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We consider dynamic random trees constructed using an attachment

function f : N→ R+ where, at each step of the evolution, a new vertex at-

taches to an existing vertex v in the current tree with probability propor-

tional to f (degree(v)). We explore the effect of a change point in the sys-

tem; the dynamics are initially driven by a function f until the tree reaches

size τ(n) ∈ (0,n), at which point the attachment function switches to an-

other function, g , until the tree reaches size n. Two change point time

scales are considered, namely the standard model where τ(n) = γn, and

the quick big bang model where τ(n) = nγ, for some 0 < γ < 1. In the for-

mer case, we obtain deterministic approximations for the evolution of the

empirical degree distribution (EDF) in sup-norm and use these to devise

a provably consistent non-parametric estimator for the change point γ.

In the latter case, we show that the effect of pre-change point dynamics

asymptotically vanishes in the EDF, although this effect persists in func-

tionals such as the maximal degree. Our proofs rely on embedding the dis-

crete time tree dynamics in an associated (time) inhomogeneous contin-

uous time branching process (CTBP). In the course of proving the above

results, we develop novel mathematical techniques to analyze both homo-

geneous and inhomogeneous CTBPs and obtain rates of convergence for

functionals of such processes, which are of independent interest.

1. Introduction. Driven by the explosion in the amount of data on various real world

networks, the last few years have seen the emergence of many new mathematical network

models. Motivations behind these models are diverse [1,15,25,38,39,47] including (a) ex-

tracting unexpected patterns in the network (e.g. community detection); (b) understand-

ing properties of dynamics (e.g. the spread of epidemics); (c) understanding mechanistic

reasons for the emergence of empirically observed properties of real world systems. An

important niche is the setting of networks that evolve over time. In the context of prob-

abilistic combinatorics, these models have been studied for decades in the vast field of

recursive trees, e.g. see [12, 24, 26, 35] and the references therein.

To fix ideas, consider the general random tree model called non-uniform random re-

cursive trees [45]. Fix n ≥ 1 and an attachment function f : {0,1,2 . . .} → (0,∞). A sequence

of random trees {Tk : 1 ≤ k ≤ n} is grown as follows (Tk has k vertices labelled by the inte-

gers [k] := {1, . . . ,k}). For k = 1, T1 has one vertex, which we call the “root.” For fixed k ≥ 2,

Tk is constructed conditional on Tk−1 as follows. A new vertex, k , is born into the sys-

tem and attaches to a previously existing vertex v ∈ [k −1] with probability proportional
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to f (deg(v)), where deg(v) denotes the number of children of v (which is one less than its

graph degree in Tk−1). Thus,

P (k attaches to v ∈ [k −1] | Tk−1) :=
f (deg(v))

∑k−1
u=1 f (deg(u))

.

The vertex that k selects is called the “parent" and the edge is directed from the parent

to the new “child" vertex. The case of f (·) ≡ 1 corresponds to the famous class of random

recursive trees [44]. The specific case of “linear preferential attachment" when f is affine

was considered in [10] to provide a generative story for heavy tailed degree distributions

of real networks.

Next, consider the non-uniform random recursive tree model with a change point. Here,

the random tree is grown according to one rule till some (possibly random) time called the

change point, after which the dynamics switch to another rule. In detail, let 1 ≤ τ< n and

f0, f1 : {0,1,2, . . .} → (0,∞) be two attachment functions. For 1 ≤ k ≤ τ the process evolves

according to the initializer function f0 i.e. node k attaches to pre-existing vertex v ∈ [k−1]

with probability proportional to f0(deg(v)). After the change point for k ∈ [τ+1,n] the pro-

cess evolves according to f1. We denote this sequence of random trees by
{
T

θ

k
: 1 ≤ k ≤ n

}
,

where θ = ( f0, f1,τ). While the focus of this paper is on one change point, the methodology

allows one to derive analogous results for multiple change points.

1.1. Informal description of our aims and results. This paper has the following two

major aims for the models described above:

(a) Asymptotics in the large network limit as well as corresponding functionals have been

derived for a host of random tree models [2, 13, 28]. One major driver of research has

been proving convergence of the empirical distribution of these functionals to model

dependent constants. Establishing (even suboptimal) rates of convergence for these

models has been non-trivial other than for models related to urn models e.g. see the

seminal work of Janson [32]. The aim of this paper is to develop robust methodology

for proving such error bounds for general models. These error bounds play a key role

in understanding robustness properties of network source detection problems, see e.g.

[9].

(b) We aim to understand the effect of change points on structural properties of the net-

work. Analogous to classical change point detection, we start by considering models

with a change point at time τ= ⌊γn⌋ for 0 < γ< 1 (referred to as the standard model in

the sequel ). Using techniques involving embedding into inhomogeneous continuous

time branching processes, we approximate the empirical degree distribution (EDF) as

it evolves in time by deterministic curves derived from the attachment functions f0 and

f1. Using this, we devise a non-parametric estimator for γ. Counter-intuitively, we find

that irrespective of the value of γ, structural properties of the network such as the tail

of the degree distribution are only determined by model parameters before the change

point. Motivated by this we consider other time scales of the change point, namely,

when the change happens at time τ= ⌊nγ⌋ for 0 < γ < 1 (the quick big bang model)

to understand the extent of this long range dependence phenomenon. In this case, we

show that the effect of the pre-change point dynamics asymptotically vanishes in the

EDF. However, for specific examples of attachment functions f0 and f1, we conclude

that this change point has a drastic effect on asymptotics for the maximal degree.

2. Preliminaries. We use ¹st for stochastic domination between two real valued

probability measures. For J ≥ 1, let [J ] := {1,2, . . . , J }. A random variable Y with rate λ

exponential distribution is denoted by Y ∼ exp(λ). Write Z for the set of integers, R for
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the real line, N for the set of natural numbers and let Z+ := {0,1,2, . . .}, R+ := (0,∞).

Write
a.s.−→,

P−→,
d−→ for convergence almost surely, in probability and in distribution re-

spectively. For non-negative function g and another function f both defined on N, we

write f (n) = O(g (n)) when | f (n)|/g (n) is uniformly bounded, and f (n) = o(g (n)) when

limn→∞ f (n)/g (n) = 0. Furthermore, write f (n) = Θ(g (n)) if f (n) = O(g (n)) and g (n) =
O( f (n)). A sequence of events (An )n≥1 occurs with high probability (whp) when P(An ) →
1. For some σ-field F , an integrable random variable X and non-random constant C ,

when we write E(X |F ) ≤C , this will formally mean that the bound holds with probability

one. For a sequence of increasing rooted trees {Tn : n ≥ 1} (random or deterministic), we

assume that edges are directed from parent to child (with the root as the original progeni-

tor). For exposition purposes we will write degree for out-degree i.e. the number of children

of a vertex. This should not be confused with the total degree or graph degree, which is the

sum of incoming and outgoing edges (and thus the graph degree of a vertex is always one

more than the out-degree in our tree networks). For n ≥ 1 and k ≥ 0, let Dn(k) be the

number of vertices in Tn with degree k ; thus Dn (0) counts the number of leaves in Tn .

2.1. Organization of the paper. The rest of Section 2 defines key objects required to

state our main results. Section 3 contains the main results. In Section 4 we discuss the

relevance of this work and related literature. The remaining sections are devoted to the

proofs of the main results.

2.2. Branching processes. Fix an attachment function f . For i ≥ 0 let Ei ∼ exp( f (i )), i ≥
0 be a sequence of independent exponential random variables. Define for i ≥ 1, Li :=∑i−1

j=0
E j . Let ξ f be the point process on R+:

(2.1) ξ f := (L1,L2, . . .).

Abusing notation, write for t ≥ 0,

(2.2) ξ f [0, t ] := # {i : Li ≤ t } , µ f [0, t ] := E(ξ f [0, t ]).

Here we view µ f as a measure on (R+,B(R+)). We will also need variants of the above

objects: for fixed k ≥ 0, let ξ(k)
f

denote the k-shifted version of the point process ξ f where

the first inter-arrival time is Ek i.e. define the sequence, L(k)
i

= Ek +Ek+1 +·· ·Ek+i−1, i ≥ 1

and then let

(2.3) ξ(k)
f

:= (L(k)
1 ,L(k)

2 , . . .), µ(k)
f

[0, t ] := E(ξ(k)
f

[0, t ]).

As above, ξ(k)
f

[0, t ] := #{i : L(k)
i

≤ t }. We abbreviate ξ f [0, t ] as ξ f (t ) and similarly µ f (t ),

ξ(k)
f

(t ), µ(k)
f

(t ). Define the Ulam-Harris set I := ∪∞
d=0

N
d where N = {1,2, . . . } and N

0 = {;}

for the root of the tree.

DEFINITION 2.1 (Continuous time Branching process (CTBP) [4, 29]). Fix an attach-

ment function f : Z+ → R+. A continuous time branching process driven by f , written as

{BP f (t ) : t ≥ 0}, is a I -valued process, started with one individual ; (the root) at time t = 0,

such that every individual x ∈I born into the system gives birth to offspring {(x, i ) : i ∈N}

with birth times given by an independent copy of the point process ξ f defined in (2.1). For

t ≥ 0, BP f (t ) denotes the set of individuals alive at time t and Z f (t ) := |BP f (t )| denotes the

size of this set. For x ∈I , let σx denote the birth time of x.

In analogy with the original tree model, we will often refer to individuals in the branch-

ing process as vertices and the number of children of an individual in the population at
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time t as its degree at time t . In our construction, by the strict positivity assumption on the

attachment function, individuals continue to reproduce forever. Let

(2.4) m f (t ) := E(Z f (t )), t ≥ 0,

If lim supk→∞ f (k)/k < ∞, it can be shown [29, Chapter 3] that for all t > 0, m f (t ) < ∞,

and that m f (·) is strictly increasing with m f (t ) ↑ ∞ as t ↑ ∞. In the sequel, to simplify

notation we will suppress dependence on f and write BP(·),m(·) etc. The connection be-

tween CTBP and the discrete random tree models is given by the following result and is

the starting point of the Athreya-Karlin embedding [3].

LEMMA 2.2. Fix an attachment function f and consider the sequence of random

trees {Tm : 2 ≤ m ≤ n} constructed using attachment function f . Consider the continu-

ous time construction in Definition 2.1 and define for m ≥ 1 the stopping times Tm :=
inf

{
t ≥ 0 : |BP f (t )| = m

}
. Then viewed as a sequence of growing random labelled rooted

trees we have,
{

BP f (Tm) : 2 ≤ m ≤ n
} d= {Tm : 2 ≤ m ≤ n} .

2.3. Continuous embedding of model with single change point. The continuous time

embedding of the tree model without change point has a natural extension to the model

with a single change point τ ∈ N. Individuals in the population reproduce according to

independent copies of the point process ξ f0 up till the time t (τ) when the total popu-

lation size is τ. After this time, individuals continue to reproduce independently as fol-

lows. An individual of degree ℓ at time t (τ) reproduces according to the point process ξ(ℓ)
f1

.

New individuals born into the system after time t (τ) reproduce according to ξ f1
. Recall-

ing the notation for driving parameters θ = ( f0, f1,τ) and denoting this inhomogeneous

branching process by BPθ(·), the same approach used to prove Lemma 2.2 shows that
{

BPθ(T θ
m) : 2 ≤ m ≤ n

} d=
{
T

θ
m : 2 ≤ m ≤ n

}
, where T θ

m := inf {t ≥ 0 : |BPθ(t )| = m} ,m ≥ 1.

Note that t (τ) = T θ
τ . We will refer to this random time t (τ) as the change point for the

branching process BPθ(·). When θ is clear from context, we will often drop the superscript

(or subscript) θ from associated quantities for notational convenience.

REMARK 2.3. There exists a common probability space (Ω∗,F∗,P∗) on which the

process
{
BPθ(T θ

m) : 2 ≤ m ≤ n
}

, and hence
{
T

θ
m : 2 ≤ m ≤ n

}
, can be constructed for all n.

(Ω∗,F∗,P∗) can be taken to be a probability space on which the countable i.i.d. collection

{ξ f0,x : x ∈ I } and i.i.d. collection {ξ f1 ,x : x ∈ I } of point processes are defined. Individual

x with σx < t (τ) uses ξ f0 ,x to reproduce until the stopping time t (τ) when the total pop-

ulation size hits τ. If x has k children at time t (τ), it uses the k-shifted version ξ(k)
f1,x

of

the point process ξ f1,x for future reproduction. For x ∈ I with σx ≥ t (τ), x has all its re-

production according to ξ f1,x . Future references to convergence in probability and almost

sure convergence for the associated branching processes and trees with change point will

all be implicitly assumed to take place on (Ω∗,F∗,P∗).

2.4. Assumptions on attachment functions. Here we set up assumptions as well as

constructions needed to state the main results. We mainly follow [29, 30, 37, 43].

ASSUMPTION 2.4. (i) Every attachment function f is strictly positive and can grow at

most linearly,

sup
k≥0

f (k)/(k +1)=C <∞.
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(ii) Consider the following function ρ̂ : (0,∞) → (0,∞] defined via,

(2.5) ρ̂(λ) :=
∞∑

k=1

k−1∏

i=0

f (i )

λ+ f (i )
.

Define λ := inf
{
λ> 0 : ρ̂(λ) <∞

}
. We assume,

(2.6) lim
λ↓λ

ρ̂(λ) > 1.

Using (ii) of the above Assumption, let λ∗ :=λ∗( f ) be the unique λ such that

(2.7) ρ̂(λ∗) = 1.

The Malthusian rate of growth parameter, λ∗, is intricately tied to the growth rate of

a continuous time branching process. In fact, recalling that Z f (t ) denotes the size of the

branching process at time t , under Assumption 2.4, e−λ∗t Z f (t ) converges in probability

as t →∞ to a finite random variable [37, Theorem 3.1] (see also Lemma 6.6 below). While

not obvious, λ∗ plays an essential role in all law of large number results about the discrete

time tree model with attachment function f (see, for example, (3.1) below).

REMARK 2.5. The requirement (2.6) is a standard assumption in branching process

literature that implies almost sure convergence of a broad collection of branching process

statistics of ratio-type [37, Theorem 6.3]. It is algebraic in nature and can be checked for a

given attachment function using the explicit form of ρ̂(·) given in (2.5). In particular, (2.6)

is satisfied for f (·) ≡ 1 (easy to check that ρ̂(λ) = λ−1,λ > 0), f (k) = k + 1+β,k ≥ 0, for

any β> 0 [43, Section 4.2] and f (k) = (k +1)α,k ≥ 0, for any α ∈ (0,1) [34, Lemma 10]. See

[8, Lemma 7.8] for additional checkable conditions for (2.6) to hold.

3. Main Results.

3.1. Convergence rates for model without change point. Consider a continuous time

branching process with attachment function f and Malthusian rate λ∗. For k ≥ 0, t ≥ 0,

let D(k , t ) denote the number of vertices in BP f (t ) with degree k and abbreviate Z f (t ) to

Z (t ). Let λ∗ =λ∗( f ) be as in (2.7). Define the probability mass function p( f ) :=
{

pk : k ≥ 0
}

via,

(3.1) pk = pk( f ) :=
∫∞

0
λ∗e−λ∗t

P
(
ξ f (t ) = k

)
d t =

λ∗

λ∗+ f (k)

k−1∏

j=0

f ( j )

λ∗+ f ( j )
, k ≥ 0.

For k = 0,
∏k−1

j=0 is taken to be 1. The last equality above follows from standard calculations

involving exponential distributions (see, for example, the proof of Theorem 2 (a) in [43]).

Following the seminal work of [29, 30, 37, 43] for each k ≥ 0, D(k , t )/Z (t ) → pk in proba-

bility as t →∞. However to get consistent change point estimators we need to strengthen

this convergence to a sup-norm convergence on a time interval whose size goes to infinity

with growing t as well as obtain a quantitative rate for this convergence. Such results have

been obtained for very specific attachment functions via functional central limit theorems

but do not extend to the setting of general attachment functions; see e.g. [32]; specific to

linear attachment see [16, 42, 47]. The following assumptions on the attachment function

will play a crucial role in this section.

ASSUMPTION 3.1. There exists C∗ ≥ 0 such that limk→∞ f (k)/k =C∗.

ASSUMPTION 3.2. Var
(∫∞

0 e−λ∗tξ f (d t )
)
<∞.
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REMARK 3.3. Assumption 3.2 might at first sight seem opaque. Here we give three con-

ceptually easier sufficient conditions that cover a wide array of functions. Throughout we

assume Assumption 2.4. Assumption 3.2 holds if any of the following three conditions

hold.

(a) Diverging attachment functions: f (k)→∞ as k →∞. See [43, Proof of Lemma 1].

(b) Finite variance of the degree distribution:
∑∞

k=0
k2pk( f ) <∞. To see this note

E

[(∫∞

0
e−λ∗tξ f (d t )

)2]
= E

[(∫∞

0
λ∗e−λ∗tξ f (t )d t

)2]
≤ E

(∫∞

0
λ∗e−λ∗tξ2

f (t )d t

)

=
∫∞

0
λ∗e−λ∗t

∞∑

k=1

k2
P

(
ξ f (t ) = k

)
d t =

∞∑

k=1

k2

(∫∞

0
λ∗e−λ∗t

P
(
ξ f (t ) = k

)
d t

)
=

∞∑

k=1

k2pk( f ) <∞

where the last equality follows from (3.1). For a given f , the finiteness of the above sum

can possibly be checked using the explicit formula for pk( f ) given in (3.1).

(c) Lower boundedness and asymptotic linearity: If infk≥0 f (k)> 0 and limk→∞ f (k)/k =
C∗ ≥ 0 (Assumption 3.1).

This assertion was largely proven in [9] which we now explain. In Lemma 9.1 we show

that under these assumptions, limk→∞ f (k)/k < λ∗ and hence ρ̂
(
limk→∞ f (k)/k

)
> 1.

Then [9, Proposition 5.7] shows that in this case
∫∞

0 e−λ∗tξ f (d t ) has finite exponential

moments and thus, in particular, Assumption 3.2 on finiteness of the second moment

holds.

Fix a sequence of growing trees {Tm : m ≥ 2} and recall that for any N ≥ 2 and k ≥ 0,

DN (k) denotes the number of vertices in TN with degree k . The following theorem estab-

lishes convergence of the empirical degree distribution to its limit in a certain ‘uniform’

sense and furnishes a rate for this convergence.

THEOREM 3.4. Consider a continuous time branching process with attachment func-

tion f that satisfies Assumptions 2.4, 3.1 and 3.2. Let p( f ) be the limiting degree distribution

as in (3.1). There exist ω∗ ∈ (0,1),ǫ∗∗ ∈ (0,1), such that for any ǫ≤ ǫ∗∗,

nω∗ ∞∑

k=0

2−k

(
sup

t∈[0,2ǫ logn/λ∗]

∣∣∣∣∣
D

(
k , 1−ǫ

λ∗ log n + t
)

Z
(

1−ǫ
λ∗ logn + t

) −pk

∣∣∣∣∣

)
P−→ 0.

Thus for a sequence of non-uniform recursive trees {Tm : m ≥ 2} grown using attachment

function f ,

nω∗ ∞∑

k=0

2−k sup
n1−ε≤N≤n1+ε

∣∣DN (k)/N −pk

∣∣ P−→ 0.

The analysis of branching processes in continuous time starts via scoring individuals

existing at any fixed time t via so called characteristics, measuring individuals (and their

offspring) in various phases of their life, weighting existing individuals using these scores

and then deriving asymptotics as t →∞. Such characteristics can in principle depend on

the entire set of descendants (not just immediate offspring) of an individual, including

ones that are born at future times. We refer the interested reader to [30, 31] for for further

discussion on the importance of such characteristics and [2] for describing the impor-

tance of such results in the context of local weak convergence of large discrete random

structures. An important technical contribution of this paper is the next result, Theorem

3.5, regarding rates of convergence for normalized counts associated with general charac-

teristics.
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We introduce some notation related to functionals of branching processes, closely fol-

lowing [30, 37]. Recall that the individuals in the population are indexed by I = ∪∞
d=0

N
d

and for x ∈ I , σx denotes the birth time of x. Let {ξ f ,x , x ∈ I } be i.i.d. copies of the point

process ξ f (see (2.1)), where each ξ f ,x is defined on some probability space (Ωx ,Ax ,Px ).

ξ f ,x encodes the times of birth of children of x. The underlying probability space for the

branching process (without a change point) is taken to be (Ω,A ,P) = Πx∈I (Ωx ,Ax ,Px ).

Elements of Ω are denoted by ω = {ωx : x ∈ I }. For each x ∈ I , define the shift oper-

ator Sx : Ω → Ω which maps {ωy : y ∈ I } to {ωx y : y ∈ I }. Thus, the shift operator Sx

maps ; and its descendants to x and its descendants. A characteristic φ : R×Ω → R+ is

a B(R)×A -measurable, separable, non-negative random process. We assume φ(t ,ω) = 0

for every t < 0,ω ∈ Ω. Later in (3.3), we will make further assumptions on the stochastic

process
{
φ(t ,ω), t ∈R

}
.

Informally, for each t ≥ 0, φ(t ) can be thought of as a ‘score’ assigned to the root at time

t , namely when the root is of age t . For each x ∈ I , the characteristic corresponding to

x, naturally obtained from φ, is defined by φx (t ,ω) := φ(t ,Sx(ω)), t ≥ 0. Thus, φx (t ) can

be thought of as the score given to x based on x and its descendants when x is of age t .

We suppress the dependence of φ,φx on ω and write φ(t ),φx (t ) for φ(t ,ω) and φx (t ,ω)

respectively.

For any characteristic φ, define Z
φ

f
(t ) :=∑

x∈I φx (t−σx ) =∑
x∈BP f (t )φx (t−σx ). This can

be thought of as the sum of φ-scores, or aggregate φ-score, of all individuals in BP f (t ). In

particular, the age of individual x in BP f (t ) is t −σx , and hence its contribution to the ag-

gregate φ-score is φx (t −σx ). Write m
φ

f
(t ) = E(Z

φ

f
(t )) and M

φ

f
(t ) = E(e−λ∗t Z

φ

f
(t )). Note the

characteristics φ(t ) =1 {t ≥ 0} and φ(t ) =1 {ξ(t ) = k} ,k ≥ 0, count the total number of ver-

tices and number of vertices of degree k at time t respectively. For these two specific char-

acteristics we write the associated scores as Z f (t ) and Z (k)

f
(t ) respectively; analogously we

write m f (t ),m (k)

f
(t ) and M f (t ), M (k)

f
(t ). It is easy to check that for a general (integrable)

characteristic φ, M
φ

f
(t ) satisfies the renewal equation

(3.2) M
φ

f
(t ) = e−λ∗t

E(φ(t ))+
∫t

0
M

φ

f
(t − s)e−λ∗sµ f (d s).

Write M
φ

f
(∞) = limt→∞ M

φ

f
(t ) when the limit exists. Following [37], for t ≥ 0, let I (t ) =

{x = (x′, i ) : σx′ ≤ t and t <σx <∞} denote the set of individuals born after time t to par-

ents who were born at or before time t . Write Wt :=∑
x∈I (t ) e−λ∗σx . By Corollary 2.5 of [37],

Wt converges almost surely to a finite random variable W∞ as t →∞. By Theorem 3.1 of

[37], e−λ∗t Z
φ

f
(t )

P−→W∞M
φ

f
(∞) for any φ ∈C .

For this article, we are interested in the following class of characteristics (where once

again recall ; denotes the root of the tree):

(3.3)

C := {φ with càdlàg paths : ∃ a non-random bφ > 0 such that φ(t ) ≤ bφ(ξ f ,;(t )+1) for all t ≥ 0}.

THEOREM 3.5. Consider a continuous time branching process with attachment func-

tion f that satisfies Assumptions 2.4 and 3.2. There exist positive constants C1,C2 such that

for any bφ > 1 and any characteristic φ ∈C satisfying φ(t ) ≤ bφ(ξ f ,;(t )+1) for all t ≥ 0,

E

∣∣∣e−λ∗t Z
φ

f
(t )−W∞M

φ

f
(∞)

∣∣∣≤C1bφe−C2t , t ≥ 0.

REMARK 3.6. The constants ω∗ in Theorem 3.4 and C1,C2 in Theorem 3.5 are explicitly

computable from our proof techniques. However, they depend on the Malthusian rate and

λ (see (2.6)) and thus we have not tried to derive an explicit form of these objects.
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3.2. Sup-norm convergence of degree distribution for the standard model. We start by

studying the model under the following assumption which we refer to as the “standard”

model owing to the analogous assumptions for change point methodology in time series:

ASSUMPTION 3.7. There exist 0 < γ< 1 such that the change point is τ= ⌊nγ⌋.

To simplify notation we will drop ⌊ ⌋. Recall the sequence of random trees
{
T

θ
m : 2 ≤ m ≤ n

}
.

For any 0 < t ≤ 1 and k ≥ 0, write Dn (k ,T θ
nt ) for the number of vertices with degree k when

the tree is of size nt . Fix initializer attachment function f0 and let λ∗
0 =λ∗( f0) be as in (2.7).

Define the probability mass function
{

p0

k
: k ≥ 0

}
via (3.1) with (λ∗

0 , f0) in place of (λ∗, f ).

As before write f1 for the attachment function after change point.

Recall the continuous time embedding of
{
T

θ
m : 2 ≤ m ≤ n

}
into an inhomogeneous

branching process BPθ(·) as described in Section 2.3. At the change point of BPθ(·), dif-

ferent individuals have different degrees, and their offspring process after the change

point need to be quantified in terms of their degree at the change point. We now in-

troduce some key quantities required in this quantification. Recall m f1
(·) from (2.4).

For fixed k ≥ 0, recall the functions µ(k)
f1

[0, ·] from (2.3) and define, for t ≥ 0, m(k)
f1

(t ) :=

E

(∑
x∈BP f1

(t )1
{
ξ f1,x (t −σx ) = k

})
, which denotes the expected number of individuals with

k children in BP f1
(t ). It can be checked (using the continuity estimates obtained in Lem-

mas 7.2 and 7.9) that for any k ≥ 0, t ≥ 0, m(k)
f1

(t ) =
∫t

0 P
(
ξ f1 (u) = k

)
m f1 (t −du).

For ℓ,k ≥ 0, define

λℓ(t ) = 1+
∫t

0
m f1

(t − s)µ(ℓ)
f1

(d s), λ(k)
ℓ

(t ) =P

(
ξ(ℓ)

f1
(t ) = k −ℓ

)
+

∫t

0
m(k)

f1
(t − s)µ(ℓ)

f1
(d s).

(3.4)

Given that an individual is of degree ℓ at the change point, λℓ(t ) (respectively, λ(k)
ℓ

(t ))

denotes the expected number of descendants (respectively, the expected number of de-

scendants having degree k), including possibly itself, t time units after the change point.

Let P denote the collection of all probability measures on Z+. For each a > 0, consider

the functional Φa : P →P given by

(3.5) Φa (p) =
(

∞∑

ℓ=0

pℓλ
(k)
ℓ

(a)
/ ∞∑

ℓ=0

pℓλℓ(a)

)

k≥0

where p = (p0, p1, . . . ) ∈ P . Write (Φa (p))k for the k-th co-ordinate of the above map.

Let pi = p( fi ) := (p i
0, p i

1, . . . ) for i = 0,1 denote the limiting degree distribution for a

non-uniform random recursive tree grown with attachment function fi (i.e. without any

change point). Informally, Φa(p0) shows how the degree distribution in the continuous

time embedding evolves in a units of time after the change point. Corollary 8.2 shows that

for each t > γ, there is a unique 0 < at <∞ such that

(3.6)
∞∑

k=0

p0

k

[∫at

0
m f1 (at − s)µ(k)

f1
(d s)

]
= (t −γ)/γ.

