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0. Introduction

The starting point for the present note is the pervasive phenomenon whereby abelian categories encoun-

tered “in nature”, housing various (co)homology theories, tend to have enough injectives but much more 

rarely have enough projectives.

This is familiar, for instance, for various flavors of sheaves:

• According to [5, Exercise III.6.2] the categories of modules, coherent modules and quasi-coherent modules 

on projective lines over infinite fields (with the Zariski topology) do not have enough projectives.

• For a more general class of schemes, it is shown in [6, Theorem 1.1] that the category of quasi-coherent 

sheaves on a non-affine divisorial noetherian scheme (e.g. a non-affine quasi-projective schemes over a 

commutative noetherian ring) does not have enough projectives.

• On a slightly different note, locally connected Hausdorff spaces with no isolated points admit no non-zero 

projective sheaves of abelian groups [2, p. 30, Exercise 4].

Here, we examine the category of discrete modules over a profinite group G, used in defining the coho-

mology groups Hi(G, −) (see, e.g., [11, §2] for background and Section 1 below for definitions).

Our main results show that if G is infinite then the category of discrete modules

• admits no non-zero projective object (Theorem 2.1) and

• does not satisfy Grothendieck’s Ab4* condition (Proposition 2.2), that is, products are not exact.

Either of the two properties implies that the category does not have enough projectives.

We also consider the analogous question over fields (rather than the integers), resulting in a character-

ization of those profinite groups for which the category of discrete modules has enough (or equivalently, 

non-zero) projectives in characteristic p (Theorem 3.1): they are exactly those whose Sylow p-subgroups in 

the sense of [11, §1.4] are finite. This will also provide a characterization of projectives in the said category 

(Corollary 3.3).

A natural question is whether the techniques used in the proofs of the main results can be applied 

to more general Grothendieck categories. The discrete modules over a profinite group form a prelocalizing 

subcategory of the category of all modules, so one reasonable attempt is to generalize them to a prelocalizing 

subcategory of the category of modules over a ring. It is known that such subcategories bijectively correspond 

to linear topologies of the ring (see [12, Proposition VI.4.2]). We will express a necessary condition in terms of 

a linear topology, and prove generalized results for those prelocalizing subcategories satisfying the condition 

(Theorem 4.2).
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1. Preliminaries

Let G be a profinite group. We denote by (N , ≤) the poset of open normal subgroups of G, ordered by 

inclusion.
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Definition 1.1. A discrete G-module is a (left) G-module M with the property that the action G × M → M

is continuous when M is equipped with the discrete topology.

We write dGMod for the category of discrete G-modules, GMod for the category of all G-modules (without 

topology). Note that GMod is canonically equivalent to the category of left modules over the group algebra 

Z[G]. �

Remark 1.2. Discrete modules can be characterized as those G-modules M with the property that

M = lim
−−→

H∈N

MH (1)

where MH is the submodule of M consisting of those elements x that are fixed by every element of H (see 

[13, Proposition 6.1.2]). The direct limit can be replaced by a sum or a union.

We assume some background on Grothendieck categories [8, §2.8, Note 3]: abelian, cocomplete categories 

with exact filtered colimits and a generator.

Since d
GMod is a full subcategory of the Grothendieck category GMod closed under subobjects, quotient 

objects, and coproducts (i.e. a prelocalizing subcategory [8, §4.8, following Theorem 8.8], or weakly closed, 

or a hereditary pretorsion class), it too is Grothendieck: in general, if C′ is a prelocalizing subcategory of a 

Grothendieck category C, then

• the exact sequences and colimits in C′ coincide with those in C by construction, so C′ is abelian, cocom-

plete, and Ab5 (filtered colimits are exact; [8, p. 61]);

• and additionally, if P ∈ C is a generator, then the coproduct of the quotient objects of P that belong 

to C′ is a generator for C′.

The forgetful functor d
GMod → GMod has a right adjoint that sends a G-module M to its largest discrete 

submodule lim
−−→H

MH .

