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Flat Families of Point Schemes for Connected Graded

Algebras

Alex Chirvasitu & Ryo Kanda

Abstract. We study truncated point schemes of connected graded

algebras as families over the parameter space of varying relations for

the algebras, proving that the families are flat over the open dense

locus where the point schemes achieve the expected (i.e., minimal)

dimension.
When the truncated point scheme is zero-dimensional, we obtain

its number of points counted with multiplicity via a Chow ring com-

putation. This latter application in particular confirms a conjecture of

Brazfield that a generic two-generator two-relation algebra has seven-

teen truncated point modules of length six.

Introduction

The context for the present note is that of noncommutative projective algebraic

geometry, in the sense of studying graded algebras and modules as (analogues of)

homogeneous coordinate rings, as exemplified, for instance, by the seminal paper

[AS87]. The follow-up work of [ATvdB90; ATvdB91] introduced novel methods

of handling the difficulties inherent in working with noncommutative rings by

leveraging classical (as opposed to noncommutative) algebraic geometry to probe

the nature of the “noncommutative projective schemes” embodied by the rings in

question. We recall the relevant setup briefly.

To fix ideas and notation, consider an algebraically closed field k, an r-

dimensional vector space V whose dual is spanned by basis elements xi , 1 ≤ i ≤

r , and s multilinear (of degree at least two) forms fj on V . The typical algebra

we consider is of the form

A =
T (V ∗)

I
=

k〈x1, . . . , xr 〉

(f1, . . . , fs)

(regarding the degree-one generators as elements of the dual V ∗ is simply a matter

of convention).

A point module of A is a graded A-module that is cyclic and has Hilbert series

(1 − t)−1. If A is commutative, then these correspond to the closed points of the

projective scheme ProjA, justifying the nomenclature. One of the innovations of

[ATvdB90] was introducing a scheme � whose closed points parameterize the

isomorphism classes of point modules over A; this is the so-called point scheme

of A. The scheme � is the inverse limit of the truncated point schemes {�n}n
defined as follows:
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Regard the relations fj with degrees dj as elements of the respective tensor

powers (V ∗)⊗dj . For every n ≥ 2, we define

�n ⊆ P(V )n ∼= (Pr−1)n

to be the zero scheme of the degree-n component In of the ideal I generated by

the fj .

The closed points of �n parameterize the isomorphism classes of truncated

point modules of length n + 1, defined as cyclic graded A-modules with Hilbert

series 1 + t + t2 + · · · + tn. If the number n is larger than or equal to the highest

degree of the defining relations f1, . . . , fs , then �n determines all truncated point

schemes with indices larger than n and hence the point scheme �.

Truncated point schemes play an important role in the study of three-

dimensional AS-regular algebras in [ATvdB90]. A three-dimensional AS-regular

algebra A is either of quadratic or cubic type. If A is of quadratic type, then it

has three (degree-one) generators and three degree-two relations, as a polynomial

ring with three variables does. The inverse system of its truncated point schemes

satisfies · · · ∼−→ �3
∼−→ �2, and hence the point scheme is canonically isomorphic

to �2. Moreover, via the first (or the second) projection π of �2 ⊆ P
2 × P

2 to P
2,

�2 is realized as a graph of an automorphism σ of the scheme-theoretic image

E := π(�2) in P
2. The image E is either a degree-3 divisor or the entire P2. If A is

of cubic type, then it has two generators and two degree-3 relations. It has similar

properties, but the truncated point schemes are stable from �3, and it is realized as

a graph of an automorphism σ of a bidegree (2,2)-divisor or the entire P
1 × P

1.

A crucial observation made in [ATvdB90] was that every three-dimensional AS-

regular algebra can be recovered, up to isomorphism, from a triple consisting of

its point scheme � (or E), an automorphism of � (which is the above σ ), and a

line bundle on �.

