(log n)?}, where as before, deg,, (v) := deg(v, Y ) is the degree of vertex v in the final
tree I, (B,wy).

PROPOSITION 9.18. We can choose C < oo such thatP(|B,|=1) — 0 as n — oo.

PROOE. Consider the tree BP(A,). Let M, (Ay) := max,cgp+(a,) deg(v, Ap) be the maxi-
mal degree of vertices in BP} (A,) at time A,. Let ¢,, := 10elog n and fix a sequence w,, | co.
By the union bound,

P(B,l=1) <P (Bl =1,|BP;(A,)| <wpn?, My (Ay) < €5)
+IP(|BP;(A,Z)| > wnnY) +P (M, (Ay) > ¥€,).

Lemmas 9.19 and 9.20 bound the three terms on the right and complete the proof of the
Proposition. ]
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LEMMA 9.19. Letw, =logn. We can choose constant C < oo such that as n — oo,
P(B,l = l»lBPZ(An)l < wnny» M,(Ap)<¢,)—0.

PROOE. Let G, = {IBP}(Ap)| < w,n?, Mu(A,) < €,}. 1t is sufficient to show we can
choose constant C such that P(|B,| = 1|G,,) — 0. Conditional on G,,, we will construct
a stochastic process that bounds the growth of the maximal degree of the vertices in
BP;, (Ay,) for times ¢t = A,. Let {X;(-) : 1 <i < n"w,} be a collection of i.i.d. stochastic pro-

?sz Y;(-), where {Y;(-) : j =1} is collected of i.i.d. rate
Wn

one Yule processes. Recall that ;} = ;% logn+ - . Let My :=maXi<i<w,nr Xi (th).

On the event G, the number of vertices |BP; (A,)| < w,n" and further the maxi-
mal degree of any vertex at time A, is < ¢,. Thus on G,, for any v € BP}(A,), com-
paring rates for the point process representing the evolution of degrees for t > A;, we
see that deg(v,) =5 X(-) with X as above. The time translation makes the precise for-
mulation clunky but in brief, on the set G, for any v € BP},(A,), we can construct
{(deg(v,A, +5),X(s)): 0 < s < t,/} on a common probability space so that forall 0 < s < ',
deg(v, A, +5) < X(s). Thus on the event G, the maximal degree at time Y ,, of vertices born
before time A, satisfies max,egp+ () deg(v, Y n) <5t 4. The rest of the proof analyzes .4),.
The union bound gives,

cesses with distribution X(-) = Y,

9.36) P(Bnl=1/Gy <P (ﬂn > Cnt (log n)z) <w,n'P (X(t;) > Cn (log n)z).
By Lemma6.3 forany t=0and A >0, withm=¢,+A+2,
P(X() > 1) < mP(geom(e™") > (A/m)) < mexp [-(A/m)e”"].

1—
Pluggingint=1t;,A=C nva (log n)? we get that the last term in (9.36) can be bounded by
Kw,n"n~Clogn which goes to zero for sufficiently large C. |

LEMMA 9.20. For C large enough as n — oo, P(|BP},(A,)| = w,n") — 0, andP(M,(A,) >
[n) — 0.

PrOOE. The second assertion follows from standard bounds for the maximal degree of
the random recursive tree [23]. We omit the proof. We prove the first assertion. The size
of the tree grows according to a rate one Yule process. Thus by Lemma 6.3, |BP,(Ay)| ~
geom (e~ (r87+B)) Thus

P (IBP;(An)| = w,n') <exp [—wnnye’ylog”’B -0, as n — oo.

10. Proofs: Convergence rates for model without change point. This section is ded-
icated to proving Theorem 3.4 and Theorem 3.5. We need the following lemma which
quantifies the rate of convergence of solutions of renewal equations to their limit as time
goes to infinity.

