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Abstract. We investigate the statistical learning of nodal attribute dis-
tributions in homophily networks using random walks. Attributes can
be discrete or continuous. A generalization of various existing canonical
models, based on preferential attachment is studied, where new nodes
form connections dependent on both their attribute values and popular-
ity as measured by degree. We consider several canonical attribute agnos-
tic sampling schemes such as Metropolis-Hasting random walk, versions
of node2vec (Grover and Leskovec, 2016) that incorporate both classi-
cal random walk and non-backtracking propensities and propose new
variants which use attribute information in addition to topological in-
formation to explore the network. The performance of such algorithms
is studied on both synthetic networks and real world systems, and its
dependence on the degree of homophily, or absence thereof, is assessed.

Keywords: Attributed networks, homophily, network model, random
walk samplings, discrete and continuous attributes, learning distribu-
tions.

1 Introduction

Attributed networks, namely graphs in which nodes and/or edges have attributes,
are at the center of network-valued datasets in many modern applications. In
one direction, machine learning pipelines such as network representation learn-
ing [10], clustering [8], classification [17], and community detection [6] have been
developed to study the entire network. Driven by the scale of data, the main
motivation of this paper, is network sampling, where limited explorations are
used to learn network level functionals such as the degree distribution [19].

One standard phenomenon in many such real world systems is homophily [22,
18, 20], i.e., node pairs with similar attributes being likelier connected than node
pairs with discordant attributes. Performance of network sampling algorithms
in such settings has received some attention including: the bias of several sam-
pling methods in conserving position of nodes and visibility of groups [23]; the
effect of homophily on centrality measures and visibility of minority groups and
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fairness questions [14]. This paper studies the estimation of the attribute distri-
bution (both discrete and continuous) for homophily networks. We extend the
attributed driven preferential attachment model [14, 13] where new nodes con-
nect to existing ones based on the attributes of both end points of the potential
edge and centrality of the existing vertex. Uniform random sampling of nodes or
edges is the “gold standard”, providing unbiased estimates of corresponding at-
tribute distributions. However, owing to both computational and privacy issues
in settings such as social networks, such sampling is often infeasible. In these
cases, link trace sampling, such as random walks (RW) are typically used; see
references in [3, 4] for estimation of functionals such as degree distribution and
clustering. Much less is known in the context of attribute distribution estima-
tion. In this paper, we consider several canonical attribute agnostic sampling
schemes such as Metropolis-Hasting random walk, versions of node2vec [12] that
incorporate both classical random walk and non-backtracking propensities and
propose variants of node2vec where edge weights depend on attributes of the
node pair. The performance of the considered random walk sampling schemes
in terms of estimation error of the attribute distributions is studied across the
following four dimensions in both synthetic and real world settings: (a) Inher-
ent homophilc propensity of the network and underlying density of attributes;
(b) Impact of centrality of nodes as measured by degree in the evolution of
the network; (c) Nonlinear impact of incorporating “escape echo chamber”
mechanisms in random walks by encouraging walks to jump across edges with
discordant attributes; (d) Impact of reducing the backtracking propensity to
encourage walks to explore the network.
Overview of findings and organization of the paper: We find that (i)
RWs with attribute dependent weights can perform better over attribute agnostic
RWs in homophilic networks; (ii) the weights need to balance the movements be-
tween/within nodes with different/same attributes; (iii) non-backtracking seems
to improve performance, especially in conjunction with attribute dependent
weights; (iv) the performance of RWs is well below the “gold standard” of ran-
dom node sampling; (v) methods seem to work comparably well for discrete and
continuous attributes.

The paper is organized as follows. A synthetic model with homophily is given
in Sec. 2. Sampling schemes for learning attribute distribution are described in
Sec. 3. Statistical learning tasks are discussed in Sec. 4. Numerical evaluation on
synthetic and real data are described in Sec. 5. Sec. 6 concludes.