Recall the continuous time embedding of
{
T

θ
m : 2 ≤ m ≤ n

}
in BPθ described in Section

2.3. Conceptually here, for t > γ, at denotes (in the large n limit) the time required in the

continuous time embedding for the process starting at Tnγ (i.e. at the change point) to

reach size nt . Set at = 0 for t ≤ γ.

Suppose f0, f1 satisfy Assumption 2.4. The following theorem shows that the empirical

degree distribution of the (discrete) standard model can be approximated uniformly on

compact time intervals after the change point by a deterministic curve, obtained using

the continuous time embedding.
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THEOREM 3.8. For each fixed k ≥ 0 and s ∈ [γ,1] ,supt∈[γ,s]

∣∣Dn (k ,T θ
nt )/nt − (Φat (p0))k

∣∣ P−→
0.

There is a probabilistic way to view the limit. Write α for a1.

CONSTRUCTION 3.9 (XBC). Generate D ∼
{

p0

k
: k ≥ 0

}
. Conditional on D = k, generate

point process ξ(k)
f1

and let C= ξ(k)
f1

[0,α]. Now set XBC = D +C.

CONSTRUCTION 3.10 (XAC, Age). (a) Generate D ∼
{

p0

k
: k ≥ 0

}
. Conditional on D = k,

generate Age supported on the interval [0,α] with distribution

P(Age> u) :=
∫α−u

0
m f1

(α−u − s)dµ(k)
f1

(d s)
/∫α

0
m f1

(α− s)µ(k)
f1

(d s), 0 ≤ u ≤α.

(b) Conditional on D and Age, let XAC = ξ f1 [0,Age], with ξ f1 as in (2.2).

Conceptually in the above notation, ‘BC’ stands for ‘before change’ and ‘AC’ stands for

‘after change’. Thus (in the large n limit), XBC denotes the final degree (when the tree is

of size n) of an individual which had degree D at the change point. X AC denotes the final

degree of an individual born α−Age time units after the change point. Now, slightly abus-

ing notation, let θ = ( f0, f1,γ). Let Dθ be the integer valued random variable defined as

follows: with probability γ, Dθ = XBC and with probability 1−γ, Dθ = XAC. The following

is a restatement of the convergence result implied by Theorem 3.8 for time t = 1.

THEOREM 3.11 (Standard model). Fix k ≥ 0 and let Dn (k) denote the number of vertices

with degree k in the tree T
θ

n . Under Assumption 2.4 on the attachment functions f0, f1 and

Assumption 3.7 on the change point γ, we have that Dn (k)/n
P−→P(Dθ = k).

Write p(θ) for the pmf of Dθ . The next result, albeit intuitively reasonable, is non-trivial

to prove in the generality of the models considered in the paper.

COROLLARY 3.12. Assume that p0 6= p1. Then for any 0 < γ< 1 one has p0 6= p(θ). Thus

the change point always changes the degree distribution.

For the following corollary, we say that a random variable X has an exponential tail if

there exist positive constants C1,C2 such that P(X > x) ≤C1 exp{−C2x} for all x ≥ 0. We say

X has a power law tail with exponent κ> 0 if there exist positive constants C1,C2 such that

C1x−κ ≤P(X > x) ≤C2x−κ for all x ≥ 1.

COROLLARY 3.13 (Initializer wins under the standard model). The initializer function

f0 determines the tail behavior of Dθ in the sense that

(i) If in the model without change point using f0, the degree distribution has an exponential

tail then so does the model with change point irrespective of γ> 0 and f1.

(ii) If in the model without change point using f0, the degree distribution has a power law

tail with exponent κ > 0 then so does model with change point irrespective of γ> 0 and

f1.

COROLLARY 3.14 (Maximum degree under the standard model). Suppose the initial-

izer is linear with f0(i ) = i + 1 +α for i ≥ 0. For k ≥ 1, let Mn(k) be the size of the k-th

maximal degree. If f1 satisfies Assumption 2.4 then Mn(k)/n1/(α+2) is a tight collection of

random variables bounded away from zero as n →∞.
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REMARK 3.15. Corollary 3.14 shows the initializer determines the behavior of the max-

imal degree in the case of a linear initializer under the standard model. In the absence of a

change point, for each fixed k ≥ 1, Mn(k)/n1/(α+2) d−→ Xk (α) for a non-degenerate random

variable Xk (α) with P(Xk (α) > 0) = 1 [36]. Thus the above result shows that irrespective of

the second attachment function f1, the maximal degree asymptotics for linear preferential

attachment remain unaffected. Proof of the above result follows via analogous arguments

as [14, Proof of Theorem 2.2] and thus is not provided in this paper.

3.3. The quick big bang model. Now consider the case where the change point scales

like o(n) i.e. happens “early” in the evolution of the process. We call this version of the

process “quick big bang” to fix the idea that the change happens way back in the origin

of the process (akin to the “big bang”), but despite this change close to the origin of the

process (relative to the entire time scale), the effect of this can be felt and observed all

the way till the present via carefully chosen functionals. Let
{

p1
k

: k ≥ 0
}

be the probability

mass function as in (3.1), but using the function f1 in place of f to obtain λ∗ in (2.7) and

in (3.1). For α> 0 and any non-negative measure µ, let µ̂(α) :=
∫∞

0 αe−αtµ(t )d t . We work

under the following assumption.

ASSUMPTION 3.16. E
(
ξ̂ f (λ∗)

∣∣log
(
ξ̂ f (λ∗)

)∣∣)<∞.

REMARK 3.17. Assumption 3.16 is, in some sense, the ‘minimal assumption’ required

to ensure non-degeneracy of the random variable W∞ := lim supt→∞ e−λ∗t Z f (t ) [37,

Proposition 1.1]. In particular, W∞ > 0 almost surely if Assumption 3.16 is satisfied and

W∞ = 0 almost surely if Assumption 3.16 fails.

Recall that in the previous section, one of the messages was that the initializer function

f0 determined various macroscopic properties of the degree distribution for the standard

model.

THEOREM 3.18 (Initializer loses under the quick big bang). Suppose τ1 = nγ for fixed

0 < γ < 1. If f0 satisfies Assumption 2.4 and f1 satisfies Assumptions 2.4, 3.1 and 3.16, the

limiting degree distribution does not feel the effect of the change point or the initializer

attachment function f0 in the sense that for any fixed k ≥ 0, Dn(k)/n
P−→ p1

k
as n →∞.

REMARK 3.19. The form τ1 := nγ was assumed for simplicity. We believe the proof

techniques are robust enough to handle any τ1 = ωn , where ωn = o(n) and ωn ↑ ∞. We

defer this to future work.

The next result implies the maximal degree does feel the effect of the change point. In-

stead of proving a general result we consider the following special cases. Let Mn(1) denote

the maximal degree in T
θ

n . Fix two deterministic positive sequences {an}n≥1 , {bn}n≥1 with

an ,bn ↑ ∞ and an/bn → 0 as n → ∞. For a sequence of non-negative random variables

{Mn}n≥1, say that an ≪ Mn ≪ bn with high probability as n → ∞ if Mn/an
P−→ ∞ and

Mn/bn
P−→ 0 as n →∞.

THEOREM 3.20 (Maximal degree under quick big bang). Assume τ1 = nγ and consider:

(a) Uniform ❀ Linear: Suppose f0(·) ≡ 1 whilst f1(k) = k + 1 +α for fixed α > 0. Then

for any sequence ωn ↑ ∞, with high probability as n → ∞, n
1−γ
2+α logn

/
ωn ≪ Mn(1) ≪

n
1−γ
2+α (log n)2.
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(b) Linear ❀ Uniform: Suppose f0(k) = k + 1 +α for fixed α > 0 whilst f1(·) ≡ 1. Then

for any sequence ωn ↑ ∞, with high probability as n → ∞, n
γ

2+α log n
/
ωn ≪ Mn(1) ≪

n
γ

2+α (log n)2.

(c) Linear ❀ Linear: Suppose f0(k) = k +1+α whilst f1(k) = k +1+β where α 6= β. Then

Mn(1)/nη(α,β) is tight and bounded away from zero where

η(α,β) :=
(
γ(2+β)+ (1−γ)(2+α)

) /
(2+α)(2+β).

REMARK 3.21. Writing M̃n := Mn(1)/nη(α,β), in (c) by bounded away from zero we

mean
{

1/M̃n : n ≥ 1
}

is tight. This result shows that while the initializer does not affect

the limiting degree distribution in the quick big bang model (Theorem 3.18), it can in-

fluence the maximal degree. It is instructive to compare the above results to the setting

without change point. For the uniform f ≡ 1 model, it is known [23, 46] that the maximal

degree scales like log n whilst for the linear preferential attachment, the maximal degree

scales like n1/(α+2) [36]. Thus, for example, in the ‘Linear ❀ Uniform’ case, Theorem 3.18

implies that the limiting degree distribution in this case is the same as that of the uniform

random recursive tree (URRT) namely Geometric with parameter 1/2; however Theorem

3.20 (b) implies that the maximal degree scales polynomially in n and not like logn as in

the URRT.

3.4. Change point detection. In the context of the standard model, now consider the

issue of change point detection from an observation of the network. Consider any two

sequences hn →∞,bn →∞ satisfying log hn/logn → 0, logbn/logn → 0 as n →∞. Define:

T̂n = inf

{
t ≥

1

hn
:

∞∑

k=0

2−k

∣∣∣∣∣
Dn (k ,T θ

⌊nt⌋)

nt
−

Dn(k ,T θ

⌊n/hn ⌋)

n/hn

∣∣∣∣∣>
1

bn

}
.

The following theorem establishes the consistency of the above estimator.

THEOREM 3.22. Assume that p0 6= p1. Suppose f0 satisfies Assumptions 2.4, 3.1 and 3.2,

and f1 satisfies Assumptions 2.4 and 3.16. Then T̂n
P−→ γ.

4. Discussion. (i) Random recursive trees: Random recursive trees have now been

studied for decades [22, 24, 27, 35, 44]. For specific examples such as the uniform attach-

ment or the linear attachment model with f (i ) := i +1, one can use the seminal work of

Janson [32] via a so-called “super ball” argument to obtain functional central limit theo-

rems for the degree distribution. Obtaining quantitative error bounds let alone weak con-

vergence results in the general setting considered in this paper is much more involved. Re-

garding proof techniques, we proceed via embedding the discrete time models into con-

tinuous time branching processes and then using martingale/renewal theory arguments

for the corresponding continuous time objects; this approach goes back all the way to [3].

Limit results for the corresponding CTBPs in the setting of interest for this paper were de-

veloped in [29, 30, 37]. One contribution of this work is to derive quantitative versions for

this convergence, a topic less explored, but required to answer questions regarding sta-

tistical estimation of the change point. In the context of growing random trees (without

change point) with either uniform or linear attachment functions, understanding the ef-

fect of the initial seed graph and in particular constructing algorithms to estimate the root

(the so-called “Adam problem”) has inspired intense activity over the last decade. See for

example [18, 19, 21] for more details.

(ii) General change point: Change point detection, especially in the context of univari-

ate time series, has matured into a vast field, see [17, 20]. Even in this context, consistent
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estimation especially in the setting of multiple change points is non-trivial and requires

specific assumptions see e.g. [48]; in the context of econometric time series see [5–7]; for

applications in the biological sciences see [41, 49]. The only pre-existing work on change

point in the context of growing networks formulated in this paper that we are aware of was

carried out in [14] where one assumed linear attachment functions. Regarding the estima-

tor proposed in this paper in Theorem 3.22, we do not believe the estimator is “optimal”

in terms of rates of convergence. These issues are deferred to future work.

5. Overview of the proofs. The rest of the paper proves the main results. Section 6

lays out some preliminary constructions and estimates used subsequently in the paper.

Section 7 deals with the continuous time version of the change point model analyzed for

a fixed time a after the change point. Theorem 7.1 proved in this section estimates, for a

general characteristic φ ∈C , the L1-error in approximating the aggregate φ-score at time

a of all individuals born after the change point with a weighted linear combination of the

degree counts at the change point. This estimate, apart from directly yielding a law of large

numbers (see second part of Theorem 7.1), turns out to be crucial in most subsequent

proofs.

The estimates derived in Section 7 are then used in Section 8 to analyze the standard

model and prove the main theorems in this setting (Theorems 3.8 and 3.11) as well as

Corollary 3.13. Corollary 3.12 follows directly from Lemma 11.3 and requires an in-depth

analysis of the fluid limits derived in Theorem 3.8 and is postponed to Section 11.

Section 9 contains proofs of the quick big bang model. We note here that all the es-

timates obtained in Sections 7 and 8 to analyze the model for a fixed time a after the

change point explicitly exhibit the dependence on a. This turns out to be crucial in Sec-

tion 9 where we take a = η0 logn and the estimates above still hold if η0 is sufficiently

small. Roughly speaking, we partition the interval [Tnγ ,Tn] into finitely many subintervals

of size at most η0 log n and ‘bootstrap’ the estimates obtained in Sections 7 and 8 to prove

Theorem 3.18.

In Section 10, we prove Theorems 3.4 and 3.5. We conclude in Section 11 with the proof

of Theorem 3.22 on the change point detection estimator.

6. Initial constructions. This section is devoted to some preliminary constructions

and estimates that will then be repeatedly used in the proofs. The first set of lemmas deal

with properties of linear preferential attachment and an important class of offspring pro-

cesses associated to it.

DEFINITION 6.1 (Rate ν Affine κ PA model). Fix ν> 0,κ ≥ 0. A branching process with

attachment function f (i ) = ν(i +1)+κ, i ≥ 0, will be called a linear PA branching process

with rate ν and affine parameter κ. Denote this as
{

PAν,κ(t ) : t ≥ 0
}

.

DEFINITION 6.2 (Rate ν Yule process). The offspring process ξν,0(t ) associated with a

PAν,0(·) process is called a rate ν Yule process. Thus, the rate of birth of new individuals in a

Yule process is proportional to the size of the current population. We write {Yν(t ) : t ≥ 0} for

this process.

LEMMA 6.3 ([40, Section 2.5]). Fix t > 0 and rate ν > 0. Then Yν(t ) has a Geometric

distribution with parameter p = e−νt . Precisely, P(Yν(t ) = k)= e−νt (1−e−νt )k−1,k ≥ 1. The

process
{

Yν(t )exp(−νt ) : t ≥ 0
}

is an L
2 bounded martingale and thus ∃ W > 0 such that

Yν(t )exp(−νt )
a.s.−→W . Further W ∼ exp(1).
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Next we derive moment bounds for the attachment point processes for linear preferen-
tial attachment.

LEMMA 6.4. Fixν> 0,κ≥ 0. Let ξν,κ(t ) be the offspring process associated with a PAν,κ(·)
process. Then with respect to the natural filtration the following two processes are martin-

gales which give the proceeding two expectations:

M1(t ) := e−νtξν,κ(t )−
ν+κ

ν

(
eνt −1

)
, t ≥ 0

M2(t ) := e−2νtξν,κ(t )2 −
∫t

0
(2κ+3ν)ξν,κ(s)e−2νsd s −

ν+κ

2ν

(
1−e−2νt

)
, t ≥ 0.

Eξν,κ(t ) = ν+κ

ν

(
eνt −1

)
, and E

(
ξν,κ(t )

)2 = (2κ+3ν)(ν+κ)

2ν2

(
eνt −1

)2 + ν+κ

2ν

(
e2νt −1

)
.

PROOF. We sketch the proof. Let F (t ) be the natural filtration corresponding to the
continuous time branching process with attachment function f . Note that ξν,κ(t ) ❀

ξν,κ(t )+ 1 at rate ν(ξν,κ(t )+ 1)+κ. This can be used to check E [d M1(t )|F (t )] = 0 show-
ing M1(t ) is a martingale. Similarly, ξν,κ(t )2

❀ ξν,κ(t )2+2ξν,κ(t )+1 at rate ν(ξν,κ(t )+1)+κ.
This expression can similarly be used to check M2(t ) is a martingale. The first expecta-
tion claimed in the lemma follows immediately by setting the expectation of M1(t ) equal
to zero. The second expectation follows by computing the expectation of M2(t ) and then
using the expectation of ξν,κ(t ). ■

We now derive expressions for moments of the process PAν,κ. To simplify notation,
when possible we will suppress dependence on ν,κ and write the above as PA(·). Note
the proof of Proposition 6.5 is similar to the proof of Lemma 6.4 and is therefore omitted.

PROPOSITION 6.5. Fix ν > 0,κ ≥ 0. With respect to the natural filtration the following

processes are martingales:

M1(t ) := e−(2ν+κ)t (|PAν,κ(t )|−1)−
ν+κ

2ν+κ
(1−e−(2ν+κ)t ), t ≥ 0

M2(t ) := (|PAν,κ(t )|−1)2−
∫t

0
((4ν+2κ)(|PAν,κ(s)|−1)2+(4ν+3κ)(|PAν,κ(s)|−1)+(ν+κ))d s, t ≥ 0.

In particular, for any fixed a > 0, ∃ C (dependent on ν and κ) such that for 0 ≤ t ≤ a

(6.1) E(|PAν,κ(t )|)−1 ≤C e (2ν+κ)a t ; E((|PAν,κ(t )|−1)2) ≤C e (4ν+2κ)at .

Recall the class of characteristics C defined in (3.3), the Malthusian rate of growth λ∗

and the mean measure of the offspring process µ f . Let m⋆ :=
∫
R+ ue−λ∗uµ f (du). For any

fixed characteristic χ ∈C and any α> 0, define,

χ̂(α) :=
∫∞

0
αe−αtχ(t )d t , µ̂ f (α) :=

∫∞

0
αe−αtµ f (t )d t .

It can be checked that for any α > 0, recalling ρ̂ from Assumption 2.4 (ii), ρ̂(α) = µ̂ f (α) =
∫∞

0 e−αtµ f (d t ). Recall the definitions of Z
χ

f
(t ), M

χ

f
(t ),Z f (t ) and M f (t ) = E

(
e−λ∗t Z f (t )

)

from Section 3.1. The first part of the following lemma is a consequence of [37, Theorem
6.3] and the second part follows from [37, Theorem 5.4 and Corollary 3.3].

LEMMA 6.6. (i) Under Assumption 2.4 (ii), for any characteristicχ ∈C , Z
χ

f
(t )

/
Z f (t )

a.s.−→
E(χ̂(λ∗)).

(ii) Under Assumptions 2.4 and 3.16, there exists a strictly positive random variable W∞

with E(W∞) = 1 such that for characteristics χ∈C , e−λ∗t Z
χ

f
(t )

a.s., L1

−→ W∞E(χ̂(λ∗))
/
λ∗m⋆.
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7. Change point model run for fixed time a after change point: point-wise conver-

gence for general characteristics. In this section we consider growing the tree (in con-

tinuous time) using attachment function f0 till it reaches size γn, and using the second

attachment function f1 for a constant time a after the change point i.e. f1 is used for

t ∈ [Tγn,Tγn + a]. We will also assume throughout this section that f0, f1 satisfy Assump-

tion 2.4. We count vertices born after the change point according to a general characteris-

tic φ ∈C (defined in (3.3)) and prove a law of large numbers for this aggregate φ-score at

time a as n →∞ (see Theorem 7.1). This will be a key tool in the rest of the paper. For no-

tational convenience we consider the change point as time t = 0 (i.e. t = s corresponds to

actual time Tγn + s for any s ∈ [0, a]). Recall the continuous time embedding of the model

in an inhomogeneous branching process BPθ(·) described in Section 2.3. For t ≥ 0, we will

write BPn(t ) := BPθ(t +Tγn) to denote the branching process at time t (i.e. time t after the

change point).

7.1. Notation. Let λ∗
i

be the Malthusian parameter for the branching process with at-

tachment function fi , i = 0,1. For k ≥ 0, i = 0,1, recall ξ(k)
fi

(·) and µ(k)
fi

(·) from (2.3) with fi

in place of f . For 0 ≤ s ≤ t , let ξ(k)
fi

[s, t ] := ξ(k)
fi

(t )−ξ(k)
fi

(s) and µ(k)
fi

[s, t ] := µ(k)
fi

(t )−µ(k)
fi

(s).

For the branching process (without change point) with attachment function f1, and for

any characteristic φ, recall Z
φ

f1
(t ),m

φ

f1
(t ), Z f1

from Section 3.1 (just after (3.3)). Let v
φ

f1
(t ) =

Var
(

Z
φ

f1
(t )

)
. Recall the class of characteristics defined in (3.3). For φ ∈ C , an easy com-

putation implies there exists non-random bφ > 0 such that Z
φ

f1
(t ) ≤ 2bφZ f1

(t ) for every

t ≥ 0. Moreover, by Assumption 2.4(i) on f1, Z f1
(·) is stochastically dominated by |PA2C ,0(·)|

(see Definition 6.1), in the sense that there exists a coupling (Z f1 (·), |PA2C ,0(·)|) satisfying

Z f1
(t ) ≤ |PA2C ,0(t )| for all t ≥ 0. Combining these observations and using (6.1), we obtain

for any φ ∈C ,

(7.1) sup
t∈[0,a]

m
φ

f1
(t ) ≤ 2bφE(Z f1

(a)) ≤C1eC2a , sup
t∈[0,a]

v
φ

f1
(t ) ≤ 4bφ

2
E(Z 2

f1
(a)) ≤C1eC2a

where C1,C2 depend on φ but not on a. For φ ∈C , let Z
φ
n (a) denote the aggregate φ-score

at time a (see Section 3, just after (3.3)) of all individuals born after the change point,

namely

Z
φ
n (a) :=

∑

x∈BPn (a)\BPn (0)

φx (a −σx ).

For k ≥ 0, 0 ≤ t ≤ a, let λ
φ

k
(t )=

∫t
0 m

φ

f1
(t −s)µ(k)

f1
(d s) denote the expected aggregate φ-score

at time t of all descendants that are born in (0, t ] to a vertex with degree k at time 0. For

k ≥ 0, let Dn(k ,0) denote the number of vertices with degree k at the change point time 0.

Let Fn(0) denote the σ−field containing the information on the entire branching process

till time Tnγ, the change point.

The following is the main result proved in this section.

THEOREM 7.1. Suppose f0, f1 satisfy Assumption 2.4. Fix any φ ∈ C . There exist deter-

ministic positive constants C ,C ′ <∞ such that for every a > 0 and n ≥ 2,

E

[∣∣∣∣∣Z
φ
n (a)−

∞∑

k=0

Dn (k ,0)λ
φ

k
(a)

∣∣∣∣∣
∣∣∣Fn(0)

]
≤C eC ′apn.

Furthermore, as n →∞, Z
φ
n (a)/n

P−→ γ
∑∞

k=0
p0

k
λ
φ

k
(a).
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7.2. Definitions. In this section we define constructs for the branching process BPn(·)
which will be used in the proof of Theorem 7.1 (and are motivated by the proof outline

in Section 7.3). For notational simplicity, since a is fixed in this section, we will write Z
φ
n

for Z
φ
n (a) and λ

φ

k
for λ

φ

k
(a). For the rest of this section, unless specified otherwise, we

always work conditional on Fn (0) so that expectation operations such as E(·) and Var(·)
for the associated branching process statistics post change point in the ensuing results

mean E(·|Fn (0)) and Var(·|Fn (0)). Divide the interval [0, a] :=∪nδ−1
i=0

[i an−δ, ((i +1)a)n−δ]

into subintervals of size an−δ. We will eventually take limits as δ→∞.

(i) System at change point: Define the filtration {Fn (t ) : t ≥ 0} := {σ(BPn(t )) : t ≥ 0} (in-

formation till t time units after change point). For fixed k ≥ 0, we write Dn(k , t ) for the

set of vertices with degree k at time t and let Dn (k , t ) := |Dn (k , t )|. The initial set Dn(k ,0)

which arose from the pre-change point dynamics will play a special role. Label the vertices

in Dn(k ,0) in the order they were born into BPn (0) as Dn (k ,0) :=
{

v (k)

1 , v (k)

2 , . . . , v (k)

Dn (k ,0)

}
. Let

Dn (0) :=∪k≥0Dn(k ,0).

(ii) Descendants in small intervals: For 0 ≤ i ≤ nδ−1,k ≥ 0 and vertex v (k)

j
∈ Dn(k ,0),

let V
(k)

n (i , j ) denote the set of children born in the interval
[
i an−δ, (i +1)an−δ] to v (k)

j
. Let

N (k)
n (i , j ) := |V (k)

n (i , j )| be the number of such vertices. Write N (k)
n (i ) :=∑Dn (k ,0)

j=1
N (k)

n (i , j ) for

the total number of children of vertices that were of degree k at the change point, born in

the time interval
[
i an−δ, (i +1)an−δ].

(iii) Good and bad vertices: Call a vertex in V
(k)

n (i , j ) a good vertex if it does not

give birth to any children by time (i + 1)an−δ. Let Ṽ
(k)

n (i , j ) ⊆ V
(k)

n (i , j ) denote the set of

good children of v (k)

j
born in the interval

[
i an−δ, (i +1)an−δ]. Let Ñ (k)

n (i , j ) := |Ṽ (k)
n (i , j )|

be the number of such vertices. Let Ñ (k)
n (i ) := ∑Dn (k ,0)

j=1
Ñ (k)

n (i , j ) be the total number of

good children of vertices which originally had degree k at the change point born in

the interval
[
i an−δ, (i +1)an−δ]. Let B

(k)
n (i , j ) := V

(k)
n (i , j ) \ Ṽ

(k)
n (i , j ) be the collection of

bad children namely those in V
(k)

n (i , j ) who have reproduced by time (i + 1)an−δ. Let

B (k)
n (i , j ) = |B(k)

n (i , j )|. Let R
(k)
n (i , j ) be the set of descendants of vertices in B

(k)
n (i , j ) (ex-

cluding the parent vertices in B
(k)
n (i , j )) born in the time interval

[
i an−δ, (i +1)an−δ] and

let R (k)
n (i , j ) := |R(k)

n (i , j )|.
(iv) Vertices counted by a characteristic: For 0 ≤ i ≤ nδ − 1, k ≥ 0, 1 ≤ j ≤ Dn(k ,0)

and x ∈ V
(k)

n (i , j ), let Z
(k),φ

n (i , j , x) be the aggregate φ-score (defined in Section 3, just af-

ter (3.3)) of x and its descendants at time a. More precisely, denoting the set of x and

its descendants at time a by U
(k)
n (i , j , x), Z

(k),φ

n (i , j , x) :=
∑

y∈U
(k)
n (i , j ,x)

φy (a −σy ). Write

Z
(k),φ
n = ∑Dn (k ,0)

j=1

∑nδ−1
i=0

∑
x∈V

(k)
n (i , j )

Z
(k),φ
n (i , j , x) for the aggregate φ-score at time a of all

vertices of degree k at the change point along with their descendants at time a. Thus,

Z
φ
n = ∑∞

k=0
Z

(k),φ
n . For k ≥ 0, let Z̃

(k),φ
n = ∑Dn (k ,0)

j=1

∑nδ−1
i=0

∑
x∈Ṽ

(k)
n (i , j )

Z
(k),φ
n (i , j , x) denote the

aggregate φ-score at time a of all good vertices born in [0, a] which are descendants of

vertices of degree k at the change point.

(v) Technical conditioning tool: For 0 ≤ s < t ≤∞, let G [s, t ] be the σ-field generated

by the biographies of all individuals born in [s, t ] over the same time interval. Formally,

G [s, t ] :=σ
(
{s ≤σx ≤ t −u}∩ {ξx, f1

(u) = k}, x ∈I \Dn(0),u ∈ [0, t − s],k ∈Z+
)

.

