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Abstract
The algebras Qn,k(E, τ ) introduced by Feigin and Odesskii as generalizations of the
4-dimensional Sklyanin algebras form a family of quadratic algebras parametrized by
coprime integers n > k ≥ 1, a complex elliptic curve E , and a point τ ∈ E . The main
result in this paper is that Qn,k(E, τ ) has the same Hilbert series as the polynomial
ring on n variables when τ is not a torsion point. We also show that Qn,k(E, τ ) is a
Koszul algebra, hence of global dimension n when τ is not a torsion point, and, for all
but countably many τ , Qn,k(E, τ ) is Artin–Schelter regular. The proofs use the fact
that the space of quadratic relations defining Qn,k(E, τ ) is the image of an operator
Rτ (τ ) that belongs to a family of operators Rτ (z) : Cn ⊗C

n → C
n ⊗C

n , z ∈ C, that
(we will show) satisfy the quantum Yang–Baxter equation with spectral parameter.
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1 Introduction

Until the end of Proposition 1.3, E is a complex elliptic curve, τ is a point on E ,
n > k ≥ 1 are relatively prime integers, and Qn,k(E, τ ) denotes the elliptic algebra
that was defined by Feigin and Odesskii in their 1989 papers [25] and [37]. This
and our earlier papers [16–18] are the first steps in a project to develop a “geometric
representation theory” for the Qn,k(E, τ )’s. This paper establishes some fundamental
algebraic properties of Qn,k(E, τ ) (Theorems 1.1 and 1.2 and Proposition 1.3 below).

The algebras Qn,1(E, τ ) are called Sklyanin algebras in honor of Sklyanin’s dis-
covery of Q4,1(E, τ ).

It is often useful to think of the Qn,k(E, τ )’s as generalizations of enveloping
algebras, U (g), of finite dimensional semisimple Lie algebras and their quantizations
Uq(g).

1.1 Geometric representation theory and elliptic algebras

Geometric representation theory is one of the major mathematical developments of
the past half-century. It emerged in the context of Lie theory but its development has
required and stimulated connections and tools that play a role in many other areas.
Remarkably, the algebraic varieties that appear in “classical” geometric representation
theory1 over C are almost always rational varieties.2 (The only exceptions we know
are someHessenberg varieties: see [21, Rmk. 4.2].)We do not know anymeta-theorem
that explains this phenomenon, but its first manifestation is Chevalley’s theorem prov-
ing that every connected linear algebraic group over an algebraically closed field of
characteristic zero is rational [12]. Over the past 35 years evidence has accumulated
that there should be a “geometric representation theory” for elliptic algebras in which
the relevant geometric objects are no longer rational varieties but elliptic curves, pow-
ers of elliptic curves, symmetric powers of elliptic curves, higher secants and secant
varieties to elliptic curves, and mixtures of such things. One reason this might not be
surprising is that many rational affine varieties can be usefully thought of as degener-
ations of such non-rational varieties. Likewise some of the algebras that appear in the
context of quantum groups are degenerations of elliptic algebras, and some represen-
tations of quantum groups are degenerations of representations of elliptic algebras.3

See, for example, Cherednik’s papers [13–15] and, more recently, [20] which shows
that some of the representation theory of Uq(sl2) is a “degenerate” version of the
representation theory of Q4,1(E, τ ). We note, too, the similarity between the results

1 By “classical” we mean the representation theory of the enveloping algebra U (g) and its quantization
Uq (g), where g is a finite dimensional Lie algebra over C.
2 An irreducible algebraic variety X over an algebraically closed field k is rational if k(X), its field of
rational functions, is a purely transcendental extension k(x1, . . . , xn) of k; in more geometric terms, there
is a non-empty open set U ⊆ X and an open set V ⊆ A

n
x1,...,xn such that U ∼= V .

3 This is related to the fact that Belavin’s elliptic solutions to the quantum Yang–Baxter equation with
spectral parameter degenerate to trigonometric and rational solutions.
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about finite dimensional representations of Q4,1(E, τ ) in [49, 52] and [57, 58] and
results about the representation theory of Uq(sl2).4

One way in which the Qn,k(E, τ )’s differ from enveloping algebras is that no
information can be gleaned from induced representations of subalgebras; Qn,k(E, τ )

does not appear to have any useful subalgebras that one can induce from; this seems to
be related to the fact that Qn,k(E, τ ) does not possess anything like a PBW basis (but
see [55]); indeed, one can hardly do any hand calculations in Qn,k(E, τ ). Nevertheless,
there is a rich theory of “linear modules” for elliptic algebras and these are good
replacements for induced modules of the form U (g) ⊗U (p) Cλ (where p is a Lie
subalgebra of a Lie algebra of g and Cλ is a 1-dimensional representation of p).
Evidence supporting the claims in the previous sentence can be found in [31, Thm. 2.2],
[55, Thm. 1.4], [53, §5] and [20, §1B]. Feigin and Odesskii were the first to recognize
that linearmodules for Qn,k(E, τ ), and the homomorphisms between them, are related
to the higher secants to E embedded as a degree n normal curve in Pn−1.

The simplest linearmodules are the pointmodules: a pointmodule is a cyclic graded
left Qn,k(E, τ )-module havingHilbert series (1−t)−1. Point modules played a central
role in [2, 3].When k = 1, the isomorphism classes of point modules are parametrized
by E for generic τ , except when n = 4 in which case there are four additional points.
The survey article [49] describes the beautiful interaction between linear modules for
Q4,1(E, τ ) and the geometry associated to E embedded as a quartic normal curve in
P
3.
For all k, Feigin andOdesskii showed there is a certain variety, Xn/k ⊆ P

n−1, called
the characteristic variety (see [16] for its definition), that parametrizes an important
subset of the point modules (in many cases this might be all the point modules but we
don’t know this yet). In [16], it is shown that Xn/k ∼= Eg/�n/k , the quotient of a certain
power Eg by the action of a subgroup of the symmetric group of order (g +1)!. In [18]
it is shown that for some (n, k) there is a fully faithful embedding of Qcoh(Xn/k) into
a certain quotient category of graded Qn.k(E, τ )-modules. This is strikingly different
from what happens for U (g) or Uq(g).

Despite the differences some of the themes in the representation theory of U (g)
appear in the context of the Qn,k(E, τ )’s: for example, Van den Bergh’s remarkable
paper [56] establishes a “translation principle” for Q4,1(E, τ ), which is expressed in
terms of an equivalence between certain categories of representations having “different
central characters”. It seems likely that there will be translation principles for other
elliptic algebras. For example, when n is even Feigin and Odesskii [37, §3, Rmk. 2]
surmise that Qn,1(E, τ ) has two linearly independent central elements of degree 1

2n
that “correspond” to the Poisson central elements that appear in [40, Thm. A] and
there might be a translation principle relating certain categories of modules that are
annihilated by different linear combinations of those central elements.

Since Qn,k(E, 0) = C[x0, . . . , xn−1] is a polynomial ring on n variables, there is a

Poisson structure {xi , x j } := limτ→0
[xi ,x j ]

τ
on Qn,k(E, 0) and, because deg{xi , x j } =

2, this induces a Poisson structure on P
n−1 = Proj(Qn,k(E, 0)), which is commonly

denoted qn,k and called the Feigin–Odesskii bracket [25, 37]. It is conjectured that qn,k

4 Odesskii and Feigin [38] examine finite dimensional representations of Qn,k (E, τ ) when τ has finite
order.
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coincides with a “natural” Poisson structure discovered in 1998 by Feigin–Odesskii
[26] and Polishchuk [39], on P(Ext1E (Vn,k,OE )) where Vn,k is a stable bundle on E
of rank k and degree n. Hua and Polishchuk [27, Thm. 5.2] showed that the conjecture
holds when k = 1.5 The symplectic leaves for qn,k are known only when k = 1
[19]. The symplectic leaves for qn,1 can be described in terms of the higher secant
varieties to E embedded in P

n−1 as a degree-n elliptic normal curve: see [19, §1] for
a precise description.6,7 Since linear modules for Qn,k(E, τ ) seem to be analogous to
Verma modules, and linear modules for Qn,1(E, τ ) (for the most part) correspond to
higher-dimensional secants to E , the fact that the symplectic leaves for qn,1 are related
to the secants suggests, again, that the relation between the representation theory of
Qn,k(E, τ ) and the geometry of E ⊆ P

n−1 is analogous to the relation between the
representation theory of U (g) and the geometry associated to the action of the adjoint
group on g∗.

When k > 1, very little is known about qn,k . It is possible that the symplectic leaves
for qn,k are related to the geometry of the higher secant varieties for the characteristic
variety, Xn/k , embedded in P

n−1 = P(Ext1E (Vn,k,OE )). When P(Ext1E (Vn,k,OE ))

is interpreted as a moduli space for certain stable bundles on E of degree n and rank
k +1 it has a “natural” Poisson structure [39], which is expected to coincide with qn,k .
For more about qn,k , see [27–29] and [42–44]. It would be good to know whether each
point on Xn/k is a symplectic leaf for qn,k .

Feigin andOdesskii’s explicit construction of certain linearmodules, and the results
about linear modules for Qn,1(E, τ ) due to Staniszkis [53] and Tate–Van den Bergh
[55], provide evidence that the representation theory of Qn,k(E, τ ) is related to the
symplectic leaves for qn,k , and their Lagrangian subvarieties, in “the same way” as
the representation theory of a finite dimensional semisimple Lie algebra g is related
to the symplectic leaves (= the coadjoint orbits) in g∗ for the natural Poisson bracket
on the symmetric algebra S(g) (see [30] for a nice survey of the role codajoint orbits
play in representation theory).

The Poincaré–Birkhoff–Witt theorem allows one to use filtered-graded methods to
show that if g is a finite dimensional Lie algebra, then U (g) is a noetherian domain
whose global dimension and Gelfand–Kirillov dimension equal dim(g). We do not
know if Qn,k(E, τ ) is a noetherian domain, though it is when k = 1 [55]. Having finite
global dimension is a rather weak property for non-commutative rings so one often
seeks to establish additional homological properties that are consequences of finite
global dimension in the commutative case. It is known thatU (g) has essentially all the
homological properties the polynomial ring has:U (g) is Cohen–Macaulay in the sense
that if M is a non-zero finitely generated leftU (g)-module, thenGKdim(M)+ j(M) =
dim(g) where j(M) = min{ j | Ext j

U (g)(M, U (g)) 	= 0} (see [9, Ch. 2, Thm. 7.1]
and [32]); U (g) has the Auslander property, meaning that if M is as before, then
ExtiU (g)(N , U (g)) = 0 for all submodules N ⊆ Ext j

U (g)(M, U (g)) when i < j

5 The Poisson structure qn,k is analogous to the Poisson structure {x, y} := [x, y] on the symmetric algebra
S(g).
6 [40, Thm. A] shows that certain Poisson central elements for qn,1 are related to a higher secant variety.
7 The symplectic leaves for the Poisson structure on the affine variety Cn = Spec(Qn,k (E, 0)) have been
studied by Feigin and Odesskii in [25, 26] and [35, 36], for example.
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[7, 10]. The algebras Qn,1(E, τ ) also have all these properties, though the methods
required to establish them are very different [3, 51, 55].

Amongst other things, the results in this paper, in particular Theorem 1.1(1) and
Theorem 1.2, determine the size (i.e., the Gelfand–Kirillov dimension) of Qn,k(E, τ )

and some of its fundamental homological properties. Roughly, these results say that
like U (g), Qn,k(E, τ ) shares some of the homological properties of the polynomial
ring on n variables.

1.2 The algebrasQn,k(E, �) are deformations of polynomial rings

It has long been expected that the Qn,k(E, τ )’s have the same size as the polyno-
mial ring on n variables. More formally, for fixed (E, n, k), it was expected that the
Qn,k(E, τ )’s form a flat family of graded algebras that are deformations of polynomial
rings—the algebra Qn,k(E, 0) is a polynomial ring on n variables. To prove that the
Qn,k(E, τ )’s form a flat family of graded algebras that are deformations of polyno-
mial rings one must show that the homogeneous components of Qn,k(E, τ ) have the
same dimension as those of the polynomial ring on n variables. When k = 1, this was
proved by Tate and Van den Bergh [55] over 20 years ago. One of the main results in
this paper is that this is true for all k provided τ is not a torsion point on E (Theorem
1.1).

The fundamental homological properties of Qn,1(E, τ ) were worked out by Tate
and Van den Bergh [55]: they are Artin–Schelter regular, Auslander–Gorenstein, and
Cohen–Macaulay. The starting point for [55] is the geometric description of the
quadratic relations for Qn,1(E, τ ) in [55, §4.1], which is inspired by [37, §2]; the
relation between these two geometric descriptions of the relations is explained in [17,
§3.2]. Because there is not yet a similar geometric description of the relations for
Qn,k(E, τ ) when k > 1 we need a new method to understand Qn,k(E, τ ). The start-
ing point for the results in this paper is the fact that the quadratic defining relations for
Qn,k(E, τ ) can be defined in terms of an elliptic solution of the quantumYang–Baxter
equation. Although we focus on Qn,k(E, τ ), the techniques we develop in this paper
should be useful for other algebras.

The Qn,k(E, τ )’s are graded C-algebras generated by n degree-one elements. The
Hilbert series of Qn,k(E, τ ) is the formal power series

∑∞
i=0 dim(Qn,k(E, τ )i )t i . The

quadratic dual of Qn,k(E, τ ) is denoted by Qn,k(E, τ )!.
The main results in this paper are as follows. (The notation is explained after their

statement.)

Theorem 1.1 Assume τ ∈ E is not a torsion point.

(1) (Theorem 6.12) The Hilbert series of Qn,k(E, τ ) is the same as that of the poly-
nomial ring on n variables placed in degree one, namely (1 − t)−n.

(2) (Theorem 7.7) The Hilbert series of Qn,k(E, τ )! is the same as that of the exterior
algebra on n variables placed in degree one, namely (1 + t)n.

(3) (Theorems 9.17 and 10.1) Qn,k(E, τ ) is a Koszul algebra whose global dimension
is n.
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Theorem 1.2 (Theorem 10.4) Qn,k(E, τ ) is Artin–Schelter regular for all but count-
ably many τ ∈ E.

Proposition 1.3 (Proposition 10.3) Qn,k(E, τ )! is a Frobenius algebra for all but
finitely many τ ∈ E.

Although Qn,k(E, 0) is a polynomial ring, most Qn,k(E, τ )’s are not commutative.
We observed in [17, §4.2.1] that there are some values of τ ∈ C − � for which
Qn,k(E, τ ) is commutative (in fact, a polynomial ring); for example, Q4,1(E, τ ) is a
polynomial ring when τ ∈ 1

2�.
The algebras Qn,k(E, τ ) depend on a pair of relatively prime integers n > k ≥ 1,

a point τ ∈ C, and a complex elliptic curve E := C/� where � := Z + Zη is the
lattice spanned by 1 and a point η lying in the upper half plane. Fix a vector space
V ∼= C

n with basis x0, . . . , xn−1 indexed by the cyclic group Zn . We fix this notation
for the rest of the paper.

The algebra Qn,k(E, τ ) is defined to be the quotient of the tensor algebra T V
modulo the ideal generated by the subspace reln,k(E, τ ) ⊆ V ⊗2 spanned by the n2

elements

ri j :=
∑

r∈Zn

θ j−i+(k−1)r (0)

θ j−i−r (−τ)θkr (τ )
x j−r ⊗ xi+r (1.1)

where the indices i and j belong toZn = Z/n and θ0(z), . . . , θn−1(z) are certain theta
functions of order n (defined in [17, Prop. 2.6] and (2.1) below), indexed by Z, that
are quasi-periodic with respect to �.

If τ ∈ 1
n �, then θkr (τ ) = 0 for some r so the relations do not make sense.

Nevertheless, we can extend the definition of Qn,k(E, τ ) to all τ ∈ C (see Sect. 5.4.1
and [17, §3.3]).

Up to isomorphism, Qn,k(E, τ ) depends only on the image of τ in E so we often
regard τ as a point in E and call it a torsion point if mτ = 0 in E for some integer
m ≥ 1.

1.3 The algebraQn,k(E, �) can be defined in terms of Belavin’s elliptic solutions to
the quantumYang–Baxter equation

Belavin’s solution [8] to the quantum Yang–Baxter equation with spectral parameter
(see (QYBE1) in Sect. 2.2 below) is the linear operator

Sk(z) : V ⊗2 −→ V ⊗2

defined in (3.6) below. As we will now explain,

the space of relations for Qn,k(E, τ ) = the image of P ◦ Sk(−nτ) (1.2)

where P is the linear operator v ⊗ v′ 
→ v′ ⊗ v on V ⊗2. The fact that Sk(z) satisfies
(QYBE1) seems to account for the rich structure of Qn,k(E, τ ). In particular, the
proofs of the main results in this paper use this fact repeatedly.8

8 Surprisingly, the results in our earlier papers about Qn,k (E, τ ) do not use this fact in an explicit way.
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1.3.1 The linear operator R�(z)

Fix (n, k) and τ ∈ C − 1
n �. We define the linear operator

Rn,k,τ (z) = Rτ (z) = R(z) : V ⊗2 → V ⊗2

by the formula

R(z)(xi ⊗ x j ) := θ0(−z) · · · θn−1(−z)

θ1(0) · · · θn−1(0)

∑

r∈Zn

θ j−i+r(k−1)(−z + τ)

θ j−i−r (−z)θkr (τ )
x j−r ⊗ xi+r

(1.3)
for all (i, j) ∈ Z

2
n . Since τ /∈ 1

n �, the θkr (τ ) term in the denominator is never
zero; the term θ j−i−r (−z) in the denominator always cancels with a factor in the
numerator before the� sign; hence z 
→ Rτ (z) is a well defined holomorphic function
C → EndC(V ⊗2). By [17, Lem. 3.13], the function τ 
→ Rτ (τ ), initially defined on
C− 1

n �, extends in a unique way to a holomorphic function C → EndC(V ⊗2); from
now on Rτ (τ ), or just R(τ ), denotes this extension.9

Comparing the formula for Rτ (z) with the defining relations for Qn,k(E, τ ) in
(1.1), one sees that

reln,k(E, τ ) = span{ri j | i, j ∈ Zn} = the image of Rτ (τ ). (1.4)

In Propositions 3.4 and 3.5 we show that

Sk(−nz) = ne( 12n(n + 1)z) P Rn,k,τ (z). (1.5)

This equality implies the equality in (1.2). The operator Sk(z) is defined in terms

of certain theta functions with characteristics, i.e., the functions ϑ

[
a
b

]
defined in

Sect. 2.5, whereas R(z) is defined in terms the θα’s defined in (2.1); the relation
between the two types of theta functions is given in Lemma 2.9. A version of (1.5)
must have been known to Feigin and Odesskii, but we could not find it in the literature
so we have proved it here.10

1.3.2. It has been known since the 1980’s that Sk(z) satisfies (QYBE1) (see the
discussion after Theorem 3.1). Hence P Sk(z), and therefore R(z), satisfies (QYBE2).
We record this fact in Theorem 3.7.

9 In this paper we need an improved version of [17, Lem. 3.13]: Lemma 5.1 below shows that for each
m ∈ Z and each ζ ∈ 1

n � there is a holomorphic function C → EndC(V ⊗2), τ 
→ Rn,k,τ (mτ + ζ ).
10 In [37, Rmk. 4, §1], Feigin and Odesskii say there is a close connection between the Qn,k (E, τ )’s and
Belavin’s elliptic solutions to the QYBE. They do not specify the connection but refer the reader to [15];
although [15, §4] concerns an algebraRd

η that is defined in terms of Sk (z), [15] does not refer to R(z). The

algebrasRd
η in [15, §4] are generated by n2d elements whereas Qn,k (E, τ ) is generated by n elements. At

the end of the introduction to [37] is an equality A(d) = Qn2d,nd−1(E, τ ). The algebra A(d) is not defined

(perhaps it is Rd
η ) and there is no explanation of the equality.
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It is easy to see that Rτ (0) = I ⊗ I where I denotes the identity operator on V
(Proposition 2.4). As a consequence of this and the fact that R(z) satisfies (QYBE2),
for each z ∈ C, Rτ (z) is either an isomorphism or satisfies Rτ (z)Rτ (−z) = 0 (Lemma
2.3). Corollary 5.9 shows that Rτ (z) is a non-isomorphism if and only if z ∈ ± τ + 1

n �.
That result also shows that rank Rτ (τ + ζ ) = (n

2

)
for all ζ ∈ 1

n �.11 It follows that

the image of Rτ (z) = the kernel of Rτ (−z)

for all z ∈ ±τ + 1
n �. The next result follows from these remarks and the calculation

before Theorem 7.4.

