Artificial Intelligence Techniques for SQL Injection Attack
Detection

John Irungu
University of the District of Columbia
Washington, District of Columbia
john.irungu@udc.edu

Anteneh Girma
University of the District of Columbia
Washington, District of Columbia
anteneh.girma@udc.edu

ABSTRACT

In recent years, web-based platforms and business applications
have been rising in popularity deeming themselves indispensable
as they constitute the main backbone of business processes and in-
formation sharing. However, the unprecedented increased number
of cyber-attacks have been threatening their day-to-day opera-
tions. In particular, the Standard Query Language Injection Attack
(SQLIA) remains one of the most prevalent cyber attacks targeting
web-based applications. As a consequence, the SQLIA detection
techniques need to be constantly revamped and stay up-to-date in
order to achieve the full potential of mitigating such threats. In this
paper, we propose an artificial intelligence model based on super-
vised machine learning techniques to detect SQLIA. As part of the
proposed model, we introduce an input string validation technique
as a primary anomaly identifier using pattern matching for SQL
Query data with anomalies-injections. To evaluate our approach we
injected one type of SQLIA that is tautology attacks and measured
the performance of our model. We used three main classifiers in
our model and our findings indicate a model prediction accuracy of
98.3605% for Support Vector Machine (SVM), 96.296% for K-Nearest
Neighbors (KNN), and 97.530% for Random Forest. The approach
proposed in this paper has the potential of being used to integrate
an automated SQL Injection detection mechanism with Intrusion
Detection Systems (IDS) and Intrusion Protection Systems (IPS).
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1 INTRODUCTION

Web-based applications are distributed systems with heterogeneous
execution platforms such as web browsers, web servers, and net-
work connections [3]. In recent years, these web-based applications
have evolved to become indispensable technologies that facilitate
business processes running efficiently while using different hard-
ware platforms. To illustrate this growth, the web design industry
market revenue was $11 billion [5] as of 2022. Also, the ease of use
of web applications enabled the web traffic to increase by 53.74% of
web visits on mobile phones and 46.26% on desktops [6].

Despite the attractive benefits of web applications in modern
businesses, vulnerabilities in these web applications are ubiquitous
and are likely to be exploited by attackers targeting web applications
which account for 43% of hacking breaches. The Standard Query
Language Injection Attack (SQLIA) is one of the most dangerous and
most widespread cyber-attacks targeting web-based applications.
SQLIA appends some input to a Standard Query Language (SQL)
query to get an unauthorized access to a database then escalate
the privilege before engaging into malicious activity that may span
from data breach to integrity breach. SQLIA can also be described
as a software vulnerability caused by the absence or proper input
validation [9]. In fact, one of the most used SQL injection tactics
by attackers is the manipulation of the username and password in
SQL queries where an attacker can manipulate the script by adding
malicious commands that bypass the authentication protocols.

In most web-based applications, authorization is mainly affected
by the query language where the back-end database is manipu-
lated. Attackers penetrate web applications to steal information
and access the database by altering the query structure. This, in
turn, authorizes access to a malicious attacker posing a threat to
the application by corrupting its strings of command statements
[16]. The prevalence of SQL injection attacks can be attributed to
the industry’s transition of most business processes from offline
to online platforms. Since the web-based infrastructure tends to
be more prone to attacks than the traditional offline systems and
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databases, the SQLIA mostly target web applications in relational
databases where the Internet traffic frequency is relatively high
leading to a large attack surface. These attacks are generally carried
out by adding unauthorized characters or commands in the SQL
code thus enabling the attacker to execute a malicious query [17].
An example of web application SQL injection is the user login and
password authentication where a more administrative user informa-
tion can be bypassed in the query to enter additional ‘user’ inputs
in order to capture the authentication details such as a username
in a web-based accounts.

This paper investigates how the SQL query input validation
can be leveraged to detect SQLIA through query string, length,
and character positioning. Data labeling is subsequently imple-
mented to identify the query outliers. The outliers are categorized
as anomalies in the query pattern analysis and are thus detected
and classified through machine learning classifiers including SVM,
KNN and Random Forest to detect the SQL injection attacks. The
artificial intelligence model is implemented through data streaming
technologies that are useful in detecting SQL injection attacks in
web-based applications. As far a the dataset used for the validation
of this approach, it represents network log data.