Moreover, let G0 denote the σ-field generated by the entire biographies of the individuals

at time 0, namely,

G0 :=σ
(
{ξx, f1

(u) = k}, x ∈Dn(0),u ∈ [0,∞),k ∈Z+
)

.
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The following σ-field will play a crucial role in controlling fluctuations of aggregate φ-

scores of good vertices

Gn :=σ
(
G0

⋃

0≤i≤nδ−1

G [i an−δ, (i +1)an−δ]
)
.

7.3. Proof of Theorem 7.1. We first give an outline of the proof. We discretize the time

interval [0, a] into small subintervals of the form {[i an−δ, ((i +1)a)n−δ]}0≤i≤nδ−1, for δ> 0.

For an individual born in the interval [i an−δ, ((i +1)a)n−δ], the final aggregate φ-score of

its descendants at time a (counting the parent) is estimated by the expected aggregate φ-

score of a degree zero parent and its descendants tracked till time a− ((i +1)a)n−δ, which

equals m
φ

f1

(
a − (i+1)a

nδ

)
. For this approximation to be valid, we need to show that the total

number of bad vertices defined above is small in an appropriate sense. In fact, a number of

lemmas below are ‘continuity estimates’ that validate this discrete approximation. These

lemmas are very general and are also used in subsequent sections. As the expected num-

ber of children born in the time interval [i an−δ, ((i+1)a)n−δ] to a vertex having degree k at

time zero equals µ(k)
f1

[
i a
nδ , (i+1)a

nδ

]
, and there are Dn(k ,0) degree k vertices at time zero, Z

φ
n

is thus estimated by the Riemann sum
∑∞

k=0
Dn (k ,0)

∑nδ−1
i=0

m
φ

f1

(
a − (i+1)a

nδ

)
µ(k)

f1

[
i a
nδ , (i+1)a

nδ

]
.

This Riemann sum can then be shown to be close to
∑∞

k=0
Dn (k ,0)λ

φ

k
.

We fix a characteristic φ ∈ C throughout the proof. The main tools used are Lemmas

7.10, 7.11 below. We will need a number of supporting results which we now embark upon.

For the rest of this section we write C1,C2,C3,C4,C ,C ′,c , a0 for generic non-random con-

stants which are independent of a,n,δ,k , whose values might change between lines and

inequalities. We start with a technical lemma controlling the number of children a vertex

with degree k at time 0 can produce within a fixed interval.

LEMMA 7.2. For any k ≥ 0 and any interval [b,b +η] ⊆ [0, a],

E

[
ξ(k)

f1
[b,b +η]

]
≤C1eC2a(k +1)η, E

[
ξ(k)

f1
[b,b +η]2

]
≤C3eC4a

{
(k +1)2η2 + (k +1)η

}
.

PROOF. By Assumption 2.4(i), the process
{

U (t ) := ξ(k)
f1

(t/C ) : t ≥ 0
}

is stochastically

dominated by the offspring process {Pk(t ) : t ≥ 0} of a rate 1 affine k PA model (see Defini-

tion 6.1), namely a point process constructed using attachment function f (k)(i ) = k +1+ i

for i ≥ 0 with initial condition Pk(0) = 0. From the first moment computed in Lemma 6.4

(with ν = 1 and κ = k) we obtain E(Pk(t )) = (1+k)(e t − 1). We show how to use the first

moment of Pk(·) to obtain the first assertion in the lemma. The second assertion follows

from the same argument using the second moment of Pk(·) which is also obtained from

Lemma 6.4. Conditioning on ξ(k)
f1

(b) and using the Markov property we get,

(7.2) Eξ(k)
f1

[b,b +η] =
∞∑

d=0

P

(
ξ(k)

f1
(b) = d

)
Eξ(k+d)

f1
(η)

Now for any fixed k ≥ 0 and t ≤ a, using domination by the corresponding linear PA pro-

cess, we get

(7.3) E[ξ(k)
f1

(t )] ≤ E(Pk(tC )) = e tC (1+k)(1−e−tC ) ≤ eC aC (1+k)t .

Using this bound twice in (7.2) gives,

Eξ(k)
f1

[b,b+η] ≤C eC aη
∞∑

d=0

P

(
ξ(k)

f1
(b) = d

)
(1+k+d) =C eC aη(1+k+E(ξ(k)

f1
(b))) ≤C ′eC ′′a(k+1)η

where C ′,C ′′ are constants that do not depend on k , a. This completes the proof. ■
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Recall from Section 7.2 (ii) the random variable N (k)
n (i , j )

d= ξ(k)

f1

[
i an−δ, (i +1)an−δ]. Us-

ing Lemma 7.2 now gives the following result.

COROLLARY 7.3. For all 1 ≤ j ≤ Dn (k ,0), E(N (k)
n (i , j )) ≤C1eC2a(k +1)n−δ and

E

[
N (k)

n (i , j )2
]
≤C3eC4a

{
(k +1)2n−2δ+ (k +1)n−δ}.

The next Lemma bounds the number of “bad” vertices and their descendants born

within small intervals.

LEMMA 7.4. For any k , i , j , E(R (k)
n (i , j )) ≤C1eC2a(k +1)n−2δ.

PROOF. For every child u ∈ V
(k)

n (i , j ), write BP(·;u) for the branching process lineage

emanating from u. Conditional on V
(k)

n (i , j ), using Assumption 2.4(i) on f1, generate a col-

lection of independent rate C affine 0 linear PA branching processes (see Definition 6.1){
Yℓ : 1 ≤ ℓ≤ |V (k)

n (i , j )|
}

such that |BP(·;u)| ≤ |Yℓ(·)|. Now note that Xℓ(t ) := |Yℓ(t )|−1 is the

number of descendants of the root for this branching process by time t . Using this con-

struction we have the trivial inequality R (k)
n (i , j ) ≤∑N (k)

n (i , j )

ℓ=1
Xℓ

[
0, an−δ] . This implies

E(R (k)
n (i , j )) ≤ E(N (k)

n (i , j ))E
(

X1

[
0, an−δ

])
.

The lemma follows from this bound upon using Corollary 7.3 for moments of N (k)
n (i , j ) and

(6.1) for moments of X1

[
0, an−δ]. ■

The next lemma bounds fluctuations of aggregate φ-scores of good descendants of an-

cestors who were of degree k at the change point.

LEMMA 7.5. For any k ≥ 0, Var
(

Z̃
(k),φ
n

)
≤C eC ′a

(
(k +1)2n−δ+ (k +1)

)
Dn (k ,0).

PROOF. By construction we have

Var
(

Z̃
(k),φ
n

)
= Var




Dn (k ,0)∑

j=1

nδ−1∑

i=0

∑

x∈Ṽ
(k)

n (i , j )

Z
(k),φ
n (i , j , x)


(7.4)

= Dn(k ,0)Var




nδ−1∑

i=0

∑

x∈Ṽ
(k)

n (i ,1)

Z
(k),φ
n (i ,1, x)


 .(7.5)

We analyze the variance term on the right by first conditioning on Gn . Note that,

E


Var




nδ−1∑

i=0

∑

x∈Ṽ
(k)

n (i ,1)

Z
(k),φ
n (i ,1, x)

∣∣∣Gn




= E

[
nδ−1∑

i=0

Ñ (k)
n (i ,1)v

φ

f1

(
a − (i +1)an−δ

)]

≤C1eC2a(k +1)n−δnδ
E(Z 2

f1
(a)) ≤C eC ′a(k +1).(7.6)

The first equality comes from noting that Ṽ
(k)

n (i ,1) is Gn measurable, the collection

{Z
(k),φ
n (i ,1, x) | x ∈ Ṽ

(k)
n (i ,1),1 ≤ i ≤ nδ− 1} are conditionally independent given Gn and

further, conditionally on Gn , for each 0 ≤ i ≤ nδ−1 and x ∈ Ṽ
(k)

n (i ,1), Z
(k),φ
n (i ,1, x) is dis-

tributed as Z
φ

f1

(
a − (i +1)an−δ), since x has no children by time (i +1)an−δ. The second
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inequality follows by using Corollary 7.3 for N (k)
n (i ,1) and (7.1). Similarly

(7.7) Var


E




nδ−1∑

i=0

∑

x∈Ṽ
(k)

n (i ,1)

Z
(k),φ
n (i ,1, x)

∣∣∣Gn





= Var

(
nδ−1∑

i=0

Ñ (k)
n (i ,1)m

φ

f1

(
a − (i +1)an−δ

))

≤ 4c2
(
E(Z f1 (a))

)2
nδ−1∑

i=0

E

[(
Ñ (k)

n (i ,1)
)2

]
≤C eC ′a

(
(k +1)2n−δ+ (k +1)

)
.

Here we use Corollary 7.3 in the second inequality. Using (7.6) and (7.7) to bound the vari-

ance term in the right of (7.5) completes the proof. ■

The next lemma provides tight bounds on expectations of aggregate φ-scores of de-

scendants of good vertices. Recall µ(k)

f1
denotes the mean measure for the offspring process

of a vertex which had degree k at the change point.

LEMMA 7.6. For any k ≥ 0,

εn :=
∣∣∣∣∣E

[
Z̃

(k),φ
n

]
−Dn (k ,0)

nδ−1∑

i=0

m
φ

f1

(
a − (i +1)an−δ

)
µ(k)

f1

[
i an−δ, (i +1)an−δ

]∣∣∣∣∣

≤C eC ′a(k +1)Dn (k ,0)n−δ.

PROOF. First note,

E

[
Z̃

(k),φ
n

]
=

nδ−1∑

i=0

Dn (k ,0)∑

j=1

E


 ∑

x∈Ṽ
(k)

n (i , j )

Z
(k),φ
n (i , j , x)




=
nδ−1∑

i=0

Dn(k ,0)E


E


 ∑

x∈Ṽ
(k)

n (i ,1)

Z
(k),φ
n (i ,1, x)

∣∣∣Gn







= Dn (k ,0)
nδ−1∑

i=0

m
φ

f1

(
a − (i +1)an−δ

)
E

[
Ñ (k)

n (i ,1)
]

.

Here the third equality follows from the fact that Ṽ
(k)

n (i ,1) is Gn measurable and for

fixed i and, conditional on Gn , for each x ∈ Ṽ
(k)

n (i ,1), Z
(k),φ
n (i , j , x)

d= Z
φ

f1

(
a − (i +1)a/nδ

)
.

Applying equation (7.1), the error term εn in the statement of the lemma can be bounded

as,

(7.8) εn ≤ 2cDn(k ,0)m f1
(a)

nδ−1∑

i=0

E

[
N (k)

n (i ,1)− Ñ (k)
n (i ,1)

]
.

Next using that the total number of descendants of bad vertices in an interval bounds the

number of bad vertices in this interval since each bad vertex has at least one child, we get

using Lemma 7.4,

0 ≤ E

[
N (k)

n (i ,1)− Ñ (k)
n (i ,1)

]
= E[B (k)

n (i ,1)] ≤ E[R (k)
n (i , j )] ≤C1eC2a(k +1)n−2δ.

Using this and (7.1) in (7.8) completes the proof. ■

LEMMA 7.7. There exists a positive constant a0 < ∞ independent of n,δ such that for

k ≥ 0 and a ≤ δ
a0

log n,

E

[
Z

(k),φ
n − Z̃

(k),φ
n

]
≤C eC ′an−δ(k +1)Dn (k ,0).
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PROOF.

(7.9) E

[
Z

(k),φ
n − Z̃

(k),φ
n

]
≤ E




Dn (k ,0)∑

j=1

nδ−1∑

i=0

∑

x∈V
(k)

n (i , j )

Z (k),φ(i , j , x)1 {Bx}




= Dn (k ,0)
nδ−1∑

i=0

E


 ∑

x∈V
(k)

n (i ,1)

Z (k),φ(i ,1, x)1 {Bx}


 ,

where Bx is the event that the vertex x is bad namely has one or more descendants in the

interval that it was born. Now, recalling that φ ∈ C , note that for a fixed i , conditional on

the number of births N (k)
n (i ,1), we have

(7.10)
∑

x∈V
(k)

n (i ,1)

Z (k),φ(i ,1, x)1 {Bx} ¹st

N (k)
n (i ,1)∑

l=1

2bφ|PA(l )[0, a]|1
{
B̃l

}
,

where
{

PA(l ) : l ≥ 1
}

is a collection of linear PA branching processes with parameters ν=C

and κ = 0 (independent of N (k)
n (i ,1)) and B̃l :=

{∣∣PA(l )
[
0, a/nδ

]∣∣≥ 2
}

, namely the root of

PA(l ) has at least one child by time a/nδ (here C can be taken to be the same constant

appearing in Assumption 2.4(i)). Using this in (7.9) implies,

(7.11) E

[
Z

(k),φ
n − Z̃

(k),φ
n

]
≤ 2cDn(k ,0)

nδ−1∑

i=1

E(N (k)
n (i ,1))E(|PA(1)[0, a]|1

{
B̃1

}
).

Conditioning on the number of births Y (a/nδ) of the root of PA(1) in [0, a/nδ] and by the

Markov property,

E(|PA(1)[0, a]|1
{
B̃1

}
) ≤

∞∑

j=1

P

(
Y

(
an−δ

)
= j

)
E(PA(1),j [0, a]),

where PA(1),j is a modified linear PA process with ν = C ,κ = 0 with the modification that

the offspring process of the root of PA(1),j is constructed using attachment function f (i ) :=
C ( j + i +1) for i ≥ 0. Comparing rates, it is easy to see that for each j ≥ 1, PA(1),j [0, a] ¹st

U j (a), where U j (a) is constructed by first running a linear PA process PAν,κ with ν=C and

κ = C j and then setting U j (a) = |PAν,κ[0, a]|. By Lemma 6.3 for Y (a/nδ) and Proposition

6.5 for E(U j (a)), we get a0 > 0 such that whenever a ≤ δ
a0

logn,

(7.12) E(|PA(1)[0, a]|1
{
B̃1

}
) ≤

∞∑

j=1

(
C an−δ

) j
ea(2C+C j ) ≤C eC ′an−δ.

In (7.11), using this bound and using Corollary 7.3 for E(N (k)
n (i ,1)) completes the proof. ■

LEMMA 7.8. For any k ≥ 0, whenever a ≤ δ
a0

log n,

̟n := E

∣∣∣∣∣Z
φ
n −

∞∑

k=0

Dn (k ,0)
nδ−1∑

i=0

m
φ

f1

(
a − (i +1)an−δ

)
µ(k)

f1

[
i an−δ, (i +1)an−δ

]∣∣∣∣∣

≤C eC ′a

(
n1−δ+

p
n +n−δ/2

(
∞∑

k=1

(k +1)2Dn (k ,0)

)1/2)
.
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PROOF. We can write ̟n :=̟(1)
n +̟(2)

n +̟(3)
n where ̟(1)

n := Z
φ
n − Z̃

φ
n , ̟(2)

n := Z̃
φ
n −E(Z̃

φ
n ) and

̟(3)
n := E(Z̃

φ
n )−

∞∑

k=0

Dn(k ,0)
nδ−1∑

i=0

m
φ

f1

(
a − (i +1)an−δ

)
µ(k)

f1

[
i an−δ, (i +1)an−δ

]
.

Now fix ε> 0. Using Lemma 7.7 we get,

(7.13) E(|̟(1)
n |) ≤C eC ′an−δ

∞∑

k=0

(k +1)Dn (k ,0)≤ 2γC eC ′an1−δ,

since
∑∞

k=1
(k + 1)Dn(k ,0) = 2γn − 1 for tree Tnγ. Next using Lemma 7.5 and Jensen’s in-

equality,

E
(
|̟(2)

n |
)
≤C eC ′a

(
∞∑

k=1

(
(k +1)2n−δ+ (k +1)

)
Dn(k ,0)

)1/2

≤C eC ′a

(
n−δ/2

(
∞∑

k=1

(k +1)2Dn (k ,0)

)1/2

+
p

n

)
.(7.14)

Finally using Lemma 7.6 gives,

(7.15) |̟(3)
n | ≤C eC ′a

∞∑

k=0

(k +1)Dn (k ,0)n−δ ≤C eC ′an1−δ.

Combining (7.13), (7.14) and (7.15) completes the proof. ■

The next lemma establishes Lipschitz continuity of m
φ

f1
(t ) in t for any φ ∈C .

LEMMA 7.9. For any k ≥ 0 and any η ∈ [0,1], supt∈[0,a] |m
φ

f1
(t +η)−m

φ

f1
(t )| ≤C eC ′aη.

PROOF. Let τ̄1 be the time of the first birth for the branching process with attachment

function f1. For any t ∈ [0, a] and η ∈ [0,1], using the Markov property at time η, we obtain

(7.16) m
φ

f1
(t +η) = E

[
Z

φ

f1
(t +η)

]
= E

[
Z

φ

f1
(t +η)1

(
τ̄1 > η

)]
+E

[
Z

φ

f1
(t +η)1

(
τ̄1 ≤ η

)]

= E

[
Z

φ

f1
(t )

]
E
[
1

(
τ̄1 > η

)]
+E

[
Z

φ

f1
(t +η)1

(
τ̄1 ≤ η

)]
= m

φ

f1
(t )(1−P

(
τ̄1 ≤ η

)
)+E

[
Z

φ

f1
(t +η)1

(
τ̄1 ≤ η

)]
.

Using the strong Markov property at τ̄1, we can write the second term above as

E

[
Z

φ

f1
(t +η)1

(
τ̄1 ≤ η

)]
= E

[
E

(
Z

φ

f1
(t +η) |Fτ̄1

)
1

(
τ̄1 ≤ η

)]
, where Fτ̄1 denotes the associ-

ated stopped sigma field. Note that at time τ̄1, there are two vertices, one with degree one

and the other with degree zero. Thus, conditional on Fτ̄1 , for i = 1,2, if Ui (t ) is distributed

as the size of the linear PA process PAν,κi
with ν=C and κi =C (i −1) at time t (where C is

the same constant appearing in Assumption 2.4(i)), we have

E

(
Z

φ

f1
(t +η) |Fτ̄1

)
≤ 2c E

(
Z f1

(t +η) |Fτ̄1

)
≤ 2c E(U1(a +1)+U2(a +1)) ≤C eC ′a

for constants C ,C ′ not depending on η, a, t , where we used Proposition 6.5 to get the last

inequality. Using this bound and (7.1) in (7.16), we obtain

|mφ

f1
(t +η)−m

φ

f1
(t )| =

∣∣∣−m
φ

f1
(t )P

(
τ̄1 ≤ η

)
+C eC ′a

P
(
τ̄1 ≤ η

)∣∣∣≤ 2C eC ′a
P

(
τ̄1 ≤ η

)
≤C ′′eC ′aη

for a constant C ′′ not depending on η, a, t , where the last equality comes from the fact

τ̄1 ∼ Exp( f1(0)). ■
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LEMMA 7.10. Recall λ
φ

k
=

∫a
0 m

φ

f1
(a − s)µ(k)

f1
(d s). For any k ≥ 0, whenever a ≤ δ

a0
logn,

E

∣∣∣∣∣Z
φ
n −

∞∑

k=0

Dn (k ,0)λ
φ

k

∣∣∣∣∣≤C eC ′a

(
n1−δ+

p
n +n−δ/2

(
∞∑

k=1

(k +1)2Dn (k ,0)

)1/2)
.

PROOF. By Lemma 7.8 it is enough to show, for positive constants C ,C ′ not depending

on a,n,δ,

(7.17)

̟∗
n :=

∣∣∣∣∣
∞∑

k=0

Dn (k ,0)λ
φ

k
−

∞∑

k=0

Dn(k ,0)
nδ−1∑

i=0

m
φ

f1

(
a −

(i +1)a

nδ

)
µ(k)

f1

[
i a

nδ
,

(i +1)a

nδ

]∣∣∣∣∣≤C eC ′an1−δ.

Using Lemma 7.9,

̟∗
n ≤

∞∑

k=0

Dn (k ,0)

∫a

0

nδ−1∑

i=0

∣∣∣∣m
φ

f1
(a − s)−m

φ

f1

(
a −

(i +1)a

nδ

)∣∣∣∣1
(

s ∈
[

i a

nδ
,

(i +1)a

nδ

])
µ(k)

f1
(d s)

≤C eC ′an−δ
∞∑

k=0

Dn (k ,0)

∫a

0

nδ−1∑

i=0

1

(
s ∈

[
i a

nδ
,

(i +1)a

nδ

])
µ(k)

f1
(d s) =C eC ′an−δ

∞∑

k=0

Dn (k ,0)µ(k)
f1

[0, a]

≤ (C eC ′a)2an−δ
∞∑

k=0

(k +1)Dn (k ,0)= (C eC ′a)2an−δ(2γn −1),

where the last inequality uses Lemma 7.2 and the last equality uses
∑∞

k=0
(k +1)Dn (k ,0) =

2γn −1. ■

LEMMA 7.11. Let φ ∈C . As n →∞, n−1 ∑∞
k=1

Dn (k ,0)λ
φ

k

a.s.−→γ
∑∞

k=1
p0

k
λ
φ

k
.

PROOF. Let χ be the characteristic χ(t ) =
∑∞

k=0
λ
φ

k
1

{
ξ f0 (t ) = k

}
. Note by equation (7.1)

and Lemma 7.2 that λ
φ

k
≤C eC ′a(k +1) and thus χ ∈C . Now apply Lemma 6.6 (i). ■

Completing the proof of Theorem 7.1: By letting δ→∞ and keeping n ≥ 2 fixed in Lemma

7.10, the first claim follows. Lemma 7.11 then gives the second claim.

8. Proofs: Sup-norm convergence of degree distribution for the standard model.

We will assume throughout this section that f0, f1 satisfy Assumption 2.4.

8.1. Proof of Theorems 3.8 and 3.11. Here we prove convergence results for the em-

pirical degree distribution post change-point. As before, time starts at the change point,

i.e. t = 0 represents the time Tγn . We focus on the characteristic φ(t ) = 1
{
ξ f1

(t ) = k
}

for

fixed k ≥ 0 and denote the corresponding Z
φ

f1
and m

φ

f1
by Z (k)

f1
and m(k)

f1
. BPn(t ) denotes

the branching process at time t (i.e. t time units after the change point).

8.1.1. Notation. We will use the following notation for fixed t ≥ 0 in this section.

(i) Recall nγ is the number of vertices born before the change point. Let ZAC ,n(t ) := num-

ber of vertices at time t who were born after the change point. Zn(t ) := nγ+ ZAC ,n(t )

denotes the total number of vertices in the system at time t .

(ii) Let D
BC
n (k , t ) be the set of vertices with degree k at time t who were born before the

change point Tγn . Let DBC
n (k , t ) = |DBC

n (k , t )|. Similarly, let D
AC
n (k , t ) be the set of ver-

tices with degree k at time t who were born after the change point. Let D AC
n (k , t ) =

|DAC
n (k , t )|. Let Dn (k , t )= DBC

n (k , t )+D AC
n (k , t ) be the total number of vertices with de-

gree k at time t .
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(iii) Let λAC
ℓ

(t ) =
∫t

0 m f1
(t − s)µ(ℓ)

f1
(d s) and λAC ,(k)

ℓ
(t ) =

∫t
0 m(k)

f1
(t − s)µ(ℓ)

f1
(d s). Let λℓ(t ) =

1+λAC
ℓ

(t ) and λ(k)
ℓ

(t ) =P

(
ξ(ℓ)

f1
(t ) = k −ℓ

)
+λAC ,(k)

ℓ
(t ).

(iv) Let qk (t ) :=P

(
ξ(k)

f1
(t )> 1

)
.

The following is the main theorem proved in this section. As will be seen below, Theorems

3.8 and 3.11 are consequences of this theorem.

THEOREM 8.1. For any k ≥ 0, a > 0, ǫ> 0, as n →∞,

P

(
sup

t∈[0,a]

∣∣∣∣∣Dn (k , t )−n
∞∑

ℓ=0

γp0
ℓλ

(k)
ℓ

(t )

∣∣∣∣∣> ǫn

)
→ 0, P

(
sup

t∈[0,a]

∣∣∣∣∣Zn(t )−n
∞∑

ℓ=0

γp0
ℓλℓ(t )

∣∣∣∣∣> ǫn

)
→ 0.

Assuming the above result for the time being, we now describe how Theorem 8.1 (cou-

pled with a technical continuity result, Lemma 8.4) is enough to prove Theorems 3.8 and

3.11. Recall for m ≥ 1, Tm = inf {t ≥ 0 : |BPn(t )| = m}.

COROLLARY 8.2. Let G(t ) :=
∑∞

ℓ=0
p0
ℓ
λAC
ℓ

(t ), t ≥ 0. For any s ∈ [γ,1], let as be the unique

solution to G(as) = (s −γ)/γ. Then for any s ∈ [γ,1], supt∈[γ,s]

∣∣T⌊t n⌋−at

∣∣ P−→ 0 as n →∞.

PROOF. As f1 is a strictly positive function, it is easy to see that G(t ) is strictly increasing

in t and G(γ) = 0. By Lemma 8.4 proved below, G (hence G−1) is continuous. Moreover

since m f1
(t ) ≥ 1 and λAC

ℓ
(t ) ≥µ(ℓ)

f1
(t ) ↑∞ we see G(t )→∞ as t →∞. Therefore G(as) = s−γ

γ

has a unique solution for s ∈ [γ,1].

Next fix s ∈ [γ,1] and let as be as above. For any η > 0, choosing ǫ = G(as+η)−G(as )
2γ , the

second assertion in Theorem 8.1 readily implies P(Zn(as +η) > sn + 1) → 1. Similarly, it

follows that P(Zn(as −η) < sn − 1) → 1. Therefore, T⌊sn⌋
P−→ as . From this, Theorem 8.1,

and the definition of G , λ(ℓ), we conclude that
1
n

supt∈[0,T⌊sn⌋]

∣∣Zn(t )−γn (1+G(t ))
∣∣ P−→ 0 which implies supt∈[γ,s]

∣∣∣ t−γ
γ

−G(T⌊t n⌋)
∣∣∣ P−→ 0. By

continuity of G−1, this implies supt∈[γ,s]

∣∣∣G−1
(

t−γ
γ

)
−T⌊t n⌋

∣∣∣ P−→ 0 which proves the corol-

lary. ■

PROOF OF THEOREM 3.8. Fix s ∈ [γ,1]. It follows from Lemma 8.4 and Corollary 8.6

proved below that t 7→Φt

(
p0

)
is continuous and hence, from Corollary 8.2 for each fixed

k ≥ 0,

(8.1) sup
t∈[γ,s]

∣∣∣
(
ΦT⌊t n⌋

(
p0

))
k
−

(
Φat (p0)

)
k

∣∣∣ P−→ 0.

It is easy to see that

(8.2) sup
t∈[γ,s]

∣∣∣∣
Dn(k ,T⌊t n⌋)

tn
−

(
ΦT⌊t n⌋(p0)

)
k

∣∣∣∣

≤
1

γn

(
sup

t∈[0,Tsn ]

∣∣∣∣∣Dn (k , t )−n
∞∑

ℓ=0

γp0
ℓλ

(k)
ℓ

(t )

∣∣∣∣∣+ sup
t∈[0,Tsn ]

∣∣∣∣∣Zn(t )−n
∞∑

ℓ=0

γp0
ℓλℓ(t )

∣∣∣∣∣

)
P−→ 0.

The theorem follows from (8.1) and (8.2). ■

PROOF OF THEOREM 3.11. Follows immediately from Theorem 3.8. ■
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Proof of Theorem 8.1: The rest of this Section is devoted to the proof of this result.