Theorem 1.4 (Theorem 7.4) The quadratic dual Qn,k(E, τ )! is isomorphic to the ten-
sor algebra T V modulo the ideal generated by the kernel of the operator Rn,n−k,τ (τ ) :
V ⊗2 → V ⊗2.

1.3.3. The fact that Qn,k(E, 0) is a polynomial ring on n variables (see [17, Prop. 5.1]
for a proof) is related to the fact that limτ→0 Rτ (τ ) is the anti-symmetrization operator
v ⊗ v′ 
→ v ⊗ v′ − v′ ⊗ v. The fact that Qn,k(E, 0)! is an exterior algebra on n
variables is related to the fact that limτ→0 Rτ (−τ) is the symmetrization operator
v ⊗v′ 
→ v ⊗v′ +v′ ⊗v. These are special cases of Proposition 5.2 which shows that
limτ→0 Rτ (mτ) is the skew-symmetrization operator v ⊗ v′ → v ⊗ v′ − mv′ ⊗ v for
all m ∈ Z. This observation is used in an essential way in the proof of Theorem 1.1(1):
it is used to show that the space of degree-d relations for Qn,k(E, τ ) is the kernel
of a certain operator Fd(−τ) : V ⊗d → V ⊗d . Like Rτ (τ ), Fd(−τ) belongs to a
family of operators Fd(z), z ∈ C, and Proposition 6.4 shows that the limits of Fd(−τ)

and Fd(τ ) as τ → 0 are the symmetrization and anti-symmetrization operators on
V ⊗d , respectively. This gives a heuristic explanation as to why we might expect that
Qn,k(E, τ ) and Qn,k(E, τ )! should be deformations of the polynomial and exterior
algebras, respectively.

1.4 Methods

The methods in this paper might be useful in other situations so we say a little about
them. For the purposes of the discussion we write A(τ ) = Qn,k(E, τ ). Thus, A(0) is
the polynomial ring SV = C[x0, . . . , xn−1].

The main results in this paper are of the following form: A(τ ) has property P(τ ),
where P(0) is a property of A(0). In all cases of interest P(τ ) can be formulated as a
statement that a certain subspace S(τ ) ⊆ V ⊗d has the same dimension as S(0).

We realize S(τ ) as the image or kernel of a linear operator P(τ ′) : V ⊗d → V ⊗d ,
where τ ′ is usually an integer multiple of τ , and reduce the question of interest to a
question about the rank of P(τ ′). In all cases of interest, P(τ ′) belongs to a family
of linear operators P(z) : V ⊗d → V ⊗d , z ∈ C, whose matrix entries (with respect
to some, hence every, basis) are theta functions with respect to � having the same
quasi-periodicity properties. We call such a P(z) a theta operator (see Sect. 4.2). The

11 This implies that the dimension of reln,k (E, τ ) is
(n
2
)
, which is the first step toward proving Theo-

rem 1.1(1).
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determinant det P(z) is then a theta function, of order r say, andLemma2.5 tells us that
det P(z) has r zeros (counted with multiplicity) in a fundamental parallelogram (and
also tells us the sum of those zeros). In other words, if mult p(det P(z)) denotes the
multiplicity of p as a zero of det P(z),

∑
p mult p(det P(z)) = r where the sum is taken

over all points in a fundamental parallelogram. By Lemma 4.1, mult p(det P(z)) ≥
dim(ker P(p)).

Often,we are able to narrowdown the possibilities for the zeros of det P(z) to a finite
number of 1

n �-cosets of the form mτ + 1
n �; see Propositions 5.8 and 9.8 for example.

We then obtain for “enough” of those m’s a result of the form dim(ker P(mτ)) ≥
some number, dm say. It then follows that

r =
∑

p

mult p(det P(z)) ≥
∑

p

dim(ker P(p)) ≥
∑

m

dm .

If the right-most sum equals r , then these inequalities are equalities and we conclude
that we have found all the zeros of det P(z) and their individual multiplicities. In
particular, we now know dim(ker P(τ ′)).

Among the operators playing the role of P(z) are:

• R(z) in Sect. 5 where we show that R(z) is not an isomorphism if and only if
z ∈ ±τ + 1

n � and that rank R(τ ) = (n
2

)
; the dimension of the space of quadratic

relations for Qn,k(E, τ ) is therefore the same as for SV ;
• Fd(z) and Gτ (z) in Sect. 6 where we show that the dimension of the space of
degree-d relations for Qn,k(E, τ ), which is the kernel of Fd(−τ), is the same as
for SV ;

• Hτ (z) in Sect. 9 where we prove that a certain lattice of subspaces of V ⊗d is
distributive by showing that certain elements of it have the same dimension as
their counterparts for SV .

The operators Gτ (z) and Hτ (z) are not defined on all of V ⊗d .

1.5 Contents of this paper

The main result in Sect. 3 is a proof of (1.5) then, as a consequence of that and the fact
that Sk(z), which is defined in (3.6), satisfies (QYBE1), we conclude that Rn,k,τ (z)
satisfies (QYBE2).

Section 4 establishes some general results about a holomorphic linear operator A(z)
on a finite-dimensional vector space and relates the location and multiplicities of the
zeros of det A(z) to the dimension of the kernel of A(z). These results are used in
Sects. 5, 6 and 9. We also introduce the notion of a theta operator in this section.

Section 5 takes the first step toward showing that Qn,k(E, τ ) has the same Hilbert
series as the polynomial ring C[x0, . . . , xn−1] by showing that the dimension of
reln,k(E, τ ) is

(n
2

)
. This is not straightforward. We must understand the kernel and

image of limτ→0 R(±τ +ζ )when ζ ∈ 1
n �. To do this we show that det R(z) is a theta

function with respect to 1
n �; we also need to know the location and multiplicities of

the zeros of det R(z). Odesskii already knew this but he did not prove the formula for
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det R(z) in his survey [36] so we do that in Proposition 5.8 (and in doing so make a
small correction to his formula); that, and a proof that the dimension of reln,k(E, τ )

is
(n
2

)
, are the main results in Sect. 5.

In Sect. 6 we show that the Hilbert series of Qn,k(E, τ ) is (1 − t)−n for all τ ∈
(C − ⋃

m≥1
1
m �) ∪ 1

n �. The method is a jazzed up version of the method in Sect. 5.
The space of degree-d relations for Qn,k(E, τ ) is realized as the kernel of the linear
operator Fd(−τ) : V ⊗d → V ⊗d , and the proof of the Hilbert series result requires
a careful analysis of the theta operator Fd(z) that is similar in spirit to some of the
arguments in Sect. 5. The argument we use to prove the Hilbert series result bears
no resemblance to earlier arguments showing that the Hilbert series of Qn,1(E, τ ) is
(1 − t)−n . We make some further remarks about this in Sect. 6.4.3.

In Sect. 7 we show that the Hilbert series of Qn,k(E, τ )! is (1 + t)n for all τ ∈
(C − ⋃n+1

m=1
1

mn �) ∪ 1
n �. The methods there resemble those in Sect. 6 but now the

space of degree-d relations for (a quotient of T V that is isomorphic to) Qn,k(E, τ )!
is realized as the kernel of Fd(τ ).

Since the space of degree-d relations for Qn,k(E, τ ) is the kernel of Fd(−τ), there
is a canonical graded vector space isomorphism Qn,k(E, τ ) ∼= ⊕∞

d=0 im Fd(−τ). The
multiplication on Qn,k(E, τ ) can therefore be transferred to this subspace of T V in
a canonical way. Section 8 gives an explicit description of this multiplication via the
operators Ma,b defined there. This multiplication is analogous to the shuffle product
on the subspace of the tensor algebra consisting of the symmetric tensors.

In Sect. 9,we show Qn,k(E, τ ) is aKoszul algebra for all τ ∈ (C−⋃
m≥1

1
m �)∪ 1

n �

by verifying the “distributive lattice” criterion. The operators Ma,b defined in Sect. 8,
and others derived from them, play a crucial role. Once more, we use the methods
described in Sect. 1.4.

In Sect. 10 we show that, for fixed n, k, and E , Qn,k(E, τ ) is an Artin–Schelter
regular algebra for all but countably many τ .

2 Preliminaries

Whenever possible, the notation in this paper is the same as that in our earlier papers
[16–18]. (We will advise the reader to consult those papers when necessary.) For
example, we always use the notation

e(z) = e2π i z .

We introduced the notation (n, k, E), η, �, τ ∈ C, and reln,k(E, τ ) in Sect. 1.2.
This notation will be fixed throughout the paper. The space of theta functions 
n(�)

and its distinguished basis θα , α ∈ Zn , are defined in [17, §2]. The basic properties
of the θα’s are recorded in [17, Prop. 2.6], so we pause here briefly only to recall the
definition:



31 Page 12 of 81 A. Chirvasitu et al.

θα(z) = θα(z | η) := e
(
αz + α

2n + α(α−n)
2n η

) n−1∏

m=0

θ
(
z + m

n + α
n η

)
, (2.1)

where θ is the order-1 theta function

θ(z) = θ(z | η) :=
∑

n∈Z
(−1)ne

(
nz + 1

2n(n − 1)η
)
.

An explicit formula for θα(z) as an infinite exponential sum can be obtained by com-

bining Lemma 2.9 with the definition of the function ϑ

[
a
b

]
(z | η) at the start of

Sect. 2.5.

2.1 Notation for linear operators

Always, V denotes a complex vector space of dimension n with basis xi , i ∈ Zn .
We will write I for the identity operator on V .
If A : V → V is a linear operator and 1 ≤ i ≤ d, we write Ai for the operator

I ⊗(i−1) ⊗ A ⊗ I ⊗(d−i) on V ⊗d .
If A : V ⊗2 → V ⊗2 is a linear operator and 1 ≤ i ≤ d − 1, we write Ai,i+1 for the

operator I ⊗(i−1) ⊗ A ⊗ I ⊗(d−i−1) on V ⊗d .
Given integers 0 ≤ p ≤ d and a linear operator A : V ⊗p → V ⊗p, we write AL

(resp., AR) for the operator A ⊗ I ⊗(d−p) (resp., I ⊗(d−p) ⊗ A) on V ⊗d given by A
acting on the left-most (resp., right-most) p tensorands of V ⊗d . For a family of linear
operators A(z1, . . . , z p), we write AL(z1, . . . , z p) for A(z1, . . . , z p)

L . We also write
AR(z1, . . . , z p) := A(z1, . . . , z p)

R .
Various linear operators of the form A(z1, . . . , z p) will be evaluated when sev-

eral of its arguments are the same. If i ≤ j and zi = · · · = z j = ν we write
A(z1, . . . , zi−1, ν

j−i+1, z j+1, . . . , z p) for A(z1, . . . , z p).

2.2 The quantumYang–Baxter equation with spectral parameter

The material in this subsection is standard.
Let A ∈ EndC(V ⊗ V ). We define linear operators A12, A23, A13 ∈ End(V ⊗3) by

A12 := A ⊗ I , A23 := I ⊗ A, where I is the identity operator on V , and A13 acts as
the identity on the middle V and as A does on the first and third factors of V ⊗ V ⊗ V .

A family of linear operators R(z) ∈ End(V ⊗ V ), parametrized by z ∈ C, satisfies
the first quantum Yang–Baxter equation if

R(u)12R(u + v)13R(v)23 = R(v)23R(u + v)13R(u)12 (QYBE1)

for all u, v ∈ C. We say that R(z) satisfies the second quantum Yang–Baxter equa-
tion if

R(u)12R(u + v)23R(v)12 = R(v)23R(u + v)12R(u)23 (QYBE2)
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for all u, v ∈ C. The family of operators R(z) satisfying (QYBE1) or (QYBE2) is
called an R-matrix.

Let P ∈ End(V ⊗ V ) be the linear map P(x ⊗ y) = y ⊗ x . If A ∈ End(V ⊗ V )

we define
A′ := P A and A′′ := AP.

Multiplication by P provides a bijection between solutions to (QYBE1) and (QYBE2).

Proposition 2.1 A family of operators R(z) satisfies (QYBE1) if and only if R(z)′
satisfies (QYBE2) if and only if R(z)′′ satisfies (QYBE2).

This is an immediate consequence of the following routine lemma.

Lemma 2.2 Let A, B, C ∈ End(V ⊗ V ). Then A12B13C23 = C23B13A12 if and only
if A′

12B ′
23C ′

12 = C ′
23B ′

12A′
23 if and only if A′′

12B ′′
23C ′′

12 = C ′′
23B ′′

12A′′
23.

The next result plays a crucial role in Sect. 5.3.

Lemma 2.3 Let R(z), z ∈ C, be a family of operators satisfying (QYBE2). If R(0) =
I ⊗ I , then there are scalars c(z) ∈ C such that

R(z)R(−z) = R(−z)R(z) = c(z)I ⊗ I .

In particular, if R(z) is not an isomorphism, then R(z)R(−z) = 0 = R(−z)R(z).

Proof Since R(0) = I ⊗ I , substituting u = −v = z in (QYBE2) yields

R(z)12R(−z)12 = R(−z)23R(z)23. (2.2)

We use the fixed basis {xi }i for V . Applying both sides of (2.2) to xi ⊗ x j ⊗ xk yields

R(z)R(−z)(xi ⊗ x j ) ⊗ xk = xi ⊗ R(−z)R(z)(x j ⊗ xk).

Hence there is a linear map F(u) : V → V such that

R(z)R(−z) ⊗ I = I ⊗ F(z) ⊗ I = I ⊗ R(−z)R(z),

which implies R(z)R(−z) = I ⊗ F(z) and R(−z)R(z) = F(z) ⊗ I . The same
argument for −z implies R(−z)R(z) = I ⊗ F(−z) and R(z)R(−z) = F(−z) ⊗ I .
Hence there is c(z) ∈ C such that

I ⊗ F(z) = F(−z) ⊗ I = c(z)I ⊗ I .

Therefore F(z) = c(z)I . ��
Proposition 2.4 If Rτ (z) is the operator defined in (1.3), then

(1) Rτ (0) = I ⊗ I and
(2) Rτ (τ )Rτ (−τ) = 0 = Rτ (−τ)Rτ (τ ).
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Proof (1) Since the zeros of θα(z) are the points in−α
n η+Zη+ 1

nZ ( [17, Prop. 2.6(6)]),
the θ0(0) term appearing before the � sign in the expression for Rτ (0) annihilates
all the terms after the � sign except the r = j − i summand whose denominator,
θ j−i−r (0), cancels the θ0(0) term. Hence

Rτ (0)(xi ⊗ x j ) = xi ⊗ x j

for all i, j ∈ Zn .
(2) Theorem 3.7 below shows that the Rτ (z) defined in (1.3) satisfies (QYBE2) so,

since Rτ (0) = I ⊗ I , the conclusion of Lemma 2.3 applies to Rτ (z).
Since Qn,k(E, τ ) has an infinite-dimensional cyclicmodule, namely a pointmodule

(see [16, §1.4]), reln,k(E, τ ) 	= V ⊗2. But reln,k(E, τ ) is the image of Rτ (τ ) so the
result follows from Lemma 2.3. ��

2.2.1 R-matrices in arbitrary algebras

It will be convenient to generalize the setup for R-matrices and the quantum Yang–
Baxter equation. Instead of operators R(z) in End(V ⊗ V ) we can take elements
R(z) ∈ S ⊗Z S where S is a C-algebra and Z ⊆ S is a central subalgebra. There
are obvious definitions of R(z)i j ∈ S ⊗Z S ⊗Z S for (i j) ∈ {(12), (13), (23)}. The
equations (QYBE1) and (QYBE2) then acquire the obvious meanings. If V is a left
S-module, then the various R(z)i j act on V ⊗3. If S is a finite-dimensional C-algebra
we can speak of holomorphic or meromorphic R(z).

Section 3 uses this idea with S = C� for a finite group � and Z = C� for a central
subgroup � < �.

2.3 Theta functions in one variable

We make frequent use of the following result. A proof of it appears in the appendix to
[17].

Lemma 2.5 Assume � = Zη1 + Zη2 is a lattice in C such that Im(η2/η1) > 0,
and suppose f is a non-constant holomorphic function on C. If there are constants
a, b, c, d ∈ C such that

f (z + η1) = e−2π i(az+b) f (z) and

f (z + η2) = e−2π i(cz+d) f (z),

then

(1) cη1 − aη2 ∈ Z≥0, and
(2) f has cη1 − aη2 zeros (counted with multiplicity) in every fundamental parallel-

ogram for �, and
(3) the sum of those zeros is 1

2 (cη
2
1 − aη22) + (c − a)η1η2 + bη2 − dη1 modulo �.
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2.4 Transformation properties of R�(z)

Let S, T , N ∈ GL(V ), and P ∈ GL(V ⊗2), be the automorphisms

S · xα = e
(

α
n

)
xα, T · xα = xα+1, N · xα = x−α, P(u ⊗ v) := v ⊗ u.

The group generated by S and T is the Heisenberg group Hn of order n3, and V is an
irreducible representation of Hn (see (3.3)). At [37, §1, Rmk. 2], Odesskii and Feigin
observed that S and T extend to automorphisms of Qn,k(E, τ ) (see [17, Prop. 3.23]
for the details). We will often use the projective representation of 1

n �/� on V given
by

a
n + b

n η 
→ T b Ska .

Let
b(z) := e

( − nz + τ + 1
2 − n+1

2 η
)
. (2.3)

Proposition 2.6 Let k′ ∈ Z be the unique integer such that n > k′ ≥ 1 and kk′ = 1 in
Zn. Then

Rτ

(
z + 1

n

) = (−1)n−1(I ⊗ S−k) Rτ (z) (Sk ⊗ I ), (2.4)

Rτ

(
z + 1

n η
) = b(z)(I ⊗ T −1) Rτ (z) (T ⊗ I ), (2.5)

Rτ (−z) = e(n2z)P R−τ (z) P, (2.6)

Rτ (−z) = e(n2z)(N ⊗ N ) R−τ (z) (N ⊗ N ), (2.7)

Rτ+ 1
n
(z) = (S ⊗ I ) Rτ (z) (S−1 ⊗ I ), (2.8)

Rτ+ 1
n η(z) = e(z)(I ⊗ T −k′

) Rτ (z) (I ⊗ T k′
). (2.9)

Furthermore,

(1) rank Rτ (z + ζ ) = rank Rτ (z) for all ζ ∈ 1
n �;

(2) Rτ (z)Rτ (−z) = 0 = Rτ (−z)Rτ (z) for all z ∈ ± τ + 1
n �;12

(3) S ⊗ S and T ⊗ T commute with Rτ (z).13

Proof We will use the notation D := θ1(0) · · · θn−1(0).
Proof of (2.4). Since θα

(
z + 1

n

) = e
(

α
n

)
θα(z), by [17, Prop. 2.6(3)], and

e(− kr
n )x j−r ⊗ xi+r = e( ki

n )(I ⊗ S−k)(x j−r ⊗ xi+r ),

12 It follows from Corollary 5.9 that R(z)R(−z) = 0 = R(−z)R(z) if and only if z ∈ ± τ + 1
n �, and that

R(z) is an isomorphism if z /∈ ± τ + 1
n �.

13 This implies that S and T extend to automorphisms of Qn,k (E, τ ) (cf., [17, Prop. 3.23]).
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we see that Rτ (z + 1
n )(xi ⊗ x j ) equals

1

D

⎛

⎝
∏

α∈Zn

θα(−z − 1
n )

⎞

⎠
∑

r∈Zn

θ j−i+r(k−1)(−z − 1
n + τ)

θ j−i−r (−z − 1
n )θkr (τ )

x j−r ⊗ xi+r

= e
( − n−1

2

) 1
D

⎛

⎝
∏

α∈Zn

θα(−z)

⎞

⎠
∑

r∈Zn

e
( − kr

n
) θ j−i+r(k−1)(−z + τ)

θ j−i−r (−z)θkr (τ )
x j−r ⊗ xi+r

= (−1)n−1e( ki
n )

1

D

⎛

⎝
∏

α∈Zn

θα(−z)

⎞

⎠

·
∑

r∈Zn

θ j−i+r(k−1)(−z + τ)

θ j−i−r (−z)θkr (τ )
(I ⊗ S−k)(x j−r ⊗ xi+r )

= (−1)n−1e( ki
n ) (I ⊗ S−k)Rτ (z)(xi ⊗ x j )

= (−1)n−1 (I ⊗ S−k)Rτ (z)(Sk ⊗ I )(xi ⊗ x j ).

Proof of (2.5). By [17, Prop. 2.6(4)], θα

(
z − 1

n η
) = e

(
z + 1

2n − n+1
2n η

)
θα−1(z).

