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0. Introduction

The starting point for the present note is the pervasive phenomenon whereby abelian categories encoun-
tered “in nature”, housing various (co)homology theories, tend to have enough injectives but much more
rarely have enough projectives.

This is familiar, for instance, for various flavors of sheaves:

o According to [5, Exercise I11.6.2] the categories of modules, coherent modules and quasi-coherent modules
on projective lines over infinite fields (with the Zariski topology) do not have enough projectives.

o For a more general class of schemes, it is shown in [6, Theorem 1.1] that the category of quasi-coherent
sheaves on a non-affine divisorial noetherian scheme (e.g. a non-affine quasi-projective schemes over a
commutative noetherian ring) does not have enough projectives.

e On aslightly different note, locally connected Hausdorff spaces with no isolated points admit no non-zero
projective sheaves of abelian groups [2, p. 30, Exercise 4].

Here, we examine the category of discrete modules over a profinite group G, used in defining the coho-
mology groups H' (G, —) (see, e.g., [11, §2] for background and Section 1 below for definitions).
Our main results show that if G is infinite then the category of discrete modules

o admits no non-zero projective object (Theorem 2.1) and
« does not satisfy Grothendieck’s Ab4* condition (Proposition 2.2), that is, products are not exact.

Either of the two properties implies that the category does not have enough projectives.

We also consider the analogous question over fields (rather than the integers), resulting in a character-
ization of those profinite groups for which the category of discrete modules has enough (or equivalently,
non-zero) projectives in characteristic p (Theorem 3.1): they are exactly those whose Sylow p-subgroups in
the sense of [11, §1.4] are finite. This will also provide a characterization of projectives in the said category
(Corollary 3.3).

A natural question is whether the techniques used in the proofs of the main results can be applied
to more general Grothendieck categories. The discrete modules over a profinite group form a prelocalizing
subcategory of the category of all modules, so one reasonable attempt is to generalize them to a prelocalizing
subcategory of the category of modules over a ring. It is known that such subcategories bijectively correspond
to linear topologies of the ring (see [12, Proposition VI.4.2]). We will express a necessary condition in terms of
a linear topology, and prove generalized results for those prelocalizing subcategories satisfying the condition
(Theorem 4.2).
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1. Preliminaries

Let G be a profinite group. We denote by (N, <) the poset of open normal subgroups of G, ordered by
inclusion.
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Definition 1.1. A discrete G-module is a (left) G-module M with the property that the action G x M — M
is continuous when M is equipped with the discrete topology.

We write éMod for the category of discrete G-modules, ¢ Mod for the category of all G-modules (without
topology). Note that ¢Mod is canonically equivalent to the category of left modules over the group algebra
Z[G]. 4

Remark 1.2. Discrete modules can be characterized as those G-modules M with the property that

M = lim M" (1)
HeN

where M# is the submodule of M consisting of those elements x that are fixed by every element of H (see

[13, Proposition 6.1.2]). The direct limit can be replaced by a sum or a union.

We assume some background on Grothendieck categories [8, §2.8, Note 3|: abelian, cocomplete categories
with exact filtered colimits and a generator.

Since dGMod is a full subcategory of the Grothendieck category ¢Mod closed under subobjects, quotient
objects, and coproducts (i.e. a prelocalizing subcategory [8, §4.8, following Theorem 8.8], or weakly closed,
or a hereditary pretorsion class), it too is Grothendieck: in general, if C" is a prelocalizing subcategory of a
Grothendieck category C, then

 the exact sequences and colimits in C’ coincide with those in C by construction, so C’ is abelian, cocom-
plete, and Ab5 (filtered colimits are exact; [8, p. 61]);

o and additionally, if P € C is a generator, then the coproduct of the quotient objects of P that belong
to C’ is a generator for C’.

The forgetful functor éMod — ¢Mod has a right adjoint that sends a G-module M to its largest discrete
submodule lim ,, M*.