LEMMA 10.1. Consider a continuous time branching process with attachment function
f that satisfies Assumption 2.4. Fix 3 € (0,1%). There exist positive constants Cy, C, such
that the following holds: if h solves the renewal equation

t
hw) = eV g0+ [ hu-se s

with any ¢ satisfying|p(s)| < Cd,eﬁs forall s =0, for some Cp > 0, then h(oo) := lim; .o h(r)
exists and we have, for all t =0, |h(co) — h(t)| = C; C(/,e’CZ‘.
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PROOE. In the proof, C,C’ will denote generic positive constants, not depending on Cy
or the choice of ¢, whose values might change from line to line. We will use estimates
about quantitative rates of convergence for renewal measures derived in [11] in the setting
of the point process with i.i.d. inter-arrival times having distribution e * r(ds). By As-
sumption 2.4 (ii), it is clear that the measure e 4 S £(ds) satisfies [g° ef'se=A's pglds) <oo
for some ' > 0 and thus, Assumption 1 of [11] is satisfied. Moreover, for any Borel set A in
[0,1], denoting by E the first time the root reproduces (which has an exponential distribu-
tion with rate f(0)), note that

pr(A) =E(I{E€ A}) :f f(O)eif(O)xdxzf(O)eif(O)f dx
A A

and consequently, the distribution of the inter-arrival time is spread out in the sense of
Assumption 2 of [11] taking ¢ = 1/2,L = 1/2 and 7j = f(0)e-*"*/©) Thus, Corollary 1
of [11] holds for the point process under consideration. For any x = 0, denote by U*
the renewal measure corresponding to the associated point process with time started
at x. The stationary version of this point process corresponds to a random starting time
whose law is pu* (ds) = m* 1se 4 Sy r(ds) (called the stationary delay distribution), where
m* = [Cue My f(du). From translation invariance, it follows that the renewal measure
associated to this stationary version is given by U*(ds) = m*~'ds. By Corollary 1 of [11],
there exist constants C,C’ > 0 and " < ' such that for any Borel set D < (0,00) and any
x,t=0,

\U(D+1) - U°(D+ 1) = CeP' *eCH (U0, sup D)) + 1).

Integration both sides of the above relation over x with respect to the stationary delay
/ *

distribution p* (dx) and using Fubini’s theorem and the fact that f;° ePse=V'sy r(ds) < oo,

we obtain

|U*(D+1)-U°(D+ 0] < Ce C (U((0,sup D)) + 1).

This, in turn, implies that for ant ¢ = 0, if Uy, , and UI(\)/I . denote the measures defined by
Uy (D) = U*(D+ 1) and Uy, (D) = U°(D + 1) for any Borel set D < [0, M], then using the
fact that lim;_, t 1 U°([0, ¢]) = # (which follows from the elementary renewal theorem),

(10.1) WU}y —UY Jirv < CMe™©',
From standard results in renewal theory, h(t) = ff e* =9¢(t - 5)U(ds), t = 0, and

h(oo) :=lim;_., h(?) exists with h(oco) = 6’0 e’/l*s(,b(s)U* (ds). Thus, for t = 0,

e} t
(10.2) |h(oo) - h(1)| = U e M Sp(s)U” (ds)—f e Mgt - U (ds)
0 0

<

t t
f e MSp(s)U* (ds) - f e Mgt —U(ds)
0 0

+ f e M Sp(s)U* (ds).
t

As |p(s)| < C¢eﬁs for all s,

C,
__ .
m*(A* - B)
To estimate the first term in the bound (10.2), note that for ¢ =0,

oo o0
(10.3) f e VP U*(ds) < Cpm*! f e W Psgs = —AThe,
t t

t t
(10.4) f et s(,b(s)U*(ds)—f e Mgt -Uds)
0 0
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V2. vz,
s/ e “—S)gb(t—s)U*(dst e Mgt —5)U(ds)
0 0

+

¢ t
f eV 91— U™ (ds) — f e M 91— 5)U(ds)
t/2 t/2

< Cpe VP12 (10, 112D+ Chpe N TPI2UL (0, 112+ CylIU;) 11 =UYy 1 pollTv < Cl Cpe™ 2!

for constants Cj,C, > 0 not depending on ¢, where we used (10.1) and the observations
that U* ([0, /2] = t/2m* and lim;_, t "' U°([0, £/2]) = 1/(2m™*). The lemma follows using
(10.3) and (10.4) in (10.2). |

PROOF OF THEOREM 3.5. We bound |e*A*‘Z;f(t) - WooMj(f(oo)| using the same tech-

niques as in the proof of Theorem 3.1 of [37]. For each term appearing in the bound, we
show that they are small in a suitable sense using renewal theoretic methods and variance
computations.