Therefore Rτ (z + 1
n η)(xi ⊗ x j ) equals

1

D

⎛

⎝
∏

α∈Zn

θα(−z − 1
n η)

⎞

⎠
∑

r∈Zn

θ j−i+r(k−1)(−z − 1
n η + τ)

θ j−i−r (−z − 1
n η)θkr (τ )

x j−r ⊗ xi+r

= e
(
−nz + 1

2 − n+1
2 η

) 1

D

⎛

⎝
∏

α∈Zn

θα−1(−z)

⎞

⎠

·
∑

r∈Zn

e(τ )
θ j−i+r(k−1)−1(−z + τ)

θ j−i−r−1(−z)θkr (τ )
x j−r ⊗ xi+r

= b(z)
1

D

⎛

⎝
∏

α∈Zn

θα(−z)

⎞

⎠
∑

r∈Zn

θ j−i+r(k−1)−1(−z + τ)

θ j−i−r−1(−z)θkr (τ )
(I ⊗ T −1)(x j−r ⊗ xi+1+r )

= b(z) (I ⊗ T −1)Rτ (z)(T ⊗ I )(xi ⊗ x j ).

Proof of (2.6). Since θα(−z) = −e
( − nz + α

n

)
θ−α(z) by [17, Prop. 2.6(5)],

Rτ (−z)(xi ⊗ x j ) = θ0(z) · · · θn−1(z)

θ1(0) · · · θn−1(0)

∑

r∈Zn

θ j−i+r(k−1)(z + τ)

θ j−i−r (z)θkr (τ )
x j−r ⊗ xi+r

= (−1)ne(n2z + n−1
2 )

θ0(−z) · · · θn−1(−z)

θ1(0) · · · θn−1(0)

·
∑

r∈Zn

(−1)
θi− j−r(k−1)(−z − τ)

θi− j+r (−z)θ−kr (−τ)
x j−r ⊗ xi+r

= e(n2z)
θ0(−z) · · · θn−1(−z)

θ1(0) · · · θn−1(0)

∑

r∈Zn

θi− j+r(k−1)(−z − τ)

θi− j−r (−z)θkr (−τ)
P(xi−r ⊗ x j+r )

= e(n2z)P R−τ (z) P(xi ⊗ x j ).
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Proof of (2.7). This follows from (2.6) and

P Rτ (z)P(xi ⊗ x j ) = θ0(−z) · · · θn−1(−z)

θ1(0) · · · θn−1(0)

∑

r∈Zn

θi− j+r(k−1)(−z + τ)

θi− j−r (−z)θkr (τ )
x j+r ⊗ xi−r

= (N ⊗ N )Rτ (z)(N ⊗ N )(xi ⊗ x j ).

Proof of (2.8). Since θα

(
z + 1

n

) = e
(

α
n

)
θα(z), Rτ+ 1

n
(z)(xi ⊗ x j ) equals

1

D

⎛

⎝
∏

α∈Zn

θα(−z)

⎞

⎠
∑

r∈Zn

θ j−i+r(k−1)(−z + τ + 1
n )

θ j−i−r (−z)θkr (τ + 1
n )

x j−r ⊗ xi+r

= 1

D

⎛

⎝
∏

α∈Zn

θα(−z)

⎞

⎠
∑

r∈Zn

e
( j−i−r

n

)θ j−i+r(k−1)(−z + τ)

θ j−i−r (−z)θkr (τ )
x j−r ⊗ xi+r

= e
(−i

n

) 1
D

⎛

⎝
∏

α∈Zn

θα(−z)

⎞

⎠
∑

r∈Zn

θ j−i+r(k−1)(−z + τ)

θ j−i−r (−z)θkr (τ )
(S ⊗ I )(x j−r ⊗ xi+r )

= (S ⊗ I )Rτ (z)(S−1 ⊗ I )(xi ⊗ x j ).

Proof of (2.9). Since θα

(
z + 1

n η
) = e

(−z − 1
2n + n−1

2n η
)
θα+1(z), Rτ+ 1

n η(z)(xi ⊗ x j )

equals

1

D

⎛

⎝
∏

α∈Zn

θα(−z)

⎞

⎠
∑

r∈Zn

θ j−i+r(k−1)(−z + τ + 1
n η)

θ j−i−r (−z)θkr (τ + 1
n η)

x j−r ⊗ xi+r

= e(z)
1

D

⎛

⎝
∏

α∈Zn

θα(−z)

⎞

⎠
∑

r∈Zn

θ j−i+r(k−1)+1(−z + τ)

θ j−i−r (−z)θkr+1(τ )
x j−r ⊗ xi+r

= e(z)
1

D

⎛

⎝
∏

α∈Zn

θα(−z)

⎞

⎠
∑

s∈Zn

θ j−i+k′+s(k−1)(−z + τ)

θ j−i+k′−s(−z)θks(τ )
x j+k′−s ⊗ xi−k′+s

(where s = r + k′)

= e(z)
1

D

⎛

⎝
∏

α∈Zn

θα(−z)

⎞

⎠
∑

s∈Zn

θ j−i+k′+s(k−1)(−z + τ)

θ j−i+k′−s(−z)θks(τ )
(I ⊗ T −k′

)(x j+k′−s ⊗ xi+s)

= e(z)(I ⊗ T −k′
) Rτ (z) (xi ⊗ x j+k′)

= e(z)(I ⊗ T −k′
) Rτ (z) (I ⊗ T k′

)(xi ⊗ x j ).

(1) This is an immediate consequence of (2.4) and (2.5).
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(2) We observed in Proposition 2.4 that Rτ (τ ) is not an isomorphism. Hence
Rτ (τ + ζ ) is not an isomorphism either. The result now follows from Lemma 2.3
and Proposition 2.4(1).

(3) To show that [Rτ (z), S ⊗ S] = 0 we make V ⊗2 a Zn-graded vector space by
setting deg(xα ⊗ xβ) := α + β. Since the action of Rτ (z) preserves degree and the
homogeneous components are S⊗2-eigenspaces, the actions of Rτ (z) and S ⊗ S on
V ⊗2 commute with each other.

Write ci, j,r for the coefficient of x j−r ⊗ xi+r in Rτ (z)(xi ⊗ x j ). Since ci+1, j+1,r =
ci, j,r ,

Rτ (z)(T ⊗ T )(xi ⊗ x j ) = Rτ (z)(xi+1 ⊗ x j+1)

=
∑

r

ci+1, j+1,r x j+1−r ⊗ xi+1+r

= (T ⊗ T )
(∑

r

ci, j,r x j−r ⊗ xi+r

)
.

Hence Rτ (z)(T ⊗ T ) = (T ⊗ T )Rτ (z), as claimed. ��
An induction argument using (2.4) and (2.5) proves the following.

Corollary 2.7 If a, b ∈ Z and ζ = a
n + b

n η, then

Rτ (z + ζ ) = f (z, ζ, τ )(I ⊗ T b Ska)−1Rτ (z)(T
b Ska ⊗ I )

where f (z, ζ, τ ) = e(−bnz)e
(
bτ + b+a(n−1)

2 − b(n+b)
2 η

)
.

2.5 Theta functions with characteristics

The Jacobi theta function with respect to � is the holomorphic function

ϑ(z | η) :=
∑

m∈Z
e
(
mz + 1

2
m2η

)
.

Clearly, ϑ(z + 1 | η) = ϑ(z | η) and ϑ(z + η | η) = e(−z − 1
2η) ϑ(z | η).

For real numbers a and b the theta function with characteristics a and b is

ϑ

[
a
b

]
(z | η) := e

(
a(z + b) + 1

2
a2η

)
ϑ(z + aη + b | η)

=
∑

m∈Z
e
(
(a + m)(z + b) + 1

2
(a + m)2η

)
.

This is the sameas the definition at [46, (2.5)]. In [34, p. 10] and [54, (3.1)],ϑ

[
a
b

]
(z | η)

is denoted by ϑa,b(z, η). The papers [46] and [54] play a role in Sect. 3.
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It is easy to see that

ϑ

[
a + 1

b

]
(z | η) = ϑ

[
a
b

]
(z | η) and ϑ

[
a

b + 1

]
(z | η) = e(a)ϑ

[
a
b

]
(z | η).

(2.10)

Since ϑ(z | η) = 0 if and only if z ∈ 1
2 (1 + η) + � by Lemma 2.5, ϑ

[
a
b

]
(z | η) = 0

if and only if
z ∈ 1

2 (1 + η) − (aη + b) + �.

Proposition 2.8 If s, t ∈ Z, then ϑ

[
a
b

]
(z + sη + t | η) = e

(
at − s(z + b) −

1
2 s2η

)
ϑ

[
a
b

]
(z | η).

Proof We observed above that ϑ(z + 1 | η) = ϑ(z | η) and ϑ(z + η | η) = e(−z −
1
2η) ϑ(z | η). An induction argument shows thatϑ(z+sη | η) = e(−sz− 1

2 s2η)ϑ(z | η)

for all integers s and it follows from this thatϑ(z+sη+t | η) = e(−sz− 1
2 s2η)ϑ(z | η)

for all integers s and t . Hence

ϑ

[
a
b

]
(z + sη + t | η) = e

(
a(z + sη + t + b) + 1

2
a2η

)
ϑ(z + sη + t + aη + b | η)

= e
(
a(z + sη + t + b) + 1

2
a2η

)

· e(−s(z + aη + b) − 1
2 s2η)ϑ(z + aη + b | η)

= e(a(sη + t))e(−s(z + aη + b) − 1
2 s2η)ϑ

[
a
b

]
(z | η)

= e
(
at − s(z + b) − 1

2 s2η
)
ϑ

[
a
b

]
(z | η)

as claimed. ��

The functionsϑ

[
a
b

]
are related to the θα’s defined in [17, Prop. 2.6] in the following

way.

Lemma 2.9 There is a non-zero constant c ∈ C, independent of α and z, such that

ϑ

[
α
n + 1

2
1
2

]
(z | nη) = c−1 e(− 1

2 z) θα

( z
n

∣∣ η
)

for all α ∈ Z and all z ∈ C.

Proof Since the functions θα(z), α ∈ Z, are characterized up to a common non-zero
scalar multiple by their quasi-periodicity properties

θα

(
z + 1

n

) = e
(

α
n

)
θα(z) and θα

(
z + 1

n η
) = e

( − z − 1
2n + n−1

2n η
)
θα+1(z)
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it suffices to show that the functions e( 12nz)ϑ

[
α
n + 1

2
1
2

]
(nz | nη) have the same quasi-

periodicity properties. Thefirst equality in (2.10) implies that e( 12nz)ϑ

[
α
n + 1

2
1
2

]
(nz | nη)

depends only on the image of α in Zn . By [34, p. 10],

ϑ

[
a
b

]
(z + 1 | η) = e(a)ϑ

[
a
b

]
(z | η) and ϑ

[
a
b

]
(z + 1

n η | η)

= e(− 1
n z − b

n − 1
2n2

η)ϑ

[
a + 1

n
b

]
(z | η).

Therefore

e
( 1
2n(z + 1

n )
)
ϑ

[
α
n + 1

2
1
2

]
(
n(z + 1

n ) | nη
) = e

( 1
2

)
e
( 1
2nz

)
e
(
α
n + 1

2

)
ϑ

[
α
n + 1

2
1
2

]

(nz | nη)

= e
(
α
n
)
e
( 1
2nz

)
ϑ

[
α
n + 1

2
1
2

]

(nz | nη)

and

e
( 1
2n(z + 1

n η)
)
ϑ

[
α
n + 1

2
1
2

]
(n(z + 1

n η) | nη)

= e
( 1
2η
)
e
( 1
2nz

)
e
( − z − 1

2n − 1
2n η

)
ϑ

[
α+1

n + 1
2

1
2

]
(nz | nη)

= e
( − z − 1

2n + n−1
2n η

)
e
( 1
2nz

)
ϑ

[
α+1

n + 1
2

1
2

]
(nz | nη).

Thus, e( 12nz)ϑ

[
α
n + 1

2
1
2

]
(nz | nη) has the same quasi-periodicity properties as θα(z).

��

3 Elliptic solutions to the quantum Yang–Baxter equation

In this section we assume τ /∈ 1
n � and set

ξ := τ + 1
2 (1 + η).

Notice that ξ /∈ 1
2 (1 + η) + 1

n �.
We will use the proof of Theorem 3.1 in [46] to show that R(z) satisfies (QYBE2),

i.e., to prove Theorem 3.7 below.14

14 The
∑

symbol in [46, (3.11)] should be
∏
, and the symbol γ0 in that equation denotes a non-zero scalar.
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Following [46, (3.2)], for each (a, b) ∈ Z
2, we define

w(a,b)(z) :=
ϑ

[
a/n
b/n

]
(z + ξ | η)

ϑ

[
a/n
b/n

]
(ξ | η)

. (3.1)

Since ξ /∈ 1
2 (1+ η)+ 1

n �, the denominator of w(a,b)(z) is non-zero whence w(a,b)(z)
is a holomorphic function of z. It follows from (2.10) that w(a,b)(z) depends only
on the images of a and b in Zn . Thus, if p = (a, b) ∈ Z

2
n , there is a well-defined

holomorphic function wp(z).

Theorem 3.1 [54, Thm. 4.4] For p = (a, b) ∈ Z
2
n, let Ip : V → V be the linear map

Ip(xi ) = ωibxi−a, where ω := e( 1n ). The operator

S(z) :=
∑

p∈Z2
n

wp(z)Ip ⊗ I −1
p (3.2)

satisfies (QYBE1).

We will refer to S(z) as Belavin’s elliptic solution to the QYBE.
For n = 2, S(z) was discovered by R. Baxter who also proved Theorem 3.1 [4–6].

Theorem 3.1 was formulated and conjectured to be true for all n by Belavin [8], and
was subsequently proved by Cherednik [13], Chudnovsky and Chudnovsky [11], and
by Tracy [54].

We need a slightly more elaborate version of Theorem 3.1. In [46, 54], and in the
other papers showing that S(z) satisfies (QYBE1), the operators Ip are defined after
first realizing V as an irreducible representation of the Heisenberg group

Hn := 〈
γ, χ, ε | γ n = χn = εn = 1, [γ, ε] = [χ, ε] = 1, [γ, χ ] = ε

〉
. (3.3)

of order n3. The representation on V is via operators γ 
→ g ∈ End(V ) and χ 
→ h ∈
End(V ) where g · xi := ωi xi and h · xi := xi−1 and ω = e

( 1
n

)
; the central element

ε ∈ Hn now acts as multiplication by ω−1, and we have I(a,b) = hagb.
We can now apply the discussion in Sect. 2.2.1 to the group algebra S := CHn

with Z := C〈ε〉, the group algebra of the center 〈ε〉 < Hn .

Theorem 3.2 For p = (a, b) ∈ Z
2
n, let Jp ∈ CHn be the element χaγ b. The family of

operators
S(z) :=

∑

p∈Z2
n

wp(z)Jp ⊗ J−1
p ∈ CHn ⊗C〈ε〉 CHn (3.4)

satisfies (QYBE1).

Proof This is essentially what the proof of [54, Thm. 4.4] shows; at no point does that
proof use the specific realization of h and g as operators on V , beyond the fact that
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their commutator is a root of unity of order (dividing) n. One can therefore replace
those operators with their abstract versions in (3.3), and ω with the generator ε of the
center of Hn . ��

As a consequence, we have the following generalization of Theorem 3.1.

Corollary 3.3 Let φ : Hn → End(V ) be a representation such that ε acts on V as a
scalar multiplication and define I φ

(a,b) := φ(J(a,b)) = φ(χaγ b). The operator

Sφ(z) :=
∑

p∈Z2
n

wp(z)I φ
p ⊗ (I φ

p )−1 (3.5)

satisfies (QYBE1).

Recall that P ∈ End(V ⊗ V ) is defined by P(x ⊗ y) = y ⊗ x .

Proposition 3.4 Let k′ be the unique integer such that kk′ = 1 in Zn and n > k′ ≥ 1,
and define

Sk(z) :=
∑

(a,b)∈Z2
n

w(a,b)(z)I(−k′a,b) ⊗ I −1
(−k′a,b)

(3.6)

where I(−k′a,b) : V → V is the operator xi 
→ ωibxi+k′a.15 Then

Sk(−nz) = ne( 12n(n + 1)z) P Rn,k,τ (z). (3.7)

Proof We first prove the result for k = −1. When k = −1, Sk(z) is the operator S(z)
in (3.2). The coefficient of xi+r ⊗ x j−r in S(z)(xi ⊗ x j ) is

S(z)i, j
i+r , j−r :=

∑

b∈Zn

w(−r ,b)(z) ω−b( j−i−r).

This is the function Sr , j−i−r (z, w, . . .) in [46, (3.4)] (after replacing their a, b, α, and
τ in [46, (3.4)] by our r , j − i − r , b, and η, respectively). If, in [46, (3.3)], we replace
their τ and w by our η and nτ , respectively, then their η becomes our ξ . The second
variable w in Sr , j−i−r (z, w, . . .) becomes nτ . We now have

S(z)i, j
i+r , j−r = f (z)

ϑ

[
j−i−2r

n + 1
2

1
2

]

(z + nτ | nη)

ϑ

[
− r

n + 1
2

1
2

]

(nτ | nη) · ϑ

[
j−i−r

n + 1
2

1
2

]

(z | nη)

by [46, (3.10)]

= f (z)
c−1e

( − 1
2 (z + nτ)

)
θ j−i−2r ( z

n + τ)

c−1e
( − 1

2nτ
)
θ−r (τ ) · c−1e

( − 1
2 z
)
θ j−i−r ( z

n )
by Lemma 2.9

= c f (z)
θ j−i−2r ( z

n + τ)

θ−r (τ )θ j−i−r (
z
n )

15 The operator Sk (z) is defined in the sameway as S(z) after replacing the generator h by the new generator

h−k′
.
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where c is the constant in Lemma 2.9 and

f (z) = ne
(− 1

2 z
)

ϑ

[ 1
2
1
2

]
(z | nη)

n−1∏

α=1

⎛

⎜⎜
⎜
⎝

ϑ

[
α
n + 1

2
1
2

]
(z | nη)

ϑ

[
α
n + 1

2
1
2

]
(0 | nη)

⎞

⎟⎟
⎟
⎠

by [46, (3.10)]

= ne
(− 1

2 z
)
c−1e(− 1

2 z)θ0(
z
n )

n−1∏

α=1

(
e(− 1

2 z)θα( z
n )

θα(0)

)

by Lemma 2.9.

Therefore

S(−nz)i, j
i+r , j−r = c f (−nz)

θ j−i−2r (−z + τ)

θ−r (τ )θ j−i−r (−z)

= n e( 12n(n + 1)z)
θ0(−z) · · · θn−1(−z)

θ1(0) · · · θn−1(0)

θ j−i−2r (−z + τ)

θ−r (τ )θ j−i−r (−z)
.

The last expression is ne( 12n(n+1)z) times the coefficient of x j−r ⊗xi+r in R(z)(xi ⊗
x j ) when k = −1 (see (1.3)). Thus, the proposition is true for k = −1.

We now address the general case.
The coefficient of xi+r ⊗ x j−r in Sk(−nz)(xi ⊗ x j ) is

Sk(−nz)i, j
i+r , j−r :=

∑

b∈Zn

w(kr ,b)(−nz) ω−b( j−i−r).

A suitable adjustment to the arguments in [46, §3] shows that

Sk(−nz)i, j
i+r , j−r = f (−nz)

ϑ

[ j−i+r(k−1)
n + 1

2
1
2

]
(−nz + nτ | nη)

ϑ

[ kr
n + 1

2
1
2

]
(nτ | nη) · ϑ

[ j−i−r
n + 1

2
1
2

]
(−nz | nη)

= c f (−nz)
θ j−i+r(k−1)(−z + τ)

θkr (τ )θ j−i−r (−z)

= n e
( 1
2n(n + 1)z

)
θ0(−z)

(
n−1∏

α=1

θα(−z)

θα(0)

)
θ j−i+r(k−1)(−z + τ)

θkr (τ )θ j−i−r (−z)

where c is the constant in Lemma 2.9. Comparing this with the definition of R(z) in
(1.3) completes the proof. ��

We now give another proof of Proposition 3.4 that does not rely on the calculations
in [46].

Proposition 3.5 Let k′ and Sk(z) be as in Proposition 3.4. Then

Sk(−nz) = n e
( 1
2n(n + 1)z

)
P Rn,k,τ (z). (3.8)
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Proof 16 When the operators on the left- and right-hand sides of (3.8) are evaluated
at xi ⊗ x j the result is a linear combination of xi+r ⊗ x j−r , r ∈ Zn . Thus, to prove
the proposition it suffices to show that the coefficients of all xi+r ⊗ x j−r in these
evaluations are the same (for all i, j, r ). This is what we will prove.

For the remainder of the proof we fix i, j, r and set s := j − i − r .
The coefficient of xi+r ⊗ x j−r in S(−nz)(xi ⊗ x j ) is

F(z) :=
∑

b∈Zn

w(kr ,b)(−nz) ω−bs .