The adjoint property tells us how to compute inverse limits in %Mod. Let {M;};cr be an inverse system
in £Mod and denote by lim, M; the inverse limit taken in 4 Mod and by llnf M, the one taken in ¢Mod
(which is simply the limit of corresponding abelian groups; the ‘f’ superscript stands for “full”). Then

H

lim M; = li @MMO,

— — —1
i HeN

which is the largest discrete submodule of linf M;. &

We will refer briefly to coalgebras and comodules over fields, for which our background reference is [3,
Chapters 1 and 2].

For a coalgebra C over a field, write M for the category of right C-comodules. According to [3, Corol-
lary 2.4.21], M% has enough projectives (that is, every object admits an epimorphism from a projective
object) if and only if every finite-dimensional C-comodule has a (finite-dimensional again) projective cover.
Furthermore, according to the proof of [3, Corollary 2.4.22] every projective object in MY is a direct sum
of finite-dimensional projective objects. These observations will be of use later.

2. Main results

Theorem 2.1. Let G be a profinite group. The category ?;Mod has non-zero projective objects if and only if
G is finite.
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Proof. One implication is obvious, so we assume that G is an infinite profinite group and that P is a non-
zero projective object in &Mod. P can be expressed as a union of its submodules P as in (1), and hence
we have a surjection

@PH—>P.

HeN

In turn, every P is surjected upon by some free G/ H-module Fy, which is a direct sum of copies of
Z|G/H], and we have an epimorphism

Fi=) Fu—P. (2)
HeN
Now let Hy > H; > --- be a strictly descending sequence of groups in N (one exists, since G is

assumed infinite). For each non-negative integer ¢ we construct a surjection E; — F defined by substituting
Z[|G/(H N H;)] for every Z|G/H] summand of F and surjecting

Z[G/(H N Hy)] - Z[G/H]

naturally.
We now claim that the projectivity of P entails a factorization

lim B, — F
PQ_Q P (3)

id

where the limit is taken in the category éMod.

To see this, note first that P splits off as a summand of F'. Since Fy surjects onto the latter, we further
obtain an direct summand embedding P — FEy; now repeat the procedure to lift this to a map P — E;
fitting into a triangle

P

<E_1>

Ey

Continuing this recursively will produce (3).

The contradiction will follow if we show that the limit lim; £; in (3) vanishes. As explained in Remark 1.2,
the limit in %Mod is obtained as the largest discrete submodule of the limit @1{ FE; in ¢Mod. We thus have
to argue that @1{ E; contains no non-zero elements fixed by an open normal subgroup H < G. To see this,
recall that the connecting morphisms

Ei+1 — Ei, i €N
whose filtered limit we are taking are coproducts of copies of the standard epimorphisms
Z|G/(HNH;y1)] = Z[G/(H N H;)]

for the summands Z[G/H] of F'. To illustrate the claimed vanishing of the limit without irrelevant notational
overhead we will consider the simpler limit

lim! Z[G/(H N H;)]
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along the canonical surjections.
For every K € N the image of the K-invariants through

ZIG/(H N H))| — Z[G/(HNH)], j>i

consists of [KNHNH,; : KNHNH;]-multiples in the latter free abelian group. Indeed, if we write N; = HNH;
and N; = H N Hj, then an element of Z[G/N;]¥ is of the form

Z NgN; - gN;

gN;€G/N;

such that nyn, = ng N, whenever gk N; = g’ KN;. In particular, the elements of G/Nj in the same coset of
(K N N;)N; have the same coefficient, and they are sent to a single element of G/N; whose coefficient is a
multiple of

Since [G : KNH] < oo, the sequence { K NH NH;}52, is strictly descending. Thus the index [KNHNH; :
K N H N Hj| grows indefinitely with j for fixed ¢. It follows that the image of

. f K
(1imf Z(G/ (1 0 Hy)))
in every Z|G/(H N H;)] vanishes. In conclusion, as claimed, the maximal discrete submodule