We note in passing that in this regard three-dimensional AS-regular algebras

behave very differently from four(or higher)-dimensional ones. As observed in

[van88] (see also [VvRW98]), generic graded Clifford algebras of global dimen-

sion 4, which are 4-generator 6-relation quadratic AS-regular algebras, have 20

point modules. Specific examples of four-dimensional AS-regular algebras with

finitely many points appear in numerous sources (e.g., [van88; VvRW98; SV99;

SV06; SV07; CS17; CPS19]).

In the present note, we study the behavior of the truncated point schemes �n

upon varying the set of relations {fj }j or the relation space

span{fj }j (0.1)

while keeping the degrees dj of the fj fixed. In other words, we regard {fj }j as

a point in the relevant product

G =

s
∏

j=1

P((V ∗)⊗dj ) (0.2)

of projective spaces and study �n as fibers of a family over the latter scheme. For

a comparison between G and the space parameterizing (0.1), see Remark 1.8.
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Theorem 1.3 shows that under appropriate bounds on the degrees dj , the locus

U ⊆ G over which �n has the expected minimal dimension is open and dense

in G. Moreover, according to Theorem 1.6, the resulting family is flat over U .

This implies that a suite of algebro-geometric invariants we might compute for

�n (e.g., the arithmetic genus) stays constant so long as the dimension of �n is

that provided by the naive count.

When �n is zero-dimensional, a simple computation in the Chow ring of P(V )n

returns the number of points of �n counted with multiplicity. We apply this pro-

cedure and our main results to algebras of the same “shape” (i.e., having the same

number of generators and degrees of relations) as the four-dimensional Artin–

Schelter regular algebras listed in [L+07, Proposition 1.4]. There are three types

of such algebras, and in each case, we compute the number of points (counted

with multiplicity) of �n for the smallest number n such that dim(�n) = 0. This

includes via Proposition 1.7 a confirmation in Proposition 2.5 of Brazfield’s con-

jecture:

Conjecture 0.1 ([Bra99, Conjecture IV.8.1]). Let A be a connected graded al-

gebra with two degree-one generators. If the defining ideal of A is generated by a

generic cubic and a generic quartic relation, then �5 consists of exactly seventeen

distinct points.

1. Main Results

Fix positive integers r and s. We consider the following family of algebras asso-

ciated with an s-tuple:

Definition 1.1. For a tuple

d = (d1 ≤ · · · ≤ ds)

with dj ≥ 2, an algebra of type (r,d) is a connected graded algebra with r degree-

one generators and s relations of degrees d1, . . . , ds .

We retain the notations in Introduction and focus on �n for n ≥ ds , henceforth

referred to as the stable range for n. Note that for stable n, the scheme �n is

defined as the joint zero locus in P(V )n of

s
∑

j=1

(n − dj + 1) (1.1)

multilinear equations whose respective degrees are indicated by the summands of

(1.1), n − dj + 1 equations of degree dj .

Definition 1.2. Given r , d, and n as above, the defect df(r,d, n) attached to this

data is the sum (1.1).

Recall that we denote by G the space (0.2) of relations for type-(r,d) algebras.

It is, in other words, the variety of tuples of homogeneous polynomials fj of
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prescribed degrees dj up to scaling. Now define the universal truncated point

scheme to be the closed subscheme Xn of G× P(V )n given by

Xn = {((fj )j , (ai)i) ∈G× P(V )n | fj (ai+1, . . . , ai+dj
) = 0

for 1 ≤ j ≤ s and 0 ≤ i ≤ n − dj }.

The fiber (Xn)R at R ∈ G along the projection π : Xn → G is the truncated point

scheme �n attached to the type-(r,d) algebra T (V ∗)/(R).

Our main results are as follows. First, we have the following observation to the

effect that �n has “expected dimension” generically.

Theorem 1.3. Fix r , d, and n, and suppose the associated defect df is ≤ n×

(r − 1).

(1) For each R ∈ G, �n = (Xn)R is nonempty, and all components have dimen-

sion ≥ n(r − 1) − df.

(2) The locus U of R ∈G where all components of �n have dimension n(r −1)−

df is open and dense.