The rest of the paper is organized as follows. Sections 2 dis-
cusses the literature review and related work. Section 3 provides
an overview of the different types of SQL injection attacks. Section
4 describes the common prevention mechanisms against SQLIL The
methodology and experimental results are described, respectively,
in Section 5 and 6. Section 7 provides a detailed discussion about
how our approach compares to the other techniques used to detect
and present SQLIA. Section 8 concludes the paper and provides a
glimpse of the future work.

2 RELATED WORK

According to Shreya et al. [11], sanitizing and filtrating inputs such
as line breaks, and single quotes are one of the countermeasures
against SQL injections. However, it is difficult to guarantee 100%
protection. The authors also acknowledge the lack of input vali-
dation as the main cause of SQL injection and propose a BCRYPT
hashing of the username and password and string-matching algo-
rithm. The BCRYPT function hash is described as having a ‘slow’
conversion calculation to force the attacker to use more time and
resources. The main drawback against hashing is the emergence of
sophisticated powerful computing power that can crack the hash
through brute-force capabilities which may also have an optimal
time than the BCRYPT hash.

Deep learning has also been used to analyze the sanitization of
the extracted features to detect SQL Injections. Zhang [23] proposed
a Convolutional Neural Network (CNN) to detect SQL vulnerabili-
ties based on features extracted from source code files achieving a
precision score of 95.4%. Zhang also used Multi-Layer Perceptron
(MLP) achieving a recall of 63.7%. Comparatively, deep learning
has more resources in terms of computing power, unlike Machine
Learning. Although Zhang’s study of detecting SQL Injection based
on the vulnerability data yielded high accuracy score, he acknowl-
edges a low recall of 66% whose drawback may be the models failing
to detect at least a third of the vulnerabilities.
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Bronjon et al [7] proposed a Machine Learning (ML) and Natural
Language Processing (NLP) to detect SQL Injections. The authors
used programmatic techniques such as input filtering, validation,
and parameterized queries to detect SQL injections. The traditional
versus programmatic techniques comparative study affirms the
capability of using ML and NLP techniques where Naive Bayes,
Decision Tree, Ada Boost, and Random Forest algorithms were
used with an F-1 score of 98%. The experimental findings noted
that linear and non-linear SVM scored higher than other classifiers
that were used in their study. Our study achieves similar results to
theirs.

Rubidha et al. [2] provided a comprehensive overview of the
nature of SQL Injections and topics surrounding mitigation strate-
gies. In their study, the authors argue that the tautology attacks
are one of the most severe and damaging injection attacks to or-
ganizational data which occur by bypassing authentication. Our
work agrees with their stand on the severity of tautology attacks
and we further simulate it in our evaluation. Our study also con-
curs with the authors’ findings that as more security measures are
developed to prevent SQL Injections, more sophisticated attacks
and vulnerabilities continue to emerge.

Muslihi et al. [12] compared 14 techniques to detect SQL Injec-
tions and ranked the code injection as one of the top-rated security
vulnerabilities by the Open Web Application Security Project. The
survey review by the authors reinforces the leverage and poten-
tial of machine learning and deep learning technologies in solving
complex injection vulnerabilities. According to the authors, Long
short-term memory (LSTM), CNN, MLP, Deep Belief network (DBN)
and Bidirectional LSTM constitute the major techniques used by
researchers. The survey evaluation, which relied on deep learning,
found synonymous detection and performance evaluation methods,
it also found existing gaps in the use of real-time network traffic
detection. On the other hand, our paper proposes a mechanism to
use real-time detection of network packets as an optimal and more
effective way to not only detect SQL injections but also gain an
analytical edge for future mitigation techniques. Also, our approach
relies on Machine Learning data streaming for the detection of SQL
injections as it is more resource friendly when compared with the
deep learning approach that the authors proposed.