The adjoint property tells us how to compute inverse limits in d
GMod. Let {Mi}i∈I be an inverse system 

in d
GMod and denote by lim

←−−i
Mi the inverse limit taken in d

GMod and by lim
←−−

f
i

Mi the one taken in GMod

(which is simply the limit of corresponding abelian groups; the ‘f ’ superscript stands for “full”). Then

lim
←−−

i

Mi = lim
−−→

H∈N

(
lim
←−−

f
i

Mi

)H

,

which is the largest discrete submodule of lim
←−−

f
i

Mi. �

We will refer briefly to coalgebras and comodules over fields, for which our background reference is [3, 

Chapters 1 and 2].

For a coalgebra C over a field, write MC for the category of right C-comodules. According to [3, Corol-

lary 2.4.21], MC has enough projectives (that is, every object admits an epimorphism from a projective 

object) if and only if every finite-dimensional C-comodule has a (finite-dimensional again) projective cover. 

Furthermore, according to the proof of [3, Corollary 2.4.22] every projective object in MC is a direct sum 

of finite-dimensional projective objects. These observations will be of use later.

2. Main results

Theorem 2.1. Let G be a profinite group. The category d
GMod has non-zero projective objects if and only if 

G is finite.
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Proof. One implication is obvious, so we assume that G is an infinite profinite group and that P is a non-

zero projective object in d
GMod. P can be expressed as a union of its submodules P H as in (1), and hence 

we have a surjection

⊕

H∈N

P H → P.

In turn, every P H is surjected upon by some free G/H-module FH , which is a direct sum of copies of 

Z[G/H], and we have an epimorphism

F :=
⊕

H∈N

FH → P. (2)

Now let H0 > H1 > · · · be a strictly descending sequence of groups in N (one exists, since G is 

assumed infinite). For each non-negative integer i we construct a surjection Ei → F defined by substituting 

Z[G/(H ∩ Hi)] for every Z[G/H] summand of F and surjecting

Z[G/(H ∩ Hi)] → Z[G/H]

naturally.

We now claim that the projectivity of P entails a factorization

P

lim
←−−i

Ei F

P
id

(3)

where the limit is taken in the category d
GMod.

To see this, note first that P splits off as a summand of F . Since E0 surjects onto the latter, we further 

obtain an direct summand embedding P → E0; now repeat the procedure to lift this to a map P → E1

fitting into a triangle

P

E1

E0

Continuing this recursively will produce (3).

The contradiction will follow if we show that the limit lim
←−−i

Ei in (3) vanishes. As explained in Remark 1.2, 

the limit in dGMod is obtained as the largest discrete submodule of the limit lim
←−−

f
i

Ei in GMod. We thus have 

to argue that lim
←−−

f
i

Ei contains no non-zero elements fixed by an open normal subgroup H � G. To see this, 

recall that the connecting morphisms

Ei+1 → Ei, i ∈ N

whose filtered limit we are taking are coproducts of copies of the standard epimorphisms

Z[G/(H ∩ Hi+1)] → Z[G/(H ∩ Hi)]

for the summands Z[G/H] of F . To illustrate the claimed vanishing of the limit without irrelevant notational 

overhead we will consider the simpler limit

lim
←−−

f
i

Z[G/(H ∩ Hi)]
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along the canonical surjections.

For every K ∈ N the image of the K-invariants through

Z[G/(H ∩ Hj)] → Z[G/(H ∩ Hi)], j > i

consists of [K∩H∩Hi : K∩H∩Hj ]-multiples in the latter free abelian group. Indeed, if we write Ni = H∩Hi

and Nj = H ∩ Hj , then an element of Z[G/Nj ]K is of the form

∑

gNj∈G/Nj

ngNj
· gNj

such that ngNj
= ng′Nj

whenever gKNj = g′KNj . In particular, the elements of G/Nj in the same coset of 

(K ∩ Ni)Nj have the same coefficient, and they are sent to a single element of G/Ni whose coefficient is a 

multiple of

[(K ∩ Ni)Nj : Nj ] = [K ∩ Ni : K ∩ Nj ] = [K ∩ H ∩ Hi : K ∩ H ∩ Hj ].