We start with a brief outline of the proof. We start by partitioning the interval [0, a]

into subintervals [t j , t j+1]
1≤ j≤anθ̃−1

and showing by means of some continuity estimates

that Dn(k , t ) and Zn(t ) do not vary too much as t varies within each such subinterval

(see Lemmas 8.8 and 8.10). We then use Theorem 7.1 (for vertices born post-change

point) and a variance computation (8.17) (for vertices born pre-change point) to show

that
∣∣∣Dn (k , t )−∑∞

ℓ=0
Dn (ℓ,0)λ(k)

ℓ
(t )

∣∣∣ and
∣∣Zn(t )−∑∞

ℓ=0
Dn(ℓ,0)λℓ(t )

∣∣ are small for each

t = t j . This, combined with the continuity estimates, implies that the above quanti-

ties are small uniformly for all t ∈ [0, a] for appropriately chosen partitions. Finally, a

law of large numbers type argument along with continuity estimates is used to show∣∣∣ 1
n

∑∞
ℓ=0

Dn(ℓ,0)λ(k)
ℓ

(t )−γ
∑∞

ℓ=0
p0
ℓ
λ(k)
ℓ

(t )
∣∣∣ and

∣∣ 1
n

∑∞
ℓ=0

Dn(ℓ,0)λℓ(t )−γ
∑∞

ℓ=0
p0
ℓ
λℓ(t )

∣∣ are

uniformly small in t , which proves Theorem 8.1.

For the remaining portion of this section C ,C ′,C ′′,n0 will denote generic positive con-

stants not depending on n, a,k ,ℓ, t whose values might change from line to line and be-

tween inequalities.

LEMMA 8.3. qk(t ) ≤ C (k +1)t where C is the constant appearing in Assumption 2.4(i)

on f1.

PROOF. Let τ̄k
1 be the time of the first birth to a vertex started with degree k . Note τ̄k

1 ∼
Exp( f1(k)). Thus P(τ̄k

1 < t ) = 1− e− f1(k)t ≤ f1(k)t ≤ C (k + 1)t . The final inequality comes

from Assumption 2.4(i) on f1. ■

LEMMA 8.4. For any ℓ,k ≥ 0 and t , t + s ≤ a,

|λℓ(t + s)−λℓ(t )| ≤C eC ′a(ℓ+1)s, |λAC ,(k)
ℓ

(t + s)−λAC ,(k)
ℓ

(t )| ≤C eC ′a(ℓ+1)s.

PROOF. We will only prove the first inequality. The second one follows similarly.

|λℓ(t + s)−λℓ(t )| ≤
∫t

0

∣∣m f1
(t + s −x)−m f1

(t −x)
∣∣µ(ℓ)

f1
(d x)+

∫t+s

t
m f1

(t + s −x)µ(ℓ)
f1

(d x)

≤C eC ′a s E
[
ξ(ℓ)

f1
[0, t ]

]
+C eC ′am f1

(t + s)E
[
ξ(ℓ)

f1
[t , t + s]

]
≤C e2C ′a a(ℓ+1)s +C e2C ′a(ℓ+1)s

where the second inequality uses Lemma 7.9 and the third inequality uses Lemma 7.2 and

(7.1). ■

LEMMA 8.5. For k ≥ ℓ and t , t + s ≤ a,
∣∣∣P

(
ξ(ℓ)

f1
(t + s) = k −ℓ

)
−P

(
ξ(ℓ)

f1
(t ) = k −ℓ

)∣∣∣ ≤
C eC ′a(k +1)s.

PROOF. We prove this inequality in two steps. By repeated applications of the Markov

property, Markov’s inequality and Lemma 7.2,

P

(
ξ(ℓ)

f1
(t + s) = k −ℓ

)

=
k−ℓ−1∑

d=0

P

(
ξ(ℓ)

f1
(t ) = d

)
P

(
ξ(d+ℓ)

f1
(s) = k −ℓ−d

)
+P

(
ξ(ℓ)

f1
(t )= k −ℓ

)
P

(
ξ(k)

f1
(s) = 0

)

≤
k−ℓ−1∑

d=0

P

(
ξ(ℓ)

f1
(t ) = d

)
Eξ(d+ℓ)

f1
(s)+P

(
ξ(ℓ)

f1
(t ) = k −ℓ

)
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≤C eC ′a s
(
E

(
ξ(ℓ)

f1
(t )

)
+ℓ+1

)
+P

(
ξ(ℓ)

f1
(t ) = k −ℓ

)

≤C ′′e2C ′a(ℓ+1)s +P

(
ξ(ℓ)

f1
(t ) = k −ℓ

)
.

We now show the opposite inequality.

P

(
ξ(ℓ)

f1
(t + s) = k −ℓ

)
≥P

(
ξ(ℓ)

f1
(t ) = k −ℓ

)
P

(
ξ(k)

f1
(s) = 0

)
=P

(
ξ(ℓ)

f1
(t ) = k −ℓ

)(
1−P

(
ξ(k)

f1
(s) ≥ 1

))

Thus

P

(
ξ(ℓ)

f1
(t + s) = k −ℓ

)
−P

(
ξ(ℓ)

f1
(t ) = k −ℓ

)
≥−P

(
ξ(ℓ)

f1
(t ) = k −ℓ

)
P

(
ξ(k)

f1
(s) ≥ 1

)

≥−Eξ(k)
f1

(s) ≥−C eC ′a(k +1)s.

The second inequalityuses Markov’s inequality and the last inequality comes from Lemma

7.2. ■

An immediate consequence of Lemmas 8.4 and 8.5 is

COROLLARY 8.6. For any k ,ℓ> 0 and t , t +s < a, |λ(k)
ℓ

(t +s)−λ(k)
ℓ

(t )| ≤C eC ′a(k+ℓ+2)s.

COROLLARY 8.7. For any k and t , t+s < a,
∑∞

ℓ=0
Dn(ℓ,0)|λ(k)

ℓ
(t+s)−λ(k)

ℓ
(t )| ≤C eC ′a(k+

3)sn.

PROOF. By the above Corollary 8.6 (with k fixed)

∞∑

ℓ=0

Dn (ℓ,0)|λ(k)
ℓ

(t )−λ(k)
ℓ

(t + s)| ≤C eC ′a s
∞∑

ℓ=0

(k +ℓ+2)Dn (ℓ,0) ≤C eC ′a(k +3)sγn

since
∑∞

ℓ=0
Dn (ℓ,0) = γn and

∑∞
ℓ=0

ℓDn (ℓ,0) = γn −1. ■

For the rest of this section, unless specified otherwise, we always work conditional

on Fn(0) so that expectation operations such as P(·), E(·) and Var(·) in the ensuing results

mean P(·|Fn (0)), E(·|Fn (0)) and Var(·|Fn (0)) respectively.

We will use Theorem 7.1 crucially in what follows for two significant characteristics.

Taking φ(t ) = 1 {t ≥ 0} in Theorem 7.1, there exist deterministic positive constants C ,C ′ <
∞ independent of a,n such that for every n ≥ 2,

(8.3) sup
t∈[0,a]

E

∣∣∣ZAC ,n(t )−
∞∑

k=0

Dn (k ,0)λAC
k (t )

∣∣∣<C eC ′apn.

Taking any k ≥ 0 and setting φ(t ) =1
{
ξ f1 (t ) = k

}
in Theorem 7.1, there exist deterministic

positive constants C ,C ′ <∞ independent of a,n,k such that for every n ≥ 2,

(8.4) sup
t∈[0,a]

E

∣∣∣D AC
n (k , t )−

∞∑

ℓ=0

Dn (ℓ,0)λAC ,(k)
ℓ

(t )
∣∣∣<C eC ′apn.

Take any θ̃ ∈ (0,1/2). Take ω ∈ (0,1) such that ω> max
(
1− θ̃, 1

2
+ θ̃

)
. Now let {ti }nθ̃−1

i=0
be an

equispaced partition of [0, a] of mesh an−θ̃.

LEMMA 8.8. Let {t j }, θ̃ and ω be as above. Fix ǫ ∈ (0,1) and k. Then we have

nθ̃−1∑

j=0

P

(
sup

t∈[t j ,t j+1]
|Dn (k , t )−Dn (k , t j )| > ǫnω

)
≤C eC ′aǫ−2n−(ω−θ̃− 1

2 ).
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PROOF. Condition on Fn (t j ). Fix j and consider t ∈ [t j , t j+1]. We clearly have the fol-

lowing lower bound on Dn(k , t ):

Dn (k , t )≥ Dn (k , t j )−Y1

where Y1 is the number of degree k vertices at time t j which have given birth by time

t j+1. Note that Y1
d= Bin

(
Dn (k , t j ), qk (an−θ̃)

)
. We also have the following upper bound on

Dn (k , t ):

(8.5) Dn(k , t ) ≤
(
ZAC ,n(t j+1)−ZAC ,n (t j )

)
+Y2 +Dn (k , t j )

where Y2 denotes the number of vertices existing at time t j of degree strictly less than k

which have given birth by time t j+1. Note that Y2
d=

∑k−1
ℓ=0

Bin
(
Dn (ℓ, t j ), qℓ

(
an−θ̃

))
. To see

this upper bound, note that the degree k vertices at time t originate from vertices either

existing at time t j or new vertices born in the time interval [t j , t ]. The latter is bounded

by ZAC ,n(t j+1) − ZAC ,n(t j ), namely, the total number of new births in the time interval

[t j , t j+1]. The former is bounded by the sum of the number of vertices which are of de-

gree k at time t j and have not given birth by time t (which is bounded by Dn(k , t j )) and

the number of vertices of lower degree at time t j which have grown to degree k at time t

(which is bounded by Y2). These two bounds give the following

|Dn (k , t )−Dn (k , t j )| ≤
(
ZAC ,n(t j+1)−ZAC ,n (t j )

)
+Y1 +Y2.

Note the right hand side does not depend on t . We now have for all 0 ≤ j ≤ nθ̃ − 1 and

t ∈ [t j , t j+1].

sup
j≤nθ̃−1

P

(
sup

t∈[t j ,t j+1]
|Dn (k , t )−Dn (k , t j )| > ǫnω

)

≤ sup
j≤nθ̃−1

[
P

(
k∑

ℓ=0

Bin
(
Dn

(
ℓ, t j

)
, qℓ

(
an−θ̃

))
> ǫnω/2

)
+P

(
|ZAC ,n(t j+1)−ZAC ,n (t j )| > ǫnω/2

)
]

≤C eC ′aǫ−2n
1
2−θ̃−ω+C eC ′aǫ−1n

1
2−ω

where the second inequality comes from Lemmas 8.9 and 8.10 which are proved below.

The result now follows after taking the sum of these terms. ■

LEMMA 8.9. Let {t j }, θ̃ and ω be as above and let ǫ ∈ (0,1). Then there exist constants

C ′′,n0 such that for all n ≥ n0 and all a ≤C ′′ log n,

sup
j≤nθ̃

P

(
k∑

ℓ=0

Bin
(
Dn(ℓ, t j ), qℓ

(
an−θ̃

))
> ǫnω/2

)
≤C eC ′aǫ−2n

1
2−θ̃−ω.

PROOF. Let A j =
{

Zn(t j ) <
(
γ+ǫ/8

)
nθ̃+ω

}
. Note

∑∞
ℓ=0

(ℓ+ 1)Dn (ℓ, t j ) = 2Zn(t j )− 1, so

on the event A j ,

(8.6)
∞∑

ℓ=0

(ℓ+1)Dn (ℓ, t j ) < 2
(
γ+ǫ/8

)
nθ̃+ω.

Applying Chebyshev’s inequality, on the event A j , we have

P

(
k∑

ℓ=0

Bin
(
Dn (ℓ, t j ), qℓ

(
an−θ̃

))
>

ǫ

2
nω

∣∣∣Fn (t j )

)
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≤
4

ǫ2n2ω

k∑

ℓ=0

Var
(
Bin

(
Dn (ℓ, t j ), qℓ

(
an−θ̃

))∣∣∣Fn (t j )
)

≤
4

ǫ2n2ω

k∑

ℓ=0

Dn (ℓ, t j )qℓ

(
an−θ̃

)(
1−qℓ

(
an−θ̃

))
≤

4

ǫ2n2ω

C a

nθ̃

k∑

ℓ=0

Dn(ℓ, t j )(ℓ+1)

≤
4

ǫ2n2ω

C a

nθ̃

[
2
(
γ+

ǫ

8

)
nθ̃+ω

]
≤

C ′a

ǫ2nω
(8.7)

for C ′ not depending on j , where the first inequality is from Chebyshev’s inequality the
third inequality is a consequence of Lemma 8.3, and the fourth inequality follows from
the definition of A j . We now have

(8.8) P

(
k∑

ℓ=0

Bin
(
Dn (ℓ, t j ), qℓ

(
an−θ̃

))
> ǫnω/2

)
≤

C ′a

ǫ2nω
+P

(
Zn(t j ) ≥

(
γ+ǫ/8

)
nθ̃+ω

)
.

Now, we control the second term above. By Lemma 7.2 (and the fact the integral is over a
bounded interval) λℓ(a) ≤C eC ′a(ℓ+1). As θ̃+ω> 1, we can clearly choose C ′′,n0 such that

for all n ≥ n0 and all a ≤C ′′ logn, ǫ
16 nθ̃+ω > (1+γ)C eC ′an. For such n, a,

∞∑

ℓ=0

Dn (ℓ,0)λℓ(t j ) ≤C eC ′a
∞∑

ℓ=0

(ℓ+1)Dn (ℓ,0) =C eC ′a(2γn −1) < ǫnθ̃+ω/16.

Consequently,

(8.9)

P

(
Zn(t j ) ≥

(
γ+

ǫ

8

)
nθ̃+ω

)
≤P

(
Zn(t j )−γn ≥

(
γ+

ǫ

8

)
nθ̃+ω−γn

)
≤P

(
Zn(t j )−γn >

ǫ

8
nθ̃+ω

)

=P

(
ZAC ,n(t j ) >

ǫ

8
nθ̃+ω

)
≤P

(∣∣∣∣∣ZAC ,n(t j )−
∞∑

ℓ=0

Dn (ℓ,0)λℓ(t j )

∣∣∣∣∣>
ǫ

16
nθ̃+ω

)

≤
16

ǫ

1

nθ̃+ω
E

∣∣∣∣∣ZAC ,n(t j )−
∞∑

ℓ=0

Dn (ℓ,0)λℓ(t j )

∣∣∣∣∣≤
16

ǫ
C eC ′a 1

nθ̃+ω− 1
2

for C ,C ′ not depending on j , where the last inequality comes from (8.3). (8.7) and (8.9)

and the fact that θ̃ < 1/2. The result now follows. ■

LEMMA 8.10. Let {t j }, θ̃ and ω be as above and let ǫ> 0. Then

sup
j≤nθ̃−1

P

(∣∣ZAC ,n(t j+1)−ZAC ,n (t j )
∣∣> ǫ

2
nω

)
≤C eC ′aǫ−1n

1
2−ω.

PROOF. Applying the triangle inequality,

∣∣ZAC ,n(t j+1)−ZAC ,n (t j )
∣∣≤

∣∣∣∣∣ZAC ,n(t j+1)−
∞∑

ℓ=0

Dn (ℓ,0)λℓ(t j+1)

∣∣∣∣∣+
∣∣∣∣∣ZAC ,n(t j )−

∞∑

ℓ=0

Dn(ℓ,0)λℓ(t j )

∣∣∣∣∣

+
∞∑

ℓ=0

Dn (ℓ,0)
∣∣λℓ(t j+1)−λℓ(t j )

∣∣ .

Note by Lemma 8.4 and the fact that t j+1 − t j = an−θ̃

(8.10)
∞∑

ℓ=0

Dn(ℓ,0)
∣∣λℓ(t j+1)−λℓ(t j )

∣∣≤C eC ′a a

nθ̃

∞∑

ℓ=0

Dn (ℓ,0)(ℓ+1) =C eC ′a a

nθ̃
(2γn−1) ≤C ′′aeC ′an1−θ̃.
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From equation (8.3) we get sup
j≤nθ̃−1

E

∣∣Zn(t j )−∑∞
ℓ=0

Dn (ℓ,0)λℓ(t j )
∣∣≤C eC ′apn. Putting

this all together, using (8.10), the fact that ω > (1− θ̃) and Markov’s inequality we get for

large enough n

P

(∣∣ZAC ,n(t j+1 −ZAC ,n(t j )
∣∣>

ǫ

2
nω

)
=P

(∣∣Zn(t j+1 −Zn (t j )
∣∣>

ǫ

2
nω

)

≤P

(∣∣∣∣∣Zn(t j )−
∞∑

ℓ=0

Dn (ℓ,0)λℓ(t j )

∣∣∣∣∣+
∣∣∣∣∣Zn(t j+1)−

∞∑

ℓ=0

Dn(ℓ,0)λℓ(t j+1)

∣∣∣∣∣>
ǫ

4
nω

)

≤ 2

ǫ
n−ω

(
E

∣∣∣∣∣Zn(t j )−
∞∑

ℓ=0

Dn(ℓ,0)λℓ(t j )

∣∣∣∣∣+E

∣∣∣∣∣Zn(t j+1)−
∞∑

ℓ=0

Dn (ℓ,0)λℓ(t j+1)

∣∣∣∣∣

)
≤ 2C eC ′aǫ−1n

1
2−ω

for C ,C ′ not depending on j , which proves the lemma. ■

LEMMA 8.11. There exist positive constants C ,C ′ such that for each k and ǫ ∈ (0,1),

P

(
sup

t∈[0,a]

∣∣∣∣∣Dn(k , t )−
∞∑

ℓ=0

Dn (ℓ,0)λ(k)
ℓ

(t )

∣∣∣∣∣> ǫ(k +1)nω

)
≤C eC ′aǫ−2nθ̃+ 1

2−ω

P

(
sup

t∈[0,a]

∣∣∣∣∣Zn(t )−
∞∑

ℓ=0

Dn (ℓ,0)λℓ(t )

∣∣∣∣∣> ǫnω

)
≤C eC ′aǫ−2nθ̃+ 1

2−ω.

PROOF. Fix k and ǫ ∈ (0,1). Note that

P

(
sup

t∈[0,a]

∣∣∣∣∣Dn (k , t )−
∞∑

ℓ=0

Dn (ℓ,0)λ(k)
ℓ

(t )

∣∣∣∣∣> ǫnω

)

≤
nθ̃−1∑

j=0

P

(
sup

t∈[t j ,t j+1]

∣∣∣∣∣Dn (k , t )−
∞∑

ℓ=0

Dn (ℓ,0)λ(k)
ℓ

(t )

∣∣∣∣∣> ǫnω

)

≤
nθ̃−1∑

j=0

[
P

(
sup

t∈[t j ,t j+1]

∣∣Dn (k , t )−Dn (k , t j )
∣∣>

ǫ

3
nω

)
+P

(∣∣∣∣∣Dn(k , t j )−
∞∑

ℓ=0

Dn (ℓ,0)λ(k)
ℓ

(t j )

∣∣∣∣∣>
ǫ

3
nω

)

+P

(
sup

t∈[t j ,t j+1]

∞∑

ℓ=0

Dn(ℓ,0)
∣∣∣λ(k)

ℓ
(t )−λ(k)

ℓ
(t j )

∣∣∣>
ǫ

3
nω

)]
.

(8.11)

By Lemma 8.8,

(8.12)
nθ̃−1∑

j=0

P

(
sup

t∈[t j ,t j+1]

∣∣Dn (k , t )−Dn (k , t j )
∣∣>

ǫ

3
nω

)
≤C eC ′aǫ−2nθ̃+ 1

2−ω.

By Corollary 8.7, sup
j≤nθ̃−1

supt∈[t j ,t j+1]

∑∞
ℓ=0

Dn (ℓ,0)
∣∣∣λ(k)

ℓ
(t )−λ(k)

ℓ
(t j )

∣∣∣ ≤ C eC ′a(k + γ +

2)n1−θ̃ and hence, as ω> 1− θ̃, there exists n0 not depending on k such that for all n ≥ n0,

(8.13)
nθ̃−1∑

j=0

P

(
sup

t∈[t j ,t j+1]

∞∑

ℓ=0

Dn (ℓ,0)
∣∣∣λ(k)

ℓ
(t )−λ(k)

ℓ
(t j )

∣∣∣>
ǫ(k +1)

3
nω

)
= 0.
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Finally we control the second term appearing in the sum (8.11). It is sufficient to show

(8.14) sup
j≤nθ̃

P

(∣∣∣∣∣Dn (k , t j )−
∞∑

ℓ=0

Dn (ℓ,0)λ(k)
ℓ

(t j )

∣∣∣∣∣> (ǫ/3)nω

)
≤C eC ′aǫ−2n

1
2−ω.

By the triangle inequality and definitions of Dn (k , t ), and λ(k)
ℓ

(t ), we see that for each fixed

j ,k ,
∣∣∣∣∣Dn (k , t j )−

∞∑

ℓ=0

Dn (ℓ,0)λ(k)
ℓ

(t j )

∣∣∣∣∣≤
∣∣∣∣∣D

BC
n (k , t j )−

k∑

ℓ=0

Dn(ℓ,0)P
(
ξ(ℓ)

f1
(t j ) = k −ℓ

)∣∣∣∣∣

+
∣∣∣∣∣D

AC
n (k , t j )−

∞∑

ℓ=0

Dn (ℓ,0)λAC ,(k)
ℓ

(t j )

∣∣∣∣∣ .(8.15)

By (8.4) and Markov’s inequality,

(8.16) sup
j≤nθ̃

P

(∣∣∣∣∣D
AC
n (k , t j )−

∞∑

ℓ=0

Dn (ℓ,0)λAC ,(k)
ℓ

(t j )

∣∣∣∣∣>
ǫ

6
nω

)
≤ 6C eC ′aǫ−1n

1
2−ω.

We now control the first term appearing in the bound in equation (8.15) by showing

(8.17) sup
t∈[0,a]

E

[(
DBC

n (k , t )−
k∑

ℓ=0

Dn(ℓ,0)P
(
ξ(ℓ)

f1
(t ) = k −ℓ

))2]
≤C n.

Fix k and t ∈ [0, a]. Define a collection of mutually independent random variables{
ξ(ℓ)

f1 ,m
(t ) | 1 ≤ m ≤ Dn(ℓ,0),0 ≤ ℓ≤ k

}
where ξ(ℓ)

f1 ,m
(t ) ∼ ξ(ℓ)

f1
(t ). Note that

DBC
n (k , t )

d=
k∑

ℓ=0

Dn (ℓ,0)∑

m=1

1

(
ξ(ℓ)

f1 ,m
(t ) = k −ℓ

)
,

i.e. a vertex that was born before the change point and was of degree ℓ at the change point

has to add k −ℓ new births to reach degree k at time t . Therefore,

E

[(
DBC

n (k , t )−
k∑

ℓ=0

Dn (ℓ,0)P
(
ξ(ℓ)

f1
(t ) = k −ℓ

))2]

= E

[(
k∑

ℓ=0

Dn (ℓ,0)∑

m=1

1

(
ξ(ℓ)

f1,m
(t ) = k −ℓ

)
−

k∑

ℓ=0

Dn (ℓ,0)P
(
ξ(ℓ)

f1
(t ) = k −ℓ

))2]

= E

[{
k∑

ℓ=0

Dn (ℓ,0)∑

m=1

(
1

(
ξ(ℓ)

f1 ,m
(t ) = k −ℓ

)
−P

(
ξ(ℓ)

f1
(t ) = k −ℓ

))}2]
.

Note that

k∑

ℓ=0

Dn (ℓ,0)∑

m=1

(
1

(
ξ(ℓ)

f1 ,m
(t ) = k −ℓ

)
−P

(
ξ(ℓ)

f1
(t ) = k −ℓ

))
d=

k∑

ℓ=0

Dn (ℓ,0)∑

m=1

Yℓ,m

Where the random variables
{
Yℓ,m | 1 ≤ m ≤ Dn (ℓ,0),0 ≤ ℓ≤ k

}
are mutually independent,

supported on [−1,1] and EYℓ,m = 0. Thus,

E

[(
k∑

ℓ=0

Dn (ℓ,0)∑

m=1

Yℓ,m

)2]
=

k∑

ℓ=0

Dn (ℓ,0)∑

m=1

E

[
Y 2
ℓ,m

]
≤C

k∑

ℓ=0

Dn (ℓ,0) =Cγn
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which proves (8.17). Using (8.17) and Chebychev’s inequality, we get

(8.18) sup
j≤nθ̃

P

(∣∣∣∣∣D
BC
n (k , t j )−

k∑

ℓ=0

Dn (ℓ,0)P
(
ξ(ℓ)

f1
(t j ) = k −ℓ

)∣∣∣∣∣> (ǫ/6)nω

)
≤Cǫ−2n1−2ω.

Using (8.16) and (8.18) in (8.15), we obtain (8.14). The first assertion in the lemma follows

by using (8.12), (8.13) and (8.14) in (8.11). The second assertion follows similarly upon

noting that ZAC ,n(t ) is increasing in t and using (8.3), Lemma 8.10 and the first bound in

Lemma 8.4. ■

Now, we proceed towards removing the conditioning on Fn(0) to complete the proof of

Theorem 8.1. We need the following Corollary to Lemma 7.11.

COROLLARY 8.12. Fix k ≥ 0, ǫ> 0 and let s1, . . . , sm ∈ [0, a] be m fixed time points. Then,

almost surely, there exists n0 ≥ 1 such that that for all n ≥ n0,

sup
1≤ j≤m

∣∣∣∣∣
1

n

∞∑

ℓ=0

Dn (ℓ,0)λ(k)
ℓ

(s j )−γ
∞∑

ℓ=0

p0
ℓλ

(k)
ℓ

(s j )

∣∣∣∣∣≤ ǫ,

sup
1≤ j≤m

∣∣∣∣∣
1

n

∞∑

ℓ=0

Dn (ℓ,0)λℓ(s j )−γ
∞∑

ℓ=0

p0
ℓλℓ(s j )

∣∣∣∣∣≤ ǫ.

PROOF. Follows from Lemma 7.11 and the union bound. ■

LEMMA 8.13. Let
{

pk( f ) : k ≥ 0
}

as in (3.1) be the asymptotic degree distribution using

attachment function f satisfying Assumption 2.4. Then
∑∞

k=0
kpk( f ) = 1.

PROOF. Recall that pk( f ) = tk−1 − tk where tk := ∏k
i=0

f (i )
λ∗+ f (i )

and λ∗ is the Malthusian

parameter for the corresponding preferential attachment branching process. Therefore,∑∞
k=1

kpk( f ) =
∑n

k=0
k(tk−1−tk ) =

∑∞
k=0

tk . By the definition of λ∗ and tk we see
∑∞

k=1
tk = 1,

proving the lemma. ■

LEMMA 8.14. For any k ≥ 0,

sup
t∈[0,a]

∣∣∣∣∣
1

n

∞∑

ℓ=0

Dn(ℓ,0)λ(k)
ℓ

(t )−γ
∞∑

ℓ=0

p0
ℓλ

(k)
ℓ

(t )

∣∣∣∣∣
a.s.−→ 0, sup

t∈[0,a]

∣∣∣∣∣
1

n

∞∑

ℓ=0

Dn (ℓ,0)λℓ(t )−γ
∞∑

ℓ=0

p0
ℓλℓ(t )

∣∣∣∣∣
a.s.−→ 0.

PROOF. Fix ǫ> 0. Let 0 = s1 < s2 < ·· · < sm = a be a partition such that |s j+1 − s j | ≤ ǫ. By

Corollary 8.7,

sup
1≤ j≤m

sup
t∈[s j ,s j+1]

∣∣∣∣∣
1

n

∞∑

ℓ=0

Dn (ℓ,0)λ(k)
ℓ

(t )−
1

n

∞∑

ℓ=0

Dn (ℓ,0)λ(k)
ℓ

(s j )

∣∣∣∣∣≤C eC ′a(k +3)ǫ.