Proof. We prove the two claims separately.

(1) As observed above, �n is by definition the scheme-theoretic intersection of

df hypersurfaces in the n(r − 1)-dimensional scheme P(V )n, so the lower bound

n(r −1)−df for the dimensions of the components is a consequence, for instance,

of [Har77, Proposition I.7.1]: that result is stated for subschemes of affine space,

but our scheme P(V )n admits a cover by open patches isomorphic to A
n.

The nonemptiness follows from the following computation in the Chow ring

A∗ = A∗(P(V )n). According to the Künneth theorem for Chow rings (e.g.,

[Tot14, Propositions 1 and 2]) A∗ is isomorphic to the nth tensor power of

A∗(P(V )), which is simply Z[ε]/(εr ) for the class ε of a hyperplane:

A∗ ∼=

n
⊗

i=1

Z[εi]/(ε
r
i ).

Now consider the multilinearizations fi,j of fj on P(V )n with 0 ≤ i ≤ n−dj ; �n

is the intersection of the respective zero loci Vi,j of fi,j , represented in the Chow

ring by sums of the form

εi+1 + εi+2 + · · · + εi+dj
. (1.2)

The product of elements (1.2) in the Chow ring will be shown to be nonzero in

Lemma 1.4. In turn, this then implies that the intersection of the schemes Vi,j

represented by (1.2) is nonempty.

To verify this last point, recall, for example, from [Ful98, §8.1] that the product

s
∏

j=1

n−dj
∏

i=0

[Vi,j ]
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can be obtained as the pushforward through

s
⋂

j=1

n−dj
⋂

i=0

Vi,j → P(V )n

of an element in the Chow ring of the left-hand intersection (see especially [Ful98,

Example 8.1.9]). If this intersection were trivial, then the element in question

would vanish, and hence the conclusion.

(2) Since G is irreducible, it suffices to prove that U is open and nonempty.

We relegate the nonemptiness to Lemma 1.5.

By [GW10, Corollary 14.113] the locus of R ∈ G where �n = (Xn)R has di-

mension at most n(r −1)−df is open. It follows from (1) that this locus is U . �

Lemma 1.4. In the context of Theorem 1.3,

s
∏

j=1

(n−dj
∏

i=0

(εi+1 + · · · + εi+dj
)

)

is a nonzero element of the ring
⊗n

i=1 Z[εi]/(ε
r
i ).

Proof. We will prove the statement for all d = (d1, . . . , ds) and n with the milder

restriction 1 ≤ dj ≤ n for all j and the same assumption df ≤ n(r −1). As before,

we may assume that d1 ≤ · · · ≤ ds without loss of generality.

If we append ds+1 = n at the end of d, then the defect is increased by one, and

the element in question is multiplied by ε1 + · · · + εn. By applying this operation

as many times as necessary we can assume df = n(r − 1). Then the inequality

r − 1 ≤ s follows from

n(r − 1) =

s
∑

j=1

(n − dj + 1) ≤

s
∑

j=1

n = ns.

The number of j with dj = 1 is at most r − 1. Indeed, if 1 = d1 = · · · = dr−1,

then

n(r − 1) =

s
∑

j=1

(n − dj + 1) = n(r − 1) +

s
∑

j=r

(n − dj + 1),

and n − dj + 1 ≥ 1. Hence s = r − 1 in this case.

Now we complete the proof by induction on n. If n = 1, then d1 = · · · = ds =

1, and hence s = r − 1. The element in question is εr−1
1 �= 0.

Let n ≥ 2. For two elements P1,P2 ∈
⊗n

i=1 Z[εi]/(ε
r
i ) = Z[ε1, . . . , εn]/

(εr
1, . . . , ε

r
n), we write P1 ≤ P2 if P2 − P1 is represented by a polynomial whose

coefficients are all nonnegative. Then we have

∏

j≤r−1

(n−dj
∏

i=0

(εi+1 + · · · + εi+dj
)

)

≥
∏

j≤r−1

(

ε1

n−dj
∏

i=1

(εi+1 + · · · + εi+dj
)

)

and
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∏

j≥r

(n−dj
∏

i=0

(εi+1 + · · · + εi+dj
)

)

≥
∏

j≥r

(n−dj
∏

i=0

(εi+2 + · · · + εi+dj
)

)

.