Since [G : K ∩H] < ∞, the sequence {K ∩H ∩Hj}∞
j=0 is strictly descending. Thus the index [K ∩H ∩Hi :

K ∩ H ∩ Hj ] grows indefinitely with j for fixed i. It follows that the image of

(
lim
←−−

f
i

Z[G/(H ∩ Hi)]
)K

in every Z[G/(H ∩ Hi)] vanishes. In conclusion, as claimed, the maximal discrete submodule

d
GMod � lim

←−−
i

Z[G/(H ∩ Hi)] ⊆ lim
←−−

f
K

Z[G/(H ∩ Hi)] ∈ GMod

is trivial. �

Theorem 2.1 shows in particular that for infinite G the category of discrete G-modules fails to have 

enough projective modules. That failure is in fact even stronger. Let C be a non-zero abelian category. 

Then, having enough projectives implies that

• C has non-zero projectives (obviously) and

• assuming that C is Ab3* (i.e. has arbitrary products) it is also Ab4* ([8, §2.8, discussion preceding 

Proposition 8.3]), meaning it has exact products, or equivalently, products preserve epimorphisms.

To see the latter, consider a product

∏

i

fi : X :=
∏

i

Xi →
∏

i

Yi =: Y

of epimorphisms and consider an epimorphism π : P → Y from a projective (possible, by the enough-

projectives assumption), with components πi : P → Yi. The projectivity of P and the fact that each 

individual fi is epic implies that πi factors through fi and hence π factors through 
∏

i fi:

π =

(
∏

i

fi

)
◦ (some morphism P → X) ; (4)

since π is epic, so is its left-hand factor 
∏

i fi in (4).
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The next result proves that the second condition is also violated in the present context:

Proposition 2.2. Let G be a profinite group. The category d
GMod satisfies Ab4* if and only if G is finite.

Proof. Again, one implication is obvious, so we assume that G is infinite. We will show that the product of 

the augmentation morphisms

Z[G/H] → Z[G/G] = Z (5)

for H ∈ N is not epic. Indeed, for fixed K ∈ N the image of Z[G/H]K through (5) is contained in the ideal 

generated by [K : H] whenever H ≤ K. It follows that the all-1 element of the product 
∏

H∈N Z is not 

contained in the image of 
∏

H∈N Z[G/H], proving the claim. �

For future reference, we record the following variant of Theorem 2.1.

Theorem 2.3. Let G be a profinite group. The category d,t
G Mod of discrete torsion G-modules has no non-zero 

projective objects.

Proof. We first reduce the problem to trivial G: there is a forgetful functor

forget : d,t
G Mod → tAb

to the category of torsion abelian groups, which has an exact right adjoint

tAb � M 
→ Map(G, M) ∈ d,t
G Mod.

Here, the right-hand side denotes the group of continuous maps G → M (with M discrete), with left G-action 

given by right-hand multiplication on the domain; see [9, §6.10]. Being left adjoint to an exact functor, the 

forgetful functor preserves projectivity. In short: a non-zero projective object of our target category d,t
G Mod

must be non-zero projective in tAb. The conclusion now follows from Lemma 2.4 below. �

Lemma 2.4. The category tAb of torsion abelian groups has no non-zero projective objects.

Proof. Although this is known to experts, we include a proof for convenience of the reader.

Let A be a non-zero torsion abelian group. It then fits into an extension

0 → Z/p → A → Q → 0,

for some prime p, to which we can then apply the long exact cohomology sequence attached to the functor 

Hom(−, Z/p). Because Ext2 vanishes over the integers, the terminating portion of that long exact sequence 

reads

· · · → Ext1(A, Z/p) → Ext1(Z/p, Z/p) → 0.

Since the middle term is Z/p on which Ext1(A, Z/p) surjects, the latter cannot vanish. But this means that 

there are non-split extensions

0 → Z/p → E → A → 0

in the category of abelian groups; since E is by necessity torsion, this shows that A cannot be projective in 
tAb. �
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Profinite (as opposed to discrete) G-modules have also received some attention in the literature (e.g. [9, 

Chapter 5]). As the name suggests, these are profinite abelian groups equipped with continuous G-actions 

[9, §5.3]. They form a category p
GMod (with G-equivariant continuous maps) which is almost opposite to 

d
GMod: It follows from [9, Theorem 2.9.6, discussion on p. 165, and Proposition 5.3.6] that the Pontryagin 

duality functor

M 
→ Hom(M, R/Z) (6)

(continuous morphisms, equipped with the compact-open topology) implements a contravariant equivalence 

(i.e. a duality) between pGMod and the category of torsion discrete G-modules. This is indeed part of a bigger 

picture: the category d
GMod itself is contravariantly equivalent to the category c

GMod of compact Hausdorff 

G-modules by (6) (see [7, p. 50, Theorem 12 and §4, Theorem] for abelian groups and [4, Lemma 2] to 

extend it to G-modules). Therefore applying (6) to Theorem 2.1 we obtain the following corollary:

Corollary 2.5. Let G be a profinite group. The category c
GMod has non-zero injective objects if and only if 

G is finite.