Similarly, using Corollary 8.6,

sup
1≤ j≤m−1

sup
t∈[s j ,s j+1]

∣∣∣∣∣γ
∞∑

ℓ=0

p0
ℓλ

(k)
ℓ

(t )−γ
∞∑

ℓ=0

p0
ℓλ

(k)
ℓ

(s j )

∣∣∣∣∣≤ sup
1≤ j≤k−1

sup
[s j ,s j+1]

γ
∞∑

ℓ=0

p0
ℓ

∣∣∣λ(k)
ℓ

(t )−λ(k)
ℓ

(s j )
∣∣∣

≤C eC ′aǫγ
∞∑

ℓ=0

p0
ℓ(k +ℓ+2) =C eC ′aγ(k +3)ǫ.
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By Corollary 8.12, almost surely, there exists n0 ≥ 1 such that that for all n ≥ n0,

sup
1≤ j≤m

∣∣∣∣∣
1

n

∞∑

ℓ=0

Dn(ℓ,0)λ(k)
ℓ

(s j )−γ
∞∑

ℓ=0

p0
ℓλ

(k)
ℓ

(s j )

∣∣∣∣∣≤ ǫ.

From the above, we now have that for n ≥ n0,

sup
t∈[0,a]

∣∣∣∣∣
1

n

∞∑

ℓ=0

Dn (ℓ,0)λ(k)
ℓ

(t )−γ
∞∑

ℓ=0

p0
ℓλ

(k)
ℓ

(t )

∣∣∣∣∣

≤ sup
1≤ j≤m−1

sup
t∈[s j ,s j+1]

∣∣∣∣∣
1

n

∞∑

ℓ=0

Dn (ℓ,0)λ(k)
ℓ

(t )−
1

n

∞∑

ℓ=0

Dn(ℓ,0)λ(k)
ℓ

(s j )

∣∣∣∣∣

+ sup
1≤ j≤m−1

sup
t∈[s j ,s j+1]

∣∣∣∣∣γ
∞∑

ℓ=0

p0
ℓλ

(k)
ℓ

(t )−γ
∞∑

ℓ=0

p0
ℓλ

(k)
ℓ

(s j )

∣∣∣∣∣

+ sup
1≤ j≤m

∣∣∣∣∣
1

n

∞∑

ℓ=0

Dn (ℓ,0)λ(k)
ℓ

(s j )−γ
∞∑

ℓ=0

p0
ℓλ

(k)
ℓ

(s j )

∣∣∣∣∣≤C eC ′a(k +3)ǫ

which proves the first assertion of the lemma. The second assertion follows similarly using

Corollary 8.12 and the first bound in Lemma 8.4. ■

PROOF OF THEOREM 8.1. The theorem follows from Lemmas 8.11 and 8.14. ■

PROOF OF COROLLARY 3.13. The essential message of this Corollary 3.13 is that the tail

of the distribution prescribed by the initializer function always wins. Recall that the limit

random variable Dθ is a mixture of the distributions of XBC and XAC. ■

LEMMA 8.15. The random variable XAC always has an exponential tail.

Proof: By construction, note that XAC ¹st ξ f1 [0,α]. Assumption 2.4 on the attachment

functions implies that there exists κ̄ > 0 such that max( f0(i ), f1(i )) ≤ κ̄(i + 1) for all i . In

particular ξ f1
[0,α] ¹st Yκ̄[0,α] where Yκ̄(·) is a rate κ̄ Yule process (Definition 6.2). Using

Lemma 6.3 completes the proof. ■
Thus is is enough to consider XBC and show that this random variable has the same

tail behavior as the random variable D ∼
{

p0
k

: k ≥ 1
}

. Once again by construction, XBC ¹st

D +∑D
i=1 Yκ̄,i [0,α], where

{
Yκ̄,i (·) : i ≥ 1

}
is an infinite collection of independent Yule pro-

cesses (independent of D) having the same distribution as Yκ̄(·). Let µ := E(Yκ̄,i [0,α]).

Note µ > 1. Conditioning on the value of D we see that for x ≥ 1, P(XBC > x) ≤ E where

E =∑x/2µ

j=1
P(D = j )P(

∑ j

i=1
Yκ̄,i [0,α] > x − j )+P(D > x/2µ). Further for x ≥ 1,

(8.19) E ≤P

(
x/2µ∑

i=1

Yκ̄,i [0,α] > x

(
1−

1

2µ

))
+P(D > x/2µ).

Standard large deviation bounds for the law of Yκ̄,i implies that there exists constants

C1,C2 such that for all x, P
(∑x/2µ

i=1
Yκ̄,i [0,α]> x

(
1− 1

2µ

))
≤ C1 exp(−C2x). Thus in the set-

ting of Corollary 3.13(i), assuming D has exponential tails, one finds using (8.19) that

there exist finite constants C ′
1,C ′

2 such that P(XBC > x) ≤ C ′
1 exp(−C ′

2x). This completes

the proof of Corollary 3.13(i). A similar argument, along with the obvious inequality

P(D > x) ≤P(XBC > x), verifies Corollary 3.13(ii). ■

9. Proofs: Quick Big bang.
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9.1. Proof of Theorem 3.18. Throughout this section we assume that f0 satisfies As-

sumption 2.4 and f1 satisfies Assumptions 2.4, 3.1 and 3.16. For notational convenience,

instead of considering the change point at nγ and evolving the tree till size n, we will con-

sider the problem of the change point being at n and evolving the tree till size n1+λ∗
1θ for

some θ > 0 (where λ∗
1 is the Malthusian rate corresponding to f1). For this section, t = 0

represents time Tn (the first time the total population size of the associated continuous

time branching process has n vertices). It is easy to see that Theorem 3.18 is equivalent to

Theorem 9.14 proved below.

We first give a proof outline. We again use the embedding of the discrete time network

model into the associated continuous time branching process. Recall the notation from

Section 8. From Lemma 8.11, for k ≥ 0, there exists η0 > 0 such that for η≤η0,

(9.1)
1

n
sup

t∈[0,η logn]

∣∣∣∣∣Dn (k , t )−
∞∑

ℓ=0

Dn (ℓ,0)λ(k)
ℓ

(t )

∣∣∣∣∣
P−→ 0, as n →∞.

Similarly, using Lemma 8.11, we obtain η0 > 0 such that for all η≤η0,

(9.2)
1

n
sup

t∈[0,η logn]

∣∣∣∣∣Zn(t )−
∞∑

ℓ=0

Dn (ℓ,0)λℓ(t )

∣∣∣∣∣
P−→ 0, as n →∞.

(9.1) and (9.2) immediately imply for any η≤η0,

1

n1+ηλ∗
1

Dn (k ,η logn)−
1

n1+ηλ∗
1

∞∑

ℓ=0

Dn (ℓ,0)λ(k)
ℓ

(η logn)
P−→ 0,(9.3)

1

n1+ηλ∗
1

Zn(η logn)− 1

n1+ηλ∗
1

∞∑

ℓ=0

Dn (ℓ,0)λℓ(η logn)
P−→ 0

as n → ∞. Thus, before the total population has grown too big, i.e. is of size n1+ηλ∗
1 for

some η ≤ η0, one can approximate the empirical degree distribution and rescaled total

population size by the normalized sums appearing in (9.3). For each ℓ ≥ 0, n−1Dn (ℓ,0),

converges to the classical limit degree distribution of the system without change point i.e.

p0
l
= pl ( f0) as in (3.1). Thus, in lieu of (9.3), one needs to understand how the quantities

n−ηλ∗
1λ(k)

ℓ
(η log n) and n−ηλ∗

1λℓ(η logn) behave for large n. Lemmas 9.1 to 9.7 use tech-

niques from renewal theory to quantify rates of convergence and characterize properties

of the limits of these quantities in this general setup. This can be used to prove an analogue

of Theorem 3.18 for the branching process in the regime where the approximation (9.3) is

valid i.e. for η ≤ η0. To extend this proof to the general case, we develop a ‘bootstrapping

procedure’ laid out in Lemma 9.11 where we use results from Section 7 and the lemmas

proved in this section to show that for each j ≥ 0, the ‘quick big bang’ phenomenon holds

when the population is of size n1+ηλ∗
1 for some η ≤ ( j +1)η0 if it holds for all η ≤ jη0. The

rest of the section translates these results to the network model in discrete time.

Define for each ℓ≥ 0 and β> 0, the β-Laplace transform of the measure µ(ℓ)
f1

given by

wℓ(β) :=
∫∞

0
e−βsµ(ℓ)

f1
(d s).

We will simply write wℓ for wℓ(λ∗
1 ). We need the following technical lemmas. Recall from

Assumption 2.4 (ii) that there exists β1 ∈ (0,λ∗
1 ) such that ρ̂(β1) <∞. Recall C∗ from As-

sumption 3.1 applied to f1.

LEMMA 9.1. β1 ≥C∗.
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PROOF. If C∗ = 0, there is nothing to prove. So we assume C∗ > 0. For any ǫ ∈ (0,C∗), by

Assumption 3.1, there exists j0 ≥ 1 such that for all j ≥ j0, f1( j ) ≥ (C∗−ǫ) j . Finiteness of

ρ̂(β1) implies that

(9.4)
∞∑

k=1

k−1∏

i=0

f1(i + j0)

β1 + f1(i + j0)
<∞.

For any k ≥ 1, noting that x 7→ x
β1+x

is a strictly increasing function and, log(1+ x) ≤ x for

any x ≥ 0, and
∑ j2

j= j1

1
j ≤

∫ j2

j1−1
dx
x for any j2 ≥ j1 ≥ 1,

log

[
k−1∏

i=0

f1(i + j0)

β1 + f1(i + j0)

]
≥ log

[
k−1∏

i=0

i + j0

β1

C∗−ǫ + i + j0

]
=−

k−1∑

i=0

log

[
1+

β1

(C∗−ǫ)(i + j0)

]

≥−
β1

C∗−ǫ

k−1∑

i=0

1

i + j0
≥−

β1

C∗−ǫ

∫ j0+k−1

j0−1

d x

x
=−

β1

C∗−ǫ
log

(
j0 +k −1

j0 −1

)

and thus

k−1∏

i=0

f1(i + j0)

β1 + f1(i + j0)
≥

(
j0 −1

j0 +k −1

) β1
C∗−ǫ

.

Thus, (9.4) holds only if β1 >C∗−ǫ. As ǫ> 0 is arbitrary, this proves the lemma. ■

REMARK 9.2. Lemma 9.1 shows that if f satisfies Assumptions 2.4 and 3.1, then

λ∗ > C∗. In addition, if f satisfies infi≥0 f (i ) > 0, then [9, Proposition 5.7], implies

E

(
exp

{
δ

∫∞
0 e−λ∗tξ f (d t )

})
<∞ for some δ> 0 and, in particular, Assumption 3.2.

LEMMA 9.3. For any β ∈ (β1,λ∗
1 ], there exists a constant C (β) > 0 such that wℓ(β) ≤

C (β)(ℓ+1) for ℓ≥ 0.

PROOF. Fix any β ∈ (β1,λ∗
1 ] and ℓ ≥ 0. Since

∫∞
0 e−βsµ f1

(d s) = ∑∞
k=1

∏k−1
i=0

f1(i )
β+ f1(i )

, the

sum on the right hand side is finite. Note that

wℓ(β) =
∫∞

0
e−βsµ(ℓ)

f1
(d s) =

∞∑

k=1

ℓ+k−1∏

i=ℓ

f1(i )

β+ f1(i )
=

∑∞
k=1

∏ℓ+k−1
i=0

f1(i )
β+ f1(i )

∏ℓ−1
i=0

f1(i )
β+ f1(i )

<∞.

Choose and fix ǫ> 0 such that C∗+2ǫ<β (which is possible by Lemma 9.1). By Assumption

3.1, there exists j0 ≥ 1 such that for all j ≥ j0, f1( j ) ≤ (C∗+ ǫ) j . For any ℓ ≥ j0, using the

facts that x 7→ x
β+x is a strictly increasing function and, log(1+ x) ≥ x

1+x for any x ≥ 0, and
∑ j2

j= j1

1
j ≥

∫ j2+1

j1

dx
x for any j2 ≥ j1 ≥ 1, we obtain for any ℓ≥ j0,

log

[
2ℓ−1∏

i=ℓ

f1(i )

β+ f1(i )

]
≤ log

[
2ℓ−1∏

i=ℓ

i
β

C∗+ǫ + i

]
=−

2ℓ−1∑

i=ℓ
log

[
1+

β

(C∗+ǫ)i

]

≤−
2ℓ−1∑

i=ℓ

β
(C∗+ǫ)i

1+ β
(C∗+ǫ)i

≤−
β

C∗+ǫ

1+ β
(C∗+ǫ)ℓ

2ℓ−1∑

i=ℓ

1

i
≤−

β
C∗+ǫ

1+ β
(C∗+ǫ)ℓ

∫2ℓ

ℓ

d x

x
=−

β
C∗+ǫ

1+ β
(C∗+ǫ)ℓ

log2.

Take ℓ1 ≥ j0 such that
β

C∗+ǫ
1+ β

(C∗+ǫ)ℓ1

≥ β
C∗+2ǫ . From the above calculation, for all ℓ ≥ ℓ1,

∏2ℓ−1
i=ℓ

f1(i )
β+ f1(i )

≤ 2− β

C∗+2ǫ . Using this bound iteratively, we obtain for any j ≥ 1,
∏2 j ℓ−1

i=ℓ
f1(i )

β+ f1(i )
≤



CTBP AND EVOLUTION OF NETWORKS UNDER CHANGE POINT 33

2− β j

C∗+2ǫ . Thus, for all ℓ≥ ℓ1,

wℓ(β) =
∞∑

k=1

ℓ+k−1∏

i=ℓ

f1(i )

β+ f1(i )
≤ ℓ+

∞∑

j=0

2 j+1ℓ−1∑

k=2 jℓ

ℓ+k−1∏

i=ℓ

f1(i )

β+ f1(i )
≤ ℓ+

∞∑

j=0

2 jℓ
2 j ℓ−1∏

i=ℓ

f1(i )

β+ f1(i )

= ℓ

[
1+

∞∑

j=0

2

(
1− β

C∗+2ǫ

)
j

]
=


2−2

(
1− β

C∗+2ǫ

)

1−2

(
1− β

C∗+2ǫ

)


ℓ

where the sum converges as C∗+2ǫ<β. This proves the lemma. ■

Recall the class of characteristics C defined in (3.3). For given φ ∈ C and initial values

{λ
φ

ℓ
(0) ∈ [0,1] : ℓ≥ 0}, define for each ℓ≥ 0,

(9.5) λ
φ

ℓ
(t ) =λ

φ

ℓ
(0)+

∫t

0
m

φ

f1
(t − s)µ(ℓ)

f1
(d s).

Note that this definition generalizes the expected aggregate φ-score of offsprings of a de-
gree ℓ parent defined in Section 7 (see just before Theorem 7.1) in that we allow for a

general initial value λ
φ

ℓ
(0) ∈ [0,1]. Hence, we keep the same notation. Two special in-

stances of λ
φ

ℓ
(·) that we have already used extensively are given by taking φ(t ) = 1 {t ≥ 0},

t ≥ 0, λ
φ

ℓ
(0) = 1,ℓ ≥ 0, which we denoted by λℓ(·), and φ(t ) = 1 {ξ(t ) = k}, t ≥ 0, λ

φ

ℓ
(0) =

P

(
ξ(ℓ)

f1
(t ) = k −ℓ

)
for ℓ≥ 0,k ≥ 0, denoted by λ(k)

ℓ
(·) (see (3.4)).

LEMMA 9.4. Let φ ∈C such that limt→∞ e−λ∗
1 t m

φ

f1
(t ) = cφ. Recall λ

φ

ℓ
(·) defined in (9.5).

There is a constant C > 0 for which the following holds: for any ǫ > 0, there exists t (ǫ) > 0
such that for any ℓ≥ 0,

sup
t≥t (ǫ)

∣∣∣e−λ∗
1 tλ

φ

ℓ
(t )−wℓcφ

∣∣∣≤Cǫ(ℓ+1).

PROOF. In this proof, C ,C ′,C ′′ will denote generic positive constants not depending on
t ,ℓ whose values might change from line to line. From (9.5) and the definition of wℓ, we
have for any t ≥ 0,

(9.6)

e−λ∗
1 tλ

φ

ℓ
(t )−wℓcφ =λ

φ

ℓ
(0)e−λ∗

1 t−cφ

∫∞

t
e−λ∗

1 sµ(ℓ)
f1

(d s)+
∫t

0

(
e−λ∗

1 (t−s)m
φ

f1
(t − s)−cφ

)
e−λ∗

1 sµ(ℓ)
f1

(d s).

Choose any ǫ> 0. Fix any ϑ> 0 such that λ∗
1 −ϑ>β1. As limt→∞ e−λ∗

1 t m
φ

f1
(t ) = cφ and

supt<∞ e−λ∗
1 t m

φ

f1
(t ) < ∞ (which holds because the limit as t → ∞ exists and as φ ∈ C ,

therefore for each a > 0, supt∈[0,a] m
φ

f1
(t ) ≤C supt∈[0,a] m f1

(t ) <∞ by virtue of (7.1)), there

exists t0 > 0 such that for all t ≥ t0,
∣∣∣e−λ∗

1 t m
φ

f1
(t )−cφ

∣∣∣≤ ǫ and e−ϑt
(
supz<∞ e−λ∗

1 z m
φ

f1
(z)+cφ

)
≤

ǫ. Thus, for any t ≥ 2t0,

sup
s≤t

e−ϑs
∣∣∣e−λ∗

1 (t−s)m
φ

f1
(t − s)−cφ

∣∣∣≤ ǫ.

Thus, applying Lemma 9.3 with β=λ∗
1 −ϑ, we conclude that for any t ≥ 2t0,

∫t

0

∣∣∣e−λ∗
1 (t−s)m

φ

f1
(t − s)−cφ

∣∣∣e−λ∗
1 sµ(ℓ)

f1
(d s) =

∫t

0
e−ϑs

∣∣∣e−λ∗
1 (t−s)m

φ

f1
(t − s)−cφ

∣∣∣e−(λ∗
1−ϑ)sµ(ℓ)

f1
(d s)

≤ ǫwℓ(λ∗
1 −ϑ) ≤Cǫ(ℓ+1).
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Moreover, as
∫∞

0 e−(λ∗
1−ϑ)sµ(ℓ)

f1
(d s) ≤C (ℓ+1), for t ≥ 0, cφ

∫∞
t e−λ∗

1 sµ(ℓ)
f1

(d s) ≤C ′(ℓ+1)e−ϑt .

Using these in (9.6) and recalling λℓ(0) ∈ [0,1] for each ℓ, we obtain for t ≥ 2t0,
∣∣∣e−λ∗

1 tλ
φ

ℓ
(t )−wℓcφ

∣∣∣≤ e−λ∗
1 t +C ′(ℓ+1)e−ϑt +Cǫ(ℓ+1).

Thus, there exists t1 ≥ 2t0 such that for all ℓ≥ 0 and all t ≥ t1,
∣∣∣e−λ∗

1 tλ
φ

ℓ
(t )−wℓcφ

∣∣∣≤C ′′ǫ(ℓ+
1). ■

LEMMA 9.5. Let φ ∈C such that limt→∞ e−λ∗
1 t m

φ

f1
(t ) = cφ. Fix any η> 0, a ∈ R. Then as

n →∞,

n−(1+ηλ∗
1 )

∞∑

ℓ=0

Dn(ℓ,0)λ
φ

ℓ
(η logn +a)

P−→ cφeλ∗
1 a

∞∑

ℓ=0

p0
ℓwℓ.

PROOF. In this proof, once again C ,C ′,C ′′ will denote generic positive constants not

depending on n, t ,ℓ whose values might change from line to line. Note that

(9.7)

∣∣∣∣∣n
−(1+ηλ∗

1 )
∞∑

ℓ=0

Dn (ℓ,0)λ
φ

ℓ
(η logn +a)−cφeλ∗

1 a
∞∑

ℓ=0

p0
ℓwℓ

∣∣∣∣∣

≤ n−1
∞∑

ℓ=0

Dn (ℓ,0)
∣∣∣λφ

ℓ
(η log n +a)n−ηλ∗

1 −wℓcφeλ∗
1 a

∣∣∣+cφeλ∗
1 a

∣∣∣∣∣
∞∑

ℓ=0

n−1Dn (ℓ,0)wℓ−
∞∑

ℓ=0

p0
ℓwℓ

∣∣∣∣∣ .

To show that the second term goes to zero in probability, consider the characteristic χ(t ) =∑∞
ℓ=0

wℓ1
{
ξ f1

(t ) = ℓ
}

. By Lemma 9.3, wℓ ≤C (ℓ+1) and hence, χ ∈C . Thus, by Lemma 6.6

(i),

(9.8)

∣∣∣∣∣
∞∑

ℓ=0

n−1Dn (ℓ,0)wℓ−
∞∑

ℓ=0

p0
ℓwℓ

∣∣∣∣∣
P−→ 0 as n →∞.

To show that the first term in the bound (9.7) goes to zero in probability, take any ǫ > 0.

Recalling∑∞
ℓ=0

Dn(ℓ,0) = n and
∑∞

ℓ=0
(ℓ+1)Dn (ℓ,0) = 2n −1, and taking t = η logn + a for any n ≥

e (t (ǫ)−a)/η in Lemma 9.4, we obtain

∞∑

ℓ=0

n−1Dn (ℓ,0)
∣∣∣λφ

ℓ
(η log n +a)n−ηλ∗

1 −wℓcφeλ∗
1 a

∣∣∣≤ n−1C ′′eλ∗
1 aǫ

∞∑

ℓ=0

(ℓ+1)Dn (ℓ,0) ≤ 2C ′′eλ∗
1 aǫ.

As ǫ > 0 is arbitrary, the first term in (9.7) converges to zero as n →∞ and completes the

proof. ■

Define m⋆

1 :=
∫∞

0 ue−λ∗
1 uµ f1 (du). For ℓ≥ 0,k ≥ 0, recall λℓ(·) and λ(k)

ℓ
(·) from (3.4).

COROLLARY 9.6. Fix any η> 0 and k ≥ 0. Then as n →∞

n−(1+ηλ∗
1 )

∞∑

ℓ=0

Dn (ℓ,0)λℓ(η logn)
P−→

∞∑

ℓ=0

p0
ℓwℓ/λ∗

1 m⋆

1 ,

n−(1+ηλ∗
1 )

∞∑

ℓ=0

Dn (ℓ,0)λ(k)
ℓ

(η log n)
P−→ p1

k

∞∑

ℓ=0

p0
ℓwℓ/λ∗

1 m⋆

1 .
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PROOF. Follows from Lemma 9.5 upon using the explicit formulas

λℓ(t )= 1+
∫t

0
m f1 (t − s)µ(ℓ)

f1
(d s), λ(k)

ℓ
(t ) =P

(
ξ(ℓ)

f1
(t )= k −ℓ

)
+

∫t

0
m(k)

f1
(t − s)µ(ℓ)

f1
(d s), t ≥ 0,

and observing by Lemma 6.6 (ii)

(9.9) lim
t→∞

e−λ∗
1 t m f1

(t ) = (λ∗
1 m⋆

1 )−1, lim
t→∞

e−λ∗
1 t m(k)

f1
(t ) = p1

k(λ∗
1 m⋆

1 )−1.

■

LEMMA 9.7. There exists η0 > 0 such that for any η ≤ η0, the following limits hold as

n →∞:

(i) n−(1+ηλ∗
1 ) Zn(η log n)

P−→∑∞
ℓ=0

p0
ℓ

wℓ/λ∗
1 m⋆

1 ,

(ii) For any k ≥ 0, n−(1+ηλ∗
1 )Dn (k ,η logn)

P−→ p1
k

∑∞
ℓ=0

p0
ℓ

wℓ/λ∗
1 m⋆

1 .

PROOF. (i) and (ii) follow from (9.2) and (9.1) respectively along with Corollary 9.6. ■

COROLLARY 9.8.
∑∞

ℓ=0
p1
ℓ

wℓ =λ∗
1 m⋆

1 .

PROOF. Note that Lemma 9.7 (i) holds in the special case where f0 is taken to be f1

(the model without change point). In this case, p0
ℓ
= p1

ℓ
for all ℓ ≥ 0. By Lemma 6.6 (ii),

Zn(η0 logn)e−λ∗
1 (Tn+η0 logn) a.s.−→ W∞/λ∗

1 m⋆

1 . Moreover, as Z (Tn) = n, therefore, applying

Lemma 6.6 (ii) again, n−1eλ∗
1 Tn = eλ∗

1 Tn /Z (Tn)
a.s.−→ λ∗

1 m⋆

1 /W∞. Using these observations,

we obtain

n−(1+η0λ
∗
1 ) Zn(η0 log n)= n−1eλ∗

1 Tn Zn(η0 logn)e−λ∗
1 (Tn+η0 logn) a.s.−→ 1.

Comparing this with Lemma 9.7 (i) with f0 = f1 gives the result. ■

Recall that for any k ≥ 0, ξ(k)
f1

(·) is the point process denoting the distribution of birth

times of children of a vertex which is of degree k at time zero. The following lemma gives

an estimate on the second moment of ξ(k)
f1

(t ) under Assumption 3.1.

LEMMA 9.9. There exists C > 0 and β′ < λ∗
1 such that for any k ≥ 0, t ≥ 0, E

(
ξ(k)

f1
(t )

)2
≤

C (k +1)2e2β′t .

PROOF. By Assumption 3.1 and Lemma 9.1, for any β′ ∈ (β1,λ∗
1 ), there exists ℓ0 ≥ 0 such

that for all ℓ≥ ℓ0, f1(ℓ) ≤β′ℓ. Let m = maxℓ≤ℓ0
f1(ℓ). It is clear that ξ(k)

f1
(·) is stochastically

dominated by the offspring process of a continuous time branching process with linear

attachment function f ∗(ℓ) = β′ℓ+1+ (m +β′k),ℓ ≥ 0. Applying the second moment ob-

tained in Lemma 6.4 (with ν=β′ and κ= 1+m +β′(k −1)) the lemma follows.

■

For η > 0, j ≥ 0, let Dn (k , j ,η) denote the number of vertices of degree k at time ( j +
1)η logn that were born before time jη logn (including possibly the ones at time zero).

LEMMA 9.10. For any η> 0, j ≥ 0, as n →∞,
∞∑

k=0

(k +1)Dn (k , j ,η)
/(

Zn( jη log n)nλ∗
1η

)
P−→ 0.
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PROOF. We will condition on Fn ( jη log n) throughout the proof. For 1 ≤ m ≤ Dn(ℓ, jη log n),

denote by ξ(ℓ)
f1,m

(t ) the degree at time t + jη logn of the m-th vertex of degree ℓ at time

jη logn. Observe that

∞∑

k=0

(k +1)Dn (k , j ,η)=
∞∑

k=0

(k +1)
k∑

ℓ=0

Dn (ℓ, jη logn)∑

m=1

1

{
ξ(ℓ)

f1 ,m
(η logn) = k −ℓ

}

=
∞∑

ℓ=0

Dn (ℓ, jη logn)∑

m=1

∞∑

k=ℓ
(k +1)1

{
ξ(ℓ)

f1 ,m
(η logn) = k −ℓ

}
=

∞∑

ℓ=0

Dn (ℓ, jη logn)∑

m=1

(
ℓ+1+ξ(ℓ)

f1 ,m
(η logn)

)

=
∞∑

ℓ=0

(ℓ+1)Dn (ℓ, jη log n)+
∞∑

ℓ=0

Dn (ℓ, jη logn)∑

m=1

ξ(ℓ)
f1 ,m

(η logn)

= 2Zn( jη logn)−1+
∞∑

ℓ=0

Dn (ℓ, jη logn)∑

m=1

ξ(ℓ)
f1 ,m

(η log n).