In the proof, C,C’,C",Cy, C,, 8/, B denote generic positive constants depending neither
on by nor the choice of ¢. Following [37], write x = (x', i) when x is the i-th child of x’ and
define for any ¢,¢ = 0,

F)={x=ui):opy<standt<oy<oo}, L(t,c)={x=(,i):0p<tand t+c <0y, <oo}.

Let T; denote the number of vertices born by time ¢ and let </, be the filtration gener-
ated by the entire biographies of the first n vertices (see [37] for detailed definitions).
Define &; = o/;,. For any s > 0, write ¢ = ¢ + ¢ where ¢s(w) = dp(w)1{u<s} and
¢ (1) = p(w)1 {u = s}. Note that

(10.5)
Ele " 200 - WOOM](f(oo)| < [E(e—“ (Z}"(t) _ Z](f“(t))| +E |e‘“Z}?~‘(t) - WooM¥* (oo)(

+[E()M}"S(oo)—M}"(oo))Woo).

Recall that, by (2.6) appearing in Assumption 2.4 (i), A < A* and hence, there exists ' €
(A, A*) such that

(10.6) e*ﬁ'f[E(ff(t)):[E(ff(t))f ﬁ’e*ﬁ'“dusfo e PUE (& p(w) du=p(B) < co.
t
Using this, the third term in the bound (10.5) can be bounded as
Ps ¢ S S e w7
(10.7) E(|M¥*(00) - M (00)| Weo) = M (oo)—W‘[s e M UE (p(w) du
<o [

=),
The first term in the bound (10.5) can be bounded as

e MUE (& +1)dus< Cb¢e’w’ﬁ/)s.

(10.8) [E|e—“ (20 - Z}f’f(t))| - [E(e_l*tZ}p;(t)) < |Mf§(r) —M?'S(oo)' + MY (00).

By the fact that M?;(t) satisfies the renewal equation (3.2) (with ¢/ in place of ¢) and

Lemma 10.1, for £ = 0, |M?‘(t) — M?‘ (oo)’ <= b(pefcﬂ. Using this estimate and (10.7) in
(10.8), we obtain

(10.9) [E|e‘“(z}”(t) - Z}”Sm)j < Cibye™ %!+ Chye VP,
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Using (10.7) and (10.9) in (10.5), for any ¢,5s = 0,
(10.10)

E|le™ 20 (0) - Woo MY (00)| < E| e 28 (1) - Wog MP* (00) | + Cr bye™ @2 +2C eV =%,
Now, we estimate the first term in the above bound. Observe that as ¢s(u) =0 forall u = s,
every individual that contributes to Z}bs (t+s) must be born after time ¢. Therefore, Z](f“ (t+
$) = Yxes(n Z¢§C (t + s — 0y) where for any vertex x and any u = 0, Z}b; (u) denotes the
aggregate ¢-score at time o + u treating the vertex x as the root. For t,c = 0 such that

S = c, write

X(ts,0= Y e (e Mz (rhs—g) - MP(t+s-0).
xeZ()\.F(1,¢) '

and write Wy =3 1c 9y e Nox, Wie =Y xest.0) e N ox, Following equation (3.36) in [37],
we obtain

)e*“”s’ ZP5(t+5)— Woo MY (oo))

<IX@sol+ Y oMo M s-00 - Moo
f f
xeJ (\I(t,c)
+ e A0 (e*’““”*”x’zd’s (t+s5—0,)—MP (oo)) + M% (00) | W, — Wi |.
fx f f
xXeZ(t,c)

(10.11)

Note that

(10.12) Var(X(6,5,01F) = Y. e PNV +s-0)

XL (H)\HZ (t,0)
s _ A%t s s _ s s _ bs
where Vf (1) = Var(e Zf (t)). Recall mg (1) = [E(Zf (t)) and vy (1) = Var(Zf (t)).
From Theorem 3.2 0f [30], v (1) = hx U (1), where h(r) = Var (;(t) + [ m%" (t - )¢ p(du))

andU() =177, ,u;é () denotes the renewal measure. As ¢ (1) < by (¢ ¢ () +1) for all ¢, using
Assumption 3.2,