There is also a profinite-module counterpart:

Proposition 2.6. Let G be a profinite group. The category p
GMod has no non-zero injective objects.

Proof. As noted, (6) is a duality between pGMod and the category d,t
G Mod of Theorem 2.3. That result then 

implies the desired conclusion. �

3. Ground fields

The situation is rather different when working over a field k in place of Z. First, recall the notion of 

supernatural number from [11, §1.3]: simply a formal product of the form

∏

primes p

pnp , np ∈ Z≥0 ∪ {∞}.

A profinite group G has an order |G|, well-defined as a supernatural number as the least common multiple 

of all orders G/H for H ∈ N . Similarly, we can define the index [G : H] as a supernatural number for every 

closed subgroup H ≤ G. There is also a concept of Sylow p-subgroup of G, i.e. a closed subgroup whose 

supernatural order is of the form pnp (meaning it is pro-p, i.e. a filtered limit of finite p-groups) and whose 

index in G does not have p as a factor (or is coprime to p, in short). We refer to [11, Chapter 1] for details.

Now let k be a ground field of characteristic p (a prime or zero) and write d
GVect for the category of 

discrete G-modules over k (note that we are suppressing k from the notation, for brevity). The main result 

of the present section is a characterization of those G for which this category admits non-zero projectives.

Theorem 3.1. For a profinite group G and a field k of characteristic p the following conditions are equivalent:

(a) The category d
GVect has a non-zero projective object.

(b) The category d
GVect has enough projective objects.

(c) The characteristic p of k has finite exponent in the supernatural number |G|.

Remark 3.2. The condition in (c) is by convention assumed to hold vacuously when the characteristic is 

zero. �
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Before settling into the proof proper we make the preliminary observation that the category d
GVect is 

nothing but the category MC of comodules over the k-coalgebra C = k(G) of continuous k-valued functions 

on G (where k is equipped with the discrete topology).

Proof of Theorem 3.1. That (a) follows from (b) is obvious, so we focus on proving (c) ⇒ (b) and (a) ⇒

(c).

(a) ⇒ (c). As noted at the end of Section 1, the existence of a non-zero projective entails the existence 

of a finite-dimensional one (P , say). P will then be projective over some group algebra k[G/H] for H ∈ N , 

and we can furthermore assume that it is a summand of k[G/H] (because it can be written as a direct sum 

of indecomposable projectives, which are summands of k[G/H]).

Now, if (c) were false then we could find a subgroup K ∈ N of H with p dividing [H : K]. Now consider 

the projection

k[G/K] → k[G/H] → P. (7)

Splitting it would provide a summand ∼= P of k[G/K] acted upon trivially by H/K. But then, since p

divides the order of this latter group, the image of this summand through (7) must vanish. This gives a 

contradiction and proves the desired implication.

(c) ⇒ (b). By [3, Corollary 2.4.21] it suffices to show that every finite-dimensional discrete module M

admits a surjection by a projective. We can regard M as a module over G/H for some H ∈ N , and suppose 

H is small enough to ensure that |G/H| and |G| have the same p-exponent.

Naturally, M is a quotient of a finite-dimensional projective P over G/H. It remains to argue that P is 

still projective over G, which will be the goal for the remainder of the proof.

Since P is G/H-projective, it must be projective over a Sylow p-subgroup S ≤ G/H. Our choice of H

(such that [G : H] is divisible by the same exact power of p as |G|) means that there is a Sylow p-subgroup 

S of G mapping isomorphically over S. We thus know that the restriction of P to S is projective.