&Mod 5> ImZ[|G/(H N H,)] € lim} Z[G/(H N H;)] € ¢Mod

Am
is trivial. O

Theorem 2.1 shows in particular that for infinite G the category of discrete G-modules fails to have
enough projective modules. That failure is in fact even stronger. Let C be a non-zero abelian category.
Then, having enough projectives implies that

o C has non-zero projectives (obviously) and

o assuming that C is Ab3* (i.e. has arbitrary products) it is also Ab4* ([8, §2.8, discussion preceding
Proposition 8.3]), meaning it has exact products, or equivalently, products preserve epimorphisms.
To see the latter, consider a product

Hfi:X::HXZ-—>HYi::Y

of epimorphisms and consider an epimorphism 7 : P — Y from a projective (possible, by the enough-
projectives assumption), with components 7; : P — Y;. The projectivity of P and the fact that each
individual f; is epic implies that 7; factors through f; and hence 7 factors through [], fi:

T = (H fz> o (some morphism P — X); (4)

since 7 is epic, so is its left-hand factor [[, fi in (4).
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The next result proves that the second condition is also violated in the present context:
Proposition 2.2. Let G be a profinite group. The category EMod satisfies Abd* if and only if G is finite.

Proof. Again, one implication is obvious, so we assume that G is infinite. We will show that the product of
the augmentation morphisms

Z[G/H) — Z|G/G] = Z (5)

for H € \ is not epic. Indeed, for fixed K € N the image of Z[G/H]¥X through (5) is contained in the ideal
generated by [K : H] whenever H < K. It follows that the all-1 element of the product []; . Z is not
contained in the image of [[ .\ Z[G/H], proving the claim. O

For future reference, we record the following variant of Theorem 2.1.

Theorem 2.3. Let G be a profinite group. The category CétMod of discrete torsion G-modules has no non-zero
projective objects.

Proof. We first reduce the problem to trivial G: there is a forgetful functor
forget : &"Mod — *Ab
to the category of torsion abelian groups, which has an exact right adjoint
LAb 3 M s Map(G, M) € &"Mod.

Here, the right-hand side denotes the group of continuous maps G — M (with M discrete), with left G-action
given by right-hand multiplication on the domain; see [9, §6.10]. Being left adjoint to an exact functor, the
forgetful functor preserves projectivity. In short: a non-zero projective object of our target category é:tMod
must be non-zero projective in Ab. The conclusion now follows from Lemma 2.4 below. O

Lemma 2.4. The category 'Ab of torsion abelian groups has no non-zero projective objects.

Proof. Although this is known to experts, we include a proof for convenience of the reader.
Let A be a non-zero torsion abelian group. It then fits into an extension

0->Z/p—A—Q—0,

for some prime p, to which we can then apply the long exact cohomology sequence attached to the functor
Hom(—,Z/p). Because Ext? vanishes over the integers, the terminating portion of that long exact sequence
reads

.- = Ext’(A, Z/p) — Ext'(Z /p, Z./p) — 0.

Since the middle term is Z /p on which Ext'(A, Z/p) surjects, the latter cannot vanish. But this means that
there are non-split extensions

0—->Z/p—E—-A—-0

in the category of abelian groups; since E is by necessity torsion, this shows that A cannot be projective in
‘Ab. O
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Profinite (as opposed to discrete) G-modules have also received some attention in the literature (e.g. [9,
Chapter 5]). As the name suggests, these are profinite abelian groups equipped with continuous G-actions
[9, §5.3]. They form a category %, Mod (with G-equivariant continuous maps) which is almost opposite to
‘éMod: It follows from [9, Theorem 2.9.6, discussion on p. 165, and Proposition 5.3.6] that the Pontryagin
duality functor

M +s Hom(M,R/Z) (6)