M (0 < b (e 1+ &)
oo 2
(10.13) sz(b(,,)Z[E(e“*‘m*z(f et ”ff(u)du) )s C(by)?.
t

ASE(E£(8) +1) < CeP'* by (10.6), therefore E (¢5(1)) < by E(¢£(#) +1) < byCeP’. Hence, by
the fact that M}bs (2) satisfies the renewal equation (3.2) and Lemma 10.1, for £ = 0,

(10.14) |M8e0) - MY (00)| < Crbge™ ",

Moreover,
(10.15)

M](f“(oo) = (m*)_lf0 e_’l*“[E((,bs(u))du < (m*)_lbd,fo

o0

Ee™™ 1+ w)) dus Chy.
Using (10.14) and (10.15), we obtain for all £ = 0,

(10.16) M (1) < C'by.
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From (10.13) and (10.16), we conclude for all £ =0,
t

e () =Va1'(e/1*t§bs(t)+f0 ¢ mtu)mfdzs(t_”)emuff(du))

t 2
<2e M E(¢s(1))? +2E f MfS(r—u)e—“ff(du))
0

o] 2
sZC(b¢)2+2(Cb¢)2[EU e ”ff(du)) < C'(by)*.
0

Thus, for all =0,

(10.17) v}”%r):f e 2V W e A U (dw)
0

C,(b(p)z

< C'(by)? f Y e U () = C by A" = — 8
0, N =i e

— C"( b(p)z.
Using this bound in (10.12), we obtain

E(Var(X(t, s, 0)|F7)) sC”(bd,)z[E( Y e Vo) < C(by)2e N EW,) = C (bg)?e M

xeS()\SL(t,c)

Moreover, E (X(t,s,c)|%;) = 0. Thus, we obtain

(10.18) EIX(t,5,0)| < VEX(t,5,¢)? = \/Var(X(t,s,0) < VC'bge 12,
Using (10.14),

(10.19)

efxl*ax

MY (45— 0.) - MP(00)| | = Cibye™ 2O~V EWy) = Crbge™ @60,

E(
XL (D)\.HZ (t,0)

To estimate the third term in the bound (10.11), observe that upon conditioning on &%;
and noting that sup, M?S (1) = C'by,

(10.20) [E(

Z e*/l*ox (e*A*(t+S*Ux)fo-;(t+ S_O-x) _M?S (m))’)

xe¥(t,c)

—A*oy ps ps !

s[E( Y e (M +s- 00+ MP(0)) | = C'hy EWr).
xe¥(t,c)

Consider the characteristic ¢p°(v) = el (f;’ic e"l*”ff(d u)), v=0.Then Wy = eV tZ}bc(t).
Note that

E(¢° (1) = e”“[E(foo e’“”ff(du)) = e”“[E(foo Ae MV p(v) —5f(r+c))dv)
t t

+c +c
ca*el*fe,(ﬂﬁ,)t _ CcA*eP't

< e"*t[E( A*e””ff(v)dv) < Ce’m( A*e"*”eﬁ'”dv) < e rp

t+c t+c

Hence, by Lemma 10.1,

(10.21) |Mfc(t) —Mfc (oo)| <CLe @,
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Moreover, by Lemma 3.5 of [37], M?C (00) = [PA—ppaw)du/ [5°(1—ppa- (w)du where
ppas (W) = [y e Vup(dv). Now, for any u = 0,

1—Hf,A*(u)=f e%*vﬂf(dv)sf /l*e*/l*”,uf(v)dv
u u
Scfooﬂ*el*veﬁrydyzc—pem‘*ﬁ’)u
u A*—p
and hence,
° © CA* ._pr CA* .
(1- *(u))dusf CA gy - CA arpe
ﬁ /Jf,/l ¢ A* _ﬁ/ (/1* _’5/)2

This bound implies that there exists C > 0 such that for all ¢ > 0,
(10.22) MY (00) = Ce™H" e,
Combining (10.21) and (10.22), we have E(W; ) = M](fc(t) < Cre~ @ + Ce~ W' -F)c_ Using

this in (10.20),
(10.23)

E Z e*/l*o'x (efﬂ,*(t+$*0'x)Z}b.-$x(t+ S_Ux) _ M}bs (OO))
xe¥(t,c) ’

< C'by (e’czt + e’(’l*’ﬁ%) )

To estimate the last term in the bound (10.11), observe that for any ¢ = 0, W, =
Y xe () e Nox W5, where W corresponds to W, treating vertex x as the root (and
hence are i.i.d. and have the same distribution as W,). Moreover, by Theorem 4.1 of [30],
Var (W,,) < oo. Using these observations,
2
E(W; — Woo)? = [E( Y e Mora-wl)
XEZ (1)

= Var (W) [E( Y e”*f’x)

xXeS (1)
A%t _ A%t
<Var(Wy)e E(W;) =Var (Wy) e .