Therefore

s
∏

j=1

(n−dj
∏

i=0

(εi+1 + · · · + εi+dj
)

)

≥ εr−1
1

s
∏

j=1

(

(n−1)−d ′
j

∏

i=0

(εi+2 + · · · + εi+1+d ′
j
)

)

, (1.3)

where d ′
j = dj for j ≤ r − 1 and d ′

j = dj − 1 for j ≥ r . The right-hand side

of (1.3) is of the form εr−1
1 P , where P is the element in question for the tuple

(d ′
1, . . . , d

′
s) in variables ε2, . . . , εn. Since the defect for this new tuple is

s
∑

j=1

((n − 1) − d ′
j + 1) =

s
∑

j=1

(n − dj + 1) − (r − 1) = (n − 1)(r − 1),

the induction hypothesis implies that P is a nonzero element of Z[ε2, . . . , εn]/

(εr
2, . . . , ε

r
n). Therefore both sides of (1.3) are ≥ 0 and nonzero. This completes

the proof. �

Lemma 1.5. In the context of Theorem 1.3, there are choices of relations fj ,

1 ≤ j ≤ s, for which all components of �n achieve the lower dimension bound of

n(r − 1) − df.

Proof. Simply select the forms fj to be of the form

fj =

dj
∏

i=1

�i,j

for linear forms �i,j on P(V ), chosen so that the zero locus of any r is empty (i.e.,

the zero loci Z(�i,j ) are in general position in P(V )).

The components of the joint zero locus of the multilinearizations of the fj

are obtained by imposing df linear constraints on the n coordinates of points in

P(V )n, and the fact that such components have the requisite dimension n(r −1)−

df follows from the generic choice of �i,j . �

Additionally, the following result ensures that when �n has the expected size,

various invariants such as multidegrees as subschemes of products of projective

spaces, genus, and so on remain constant. The result is analogous to [CS, Theo-

rem 4.4], and its proof is similarly based on [Eis95, Theorem 18.16].

Theorem 1.6. The restriction of the family Xn → G to the open dense subscheme

U ⊆ G from Theorem 1.3 is flat.
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Proof. Denote Xn by X; we indicate restriction of families by subscripts, as in

XU for the restriction of π :X → G to U ⊆ G. We will apply the miracle flatness

theorem [Eis95, Theorem 18.16 (b)] (also called the local criterion for flatness) to

the following setup.

Let x ∈XU . Then the theorem in question applies to the local rings

(S,P ) = (OU,π(x),mπ(x)) → (OX,x,mx) = (A,Q).

For this, we need

• S to be regular; this is the case since S is the local ring of a point on a product

of projective spaces.

• A to be Cohen–Macaulay; this follows from the fact that A is a complete in-

tersection. Indeed, applying [GW10, Proposition 14.107 (1)] to the morphism

XU → U , we have

dimXU ≤ dimU + n(r − 1) − df = dim(G× P(V )n) − df.

Since XU is defined by df relations in the regular scheme G×P(V )n, the local

ring OX,x is a complete intersection.

• The dimension of the fiber A/PA equals the relative dimension dim(A) −

dim(S); this is simply a paraphrase of the fact that we are restricting to the

locus U where π has fibers of the lowest possible expected dimension, that is,

n(r − 1) − df(r,d, n).

This completes the proof. �

The following result will come in handy below, when we examine some examples.

Proposition 1.7. In the setting of Theorem 1.6, suppose furthermore that n(r −

1) = df. Then the set W ⊆ U over which �n is reduced is open and dense.

Proof. The irreducibility of U means that it is sufficient to prove that the set in

question is open and nonempty.