(continuous morphisms, equipped with the compact-open topology) implements a contravariant equivalence
(i.e. a duality) between £,Mod and the category of torsion discrete G-modules. This is indeed part of a bigger
picture: the category daMod itself is contravariantly equivalent to the category ¢Mod of compact Hausdorff
G-modules by (6) (see [7, p. 50, Theorem 12 and §4, Theorem] for abelian groups and [4, Lemma 2] to
extend it to G-modules). Therefore applying (6) to Theorem 2.1 we obtain the following corollary:

Corollary 2.5. Let G' be a profinite group. The category &Mod has non-zero injective objects if and only if
G is finite.

There is also a profinite-module counterpart:
Proposition 2.6. Let G be a profinite group. The category g, Mod has no non-zero injective objects.

Proof. As noted, (6) is a duality between £,Mod and the category étMod of Theorem 2.3. That result then
implies the desired conclusion. O

3. Ground fields

The situation is rather different when working over a field k in place of Z. First, recall the notion of
supernatural number from [11, §1.3]: simply a formal product of the form

H P, ny € L>oU{o0}.

primes p

A profinite group G has an order |G|, well-defined as a supernatural number as the least common multiple
of all orders G/H for H € N. Similarly, we can define the index [G : H] as a supernatural number for every
closed subgroup H < (. There is also a concept of Sylow p-subgroup of G, i.e. a closed subgroup whose
supernatural order is of the form p™ (meaning it is pro-p, i.e. a filtered limit of finite p-groups) and whose
index in G does not have p as a factor (or is coprime to p, in short). We refer to [11, Chapter 1] for details.

Now let k be a ground field of characteristic p (a prime or zero) and write &Vect for the category of
discrete G-modules over k (note that we are suppressing k from the notation, for brevity). The main result
of the present section is a characterization of those G for which this category admits non-zero projectives.

Theorem 3.1. For a profinite group G and a field k of characteristic p the following conditions are equivalent:
(a) The category dGVect has a non-zero projective object.
(b) The category éVect has enough projective objects.

(c) The characteristic p of k has finite exponent in the supernatural number |G|.

Remark 3.2. The condition in (c) is by convention assumed to hold vacuously when the characteristic is
zero. ¢
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Before settling into the proof proper we make the preliminary observation that the category &Vect is
nothing but the category M¢ of comodules over the k-coalgebra C' = k(G) of continuous k-valued functions
on G (where k is equipped with the discrete topology).

Proof of Theorem 3.1. That (a) follows from (b) is obvious, so we focus on proving (c) = (b) and (a) =

(c).

(a) = (c). As noted at the end of Section 1, the existence of a non-zero projective entails the existence
of a finite-dimensional one (P, say). P will then be projective over some group algebra k[G/H]| for H € N,
and we can furthermore assume that it is a summand of k[G/H] (because it can be written as a direct sum
of indecomposable projectives, which are summands of k[G/H]).

Now, if (c) were false then we could find a subgroup K € N of H with p dividing [H : K|. Now consider
the projection

k|G /K] — k|G/H] — P, (7)

Splitting it would provide a summand = P of k[G/K] acted upon trivially by H/K. But then, since p
divides the order of this latter group, the image of this summand through (7) must vanish. This gives a
contradiction and proves the desired implication.

(c) = (b). By [3, Corollary 2.4.21] it suffices to show that every finite-dimensional discrete module M
admits a surjection by a projective. We can regard M as a module over G/H for some H € N, and suppose
H is small enough to ensure that |G/H| and |G| have the same p-exponent.

Naturally, M is a quotient of a finite-dimensional projective P over G/H. It remains to argue that P is
still projective over GG, which will be the goal for the remainder of the proof.

Since P is G/H-projective, it must be projective over a Sylow p-subgroup S < G/H. Our choice of H
(such that [G : H] is divisible by the same exact power of p as |G|) means that there is a Sylow p-subgroup
S of G mapping isomorphically over S. We thus know that the restriction of P to S is projective.