Together with the fact that sup; ., M}bs (t) < C'by, this implies that for ¢ >0,

2 *
(10.24) [EﬂMfs(oo) W - Woolﬂ = \/[E (M (00) W, = Wal) = C'bpe™ 2.

Using (10.18), (10.19), (10.23) and (10.24) and the bound (10.11), we obtain D, Dy, Dy, D3 >
0 not depending on by, t, s, ¢ such that

(1025)  E(|e7V 9 20 (14 9) - Wao MP(00)|| < Dby (€721 + €7P2¢ 4 e7D270)).
On taking ¢ — s in place of ¢ in (10.25), we obtain for any s, f,c=0such that t=s=¢c,
~A*t s bs ~Di(t-s) , ,~D ~D3(s—¢)
(10.26) E(|e"" 20 ()~ Woo MP*(00)|) < Dby (711 4 £7P2¢ 4 ¢7P20570)),
Using (10.26) in (10.10), we obtain for any s, #,c =0 such that t = s = c,
Ele"' 27 (0 - WOOM](f(oo)| < Dby (€7 D179 4 7P2¢ 4 =Ds(=0) 1 €, pe™ 2 12Chye P P,

The theorem now follows by taking s = ¢/2 and ¢ = t/4. |

Recall Ay, )L([k) for k,¢ = 0 from (3.4), with f replaced by f (this section considers the
model without change point). The following lemma uses the exponential convergence rate
established in Theorem 3.5 along with some continuity estimates to furnish a quantitative
sup-norm bound on appropriate statistics on suitably chosen intervals.
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LEMMA 10.2. Consider a continuous time branching process with attachment function
f that satisfies Assumptions 2.4, 3.1 and 3.2. There exist w; € (0,1),e* € (0,1) and positive

constants C,w, such that for alle <e* and all T € [ 1= , L logn],
E{n  sup e AT Z A,()D (@, T) - <Cn™“2
te[0,2elogn/A*] =0
and forany k =0,
E(n®t sup [e*T Z AR @b, - <C(k+1)n~*2.
te[0,2elogn/A*] /=0

PROOE. For any f, consider the characteristic ¢(s) = Y92 A¢(£)1{&s(s) = ¢}. Then
Z](f(s) = Y%, Ae()D(Z, ). By Lemma 6.6 (i), lim ;o e 'm (1) = 7--=. Moreover, as As-
sumption 3.1 holds, by Lemma 9.3, there exists a constant C > 0 such that for each ¢ = 0,
wy < C(¢ +1). Thus, there exists a constant C' > 0 such that for any ¢ > 0,

supe VA1) <1+ wy
=0

supe mf(t)) <C'(¢+1).

Hence, the hypotheses of Theorem 3.5 hold with by = C'e A"t Consequently, for any € €
(0,1), any t € [0,2¢logn/A*] and any T € [1=¢log n, L log n],

i

Therefore, choosing €* small enough, there exists 8, > 0 such that for any € < ¢*, any ¢ €

1+€
-0
oo)sn L,

[0,2¢logn/A*] and any T € [1=¢log n, LtE logn],
Take any 6; € (0,61) and a partition of [0,2elogn/A*] into fo < f1 < < £ pe10gn/2%)n02 | +1

/=0

1
AT Z Ae(t)D (0, T) - Z A1) peWeo )

v, _Cpll-e) _Gi-e)
sC1Ce‘ P logn SC1C62€logn —logn

AT S (0D, T) -
/=0

(10.27) [E(

of mesh n~%2. By Lemma 8.4, for any j and any ¢ € [tj, tj+1], there exist constants C,C’ >0
independent of ¢, n such that