Based on the previous studies on SQLIA, it is agreeable by most
of these findings that programmatic techniques for detecting SQLIA
are gaining traction over traditional methods. Machine learning and
deep learning are the main techniques used nowadays to develop
intelligent models that can detect SQLIA and accurately analyze
the results. In this study, we used artificial intelligence and input
validation to enhance the real-time detection of SQLIA.

3 TYPES OF SQL INJECTIONS ATTACKS

There are various types of SQL injection attacks: error-based at-
tacks, tautology attacks, and union-based attacks. These attacks
are known for distorting and deleting databases through unautho-
rized query changes. Actually, both relational and non-relational
databases, such as Cassandra and Mongo DB, [10] are vulnerabe to
SQLIA.
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3.1 Tautology Attacks

In this type of attack, attackers use tokens whose code evaluates
as true which is in turn used to bypass the authentication process
by ‘cunning’ the database. These attacks are mainly executed by
unauthorized use and by the inclusion of the “WHERE” conditional
statement. The query statement is always true due to the inclusion
of the tautology command. Figure 6a shows s sample authentic SQL
query in black. The malicious query, shown in blue, has a "'where’
clause "1=1" that always evaluates to true thus deeming the attack
possible.

SELECT » FROM user WHERE name
= "xyz" AND password = "345cha"

SELECT + FROM user WHERE name
= xyz "AND password= "345cba" OR "1" ="1"

Figure 1: Tautology Attack Pseudo -Code

3.2 Union-based Attack

In this is type of SQL injection attack, an invalid query is merged
with an authentic one using the UNION statement [15]. This results
into an unauthorized data access to another column being to the
outcome of the authentic query, incurring more outcomes than
required. A sample union-based attack is shown in Figure 2 where
the malicious query adds the username and password column to the
outcome of the legitimate query making the attacker gain access to
this privileged information.

SELECT m,n FROM table 4 (authentic)
SELECT m.n FROM table 4 UNION SELECT k.1
FROM table 5 (union base query)

UNION SELECT username, password FROM username

Figure 2: Union Attack Pseudo-Code

3.3 Error-based Injections

While union-based attacks combine multiple SQL queries to steal
information through modification of the data [17], error-based at-
tacks provide errors that indirectly lead them to acquire information
about the structure of the database. A vulnerability that would be
prone to error-based SQL injection attack is when the develop-
ment phase of web applications is done on a live site instead of
on an offline or a restricted platform. Unintentional vulnerabilities
to error-based SQL injections may lead to unauthorized access to
information and technical failures such as command injections.
When error-based command injections occur, the developer may
encounter error messages from the system such as buffer overruns,
catching exceptions, and format strings.
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3.4 Piggy-backed Injections

Piggy-backed attacks add malicious code to the queries by using
delimiters that allow attackers to append additional queries to the
original ones. The added queries may be used to distort the database
or drop important information rendering the database inefficient
and unreliable.

Figure 3 provides an example of such an attack where the query
above the second query after “;” drops the table name resulting in
a loss of information in the database.

SELECT = FROM user WHERE name
= "xyz" AND password
= "345cba"; DROP table name

Figure 3: Piggy-backed Attack Pseudo-Code

With billions of connected devices through the Internet of Things
in more than 250 countries, the risks that are associated with in-
formation theft, loss, and misuse are directly proportional to the
ease of information access and interoperability. This is due to the
different security standards of manufacturers [20]. The connected
devices and infrastructure rely on databases for the storage of infor-
mation and records. The result of such attacks is information theft,
Denial of Service Attacks (DDOS), technical failure, and incurred
losses due to downtime.

4 PREVENTATIVE MECHANISMS

With the increasing use of cloud-based infrastructure the interop-
erability of web-based devices and applications, the threat of SQLI
attacks will increase. Therefore, there is a need to mitigate SQLIA
by adopting stealth measures that are intelligent, and reliable to
counter sophisticated attacks. There are different ways that can be
used to mitigate SQL injection attacks and enhance the integrity
of the database systems. Some of the existing SQLIA prevention
mechanisms are described as follows.