Thus, it suffices to show that as n →∞,

(9.10)
1

Zn( jη logn)

∞∑

ℓ=0

Dn (ℓ, jη logn)∑

m=1

1

nλ∗
1η

ξ(ℓ)
f1,m

(η logn)
P−→ 0.

Note that using Lemma 9.9,

Var

(
1

Zn( jη log n)

∞∑

ℓ=0

Dn (ℓ, jη logn)∑

m=1

1

nλ∗
1η

ξ(ℓ)
f1 ,m

(η logn)

)

≤
1

Z 2( jη log n)n2λ∗
1η

∞∑

ℓ=0

Dn (ℓ, jη logn)∑

m=1

E

(
ξ(ℓ)

f1 ,m
(η log n)

)2
≤

C n2β′η

Z 2( jη log n)n2λ∗
1η

∞∑

ℓ=0

(ℓ+1)2Dn (ℓ, jη log n).

Denoting the maximum degree at time jη logn of the branching process by Dmax , note

that Dmax +1 ≤ Zn( jη logn) and hence,

∞∑

ℓ=0

(ℓ+1)2Dn (ℓ, jη logn) ≤ (Dmax+1)
∞∑

ℓ=0

(ℓ+1)Dn (ℓ, jη log n) ≤ Zn( jη logn)(2Zn( jη logn)−1).

Using this in the above variance bound, we get

Var

(
1

Zn( jη log n)

∞∑

ℓ=0

Dn (ℓ, jη logn)∑

m=1

1

nλ∗
1η

ξ(ℓ)
f1 ,m

(η logn)

)
≤ 2C n2β′ηZ 2( jη logn)

Z 2( jη logn)n2λ∗
1η

= 2C

n2(λ∗
1−β′)η

→ 0

as n →∞ and hence,

(9.11)
1

Zn( jη logn)

∞∑

ℓ=0

Dn (ℓ, jη logn)∑

m=1

1

nλ∗
1η

ξ(ℓ)
f1 ,m

(η log n)

−
1

Zn( jη logn)

∞∑

ℓ=0

Dn (ℓ, jη logn)∑

m=1

1

nλ∗
1η

E

(
ξ(ℓ)

f1,m
(η logn)

)
P−→ 0.

By Lemma 9.3, we obtain β ∈ (λ∗
1 −1,λ∗

1 ) such that wℓ(β) =
∫∞

0 e−βsµ(ℓ)
f1

(d s) ≤C (β)(ℓ+1).

This implies for any m,ℓ, E
(
ξ(ℓ)

f1 ,m
(η logn)

)
≤C (β)nβη(ℓ+1) and consequently,

(9.12)
1

Zn( jη logn)

∞∑

ℓ=0

Dn (ℓ, jη logn)∑

m=1

1

nλ∗
1η

E

(
ξ(ℓ)

f1,m
(η logn)

)
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≤
1

n(λ∗
1−β)η

C (β)

Zn( jη log n)

∞∑

ℓ=0

(ℓ+1)Dn (ℓ, jη log n) ≤
2C (β)

n(λ∗
1−β)η

→ 0

as n →∞. From (9.11) and (9.12), the proof of (9.10), and hence the lemma, is complete.

■

LEMMA 9.11. Let φ ∈ C such that limt→∞ e−λ∗
1 t mφ(t ) = cφ. Fix any η0 ∈ (0,1/(2C ′)),

where C ′ is the constant appearing in Theorem 7.1. Then for any j ≥ 0, η ∈ (0,η0] and a ∈R,

as n →∞:

(9.13)
1

n1+( jη0+η)λ∗
1

∞∑

ℓ=0

Dn(ℓ, jη0 log n)λ
φ

ℓ
(η logn +a)

P−→ cφeλ∗
1 a

∞∑

ℓ=0

p0
ℓwℓ.

PROOF. We will proceed by induction on j ≥ 0. Suppose for some j ′ ≥ 0, (9.13) holds

for all 0 ≤ j ≤ j ′, η ∈ (0,η0] and a ∈ R. Taking φ(t ) = 1 {t ≥ 0} and η = η0 and recalling

limt→∞ e−λ∗
1 t m f1 (t )= 1

λ∗
1 m⋆

1
, we obtain for any 0 ≤ j ≤ j ′ and any a ∈R,

(9.14)
1

n1+( j+1)η0λ
∗
1

Zn(( j +1)η0 log n +a)
P−→

1

λ∗
1 m⋆

1

eλ∗
1 a

∞∑

ℓ=0

p0
ℓwℓ.

Fix any φ∈C . Note that for any η≤ η0,

(9.15)

∣∣∣∣∣
1

n1+(( j ′+1)η0+η)λ∗
1

∞∑

ℓ=0

Dn (ℓ, ( j ′+1)η0 log n)λ
φ

ℓ
(η log n +a)−cφeλ∗

1 a
∞∑

ℓ=0

p0
ℓwℓ

∣∣∣∣∣

≤
∞∑

ℓ=0

Dn (ℓ, ( j ′+1)η0 log n)

n1+( j ′+1)η0λ
∗
1

∣∣∣∣∣
λ
φ

ℓ
(η log n +a)

nηλ∗
1

−cφeλ∗
1 a wℓ

∣∣∣∣∣

+ cφeλ∗
1 a

∣∣∣∣∣
∞∑

ℓ=0

Dn (ℓ, ( j ′+1)η0 log n)

n1+( j ′+1)η0λ
∗
1

wℓ−
∞∑

ℓ=0

p0
ℓwℓ

∣∣∣∣∣ .

For any ǫ> 0, by Lemma 9.4, there exists n0 ≥ 1 and C ′′ > 0 such that for all n ≥ n0, ℓ≥ 0,

∣∣∣∣∣
λ
φ

ℓ
(η logn +a)

nηλ∗
1

−cφeλ∗
1 a wℓ

∣∣∣∣∣≤C ′′eλ∗
1 aǫ(ℓ+1)

and hence,

∞∑

ℓ=0

Dn(ℓ, ( j ′+1)η0 logn)

n1+( j ′+1)η0λ
∗
1

∣∣∣∣∣
λ
φ

ℓ
(η logn +a)

nηλ∗
1

−cφeλ∗
1 a wℓ

∣∣∣∣∣

≤C ′′eλ∗
1 aǫ

∞∑

ℓ=0

(ℓ+1)Dn (ℓ, ( j ′+1)η0 log n)

n1+( j ′+1)η0λ
∗
1

≤ 2C ′′eλ∗
1 aǫ

Zn(( j ′+1)η0 log n)

n1+( j ′+1)η0λ
∗
1

.

Therefore, using (9.14) with j = j ′, and as ǫ > 0 is arbitrary, the first term in the bound

(9.15) converges to zero in probability. To estimate the second term in (9.15), consider

the characteristic χ(t ) =
∑∞

ℓ=0
wℓ1

{
ξ f1 (t ) = ℓ

}
and note that by Lemma 9.3, χ ∈ C . Recall

Z
χ
n from Section 7 (see Notation (iv)) with Fn(0) replaced by Fn ( j ′η0 log n) (that is, time

starting at Tn + j ′η0 logn) and take a = η0 log n. As Z
χ
n denotes the aggregate χ-score of all

vertices born in the interval [ j ′η0 log n, ( j ′+1)η0 logn],
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(9.16)

1

n1+( j ′+1)η0λ
∗
1

∣∣∣∣∣
∞∑

ℓ=0

Dn (ℓ, ( j ′+1)η0 logn)wℓ−Z
χ
n

∣∣∣∣∣≤
C (λ∗

1 )

n1+( j ′+1)η0λ
∗
1

∞∑

ℓ=0

(ℓ+1)Dn (ℓ, j ′,η0)

=
Zn( j ′η0 logn)

n1+ j ′η0λ
∗
1

C (λ∗
1 )

Zn( j ′η0 logn)nη0λ
∗
1

∞∑

ℓ=0

(ℓ+1)Dn (ℓ, j ′,η0)
P−→ 0

as n →∞, which follows from Lemma 9.10 and by (9.14) with j = j ′−1 for j ′ ≥ 1 and the

trivial observation that
Zn ( j ′η0 logn)

n
1+ j ′η0λ

∗
1

P−→ 0 when j ′ = 0. Here C (λ∗
1 ) is the constant appear-

ing in Lemma 9.3. Recall η0 is chosen such that CeC ′η0 log n
p

n
→ 0 as n →∞, where C ,C ′ are

the constants appearing in Theorem 7.1. Thus, recalling λ
χ

ℓ
(t ) =

∫t
0 m

χ

f1
(t − s)µ(ℓ)

f1
(d s), by

Theorem 7.1 and (9.14),

(9.17)

1

n1+( j ′+1)η0λ
∗
1

∣∣∣∣∣Z
χ
n −

∞∑

ℓ=0

Dn (ℓ, j ′η0 logn)λ
χ

ℓ
(η0 logn)

∣∣∣∣∣≤
C eC ′η0 logn

n1+( j ′+1)η0λ
∗
1

√
Zn( j ′η0 log n)

≤
C eC ′η0 logn

p
n

√
Zn( j ′η0 log n)

n1+( j ′+1)η0λ
∗
1

P−→ 0.

By (9.16) and (9.17), we obtain

(9.18)

∣∣∣∣∣
∞∑

ℓ=0

Dn (ℓ, ( j ′+1)η0 log n)

n1+( j ′+1)η0λ
∗
1

wℓ−
∞∑

ℓ=0

Dn (ℓ, j ′η0 logn)

n1+( j ′+1)η0λ
∗
1

λ
χ

ℓ
(η0 log n)

∣∣∣∣∣

≤
1

n1+( j ′+1)η0λ
∗
1

∣∣∣∣∣
∞∑

ℓ=0

Dn (ℓ, ( j ′+1)η0 log n)wℓ−Z
χ
n

∣∣∣∣∣

+
1

n1+( j ′+1)η0λ
∗
1

∣∣∣∣∣Z
χ
n −

∞∑

ℓ=0

Dn (ℓ, j ′η0 logn)λ
χ

ℓ
(η0 log n)

∣∣∣∣∣
P−→ 0.

Next, we will show that

(9.19) e−λ∗
1 t m

χ

f1
(t ) → 1 as t →∞.

To see this, first note that it follows from Assumption 2.4 (ii) that there exists β< λ∗
1 such

that E
(
ξ f1

(t )
)
≤C eβt . Moreover, wℓ ≤C (ℓ+1) for all ℓ≥ 0. These observations imply

∞∑

k=0

sup
t∈[k ,k+1]

[
e−λ∗

1 t E (χ(t ))
]
≤C

∞∑

k=0

sup
t∈[k ,k+1]

[
e−λ∗

1 t
∞∑

ℓ=0

(ℓ+1)P
(
ξ f1 (t ) = ℓ

)
]

=C
∞∑

k=0

sup
t∈[k ,k+1]

[
e−λ∗

1 t
E
(
ξ f1

(t )+1
)]

≤C ′
∞∑

k=0

sup
t∈[k ,k+1]

[
e−λ∗

1 t eβt
]
≤C ′eβ

∞∑

k=0

e−(λ∗
1−β)k <∞

where C ,C ′ > 0 are constants. Thus, by Proposition 2.2 of [37] and Corollary 9.8, it follows

that

lim
t→∞

e−λ∗
1 t m

χ

f1
(t ) =

1

λ∗
1 m⋆

1

∞∑

ℓ=0

wℓλ
∗
1

∫∞

0
e−λ∗

1 s
P

(
ξ f1

(s) = ℓ
)

d s =
1

λ∗
1 m⋆

1

∞∑

ℓ=0

wℓp1
ℓ = 1.

Using this, the definition of λ
χ

ℓ
, the fact that χ ∈C and the induction hypothesis, we obtain

(9.20)
1

n1+( j ′+1)η0λ
∗
1

∞∑

ℓ=0

Dn (ℓ, j ′η0 logn)λ
χ

ℓ
(η0 logn)

P−→
∞∑

ℓ=0

p0
ℓwℓ as n →∞.
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From (9.18) and (9.20), the second term in (9.15) goes to 0 in probability as n →∞ which

shows
∣∣∣∣∣

1

n1+(( j ′+1)η0+η)λ∗
1

∞∑

ℓ=0

Dn (ℓ, ( j ′+1)η0 log n)λ
φ

ℓ
(η log n +a)−cφeλ∗

1 a
∞∑

ℓ=0

p0
ℓwℓ

∣∣∣∣∣
P−→ 0

establishing (9.13) for all j ≤ j ′+1. (9.13) holds for j = 0 by Lemma 9.5. Thus, the lemma

is proved. ■

LEMMA 9.12. For any k ≥ 0,θ > 0 and a ∈R, as n →∞:

n−(1+θλ∗
1 )Zn(θ logn +a)

P−→ eλ∗
1 a

∞∑

ℓ=0

p0
ℓwℓ/λ∗

1 m⋆

1 ,
Dn (k ,θ logn +a)

Zn(θ logn +a)

P−→ p1
k .

PROOF. Note for any η0 > 0 we can write θ = jη0 +η for some j ≥ 0. The first asser-

tion follows by the argument used to derive (9.14). To prove the second assertion, fix any

k ≥ 0. Take η0 > 0 in Lemma 9.11 small enough so that C eC ′η0 lognǫ−2n−(ω−θ̃− 1
2 ) → 0, where

C ,C ′,ω, θ̃ are as in Lemma 8.11. Recall that the bound obtained in Lemma 8.11 condition-

ally on Fn (0) was in terms of deterministic constants and n, the total number of vertices

at time 0. Replacing Fn(0) by Fn ( jη0 logn) and time starting from Tn + jη0 log n, Lemma

8.11 (with n replaced by Zn( jη0 logn), the total number of vertices at time jη0 log n) im-

plies,

1

Zn( jη0 logn)
Dn (k ,θ logn+a)−

1

Zn( jη0 logn)

∞∑

ℓ=0

Dn (ℓ, jη0 log n)λ(k)
ℓ

(η log n+a)
P−→ 0, as n →∞.

From Lemma 9.11 (taking φ(t ) =1 {t ≥ 0}), Zn( jη0 logn)/Zn(θ logn +a)
P−→ 0 if η> 0, and

Zn( jη0 logn)/Zn(θ logn + a)
P−→ e−λ∗

1 a if η = 0 and thus, multiplying both sides of the

above by

Zn( jη0 logn)/Zn(θ logn +a), we obtain

(9.21)
Dn(k ,θ logn +a)

Zn(θ logn +a)
−

1

Zn(θ logn +a)

∞∑

ℓ=0

Dn (ℓ, jη0 logn)λ(k)
ℓ

(η logn +a)
P−→ 0, as n →∞.

Taking φ(t ) =1
{
ξ f1 (t ) = k

}
, we see that λ

φ

ℓ
=λ(k)

ℓ
for each ℓ≥ 0. Moreover, recall from (9.9)

limt→∞ e−λ∗
1 t m(k)

f1
(t ) = p1

k
/λ∗

1 m⋆

1 . Thus, from Lemma 9.11,

(9.22)
1

n1+θλ∗
1

∞∑

ℓ=0

Dn(ℓ, jη0 log n)λ(k)
ℓ

(η logn +a)
P−→

p1
k

λ∗
1 m⋆

1

eλ∗
1 a

∞∑

ℓ=0

p0
ℓwℓ.

Using (9.22) and the first assertion of the lemma in (9.21), the second assertion follows. ■

Let a0 := 1
λ∗

1
log

(
λ∗

1 m⋆

1∑∞
ℓ=0

p0
ℓ

wℓ

)
and T θ

n := T
n

1+λ∗
1
θ be the first time the branching process has

n1+λ∗
1θ vertices.

LEMMA 9.13. T θ
n −θ logn

P−→ a0.

PROOF. Follows immediately from the first assertion of Lemma 9.12. ■

THEOREM 9.14. For any k ≥ 0, θ > 0, as n →∞, n−(1+λ∗
1θ)Dn(k ,T θ

n )
P−→ p1

k
.
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PROOF. In the proof, we will abbreviate z∗ = 1
λ∗

1 m⋆

1

∑∞
ℓ=0

p0
ℓ

wℓ. Fix any k ≥ 0, θ > 0. Take

any ǫ ∈ (0,1). By the same argument as in the proof of Lemma 8.8,

(9.23)

sup
t≤2ǫ

|Dn (k ,θ logn+a0−ǫ+t )−Dn (k ,θ logn+a0−ǫ)| ≤
(
Zn(θ log n +a0 +ǫ)−Zn (θ logn +a0 −ǫ)

)
+Yn .

where, conditionally on Fn (θ logn + a0 − ǫ), Yn has the same distribution as the ran-

dom variable
∑k

ℓ=0
Bin

(
Dn

(
ℓ,θ log n +a0 −ǫ

)
, qℓ (2ǫ)

)
. Observe that by the first assertion

in Lemma 9.12, for small enough ǫ,

(9.24) n−(1+λ∗
1θ)

(
Zn(θ logn +a0 +ǫ)−Zn (θ logn +a0 −ǫ)

) P−→ eλ∗
1 ǫ−e−λ∗

1 ǫ ≤ 4λ∗
1ǫ.

Note that for any C > 0,

(9.25) P

(
Yn >C

p
ǫn1+λ∗

1θ
)
≤P

(
Yn >C

p
ǫn1+λ∗

1θ, Zn(θ logn +a0 −ǫ) ≤ ǫ−1/2n1+λ∗
1θ

)

+P

(
Zn(θ logn +a0 −ǫ) > ǫ−1/2n1+λ∗

1θ
)

.

For ǫ sufficiently small, by the first assertion of Lemma 9.12, as n →∞,

(9.26) P

(
Zn(θ logn +a0 −ǫ) > ǫ−1/2n1+λ∗

1θ
)
→ 0.

Let Hn :=Fn(θ logn +a0 −ǫ). Using Lemma 8.3,

E(Yn |Hn ) =
k∑

ℓ=0

Dn

(
ℓ,θ logn +a0 −ǫ

)
qℓ (2ǫ)≤C ′ǫ

k∑

ℓ=0

(ℓ+1)Dn

(
ℓ,θ log n +a0 −ǫ

)

≤ 2C ′ǫZn(θ log n +a0 −ǫ).

Thus, choosing C > 4C ′, using Chebychev’s inequality, conditionally on Hn on the event

{Zn(θ logn +a0 −ǫ) ≤ ǫ−1/2n1+λ∗
1θ},

(9.27) P

(
Yn >C

p
ǫn1+λ∗

1θ |Hn

)
≤P

(
Yn −E (Yn |Hn ) >

C

2

p
ǫn1+λ∗

1θ |Hn

)

≤ 4 Var(Yn |Hn )

C 2ǫn2(1+λ∗
1θ)

=
4
∑k

ℓ=0
Dn

(
ℓ,θ logn +a0 −ǫ

)
qℓ (2ǫ)(1−qℓ (2ǫ))

C 2ǫn2(1+λ∗
1θ)

≤
4C ′ǫ

∑k
ℓ=0

(ℓ+1)Dn

(
ℓ,θ logn +a0 −ǫ

)

C 2ǫn2(1+λ∗
1θ)

≤ 8C ′Zn(θ logn +a0 −ǫ)

C 2n2(1+λ∗
1θ)

≤ 8C ′

C 2
p
ǫn1+λ∗

1θ
→ 0 as n →∞.

Using (9.26) and (9.27) in (9.25), we conclude

(9.28) P

(
Yn >C

p
ǫn1+λ∗

1θ
)
→ 0 as n →∞.

Using (9.24), (9.28) and (9.23), we conclude that there exist C0 > 0,ǫ0 > 0 such that for all

ǫ ∈ (0,ǫ0),

(9.29)

P

(
sup
t≤2ǫ

|Dn (k ,θ logn +a0 −ǫ+ t )−Dn (k ,θ logn +a0 −ǫ)| >C0

p
ǫn1+λ∗

1θ

)
→ 0 as n →∞.

From (9.29) and Lemma 9.13, as n →∞,

(9.30) P

(
|Dn (k ,T θ

n )−Dn (k ,θ logn +a0 −ǫ)| >C0

p
ǫn1+λ∗

1θ
)
≤P

(∣∣∣T θ
n −θ logn −a0

∣∣∣> 2ǫ
)

+P

(
sup
t≤2ǫ

|Dn (k ,θ logn +a0 −ǫ+ t )−Dn (k ,θ logn +a0 −ǫ)| >C0

p
ǫn1+λ∗

1θ

)
→ 0.
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For any ǫ> 0,

(9.31) P

(∣∣∣∣∣
Dn (k ,T θ

n )

n1+λ∗
1θ

−p1
k

∣∣∣∣∣> 2C0

p
ǫ

)
≤P

(∣∣∣∣∣
Dn(k ,T θ

n )

n1+λ∗
1θ

−
Dn (k ,θ logn +a0 −ǫ)

n1+λ∗
1θ

∣∣∣∣∣>C0

p
ǫ

)

+P

(∣∣∣∣
Dn(k ,θ logn +a0 −ǫ)

n1+λ∗
1θ

−p1
k

∣∣∣∣>C0

p
ǫ

)
.

By Lemma 9.12,

Dn (k ,θ logn +a0 −ǫ)

n1+λ∗
1θ

=
Dn (k ,θ logn +a0 −ǫ)

Zn(θ logn +a0 −ǫ)

Zn(θ log n +a0 −ǫ)

n1+λ∗
1θ

P−→ p1
ke−λ∗

1ǫ,

and therefore, there is an ǫ1 ≤ ǫ0 such that for all ǫ ∈ (0,ǫ1),

(9.32)
∣∣∣Dn (k ,θ logn +a0 −ǫ)n−(1+λ∗

1θ) −p1
k

∣∣∣ P−→ p1
k(1−e−λ∗

1 ǫ) ≤ p1
kλ

∗
1ǫ<C0

p
ǫ.

For ǫ ∈ (0,ǫ1), using (9.30) and (9.32) in (9.31), we conclude P

(∣∣∣Dn (k ,T θ
n )

n
1+λ∗

1
θ

−p1
k

∣∣∣> 2C0
p
ǫ
)
→ 0

as n →∞ proving the theorem. ■

9.2. Proof of Theorem 3.20. We prove (a) of the theorem; (b) and (c) follow via straight-

forward modifications of these arguments. For (a), construct the continuous time branch-

ing process BPθ(·) with change point as in Section 2.3 with τ = nγ. To ease notation later

in the section, write BPn(·) := BPθ(·). Thus BPn(Tnγ ) is a random tree obtained by running

a continuous time branching process with attachment function f0 ≡ 1 till it reaches size

nγ after which all vertices switch to reproducing using attachment function f1 as in (a) of

the Theorem. We are interested in the random tree Tn = BPn(Tn ), where as before for any

m, Tm := inf{t ≥ 0 : |BPn(t )| = m}.

PROPOSITION 9.15. For the process BPn(·) as constructed above:

(a) The stopping time Tnγ satisfies, Tnγ−γ log n
a.s.−→ W̃ , where W̃ =− logW and W ∼ exp(1).

(b) Let ωn → ∞ arbitrarily slowly. Then there exists a constant C > 0 independent of ωn

such that

P

(
sup
t≥0

∣∣n−γe−(2+α)t |BPn(t +Tnγ )|−1
∣∣>ωnn−γ/2

)
≤C /ω2

n.

In particular whp as n →∞,
∣∣(Tn −Tnγ )− (1−γ) log n/(2+α)

∣∣≤ωnn−γ/2.

PROOF. Part (a) follows from Lemma 6.3 upon noting that Tnγ has the same distribution

as the hitting time of nγ by a Yule process with rate 1. To prove (b), recall that for t > Tnγ ,

all individuals switch to offspring dynamics modulated by f1. For the rest of the proof, we

proceed conditional on BPn (Tnγ ). Using Proposition 6.5, the following two processes are

martingales

M1(t ) :=
(
e−(2+α)t |BPn(t +Tnγ )|−nγ

)
+

(
1−e−(2+α)t

)
/(2+α), t ≥ 0,

M2(t ) := e−2(2+α)t |BPn(t +Tnγ )|2−
∫t

0
αe−2(2+α)s |BPn(s +Tnγ )|d s−e−2(2+α)t /2(2+α), t ≥ 0,

Using these expressions, it can be deduced that supt≥0E
(
M 2

1 (t )
)
≤C nγ for some constant

C > 0. Doob’s L
2-maximal inequality then proves the first assertion of Proposition 9.15 (b)

which then results in the second assertion in (b). ■
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We now construct two approximating processes BP+
n and BP−

n for T
θ

n (grown com-

pletely in continuous time). Fix constant B > 0 and sequence ωn → ∞ such that ωn =
o(log n) ↑ ∞. For the rest of this Section let t±n := (1−γ)

(2+α) log n ± ωn

nγ/2 . Define the process{
BP+

n (t ) : 0 ≤ t ≤ γ log n +B + t+n
}

as follows: (a) Run a continuous time branching process

driven by f0(·) ≡ 1 for time γ log n +B ; (b) After this time, every vertex switches dynam-

ics so that it reproduces at rate equal to the number of children +1 +α. Run this pro-

cess for an additional time t+n . Write T̃
+

n (B ,ωn) = BP+
n (γ log n +B + t+n ) for the random

rooted tree at the end of this process. Analogously define
{

BP−
n (t ) : 0 ≤ t ≤ γ logn −B + t−n

}

and T̃
−

n (B ,ωn) := BP−
n (log n −B + t−n ) where in the above construction we wait till time

γ log n −B before switching dynamics and run the new dynamics for additional time t−n .

By Proposition 9.15, given any ε> 0 we can choose a constant B = B (ε) for which we can

produce a coupling between Tn and T̃
+

n (B ,ωn) such that for all large n, with probability

at least 1−ε, Tn ⊆ T̃
+

n (B ,ωn) where we see the object on the left as a subtree of the object

on the right with the same root. A similar assertion holds with T̃
−

n (B ,ωn ) ⊆ Tn . Using

these couplings, the following proposition completes the proof of part (a) of Theorem 3.20

with part (a) of the proposition proving the lower bound while part (b) proving the upper

bound. In the following, we will denote the root of the respective trees by ρ∗.

PROPOSITION 9.16. Fix B > 0 and ωn = o(logn) ↑∞.

(a) Consider the degree of the root D−
n (ρ∗) in T̃

−
n (B ,ωn). Then D−

n (ρ∗) ≥ γ
4 n(1−γ)/(2+α) log n

whp as n →∞.

(b) Consider the maximal degree M+
n (1) in T̃

+
n (B ,ωn). Then ∃ constant C > 0 such that

whp as n →∞, M+
n (1) ≪C n(1−γ)/(2+α)(log n)2.

Proof: We start with (a). Each individual in the original branching process driven by f0(·) ≡
1 before time γ log n −B reproduces according to a rate one Poisson process. In particular

standard bounds for a Poisson random variable imply that the degree of the root in the

branching process at time γ log n −B , denoted by degn(ρ∗,γ log n −B ), satisfies

(9.33) degn (ρ∗,γ log n −B ) ≥
3

4
γ log n whp as n →∞.

Now let
{

Y(i )(·) : i ≥ 1
}

be a collection of independent rate one Yule processes. Comparing

rates for the evolution of the degree of the root after γ logn −B we get that

(9.34) D−
n (ρ∗) ºst

degn (ρ∗,γ logn−B)∑

i=1

Y(i )(t−n ).

Using (9.33), (9.34), Lemma 6.3 and standard lower tail bounds for the Geometric distri-

bution [33, Theorem 3.1] finishes the proof.