(10.28) |le T Z Ae()D (€, T) -
/=0
TS Ae(t)D (L, T) - -)mwooH
/=0
e TZ A0 = Ae @D DT + Z |Ae(8) = Ao ()| peWeo
CnC'E 00 Ce oo C 2C
Z(T) + ———Weo

Sm%([‘Fl)D([;T)*‘ 92 Cle

[;)([ +1)peWoo = 11— (L+C)e+02
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Using (10.27), (10.28) and the union bound, we obtain for any o’ > 0,

E[n®  sup ) Z Ae()D (4, T) - o

te[O,Zelogn//l*] /=0

< [E(n‘”/ sup e VT Z Ae(t)D (€, T) - ')ngoo’)
1<j<|(elogn/A*)n%2 |+1 £=0
E 2Cn® 7T 2Cn® 26"
+ nl—(l+C’)e+92 D+ 0 -Ce
,L(2€logn//l*)n92j+1
<n® [E( A TZM(L‘])DM T)- Z/lg(t])ng
j=0 (=0

o' g 2C 21+ 2w C”elogn c" c"

T e, £ DY g Vo | < 5w T e T el

for some constant C" > 0. Taking e* < 6,/(2+C’) and any o’ < min{6; —05,0,—(2+C)e*, 1},
this proves the first assertion in the lemma. The second assertion follows similarly upon
noting that /l(gk) < A, for each k = 0 (and thus the constant C in the expectation bound
can be chosen uniformly over k) and using Corollary 8.6 in place of Lemma 8.4 (which
accounts for the (k + 1) in the bound). |

PROOF OF THEOREM 3.4. Take ¢** <¢* (where ¢* is as in Lemma 10.2) and any € < e**
We abbreviate

(] 1—¢ nl*(:'
S 1= sup leg(t)D(ﬁ,—*logn) - Z Ae(8)peWeo
te[0,2elogn/A*] | ¢=0 A A*m
X n'~
S0 = sup Y /l(gk)(t)D( . log n) .
te[0,2elogn/A*] | ¢=0 A A*m

Observe that for any k = 0, using the fact that 1,(-) is an increasing function and 1,(0) = 1
for each ¢ = 0,

Y2 AP MD(e, FElogn) 12, AP (1)p,

sup =0\ _ Zo=0M
te[0,2elogn/A*] Z[:() A[(t)D([, IA_*E log n) 2420 Ae(B)pe
_ PG Fn[£20 AP 0 peWoo)
XX MDD (6 108”) (X2, Ae(DpeWoo) (£52 Ae (1) D (€, 1€ Tog 1))
S Fn S Fn

< + :
Y92, Ae()D (6, 2E logn) (2, Ae@D(¢,3E1ogn)) ~ Z(3Elogn) Z(Elogn)

Recalling w; from Lemma 10.2,

T2 A (0D (4,1 ki flogn) T, A0 (Dpe
Y2 AeD (6,5 logn) X Ae(D)pe

o -k
n“y 27 sup
k=0 te[0,2elogn/A*]
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Using Lemma 10.2, for any n > 0,
( & (y“‘) + S

Y 2 lewl) ) ‘122‘ o (y(’%yﬂ)

<n7! Z 27 Kk+2)Cn~2 < C'ptnm2
k=0

1-€ P * o0k
— ’IW’" as n — oo by Lemma 6.6. Com-
€ oo

)i,()

for positive constants C, C'. Moreover, Z(

bining these,

oA OD(¢ F logn) TR, 47 (0pe
Y2 AeD (6,1 logn) X2 Ae(Dpe

Moreover, it is straightforward to check that

o0
(10.29) n1Y 27K sup
k= te[0,2elogn/A*]

D(k, 1/1*6 logn+ t) ‘;"O/lyc (OD (¢, logn)
ACs ) XR,Ae0D(¢,4Elogn)

(10.30) sup
tel0,2elogn/A*]

1 1-e€ k)
S— sup D(k,—*logn+t) Al (t)D(( —logn)
Z (IA*C ) te[0,2elogn/A*] A ZX;)
PR Z(—l_el +t) > (t)D( —5 )
— sup —logn Y, ogn
Z ( 1/1*6 ) te[0,2elogn/A*] A /=0 A*
Abbreviate
R 1 _ [e ) 1 —
y,ék) = sup D(k,—*elogn+ t)— Z/I(gk)(t)D(ﬁ,—*elogn) )
te[0,2elogn/A*] A /=0 A
A 1-¢
Fpi=  sup Z(—*logn+ t) Z/lg(t)D( logn)
te[0,2elogn/A*] A A*