The coefficient of xi+r ⊗ x j−r in ne
( 1
2n(n + 1)z

)
P Rn,k,τ (z)(xi ⊗ x j ) is

G(z) := n e
( 1
2n(n + 1)z

) θ0(−z) · · · θn−1(−z)

θ1(0) · · · θn−1(0)

θs+kr (−z + τ)

θs(−z)θkr (τ )
.

We must show that F(z) = G(z). To do this we will show that F(z) and G(z) have
the same quasi-periodicity properties (with respect to the lattice 1

nZ + Zη), the same
zeros, and that F

( s
n η
) = G

( s
n η
)
. It follows from the first two of these facts that F(z)

and G(z) are scalar multiples of each other, and it then follows from the equality that
this scalar is 1.

Quasi-periodicity properties of G(z): Since θα(z + 1
n ) = e

(
α
n

)
θα(z),

G
(
z + 1

n

) = e
( − kr

n

)
G(z).

Since θα(−z − η) = e
(
n(−z − η) − 1

2

)
θα(−z),

n−1∏

α=0
α 	=s

θα(−z − η) = e
(
(n − 1)n(−z − η) − n−1

2

) n−1∏

α=0
α 	=s

θα(−z)

and
θs+kr (−z − η + τ) = e

(
n(−z − η + τ) − 1

2

)
θs+kr (−z + τ).

Therefore

G(z + η) = e
( 1
2n(n + 1)η) e

(
n2(−z − η) + nτ − n

2

)
G(z)

= e
( − n2z − 1

2n2η + n
2 (1 + η) + nτ

)
G(z).

Computation of G
( s

n η
)
: By [17, Prop. 2.6(7)],

θα(z − s
n η) = e

(
sz + s

2n − sn+s2
2n η

)
θα−s(z),

16 When k = n − 1, Sk (z) equals the operator S(z) in Eq. (3.1) of Richey and Tracy’s paper [46]. Some of
the calculations in this proof are similar to those that produce Eqs. (3.3)–(3.12) in [46].
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whence
θs+kr (− s

n η + τ)

θkr (τ )
= e

(
sτ + s

2n − sn+s2
2n η

)

and
θα(− s

n η) = e
( s
2n − sn+s2

2n η
)
θα−s(0).

The singularity of the function

θ0(−z) · · · θn−1(−z)

θs(−z)

at z = s
n η is removable and the value of the associated holomorphic function at z = s

n η

is

n−1∏

α=0
α 	=s

θα

( − s
n η
) =

n−1∏

α=0
α 	=s

e
( s
2n − sn+s2

2n η
)
θα−s(0).

= e
(
(n − 1)

( s
2n − sn+s2

2n η
)) n−1∏

α=1

θα(0).

Therefore

G
( s

n η
) = n e

( 1
2 (n + 1)sη

)
e
(
(n − 1)

( s
2n − sn+s2

2n η
))

e(sτ + s
2n − sn+s2

2n η)

= n e
( s
2 (η + 1) − s2

2 η + sτ
)
.

The zeros of G(z): Since θα(z) has zeros at points in −α
n η + 1

nZ + Zη, G(z) has
zeros at the points in the set

{
τ + s+kr

n η
} ∪ {

0, 1
n η, . . . , n−1

n η
} − { s

n η
}
.

Quasi-periodicity properties of F(z): Since ϑ

[
a
b

]
(z+1 | η) = e(a)ϑ

[
a
b

]
(z | η),

F(z + 1
n ) =

∑

b∈Zn

w(kr ,b)(−nz − 1) ω−bs

=
∑

b∈Zn

ϑ

[
kr/n
b/n

]
(−nz − 1 + ξ | η)

ϑ

[
kr/n
b/n

]
(ξ | η)

ω−bs

=
∑

b∈Zn

e
( − kr

n

)ϑ
[

kr/n
b/n

]
(−nz + ξ | η)

ϑ

[
kr/n
b/n

]
(ξ | η)

ω−bs
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= ω−kr F(z).

If p, q ∈ Z, then ϑ

[
a
b

]
(z + pη + q | η) = e

(
aq − p(z + b) − p2

2 η
)
ϑ

[
a
b

]
(z | η)

by Proposition 2.8, so

F(z + m
n η) =

∑

b∈Zn

w(kr ,b)(−nz − mη) ω−bs

=
∑

b∈Zn

ϑ

[
kr/n
b/n

]
(−nz − mη + ξ | η)

ϑ

[
kr/n
b/n

]
(ξ | η)

ω−bs

=
∑

b∈Zn

e
(
m(−nz + ξ + b/n) − m2

2 η
) ϑ

[
kr/n
b/n

]
(−nz + ξ | η)

ϑ

[
kr/n
b/n

]
(ξ | η)

ω−bs

= e
( − nmz + mξ − m2

2 η
) ∑

b∈Zn

e
( bm

n )

ϑ

[
kr/n
b/n

]
(−nz + ξ | η)

ϑ

[
kr/n
b/n

]
(ξ | η)

ω−bs

= e
( − nmz + mξ − m2

2 η
) ∑

b∈Zn

ϑ

[
kr/n
b/n

]
(−nz + ξ | η)

ϑ

[
kr/n
b/n

]
(ξ | η)

ω−b(s−m).

Setting m = n, we see that

F(z + η) = e
( − n2z + nτ + n

2 (1 + η) − n2
2 η

)
F(z).

Thus, F(z) and G(z) have the same quasi-periodicity properties with respect to 1
nZ+

Zη.
The zeros of F(z): It follows from the formulas for F(z + 1

n ) and F(z + η) that
F(z) has n zeros17 in each fundamental parallelogram for 1

nZ + Zη, and the sum of
these zeros is τ + kr

n η + 1
2 (n + 1)η modulo 1

nZ + Zη.

17 Since F(z + 1
n ) = e(− kr

n )F(z) we may apply Lemma 2.5 to F(z) with η1 = 1
n , η2 = η, a = 0,

b = kr
n , c = n2, and d = n(−τ − 1

2 (1 + η) + n
2 η). Thus, cη1 − aη2 = n and

1
2 (cη21 − aη22) + (c − a)η1η2 + bη2 − dη1 = 1

2 + nη + kr
n η + τ + 1

2 (1 + η) − n
2 η

= τ + kr
n η + 1

2 (n + 1)η modulo 1
n Z + Zη.
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Setting z = 0 above, we see that

F(m
n η) = e

(
mξ − m2

2 η
) ∑

b∈Zn

ϑ

[
kr/n
b/n

]
(ξ | η)

ϑ

[
kr/n
b/n

]
(ξ | η)

ω−b(s−m)

which is zero when m 	= s in Zn . Thus, F(z) vanishes at the n − 1 points in the set

{
0, 1

n η, . . . , n−1
n η

} − { s
n η
}
. (3.9)

These points belong to a single fundamental parallelogram for 1
nZ+Zη and their sum

is 1
2 (n − 1)η − s

n η. Hence there is another zero at

τ + kr
n η + 1

2 (n + 1)η − 1
2 (n − 1)η + s

n η = τ + s+kr
n η modulo 1

nZ + Zη.

Comparison of F(z) and G(z): Thus F(z) and G(z) have the same zeros. They
also have the same quasi-periodicity properties with respect to 1

nZ+Zη so their ratio
is a doubly periodic meromorphic function without zeros or poles, and therefore a
constant. However, the formula for F( s

n η) above gives

F( s
n η) = n e

(
sξ − s2

2 η
) = n e

(
sτ + s

2 (1 + η) − s2
2 η

)

which equals G( s
n η) so that constant is 1. The proof is complete. ��

Corollary 3.6 Qn,k(E, τ )op is the quotient of T V by the ideal generated by the image
of Sk(−nτ).

Theorem 3.7 The family of operators Rτ (z) : V ⊗2 → V ⊗2 in (1.3) satisfies (QYBE2).

Proof Since Sk(z) = Sφ(z) where

φ : Hn → End(V )

is the representation
χ 
→ h−k′

, γ 
→ g,

and ε acts as multiplication by ωk′
, Corollary 3.3 tells us that Sk(z) satisfies (QYBE1)

and hence so does Sk(−nz). It now follows from (3.7) that P R(z) satisfies (QYBE1)
and therefore R(z) satisfies (QYBE2) by Proposition 2.1. ��

4 Families of linear operators

In Sects. 6, 7 and 9, we need to determine the zeros, and their multiplicities, of the
determinants of certain linear operators Gτ (z), G+

τ (z) and Hτ (z), on V ⊗d . These
operators, which are analytic functions of z, are compositions of operators of the form
I ⊗i−1 ⊗ R(w) ⊗ I d−i+1 for various w’s and i’s.
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4.1 Dimensions of kernels and themultiplicity of the zeros of the determinant

The multiplicity of a point p ∈ C as a zero of a meromorphic function f (z) is denoted

mult p f (z).

If f (z) is identically zero in a neighborhood of p we set mult p f (z) = ∞.
The next result is used in Sects. 6, 7 and 9.

Lemma 4.1 Let V be a finite-dimensional complex vector space and A : D → End(V )

a holomorphic map defined on a domain D ⊆ C. For all p ∈ D,

mult p(det A(z)) ≥ nullity A(p).

Proof This is trivial if det A(z) is identically zero in a neighborhood of p, so we
assume that p is an isolated zero of det A(z). Let e1, . . . , e� be an ordered basis for
ker A(p), and extend it to an ordered basis e1, . . . , e�, . . . for V . With respect to this
basis, the entries of the matrix A(z) are holomorphic functions whose first � columns
are divisible by z − p (in the ring of functions holomorphic in a neighborhood of p).
Hence det A(z) is divisible by (z − p)�, finishing the proof. ��

In Sect. 9, we need a stronger version of Lemma 4.1. First, some terminology. If
A : D → End(V ) is a holomorphic map as above and p is a fixed point in D, we
define

Am(z) := A(z)

(z − p)m

with the convention that A−1(z) ≡ 0.

Definition 4.2 The singularity partition of A(z) at a point p ∈ D is the tuple
σp(A) := (λ0 ≥ λ1 ≥ · · · ) of non-negative integers defined by

λm := the dimension of the kernel of Am(p)
∣∣
ker Am−1(p)

.

The size of the singularity partition is the number |σp(A)| := ∑
i λi .

Remark 4.3 Since λm = 0 for m � 0, we ignore those zeros and regard the partition
as a finite tuple.

The next result, which improves on Lemma 4.1, is used in the proof of Proposition
9.15.

Lemma 4.4 Let V be a finite-dimensional complex vector space and A : D → End(V )

a holomorphic map for a domain D ⊆ C. For all p ∈ D,

mult p(det A(z)) ≥ |σp(A)|.
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Proof Without loss of generality, we assume that p = 0. A direct sum decomposition
V = ker A(0) ⊕ V0 leads to a decomposition

A0 = A : D → Hom(ker A(0), V ) ⊕ Hom(V0, V ) (4.1)

whose left-hand component is a multiple of z, contributing zλ0 to det A(z) where

σ0(A) = (λ0 ≥ λ1 ≥ · · · ).

Dividing the left hand component of (4.1) by z and using a splitting ker A0(0) =
ker A1(0) ⊕ V1, we obtain

A1 : D → Hom(ker A1(0), V ) ⊕ Hom(V1, V ),

with the left-hand component once more a multiple of z contributing zλ1 to the deter-
minant. Simply repeat the procedure until the singularity partition has been exhausted,
noting that if at any point any of the functions

Am(0)
∣∣
ker Am−1(0)

vanish identically then det A(z) does too, making the statement trivial. ��

4.2 Theta operators

Assume� = Zη1+Zη2 is a lattice inC such that Im(η2/η1) > 0. A theta function of
order r with respect to � is a holomorphic function f : C → C satisfying the quasi-
periodicity conditions f (z +η1) = e(−az −b) f (z) and f (z +η2) = e(−cz −d) f (z)
in Lemma 2.5 for some constants a, b, c, d such that cη1−aη2 = r . If f is not the zero
function it has r zeros in every fundamental parallelogram for �. For example, the
functions that belong to the space 
r ,c(�), defined in [17, §2.1], are theta functions
of order r . In particular, θα is a theta function of order n with respect to � and
{θ0, . . . , θn−1} is a basis for 
n(�) = 
n, n−1

2
(�) [17, Prop. 2.6].

Definition 4.5 A holomorphic map A : C → End(V ) is a theta operator of order r
with respect to � if A(z + η1) = e(−az − b)A(z) and A(z + η2) = e(−cz − d)A(z)
for some constants a, b, c, d such that cη1 − aη2 = r . Equivalently, if 〈v∗, A(−)v〉 is
a theta functions of order r having the same quasi-periodicity properties for all v ∈ V
and all v∗ ∈ V ∗, where V ∗ is the dual vector space of V . Equivalently, the matrix
entries for A(z) with respect to any basis for V are theta functions of order r having
the same quasi-periodicity properties.

For example, R(z) is a theta operator of order n2 with respect to � because its
matrix entries belong to 
n2,nτ−n2η(�) (see [17, §2.1.2]).

If Ai (z), i = 1, 2, are theta operators whose matrix entries belong to 
ri ,ci (�),
then A1(z)A2(z) is a theta operator of order r1 + r2 because its matrix entries belong
to 
r1+r2,c1+c2(�).
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If A(z) is a theta operator whose matrix entries belong to 
r ,c(�) and d ∈ C, then
A(z +d) is a theta operator of order r because its matrix entries belong to
r ,c−rd(�).

4.2.1 “Determinants”

We often encounter theta operators that preserve a fixed subspace W ⊆ V or, more
generally,map it to a fixed subspaceW ′ ⊆ V of the same dimension. If A(z)(W ) ⊆ W ′
for all z ∈ C and dim W = m = dim W ′, then A induces a holomorphic function

detW→W ′(A(z)) := ∧m A(z) : ∧m W −→ ∧m W ′ (4.2)

that is well-defined up to a non-zero scalarmultiple (depending on a choice of bases for
W and W ′). We will often be interested in the location and multiplicities of the zeros
of this function. That data does not depend on the choice of bases. These remarks, and
the next result, apply to the theta operators Gτ (z) defined in Sect. 6.4.1 and Hτ (z)
defined in Proposition 9.6.

Proposition 4.6 Assume W and W ′ are subspaces of V of the same dimension. If A :
C → End(V ) is a theta operator of order N with respect to � such that A(z)(W ) ⊆ W ′
for all z, then detW→W ′(A(z))

(1) is a theta function of order N dim W and
(2) has N dim W zeros in every fundamental parallelogram for � if it is not identically

zero.

In particular, det A(z) is a theta function of order N dim V with respect to �.

Proof (1) Composing A with an automorphism of V that maps W ′ isomorphically
onto W , we may as well assume W = W ′, whence detW→W (A(z)) becomes the usual
determinant of A(z)|W .

Choose an ordered basis for W and extend it to one for V . The operators A(z) then
have the shape (

A11(z) A12(z)
0 A22(z)

)
,

and det(A(z)|W ) = det A11(z). Since the summands in the usual expression for
det A11(z) are products of dim W theta functions of order N having the same quasi-
periodicity properties, those summands, and therefore their sum, are theta functions
of order N × dim W .

(2) A non-zero theta function of order r has r zeros in a fundamental parallelogram
(Lemma 2.5). ��

4.3 Families of kernels and images

Let Grass(d, W ) denote the Grassmannian of d-dimensional subspaces of a finite-
dimensional C-vector space W .
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In this subsection we consider algebraic or analytic morphisms fi from a complex
variety (algebraic or analytic,18 though we typically specialize to the algebraic case)
to either

• the Grassmannian Grass(d, W ), or
• the space of linear maps Hom(W , W ′) for finite-dimensional C-vector spaces W
and W ′.

We will be interested in the families of intersections (or sums) of fi (y) in the first case
or ker fi (y) (or im fi (y)) in the second.

Proposition 4.7 [47, Prop. 13.4] Let f : Y → Hom(W , W ′) be a morphism of alge-
braic or analytic varieties and write r := max{rank f (y) | y ∈ Y }.
(1) The set U := {y ∈ Y | rank f (y) = r} is an open dense subset of Y .
(2) The map ker f : U → Grass(dim W − r , W ), u 
→ ker f (u), is a morphism.
(3) The map im f : U → Grass(r , W ′), u 
→ im f (u), is a morphism.

Proof As we said above, we focus on the algebraic situation.
(1) Since Y is a variety, and therefore irreducible, density follows from openness

and non-emptiness. The latter holds by construction (since the maximal rank is, of
course, achieved somewhere), so it remains to argue that U ⊆ Y is open. This is clear
from the fact that the condition rank < r is expressible as a collection of algebraic
equations (the vanishing of r × r minors).

Parts (2) and (3) are proved in [17, Prop. 3.17]. ��
To further strengthen the connection between families of subspaces and families of

operators, we have a kind of converse to parts (2) and (3) of Proposition 4.7.
If F : X → Hom(W , W ′) is a function we write ker F and im F for the functions

x 
→ ker F(x) and x 
→ im F(x), respectively.

Lemma 4.8 Let f : Y → Grass(d, W ) be a morphism.

(1) Let W ′ be a fixed vector space of dimension ≥ dim W − d. Then Y can be covered
with open subvarieties U for which there are morphisms

FU : U → Hom(W , W ′)

such that f |U = ker FU .
(2) Let W ′′ be a fixed vector space of dimension ≥ d. Then Y can be covered with

open subvarieties U for which there are morphisms

GU : U → Hom(W ′′, W )

such that f |U = im GU .

18 We adopt the following convention: a (complex) algebraic variety is a scheme over C that is reduced,
irreducible, separated, and of finite type. An analytic variety is a (Hausdorff) analytic space that is reduced
and irreducible.
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Proof We prove (1); the dual argument shows (2) (using possibly different U ’s).
Cover the Grassmannian G := Grass(d, W ) with the affine open sets U� described in
[23, §3.2.2], consisting of the d-subspaces of W that intersect a fixed (dim W − d)-
dimensional subspace � trivially. Pulling these back to Y , we may as well assume the
image of f lies entirely within a single open patch U� ⊂ G for a fixed �; i.e., we are
now assuming that f (y) ∩ � = {0} for all y ∈ Y .

Now � is naturally isomorphic to W/ f (y) via the quotient map W → W/ f (y)

so, for each y ∈ Y , define F(y) ∈ Hom(W , W ′) to be the composition

W → W/ f (y) ∼= � → W ′

where � → W ′ is some fixed embedding. This is the desired morphism F : Y →
Hom(W , W ′). ��
Proposition 4.9 [47, Prop. 13.5] Let fi , 1 ≤ i ≤ r , be morphisms Y → Grass(d, W ).
Then,

(1) The sets

U :=
{

y ∈ Y
∣
∣∣
⋂

i

fi (y) has minimal dimension e
}

and

U ′ :=
{

y ∈ Y
∣∣∣
∑

i

fi (y) has maximal dimension e′}

are open dense subsets of Y .
(2) The maps

⋂

i

fi : U → Grass(e, W ), y 
→
⋂

i

fi (y), and

∑

i

fi : U ′ → Grass(e′, W ), y 
→
∑

i

fi (y),

are morphisms.

Proof Both (1) and (2) are true if they are true locally so, after Lemma 4.8, we
can assume that there are morphisms Fi : Y → Hom(W , W ′) and Gi : Y →
Hom(W ′′, W ) such that ker Fi = fi = im Gi . Now

⋂

i

fi = ker
(
F1 ⊕ · · · ⊕ Fr : Y → Hom(W , W ′⊕r )

)
,

and ∑

i

fi = im
(
(G1, . . . , Gr ) : Y → Hom(W ′′⊕r , W )

)
,

so (1) and (2) follow from Proposition 4.7. ��
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4.3.1 Generically large and generically small functions

Let X be a topological space. We say that a function f : X → R is generically large
(resp., generically small) if f −1(c) is an open dense set for some c ∈ R and f (x) < c
(resp., f (x) > c) for all x /∈ f −1(c).

In the setting of Proposition 4.7, the function rank f (x) on X is generically large
(images are generically large) and nullity f (x) is generically small (kernels are gener-
ically small).

We also say that sums are generically large and intersections are generically small
based on the facts in Proposition 4.9.
4.3.2. We will apply these ideas to situations where we have two functions f1, f2 :
X → R with the following properties: f1 is generically small (e.g., nullity); f2 is
generically large (e.g., rank); f1(x) ≤ f2(x) for all x ; f1(x) = f2(x) on an open
dense subset of X . It follows that f1(x) = f2(x) for all x .