Projectivity over G means showing that all higher cohomology

Ext'(P,—) = H'(G,—® P*), i > 1
in the category & Vect vanishes. We already know that it vanishes upon restricting via
res : H'(G,— ® P*) — H'(S,— ® P*),

and the conclusion follows from the fact that this restriction morphism is one-to-one: this is more or less
[11, §2.4, Corollary to Proposition 9]. Although the latter result refers to cohomology over Z, the techniques
apply essentially verbatim over k.

The above reasoning applies unequivocally in positive characteristic, but requires interpretation in char-
acteristic zero. In that case the p referred to throughout will be 0, Sylow subgroups will be trivial, etc.
The validity of the proof will not be affected if these obvious modifications are made, using the fact that in
characteristic zero the higher cohomology of a profinite group is

HY(G,—) = lim H(G/H,—) =lim0 = 0,

— —
HeN

i.e. the coalgebra k(G) is cosemisimple. O
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We note in passing that as a byproduct of the proof of Theorem 3.1 we obtain the following characteri-
zation of projectives in CCi;Vectz

Corollary 3.3. Let G be a profinite group and k a field of characteristic p. The following statements hold:

(a) For every open normal subgroup H with p [|H|, a G/H-module is projective if and only if it is projective
over G.

(b) The projective objects in dGVect are direct sums of finite-dimensional, indecomposable projectives over
G/H for H ranging over the open normal subgroups of G with p } |H]|.

Remark 3.4. If the characteristic is zero then the class of subgroups H in Corollary 3.3 is unrestricted, i.e.
we range over all of N'. ¢

Part (a) of Corollary 3.3 has the following partial converse.

Lemma 3.5. Let G be a profinite group, k a field of characteristic p and H < G a closed normal subgroup
with p | |H|. Then, non-zero G/H-modules cannot be projective over G.

Proof. Let P be a hypothetical non-zero G/H-module projective over G and let T < H be a (necessarily
non-trivial) Sylow p-subgroup.
The restriction functor

res : &, Vect — 4 Vect (8)
is left adjoint to the exact functor
4Vect 3 M + Map,(G, M) € &Vect,

where

e Map; denotes continuous T-equivariant maps G — M with M equipped with the discrete topology;
o T-equivariant means f(tg) =tf(g) for all t € T and g € G;
o the G-action is given by g> f = f(e g);

see [9, §6.10]. Since it has an exact right adjoint, it follows that (8) preserves projectivity. In particular, P
will be projective over T'. Since T is pro-p, Corollary 3.3 (b) shows that its projective modules are direct
sums of finite-dimensional indecomposable projectives over finite non-trivial quotients 7'/S.

The only non-zero finite-dimensional indecomposable projective T'/S-module in characteristic p is the
group algebra k[T'/S] [10, §15.7] so certainly, T//S (and hence T') cannot act trivially on such a module.
This contradicts the assumption that H (and hence T' < H) does act trivially, finishing the proof of the
lemma. 0O

We now have the following alternate take on Theorem 2.1:

Proof of Theorem 2.1 (alternative). We begin as before, assuming that G is an infinite profinite group and
P a non-zero projective object in $Mod. We then have the epimorphism (2) onto P from a direct sum
F=@®pycpn P of free G/H-modules.

By projectivity the epimorphism P splits, realizing P as a summand of F. In particular, there is some
finite multiset of groups H; € N so that
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{0} # (@ Z[G/Hi]> NPCF. (9)
i
Now apply the scalar-extension functor
E, :=F,®z — : &Mod — &Vect

for a finite field F,, with p elements, with p chosen judiciously (more on this below). The functor preserves
projectivity (because it is left adjoint to the exact scalar restriction functor), so E,(P) is projective (and
clearly non-zero, since it was obtained by scalar-extending a free abelian group).