By conditioning on &%, (1/1_*6 ) and applying Lemma 8.11, we obtain w’l € (0, 1),w’2 >0
not depending on € such that for any n > 0,

A

o) (k)
(1031) P|Y 27F Zn — >n'9,,(1 logn)
k=0 Z (3=£logn)

o0 (k) o0 -k _
N D apa [ — >Z(§) ﬂ’g:n(l flogn)
k=0 Z(%tlogn)' 1) k=0'\2) 3 A

!
,wz

< CeC’Zelogn//I*TfZZ ( 1/1_*

) 2Z(k+1)2

k=0

3 Zk ! *
Z) C/n2Ce/]L T]2Z( = logn)
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for positive constants C,C’. As l’fl_e N A;Vm*, the bound above converges to zero
Z(Tflogn) o0

almost surely if ¢** is chosen sufficiently small and € < €**. Similarly,

(10.32)
x K% 1-¢ r l1-¢ T2

Pl Y 27F 1 u — ) >e ’ an( e logn)) < C'n?Cel ezZ( I logn) .

k=0 \Z(FFlogn) !

Using (10.30), (10.31), (10.32) and recalling that ,}1-5 2, A;Vm* as n — oo, we con-

Z(Tflogn) oo
clude
(10.33)

D(k,Elogn+1) Y2 AR 1)D(¢,¢logn)

Z(LElogn + 1) % Ae(0)D(¢,=Elogn)

- ! e —
k=0 te[0,2elogn/A*]

) L.
Choosing w* = min{w;, (1 - e)w’l}, we conclude from (10.29) and (10.33) that
D(k,%lognﬂ) _Zofzoﬂt([k)(t)m 2
Z(Elogn+1) X Ae(Dpe

Finally, we claim that for each k=0, £t = 0,

[e.0]
(10.34) n Y 27 sup
k=0 te[0,2elogn/A*]

(10.35) Y AP e/ Y AeOpe = pr.
/=0 /=0

. . L Z(%logn-%—t) P Aty
To see this, observe that the following limits hold as n — oo: e — S, and

D(k,% logn+t) P

D(k, Y logn+t) p A
r O8MTE P e Weo g ] — pg. But from (10.34),

nl-¢ A*m*

Z(%logn-%—t

D(k SElogn+1) » TX,AY (0P,
Z(L=Elogn + 1) YR oAeOpe

(10.35) follows from the above two observations. The theorem now follows from (10.34)
and (10.35). [ |

11. Proofs: Change point detection. Throughout this section, we assume that fj sat-
isfies Assumptions 2.4, 3.1 and 3.2, and f; satisfies Assumptions 2.4 and 3.16. Recall

A[,/l(gk) for k, ¢ = 0 defined in (3.4) and the functional @, : 2 — 2 defined for each a > 0
in (3.5).

LEMMA 11.1.  limg_.oo @4 (p) = p' (where the limit is taken in the coordinate-wise sense).

PROOE. As fi satisfies Assumptions 2.4 and 3.16, for each k = 0, by Lemma 6.6
(i), lim;— e‘ATtmfl(t) =\ m{‘)*1 and lim;_. e"lftm%“)(t) = p,lc/(/lf m}) and conse-
quently,

(11.1) lim e M2 (1) = wel A mY), lim e AP (0) = prwel A m).

Moreover, it is easy to see from (3.4) that forany £,k = 0, e %A, (£) < 1+ (supuzo e~ M mg (u)) we

and e~ ‘A(gk) (H=1+ (supuzo e M “mg (u)) wy for all £ = 0 and this bound is finite. By this
observation, we can apply the dominated convergence theorem and (11.1) in the formula
of ®,(p) to obtain the lemma. |
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LEMMA 11.2. Foranys,t=0andany j, k=0,

ZA(’)(rW(s) Aj(s+1), ZA“’)(tm(’”(s) AP s+ 1.
/=0 =0

Consequently, for any p € &2, we have O ;(®;(p)) = D4 (p)-

PrOOE. We will only prove the first assertion. The second one follows similarly. Denote
by BPY)(-) the continuous time branching process with attachment function i — fi (i +
j) and denote by Dﬁ,])([, 1) the corresponding number of vertices of degree ¢ at time ¢
(excluding the root). Then