Projectivity over G means showing that all higher cohomology

Exti(P, −) ∼= Hi(G, − ⊗ P ∗), i ≥ 1

in the category d
GVect vanishes. We already know that it vanishes upon restricting via

res : Hi(G, − ⊗ P ∗) → Hi(S, − ⊗ P ∗),

and the conclusion follows from the fact that this restriction morphism is one-to-one: this is more or less 

[11, §2.4, Corollary to Proposition 9]. Although the latter result refers to cohomology over Z, the techniques 

apply essentially verbatim over k.

The above reasoning applies unequivocally in positive characteristic, but requires interpretation in char-

acteristic zero. In that case the p referred to throughout will be 0, Sylow subgroups will be trivial, etc. 

The validity of the proof will not be affected if these obvious modifications are made, using the fact that in 

characteristic zero the higher cohomology of a profinite group is

Hi(G, −) = lim
−−→

H∈N

Hi(G/H, −) = lim
−−→

0 = 0,

i.e. the coalgebra k(G) is cosemisimple. �



A. Chirvasitu, R. Kanda / Journal of Pure and Applied Algebra 227 (2023) 107260 9

We note in passing that as a byproduct of the proof of Theorem 3.1 we obtain the following characteri-

zation of projectives in d
GVect:

Corollary 3.3. Let G be a profinite group and k a field of characteristic p. The following statements hold:

(a) For every open normal subgroup H with p � | |H|, a G/H-module is projective if and only if it is projective 

over G.

(b) The projective objects in d
GVect are direct sums of finite-dimensional, indecomposable projectives over 

G/H for H ranging over the open normal subgroups of G with p � | |H|.

Remark 3.4. If the characteristic is zero then the class of subgroups H in Corollary 3.3 is unrestricted, i.e. 

we range over all of N . �

Part (a) of Corollary 3.3 has the following partial converse.

Lemma 3.5. Let G be a profinite group, k a field of characteristic p and H ≤ G a closed normal subgroup 

with p | |H|. Then, non-zero G/H-modules cannot be projective over G.

Proof. Let P be a hypothetical non-zero G/H-module projective over G and let T ≤ H be a (necessarily 

non-trivial) Sylow p-subgroup.

The restriction functor

res : d
GVect → d

T Vect (8)

is left adjoint to the exact functor

d
T Vect � M 
→ MapT (G, M) ∈ d

GVect,

where

• MapT denotes continuous T -equivariant maps G → M with M equipped with the discrete topology;

• T -equivariant means f(tg) = tf(g) for all t ∈ T and g ∈ G;

• the G-action is given by g � f = f(• g);

see [9, §6.10]. Since it has an exact right adjoint, it follows that (8) preserves projectivity. In particular, P

will be projective over T . Since T is pro-p, Corollary 3.3 (b) shows that its projective modules are direct 

sums of finite-dimensional indecomposable projectives over finite non-trivial quotients T/S.

The only non-zero finite-dimensional indecomposable projective T/S-module in characteristic p is the 

group algebra k[T/S] [10, §15.7] so certainly, T/S (and hence T ) cannot act trivially on such a module. 

This contradicts the assumption that H (and hence T ≤ H) does act trivially, finishing the proof of the 

lemma. �

We now have the following alternate take on Theorem 2.1:

Proof of Theorem 2.1 (alternative). We begin as before, assuming that G is an infinite profinite group and 

P a non-zero projective object in d
GMod. We then have the epimorphism (2) onto P from a direct sum 

F =
⊕

H∈N FH of free G/H-modules.

By projectivity the epimorphism P splits, realizing P as a summand of F . In particular, there is some 

finite multiset of groups Hi ∈ N so that
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{0} �=

(
⊕

i

Z[G/Hi]

)
∩ P ⊂ F. (9)

Now apply the scalar-extension functor

Ep := Fp ⊗Z − : d
GMod → d

GVect

for a finite field Fp with p elements, with p chosen judiciously (more on this below). The functor preserves 

projectivity (because it is left adjoint to the exact scalar restriction functor), so Ep(P ) is projective (and 

clearly non-zero, since it was obtained by scalar-extending a free abelian group).

We now have a direct sum decomposition

Ep(P ) ⊕ ∗ ∼= Ep(F ) =
⊕

H∈N

Fp[G/H]⊕. (10)

The summands on the right-most side can be further decomposed as finite direct sums of modules with 

local endomorphism rings (because they are modules over finite group algebras over Fp).