We now have a direct sum decomposition

E,(P) @« 2 E,(F) = P F,[G/H]®. (10)
HeN

The summands on the right-most side can be further decomposed as finite direct sums of modules with
local endomorphism rings (because they are modules over finite group algebras over F,).
(9) implies its counterpart over F:

{0} # (@Fp[G/Hi]> N(P/pP) C F/pF. (11)

To see this, consider the diagram

/S\
SNP F, (12)
\}P/

where S is the parenthetic direct sum from (9). All arrows in the diagram are inclusions of free abelian
groups. Furthermore, the two right-hand arrows split (i.e. realize S < F and P < F' as direct summands).
In particular F//S and F/P are free abelian, and hence so is

F/(SNP)<F/SxF/P.
But this means that its subgroups

S/SNPand P/SNP

are again free abelian, and hence the left-hand maps in (12) also split. But then all morphisms depicted
n (12), being split inclusions of non-trivial free abelian groups, will remain inclusions of non-zero vector
spaces upon extending scalars to F,,. Or in other words, we have (11).

The proof of [1, Theorem 26.5] applied to M = F/pF, K = P/pP, and N = @, F,[G/H;] shows that
P/pP has a non-zero summand H isomorphic to a summand of N. Thus [1, Corollary 26.6] implies that
P/pP has a summand, say S, isomorphic to an indecomposable summand of [F,,[G/H;]| for one of the finitely
many ¢ in (9). Note that S is projective in % Vect, being a summand of the projective object P/pP.

Now we can specialize p: choose it so as to ensure that it divides the (supernatural) order of H =", H;
(this is possible, since the latter group has finite index in the infinite profinite group G). The projectivity
of S over G contradicts Lemma 3.5, finishing the proof. O
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Here too (as in Section 2) there is a dual version of the discussion, concerning profinite modules; since
in positive characteristic one need not worry about torsion, Corollary 2.5 and Proposition 2.6 will collapse
into a single result.

A topological G-module over a topological field k is a topological abelian group that has continuous G-
action and continuous k-action that commute with each other (cf. [9, Proposition 5.3.6 (d)]). The discussion
above easily extends to show that over a finite field k& (with the discrete topology) the selfsame functor (6)
constitutes a duality between ‘éVect and the category 7. Vect of profinite G-modules over k.

To conclude, applying (6) to Theorem 3.1 produces

Corollary 3.6. For a profinite group G and a finite field k of characteristic p the following conditions are
equivalent:

(a) The category ¥, Vect has a non-zero injective object.
(b) The category ¢,Vect has enough injective objects.
(¢) The characteristic p of k has finite exponent in the supernatural number |G|.

4. Ring-theoretic interpretation

Theorem 2.1 and Proposition 2.2 can be shown in a more general setting of a ring with a filter of ideals.

Let R be a ring. We denote by gpMod the category of (left) R-modules.

Let Z be a downward filtered set of (two-sided) ideals of R, that is, Z is a non-empty set of ideals and for
any Iy, Iy € Z, there exists J € 7 such that J C I; and J C I. For ease of comparison with the previous
section, we use the notation

9Mod := {M € gMod | M = h_H)lM[}
Iel

where
Mp:={xe M| Iz=0}.

The forgetful functor $,Mod — rMod admits a right adjoint given by M — lim, M;. Products in %Mod are
described in a similar way to Remark 1.2.

In view of [12, Proposition V1.4.2], %,Mod is the prelocalizing subcategory of gMod corresponding to a left
linear topology of R that admits a fundamental system of neighborhoods of 0 € R consisting of two-sided
ideals.

Remark 4.1. For a profinite group G, we take the group algebra R := Z[G] without topology. The poset A/
of open normal subgroups of GG defines the downward filtered set of ideals

I:{IH|H€N}

where I is the kernel of the canonical surjection Z[G] — Z[G/H]. For each M € ¢sMod = gpMod, the largest
submodule of M belonging to g,yMod is M as well as My,,. Thus M = M;,,. By the characterization
(1) in Remark 1.2, we have ,Mod = %,Mod. ¢

For two ideals I, J C R, define the ideal
(J:I):={reR|IrCJ}.