4.1 Deployment of IPS signatures

The primary means of information security is to ensure that in-
formation assets and systems that host them are safe from threats
and vulnerabilities. To enhance this safety against SQLI Attacks,
intrusion protection systems can be used to prevent unauthorized
modification of the database and unauthorized access to the servers
by attackers. This can be accomplished by enforcing the policy
compliance to the deployment of IPS as a control measure against
unauthorized access to the database systems.

An IPS is a network security tool that monitors the network for
intrusions [[22] and alerts or blocks them. It can be hardware-based
or software-based. For instance, Apache web server can detect and
block attempts to access the database through exploits or weak
vulnerabilities [1]. Although an IPS does not specifically control the
SQLI query alterations, it can control the access to the query strings
connected to the server. It also automates the intrusion detection
process [19]. Besides, it can detect anomalous activities, vulnera-
bilities, and policy violations of application traffic in addition to
alerting the IDS of any malicious activity in the network traffic.



ICIIT 23, February 24-26, 2023, Da Nang, Vietnam

It also monitors the network traffic [13] for possible embedded
ultra-modern attacks and works inline with the data streams to
prevent attacks in real time.

4.2 Query Hashing Techniques

Hashing is one of the methods that ensure data integrity against
intrusion from unauthorized subjects. Through hashing, an out-
put called a hash is generated based on the input data, which in
turn prevents a string of fixed characters from remaining static
regardless of the length or size of the input. This results into big
savings in term of space in the query repository and time thanks
to the use of unique primary key in the hashing function. For in-
stance, PHP version 5 and above has in-built 40 hash algorithms
that generate hash keys with 8 to 128 characters [1]. Due to the
high collision rate of the smaller key and large storage for large
keys, 32-character keys are preferable for the hashing purpose. A
hash is a mathematical operation on the data that makes it diffi-
cult to capture the password due to the addition of permutations
that would be required to get the right password [19]. Although
password hashing has been secure overtime, modern computers
are able of carrying out millions of permutations in a second and
this can make hashing vulnerable due to the implementation of
brute force attacks by malicious attackers which creates a table of
failed attempts and passwords.

5 METHODOLOGY
5.1 Approach

In this paper, we propose an artificial intelligence model that detects
anomalies in SQL queries by introducing a machine learning algo-
rithm to predict and annotate anomalies of SQL injections through
query input validation. As part of the model, we developed a classi-
fication model using SVM, KNN, and Random Forest to detect the
anomalies. Python-MySQL was used to connect the integrated a
Python module that enables SQL integration and data manipulation
in both environments as depicted in the algorithm 1.

Algorithm 1 depicts a Python Database Application Program-
ming Inter-phase (API) connecting to a database engine. In step 1,
we installed the Python SQL toolkit called SQLAlchemy. Steps 2 and
3 show a call to create an engine for the Python API connection at
the local host port 3306. Once the engine is created, the subsequent
steps 5 and 6 show the data interaction between SQL by calling
python the methods.

Algorithm 1: Python SQL database module

1 #! pip install SQLAlchemy
2 from sqlalchemy create_engine

3 engine=create_engine(="mysql+pymysql://root:password
4 @127.0.0.1:3036/data’)

5 dfito_sql("test_table", engine, if_exists="replace’)

6 df=pd.read_sqlCSELECT * FROM test_table;’ ,engine)

7 df

After the SQL-Python engine is created, data manipulation and
SQL Queries can be invoked in python. The anomalies from the SQL
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input validation pattern were labeled as ‘1’ and ‘0’. The labeled data
are then called in a python environment for data pre-processing and
feature engineering respectively. The pseudo-code in Algorithm 2
describes the anomaly prediction process once the data has been
fetched from SQL.

As shown in Algorithm 2, the fetching of the data with the
labeled attributes 0’ and ’1’ representing benign and malicious,
respectively. After labeling is done, the data predictor and target
variables are then split into X and y as shown in step 3. In step 4,
the split variables were then trained and tested in an 80:20 ratio.
We then applied SVM, KNN, and Random Forest as classifiers to
get the prediction results.