(9) implies its counterpart over Fp:

{0} �=

(
⊕

i

Fp[G/Hi]

)
∩ (P/pP ) ⊂ F/pF. (11)

To see this, consider the diagram

S ∩ P

S

P

F , (12)

where S is the parenthetic direct sum from (9). All arrows in the diagram are inclusions of free abelian 

groups. Furthermore, the two right-hand arrows split (i.e. realize S ≤ F and P ≤ F as direct summands). 

In particular F/S and F/P are free abelian, and hence so is

F/(S ∩ P ) ≤ F/S × F/P.

But this means that its subgroups

S/S ∩ P and P/S ∩ P

are again free abelian, and hence the left-hand maps in (12) also split. But then all morphisms depicted 

in (12), being split inclusions of non-trivial free abelian groups, will remain inclusions of non-zero vector 

spaces upon extending scalars to Fp. Or in other words, we have (11).

The proof of [1, Theorem 26.5] applied to M = F/pF , K = P/pP , and N =
⊕

i Fp[G/Hi] shows that 

P/pP has a non-zero summand H isomorphic to a summand of N . Thus [1, Corollary 26.6] implies that 

P/pP has a summand, say S, isomorphic to an indecomposable summand of Fp[G/Hi] for one of the finitely 

many i in (9). Note that S is projective in d
GVect, being a summand of the projective object P/pP .

Now we can specialize p: choose it so as to ensure that it divides the (supernatural) order of H =
⋂

i Hi

(this is possible, since the latter group has finite index in the infinite profinite group G). The projectivity 

of S over G contradicts Lemma 3.5, finishing the proof. �
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Here too (as in Section 2) there is a dual version of the discussion, concerning profinite modules; since 

in positive characteristic one need not worry about torsion, Corollary 2.5 and Proposition 2.6 will collapse 

into a single result.

A topological G-module over a topological field k is a topological abelian group that has continuous G-

action and continuous k-action that commute with each other (cf. [9, Proposition 5.3.6 (d)]). The discussion 

above easily extends to show that over a finite field k (with the discrete topology) the selfsame functor (6)

constitutes a duality between d
GVect and the category p

GVect of profinite G-modules over k.

To conclude, applying (6) to Theorem 3.1 produces

Corollary 3.6. For a profinite group G and a finite field k of characteristic p the following conditions are 

equivalent:

(a) The category p
GVect has a non-zero injective object.

(b) The category p
GVect has enough injective objects.

(c) The characteristic p of k has finite exponent in the supernatural number |G|.

4. Ring-theoretic interpretation

Theorem 2.1 and Proposition 2.2 can be shown in a more general setting of a ring with a filter of ideals.

Let R be a ring. We denote by RMod the category of (left) R-modules.

Let I be a downward filtered set of (two-sided) ideals of R, that is, I is a non-empty set of ideals and for 

any I1, I2 ∈ I, there exists J ∈ I such that J ⊆ I1 and J ⊆ I2. For ease of comparison with the previous 

section, we use the notation

g
RMod := {M ∈ RMod | M = lim

−−→
I∈I

MI}

where

MI := {x ∈ M | Ix = 0}.

The forgetful functor gRMod → RMod admits a right adjoint given by M 
→ lim
−−→I

MI . Products in gRMod are 

described in a similar way to Remark 1.2.

In view of [12, Proposition VI.4.2], gRMod is the prelocalizing subcategory of RMod corresponding to a left 

linear topology of R that admits a fundamental system of neighborhoods of 0 ∈ R consisting of two-sided 

ideals.

Remark 4.1. For a profinite group G, we take the group algebra R := Z[G] without topology. The poset N

of open normal subgroups of G defines the downward filtered set of ideals

I := {IH | H ∈ N }

where IH is the kernel of the canonical surjection Z[G] → Z[G/H]. For each M ∈ GMod = RMod, the largest 

submodule of M belonging to G/HMod is MH as well as MIH
. Thus MH = MIH

. By the characterization 

(1) in Remark 1.2, we have g
GMod = g

RMod. �

For two ideals I, J ⊆ R, define the ideal

(J : I) := {r ∈ R | Ir ⊆ J}.