Note that (R/J); = (J :I)/J.
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Theorem 4.2. Let R be a ring and Z a downward filtered set of ideals of R. Suppose that for each I € T,

(W D+ID)=1I (13)

J

where J runs over all ideals in T with J C I. Then the following hold:

(a) %Mod has no non-zero projective objects.

(b) $:Mod does not satisfy Ab4*.

The proof of these are parallel to the proofs of Theorem 2.1 and Proposition 2.2 but needs some modifi-
cations. We first rephrase the condition (13).

Lemma 4.3. The hypothesis of Theorem 4.2 is equivalent to the following condition: For any I, K € T with
ICK and0# x € (R/I)k, there exists J € T with J C I such that x does not belong to the image of the
canonical morphism

(R/J)k — (R/1)k.
Proof. For ideals J C I C K, the commutative diagram

(B/J)xk — (R/D)k

l l

(R/J)1 —— (R/I)1

shows that any element of (R/I); not in the image of (R/J)r — (R/I)r does not belong to the image of
(R/J)x — (R/I)k. Thus the condition is equivalent to that with K = I.

Since (R/J); = (J : I)/J and (R/I); = R/I, the image of (R/J)r — (R/I)ris ((J : I)+1I)/I. Thus the
condition is equivalent to

n<J:I)+I:O,

1
which is equivalent to (13). O

Remark 4.4. The process of proving the vanishing of the limit lim; E; in Theorem 2.1 shows in particular that
for any N;, N;, K € N with N; < N;, the image of Z[G/N;|* — Z[G/N;]¥ consists of [K N N; : K N N;]-
multiples and the index grows indefinitely when N; gets smaller. With the terminology of Remark 4.1,
this implies that for every 0 # = € R/Iy;,, there exists some j such that z is not contained in the image
of (R/IN;)1, — (R/IN,)1;. Thus the condition in Lemma 4.3 is satisfied and hence the hypothesis of
Theorem 4.2 holds. ¢

Proof of Theorem 4.2. (a) Assume that %,Mod has a non-zero projective object P. Let 0 # = € P and take
K € T such that « € Pk. Similarly to the proof of Theorem 2.1, there is an epimorphism F' = @, ., F'(I) —
P where F(I) is a free R/I-module. We can assume that F(I) # 0 only if I C K.

Since P is projective, the epimorphism F' — P splits. We fix a section P — F and let £ € F be the
image of « by the section. There are finitely many summands R/Iy,..., R/I, of F such that

T=) ;€ éR/Ij (14)
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where 0 # z; € R/I;. Since F(I;) # 0, we have I; C K for all j.
Applying the condition in Lemma 4.3, we obtain Ji,...,J, € T with J; C I; such that Z; does not
belong to the image of

(R/Jj)k = (R/1j)K.

We construct a module E from F' by substituting R/J; for R/I;. The section P — F'lifts along the canonical
epimorphism E — F', and we obtain a commutative diagram

/EK\

Pe— 5 Fk.

However, =, the image of x along Px — Fk, does not belong to the image of Fx — Fg. This is a
contradiction.
(b) We fix I € Z until the end of the proof. We claim that the product of the morphisms

R/J — R/I

where J € Z with J C I, is not an epimorphism. For each K € 7 with K C I, the condition in Lemma 4.3
implies that there is J € Z with J C I such that the image of

(R/ )k — (R/I)k

does not contain 1 € R/I = (R/I)k. The product [];(R/J) in $Mod is the direct limit of (Hf](R/J))K,
where Hf denotes the product in gkMod and K runs over all K € 7 with K C I. Thus the all-1 element of
[I,(R/I) does not belong to the image of [],(R/J). O
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