Algorithm 2: ML-based SQL Injection Detection

1 Step 1: Load the data in a python environment with the
attributes and errors;

2 Step 2: If not categorized, add an error column and
categorize the SQL injection queries as "1" or "0";

3 Step 3: Split the data into X and Y X= Predictor Y= Target
(anomaly);

4 Step 4: Train the data 80% of the data and set 20% for
testing;

5 Step 5: Using SVM, KNN and Random Forest the model and
test the accuracy ;

¢ Proposed accuracy tests: SVM, KNN, Random Forest

Feature engineering was done using supervised learning in bi-
nary classification to predict the errors/anomalies in SQL queries.

5.2 SQL Input Validation

A key component in our approach is the SQL query input validation
as it is the primary means of detecting SQL injection attacks. The
hypothesis was tested through simulation of the Tautology Attack
where a conditional clause is added to the query statement to pull
data. As found in the two different queries, the legitimate query
has a length ‘x” whereas the tautology query has a length higher
than x based on added characters in the query statement condition.
This approach has the potential be applied to a web platform to flag
queries that may have different character length from the standard
database queries.

The rational we followed in the input validation relies on the
following mathematical formulation for the length of the query
statement and is based on the pattern of the statements where
y; is the i-th position of letter in pattern D, and the string of the
query that follows certain pattern injections can be detected by the
following process.

Let us consider the following sequences S = y1,y2 ...yn. The
query string can be represented by y1y2 ...y7YT+1 -..yn and the
pattern can be represented by x1x2 ...XTXT41 ...xpn. The variable
x; and u; are random variables [4]. In this formulation, S is also a
pattern denoting a sequence or pattern of characters from y; to y.
In the case of our SQL query, this may represent the characters in
the query. A standard query may have a list of the same characters
of y; in S. An injection occurs in the query where the number
of characters S will increase. Subsequently, x;, which represents
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Figure 4: Architectural View of the Proposed Approach

a pattern of sequence characters y1, y2 ...yr ...yn, Will increase
leading to a distinctive length or size of the pattern. The term u;
represents the position of y; in x;. The difference in pattern size
in the SQL queries are indicators of a change in query statement
which may be a result of a conditional function such as a tautology
attack. The difference in pattern size can then be used to label the
query as malicious or not based on the uniformity of the pattern as
the baseline.

By employing the above criteria, the position of unique char-
acters in SQL query can be identified and the probability of its
occurrence in the pattern can be calculated. Further, the size and
position of the string can be estimated by verifying the pattern of
string characters of the SQL queries from the position of characters
in SQL statements.

The probability that Xt is a pattern of W is proportional to the
product of the probability and length of w as shown in equation 1
where |w]| is length of pattern w [4] while normalization factor NF
is given by equation 2.

Pyy.|lw
prob(Xy =) = V! 1)
NF = Z Pyy.w )
allw

In such a scenario, where outliers appear in the SQL query length
or characters positioning, the anomaly in the pattern is labeled as
‘1’ or ‘0’ and the data is exported for further analysis in the python-
based feature engineering of the categorical labeled data.

Further, the collection of data from the queries is also necessary
so as to distinguish outliers in the frequency of the query input by
the users.

In an instance where the SQL queries within a specific time ‘K
has the same data fetching patterns, supervised learning can be used
to get the main features in the SQL pattern. Another key strength
of our approach is that the pattern of SQL statements can further be
integrated in data streaming technologies for real time alert to the
IDS or IPS in case of prevalent malicious pattern disruptions that
may be caused by an SQL injection attacks. An easy way to calculate
the length of characters would be the use of the length function, due
to the variance in authentication characters, to measure the length
of the characters which may not be the most efficient way to detect
anomalies. However, when the "where" conditional statements are
added to the SQL query, our input validation is capable of the
detecting anomalies through pattern recognition because of the
additional change in character length and the presence of more
data-types from alien query commands.

Through our Python-SQL database module, the audited data can
be pre-processed for the prediction of attacks and other anomalies
in the SQL queries and patterns. We used Support Vector Machine
(SVM) supervised learning for the classification model due to its
suitability in outlier detection. [14] ,and the instance-based learning
of KNN and Random Forest which is more accurate without much
hyper-parameter tuning.