Under the present hypotheses, at each point in U the scheme �n is finite, that

is, consists of several points, some, perhaps, with multiplicity. The flatness result

in Theorem 1.6 ensures that the length |�n| is constant throughout U , counting

multiplicity; we denote this common number by �.

By the functorial description of the Hilbert scheme of points (e.g., [Har66,

p. 15], [Ber12, Definition 2.1], or [TP17, Tag 0B94]), the flat family XU → U

entails a map φ : U → Hilb�
P(V )n .

The Hilbert scheme contains an open subscheme Hilb◦ consisting of �-tuples

of distinct points in P(V )n (see [Ber12, Proposition 2.4] and the remarks follow-

ing it). In conclusion, the openness and nonemptiness of W will follow once we

argue that φ(U) intersects Hilb◦, that is, �n is reduced for at least one point of U .

To verify this last claim, note that �n will indeed be reduced for a generic

choice of linear forms in the construction used in the proof of Lemma 1.5. �
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Remark 1.8. So far we have been using G, the space of sets of relations, as a

parameterizing scheme, but we can also use

H =

m
∏

d=2

Gr(rd , (V ∗)⊗d),

which, instead, parameterizes linear spans of relations. Here m is the maximum

of the degrees of relations, each rd is the number of relations of degree d , and

Gr(rd , (V ∗)⊗d) denotes the Grassmannian of rd -dimensional subspaces (of rela-

tions) in (V ∗)⊗d . However, this makes no essential difference to our main results

such as Theorem 1.3 and Proposition 1.7 nor counting points of various truncated

point schemes in the next section.

To see this, write

G=

m
∏

d=2

P((V ∗)⊗d)rd

and consider D =
∏

d Dd where Dd is the open dense subset of P((V ∗)⊗d)rd

consisting of tuples that span rd -dimensional subspaces of (V ∗)⊗d . Then there is

a canonical surjective morphism D →H that sends a set of relations (up to scalar)

to its linear span in each degree. Since our earlier results state some properties of

�n on an open dense subset of G, it suffices to show that the morphism D → H is

open. The miracle flatness theorem we used in the proof of Theorem 1.6 implies

that it is flat, because the fiber of W ∈ Gr(rd , (V ∗)⊗d) under the morphism Dd →

Gr(rd , (V ∗)⊗d) is P(W)rd ∩Dd . According to [Har77, Exercise III.9.1], it follows

that the morphism D → H is open.

Remark 1.9. Applying Theorem 1.3(2) to r = 3, s = 3, d1 = d2 = d3 = 2, and

n = 3, we deduce that an algebra with three generators and three quadratic rela-

tions has zero-dimensional �3 if the set of relations is taken generically. A three-

dimensional AS-regular algebra of quadratic type has the same generator-relation

pattern, but its relations are not generic because �3 is at least one-dimensional as

mentioned in Introduction. Similarly, the set of relations for a three-dimensional

AS-regular algebra of cubic type is not generic, either.

On the other hand, [ATvdB90, Theorem 1] claims that the three-dimensional

AS-regular algebras are exactly the non-degenerate standard algebras, which in

particular means that 3-dimensional AS-regular algebras are generic among the

standard algebras. Since being standard is not an open condition, this does not

contradict the previous paragraph.

2. Examples and Connections to Prior Work

The preceding material ties in with a number of results of similar flavor in the

literature, as we now document.

We will focus on algebras with the same generator-relation pattern as the four-

dimensional AS-regular ones classified in [L+07, Proposition 1.4]:

• four generators and six relations of degree 2;
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• three generators, two degree-two relations, and two degree-three relations;

• two generators and one relation in each degree 3 and 4.

Under the regularity assumptions of [L+07], the Betti numbers of these types

of algebras are, respectively,

• 1, 4, 6, 4, 1;

• 1, 3, 4, 3, 1;

• 1, 2, 2, 2, 1.

When applying the contents of Section 1, the relevant critical dimension n(r −

1) − df(r,d, n) becomes zero for certain n, that is, the �n in question will be

nonempty finite (perhaps nonreduced) schemes.