5 The determinant of R�(z) and the space of quadratic relations for
Qn,k(E, �)

In Sect. 6.4 we will show, for all τ ∈ (C−⋃
m≥1

1
m �)∪ 1

n �, that the Hilbert series for
Qn,k(E, τ ) is the same as that for the polynomial ringC[x0, . . . , xn−1]. In this section
we prove that, for all τ ∈ C−( 1

2n �− 1
n �), the degree-two components of Qn,k(E, τ )

and C[x0, . . . , xn−1] have the same dimension, namely
(n+1

2

)
. Since reln,k(E, τ ) is

the image of Rτ (τ ) (see Sect. 5.4.1), it suffices to show that the nullity of Rτ (τ ) is(n+1
2

)
. That is what we will do.

Since we showed that Qn,k(E, τ ) has the same Hilbert series as the polynomial
ring on n variables when τ ∈ 1

n � in [17, §5], we only have to prove the result for
τ ∈ C − 1

2n �.

5.1 The limit of R�(m� + �) as � → 0

As a function of z, Rτ (z) is not defined when τ ∈ 1
n � (because some θkr (τ ) will

then be 0). Nevertheless, as we observed in [17, §3.3.2], the holomorphic function
τ 
→ Rτ (τ ) on C− 1

n � extends in a unique way to a holomorphic function on C. We
need a slightly more general result here.

Lemma 5.1 Fix ζ ∈ 1
n � and m ∈ Z. As a function of τ , the operator Rτ (mτ + ζ ) is

holomorphic on C− 1
n �, and its singularities at 1

n � are removable; i.e., Rτ (mτ + ζ )

extends in a unique way to a holomorphic function of τ on the entire complex plane.

Proof By definition, Rτ (mτ + ζ )(xi ⊗ x j ) is

1

θ1(0) · · · θn−1(0)

( ∏

i∈Zn

θi (−mτ − ζ )

) ∑

r∈Zn

θ j−i+r(k−1)((1 − m)τ − ζ )

θ j−i−r (−mτ − ζ )θkr (τ )
x j−r ⊗ xi+r .

(5.1)
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Suppose both theta functions in the denominator of a summand are zero at τ . Then
τ = − kr

n and −mτ − ζ = − j−i−r
n modulo 1

nZ+Zη, so (1−m)τ − ζ = − j−i+(k−1)
n

modulo 1
nZ+Zη; thus the numerator in the same summand is also zero; each summand

therefore has at most a pole of order one at τ and, since mτ + ζ ∈ 1
n �, such a pole is

canceled out by the order-one zero in the term before the � sign. ��
Proposition 5.2 For all m ∈ Z,

lim
τ→0

Rτ (mτ) = symm (5.2)

where symm : V ⊗2 → V ⊗2 is the skew-symmetrization operator

symm(v ⊗ v′) := v ⊗ v′ − mv′ ⊗ v.

Proof The limit as τ → 0 of Rτ (mτ) is the same as the limit as τ → 0 of the operator

xi ⊗ x j 
→ θ0(−mτ)
∑

r∈Zn

θ j−i+r(k−1)((1 − m)τ )

θ j−i−r (−mτ)θkr (τ )
x j−r ⊗ xi+r .

As τ → 0, multiplication by θ0(−mτ) annihilates those terms in the sum
∑

r∈Zn
whose denominators do not vanish at 0 so only the r = 0 and r = j − i terms
contribute to limτ→0 Rτ (mτ). Hence limτ→0 Rτ (mτ) = limτ→0 Xτ (mτ) where

Xτ (mτ)(xi ⊗ x j ) := θ0(−mτ)

·
(

θk( j−i)((1 − m)τ )

θ0(−mτ)θk( j−i)(τ )
xi ⊗ x j + θ j−i ((1 − m)τ )

θ j−i (−mτ)θ0(τ )
x j ⊗ xi

)

(5.3)

for i 	= j and

Xτ (mτ)(xi ⊗ xi ) := θ0(−mτ) · θ0((1 − m)τ )

θ0(τ )θ0(−mτ)
xi ⊗ xi . (5.4)

Assume i 	= j . The two θk( j−i)( · ) factors in the left-hand term of (5.3) cancel out
as τ → 0 because both converge to θk( j−i)(0) which is non-zero; the two θ0(−mτ)

terms also cancel out so the first term on the right-hand side of (5.3) converges to
xi ⊗ x j . Since θ0(τ ) vanishes at τ = 0 with multiplicity 1,

θ0(τ ) = a1τ + a2τ
2 + · · ·

with a1 	= 0. Hence the ratio θ0(−mτ)
θ0(τ )

converges to−m. The two θ j−i ( · ) factors in the
right-hand term of (5.3) cancel out as τ → 0 because both converge to θ j−i (0) which
is non-zero. The second term on the right-hand side of (5.3) therefore converges to
−mx j ⊗ xi . Thus, Xτ (mτ)(xi ⊗ x j ) converges to xi ⊗ x j − mx j ⊗ xi as τ → 0.
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Assume i = j . Similar analysis shows that Xτ (mτ)(xi ⊗ xi ) converges to (1 −
m)xi ⊗ xi as τ → 0.

Combining the cases i 	= j and i = j gives the uniform result

Xτ (mτ)(xi ⊗ x j ) −→ xi ⊗ x j − mx j ⊗ xi

as τ → 0. The proof is now complete. ��
For each ζ ∈ 1

n �, we define

R+(ζ ) := lim
τ→0

Rτ (τ + ζ ) and R−(ζ ) := lim
τ→0

Rτ (−τ + ζ ). (5.5)

Corollary 5.3 When ζ = 0, the operators in (5.5) are R±(0)(xi ⊗ x j ) = xi ⊗ x j ∓
x j ⊗ xi .

Proof Apply Proposition 5.2 with m = 1 for R+(0) and with m = −1 for R−(0). ��
Lemma 5.4 For all ζ ∈ 1

n �,

ker R+(ζ ) = im R−(−ζ ),

im R+(ζ ) = ker R−(−ζ ),

nullity R+(ζ ) = (n+1
2

)
,

nullity R−(ζ ) = (n
2

)
.

Proof By Proposition 5.2,

R+(0)(xi ⊗ x j ) = xi ⊗ x j − x j ⊗ xi and R−(0)(xi ⊗ x j ) = xi ⊗ x j + x j ⊗ xi .

Therefore im R+(0) = ker R−(0), im R−(0) = ker R+(0), nullity R+(0) = (n+1
2

)
,

and nullity R−(0) = (n
2

)
. Thus, the lemma is true when ζ = 0.

We now consider an arbitrary ζ = a
n + b

n η. The argument in the next two paragraphs
will show that R+(ζ )R−(−ζ ) = R−(−ζ )R+(ζ ) = 0.

Define C := T b Ska , C ′ := T −b S−ka , A := C ⊗ I , A′ = C ′ ⊗ I , B := I ⊗ C−1,
and B ′ := I ⊗ C ′−1. By Corollary 2.7,

R+(ζ ) = lim
τ→0

f (τ, ζ, τ )B Rτ (τ )A = f (0, ζ, 0)B
(
lim
τ→0

Rτ (τ )
)

A

= f (0, ζ, 0)B R+(0)A

and

R−(−ζ ) = lim
τ→0

f (−τ,−ζ, τ )B ′ Rτ (−τ)A′ = f (0,−ζ, 0)B ′( lim
τ→0

Rτ (−τ)
)

A′

= f (0,−ζ, 0)B ′ R−(0)A′
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where f (z, ζ, τ ) does not vanish at any point in C × 1
n � × C. To show that

R+(ζ )R−(−ζ ) = 0 it suffices to show that R+(0)AB ′ R−(0) = 0; i.e., that
R+(0)(C ⊗ C ′−1)R−(0) = 0.

Let ε = e
( 1

n

)
. Since ST = εT S,C ′−1 = Ska T b = εkabT b Ska = εkabC . Therefore

R+(0)(C ⊗ C ′−1)R−(0) = R+(0)(I ⊗ εkab)(C ⊗ C)R−(0)

= (C ⊗ C)R+(0)(I ⊗ εkab)R−(0);

we used the fact that S⊗2 and T ⊗2 commute with Rτ (z) and hence with limits of
Rτ (mτ + ζ ). Since I ⊗ εkab is a scalar multiple of the identity, it also commutes
with R±(0). Hence R+(0)(C ⊗ C ′−1)R−(0) = 0. This completes the proof that
R+(ζ )R−(−ζ ) = 0. A similar argument shows that R−(−ζ )R+(ζ ) = 0.

Since A and B are invertible operators and f (0, ζ, 0) is a non-zero scalar,
rank R+(ζ ) = rank R+(0). Similarly, rank R−(ζ ) = rank R−(0). The lemma there-
fore holds for all ζ ∈ 1

n �. ��

5.2 The ranks of R�(�) and R�(−�)

Lemma 5.5 Assume τ ∈ C − 1
n �. For all ζ ∈ 1

n �,

im Rτ (τ + ζ ) ⊆ ker Rτ (−τ − ζ ), im Rτ (−τ − ζ ) ⊆ ker Rτ (τ + ζ ), (5.6)

nullity Rτ (τ + ζ ) ≥ (n+1
2

)
, and nullity Rτ (−τ − ζ )) ≥ (n

2

)
. (5.7)

Proof (5.6) is an immediate consequence of Proposition 2.6(2).
By Lemma 5.1, Rτ (τ + ζ ) and Rτ (−τ − ζ ) extend to holomorphic functions of τ

on the whole complex plane. By Lemma 5.4,

nullity
(
lim
τ→0

Rτ (τ + ζ )
) = (n+1

2

) = rank
(
lim
τ→0

Rτ (−τ − ζ )
)
.

Since nullity is generically small and rank is generically large it follows that

nullity Rτ (τ + ζ ) ≤ (n+1
2

) ≤ rank Rτ (−τ − ζ )

for generic τ . But im Rτ (−τ − ζ ) ⊆ ker Rτ (τ + ζ ) so

nullity Rτ (τ + ζ ) = (n+1
2

) = rank Rτ (−τ − ζ )

for generic τ . However, nullity is generically small and rank is generically large so

nullity Rτ (τ + ζ ) ≥ (n+1
2

) ≥ rank Rτ (−τ − ζ )
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for all τ ∈ C. This proves the first inequality in (5.7). A similar argument proves the
second.19 ��

5.3 The determinant of R�(z)

Since R(z) is a theta operator of order n2 with respect to�, det R(z) is a theta function
of order n4 with respect to � (Proposition 4.6). The next result improves on this.

Proposition 5.6 If τ /∈ 1
n �, then det Rτ (z) is a theta function of order n2 with respect

to 1
n �,

(1) det Rτ

(
z + 1

n

) = det Rτ (z),

(2) det Rτ

(
z + 1

n η
) = b(z)n2 det Rτ (z), and

(3) det Rτ (z) has n2 zeros in every fundamental parallelogram for 1
n �.

Proof By (2.4) and (2.5), Rτ

(
z + 1

n

) = (−1)n−1(I ⊗ S−k) Rτ (z) (Sk ⊗ I ) and Rτ

(
z +

1
n η
) = b(z)(I ⊗T −1) Rτ (z) (T ⊗ I ). Since dim(V ⊗2) = n2 implies det(−I ⊗ I )n−1 =

1, it follows that det Rτ

(
z + 1

n

) = det Rτ (z) and det Rτ

(
z + 1

n η
) = b(z)n2 det Rτ (z).

(3) We note that b(z)n2 = e(−n3z − B) as functions of z for a suitable B ∈ C.
Applying Lemma 2.5 to the function f (z) = det R(z), with η1 = 1

n , η2 = 1
n η,

a = b = 0, c = n3, and d = B, we see that the number of zeros (counted with
multiplicity) in each fundamental parallelogram for 1

n � is cη1 − aη2 = n3 × 1
n = n2.

��
Theorem 5.7 If τ /∈ 1

2n �, then

(1) Rτ (z) is an isomorphism if and only if z /∈ ±τ + 1
n �;

(2) im Rτ (τ + ζ ) = ker Rτ (−τ − ζ ) and im Rτ (−τ − ζ ) = ker Rτ (τ + ζ ) for all
ζ ∈ 1

n �;
(3) if p ∈ C, then

mult p(det Rτ (z)) = nullity Rτ (p) =

⎧
⎪⎨

⎪⎩

(n+1
2

)
if p ∈ τ + 1

n �,
(n
2

)
if p ∈ −τ + 1

n �,

0 otherwise;

If τ ∈ 1
2n � − 1

n �, then nullity Rτ (τ ) = nullity Rτ (−τ) ≥ (n+1
2

)
.

Proof If τ ∈ C − 1
2n �, then τ and −τ are distinct points modulo 1

n �.
Lemmas 5.5 and 4.1 imply that

multτ (det Rτ (z)) ≥ nullity Rτ (τ ) ≥ (n+1
2

)

19 Alternatively, the second inequality in (5.7) follows from the first because

nullity Rτ (−τ − ζ ) = dim V ⊗2 − rank Rτ (−τ − ζ ) ≥ n2 − (n+1
2
) = (n

2
)
.
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and
mult−τ (det Rτ (z)) ≥ nullity Rτ (−τ) ≥ (n

2

)
.

But det Rτ (z) has exactly n2 = (n+1
2

)+ (n
2

)
zeros in every fundamental parallelogram

for 1
n � so the displayed inequalities are equalities, which then implies (1) and (2).

Since the rank of Rτ (z) is the same as that of Rτ (z + ζ ) (Proposition 2.6(1)), part (3)
follows from (2) and the inclusions in (5.6).

Finally, if τ ∈ 1
2n � − 1

n �, then −τ = τ + ζ for some ζ ∈ 1
n � so Rτ (τ ) and

Rτ (−τ) have the same nullity by Proposition 2.6(1), and this is ≥ (n+1
2

)
by (5.7). ��

Proposition 5.8 For all τ ∈ C − 1
n �,

det Rτ (z) =
⎛

⎝
∏

α∈Zn

θα(−z − τ)

θα(−τ)

⎞

⎠

n(n−1)
2

⎛

⎝
∏

α∈Zn

θα(−z + τ)

θα(τ )

⎞

⎠

n(n+1)
2

. (5.8)

In particular, det Rτ (z) does not depend on k.

Proof We first prove this under the assumption that τ /∈ 1
2n �.

Let D(z) denote the function on the right-hand side of (5.8). Both det R(z) and D(z)
are holomorphic functions of z. It follows from Proposition 5.6 and [17, Prop. 2.6]
that det R(z) and D(z) have the same quasi-periodicity properties with respect to the
lattice 1

n �. It follows from Theorem 5.7(3) and [17, Prop. 2.6] that det R(z) and D(z)
have the same zeros with the samemultiplicities; the ratio (det R(z))/D(z) is therefore
a meromorphic function on the elliptic curve C/ 1

n � with neither zeros nor poles, and
therefore a constant. Since R(0) = I ⊗ I by Proposition 2.4, det R(0) = 1 = D(0).
So the constant is 1.

The result is therefore true when τ /∈ 1
2n �. By continuity, it also holds when

τ ∈ 1
2n � − 1

n �. ��

Corollary 5.9 Let τ ∈ C − 1
n �. Then Rτ (z) is an isomorphism if and only if z /∈

±τ + 1
n �.

Proof Proposition 5.8 tells us that det Rτ (z) = 0 if and only if z ∈ ±τ + 1
n �. Thus

the result follows. ��

5.4 The space of quadratic relations forQn,k(E, �) has dimension
(n
2
)

This subsection completes the proof that the dimension of reln,k(E, τ ) is the same as
that of the space of quadratic relations for the polynomial ring on n variables when
τ /∈ ( 1

2n � − 1
n �).
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5.4.1 Definition of reln,k(E, �) for all � ∈ C

SinceLemma5.1 ensures that Rτ (τ ) extends in a uniqueway to a holomorphic function
on C, we can now define, for all τ ∈ C,

reln,k(E, τ ) := im Rτ (τ ),

Qn,k(E, τ ) := T V

(reln,k(E, τ ))

where, if τ ∈ 1
n �, then Rτ (τ ) is not defined so it should be regarded as the limit R+(τ )

in (5.5).20

5.4.2 Remark

In their first paper [37], Odesskii and Feigin define reln,k(E, τ ) to be im Rτ (τ ); how-
ever, in his survey [36, p. 1145], Odesskii defines reln,k(E, τ ) to be ker Rτ (−τ). By
Theorem 5.7(2), im Rτ (τ ) = ker Rτ (−τ) if τ /∈ 1

2n � (we do not know whether this
equality holds when τ ∈ 1

2n � − 1
n �).

Theorem 5.10 For all τ ∈ C − ( 1
2n � − 1

n �), dim reln,k(E, τ ) = (n
2

)
.

Proof Weproved this in [17, §5] for τ ∈ 1
n �. Suppose τ ∈ C− 1

2n �. Then reln,k(E, τ )

is the image of Rτ (τ ) and, by Theorem 5.7(3),

rank Rτ (τ ) = dim V ⊗2 − nullity Rτ (τ ) = n2 − (n+1
2

) = (n
2

)
.

��

5.5 Some twists ofQn,k(E, �)

By Proposition 2.6(1), rank Rτ (τ + ζ ) = rank Rτ (τ ) for all ζ ∈ 1
n �. Since

Qn,k(E, τ ) = T V /(im Rτ (τ )) it is reasonable to ask whether the algebras
T V /(im Rτ (τ + ζ )) are, perhaps, “new” elliptic algebras.

Proposition 5.11 Assume a, b ∈ Z. Let τ ∈ C, ζ = a
n + b

n η, and φ := S−ka T −b ∈
GL(V ).

(1) The map φ extends in a unique way to an algebra automorphism of T V that
descends to an automorphism of Qn,k(E, τ ) (that we also denote by φ) and

T V

(im Rτ (τ + ζ ))
∼= Qn,k(E, τ )φ

where Qn,k(E, τ )φ is the twist of Qn,k(E, τ ) in the sense of [17, §4.1].

20 There are some other ways to extend the definition of reln,k (E, τ ) to all τ ∈ C; see [17, §3.3] for more
discussion.
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(2) The categories of Z-graded left modules over T V /(im Rτ (τ +ζ )) and Qn,k(E, τ )

are equivalent.
(3) If k + 1 is a unit in Zn, then T V /(im Rτ (τ + ζ )) is isomorphic to Qn,k(E, τ + ζ ′)

where ζ ′ = − kc
n − kd

n η and c and d are arbitrary integers such that (k + 1)c = a
and (k + 1)d = b in Zn.

Proof We use the convention that, for τ ∈ 1
n �, Rτ (τ ) and Rτ (τ + ζ ) mean R+(τ )

and R+(τ + ζ ), respectively.
(1) Let a denote the ideal in T V generated by im Rτ (τ ); thus Qn,k(E, τ ) = T V /a.
Certainly φ extends in a unique way to an algebra automorphism of T V that we

continue to denote by φ. By Proposition 2.6(3), the operator φ⊗φ on V ⊗V commutes
with Rτ (τ ) so im Rτ (τ ) is stable under the action of φ ⊗ φ. The automorphism φ of
T V therefore preserves a, i.e., φ(a) = a, and so descends to an automorphism of
Qn,k(E, τ ) (that we continue to denote by φ). We define the algebra Qn,k(E, τ )φ as
in [17, §4].

By [17, Lem. 4.1], (T V /a)φ ∼= T V /φ′(a) where φ′(a) denotes the image of a
under the action of the linear map φ′ that is I ⊗ φ ⊗ · · · ⊗ φd−1 on each V ⊗d . Since
our a is generated by its degree-two component, a2, φ′(a) is generated by (I ⊗φ)(a2).
But

(I ⊗ φ)(a2) = (I ⊗ φ)Rτ (τ )(V ⊗2)

= (I ⊗ φ)Rτ (τ )(φ−1 ⊗ I )(V ⊗2)

= im Rτ (τ + ζ ) by Corollary 2.7.

Hence
T V

(im Rτ (τ + ζ ))
= T V

(I ⊗ φ)(a2)
= T V

φ′(a)
∼= Qn,k(E, τ )φ.

(2) This is an immediate consequence of [3, Cor. 8.5].
(3) Assume k + 1 is a unit in Zn (equivalently, k′ + 1 is a unit in Zn).
Let c, d ∈ Z be such that c = (k + 1)−1a and d = (k + 1)−1b in Zn . Define

σ := S−kcT −d . Then φ = σ k+1, and if ζ ′ = − kc
n − kd

n ,

Qn,k(E, τ )φ = Qn,k(E, τ )σ
k+1 ∼= Qn,k(E, τ + ζ ′)

by [17, Thm. 4.3]. ��

5.6 The relation between R�(z) and Odesskii’s R-matrix

Odesskii defines a family of operators that wewill denote by ROd(z) at [36, p. 1145].21

The relation between the two operators is

21 What we are calling ROd(z) is obtained from Odesskii’s formula for Rn,k (E, η)(u − v) by identifying
xα(u) and xα(v) with xα and setting v = 0 and u = z.
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Rτ (z) =
⎛

⎝
∏

α∈Zn

θα(−z + τ)

θα(τ )

⎞

⎠ ROd(z). (5.9)

We chose to work with Rτ (z) rather than ROd(z) for several reasons. For example,
the θα(−z + τ) terms in (5.9) cancel the poles that occur in the formula for ROd(z)
when z ∈ τ + 1

n �. Those poles mean that ROd(z) does not satisfy (QYBE2) for all
values of u and v. Nevertheless, away from those poles, ROd(z) satisfies (QYBE2) if
and only if Rτ (z) does. Our other reasons for preferring Rτ (z) included the following:
we wanted Rτ (0) to be the identity operator (Proposition 2.4), and also wanted the
equality limτ→0 Rτ (mτ) = symm in Proposition 5.2 and the equalities in Proposition
6.4; other choices of Rτ (z) would only give those equalities up to a non-zero scalar
multiple.