2 Attribute Network Models with Homophily

We now describe the main synthetic model, termed non-linear preferential at-
tachment (NLPA) model with homophily. Fix an attribute (or latent) space A
with probability measure µ. Fix a (potentially asymmetric) function f : A×A →
R+ which measures propensities of node pairs to interact based on their at-
tributes. Fix α ≥ 0 playing the role of degree in measuring popularity. Let N be
the number of nodes (vertices) in the network. Nodes {vt : 1 ≤ t ≤ N} enter the
system sequentially starting at t = 1 with a base connected graph G1 with every
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node having an attribute in A. Every node vt has attribute a(vt) ∈ A generated
independently using µ. The dynamics are recursively defined as follows: for any
t and v ∈ Gt, let deg(v, t) denote the degree of v at time t. Conditional on Gt,
the probability that vt+1 connects to v ∈ Gt is proportional to:

Pvt+1v ∝ f(a(v), a(vt+1))[deg(v, t)]
α. (1)

The model (1) extends various existing models including: Barabási-Albert
model [5] (f ≡ 1, α = 1), sublinear PA [16] (f ≡ 1, 0 < α < 1), PA with
multiplicative fitness [7] (f(a, a′) = a, α = 1), scale free homophilic model [9]
(f(a, a′) = 1− |a− a′|, A = [0, 1], α = 1), and geometric versions with α = 1, A
a compact metric space and f an appropriate function of the distance [11, 13].
Most existing studies focus on asymptotics for either the degree distribution or
maximal degree.

When the latent spaceA = {1, 2, . . . ,K} is finite, one can define, macroscopic
measures of homophily, and the converse heterophily from an observed network
G (either synthetic or empirically observed) on N nodes as follows [21]. Let E
denote the total edge set; for a ∈ A, Va the set of nodes of type a, and for
a, a′ ∈ A, let Eaa′ be the set of edges between nodes of type a and a′. Let
p = |E|/

(

N
2

)

be the edge density. For a ∈ A, Da = |Eaa|/(
(

|Va|
2

)

p) measures the
contrast in edges within the cluster of nodes a as compared to a setting where all
edges are randomly distributed; thus Da > 1 signals homophilic characteristics
of type a nodes while Da < 1 signifies heterophilic nature of type a. Similarly, for
a 6= a′, Haa′ = |Eaa′ |/(|Va||Va′ |p) denotes propensity of type a nodes to connect
to type a′ nodes as contrasted with random placement of edges at the same level
as the global edge density.

An illustration of synthetic networks generated using the NLPA model (1)
with finite latent space is given in Fig. 1. Here, A = {1, 2, 3} represent 70%, 20%
and 10% of the total N = 1000 nodes, resp.; f(a, a) = 0.95, f(a, a′) = 0.025, for
a 6= a′ = 1, 2, 3. The network is plotted for different values of α – Fig. 1(a)–1(c).
For α = 0.2, the corresponding homophily measures are D1 = 1.45, D2 = 4.36,
D3 = 7.38, H12 = 0.07, H13 = 0.14, H23 = 0.45. For α = 1.2, the homophily
measures are D1 = 1.38, D2 = 4.84, D3 = 9.12, H12 = 0.08, H13 = 0.08,
H23 = 0.16.

3 Network Sampling Schemes

This section describes sampling schemes for learning attribute distribution, both
random walk based, as well as corresponding “gold standard” schemes. Through-
out this section, for graph G and node i ∈ G, di will denote its degree.

Metropolis Hasting Random Walk (MHRW). At each step, if the walk
is currently at node i, a neighbor j is selected uniformly at random and the
proposed move to j is accepted with probability min(1, di/dj), else the walk
stays at i. Thus proposed moves towards a node of smaller degree, are always
accepted whilst we reject some of the proposed moves towards higher degree
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(a) (b) (c)
Fig. 1. Networks generated by the NLPA model with (a) α = 0.2, (b) α = 1, (c)
α = 1.2.

nodes. It is easy to check that the stationary distribution is uniform over the
node set, i.e., πi = 1/N for 1 ≤ i ≤ N .

Node2vec (N2V). As proposed in [12], in full generality, the transitions of
N2V depend on the neighborhood both of the currently visited node, and the
node visited prior to the current node. Let the previous and current visited nodes
be k and i, resp. The next visited node j is chosen according to the transition
probability proportional to:

p(j|k, i) ∝







βwij , k 6= j, (k, j) /∈ E ,
γwij , (k, j) ∈ E ,
θwij , k = j,
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n

o
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θwik βwin
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l

where wij is the weight of edge (i, j) - see figure. We now describe specific variants
of this class of random walks.