Note that (R/J)I = (J : I)/J .
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Theorem 4.2. Let R be a ring and I a downward filtered set of ideals of R. Suppose that for each I ∈ I,

⋂

J

((J : I) + I) = I (13)

where J runs over all ideals in I with J ⊆ I. Then the following hold:

(a) g
RMod has no non-zero projective objects.

(b) g
RMod does not satisfy Ab4*.

The proof of these are parallel to the proofs of Theorem 2.1 and Proposition 2.2 but needs some modifi-

cations. We first rephrase the condition (13).

Lemma 4.3. The hypothesis of Theorem 4.2 is equivalent to the following condition: For any I, K ∈ I with 

I ⊆ K and 0 �= x ∈ (R/I)K , there exists J ∈ I with J ⊆ I such that x does not belong to the image of the 

canonical morphism

(R/J)K → (R/I)K .

Proof. For ideals J ⊆ I ⊆ K, the commutative diagram

(R/J)K (R/I)K

(R/J)I (R/I)I

shows that any element of (R/I)I not in the image of (R/J)I → (R/I)I does not belong to the image of 

(R/J)K → (R/I)K . Thus the condition is equivalent to that with K = I.

Since (R/J)I = (J : I)/J and (R/I)I = R/I, the image of (R/J)I → (R/I)I is ((J : I) + I)/I. Thus the 

condition is equivalent to

⋂

J

(J : I) + I

I
= 0,

which is equivalent to (13). �

Remark 4.4. The process of proving the vanishing of the limit lim
←−−i

Ei in Theorem 2.1 shows in particular that 

for any Ni, Nj , K ∈ N with Nj ≤ Ni, the image of Z[G/Nj ]K → Z[G/Ni]
K consists of [K ∩ Ni : K ∩ Nj ]-

multiples and the index grows indefinitely when Nj gets smaller. With the terminology of Remark 4.1, 

this implies that for every 0 �= x ∈ R/INi
, there exists some j such that x is not contained in the image 

of (R/INj
)IK

→ (R/INi
)IK

. Thus the condition in Lemma 4.3 is satisfied and hence the hypothesis of 

Theorem 4.2 holds. �

Proof of Theorem 4.2. (a) Assume that g
RMod has a non-zero projective object P . Let 0 �= x ∈ P and take 

K ∈ I such that x ∈ PK . Similarly to the proof of Theorem 2.1, there is an epimorphism F =
⊕

I∈I F (I) →

P where F (I) is a free R/I-module. We can assume that F (I) �= 0 only if I ⊆ K.

Since P is projective, the epimorphism F → P splits. We fix a section P → F and let x̃ ∈ F be the 

image of x by the section. There are finitely many summands R/I1, . . . , R/In of F such that

x̃ =
∑

j

x̃j ∈
n⊕

j=1

R/Ij (14)
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where 0 �= x̃j ∈ R/Ij . Since F (Ij) �= 0, we have Ij ⊆ K for all j.

Applying the condition in Lemma 4.3, we obtain J1, . . . , Jn ∈ I with Jj ⊆ Ij such that x̃j does not 

belong to the image of

(R/Jj)K → (R/Ij)K .

We construct a module E from F by substituting R/Jj for R/Ij . The section P → F lifts along the canonical 

epimorphism E → F , and we obtain a commutative diagram

PK

EK

FK .

However, x̃, the image of x along PK → FK , does not belong to the image of EK → FK . This is a 

contradiction.

(b) We fix I ∈ I until the end of the proof. We claim that the product of the morphisms

R/J → R/I

where J ∈ I with J ⊆ I, is not an epimorphism. For each K ∈ I with K ⊆ I, the condition in Lemma 4.3

implies that there is J ∈ I with J ⊆ I such that the image of

(R/J)K → (R/I)K

does not contain 1 ∈ R/I = (R/I)K . The product 
∏

J(R/J) in g
RMod is the direct limit of (

∏f
J(R/J))K , 

where 
∏f

denotes the product in RMod and K runs over all K ∈ I with K ⊆ I. Thus the all-1 element of ∏
J (R/I) does not belong to the image of 

∏
J(R/J). �
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