Proposition 5.12 The determinant of the operator ROd(z) defined at [36, p. 1145] is

(−1)
n2(n−1)

2 e
(

n3(n−1)
2 τ

)(θ0(−z − τ) · · · θn−1(−z − τ)

θ0(−z + τ) · · · θn−1(−z + τ)

)n(n−1)
2

. (5.10)

Proof It follows from (5.8) that

det ROd(z) =
⎛

⎝
∏

α∈Zn

θα(τ )

θα(−z + τ)

⎞

⎠

n2 ⎛

⎝
∏

α∈Zn

θα(−z − τ)

θα(−τ)

⎞

⎠

n(n−1)
2

·
⎛

⎝
∏

α∈Zn

θα(−z + τ)

θα(τ )

⎞

⎠

n(n+1)
2

.

We leave to the reader the pleasant task of showing this equals the expression in (5.10).
��

The formula for det ROd(z) at [36, p. 1145] omits the term (−1)
n2(n−1)

2 e
(

n3(n−1)
2 τ

)
.

6 The Hilbert series ofQn,k(E, �)

This section shows Qn,k(E, τ ) has the same Hilbert series as the polynomial ring SV
for all τ ∈ (C − ⋃

m≥1
1
m �) ∪ 1

n �.

6.1 Introduction

Section 5 showed that, for all τ ∈ C − ( 1
2n � − 1

n �), the degree-two component of

Qn,k(E, τ ) has the “right” dimension, namely
(n+1

2

)
, by showing in Theorem 5.7(2)

that Qn,k(E, τ )’s space of quadratic relations, which is, by definition, the image of
Rτ (τ ), is equal to the kernel of Rτ (−τ). A similar idea is used in this section: we
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show, for all τ ∈ C−⋃d
m=1

1
mn �, that the space of degree-d relations for Qn,k(E, τ ),

which is
∑

s+t+2=d V ⊗s ⊗ im Rτ (τ ) ⊗ V ⊗t , is the kernel of the operator Fd(−τ) :
V ⊗d → V ⊗d defined in (6.2) below.

The analogy with the polynomial ring SV is helpful. The space of degree-d rela-
tions for SV , i.e., the kernel of the natural map V ⊗d → Sd V , is the kernel of the
symmetrization operator

∑
σ∈Sd

σ acting in the natural way on V ⊗d . Proposition 6.4
shows that limτ→0 Fd(−τ) is a non-zero scalar multiple of

∑
σ∈Sd

σ .

6.2 The linear operators Td, Sd→1, Srevd→1, Fd, etc., on V
⊗d

The results in this subsection apply to any family of linear operators R(z) : V ⊗2 →
V ⊗2, z ∈ C, satisfying (QYBE2), which is the parametrized braid relation

R(u)12R(u + v)23R(v)12 = R(v)23R(u + v)12R(u)23

for all u, v ∈ C.
If tp, . . . , tq ∈ C we will write �

q
p := tp + · · · + tq . Let i , j , and d be positive

integers with i ≤ j ≤ d. We will use the following operators on V ⊗d :

Si→ j (ti , . . . , t j−1) := R
(
�

j−1
i

)
i,i+1 · · · R

(
�

j−1
q

)
q,q+1 · · · R

(
t j−1

)
j−1, j ,

S j→i (t j−1, . . . , ti ) := R
(
�

j−1
i

)
j−1, j · · · R

(
�

q
i

)
q,q+1 · · · R

(
ti
)
i,i+1,

Srev
i→ j (ti , . . . , t j−1) := R

(
ti
)
i,i+1 · · · R

(
�

q
i

)
q,q+1 · · · R

(
�

j−1
i

)
j−1, j ,

Srev
j→i (t j−1, . . . , ti ) := R

(
t j−1

)
j−1, j · · · R

(
�

j−1
q

)
q,q+1 · · · R

(
�

j−1
i

)
i,i+1,

with the convention that these are the identity operators when i = j . For example,

S1→4(t1, t2, t3) = R(t1 + t2 + t3)1,2R(t2 + t3)2,3R(t3)3,4.

Each of these is a theta operator (Definition 4.5) of order (i − j)n2 with respect to �.
We also define

Td(z1, . . . , zd−1) := S2→1(z1)S3→1(z1, z2) · · · Sd→1(z1, . . . , zd−1). (6.1)

and
Fd(z) := Td(z, . . . , z). (6.2)

When d = 0, 1 we declare that these operators are the identity.
The choice of labeling for the arguments in the S-operators allows the elegant

factorizations

Si→k(ti , . . . , tk−1) = Si→ j (ti , . . . , t j−2, �
k−1
j−1

)
S j→k(t j , . . . , tk−1),

Sk→i (tk−1, . . . , ti ) = Sk→ j
(
tk−1, . . . , t j+1, �

j
i

)
S j→i

(
t j−1, . . . , ti

)
,
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Srev
i→k(ti , . . . , tk−1) = Srev

i→ j (ti , . . . , t j−1)Srev
j→k(�

j
i , t j+1, . . . , tk−1),

Srev
k→i (tk−1, . . . , ti ) = Srev

k→ j (tk−1, . . . , t j )Srev
j→i

(
�k−1

j−1, t j−2, . . . , ti
)
,

when 1 ≤ i ≤ j ≤ k. These factorizations make no use of the Yang–Baxter equation.
We also note that

Si→ j (ti , . . . , t j−1) = Srev
i→ j

(
�

j−1
i ,−ti , . . . ,−t j−2

)
, (6.3)

S j→i (t j−1, . . . , ti ) = Srev
j→i

(
�

j−1
i ,−t j−1, . . . ,−ti+1

)
. (6.4)

These equalities make no use of the Yang–Baxter equation either.
Recall the notation in Sect. 2.1: T L

d−1 (resp., T R
d−1) denotes Td−1 applied to the

left-most (resp., right-most) d − 1 tensorands of V ⊗d . The identities in the next result
will be used repeatedly in subsequent sections.

Lemma 6.1 For all d ≥ 2 and all z1, . . . , zd−1 ∈ C,

Td(z1, . . . , zd−1) = T L
d−1(z1, . . . , zd−2)Sd→1(z1, . . . , zd−1)

= T R
d−1(z2, . . . , zd−1)S1→d(zd−1, . . . , z1)

= Srev
1→d(z1, . . . , zd−1)T

L
d−1(z2, . . . , zd−1)

= Srev
d→1(zd−1, . . . , z1)T

R
d−1(z1, . . . , zd−2).

Proof (1) The equality Td(z1, . . . , zd−1) = T L
d−1(· · · )Sd→1(· · · ) follows at once from

the definition of Td(z1, . . . , zd−1).
(2)Wewill nowshow thatTd(z1, . . . , zd−1)Srev

1→d(z1, . . . , zd−1)T L
d−1(z2, . . . , zd−1).

We first replace each factor Si→1(z1, . . . , zi−1) in (6.1) by

R(z1 + · · · + zi−1)i−1,i Si−1→1(z2, . . . , zi−1).

Since Si−1→1(z2, . . . , zi−1) acts on the left-most i −1 tensorands of V ⊗d , it commutes
with R(z1 + · · · + z j−1) j−1, j whenever i < j . Therefore

Td(z1, . . . , zd−1) = R(z1)12 · R(z1 + z2)23S2→1(z2)

· · · R(z1 + · · · + zd−1)d−1,d Sd−1→1(z2, . . . , zd−1)

= R(z1)12 · · · R(z1 + · · · + zd−1)d−1,d

· S2→1(z2) · · · Sd−1→1(z2, . . . , zd−1)

= Srev
1→d(z1, . . . , zd−1)T

L
d−1(z2, . . . , zd−1).

(3) We now prove Td(z1, . . . , zd−1) = T R
d−1(· · · )S1→d(· · · ) by induction on d.

The case d = 2 is trivial, so we assume the equality holds for all integers ≤ d and
prove it for d + 1.

By (1) and the induction hypothesis,

Td+1(z1, . . . , zd) = T L
d (z1, . . . , zd−1)Sd+1→1(z1, . . . , zd)
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= T M
d−1(z2, . . . , zd−1)S1→d(zd−1, . . . , z1)Sd+1→1(z1, . . . , zd)

(6.5)

where T M
d−1 denotes Td−1 applied to the middle d − 1 tensorands of V ⊗(d+1).

The product S1→d(zd−1, . . . , z1)Sd+1→1(z1, . . . , zd) equals

S1→d (zd−1, . . . , z1)R(z1 + · · · + zd )d,d+1Sd→1(z2, . . . , zd )

= S1→d−1(zd−1, . . . , z3, z1 + z2) R(z1)d−1,d R

⎛

⎝
d∑

i=1

zi

⎞

⎠

d,d+1

R

⎛

⎝
d∑

i=2

zi

⎞

⎠

d−1,d

· Sd−1→1(z3, . . . , zd ).

(6.6)

By (QYBE2), the product of the three R’s in the middle equals

R(z2 + · · · + zd)d,d+1R(z1 + · · · + zd)d−1,d R(z1)d,d+1. (6.7)

Since Rd,d+1 commutes with S1→d−1 and Sd−1→1, (6.6) equals

R(z2 + · · · + zd )d,d+1S1→d−1(zd−1, . . . , z3, z1 + z2)R(z1 + · · · + zd )d−1,d

· Sd−1→1(z3, . . . , zd )R(z1)d,d+1.

The product of the three factors in the middle has the same form as the second
line of (6.6), so we can repeat the procedure. Eventually we see that (6.6) equals
Sd+1→2(z2, . . . , zd)S1→d+1(zd , . . . , z1). Hence (6.5) equals

T M
d−1(z2, . . . , zd−1)Sd+1→2(z2, . . . , zd)S1→d+1(zd , . . . , z1)

= T R
d (z2, . . . , zd)S1→d+1(zd , . . . , z1)

as desired.
(4) Mimic the argument in (2) to show T R

d−1(· · · )S1→d(· · · ) = Srev
d→1(· · · )T R

d−1
(· · · ). ��
Lemma 6.2 For every 1 ≤ i ≤ d − 1,

Td(z1, . . . , zd−1) = R(zi )i,i+1Qi = Q′
i R(zd−i )i,i+1

where Qi and Q′
i are products of terms R(w) j, j+1 for various integers 1 ≤ j ≤ d −1

and partial sums w of z1, . . . , zd−1.

Proof We argue by induction on d. The case d = 2 is trivial. Assuming the claim up
to and including d − 1, the first equality follows from the first and second identities in
Lemma 6.1, and second equality follows from the third and fourth identities in Lemma
6.1. ��
Proposition 6.3 Assume 1 ≤ i ≤ d − 1.

(1) Fd(−τ) = Q R(−τ)i,i+1 = R(−τ)i,i+1Q′ for some Q and Q′ that are products
of terms R(mτ) j, j+1 for various integers 1 ≤ j ≤ d − 1 and m.
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(2) Fd(τ ) = Q R(τ )i,i+1 = R(τ )i,i+1Q′ for some Q and Q′ that are products of
terms R(mτ) j, j+1 for various integers 1 ≤ j ≤ d − 1 and m.

(3) If R(τ )R(−τ) = 0, then

im Fd(−τ) ⊆
⋂

s+t+2=d

V ⊗s ⊗ ker R(τ ) ⊗ V ⊗t .

(4) If R(−τ)R(τ ) = 0, then

ker Fd(−τ) ⊇
∑

s+t+2=d

V ⊗s ⊗ im R(τ ) ⊗ V ⊗t .

Proof Both (1) and (2) are special cases of Lemma 6.2.
(3) Since Fd(−τ) = R(−τ)i,i+1Q′, R(τ )i,i+1Fd(−τ) = 0; i.e., im Fd(−τ) ⊆

ker R(τ )i,i+1. But

ker R(τ )i,i+1 = V ⊗(i−1) ⊗ ker R(τ ) ⊗ V ⊗(d−i−1)

so the result follows.
(4) Since Fd(−τ) = Q R(−τ)i,i+1, Fd(−τ)R(τ )i,i+1 = 0; i.e., ker Fd(−τ) ⊇

im R(τ )i,i+1. ��
In proving that Qn,k(E, τ ) has the “right” Hilbert series we will show that the

inclusions in parts (3) and (4) of Proposition 6.3 are equalities when R(z) is the
operator in (1.3).

6.3 The limit Fd(±�) as � → 0

To determine the Hilbert series of Qn,k(E, τ ) and Qn,k(E, τ )! we must understand
the limits of Fd(±τ) as τ → 0.

Proposition 6.4 If d is an integer ≥ 2, then

lim
τ→0

Fd(−τ) =
d−1∏

m=1

m! ·
∑

σ∈Sd

σ and

lim
τ→0

Fd(τ ) =
d−1∏

m=1

m! ·
∑

σ∈Sd

sgn(σ )σ

where the symmetric group Sd acts on V ⊗d by permuting tensorands.

Proof We prove the proposition for Fd(−τ). The argument for Fd(τ ) is virtually
identical.

We argue by induction on d. Since F2(z) = R(z), the d = 2 case is a consequence
of Corollary 5.3. Assume d ≥ 3. Since Fd(−τ) = Td(−τ, . . . ,−τ), it follows from
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Lemma 6.1 and Proposition 5.2 that

lim
τ→0

Fd(−τ) = lim
τ→0

R(−τ)12 · · · R(−(d − 1)τ )d−1,d F L
d−1(−τ)

= sym1,2
−1 · · · symd−1,d

−(d−1) · lim
τ→0

F L
d−1(−τ) (6.8)

where the superscripts on the operators symm indicate which tensorands of V ⊗d they
apply to. By the induction hypothesis, the factor limτ→0 F L

d−1(−τ) in (6.8) is the map

v1 · · · vd−1vd 
→
d−2∏

m=1

m! ·
∑

σ∈Sd−1

vσ(1) · · · vσ(d−1)vd (6.9)

where we have suppressed tensor symbols for readability.
Claim: the product of the sym factors in (6.8) sends the sum part of (6.9) to

(d − 1)!
∑

σ∈Sd

vσ(1) · · · vσ(d).

To see this, we will count, for every t and every σ ′ ∈ Sd−1, the number of times the
term

vσ ′(1) · · · vσ ′(t−1) vd vσ ′(t) · · · vσ ′(d−1) (6.10)

appears in

sym1,2
−1 · · · symd−1,d

−(d−1)

( ∑

σ∈Sd−1

vσ(1) · · · vσ(d−1)vd

)
. (6.11)

If we write sym−m = I + m P using I = idV and the flip P ∈ End(V ⊗ V ), then

symm,m+1
−m = I ⊗d + m Pm,m+1, where Pm,m+1 interchanges the mth and (m + 1)th

tensorands in V ⊗d . Since vd starts out on the extreme right in (6.11) and crosses
leftward past d − t tensorands to reach its position in (6.10), the latter must be the
result of applying the summands

(d − 1)Pd−1,d , (d − 2)Pd−2,d−1, . . . , t Pt,t+1

of the rightmost (d − t) sym operators in (6.11). These yield a factor of

(d − 1) · · · (t + 1)t = (d − 1)!
(t − 1)! (6.12)

in front of (6.10), and we must show that the remaining sym operators

sym1,2
−1 . . . symt−1,t

−(t−1) (6.13)

contribute the missing (t − 1)! factor to produce the requisite (d − 1)!. Only the I ⊗d

term in
symt−1,t

−(t−1) = I ⊗d + (t − 1)Pt−1,t
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can contribute a (6.10) term because Pt−1,t would slide vd further to the left. On the
other hand, each of the product of the remaining sym factors in the product (6.13),
namely

sym1,2
−1 · · · symt−2,t−1

−(t−2) ,

contributes terms of the form (6.10) via both its I ⊗d and P terms, whence each

sym j, j+1
− j = I ⊗d + j Pj, j+1, 1 ≤ j ≤ t − 2,

supplements (6.12) with an additional factor of 1 + j scaling the (6.10) term. The
overall coefficient of (6.10) is therefore

(d − 1)!
(t − 1)! · (t − 1) · · · 2 = (d − 1)!

as claimed. ��

6.4 Computation of the Hilbert series forQn,k(E, �)

Theorem 6.5 Let d ≥ 2. Assume τ ∈ C − ⋃d
m=1

1
mn �.

(1) We have
ker Fd(−τ) =

∑

s+t+2=d

V ⊗s ⊗ im Rτ (τ ) ⊗ V ⊗t (6.14)

and its dimension is the same as the dimension of the space of degree-d relations
of a polynomial algebra in n variables, namely nd − (n+d−1

d

)
.

(2) We have
im Fd(−τ) =

⋂

s+t+2=d

V ⊗s ⊗ ker Rτ (τ ) ⊗ V ⊗t (6.15)

and its dimension is the same as the dimension of the degree-d component of a
polynomial algebra in n variables, namely

(n+d−1
d

)
.

We assume that τ ∈ C − ⋃d
m=1

1
mn � until the end of the proof, i.e.,

±τ,±2τ, . . . ,±dτ /∈ 1
n �.

When d = 2, Theorem 6.5 follows from Theorem 5.7 since F2(τ ) = R(τ ). We
now argue by induction on d.

6.4.1 The operators G�(z)

Taking (z1, . . . , zd−1) = (z,−τ, . . . ,−τ) in Lemma 6.1 we see that

Td(z,−τ, . . . ,−τ) = Srev
1→d(z,−τ, . . . ,−τ)T L

d−1(−τ, . . . ,−τ)

= T R
d−1(−τ, . . . ,−τ)S1→d(−τ, , . . . ,−τ, z)



31 Page 48 of 81 A. Chirvasitu et al.

which implies that the operator

Srev
1→d(z,−τ, . . . ,−τ) = R(z)12R(z − τ)23 · · · R(z − (d − 2)τ )d−1,d (6.16)

on V ⊗d restricts to a linear map

Gτ (z) : im Fd−1(−τ) ⊗ V −→ V ⊗ im Fd−1(−τ). (6.17)

Since Td(z,−τ, . . . ,−τ) = Srev
1→d(z,−τ, . . . ,−τ)T L

d−1(−τ, . . . ,−τ),

im Gτ (z) = im Td(z,−τ, . . . ,−τ). (6.18)

In particular, im Gτ (−τ) = im Fd(−τ).
Since Rτ (z) (resp., det Rτ (z)) is a theta operator (resp., function) of order n2 with

respect to � (resp., 1
n �), the operator (resp., determinant of the operator) in (6.16) is

a theta operator (resp., function) of order (d − 1)n2 with respect to � (resp., 1
n �).

6.4.2 The “determinant” of G�(z)

By the induction hypothesis, rank Fd−1(−τ) = (n+d−2
d−1

)
so

dim(im Fd−1(−τ) ⊗ V ) = dim(V ⊗ im Fd−1(−τ)) = n
(n+d−2

d−1

)
.

We fix arbitrary bases for the subspaces im F L
d−1(−τ) and im F R

d−1(−τ) of V ⊗d and
write det Gτ (z) for the determinant of thematrix for Gτ (z)with respect to those bases;
although det Gτ (z) depends on the choice of bases, the location and multiplicities of
its zeros do not (see Sect. 4.2.1).

Proposition 6.6 det Gτ (z) is a theta function with respect to 1
n � and has exactly

(d − 1)n
(n+d−2

d−1

)
zeros in every fundamental parallelogram for 1

n �.

Proof Let W and W ′ denote the domain and codomain in (6.17). By the induction
hypothesis,

dim W = dim W ′ = n
(n+d−2

d−1

)
.