Node2vec-1 (N2V-1): If the network is undirected, unweighted and θ = β = γ,
one obtains the classical RW with the well-known stationary distribution,

πi =
di
2|E|

. (2)

Node2vec-2 (N2V-2): If the network is undirected and θ = β = γ, one obtains a
weighted RW. This walk can use node attributes through weights in contrast to
N2V-1. The stationary distribution in this case is given by

πi ∝
∑

j

wij . (3)

Node2vec-3 (N2V-3): If the network is simple (i.e. unweighted, undirected, with-
out self-loops and multiple edges) and β = γ, θ > 0, the stationary distri-
bution for nodes is given by Eq. (2). With small θ, the walk approaches the
non-backtracking random walk.
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Node2vec-4 (N2V-4): One can consider other variants of N2V. We consider below
the combination of the last two schemes, with β = γ, θ > 0 and weights wij

dependent on the attributes of i and j. In this setting, one major technical hurdle
is that, unlike the settings above, there is no explicit formula for the stationary
distribution. Analogous to the stationary distribution for N2V-3 matching the
usual RW in the stationary regime, it is expected that especially in the small
θ setting, the stationary distribution can still be approximated by that in Eq.
(3). We explore the efficacy of this approximation for moderate size synthetic
networks below.

For comparison to RWs, we will also use the following baseline samplings. These
can be viewed as “ideal” for sampling purposes and correspond to the limiting
distributions of some RWs.

Node Sampling (NS). NS sampling requires full access to the network and
is unavailable for many real networks. In the classical NS, nodes (and their
attributes) are chosen independently and uniformly from the network (with re-
placement).

Edge Sampling (ES). In the classical ES, edges are chosen independently and
uniformly from the network. Since ES selects edges rather than nodes to populate
the sample, the node (attribute) set is constructed by including both incident
nodes (attributes) in the sample when a particular edge is sampled.

4 Statistical Learning Methods

We now discuss the estimation of attribute distributions from the data collected
through RWs, with discrete attributes described in Sec. 4.1 and continuous at-
tributes in Sec. 4.2.

4.1 Discrete Attributes

Run a random walk (any of the schemes described in Sec. 3) for n steps and
let is denote the s-th node sampled by a RW, for 1 ≤ s ≤ n. Since nodes are
sampled with replacement and with probabilities πi in the stationary regime,
the attribute distribution can be estimated as

p̂(a) =
1

Nn

n
∑

s=1

1{a(is) = a}

πis

, a ∈ A, (4)

where 1{B} = 1 if B is true and 0 otherwise [15] (Chapter 5). If the total number
of nodes N is unknown, its estimator is given by (1/n)

∑

s 1/πis . For N2V-2 this
results in,

p̂(a) =
1

∑n
s=1

1/wis

n
∑

s=1

1{a(is) = a}

wis

, a ∈ A. (5)

For fixed a, the MSE of p̂(a) is given by E[(p̂(a)− p(a))2]. In the stationary
regime, p̂(a) in (4) is an unbiased estimator of p(a) and the MSE is equal to the
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variance V [p̂(a)]. The variance of p̂(a) can be related to the spectral gap of the
RW. More specifically, let P be the associated transition matrix of the random
walk with eigenvalues (real by reversibility): 1 = λ1 ≥ λ2 ≥ . . . ≥ λN ≥ −1. The
spectral gap is defined as δ = 1 − λ2. Equivalently, the relaxation time of the
RW is the reciprocal of the spectral gap. A larger spectral gap implies a faster
convergence of the RW to its stationary distribution. From [1] (Proposition 4.29),
we have

V (p̂(a)) ≤
2Λ(a)

δn

(

1 +
δ

2n

)

, (6)

where Λ(a) =
∑N

i=1
1{a(i) = a}/(N2πi). The error in estimating the proportion

of nodes with attribute a is upper bounded by the inverse of the spectral gap
and Λ(a), the latter is small if the probability of sampling nodes with attribute
a is large. We will see in Sec. 5 that for N2V-2, if edge weights wij are inversely

related to the concordance of the attributes, thus encouraging the walk to explore
vertices with different attributes, then in some settings, this increases δ and
decreases Λ(a) (for attributes with small proportions), resulting in a smaller
variance of the estimator.