Let us now prove (b). Recall that after the change point, dynamics are modulated by

f1(·) := ·+ 1 +α. Let A denote the smallest integer ≥ α+ 1. Let ξ f1 be point process as-

sociated with f1 as in (2.1). Comparing rates we see that ξ f1
(·) ¹st

∑A+2
i=1

Y(i )(·), where as

before
{
Y(i )(·) : i ≥ 1

}
is a collection of independent rate one Yule processes. For every ver-

tex v ∈ T̃
+

n (B ,ωn) write degn(v) for the final degree of the vertex at time γ logn +B + t+n
when we have finished constructing the process BP+

n (·). As below Theorem 3.4, for any

v ∈ BP+
n , let σv denote the time of birth of vertex v into the system. We split the proof

of (b) into two cases (loosely corresponding to the maximal degree of vertices after and

before change point respectively):

(b1) Maximal degree for vertices born after γ log n +B : Define the following collection of

vertices

Ln =
{

v ∈ T̃
+

n (B ,ωn) : σv ∈ [γ logn +B , γ logn +B + t+n ], degn(v) >C (A+2)n
1−γ
2+α (log n)2

}
,
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where A is above is the smallest integer ≥ α+1 and C is an appropriate constant chosen

later in the proof. We now show that we can choose C such that E(|An |) → 0,as n → ∞.

This would then imply

(9.35) P(∃v ∈ T̃
+

n (B ,ωn),σv ≥ γ logn +B , degn(v) >C (A+2)n
1−γ
2+α (log n)2) → 0.

For the rest of the proof let k ′
n :=C (A+2)n

1−γ
2+α (log n)2 and kn = k ′

n/(A+2) =C n
1−γ
2+α (log n)2.

Fix s ≥ 0 and consider a vertex born at some time s +γ logn+B ∈ [γ logn+B , γ log n+B +
t+n ]. Thus this vertex has time t+n − s to evolve its degree. Using the bound on ξ f1

namely

the offspring process of each new vertex born at t > γ log n +B by a sum of Yule process

above, by Lemma 6.3 the probability that such a vertex has degree greater than (A +2)kn

by time t+n is bounded by P(geom(e−(t+n −s)) ≥ (A+2)kn ) ≤ e−knet+n −s
. Next note that for any

t ≥ γ logn + B , new vertices are produced at rate (2 +α)|BP+
n (t )| − 1. As in the proof of

Proposition 9.15, the process M(s) := e−(2+α)s |BP+
n (s+γ log n+B )|+(2+α)−1e−(2+α)s , s ≥ 0

is a martingale. Noting E |BP+
n (γ log n + B )| = eB nγ we get that E |BP+

n (s + γ log n +B )| ≤
C ′nγe (2+α)s for 0 ≤ s ≤ t+n where C ′ is a constant depending only on B ,α. Thus,

E(|Ln |) ≤C ′′nγ
∫t+n

0
e−kne−(t+n −s)

e (2+α)sd s,

where C ′′ depends only on B ,α. The following completes the proof of (9.35).

LEMMA 9.17. In := nγ
∫t+n

0 e−C (logn)2n
1−γ
2+α e−(t+n −s)

e (2+α)sd s → 0 for sufficiently large C as

n →∞.

PROOF. Writing a := 1−γ
2+α and b := 2+α, algebraic manipulations result in:

In ≤ nγ(log n)−2be
b

wn

nγ/2 Γ

(
b,C (log n)2e

− wn

nγ/2

)
:= En .

where Γ(b, z) =
∫∞

z e−t t b−1d t is the upper incomplete Gamma function. It is known that

Γ(b, z) =Ω(zb−1e−z) as z →∞. Thus En ∼ nγ−C logne
− wn

nγ/2
(log n)−2e

− wn

nγ/2 → 0. ■

(b2) Maximal degree for vertices born before logn +B :

To simplify notation let ∆n := γ logn +B ,Υn := γ logn +B + t+n . For fixed vertex v born

into BP+
n (·) and for time t ≤ Υn , let deg(v, t ) denote the degree of this vertex v in BP+

n (t )

with the convention that deg(v, t ) := 0 for t < σv . Write degn (v) := deg(v,Υn) for the final

degree of v in T̃
+

n (B ,ωn). Fix C > 0 and let Bn be the set of vertices born before γ log n +
B whose final degree is too large i.e. Bn := {v ∈ T̃

+
n (B ,ωn) : σv ≤ γ logn +B ,degn(v) >

C n
1−γ
2+α (log n)2}, where as before, degn(v) := deg(v,Υn) is the degree of vertex v in the final

tree T̃
+

n (B ,ωn).

PROPOSITION 9.18. We can choose C <∞ such that P(|Bn | ≥ 1) → 0 as n →∞.

PROOF. Consider the tree BP+
n (∆n ). Let Mn(∆n ) := maxv∈BP+

n (∆n ) deg(v,∆n) be the maxi-

mal degree of vertices in BP+
n (∆n) at time ∆n . Let ℓn := 10e logn and fix a sequence ωn ↑∞.

By the union bound,

P(|Bn | ≥ 1) ≤P
(
|Bn | ≥ 1, |BP+

n (∆n )| <ωnnγ, Mn(∆n) ≤ ℓn

)

+P(|BP+
n (∆n)| ≥ωnnγ)+P(Mn(∆n ) > ℓn).

Lemmas 9.19 and 9.20 bound the three terms on the right and complete the proof of the

Proposition. ■
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LEMMA 9.19. Let ωn = log n. We can choose constant C <∞ such that as n →∞,

P(|Bn | ≥ 1, |BP+
n (∆n)| <ωnnγ, Mn(∆n ) ≤ ℓn) → 0.

PROOF. Let Gn = {|BP+
n (∆n)| < ωnnγ, Mn(∆n) ≤ ℓn }. It is sufficient to show we can

choose constant C such that P(|Bn | ≥ 1|Gn) → 0. Conditional on Gn , we will construct

a stochastic process that bounds the growth of the maximal degree of the vertices in

BP+
n (∆n ) for times t ≥ ∆n . Let

{
Xi (·) : 1 ≤ i ≤ nγωn

}
be a collection of i.i.d. stochastic pro-

cesses with distribution X (·) = ∑ℓn+A+2
j=1

Y j (·), where
{
Y j (·) : j ≥ 1

}
is collected of i.i.d. rate

one Yule processes. Recall that t+n = 1−γ
2+α log n + ωn

nγ/2 . Let Mn := max1≤i≤ωn nγ Xi (t+n ).

On the event Gn , the number of vertices |BP+
n (∆n)| ≤ ωnnγ and further the maxi-

mal degree of any vertex at time ∆n is ≤ ℓn . Thus on Gn , for any v ∈ BP+
n (∆n ), com-

paring rates for the point process representing the evolution of degrees for t > ∆n , we

see that deg(v, ·) ¹st X (·) with X as above. The time translation makes the precise for-

mulation clunky but in brief, on the set Gn , for any v ∈ BP+
n (∆n ), we can construct{

(deg(v,∆n + s), X (s)) : 0 ≤ s ≤ t+n
}

on a common probability space so that for all 0 ≤ s ≤ t+n ,

deg(v,∆n+s) ≤ X (s). Thus on the eventGn , the maximal degree at time Υn of vertices born

before time ∆n satisfies maxv∈BP+
n (∆n ) deg(v,Υn) ¹st Mn . The rest of the proof analyzes Mn .

The union bound gives,

P (|Bn | ≥ 1|Gn) ≤P

(
Mn ≥C n

1−γ
2+α (log n)2

)
≤ωnnγ

P

(
X (t+n ) ≥C n

1−γ
2+α (log n)2

)
.(9.36)

By Lemma 6.3 for any t ≥ 0 and λ> 0, with m = ℓn + A+2,

P (X (t ) >λ) ≤ mP
(
geom(e−t ) > (λ/m)

)
≤ m exp

[
−(λ/m)e−t

]
.

Plugging in t = t+n ,λ=C n
1−γ
2+α (log n)2 we get that the last term in (9.36) can be bounded by

Kωnnγn−C logn which goes to zero for sufficiently large C . ■

LEMMA 9.20. For C large enough as n →∞,P(|BP+
n (∆n)| ≥ωnnγ) → 0, andP(Mn(∆n ) >

ℓn ) → 0.

PROOF. The second assertion follows from standard bounds for the maximal degree of

the random recursive tree [23]. We omit the proof. We prove the first assertion. The size

of the tree grows according to a rate one Yule process. Thus by Lemma 6.3, |BPn(∆n )| ∼
geom

(
e−(γl og n+B)

)
. Thus

P
(
|BP+

n (∆n )| ≥ωnnγ
)
≤ exp

[
−ωn nγe−γ logn−B

]
→ 0, as n →∞.

■

10. Proofs: Convergence rates for model without change point. This section is ded-

icated to proving Theorem 3.4 and Theorem 3.5. We need the following lemma which

quantifies the rate of convergence of solutions of renewal equations to their limit as time

goes to infinity.

LEMMA 10.1. Consider a continuous time branching process with attachment function

f that satisfies Assumption 2.4. Fix β ∈ (0,λ∗). There exist positive constants C1, C2 such

that the following holds: if h solves the renewal equation

h(t ) = e−λ∗tφ(t )+
∫t

0
h(t − s)e−λ∗sµ f (d s)

with any φ satisfying |φ(s)| ≤Cφeβs for all s ≥ 0, for some Cφ > 0, then h(∞) := limt→∞ h(t )

exists and we have, for all t ≥ 0, |h(∞)−h(t )| ≤C1Cφe−C2t .
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PROOF. In the proof, C ,C ′ will denote generic positive constants, not depending on Cφ

or the choice of φ, whose values might change from line to line. We will use estimates

about quantitative rates of convergence for renewal measures derived in [11] in the setting

of the point process with i.i.d. inter-arrival times having distribution e−λ∗sµ f (d s). By As-

sumption 2.4 (ii), it is clear that the measure e−λ∗sµ f (d s) satisfies
∫∞

0 eβ′se−λ∗sµ f (d s) <∞
for some β′ > 0 and thus, Assumption 1 of [11] is satisfied. Moreover, for any Borel set A in

[0,1], denoting by E the first time the root reproduces (which has an exponential distribu-

tion with rate f (0)), note that

µ f (A) ≥ E(1 {E ∈ A}) =
∫

A
f (0)e− f (0)x d x ≥ f (0)e− f (0)

∫

A
d x

and consequently, the distribution of the inter-arrival time is spread out in the sense of

Assumption 2 of [11] taking c = 1/2,L = 1/2 and η̃ = f (0)e−(λ∗+ f (0)). Thus, Corollary 1

of [11] holds for the point process under consideration. For any x ≥ 0, denote by U x

the renewal measure corresponding to the associated point process with time started

at x. The stationary version of this point process corresponds to a random starting time

whose law is µ∗(d s) = m⋆−1se−λ∗sµ f (d s) (called the stationary delay distribution), where

m⋆ =
∫∞

0 ue−λ∗uµ f (du). From translation invariance, it follows that the renewal measure

associated to this stationary version is given by U∗(d s) = m⋆−1d s. By Corollary 1 of [11],

there exist constants C ,C ′ > 0 and β′′ < β′ such that for any Borel set D ⊂ (0,∞) and any

x, t ≥ 0,

|U x (D + t )−U 0(D + t )| ≤C eβ′′x e−C ′t (U 0((0,supD))+1).

Integration both sides of the above relation over x with respect to the stationary delay

distribution µ∗(d x) and using Fubini’s theorem and the fact that
∫∞

0 eβ′se−λ∗sµ f (d s) <∞,

we obtain

|U∗(D + t )−U 0(D + t )| ≤C e−C ′t (U 0((0,sup D))+1).

This, in turn, implies that for ant t ≥ 0, if U∗
M ,t and U 0

M ,t
denote the measures defined by

U∗
M ,t (D) =U∗(D + t ) and U 0

M ,t (D) =U 0(D + t ) for any Borel set D ⊂ [0, M ], then using the

fact that limt→∞ t−1U 0([0, t ])= 1
m⋆ (which follows from the elementary renewal theorem),

(10.1) ||U∗
M ,t −U 0

M ,t ||T V ≤C Me−C ′t .

From standard results in renewal theory, h(t ) =
∫t

0 e−λ∗(t−s)φ(t − s)U 0(d s), t ≥ 0, and

h(∞) := limt→∞ h(t ) exists with h(∞)=
∫∞

0 e−λ∗sφ(s)U∗(d s). Thus, for t ≥ 0,

(10.2) |h(∞)−h(t )| =
∣∣∣∣
∫∞

0
e−λ∗sφ(s)U∗(d s)−

∫t

0
e−λ∗(t−s)φ(t − s)U 0(d s)

∣∣∣∣

≤
∣∣∣∣
∫t

0
e−λ∗sφ(s)U∗(d s)−

∫t

0
e−λ∗(t−s)φ(t − s)U 0(d s)

∣∣∣∣+
∫∞

t
e−λ∗sφ(s)U∗(d s).

As |φ(s)| ≤Cφeβs for all s,

(10.3)

∫∞

t
e−λ∗sφ(s)U∗(d s) ≤Cφm⋆−1

∫∞

t
e−(λ∗−β)sd s =

Cφ

m⋆(λ∗−β)
e−(λ∗−β)t .

To estimate the first term in the bound (10.2), note that for t ≥ 0,

(10.4)

∣∣∣∣
∫t

0
e−λ∗sφ(s)U∗(d s)−

∫t

0
e−λ∗(t−s)φ(t − s)U 0(d s)

∣∣∣∣
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≤
∫t /2

0
e−λ∗(t−s)φ(t − s)U∗(d s)+

∫t /2

0
e−λ∗(t−s)φ(t − s)U 0(d s)

+
∣∣∣∣
∫t

t /2
e−λ∗(t−s)φ(t − s)U∗(d s)−

∫t

t /2
e−λ∗(t−s)φ(t − s)U 0(d s)

∣∣∣∣

≤Cφe−(λ∗−β)t /2U∗([0, t/2])+Cφe−(λ∗−β)t /2U 0([0, t/2])+Cφ||U∗
t /2,t /2−U 0

t /2,t /2||T V ≤C ′
1Cφe−C ′

2t

for constants C ′
1,C ′

2 > 0 not depending on φ, where we used (10.1) and the observations

that U∗([0, t/2] = t/2m⋆ and limt→∞ t−1U 0([0, t/2]) = 1/(2m⋆). The lemma follows using

(10.3) and (10.4) in (10.2). ■

PROOF OF THEOREM 3.5. We bound
∣∣∣e−λ∗t Z

φ

f
(t )−W∞M

φ

f
(∞)

∣∣∣ using the same tech-

niques as in the proof of Theorem 3.1 of [37]. For each term appearing in the bound, we

show that they are small in a suitable sense using renewal theoretic methods and variance

computations.

In the proof, C ,C ′,C ′′,C1,C2,β′,β denote generic positive constants depending neither

on bφ nor the choice of φ. Following [37], write x = (x′, i ) when x is the i -th child of x′ and

define for any t ,c ≥ 0,

I (t ) = {x = (x′, i ) : σx′ ≤ t and t <σx <∞}, I (t ,c)= {x = (x′, i ) : σx′ ≤ t and t +c <σx <∞}.

Let T̄t denote the number of vertices born by time t and let An be the filtration gener-

ated by the entire biographies of the first n vertices (see [37] for detailed definitions).

Define Ft = AT̄t
. For any s > 0, write φ = φs + φ′

s where φs (u) = φ(u)1 {u < s} and

φ′
s (u) =φ(u)1 {u ≥ s}. Note that

(10.5)

E

∣∣∣e−λ∗t Z
φ

f
(t )−W∞M

φ

f
(∞)

∣∣∣≤ E

∣∣∣e−λ∗t
(

Z
φ

f
(t )−Z

φs

f
(t )

)∣∣∣+E

∣∣∣e−λ∗t Z
φs

f
(t )−W∞M

φs

f
(∞)

∣∣∣

+E

(∣∣∣Mφs

f
(∞)−M

φ

f
(∞)

∣∣∣W∞
)

.

Recall that, by (2.6) appearing in Assumption 2.4 (ii), λ < λ∗ and hence, there exists β′ ∈
(λ,λ∗) such that

(10.6) e−β′t
E
(
ξ f (t )

)
=E

(
ξ f (t )

)∫∞

t
β′e−β′udu ≤

∫∞

0
β′e−β′u

E
(
ξ f (u)

)
du = ρ̂(β′) <∞.

Using this, the third term in the bound (10.5) can be bounded as

(10.7) E

(∣∣∣Mφs

f
(∞)−M

φ

f
(∞)

∣∣∣W∞
)
= M

φ′
s

f
(∞) =

1

m⋆

∫∞

s
e−λ∗u

E
(
φ(u)

)
du

≤
bφ

m⋆

∫∞

s
e−λ∗u

E
(
ξ f (u)+1

)
du ≤C bφe−(λ∗−β′)s .

The first term in the bound (10.5) can be bounded as

(10.8) E

∣∣∣e−λ∗t
(

Z
φ

f
(t )−Z

φs

f
(t )

)∣∣∣= E

(
e−λ∗t Z

φ′
s

f
(t )

)
≤

∣∣∣Mφ′
s

f
(t )−M

φ′
s

f
(∞)

∣∣∣+M
φ′

s

f
(∞).

By the fact that M
φ′

s

f
(t ) satisfies the renewal equation (3.2) (with φ′

s in place of φ) and

Lemma 10.1, for t ≥ 0,
∣∣∣Mφ′

s

f
(t )−M

φ′
s

f
(∞)

∣∣∣ ≤ C1bφe−C2t . Using this estimate and (10.7) in

(10.8), we obtain

(10.9) E

∣∣∣e−λ∗t
(

Z
φ

f
(t )−Z

φs

f
(t )

)∣∣∣≤C1bφe−C2t +C bφe−(λ∗−β′)s .
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Using (10.7) and (10.9) in (10.5), for any t , s ≥ 0,

(10.10)

E

∣∣∣e−λ∗t Z
φ

f
(t )−W∞M

φ

f
(∞)

∣∣∣≤ E

∣∣∣e−λ∗t Z
φs

f
(t )−W∞M

φs

f
(∞)

∣∣∣+C1bφe−C2t +2C bφe−(λ∗−β′)s .

Now, we estimate the first term in the above bound. Observe that as φs (u)= 0 for all u ≥ s,

every individual that contributes to Z
φs

f
(t+s) must be born after time t . Therefore, Z

φs

f
(t+

s) = ∑
x∈I (t ) Z

φs

f ,x
(t + s −σx ) where for any vertex x and any u ≥ 0, Z

φs

f ,x
(u) denotes the

aggregate φ-score at time σx +u treating the vertex x as the root. For t ,c ≥ 0 such that

s ≥ c , write

X (t , s,c)=
∑

x∈I (t )\I (t ,c)

e−λ∗σx

(
e−λ∗(t+s−σx )Z

φs

f ,x
(t + s −σx )−M

φs

f
(t + s −σx )

)
.

and write Wt =
∑

x∈I (t ) e−λ∗σx , Wt ,c = ∑
x∈I (t ,c) e−λ∗σx . Following equation (3.36) in [37],

we obtain∣∣∣e−λ∗(t+s) Z
φs

f
(t + s)−W∞M

φs

f
(∞)

∣∣∣

≤ |X (t , s,c)|+
∑

x∈I (t )\I (t ,c)

e−λ∗σx

∣∣∣Mφs

f
(t + s −σx )−M

φs

f
(∞)

∣∣∣

+
∣∣∣∣∣

∑

x∈I (t ,c)

e−λ∗σx

(
e−λ∗(t+s−σx ) Z

φs

f ,x
(t + s −σx )−M

φs

f
(∞)

)∣∣∣∣∣+M
φs

f
(∞) |Wt −W∞| .

(10.11)

Note that

(10.12) Var(X (t , s,c)|Ft ) =
∑

x∈I (t )\I (t ,c)

e−2λ∗σx V
φs

f
(t + s −σx )

where V
φs

f
(t ) = Var

(
e−λ∗t Z

φs

f
(t )

)
. Recall m

φs

f
(t ) = E

(
Z

φs

f
(t )

)
and v

φs

f
(t ) = Var

(
Z

φs

f
(t )

)
.

From Theorem 3.2 of [30], v
φs

f
(t ) = h⋆U (t ), where h(t )= Var

(
φs(t )+

∫t
0 m

φs

f
(t −u)ξ f (du)

)

and U (·) =∑∞
ℓ=0

µ⋆ℓ
f

(·) denotes the renewal measure. As φs (t ) ≤ bφ(ξ f (t )+1) for all t , using

Assumption 3.2,

e−2λ∗t
E(φs (t ))2 ≤ (bφ)2

E

(
e−λ∗t (1+ξ f (t ))

)2

≤ 2(bφ)2
E

(
e−2λ∗t +λ∗2

(∫∞

t
e−λ∗uξ f (u)du

)2)
≤C (bφ)2.(10.13)

As E
(
ξ f (t )+1

)
≤C eβ′t by (10.6), therefore E

(
φs(t )

)
≤ bφE

(
ξ f (t )+1

)
≤ bφC eβ′t . Hence, by

the fact that M
φs

f
(t ) satisfies the renewal equation (3.2) and Lemma 10.1, for t ≥ 0,

(10.14)
∣∣∣Mφs

f
(t )−M

φs

f
(∞)

∣∣∣≤C1bφe−C2t .

Moreover,

(10.15)

M
φs

f
(∞) = (m⋆)−1

∫∞

0
e−λ∗u

E(φs (u))du ≤ (m⋆)−1bφ

∫∞

0
E

(
e−λ∗u(1+ξ f (u))

)
du ≤C bφ.

Using (10.14) and (10.15), we obtain for all t ≥ 0,

(10.16) M
φs

f
(t ) ≤C ′bφ.
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From (10.13) and (10.16), we conclude for all t ≥ 0,

e−2λ∗t h(t ) = Var

(
e−λ∗tφs(t )+

∫t

0
e−λ∗(t−u)m

φs

f
(t −u)e−λ∗uξ f (du)

)

≤ 2e−2λ∗t
E(φs (t ))2 +2E

(∫t

0
M

φs

f
(t −u)e−λ∗uξ f (du)

)2

≤ 2C (bφ)2 +2(C bφ)2
E

(∫∞

0
e−λ∗uξ f (du)

)2

≤C ′(bφ)2.

Thus, for all t ≥ 0,

(10.17) V
φs

f
(t ) =

∫∞

0
e−2λ∗(t−u)h(t −u)e−2λ∗uU (du)

≤C ′(bφ)2
∫∞

0
e−2λ∗uU (du) =C ′(bφ)2

∞∑

ℓ=0

µ̂ f (2λ∗)ℓ =
C ′(bφ)2

1− µ̂ f (2λ∗)
=C ′′(bφ)2.

Using this bound in (10.12), we obtain

E (Var(X (t , s,c)|Ft )) ≤C ′′(bφ)2
E

(
∑

x∈I (t )\I (t ,c)

e−2λ∗σx

)
≤C ′′(bφ)2e−λ∗t

E(Wt ) =C ′′(bφ)2e−λ∗t .

Moreover, E(X (t , s,c)|Ft ) = 0. Thus, we obtain

(10.18) E |X (t , s,c)| ≤
√
E(X (t , s,c))2 =

√
Var(X (t , s,c))≤

p
C ′′bφe−λ∗t /2.

Using (10.14),

(10.19)

E

(
∑

x∈I (t )\I (t ,c)

e−λ∗σx

∣∣∣Mφs

f
(t + s −σx )−M

φs

f
(∞)

∣∣∣
)
≤C1bφe−C2(s−c)

E(Wt ) =C1bφe−C2(s−c).

To estimate the third term in the bound (10.11), observe that upon conditioning on Ft

and noting that supt<∞ M
φs

f
(t ) ≤C ′bφ,

(10.20) E

(∣∣∣∣∣
∑

x∈I (t ,c)

e−λ∗σx

(
e−λ∗(t+s−σx )Z

φs

f ,x
(t + s −σx )−M

φs

f
(∞)

)∣∣∣∣∣

)

≤ E

(
∑

x∈I (t ,c)

e−λ∗σx

(
M

φs

f
(t + s −σx )+M

φs

f
(∞)

))
≤C ′bφE(Wt ,c ).

Consider the characteristic φc (v) = eλ∗v
(∫∞

v+c e−λ∗uξ f (du)
)
, v ≥ 0. Then Wt ,c = e−λ∗t Z

φc

f
(t ).

Note that

E(φc (t )) = eλ∗t
E

(∫∞

t+c
e−λ∗uξ f (du)

)
= eλ∗t

E

(∫∞

t+c
λ∗e−λ∗v (ξ f (v)−ξ f (t +c))d v

)

≤ eλ∗t
E

(∫∞

t+c
λ∗e−λ∗vξ f (v)d v

)
≤C eλ∗t

(∫∞

t+c
λ∗e−λ∗v eβ′v d v

)
≤

Cλ∗eλ∗t

λ∗−β′ e−(λ∗−β′)t =
Cλ∗eβ′t

λ∗−β′ .

Hence, by Lemma 10.1,

(10.21)
∣∣∣Mφc

f
(t )−M

φc

f
(∞)

∣∣∣≤C1e−C2t .
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Moreover, by Lemma 3.5 of [37], M
φc

f
(∞) =

∫∞
c (1−µ f ,λ∗ (u))du

/∫∞
0 (1−µ f ,λ∗ (u))du where

µ f ,λ∗ (u) =
∫u

0 e−λ∗vµ f (d v). Now, for any u ≥ 0,

1−µ f ,λ∗ (u) =
∫∞

u
e−λ∗vµ f (d v) ≤

∫∞

u
λ∗e−λ∗vµ f (v)d v

≤C

∫∞

u
λ∗e−λ∗v eβ′v d v =

Cλ∗

λ∗−β′ e−(λ∗−β′)u

and hence,
∫∞

c
(1−µ f ,λ∗ (u))du ≤

∫∞

c

Cλ∗

λ∗−β′ e−(λ∗−β′)udu =
Cλ∗

(λ∗−β′)2
e−(λ∗−β′)c .

This bound implies that there exists C > 0 such that for all c > 0,

(10.22) M
φc

f
(∞) ≤C e−(λ∗−β′)c .

Combining (10.21) and (10.22), we have E(Wt ,c ) = M
φc

f
(t ) ≤ C1e−C2t +C e−(λ∗−β′)c . Using

this in (10.20),

(10.23)

E

(∣∣∣∣∣
∑

x∈I (t ,c)

e−λ∗σx

(
e−λ∗(t+s−σx )Z

φs

f ,x
(t + s −σx )−M

φs

f
(∞)

)∣∣∣∣∣

)
≤C ′bφ

(
e−C2t +e−(λ∗−β′)c

)
.

To estimate the last term in the bound (10.11), observe that for any t ≥ 0, W∞ =∑
x∈I (t ) e−λ∗σx W x

∞, where W x
∞ corresponds to W∞ treating vertex x as the root (and

hence are i.i.d. and have the same distribution as W∞). Moreover, by Theorem 4.1 of [30],

Var(W∞) <∞. Using these observations,

E(Wt −W∞)2 = E

(
∑

x∈I (t )

e−λ∗σx (1−W x
∞)

)2

= Var(W∞)E

(
∑

x∈I (t )

e−2λ∗σx

)

≤ Var(W∞)e−λ∗t
E(Wt ) = Var(W∞)e−λ∗t .

Together with the fact that supt<∞ M
φs

f
(t ) ≤C ′bφ, this implies that for t ≥ 0,

(10.24) E

∣∣∣Mφs

f
(∞) |Wt −W∞|

∣∣∣≤
√
E

(
M

φs

f
(∞) |Wt −W∞|

)2
≤C ′bφe−λ∗t /2.