As remarked above, the operator in (6.16) is a theta operator of order (d − 1)n2 with
respect to �. It now follows from Proposition 4.6 applied to A(z) = Gτ (z) that
det Gτ (z) is a theta function of order (d − 1)n3

(n+d−2
d−1

)
with respect to �. However,

because the determinant of the operator in (6.16) is a theta function with respect to
1
n � so is det Gτ (z), and it has exactly (d − 1)n

(n+d−2
d−1

)
zeros in every fundamental

parallelogram for 1
n �. (Note that det Gτ (z) does not vanish identically because each

factor in (6.16) is an isomorphism for all but finitely many z.) ��
Lemma 6.7 For all m = 1, . . . , d − 2, Gτ (mτ) = 0.
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Proof By definition, Gτ (mτ) is the restriction of R(mτ)12R((m − 1)τ )23 . . . R((m −
d + 2)τ )d−1,d to im Fd−1(−τ) ⊗ V so, to prove the lemma, it suffices to show that

R(mτ)12R((m − 1)τ )23 · · · R((m − d + 2)τ )d−1,d · (Fd−1(−τ) ⊗ I ) = 0. (6.19)

Assume 1 ≤ m ≤ d − 3. The product R(τ )m,m+1R(0)m+1,m+2R(−τ)m+2,m+3 is
a factor of the operator in (6.19). But R(0)m+1,m+2 is the identity so

R(τ )m,m+1R(0)m+1,m+2R(−τ)m+2,m+3 = R(0)m+1,m+2R(τ )m,m+1R(−τ)m+2,m+3

= R(0)m+1,m+2R(−τ)m+2,m+3R(τ )m,m+1.

In fact, R(τ )m,m+1 commutes with all the R-factors to the right of it in (6.19) so
(6.19) can be written as Q′′ R(τ )m,m+1 · (Fd−1(−τ) ⊗ I ) for some Q′′. However, by
Proposition 6.3, there is a factorization of the form Fd−1(−τ) = R(−τ)m,m+1Q′ and
hence a factorization Fd−1(−τ) ⊗ I = R(−τ)m,m+1(Q′ ⊗ I ). The product in (6.19)
is therefore of the form

Q′′ R(τ )m,m+1 · R(−τ)m,m+1(Q′ ⊗ I ),

and this product is zero (Lemma 5.5 tells us that R(τ )i,i+1R(−τ)i,i+1 = 0 for all i).
Assume m = d − 2. The left-hand side of (6.19) is now

R((d − 2)τ )12R((d − 3)τ )23 · · · R(τ )d−2,d−1R(0)d−1,d · (Fd−1(−τ) ⊗ I )

which equals Q′′ R(τ )d−2,d−1 · (Fd−1(−τ)⊗I ) for some Q′′. However, byProposition
6.3, Fd−1(−τ) = R(−τ)d−2,d−1Q for some Q so, as before, (6.19) is zero. ��
Lemma 6.8 nullity Gτ ((d − 1)τ ) ≥ (n+d−1

d

)
.

Proof When z = (d − 1)τ , the right-most factor in (6.16) is R(τ )d−1,d so

ker Gτ ((d − 1)τ ) ⊇ ker R(τ )d−1,d ∩ (im Fd−1(−τ) ⊗ V )

=
⋂

s+t+2=d

V ⊗s ⊗ ker Rτ (τ ) ⊗ V ⊗t

⊇ im Fd(−τ)

where the equality comes from the inductionhypothesis (6.15) applied to im Fd−1(−τ).
The operator Fd(−τ) can be extended to all τ and its rank is generically large. Thus
the desired inequality follows from the fact that rank(limτ→0 Fd(−τ)) = (n+d−1

d

)
,

which is a consequence of Proposition 6.4. ��
Lemma 6.9 nullity Gτ (−τ) ≥ n

(n+d−2
d−1

) − (n+d−1
d

)
.

Proof By Proposition 6.3,

∑

s+t+2=d

V ⊗s ⊗ im R(τ ) ⊗ V ⊗t ⊆ ker Fd(−τ). (6.20)
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Extending the function Rτ (τ ) to all τ ∈ C, the left-hand side of (6.20) makes sense for
all τ and its dimension is generically large by Propositions 4.7 and 4.9. When τ = 0
the left-hand side of (6.20) is the space of degree-d relations for the polynomial ring
SV by Corollary 5.3, so its dimension is nd − (n+d−1

d

)
. Hence dim(ker Fd(−τ)) ≥

nd − (n+d−1
d

)
for generic τ ; but the dimension of this kernel is generically small by

Proposition 4.7, so this inequality holds for all τ . Therefore

dim(ker Gτ (−τ)) = dim(im Fd−1(−τ) ⊗ V ) − dim(im Gτ (−τ))

= n dim(im Fd−1(−τ)) − dim(im Fd(−τ))

≥ n
(n+d−2

d−1

) − (n+d−1
d

)

where the inequality comes from the induction hypothesis dim(ker Fd−1(−τ)) =
nd−1 − (n+d−2

d−1

)
. ��

Lemma 6.10 For all ζ ∈ 1
n �, Gτ (z + ζ ) and Gτ (z) have the same nullity.

Proof Assume ζ = a
n + b

n η where a, b ∈ Z, and let C = T b Ska : V → V . In this
proof we use the notation Ci := I ⊗(i−1) ⊗ C ⊗ I ⊗(d−i).

By Corollary 2.7, Rτ (z + ζ ) = f (z, ζ, τ )C−1
2 Rτ (z)C1 where f (z, ζ, τ ) is a

nowhere vanishing function.
By definition, Gτ (z) is the restriction of Srev

1→d(z,−τ, . . . ,−τ) to the image of
F L

d−1(−τ). Therefore Gτ (z + ζ ) is the restriction of

R(z + ζ )12R(z − τ + ζ )23 . . . R(z − (d − 2)τ + ζ )d−1,d

= g(z, ζ, τ )C−1
2 R(z)12C1 · C−1

3 R(z−τ)23C2 · · · C−1
d R(z−(d−2)τ )d−1,dCd−1

= g(z,ζ,τ )(C2C3· · ·Cd)−1R(z)12(z−τ)23· · ·R(z−(d−2)τ )d−1,d(C1· · ·Cd−1)

= g(z, ζ, τ )(C2C3 · · · Cd)−1 Srev
1→d(z,−τ, . . . ,−τ) (C1 · · · Cd−1)

to the image of F L
d−1(−τ), where the function g(z, ζ, τ ) is a product of various

f (·, ·, ·)’s and therefore never vanishes. It follows that Gτ (z + ζ ) and the restric-
tion of Srev

1→d(z,−τ, . . . ,−τ) (C1 · · · Cd−1) to the image of F L
d−1(−τ) have the same

nullity. Equivalently, the nullity of Gτ (z + ζ ) equals the nullity of the restriction of
Srev
1→d(z,−τ, . . . ,−τ) to the image of C1 · · · Cd−1F L

d−1(−τ).
By Proposition 2.6(3), C⊗d−1 commutes with R(z)i,i+1 for all z and all 1 ≤ i ≤

d − 2, and therefore with Fd−1(z). The image of C1 · · · Cd−1F L
d−1(−τ) is therefore

the same as the image of F L
d−1(−τ)C1 · · · Cd−1 which is, since C is an automorphism

of V , the same as the image of F L
d−1(−τ). Thus Gτ (z + ζ ) has the same nullity as

Gτ (z). ��

By Lemma 6.10, the results in Lemmas 6.7 to 6.9 hold when ζ ∈ 1
n � is added to

the input of Gτ (z). Therefore
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nullity Gτ (z)

≥

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(n+d−1
d

)
if z ∈ (d − 1)τ + 1

n �,

n
(n+d−2

d−1

)
if z ∈ mτ + 1

n � for some m = 1, . . . , d − 2,

n
(n+d−2

d−1

) − (n+d−1
d

)
if z ∈ −τ + 1

n �,

0 otherwise.

(6.21)

Lemma 6.11 Equality holds in (6.21). Consequently,

rank Td(z,−τ, . . . ,−τ)

=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

n
(n+d−2

d−1

) − (n+d−1
d

)
if z ∈ (d − 1)τ + 1

n �,

0 if z ∈ mτ + 1
n � for some m = 1, . . . , d − 2,

(n+d−1
d

)
if z ∈ −τ + 1

n �,

n
(n+d−2

d−1

)
otherwise.

Proof By Lemma 4.1, the sum of the dimensions of ker Gτ (z), as z runs over all zeros
of det Gτ (z) in a fundamental parallelogram for �, does not exceed the number of
zeros of det Gτ (z) in that parallelogram, which is (d − 1)n3

(n+d−2
d−1

)
by Proposition

6.6. By the assumption τ ∈ C−⋃d
m=1

1
mn �, the cosets mτ + 1

n �, −1 ≤ m ≤ d − 1,
are pairwise disjoint. Since the sum of the three non-zero numbers appearing on the
right-hand side of (6.21) is

(n+d−1
d

) + n
(n+d−2

d−1

) · (d − 2) + (
n
(n+d−2

d−1

) − (n+d−1
d

)) = (d − 1)n
(n+d−2

d−1

)

and the fundamental parallelogram for � contains exactly n2 points in 1
n �, every

inequality in (6.21) is an equality. Therefore

dim(im Td(z,−τ, . . . ,−τ)) = dim(im Gτ (z)) by (6.18)

= dim(im Fd−1(−τ) ⊗ V ) − dim(ker Gτ (z))

= n
(n+d−2

d−1

) − dim(ker Gτ (z))

where the last equality follows from the induction hypothesis. ��

Proof of Theorem 6.5(2) We observed in the proof of Lemma 6.8 that

ker Gτ ((d − 1)τ ) ⊇
⋂

s+t+2=d

V ⊗s ⊗ ker Rτ (τ ) ⊗ V ⊗t ⊇ im Fd(−τ).

But dim(ker Gτ ((d − 1)τ )) = (n+d−1
d

)
and dim(im Fd(−τ)) = (n+d−1

d

)
by Lemma

6.11 since Fd(−τ) = Td(−τ, . . . ,−τ), so these three subspaces of V ⊗d coincide. ��
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Proof of Theorem 6.5(1) We must show that the inclusion

∑

s+t+2=d

V ⊗s ⊗ im R(τ ) ⊗ V ⊗t ⊆ ker Fd(−τ) (6.22)

(in Proposition 6.3(4)) is an equality. We will do this by showing that the dimension
of the left-hand side is ≥ the dimension of the right-hand side.

By the induction hypothesis, the left-hand side of (6.22) equals ker F R
d−1(−τ) +

im R(τ )12 and its dimension is

dim(ker F R
d−1(−τ)) + dim(im R(τ )12) − dim(ker F R

d−1(−τ) ∩ im R(τ )12)

= n
(
nd−1 − (n+d−2

d−1

)) + nd−2(n
2

) − dim(ker F R
d−1(−τ) ∩ im R(τ )12),

so it suffices to show that

n
(
nd−1 − (n+d−2

d−1

)) + nd−2(n
2

) − dim(ker F R
d−1(−τ) ∩ im R(τ )12)

≥ dim(ker Fd(−τ)) = nd − dim(im Fd(−τ)) = nd − (n+d−1
d

)

where the last equality appears in the proof of (2). Equivalently, it suffices to show
that

dim(ker F R
d−1(−τ) ∩ im R(τ )12) ≤ n

(
nd−1 − (n+d−2

d−1
)) + nd−2(n

2
) − (

nd − (n+d−1
d

))

= − n
(n+d−2

d−1
) + nd−2(n

2
) + (n+d−1

d
)
.

Since

dim(ker F R
d−1(−τ) ∩ im R(τ )12) = dim(ker F R

d−1(−τ)R(τ )12) − dim(ker R(τ )12)

= dim(ker F R
d−1(−τ)R(τ )12) − (

nd − nd−2(n
2

)
),

it suffices to show that

dim(ker F R
d−1(−τ)R(τ )12) ≤ − n

(n+d−2
d−1

) + nd−2(n
2
) + (n+d−1

d
) + (

nd − nd−2(n
2
))

= nd − n
(n+d−2

d−1
) + (n+d−1

d
)
.

By Lemma 6.1,

Td((d − 1)τ,−τ, . . . ,−τ) = F R
d−1(−τ)R(τ )12R(2τ)23 · · · R((d − 1)τ )d−1,d

so
im F R

d−1(−τ)R(τ )12 ⊇ im Td((d − 1)τ,−τ, . . . ,−τ)

and

dim(ker F R
d−1(−τ)R(τ )12) ≤ dim(ker Td((d − 1)τ,−τ, . . . ,−τ))
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= nd − n
(n+d−2

d−1

) + (n+d−1
d

)

where the equality comes from Lemma 6.11. The proof is now complete. ��
Theorem 6.12 For all τ ∈ (C − ⋃

m≥1
1
m �) ∪ 1

n �, the Hilbert series of Qn,k(E, τ )

is the same as that of the polynomial ring on n variables.

Proof We proved this in [17, §5] for τ ∈ 1
n �, so we assume that τ ∈ C −

⋃
m≥1

1
m �. By Theorem 6.5(1), the space of degree-d relations for Qn,k(E, τ ) has

the same dimension as that for a polynomial algebra in n variables. Hence the result
follows. ��

6.4.3 Remarks

Our proof that Qn,k(E, τ ) has the “right” Hilbert series has nothing in common with
earlier proofs that Qn,1(E, τ ) has the “right” Hilbert series. The proofs for n = 3
and n = 4, and k = 1, by Artin–Tate–Van den Bergh [2] and Smith–Stafford [51],
respectively, relied on the following facts, none of which is guaranteed to hold for
other Qn,k(E, τ )’s: (1) Q3,1(E, τ ) has a central element of degree 3 ([1, p. 211],
[22, Thm. 4.4])22 and the quotient by it is a twisted homogeneous coordinate ring
for E ; Q4,1(E, τ ) has a regular sequence consisting of two degree-2 central elements
( [48, Thm. 2], [22, Thm. 6.5]) and the quotient by them is a twisted homogeneous
coordinate ring for E ;23 (2) the Riemann–Roch theorem for curves allows one to
determine the Hilbert series of these two twisted homogeneous coordinate rings; (3)
a tricky induction argument then allows one to “climb up the regular sequence” to
show that the dimension of the degree-i component Qn,1(E, τ )i (for n = 3, 4) is
“right” and, simultaneously, that the central elements form a regular sequence with
respect to homogeneous elements of degree < i . Tate–Van den Bergh [55] proved
that Qn,1(E, τ ) has the “right” Hilbert series when n ≥ 5. Their argument relies on
modules of I -type (a notion they introduce) and a geometric definition of the defining
relations [55, (4.2)] (at the end of their Sect. 1, they suggest that Qn,k(E, τ ) might be
amenable to their techniques).

It would be good to know whether the methods in this paper apply to other graded
algebras whose defining relations are the image of a specialization of a family of
operators R(z) satisfying the QYBE.

7 The Hilbert series forQn,k(E, �)!

The argument in this section showing that theHilbert series of Qn,k(E, τ )! is (1+t)n is
modeled on the argument used in Sect. 6 to show that the Hilbert series of Qn,k(E, τ )

is (1 − t)−n .

22 Artin–Schelter’s proof is “by computer”. De Laet’s is “by algebra”.
23 These facts are analogues of the fact that when E is embedded in P

2 or P3 as an elliptic normal curve
of degree 3, or 4, respectively, it is a complete intersection. However, when E is embedded in P

n−1 as an
elliptic normal curve of degree n ≥ 5 it is not a complete intersection.
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7.1 The algebras Sn,k(E, �)

By definition, Qn,k(E, τ ) = T V /(im Rτ (τ )) with the convention that Rτ (τ ) is
replaced by R+(τ ) in (5.5) when τ ∈ 1

n �. We now define

Sn,k(E, τ ) := T V

(ker Rτ (τ ))

with the same convention. Theorem 7.4 shows that Qn,k(E, τ )! ∼= Sn,n−k(E, τ ).
By [17, Prop. 3.22], the automorphism N (xα) = x−α of V extends to algebra

isomorphisms Qn,k(E, τ ) → Qn,k(E,−τ) and Qn,k(E, τ ) → Qn,k(E, τ )op. There
is a similar result for Sn,k(E, τ ).

Proposition 7.1 Let N ∈ GL(V ) be the map N (xα) = x−α . For all τ ∈ C, N extends
to algebra isomorphisms Sn,k(E, τ ) → Sn,k(E,−τ) and Sn,k(E, τ ) → Sn,k(E, τ )op.
In particular,

Sn,k(E, τ ) ∼= Sn,k(E, τ )op = Sn,k(E,−τ).

Proof It is clear that

Sn,k(E, τ )op = T V

(ker Rτ (τ )P)

where P is the operator P(u⊗v) = v⊗u. By (2.6), Rτ (τ ) = e(−n2τ)P R−τ (−τ)P for
all τ ∈ C− 1

n �, and thus for all τ ∈ C (we define Rτ (τ ) and R−τ (−τ) as limits when
τ ∈ 1

n �). Hence ker Rτ (τ )P = ker R−τ (−τ). Hence Sn,k(E, τ )op = Sn,k(E,−τ).
By (2.7),

(N ⊗ N )Rτ (τ ) = e(−n2τ)R−τ (−τ) (N ⊗ N )

for all τ ∈ C. It follows that ker R−τ (−τ) (N ⊗ N ) = ker Rτ (τ ).
Thus, N ⊗ N is an automorphism of V ⊗2 that sends ker Rτ (τ ), the space of

quadratic relations for Sn,k(E, τ ), to ker R−τ (−τ), the space of quadratic relations for
Sn,k(E,−τ). Therefore N induces an isomorphism Sn,k(E, τ ) → Sn,k(E,−τ). ��

7.2 The quadratic dual ofQn,k(E, �)

Let 〈 · , · 〉 : V × V → C and 〈 · , · 〉 : V ⊗2 × V ⊗2 → C be the non-degenerate
symmetric bilinear forms 〈xi , x j 〉 = δi j and 〈xi ⊗ xk, x j ⊗ x�〉 = δi jδk�. The maps

V → V ∗, v 
→ 〈v, · 〉,
V ⊗ V → (V ⊗ V )∗, u ⊗ v 
→ 〈u ⊗ v, · 〉,

V ∗ ⊗ V ∗ → (V ⊗ V )∗, 〈u, · 〉 ⊗ 〈v, · 〉 
→ 〈u ⊗ v, · 〉,

are isomorphisms. We will treat them as identifications. The third isomorphism is the
composition of V ∗ ⊗ V ∗ → V ⊗ V , induced by the first, and the second. We also
define the isomorphism V ⊗d → (V ∗)⊗d for each d ≥ 3 in the same way as d = 2
and identify T V with T V ∗.
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If R is a subspace of V ⊗ V , then the quadratic dual A = T V /(R) is defined to
be A! := T V ∗/(R⊥), where R⊥ is the annihilator with respect to the form 〈 · , · 〉 :
V ⊗2 × V ⊗2 → C and is regarded as a subspace of V ∗ ⊗ V ∗.

Given a linear operator R : V ⊗2 → V ⊗2, we denote by R
� : V ⊗2 → V ⊗2 the

unique linear map such that 〈R
�

x, y〉 = 〈x, Ry〉 for all x, y ∈ V ⊗2.

Lemma 7.2 If V is a finite-dimensional vector space and R∗ : (V ⊗ V )∗ → (V ⊗ V )∗
is the dual of a linear map R : V ⊗2 → V ⊗2, then

(1) (im R)⊥ = ker R∗ and
(2) (ker R)⊥ = im R∗.

With the conventions stated just before this lemma,

(
T V

(im R)

)!
= T V

(ker R �

)
.

Proof Parts (1) and (2) are basic linear algebra. The displayed equality follows because
the left-hand side of it equals T V ∗/(ker R∗) which we are identifying with the right-
hand side (by convention). ��
Lemma 7.3 For all τ ∈ C − 1

n � and z ∈ C,

Rn,k,τ (z)
� = e(−n2z)Rn,n−k,−τ (−z).

Proof Let B = {xi ⊗ x j | i, j ∈ Zn}. This is a basis for V ⊗2. We must show, for all
p, q, s, t ∈ Zn , that

〈x p ⊗ xq , Rn,k,τ (z)(xs ⊗ xt )〉 = e(−n2z)〈Rn,n−k,−τ (−z)(x p ⊗ xq), xs ⊗ xt 〉. (7.1)

or, equivalently, that the coefficient of x p ⊗ xq in Rn,k,τ (z)(xs ⊗ xt ) with respect to
B equals e(−n2z) times the coefficient of xs ⊗ xt in Rn,n−k,−τ (−z)(x p ⊗ xq) with
respect to B.

If p + q 	= s + t then both sides of (7.1) are zero so we assume p + q = s + t for
the remainder of the proof.