4.2 Continuous Attributes

Let g(·) be the density of the continuous attributes, and as before (is : 1 ≤ s ≤ n)
be the states visited by the RW with corresponding attributes (a(is) : 1 ≤ s ≤
n). Analogous to (5) the natural estimate for g(·) is through standard kernel
smoothing as

ĝ(a) =
n
∑

s=1

K

(

a− a(is)

h

)

1

h
ws, (7)

where h > 0 is a bandwidth, K is a kernel function, and the weights ws satisfy

ws ∝
1

πis

,

n
∑

s=1

ws = 1. (8)

The performance of the estimator can be assessed through the estimation
error: for q > 0,

error =

[
∫

|ĝ(a)− g(a)|qda

]1/q

. (9)

The values of q usually considered are 1 and 2.

5 Numerical Studies

5.1 Synthetic Networks

We consider the NLPA model in (1) for networks with attributes and explore
the effect of homophily on the accuracy of the RWs to estimate the attribute
distribution in a controlled setting.
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Random walks MH N2V-1 N2V-2a N2V-2b N2V-2c N2V-3 N2V-4 NS ES

st. dev.; a = 1 0.235 0.172 0.199 0.142 0.169 0.123 0.102 0.029 0.051

st. dev.; a = 2 0.198 0.152 0.176 0.127 0.151 0.107 0.089 0.025 0.042

st. dev.; a = 3 0.137 0.077 0.098 0.069 0.086 0.065 0.049 0.018 0.035

spectral gap (δ) 0.019 0.048 0.037 0.040 0.011 0.107 0.106 - -

Λ(3) 0.088 0.149 0.165 0.135 0.243 0.149 0.135 - -

Table 1. Standard deviations, spectral gaps and quantities Λ(3), under the PA model
with α = 0.2 and attribute values a = 1, 2, 3. For the RW weights: N2V-2a (waa =
1.5, w

aa
′ = 1), N2V-2b (waa = 0.3, w

aa
′ = 1), N2V-2c (waa = 0.05, w

aa
′ = 1).

Discrete Attributes. The total number of nodes is N = 2, 000 with attributes
labeled a = 1, 2, 3. If a node attribute is selected at random, its p.m.f. is given
by p(1) = 0.7, p(2) = 0.2 and p(3) = 0.1. The tendency of two nodes to connect
according to the NLPA model is f(a, a) = 0.9, f(a, a′) = 0.05, a, a′ = 1, 2, 3,
a 6= a′. Consider first the case α = 0.2, where the number of nodes with a
large degree tends to be smaller – see Fig. 1(a). For the largest component of
the generated network, the homophily measures are D1 = 1.39, D2 = 3.93,
D3 = 7.26, H12 = 0.17, H13 = 0.10, H23 = 0.35.

The network attributes are sampled with the different RWs on the largest
component and the p.m.f. of the attributes is estimated using (4). Table 1 shows
the standard deviations of the estimates using 300 runs for each RW with length
0.15N . The MH walk presents the worst performance. Compared to the baseline
method NS that samples nodes according to the limit stationary distribution of
MH, the diference in variability is large. The N2V-1 walk performs the worst
among the variants of N2V. It represents the classical RW since edges are sam-
pled at random in its stationary limit. However, the variability of the baseline
method ES is smaller. The results for MH and N2V-1 can also be explained
through the bound of the variance (6). The spectral gap δ is sufficiently larger
for N2V-1, resulting in a lower variability for attribute a = 3, in spite of smaller
Λ(3) for MH.

We examine how the different choices of weights affect the performance of
N2V-2. We write waa for the weights of nodes with the same attributes, and
waa′ with different attributes. If waa is greater than waa′ (N2V-2a in Table 1),
the RW hardly transits from one attribute value to another, which creates a
bottleneck for approaching the stationary probability. On the other hand, if waa

is smaller than waa′ (N2V-2b), movements between different attribute values
are more frequent, accelerating the convergence. In this case, the spectral gap
increases. However, as the difference between waa′ and waa incresases (N2V-2c),
the convergence is decelerated because exploration within the same attribute is
not sufficient due to the inter-attribute moves. We also see that if waa′ is greater
than waa until a certain point, the probability of the random walker of sampling
nodes with attribute a = 3 increases and Λ(3) decreases (see the discussion
below (6)). The tradeoff between δ and Λ(a) explains the smaller variability for
the three attribute values of N2V-2b, which outperforms N2V-1.
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Random walks MH N2V-1 N2V-2 N2V-3 N2V-4 NS ES