2.1. Four Generators, Six Quadratic Relations (Type 14641)

In this case the results of Section 1 essentially recapture the main result of [van88]

to the effect that generically, such algebras have 20 point modules, counted with

multiplicity.

In the absence of regularity conditions the scheme �2 will be our stand-in for

the scheme of point modules, and hence the n to which Section 1 applies here

is 2.

We thus have r = 4 and s = 6, and the vector space V of the above discussion

is dual to the span V ∗ of linearly independent generators x1, . . . , x4. The scheme

G is P(V ∗ ⊗ V ∗)6, all dj are equal to 2, and the defect is 6.

We then have the following:

Proposition 2.1. Under the conventions of the present subsection, the scheme

�2 is nonempty, and the locus U ⊆ G where �2 is zero-dimensional is open and

dense.

For relation spaces R ∈ U , �2 consists of twenty points, counted with multi-

plicity. These points are distinct for R ∈ W as in Proposition 1.7.

Proof. Everything but the claim about the count of 20 is an immediate application

of Theorems 1.3 and 1.6 and Proposition 1.7.

As for the count itself, it follows from the fact that examples with |�2| = 20

exist, as first constructed in [van88] (see also [SV07; CV15; CS17] and refer-

ences therein) together with flatness; the latter ensures the constancy of the degree

throughout the open parameter family U .

Alternatively, we can avoid having to handle any examples at all by resorting

to a Chow ring-based argument: A∗(P(V )2) is in this case isomorphic to

Z[ε1]/(ε
4
1) ⊗Z[ε2]/(ε

4
2),

and each bilinearization of a relation cuts out a hypersurface Vi , 1 ≤ i ≤ 6 of class

ε1 + ε2. Since ε4
i = 0, this then implies that the product of the Chow classes [Vi]

is

(ε1 + ε2)
6 = 20ε3

1ε
3
2. (2.1)
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On the other hand, [Ful98, Example 8.2.1] implies that product (2.1) is the Chow

class of the scheme-theoretic intersection
⋂

i Vi . The assumption of the men-

tioned result is ensured by [Ful98, Example 8.2.7] and the fact that each Vi is

Cohen–Macaulay. Since ε3
1ε

3
2 is the Chow class of a point, this means that the

said intersection consists of 20 points with multiplicity. �

Remark 2.2. It is the second proof of |�2| = 20 given above that would pre-

sumably be more portable and flexible, as it is available even when �n is not

zero-dimensional. We will treat such a case in Proposition 2.6.

Remark 2.3. The number n such that the critical dimension becomes zero is

equal to � − 2, where � is the Gorenstein parameter of a four-dimensional AS-

regular algebra of the same generator-relation pattern. Indeed, in the proof of

[L+07, Proposition 1.4], it is observed that the AS-regular algebras considered

there have Hilbert series 1/p(t), where p(t) has a zero at t = 1 with multiplicity

≥ 3. In our terminology, p(1) = 0 implies that s = 2r − 2 and p′(1) = 0 implies

that the sum of dj is (r − 1)�. Thus the defect is

s
∑

j=1

(n − dj + 1) = (2n + 2 − �)(r − 1),

which is equal to n(r − 1) if and only if n = � − 2.

2.2. Three Generators, Quadratic and Cubic Relations (Type 13431)

We now tackle the second bullet point listed at the beginning of the present sec-

tion, corresponding to three-generator algebras with two quadratic and two cubic

relations. We will then study �3 (i.e., here n = 3).

Proposition 2.4. Under the conventions of the present subsection, the scheme

�3 is nonempty, and the locus U ⊆ G where �3 is zero-dimensional is open and

dense.

For relation spaces R ∈ U , �3 consists of 19 points, counted with multiplicity.

These points are distinct for R ∈ W as in Proposition 1.7.

Proof. The proof is entirely parallel to that of Proposition 2.1, only the count

requiring modification.