E([BPY e+ 9)| 1 Z0in)) = Z,]l {{Pw=e-ji +fos mp (s —v)plf (dv))

+Y D,
/=0

1+f mpg (s — v),um(dv))
0

where the first term denotes the expected number of vertices born to the root (counting
the root itself) in the time interval [¢, t + s] and the second term denotes the expected
number of vertices born in the time interval [¢,f + s] to those vertices born in the time
interval (0, f], both expectations conditional on &, (t). Taking expectation on both sides

of the above expression and noting that A;(¢+ s) = E(|BPY)(¢+ s)|) and [E(Dg,j) @, t)) =

fot m} u)u (du) we obtain

t
Aj(t+s) = Z( (é(])(t):i—j)+f m(ff)(t—u),u(])(du)) (1+[ mfl(s—v)ym(dv))
£=0 0

= Z /lg.m(t)/lg(s).
/=0

To prove the semigroup property, note that for each k = 0,

2o (@) M;")(s)) ) ( ° o (22 pjA (1) AP (s))

(Ds(@;(p)) =( —
TR R, (@) A9 2o (E20 22 0) 2e(9)

Zooop]( 2"0/13‘])(1?)/1}]“)(8)) Zooop]/l(k)(sﬂ)
22,00 (ERo A 0A(9)  ZFoPiAE+D

( s+t(p))k-

LEMMA 11.3. Forany a >0 and anyp € 2 such thatp # p', we have ®,(p) # p.

PROOE. Suppose there exists a > 0 and p # p; such that ®,(p) = p. Then by Lemma
11.2, for any n = 1, ®,,,(p) = p. Letting n — oo and using Lemma 11.1, we obtain p! = p
which gives a contradiction. |

PROOF OF THEOREM 3.22. Recall w*, €** from Theorem 3.4 applied to the branching
process with attachment function fy and fix any € < €**. Let A; denote the associated
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Malthusian rate. Take any ny = 1 such that h, = 1/y for all n = ny. Observe that for any
n>0and any n = ny,
. n)

« 2 Dk, T
P|n® Zz"‘ sup Dk, Tiny) o

iz0  Uhpst=yl  Lnt] k
N (& lAf logn + t) .
n )2 sup - -pil|>n
k=0 r€[0,2¢logn/ A3 ] ( )
l1-e€ l1+e
+P| Tinsn, < —5 logn|+P | T\py > —logn]|.
Ay Ay

The first term in the above bound converges to zero by Theorem 3.4. Further,

1-e¢
[FD(TLn/th < —*logn) —0

Ao
because Ay T\/p,)/log(n/hy) Llasn— oo by Lemma 6.6 (ii) and by assumption
logh;/logn — 0. Similarly, P (TL,”,J > 5 logn) — 0 because Aj Ty /log(ny) L. 1as
n — oo. Thus, we conclude

o0
(11.2) n? Y 27% sup
k=0 1/hy<t<y

Dk, Tine)
Lnt] k

as n — oo which, along with the fact that w™* € (0, 1), implies

D(k, T D(k, T
o Zz_ sup (k, Tney)) — DC Ln/hn))
l/hn<t<y nt nlhy

L.

As logby,

Dk, Tine)) DT pspy))
logn

P
nt nlhy, -

— 0as n — oo, the above implies b, Y77, 27k SUD1/p,, <r<y

0. From this observation and the definition of T},, we conclude that
(11.3) P(T,=y)—1 asn— oo.

Moreover, by Theorem 3.8, for any ¢ >y and any k = 0, 'M (Dg, (po))k' L. 0and

hence, by (11.2) and the dominated convergence theorem, as n — oo,
& k| P Ting) DK, Tign,))

) 2

=0 nt nlhy

= 27| (@0, 0) ~ PR
k=0

As a; > 0 for each ¢ > y and p° # p!, by Lemma 11.3, @, (p°) # p® and hence, the limit
above is strictly positive. From the definition of T}, and the above, we conclude that for
each t >,

(11.4) P(T,<t)—1 asn— oo.
The theorem follows from (11.3) and (11.4). [ |
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