with st. dev.; a = 1 0.291 0.153 0.131 0.126 0.100 0.031 0.054
homophily st. dev.; a = 2 0.256 0.131 0.107 0.108 0.090 0.028 0.045

st. dev.; a = 3 0.160 0.094 0.073 0.068 0.059 0.021 0.036

without st. dev.; a = 1 0.146 0.059 0.055 0.049 0.045 0.029 0.040
homophily st. dev.; a = 2 0.116 0.055 0.051 0.041 0.039 0.025 0.036

st. dev.; a = 3 0.110 0.039 0.036 0.031 0.024 0.018 0.027

Table 2. Standard deviations for various RWs (N2V-2 with waa = 0.3, w
aa

′ = 1),
under the NLPA model with α = 1 and with/without homophily and attribute values
a = 1, 2, 3.

In N2V-3, the parameter θ of the propensity for the random walk to backtrack
is decreased to θ = 10−3 and β = γ = 1 are kept for the other two parameters.
(Note that if the walker arrives at a node with degree 1, it always backtracks in
the next time step since this is the only possible move.) In this case, a random
walker tends to explore better the network within the same attribute value, which
accelerates the convergence. The result is consistent with the non-backtracking
RWs on regular graphs [2]. In many cases, they find spectral gap “twice as good”
compared to the classical RW, as also in our case.

N2V-4 combines features of both weighted and non-backtracking RWs. We
use the same weights and backtracking parameter as in N2V-2b and N2V-3, resp.
Since the stationary distribution is not known, we approximate it using (3). The
choice is heuristic but the results show that N2V-4 has lower variability. This
can be explained by the decrease of Λ(a) for attribute values 2 and 3 (see Λ(3)
for N2V-3 and N2V-4 while δ is approximately equal). We have confirmed these
findings by using the true stationary distribution of N2V-4 obtained through
simulation.

We next consider the NLPA network with α = 1 and take its remaining
parameters as above. For the largest component of the network, the homophily
measures are D1 = 1.38, D2 = 4.30, D3 = 6.25, H12 = 0.16, H13 = 0.23,
H23 = 0.32. The standard deviation of 300 runs for each RW is given in Table 2.
In this case, the standard deviation of MH increases and of N2V-1 decresases.
This can be explained by nodes with different attribute values attracted to high
degree nodes – see Fig. 1(b). Unlike the case α = 0.2, the RWs which are
attracted by high degree nodes will benefit from this to move between different
attribute values. The same conclusions can be drawn as above for the other
variants of N2V.

Finally, we consider a network without homophily where f is constant and
α = 1. The results are shown in Table 2. As seen from the table, if the homopliy
decreases, the differences between the RWs tend to be smaller.

Continuous Attributes. We consider the NLPA model with N=2,000 nodes
and α = 1. Nodes have continuous attributes with values drawn independently
from the following probability distribution. Let X be a gamma random variable
with shape and scale parameters 1 and 1.5, resp. For the attributes, we draw
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Fig. 2. (a) Probability density function of attributes estimated using kernel smoothing
(b) The generated NLPA network with attributes less than 10 (blue) and greater than
10 (green).

0.7N and 0.3N independent random variables X and 10+X, resp. The density
function of attributes estimated using kernel smoothing is shown in Fig. 2(a).
Additionally, we set

f(a(i), a(j)) =

{

0.95, a(i), a(j) < 10 or a(i), a(j) > 10,
0.05, otherwise.

(10)

The network generated is plotted in Fig. 2(b), where nodes are divided in two
groups: with attributes less than 10 (group 1) and greater than 10 (group 2).
The homophily measures are D1 = 1.378, D2 = 3.092, H12 = H21 = 0.112.

For N2V-2, the weights are taken as wij = |a(i)−a(j)|b, which allows moving
between the groups of nodes but also giving more weight to edges with different
values within each group. The choice of b is motivated by similar arguments as
in the case of discrete attributes. If the weights between edges of different groups
are too large, then the convergence is decelerated because exploration within the
same group attribute is not sufficient due to the inter-group moves. From the
experiments, we found that values of b close to zero decrease the range of weights
and show good results.

The network attributes are sampled with the different sampling methods on
the largest component and the density function of the attributes is estimated
using (7). Table 3 shows the average of the estimation error (9) with q = 1 and
the spectral gap from 300 runs for each RW with length 0.15N . We fixed b = 0.3
(N2V-2/4) and θ = 10−3 (N2V-3/4). The performance of the samplings methods
is akin to the case of the discrete attributes.