This time the relevant Chow ring is

A∗(P2 × P
2 × P

2) ∼=

3
⊗

i=1

Z[εi]/(ε
3
i ),

and the class of �3 is the coefficient of ε2
1ε

2
2ε

2
3 in

(ε1 + ε2)
2(ε2 + ε3)

2(ε1 + ε2 + ε3)
2.

This is easily seen to be 19 by direct computation. �
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2.3. Two Generators, Cubic and Quartic Relations (Type 12221)

This case in fact motivated the present note and corresponds to the third bullet

point of the discussion at the start of the present section.

This investigation is a follow-up to [CKS19] (in turn, inspired by [L+07]) and

was prompted by our learning belatedly of the thesis [Bra99], where some of the

algebras of interest here are studied. Specifically, the following result resolves

[Bra99, Conjecture IV.8.1] (i.e., Conjecture 0.1) in the affirmative.

Proposition 2.5. Under the conventions of the present subsection, the scheme

�5 is nonempty, and the locus U ⊆ G where �5 is zero-dimensional is open and

dense.

For relation spaces R ∈ U , �5 consists of 17 points, counted with multiplicity.

The points are distinct for R ∈ W as in Proposition 1.7.

Proof. Once more, the argument is precisely parallel to those of Propositions 2.1

and 2.4, except for inessential numerical differences in the last portion of the

proof.

The Chow ring to consider here is

A∗((P1)5) ∼=

5
⊗

i=1

Z[εi]/(ε
2
i ),

and the sought-after degree is the coefficient of
∏

i εi in

(ε1 + ε2 + ε3)(ε2 + ε3 + ε4)(ε3 + ε4 + ε5)(ε1 + ε2 + ε3 + ε4)(ε2 + ε3 + ε4 + ε5);

this is indeed 17.

Alternatively, we can repeat the example-based argument at the end of the

proof of Proposition 2.1: the family XU → U is flat, and we know that its fiber

has degree 17 for at least one point in U via the examples in [Bra99, Chapter V].

Flatness then ensures that the degree is 17 throughout U . �

For the type of algebras of this subsection, we can apply our general result also to

n = 4. In this case the expected dimension of �4 is one.

Let Y be a closed subscheme of a product P = (Pr−1)n of projective spaces

such that all irreducible components of Y have the same dimension, say d . Let

(b1, . . . , bn) be a tuple of nonnegative integers whose sum is d . Recall (e.g.,

[C+20, §2.1]) that the multidegree of Y of type (b1, . . . , bn) is the number of

points (with multiplicities) in

Y ∩ (L1 × · · · × Ln)

for a generic choice of linear subspaces {Li}i of Pr−1 such that dimLi = r − 1 −

bi .

When d = 1, we can express the multidegrees of Y simply as a sequence of n

nonnegative integers

|Y ∩ Hi |, 1 ≤ i ≤ n,
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where

Hi = (Pr−1)×(i−1) × Z(�i) × (Pr−1)×(n−i)

for generic linear forms �i .

Proposition 2.6. Under the conventions of the present subsection, the scheme

�4 is nonempty, and the locus U ⊆ G where �4 is one-dimensional is open and

dense.

For relation spaces R ∈ U , �4 has multidegrees (4,3,3,4).

Proof. The proof is similar to that of Proposition 2.1, but now we consider the

Chow ring

A∗((P1)4) ∼=

4
⊗

i=1

Z[εi]/(ε
2
i )

and compute the product

(ε1 + ε2 + ε3)(ε2 + ε3 + ε4)(ε1 + ε2 + ε3 + ε4).

The result is

4ε1ε2ε3 + 3ε1ε2ε4 + 3ε1ε3ε4 + 4ε2ε3ε4.

The same argument as the latter part of the proof of Proposition 2.1 implies that

this is the Chow class of �4.

Finally, the last statement follows from the fact that, as explained in [C+20,

Remark 2.8], the multidegrees can be read off as the tuple of coefficients of the

Chow class. �
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