>
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1 e SELECT * FROM networkl. network-logs (1) WHERE 1=1;
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Result Grid [ 4% FilterRows: O
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(b) Tautology Injection

Figure 5: Effect of Tautology Attack

6 EVALUATION
6.1 Data Description

Data from the sensor network logs, in CSV format, were used for
this experiment. The dataset was retrieved from a verified Pack-
Publishing open dataset repository [13] and the network packets
were analyzed in our simulation. The dataset had 405 rows and
3 columns of different features representing the remote port, la-
tency, and throughput. The throughput measures the successful
data packets transferred within a time frame mainly in bits/second
[8]. Latency is the time taken by the network packet to arrive from
the source to the destination. We imported the dataset in CSV for-
mat in the SQL Workbench for query test analysis and we leveraged
the SQLAlchemy connection to perform the simulation and obtain
the experimental results.

The network logs files were used to simulate the tautology at-
tack in our paper and to show how the input string validation can
thwart SQLIA while the classifiers show the accuracy of properly
classifying an attack. The data was imported into an SQL database
where several functions were run to simulate a tautology attack and
our input string validation module. The size and position of the SQL
statement string were used to categorize the functions in different
columns as benign and malicious for the simulated tautology attack
functions which had a different input string in the SQL queries. We
focused our simulation on a tautology SQL injection and a piggy
backed SQL injection which results to wiping out of data using the
drop command.

Figure 5a shows the legitimate query that fetches the data from
the network1 table through the "select” function. The output of the
query is the whole data from all columns in the network1 table.

The depicted tautology injection attack, shown in figure 5b,
bypasses the "WHERE" clause by using the 'OR 1=1" condition that
always evaluates to true. The 'OR 1=1" injection condition, results
to the output of all the data stored and this may lead to the display
of unauthorized data. Tautology attack may therefore be used to
steal information by bypassing the authentication mechanisms.

A sample piggy back attack, as shown in figure 6, can be ma-
liciously used to delete and completely wipe out enterprise data
resulting to the loss of vital data.

In figure 6a, we pulled a request which selected data from the
network1 table while in figure 6b we simulate a piggy back attack
the ’DROP’ query drops the whole ‘network table’ erasing all the
data as seen below.

The data queries with multiple functions are the baseline for
pattern matching where the SQL Injections queries and legitimate
queries vary in anomaly characteristics that were used in the simu-
lation. After labeling of the anomaly was done using the input vali-
dation, the data from SQL is connected to the Python environment
for analysis to predict the accuracy of the validation technique.

For the purpose of this study, we simulated and labeled 10 tau-
tology SQL injection attacks. This constitutes only 2.469% of total
possible benign and malicious SQL queries. To predict the accu-
racy in python, the malicious injection was labeled as the response
variable y and from the predictor X. Using the sklearn module in
Python, we split the data in 70:30 fashion for training and testing,
respectively.The experimental results are shown in Section 6.

6.2 Experimental Results

Based on our experiments, we evaluated the simulation using three
classifiers namely KNN, SVM and Random Forest. We also mea-
sured the performance evaluation of the classifiers using different
benchmark metrics including the precision, the recall and the F-1
score. The mathematical formulations to derive these metrics are
described next.

The precision measures how accurate and precise the results are
by measuring the threshold of true positives from the predicted
positives [21]. It is derived by equation 3:

TP

—_— 3
TP+ FP )

The F-1 Score is a function of precision and recall and which
seeks a balance between them. It is given by equation 4:
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1e DROP TABLE 'network-logs (1) ;

100% ¢l am

(b) Piggy Back Attack

Figure 6: Effect of Piggy Back Attack

TP
TP+ §.(FP + FN)
The recall measures the sensitivity of the actual positives com-
pared to all observations including False Negatives and True Posi-
tives, as shown in question 5:

©

TP 5
TP+ FN ©)
Table 1, table 2 and table 3 show the result we obtained af-
ter running the model with the SVM, KNN and Random Forest
classifiers.