5.2 Real Networks

We analyze two publicly available datasets of real networks with attributes and
homophily.3

3 https://snap.stanford.edu/data/
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Random walks MH N2V-1 N2V-2 N2V-3 N2V-4 NS ES

average error 0.818 0.487 0.457 0.385 0.364 0.186 0.270

spectral gap (δ) 0.005 0.042 0.051 0.080 0.096 - -

Table 3. Estimation error and spectral gap for various RWs, under the NLPA model.

Random walks N2V-1 N2V-2 N2V-3

politician (1) 0.052 0.0561 0.0489

government (2) 0.051 0.046 0.043

tv show (3) 0.047 0.045 0.038

company (4) 0.0669 0.058 0.054

Table 4. St. dev. of the estimates.
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Fig. 3. P.d.f. of the age.

Discrete Attributes. The dataset is a webgraph of Facebook sites. Nodes
represent pages while the links are mutual likes between sites. Node features were
extracted from the site descriptions that the page owners created to summarize
the purposes of the sites. The graph was collected through the Facebook Graph
API and restricted to pages from four attributes which are defined by Facebook.
These attributes are: politicians (1), governmental organizations (2), television
shows (3) and companies (4). We consider the simplified network which has
N = 22, 470 nodes and 170, 823 edges. The distribution of node attributes is
p(1) = 0.31, p(2) = 0.26, p(3) = 0.29, and p(4) = 0.14. The homophily measures
are D1 = 3.28, H1∗ = 0.17, D2 = 5.08, H2∗ = 0.21, D3 = 3.46, H3∗ = 0.14,
D4 = 1.41, H4∗ = 0.11, where Ha∗ denotes the propensity of attribute a nodes
to connect to the other types of attributes.

To estimate the p.m.f. of the node attributes, we consider only the variants
of N2V with known stationary distributions. For N2V-2, we set the weights as
waa = 0.3, waa′ = 1, a, a′ = 1, 2, 3, 4, a 6= a′, and for N2V-3, we set θ = 10−3.
Table 4 shows the standard deviations of the estimates using RWs of length
0.15N and 500 runs. The results are in line with the synthetic model with dis-
crete attributes where sampling with N2V-3 produces more accurate estimates.

Continuous Attributes. Pokec is a social network with attributes from Slo-
vakia. We use the age attribute viewed as continuous as in [24]. Considering only
the nodes with age attributes results in a network with N=1,138,314 nodes and
22,301,601 edges - see Fig. 3. It is well known that the network is moderately
homophilic with respect to age. If we divide the nodes in two groups: say, age less
or equal to 37 (group 1) and greater than 37 (group 2), the homophilic measures
of the groups are D1 = 1.166, H12 = 0.30 and D2 = 1.46. Group 2 represents 9%
of the total number of nodes. The average of the estimation errors from 20 runs
for each RW with length 0.05N are: 0.036 (N2V-1), 0.031 (N2V-2 with b = 0.2)
0.030 (N2V-3 with θ = 10−3).
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6 Discussion and Future Directions

In this paper, we developed a statistical learning framework for the attribute
distributions in networks and evaluated numerically the impact of homophily,
degree centrality, and random walk exploration mechanisms on estimation ac-
curacy. The results seem to indicate intricate non-linear relationship between
intrinsic homophilic characteristics of the network, parameters modulating ran-
dom walk exploration schemes and the error of proposed learning algorithms.
Untangling the precise relationship will require careful theoretical understand-
ing both of macroscopic functionals such as the spectral gap of proposed RWs
and their relationship to parameters such as backtracking propensities and jump
rates across different attribute sets, as well as microscopic functionals such as
asymptotics for local neighborhoods of the underlying network. This should lead
to more principled ways of choosing RWs and their parameters in terms of the
network homophily, centrality and possibly other measures.

Random walks are also closely tied to ranking mechanisms such as the Page-
rank centrality, and we plan to study the impact of the parameters driving
the random walk on such centrality scores, thus looping back to one of the
central motivations for studying attributed networks namely fairness of ranking
mechanisms [14]. Other questions, including learning joint distributions of the
degree and the attribute through sampling mechanisms, as well as multivariate
attribute distributions, both in terms of developing synthetic models, as well as
real world data will also be considered.
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