Using (10.18), (10.19), (10.23) and (10.24) and the bound (10.11), we obtain D,D1,D2,D3 >
0 not depending on bφ, t , s,c such that

(10.25) E

(∣∣∣e−λ∗(t+s) Z
φs

f
(t + s)−W∞M

φs

f
(∞)

∣∣∣
)
≤ Dbφ

(
e−D1t +e−D2c +e−D3(s−c)

)
.

On taking t − s in place of t in (10.25), we obtain for any s, t ,c ≥ 0 such that t ≥ s ≥ c ,

(10.26) E

(∣∣∣e−λ∗t Z
φs

f
(t )−W∞M

φs

f
(∞)

∣∣∣
)
≤ Dbφ

(
e−D1(t−s) +e−D2c +e−D3(s−c)

)
.

Using (10.26) in (10.10), we obtain for any s, t ,c ≥ 0 such that t ≥ s ≥ c ,

E

∣∣∣e−λ∗t Z
φ

f
(t )−W∞M

φ

f
(∞)

∣∣∣≤ Dbφ

(
e−D1(t−s) +e−D2c +e−D3(s−c)

)
+C1bφe−C2t+2C bφe−(λ∗−β′)s .

The theorem now follows by taking s = t/2 and c = t/4. ■

Recall λℓ,λ(k)
ℓ

for k ,ℓ ≥ 0 from (3.4), with f1 replaced by f (this section considers the

model without change point). The following lemma uses the exponential convergence rate

established in Theorem 3.5 along with some continuity estimates to furnish a quantitative

sup-norm bound on appropriate statistics on suitably chosen intervals.
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LEMMA 10.2. Consider a continuous time branching process with attachment function

f that satisfies Assumptions 2.4, 3.1 and 3.2. There exist ω1 ∈ (0,1),ǫ∗ ∈ (0,1) and positive

constants C ,ω2 such that for all ǫ≤ ǫ∗ and all T ∈
[

1−ǫ
λ∗ logn, 1+ǫ

λ∗ log n
]
,

E

(
nω1 sup

t∈[0,2ǫ logn/λ∗]

∣∣∣∣∣e
−λ∗T

∞∑

ℓ=0

λℓ(t )D (ℓ,T )−
1

λ∗m⋆

∞∑

ℓ=0

λℓ(t )pℓW∞

∣∣∣∣∣

)
≤C n−ω2

and for any k ≥ 0,

E

(
nω1 sup

t∈[0,2ǫ logn/λ∗]

∣∣∣∣∣e
−λ∗T

∞∑

ℓ=0

λ(k)
ℓ

(t )D (ℓ,T )−
1

λ∗m⋆

∞∑

ℓ=0

λ(k)
ℓ

(t )pℓW∞

∣∣∣∣∣

)
≤C (k +1)n−ω2 .

PROOF. For any t , consider the characteristic φ(s) = ∑∞
ℓ=0

λℓ(t )1
{
ξ f (s) = ℓ

}
. Then

Z
φ

f
(s) =∑∞

ℓ=0
λℓ(t )D(ℓ, s). By Lemma 6.6 (ii), limt→∞ e−λ∗t m f (t ) = 1

λ∗m⋆ . Moreover, as As-

sumption 3.1 holds, by Lemma 9.3, there exists a constant C > 0 such that for each ℓ≥ 0,

wℓ ≤C (ℓ+1). Thus, there exists a constant C ′ > 0 such that for any ℓ≥ 0,

sup
t≥0

e−λ∗tλℓ(t ) ≤ 1+wℓ

(
sup
t≥0

e−λ∗t m f (t )

)
≤C ′(ℓ+1).

Hence, the hypotheses of Theorem 3.5 hold with bφ = C ′eλ∗t . Consequently, for any ǫ ∈
(0,1), any t ∈ [0,2ǫ logn/λ∗] and any T ∈

[
1−ǫ
λ∗ log n, 1+ǫ

λ∗ log n
]
,

E

(∣∣∣∣∣e
−λ∗T

∞∑

ℓ=0

λℓ(t )D (ℓ,T )−
1

λ∗m⋆

∞∑

ℓ=0

λℓ(t )pℓW∞

∣∣∣∣∣

)

≤C1C eλ∗t e−C2(1−ǫ)

λ∗ logn ≤C1C e2ǫ logne−C2(1−ǫ)

λ∗ logn .

Therefore, choosing ǫ∗ small enough, there exists θ1 > 0 such that for any ǫ ≤ ǫ∗, any t ∈
[0,2ǫ logn/λ∗] and any T ∈

[
1−ǫ
λ∗ log n, 1+ǫ

λ∗ logn
]
,

(10.27) E

(∣∣∣∣∣e
−λ∗T

∞∑

ℓ=0

λℓ(t )D (ℓ,T )−
1

λ∗m⋆

∞∑

ℓ=0

λℓ(t )pℓW∞

∣∣∣∣∣

)
≤ n−θ1 .

Take any θ2 ∈ (0,θ1) and a partition of [0,2ǫ logn/λ∗] into t0 < t1 < ·· · < t⌊(2ǫ logn/λ∗)nθ2 ⌋+1

of mesh n−θ2 . By Lemma 8.4, for any j and any t ∈ [t j , t j+1], there exist constants C ,C ′ > 0

independent of ǫ,n such that

(10.28)

∣∣∣∣∣

∣∣∣∣∣e
−λ∗T

∞∑

ℓ=0

λℓ(t )D (ℓ,T )−
1

λ∗m⋆

∞∑

ℓ=0

λℓ(t )pℓW∞

∣∣∣∣∣

−
∣∣∣∣∣e

−λ∗T
∞∑

ℓ=0

λℓ(t j )D (ℓ,T )−
1

λ∗m⋆

∞∑

ℓ=0

λℓ(t j )pℓW∞

∣∣∣∣∣

∣∣∣∣∣

≤ e−λ∗T
∞∑

ℓ=0

∣∣λℓ(t )−λℓ(t j )
∣∣D (ℓ,T )+

1

λ∗m⋆

∞∑

ℓ=0

∣∣λℓ(t )−λℓ(t j )
∣∣ pℓW∞

≤
C nC ′ǫ

n1−ǫ+θ2

∞∑

ℓ=0

(ℓ+1)D (ℓ,T )+
C nC ′ǫ

nθ2

∞∑

ℓ=0

(ℓ+1)pℓW∞ ≤
2C

n1−(1+C ′)ǫ+θ2
Z (T )+

2C

nθ2−C ′ǫ
W∞.
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Using (10.27), (10.28) and the union bound, we obtain for any ω′ > 0,

E

(
nω′

sup
t∈[0,2ǫ logn/λ∗]

∣∣∣∣∣e
−λ∗T

∞∑

ℓ=0

λℓ(t )D (ℓ,T )−
1

λ∗m⋆

∞∑

ℓ=0

λℓ(t )pℓW∞

∣∣∣∣∣

)

≤ E

(
nω′

sup
1≤ j≤⌊(2ǫ logn/λ∗)nθ2 ⌋+1

∣∣∣∣∣e
−λ∗T

∞∑

ℓ=0

λℓ(t j )D (ℓ,T )−
1

λ∗m⋆

∞∑

ℓ=0

λℓ(t j )pℓW∞

∣∣∣∣∣

)

+E

(
2C nω′

n1−(1+C ′)ǫ+θ2
Z (T )+

2C nω′

nθ2−C ′ǫ
W∞

)

≤ nω′
⌊(2ǫ logn/λ∗)nθ2 ⌋+1∑

j=0

E

(∣∣∣∣∣e
−λ∗T

∞∑

ℓ=0

λℓ(t j )D (ℓ,T )−
1

λ∗m⋆

∞∑

ℓ=0

λℓ(t j )pℓW∞

∣∣∣∣∣

)

+nω′
E

(
2C

n1−(1+C ′)ǫ+θ2
Z (T )+

2C

nθ2−C ′ǫ
W∞

)
≤

C ′′ǫ logn

nθ1−θ2−ω′ +
C ′′

nθ2−(2+C ′)ǫ−ω′ +
C ′′

nθ2−C ′ǫ−ω′

for some constant C ′′ > 0. Taking ǫ∗ < θ2/(2+C ′) and any ω′ < min{θ1−θ2,θ2−(2+C ′)ǫ∗,1},

this proves the first assertion in the lemma. The second assertion follows similarly upon

noting that λ(k)
ℓ

≤ λℓ for each k ≥ 0 (and thus the constant C in the expectation bound

can be chosen uniformly over k) and using Corollary 8.6 in place of Lemma 8.4 (which

accounts for the (k +1) in the bound). ■

PROOF OF THEOREM 3.4. Take ǫ∗∗ ≤ ǫ∗ (where ǫ∗ is as in Lemma 10.2) and any ǫ≤ ǫ∗∗.

We abbreviate

Sn := sup
t∈[0,2ǫ logn/λ∗]

∣∣∣∣∣
∞∑

ℓ=0

λℓ(t )D

(
ℓ,

1−ǫ

λ∗ logn

)
−

n1−ǫ

λ∗m⋆

∞∑

ℓ=0

λℓ(t )pℓW∞

∣∣∣∣∣ ,

S
(k)

n := sup
t∈[0,2ǫ logn/λ∗]

∣∣∣∣∣
∞∑

ℓ=0

λ(k)
ℓ

(t )D

(
ℓ,

1−ǫ

λ∗ logn

)
−

n1−ǫ

λ∗m⋆

∞∑

ℓ=0

λ(k)
ℓ

(t )pℓW∞

∣∣∣∣∣ .

Observe that for any k ≥ 0, using the fact that λℓ(·) is an increasing function and λℓ(0) = 1

for each ℓ≥ 0,

sup
t∈[0,2ǫ logn/λ∗]

∣∣∣∣∣

∑∞
ℓ=0

λ(k)
ℓ

(t )D
(
ℓ, 1−ǫ

λ∗ log n
)

∑∞
ℓ=0

λℓ(t )D
(
ℓ, 1−ǫ

λ∗ log n
) −

∑∞
ℓ=0

λ(k)
ℓ

(t )pℓ
∑∞

ℓ=0
λℓ(t )pℓ

∣∣∣∣∣

≤
S

(k)
n∑∞

ℓ=0
λℓ(t )D

(
ℓ, 1−ǫ

λ∗ log n
) +

Sn

(∑∞
ℓ=0

λ(k)
ℓ

(t )pℓW∞
)

(∑∞
ℓ=0

λℓ(t )pℓW∞
)(∑∞

ℓ=0
λℓ(t )D

(
ℓ, 1−ǫ

λ∗ log n
))

≤
S

(k)
n∑∞

ℓ=0
λℓ(0)D

(
ℓ, 1−ǫ

λ∗ logn
)+

Sn(∑∞
ℓ=0

λℓ(0)D
(
ℓ, 1−ǫ

λ∗ log n
)) =

S
(k)

n

Z
(

1−ǫ
λ∗ log n

)+
Sn

Z
(

1−ǫ
λ∗ log n

) .

Recalling ω1 from Lemma 10.2,

nω1

∞∑

k=0

2−k

(
sup

t∈[0,2ǫ logn/λ∗]

∣∣∣∣∣

∑∞
ℓ=0

λ(k)
ℓ

(t )D
(
ℓ, 1−ǫ

λ∗ log n
)

∑∞
ℓ=0

λℓ(t )D
(
ℓ, 1−ǫ

λ∗ logn
) −

∑∞
ℓ=0

λ(k)
ℓ

(t )pℓ
∑∞

ℓ=0
λℓ(t )pℓ

∣∣∣∣∣

)

≤
n1−ǫ

Z
(

1−ǫ
λ∗ log n

)
∞∑

k=0

2−k

(
S

(k)
n

n1−ǫ−ω1
+

Sn

n1−ǫ−ω1

)
.
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Using Lemma 10.2, for any η> 0,

P

(
∞∑

k=0

2−k

(
S

(k)
n +Sn

n1−ǫ−ω1

)
> η

)
≤ η−1

∞∑

k=0

2−k 1

n1−ǫ−ω1
E

(
S

(k)
n +Sn

)

≤ η−1
∞∑

k=0

2−k(k +2)C n−ω2 ≤C ′η−1n−ω2

for positive constants C ,C ′. Moreover, n1−ǫ

Z
(

1−ǫ
λ∗ logn

) P−→ λ∗m⋆

W∞
as n →∞ by Lemma 6.6. Com-

bining these,

(10.29) nω1

∞∑

k=0

2−k

(
sup

t∈[0,2ǫ logn/λ∗]

∣∣∣∣∣

∑∞
ℓ=0

λ(k)
ℓ

(t )D
(
ℓ, 1−ǫ

λ∗ logn
)

∑∞
ℓ=0

λℓ(t )D
(
ℓ, 1−ǫ

λ∗ log n
) −

∑∞
ℓ=0

λ(k)
ℓ

(t )pℓ
∑∞

ℓ=0
λℓ(t )pℓ

∣∣∣∣∣

)
P−→ 0.

Moreover, it is straightforward to check that

(10.30) sup
t∈[0,2ǫ logn/λ∗]

∣∣∣∣∣
D

(
k , 1−ǫ

λ∗ log n + t
)

Z
(

1−ǫ
λ∗ log n + t

) −
∑∞

ℓ=0
λ(k)
ℓ

(t )D
(
ℓ, 1−ǫ

λ∗ log n
)

∑∞
ℓ=0

λℓ(t )D
(
ℓ, 1−ǫ

λ∗ log n
)

∣∣∣∣∣

≤ 1

Z
(

1−ǫ
λ∗ log n

) sup
t∈[0,2ǫ logn/λ∗]

∣∣∣∣∣D
(

k ,
1−ǫ

λ∗ log n + t

)
−

∞∑

ℓ=0

λ(k)
ℓ

(t )D

(
ℓ,

1−ǫ

λ∗ log n

)∣∣∣∣∣

+
1

Z
(

1−ǫ
λ∗ log n

) sup
t∈[0,2ǫ logn/λ∗]

∣∣∣∣∣Z

(
1−ǫ

λ∗ log n + t

)
−

∞∑

ℓ=0

λℓ(t )D

(
ℓ,

1−ǫ

λ∗ log n

)∣∣∣∣∣ .

Abbreviate

Ŝ
(k)

n := sup
t∈[0,2ǫ logn/λ∗]

∣∣∣∣∣D
(

k ,
1−ǫ

λ∗ logn + t

)
−

∞∑

ℓ=0

λ(k)
ℓ

(t )D

(
ℓ,

1−ǫ

λ∗ logn

)∣∣∣∣∣ ,

Ŝn := sup
t∈[0,2ǫ logn/λ∗]

∣∣∣∣∣Z

(
1−ǫ

λ∗ log n + t

)
−

∞∑

ℓ=0

λℓ(t )D

(
ℓ,

1−ǫ

λ∗ log n

)∣∣∣∣∣ .

By conditioning on Fn

(
1−ǫ
λ∗ log n

)
and applying Lemma 8.11, we obtain ω′

1 ∈ (0,1),ω′
2 > 0

not depending on ǫ such that for any η> 0,

(10.31) P




∞∑

k=0

2−k


 Ŝ

(k)
n

Z
(

1−ǫ
λ∗ logn

)1−ω′
1


> η

∣∣∣ Fn

(
1−ǫ

λ∗ log n

)


=P




∞∑

k=0

2−k


 Ŝ

(k)
n

Z
(

1−ǫ
λ∗ log n

)1−ω′
1


>

∞∑

k=0

(
3

2

)−k η

3

∣∣∣ Fn

(
1−ǫ

λ∗ log n

)


≤
∞∑

k=0

P


 Ŝ

(k)
n

Z
(

1−ǫ
λ∗ logn

)1−ω′
1

>
(

4

3

)k η

3

∣∣∣ Fn

(
1−ǫ

λ∗ logn

)


≤C eC ′2ǫ logn/λ∗
η−2Z

(
1−ǫ

λ∗ log n

)−ω′
2 ∞∑

k=0

(k +1)2

(
3

4

)2k

=C ′n2C ′ǫ/λ∗
η−2Z

(
1−ǫ

λ∗ logn

)−ω′
2



CTBP AND EVOLUTION OF NETWORKS UNDER CHANGE POINT 53

for positive constants C ,C ′. As n1−ǫ

Z
(

1−ǫ
λ∗ logn

) P−→ λ∗m⋆

W∞
, the bound above converges to zero

almost surely if ǫ∗∗ is chosen sufficiently small and ǫ≤ ǫ∗∗. Similarly,

(10.32)

P




∞∑

k=0

2−k


 Ŝn

Z
(

1−ǫ
λ∗ logn

)1−ω′
1


> ǫ

∣∣∣ Fn

(
1−ǫ

λ∗ log n

)
≤C ′n2C ′ǫ/λ∗

ǫ−2Z

(
1−ǫ

λ∗ log n

)−ω2

.

Using (10.30), (10.31), (10.32) and recalling that n1−ǫ

Z
(

1−ǫ
λ∗ logn

) P−→ λ∗m⋆

W∞
as n → ∞, we con-

clude

(10.33)

n(1−ǫ)ω′
1

∞∑

k=0

2−k

(
sup

t∈[0,2ǫ logn/λ∗]

∣∣∣∣∣
D

(
k , 1−ǫ

λ∗ log n + t
)

Z
(

1−ǫ
λ∗ logn + t

) −
∑∞

ℓ=0
λ(k)
ℓ

(t )D
(
ℓ, 1−ǫ

λ∗ log n
)

∑∞
ℓ=0

λℓ(t )D
(
ℓ, 1−ǫ

λ∗ logn
)

∣∣∣∣∣

)
P−→ 0.

Choosing ω∗ = min{ω1, (1−ǫ)ω′
1}, we conclude from (10.29) and (10.33) that

(10.34) nω∗ ∞∑

k=0

2−k

(
sup

t∈[0,2ǫ logn/λ∗]

∣∣∣∣∣
D

(
k , 1−ǫ

λ∗ log n + t
)

Z
(

1−ǫ
λ∗ logn + t

) −
∑∞

ℓ=0
λ(k)
ℓ

(t )pℓ
∑∞

ℓ=0
λℓ(t )pℓ

∣∣∣∣∣

)
P−→ 0.

Finally, we claim that for each k ≥ 0, t ≥ 0,

(10.35)
∞∑

ℓ=0

λ(k)
ℓ

(t )pℓ

/ ∞∑

ℓ=0

λℓ(t )pℓ = pk .

To see this, observe that the following limits hold as n →∞:
Z

(
1−ǫ
λ∗ logn+t

)

n1−ǫ
P−→ eλ

∗ t W∞
λ∗m⋆ , and

D(k , 1−ǫ
λ∗ logn+t )

n1−ǫ
P−→ pk eλ

∗ t W∞
λ∗m⋆ . Thus

D
(
k , 1−ǫ

λ∗ logn+t
)

Z
(

1−ǫ
λ∗ logn+t

) P−→ pk . But from (10.34),

D
(
k , 1−ǫ

λ∗ logn + t
)

Z
(

1−ǫ
λ∗ log n + t

) P−→
∑∞

ℓ=0
λ(k)
ℓ

(t )pℓ
∑∞

ℓ=0
λℓ(t )pℓ

.

(10.35) follows from the above two observations. The theorem now follows from (10.34)

and (10.35). ■

11. Proofs: Change point detection. Throughout this section, we assume that f0 sat-

isfies Assumptions 2.4, 3.1 and 3.2, and f1 satisfies Assumptions 2.4 and 3.16. Recall

λℓ,λ(k)
ℓ

for k ,ℓ≥ 0 defined in (3.4) and the functional Φa : P → P defined for each a > 0

in (3.5).

LEMMA 11.1. lima→∞Φa (p) = p1 (where the limit is taken in the coordinate-wise sense).

PROOF. As f1 satisfies Assumptions 2.4 and 3.16, for each k ≥ 0, by Lemma 6.6

(ii), limt→∞ e−λ∗
1 t m f1 (t ) = (λ∗

1 m⋆

1 )−1 and limt→∞ e−λ∗
1 t m(k)

f1
(t ) = p1

k
/(λ∗

1 m⋆

1 ) and conse-

quently,

(11.1) lim
t→∞

e−λ∗
1 tλℓ(t ) = wℓ/(λ∗

1 m⋆

1 ), lim
t→∞

e−λ∗
1 tλ(k)

ℓ
(t ) = p1

k wℓ/(λ∗
1 m⋆

1 ).

Moreover, it is easy to see from (3.4) that for any ℓ,k ≥ 0, e−λ∗
1 tλℓ(t ) ≤ 1+

(
supu≥0 e−λ∗

1 um f1 (u)
)

wℓ

and e−λ∗
1 tλ(k)

ℓ
(t ) ≤ 1+

(
supu≥0 e−λ∗

1 um f1
(u)

)
wℓ for all t ≥ 0 and this bound is finite. By this

observation, we can apply the dominated convergence theorem and (11.1) in the formula

of Φa (p) to obtain the lemma. ■
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LEMMA 11.2. For any s, t ≥ 0 and any j ,k ≥ 0,

∞∑

ℓ=0

λ(ℓ)
j

(t )λℓ(s) =λ j (s + t ),
∞∑

ℓ=0

λ(ℓ)
j

(t )λ(k)
ℓ

(s) = λ(k)
j

(s + t ).

Consequently, for any p ∈P , we have Φs(Φt (p)) =Φs+t (p).

PROOF. We will only prove the first assertion. The second one follows similarly. Denote

by BP( j )(·) the continuous time branching process with attachment function i 7→ f1(i +
j ) and denote by D

( j )
n (ℓ, t ) the corresponding number of vertices of degree ℓ at time t

(excluding the root). Then

E

(∣∣∣BP( j )(t + s)
∣∣∣ |Fn(t )

)
=

∞∑

ℓ= j

1

{
ξ

( j )

f1
(t ) = ℓ− j

}(
1+

∫s

0
m f1

(s −v)µ(ℓ)
f1

(d v)

)

+
∞∑

ℓ=0

D
( j )
n (ℓ, t )

(
1+

∫s

0
m f1

(s −v)µ(ℓ)
f1

(d v)

)

where the first term denotes the expected number of vertices born to the root (counting

the root itself) in the time interval [t , t + s] and the second term denotes the expected

number of vertices born in the time interval [t , t + s] to those vertices born in the time

interval (0, t ], both expectations conditional on Fn(t ). Taking expectation on both sides

of the above expression and noting that λ j (t + s) = E
(∣∣BP( j )(t + s)

∣∣) and E

(
D

( j )
n (ℓ, t )

)
=

∫t
0 m(ℓ)

f1
(t −u)µ

( j )

f1
(du), we obtain

λ j (t + s) =
∞∑

ℓ=0

(
P

(
ξ

( j )

f1
(t ) = ℓ− j

)
+

∫t

0
m(ℓ)

f1
(t −u)µ

( j )

f1
(du)

)(
1+

∫s

0
m f1

(s −v)µ(ℓ)
f1

(d v)

)

=
∞∑

ℓ=0

λ(ℓ)
j

(t )λℓ(s).

To prove the semigroup property, note that for each k ≥ 0,

(
Φs (Φt (p))

)
k =

(∑∞
ℓ=0

(
Φt (p)

)
ℓλ

(k)
ℓ

(s)
∑∞

ℓ=0

(
Φt (p)

)
ℓλℓ(s)

)
=




∑∞
ℓ=0

(∑∞
j=0 p jλ

(ℓ)
j

(t )
)
λ(k)
ℓ

(s)

∑∞
ℓ=0

(∑∞
j=0

p jλ
(ℓ)
j

(t )
)
λℓ(s)




=

∑∞
j=0 p j

(∑∞
ℓ=0

λ(ℓ)
j

(t )λ(k)
ℓ

(s)
)

∑∞
j=0 p j

(∑∞
ℓ=0

λ(ℓ)
j

(t )λℓ(s)
) =

∑∞
j=0

p jλ
(k)
j

(s + t )
∑∞

j=0 p jλ j (s + t )
=

(
Φs+t (p)

)
k .

■

LEMMA 11.3. For any a > 0 and any p ∈P such that p 6= p1, we have Φa(p) 6= p.

PROOF. Suppose there exists a > 0 and p 6= p1 such that Φa (p) = p. Then by Lemma

11.2, for any n ≥ 1, Φna (p) = p. Letting n →∞ and using Lemma 11.1, we obtain p1 = p

which gives a contradiction. ■

PROOF OF THEOREM 3.22. Recall ω∗, ǫ∗∗ from Theorem 3.4 applied to the branching

process with attachment function f0 and fix any ǫ ≤ ǫ∗∗. Let λ∗
0 denote the associated
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Malthusian rate. Take any n0 ≥ 1 such that hn ≥ 1/γ for all n ≥ n0. Observe that for any

η> 0 and any n ≥ n0,

P

(
nω∗ ∞∑

k=0

2−k sup
1/hn≤t≤γ

∣∣∣∣
D(k ,T⌊nt⌋)

⌊nt⌋
−p0

k

∣∣∣∣> η

)

≤P


nω∗ ∞∑

k=0

2−k


 sup

t∈[0,2ǫ logn/λ∗
0 ]

∣∣∣∣∣∣∣

D
(
ℓ, 1−ǫ

λ∗
0

logn + t
)

Z
(

1−ǫ
λ∗

0
log n + t

) −p0
k

∣∣∣∣∣∣∣


> η




+P

(
T⌊n/hn ⌋ <

1−ǫ

λ∗
0

log n

)
+P

(
T⌊nγ⌋ >

1+ǫ

λ∗
0

log n

)
.

The first term in the above bound converges to zero by Theorem 3.4. Further,

P

(
T⌊n/hn ⌋ <

1−ǫ

λ∗
0

log n

)
→ 0

because λ∗
0 T⌊n/hn ⌋/ log (n/hn)

P−→ 1 as n → ∞ by Lemma 6.6 (ii) and by assumption,

log hn/ logn → 0. Similarly, P

(
T⌊nγ⌋ > 1+ǫ

λ∗
0

log n
)
→ 0 because λ∗

0 T⌊nγ⌋/ log(nγ)
P−→ 1 as

n →∞. Thus, we conclude

(11.2) nω∗ ∞∑

k=0

2−k sup
1/hn≤t≤γ

∣∣∣∣
D(k ,T⌊nt⌋)

⌊nt⌋
−p0

k

∣∣∣∣
P−→ 0

as n →∞ which, along with the fact that ω∗ ∈ (0,1), implies

nω∗ ∞∑

k=0

2−k sup
1/hn≤t≤γ

∣∣∣∣
D(k ,T⌊nt⌋)

nt
−

D(k ,T⌊n/hn ⌋)

n/hn

∣∣∣∣
P−→ 0.

As
logbn

logn → 0 as n →∞, the above implies bn
∑∞

k=0
2−k sup1/hn≤t≤γ

∣∣∣D(k ,T⌊nt⌋)
nt − D(k ,T⌊n/hn⌋)

n/hn

∣∣∣ P−→
0. From this observation and the definition of T̂n , we conclude that

(11.3) P
(
T̂n ≥ γ

)
→ 1 as n →∞.

Moreover, by Theorem 3.8, for any t > γ and any k ≥ 0,
∣∣∣D(k ,T⌊t n⌋)

t n −
(
Φat (p0)

)
k

∣∣∣ P−→ 0 and

hence, by (11.2) and the dominated convergence theorem, as n →∞,

∞∑

k=0

2−k

∣∣∣∣
D(k ,T⌊nt⌋)

nt
−

D(k ,T⌊n/hn ⌋)

n/hn

∣∣∣∣
P−→

∞∑

k=0

2−k
∣∣(Φat (p0)

)
k −p0

k

∣∣ .

As at > 0 for each t > γ and p0 6= p1, by Lemma 11.3, Φat (p0) 6= p0 and hence, the limit

above is strictly positive. From the definition of T̂n and the above, we conclude that for

each t > γ,

(11.4) P
(
T̂n ≤ t

)
→ 1 as n →∞.

The theorem follows from (11.3) and (11.4). ■
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