Table 1: SVM Classification Results

Precision Sensitivity F1-Score Support

Benign 0.99 1.00 0.99 79
Malicious 1.00 0.55 0.71 2
macro avg 0.99 0.75 0.83 81

weighted avg 0.99 0.99 0.99 81
accuracy 0.98 81

Table 2: KNN Classification Results

Precision Sensitivity F1-Score Support

Benign 0.96 1.00 0.98 77
Malicious 1.00 0.25 0.40 4
macro avg 0.98 0.62 0.69 81

weighted avg 0.96 0.96 0.95 81
accuracy 0.96 81

As derived from the simulation results from the three classifiers,
the SVM classifier had the highest prediction at a near 99% accuracy,
followed by Random Forest at 97.53% and KNN at 96.3% prediction
of anomalies-injections. In the binary classification, normal data
queries with no anomalies were labeled as benign while data with
detected anomalies injection was labeled as malicious.

The precision for the three classifiers had a high confidence score
with the least being KNN with a 96% precision. The high precision

Table 3: Random Forest Classification Results

Precision Sensitivity F1-Score Support

Benign 0.97 1.00 0.99 73
Malicious 1.00 0.33 0.50 8
macro avg 0.99 0.67 0.74 81

weighted avg 0.98 0.98 0.97 81
accuracy 0.97 81

metric shows that our model had a low false positive rate which is
good for our anomaly prediction model.

7 DISCUSSION

In comparison to our approach, the most noticeable techniques that
can be used to prevent SQLIA include installing up-to-date secu-
rity patches to the databases and web servers from vendors, and
utilizing the least privilege policy in provisioning accounts linked
to the SQL database. Even though our study agrees with some
of these techniques, it avoids most of their flaws as the security
patch software from vendors is susceptible to even more sophis-
ticated cyber supply chain malware attacks. This is considered as
an emerging tactics, techniques and procedures (TTPs) embedded
in the software updates and fraudulent SSL certificates that target
vendors and clients to get initial access. In addition, the least privi-
lege practices may not prevent human errors which contribute to a
substantial amount of cyber vulnerabilities. This study, therefore,
proposes an artificial intelligence-based approach as the most ef-
fective preventive and deterrence strategy against SQL Injection
Attacks since it is scalable to the size of the features and pattern
prediction and even deployment. Actually, our Python-SQL module
is capable of fetching labeled malicious queries, which has the po-
tential for being implemented in big data technologies using data
streaming and also using deep learning techniques. Also, unlike
supervised learning, deep learning has more pattern recognition
and computing power.

8 CONCLUSION AND FUTURE WORK

In recent years, SQLIA caused enormous losses in the industry as a
result of data loss, sabotage, and disruption of business processes by
attackers. It is estimated that 65% government and commerce suffer
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from minor to major data breaches yearly [18] due to SQL injec-
tions attacks year. Therefore, the need for proper SQLIA mitigation
should be done through the deployment of defense mechanisms
that are more intelligent for sophisticated attacks, reliable, and
cost-effective.

With the constant increase of IoT-based technologies, the indus-
try will still face increased SQL injection attacks targeting web-
based applications that may lead to detrimental vulnerabilities such
as information theft, distortion, and distributed denial of services.
These attacks lead to the loss of millions of dollars to companies
and even a total collapse of the supply chain [18]. To mitigate these
threats, artificial intelligence can play a big role in threat detection
and alerting of malicious attacks such as SQLIA.

In this paper, we proposed a machine learning model for detect-
ing and thwarting SQLIA that relies on input string validation that
enables the model to distinguish legitimate queries from injections
based on the pattern recognition of the string and the size of the
query. Further in order to automate the validation and identifica-
tion of malicious SQLIA, we proposed the use of a Python-SQL
database pipeline where malicious SQL queries were labeled in a
binary categorization ("0’ or '1°, ’M’ or ’B’). Through supervised
learning, we predicted the queries that had a malicious SQLIA and
did not pass the input validation step.

In future, we intend to further test and deploy Artificial Neural
Networks (ANN) in to enhance SQLIA detection. Based on our
findings, we expect to achieve a better performance in detecting
SQLIA. To automate and enhance the collection of data from SQL
databases and prediction of SQLIA, we intend to test data streaming
technologies for optimal performance.
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