By (2.7), the right-hand side of (7.1) is equal to

〈Rn,n−k,τ (z)(xq ⊗ x p), xt ⊗ xs〉 = θ0(−z) · · · θn−1(−z)

θ1(0) · · · θn−1(0)

θp−q+r(−k−1)(−z + τ)

θp−q−r (−z)θ−kr (τ )

where r ∈ Zn is determined by p − r = t or, equivalently, by q + r = s. Since
p − q = t − s + 2r ,

〈Rn,n−k,τ (z)(xq ⊗ x p), xt ⊗ xs〉 = θ0(−z) · · · θn−1(−z)

θ1(0) · · · θn−1(0)

θt−s+(−r)(k−1)(−z + τ)

θt−s−(−r)(−z)θk(−r)(τ )
,

which equals the left-hand side of (7.1). ��
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Theorem 7.4 For all τ ∈ C,

Qn,k(E, τ )! ∼= Sn,n−k(E, τ ). (7.2)

Proof Lemma 7.3 implies that Rn,k,τ (τ )
� = e(−n2τ)Rn,n−k,−τ (−τ) for all τ ∈

C − 1
n �, and thus for all τ ∈ C if we define both sides as limits when τ ∈ 1

n �.
Therefore, by Lemma 7.2,

Qn,k(E, τ )! = T V

(ker Rn,k,τ (τ )
�

)
= T V

(ker Rn,n−k,−τ (−τ))
= Sn,n−k(E,−τ).

The desired isomorphism now follows from Proposition 7.1. ��
Corollary 7.5 For all τ ∈ C, Sn,1(E, τ ) ∼= �V , the exterior algebra on V .

Proof ByTheorem7.4, Sn,1(E, τ ) is isomorphic to the quadratic dual of Qn,n−1(E, τ ).
However, Qn,n−1(E, τ ) ∼= SV by [17, Prop. 5.5] so the result follows from the well-
known fact that the quadratic dual of the polynomial algebra SV is the exterior algebra
�V ∗. ��

7.3 Computation of the Hilbert series forQn,k(E, �)!

In this subsection we prove Theorem 7.7. After Theorem 7.4 it suffices to show that the
Hilbert series of Sn,k(E, τ ) is (1+t)n for all k and all τ ∈ (C−⋃n+1

m=1
1

mn �)∪ 1
n �. The

arguments we use to show this are similar to those in Sect. 6.4 with the essential change
that images and kernels of Rτ (τ ) are replaced by images and kernels of Rτ (−τ).

We adopt the convention that
(n

e

) = 0 when e > n.

Theorem 7.6 Let d ≥ 2. Assume τ ∈ C − ⋃d
m=1

1
mn �.

(1) We have
ker Fd(τ ) =

∑

s+t+2=d

V ⊗s ⊗ im Rτ (−τ) ⊗ V ⊗t (7.3)

and its dimension is the same as the dimension of the space of degree-d relations
for the exterior algebra in n variables, namely nd − (n

d

)
.

(2) We have
im Fd(τ ) =

⋂

s+t+2=d

V ⊗s ⊗ ker Rτ (−τ) ⊗ V ⊗t (7.4)

and its dimension is the same as the dimension of the degree-d component of an
exterior algebra in n variables, namely

(n
d

)
.

Proof The proof is like that for Theorem 6.5 with some natural changes. The binomial
coefficients

(n+e−1
e

)
are replaced by

(n
e

)
. The operator

Gτ (z) : im Fd−1(−τ) ⊗ V −→ V ⊗ im Fd−1(−τ)
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that is the restriction of Srev
1→d(z,−τ, . . . ,−τ) is replaced by

G+
τ (z) : V ⊗ im Fd−1(τ ) −→ im Fd−1(τ ) ⊗ V

which is the restriction of Srev
d→1(z, τ, . . . , τ ). The result in Proposition 6.6 showing

that det Gτ (z) has exactly (d − 1)n3
(n+d−2

d−1

)
zeros in a fundamental parallelogram

for � is replaced by the result that det G+
τ (z) has exactly (d − 1)n3

( n
d−1

)
zeros in a

fundamental parallelogram for �. The analogue of (6.21) is now

dim(ker G+
τ (z)) ≥

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(n
d
)

if z ∈ −(d − 1)τ + 1
n �,

n
( n
d−1

)
if z ∈ −mτ + 1

n � for some m = 1, . . . , d − 2,

n
( n
d−1

) − (n
d
)

if z ∈ τ + 1
n �,

0 otherwise.
(7.5)

(The hypothesis that τ /∈ ⋃d
m=1

1
mn � ensures that the four cases in (7.5) are pairwise

disjoint.) After these changes, the argument then proceeds as before since

rank
(
lim
τ→0

Fd(τ )
)

= (n
d

)

by Proposition 6.4. ��
In analogy with Lemma 6.11,

dim(im Td(τ, . . . , τ, z))

=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

n
( n

d−1

) − (n
d

)
if z ∈ −(d − 1)τ + 1

n �,

0 if z ∈ −mτ + 1
n � for some m = 1, . . . , d − 2,

(n
d

)
if z ∈ τ + 1

n �,

n
( n

d−1

)
otherwise.

(7.6)

Theorem 7.7 If τ ∈ (C −⋃n+1
m=1

1
mn �) ∪ 1

n �, then Qn,k(E, τ )! has the same Hilbert
series as the exterior algebra on n variables.

Proof If τ ∈ 1
n �, then Qn,k(E, τ ) is a twist of the polynomial ring on n variables [17,

Cor. 5.2] so its category of graded modules is equivalent to the category of graded
modules over that polynomial ring. But the Koszulity of a finitely generated connected
graded algebra generated in degree one depends only on its category of gradedmodules
(see the argument preceding [59, Prop. 5.7]). Since the polynomial ring is a Koszul
algebra so is every twist of it. In particular, Qn,k(E, τ ) is a Koszul algebra. The Hilbert
series for Q and Q! therefore satisfy the functional equation HQ!(t)HQ(−t) = 1. The
Hilbert series for Qn,k(E, τ )! is therefore (1 + t)n .

For the rest of the proof we assume that τ /∈ ⋃n+1
m=1

1
mn �.

Since τ /∈ 1
2n �, im Rτ (−τ) = ker Rτ (τ ) by Theorem 5.7(2). By Theorem 7.6(1),

the degree-d part of Sn,k(E, τ ) has the same dimension as the degree-d part of the
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exterior algebra on n variables for all 0 ≤ d ≤ n +1. In particular, Sn,k(E, τ )n+1 = 0;
since Sn,k(E, τ ) is generated in degree-one, Sn,k(E, τ )d = 0 for all d ≥ n + 1. Thus
Sn,k(E, τ ) has the same Hilbert series as the exterior algebra on n variables for all k.
The result now follows from Theorem 7.4. ��

8 Multiplication inQn,k(E, �)

Let Symd V (resp., Altd V ) denote the subspace of V ⊗d consisting of the symmet-
ric (resp., anti-symmetric) tensors. The restriction to Symd V of the natural map
from the tensor algebra T V to the symmetric algebra SV := T V /(Alt2 V ) is an
isomorphism onto its image, Sd V , the degree-d component of SV . The multiplica-
tion on SV can therefore be transferred in a canonical way to a multiplication on
Sym V := ⊕

d≥0 Sym
d V . The induced multiplication is called the shuffle product.

In a similar way, the equality in (6.14) leads to a canonical isomorphism from
Qn,k(E, τ ) to the subspace of T V that is the direct sum of the images of the opera-
tors Fd(−τ) which are, by Proposition 6.4, elliptic analogues of the symmetrization
operators. Following this line of reasoning, the multiplication on Qn,k(E, τ ) can be
transferred in a canonical way to this graded subspace of T V .

In this section we make this multiplication explicit in terms of certain operators,
those in Proposition 8.6(1), that should be thought of as elliptic analogues of the shuffle
operators.

8.1 The operatorsMb,a : V⊗a ⊗ V⊗b → V⊗(a+b)

At first sight, the calculations in this section might appear mysterious. They have been
guided by a desire to find an elliptic analogue of the equality (8.1) which says that
the product on Sym V induced by the usual product on SV is the shuffle product. We
need some notation to explain this.

Let a, b ∈ Z≥0. Let Sa+b denote the group of permutations of {1, . . . , a + b}.
Define

Sa|b := {σ ∈ Sa+b | σ(1) < · · · < σ(a) and σ(a + 1) < · · · < σ(a + b)},
Sa|◦ := {σ ∈ Sa+b | σ(i) = i for all i ≥ a + 1},
S◦|b := {σ ∈ Sa+b | σ(i) = i for all i ≤ a}.

Elements in Sa|b are called shuffles. If σ ∈ Sa+b, then there are unique elements
ω ∈ Sa|b, α ∈ Sa|◦, β ∈ S◦|b such that σ = ωαβ. Hence, in the group algebra CSa+b,
we have ⎛

⎝
∑

ω∈Sa|b
ω

⎞

⎠

⎛

⎝
∑

α∈Sa|◦
α

⎞

⎠

⎛

⎝
∑

β∈S◦|b
β

⎞

⎠ =
∑

σ∈Sa+b

σ. (8.1)

The shuffle product u⊗v 
→ u∗v onV ⊗(a+b), and its restriction Syma V ⊗Symb V →
Syma+b V , is given by a!b!

(a+b)! times the left-most term in (8.1).
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The second equality in Lemma 8.5, which is one of the main results in this section,
namely

Mb,a(−τ) · (Fa(−τ) ⊗ Fb(−τ)
) = Fa+b(−τ),

is analogous to (8.1) (with some factorial terms thrown in). By Proposition 6.4,
limτ→0 Fa(−τ) = ∏a−1

m=1 m! · ∑σ∈Sa
σ ; i.e., Fa(−τ) is analogous to the the mid-

dle term on the left-hand side of (8.1). We now introduce the operator Mb,a(−τ) that
will be analogous to the left-most term in (8.1).

Definition 8.1 Let a, b ∈ Z≥0. Define the operator

Ma,b(z; x1, . . . , xa−1; y1, . . . , yb−1) : V ⊗(a+b) → V ⊗(a+b)

to be

R(z)a,a+1 R(z + y1)a+1,a+2 · · · R(z + ∑
k yk)a+b−1,a+b

R(z + x1)a−1,a R(z + x1 + y1)a,a+1 · · · R(z + x1 + ∑
k yk)a+b−2,a+b−1

...
...

. . .
...

R(z + ∑
j x j )12 R(z + ∑

j x j + y1)23 · · · R(z + ∑
j x j + ∑

k yk)b,b+1

interpreted as either

(1) the downward product of the rightward products along rows, or
(2) the rightward product of the downward products along columns.

If a = 0 or b = 0, we regard the operator as the identity.

For example, M2,3(z; x; y1, y2) is

R(z)23R(z + y1)34R(z + y1 + y2)45R(z + x)12R(z + x + y1)23R(z + x + y1 + y2)34
= R(z)23R(z + x)12R(z + y1)34R(z + x + y1)23

· R(z + y1 + y2)45R(z + x + y1 + y2)34.

Let x := (x1, . . . , xa−1) and y := (y1, . . . , yb−1). The interpretations in (1) and
(2) yield

Ma,b(z; x; y) = Srev
a→a+b(z, y)Srev

a−1→a+b−1(z + x1, y) · · · Srev
1→b+1(z +

∑

j

x j , y)

(8.2)

= Srev
a+1→1(z, x)Srev

a+2→2(z + y1, x) · · · Srev
a+b→b(z + ∑

k yk, x)
(8.3)

respectively. We leave the reader to verify that the procedures in (1) and (2) produce
the same result (this does not involve using the Yang–Baxter equation). The first step
in verifying this is to notice that if one starts with the product produced by (1), then the
factors R(z + x1 + · · · + x j )a− j,a− j+1 coming from the left-most column commute
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with all the entries in the array that appear to the northeast of that factor; thus the
product produced by (1) is equal to Srev

a+1→1(z, x) times

Srev
a+1→a+b(z + y1, . . . , yb−1)Srev

a→a+b−1(z + x1 + y1, y2, . . . , yb−1)

· · · Srev
2→b+1

⎛

⎝z +
∑

j

x j + y1, y2, . . . , yb−1

⎞

⎠ .

One then treats this product in the same way, and so on.
We write Ma,b(z) for Ma,b(z; x; y) if z = x1 = · · · = xa−1 = y1 = · · · = yb−1.

Lemma 8.2 Let x = (x1, . . . , xa−1) and y = (y1, . . . , yb−1). As operators on
V ⊗(a+b),

T L
a (x)Ma,b(z + ∑

j x j ;−x; y) = Ma,b(z; xrev; y)T R
a (x) (8.4)

and
T R

b (y)Ma,b(z + ∑
k yk; xrev;−yrev) = Ma,b(z; xrev; y)T L

b (y) (8.5)

where xrev := (xa−1, . . . , x1) and yrev := (yb−1, . . . , y1).

Proof By (8.3) and (6.4),

Ma,b

⎛

⎝z +
∑

j

x j ;−x; y
⎞

⎠

= Srev
a+1→1

⎛

⎝z +
∑

j

x j ,−x

⎞

⎠ Srev
a+2→2

⎛

⎝z +
∑

j

x j + y1,−x

⎞

⎠ · · ·

· Srev
a+b→b

⎛

⎝z +
∑

j

x j +
∑

k

yk,−x

⎞

⎠

= Sa+1→1(x, z)Sa+2→2(x, z + y1) · · · Sa+b→b

(

x, z +
∑

k

yk

)

.

By Lemma 6.1,

T L
d−1(z1, . . . , zd−2)Sd→1(z1, . . . , zd−1) = Srev

d→1(zd−1, . . . , z1)T
R

d−1(z1, . . . , zd−2).

(8.6)

Hence T L
a (x)Ma,b(z + ∑

j x j ;−x; y) equals
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T L
a (x)Sa+1→1(x, z)Sa+2→2(x, z + y1)Sa+3→3(x, z + y1 + y2) · · ·

= Srev
a+1→1(z, x

rev)(I ⊗ Ta(x))L Sa+2→2(x, z + y1)Sa+3→3(x, z + y1 + y2) · · ·
= Srev

a+1→1(z, x
rev)Srev

a+1→1(z + y1, xrev)(I ⊗2 ⊗ Ta(x))L Sa+3→3(x, z + y1 + y2) · · ·

where the last equality is obtained by applying (8.6) after observing that the previous
(I ⊗ Ta(x))L is of the form T L

a (x) with respect to Sa+2→2(x, z + y1). Repeating this
procedure we eventually see that T L

a (x)Ma,b(z + ∑
j x j ;−x; y) equals

Srev
a+1→1(z, x

rev)Srev
a+2→2(z + y1, xrev) · · · Srev

a+b→b(z + ∑
k yk, xrev)T R

a (x)

which is Ma,b(z; xrev; y)T R
a (x).

A similar argument proves (8.5). ��
Lemma 8.3 For positive integers a, b,

T L
a (z1, . . . , za−1)Sa+1→1(z1, . . . , za)Sa+2→2(z1, . . . , za−1, za + za+1) · · ·
· · · Sa+b→b(z1, . . . , za−1, za + · · · + za+b−1)T

L
b (za+1, . . . , za+b−1)

= Ta+b(z1, . . . , za+b−1). (8.7)

Proof Since T L
d−1(z1, . . . , zd−2)Sd→1(z1, . . . , zd−1) = Td(z1, . . . , zd−1) (by Lemma

6.1), the product of the two left-most factors on the left-hand side of (8.7) equals

T L
a+1(z1, . . . , za).

By definition (6.1), the right-most factor T L
b (za+1, . . . , za+b−1) on the left-hand side

is

T L
b (za+1, . . . , za+b−1) = S2→1(za+1)S3→1(za+1, za+2) . . . Sb→1(za+1, . . . , za+b−1).

(8.8)
Each of the b − 1 resulting S j→1 factors commutes with all Sa+k→k factors ending
the left-hand side of (8.7) for k > j . Implementing this commutation for each of the
S factors in (8.8) means attaching S j→1 in (8.8) to Sa+ j→ j in (8.7) to produce

Sa+ j→ j (z1, . . . , za−1, za + · · · + za+ j−1)S j→1(za+1, . . . , za+ j−1)

= Sa+ j→1(z1, . . . , za+ j−1).

Multiplying these by the T L
a+1(z1, . . . , za) we already have and applying Lemma 6.1

successively now yields the right-hand side Ta+b(z1, . . . , za+b−1) of (8.7), as claimed.
��

Lemma 8.4 If x = (x1, . . . , xa−1) and y = (y1, . . . , yb−1), then

Ta+b(x, z, y) = Ma,b
(
z; xrev; y) · T R

a (x) · T L
b (y).
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Proof Lemma 8.3 can be re-stated as

Ta+b(x, z, y) = T L
a (x) · Ma,b

(
z + ∑

j x j ;−x; y) · T L
b (y).

So the result follows from (8.4). ��

8.2 Multiplication inQn,k(E, �)

Assume τ ∈ C − ⋃
m≥1

1
m �. By (6.14),

Qn,k(E, τ )d = V ⊗d

ker Fd(−τ)
,

which is canonically isomorphic to im Fd(−τ). Thus

Qn,k(E, τ ) ∼=
⊕

d≥0

im Fd(−τ)

as graded vector spaces, so the multiplication on Qn,k(E, τ ) induces a multiplication
on the right-hand space making it a graded C-algebra. Proposition 8.6 describes the
induced multiplication.

Lemma 8.5 With the notation above,

Mb,a(τ ) · (Fa(τ ) ⊗ Fb(τ )) = Fa+b(τ ),

Mb,a(−τ) · (Fa(−τ) ⊗ Fb(−τ)) = Fa+b(−τ).

Proof By Lemma 8.4,

Fa+b(±τ) = Mb,a(±τ ; (±τ)b−1; (±τ)a−1)T R
b ((±τ)b−1)T L

a ((±τ)a−1)

= Mb,a(±τ)F R
b (±τ)F L

a (±τ)

= Mb,a(±τ) · (Fa(±τ) ⊗ Fb(±τ))

as desired. ��
Proposition 8.6 Let τ ∈ C − ⋃

m≥1
1
m �.

(1) Define a bilinear multiplication on A := ⊕
d≥0 im Fd(−τ) by the maps

im Fa(−τ) ⊗ im Fb(−τ) −→ im Fa+b(−τ)

induced from Mb,a(−τ) for all a, b ≥ 0. Then A is a graded algebra isomorphic
to Qn,k(E, τ ).

(2) Similarly, the maps induced from Mb,a(τ ) make
⊕

a+b≥0 im Fa+b(τ ) a graded

algebra isomorphic to the quadratic dual Qn,k(E, τ )!.
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Proof Write Q for Qn,k(E, τ ) and Qi for its degree-i component. Consider the dia-
gram

V ⊗a ⊗ V ⊗b Qa ⊗ Qb Aa ⊗ Ab V ⊗a ⊗ V ⊗b

V ⊗(a+b) Qa+b Aa+b V ⊗(a+b)

∼

Mb,a(−τ)

∼

where the first and second rows are factorizations of Fa(−τ)⊗Fb(−τ) and Fa+b(−τ),
respectively. The left-hand square commutes since Q is defined as a quotient of the
tensor algebra, and the commutativity of the outer square follows from Lemma 8.5.
Thus the right-hand square also commutes, whence Mb,a(−τ) induces a map Aa ⊗
Ab → Aa+b, which is equal to the one induced from the multiplication of Q. This
proves the first statement.

If we replace all −τ ’s in the above argument by τ we get a proof of the second
statement using (7.4). ��

9 Koszulity ofQn,k(E, �)

Throughout this section, we assume that τ ∈ C − ⋃
m≥1

1
m � so we can apply Theo-

rems 6.5 and 7.6.
Let Lat(V ⊗d) denote the lattice of subspaces of V ⊗d .
We will use the following result to show that Qn,k(E, τ ) is a Koszul algebra.

Lemma 9.1 (Backelin) [41, Thm. 2.4.1] Let τ ∈ C. Qn,k(E, τ ) is a Koszul algebra if
and only if the sublattice of Lat(V ⊗d) generated by

Wi := V ⊗(i−1) ⊗ reln,k(E, τ ) ⊗ V ⊗(d−i−1), i = 1, . . . , d − 1, (9.1)

is distributive for all d ≥ 2.

9.1 Distributive lattices

Recall that a lattice (L,∨,∧) is distributive if

x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z) and (9.2)

x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z) (9.3)

for all x, y, z ∈ L. Condition (9.2) holds for all x, y, z if only if (9.3) holds for all
x, y, z.

A lattice L ismodular if (9.2) (or equivalently, (9.3)) holds for all triples (x, y, z)
satisfying x ≥ z. As explained in [41, Lem. 1.6.1], if L is modular, then (9.2) and
(9.3) are equivalent for each triple (x, y, z) and these conditions are invariant under
permutations of x , y and z. If those equivalent conditions hold, we say that the triple
(x, y, z) is distributive.
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We write Lat(d) for the sublattice of Lat(V ⊗d) generated by W1, . . . , Wd−1. Like
the lattice of subspaces of any vector space, Lat(V ⊗d) is modular, and so is Lat(d).

We say that X ∈ Lat(d) has classical dimension if it has the same dimension as
its counterpart for the polynomial ring SV . This terminology is not really for X , an
element of Lat(d), but rather for an expression of X using join and meet.

Since dim reln,k(E, τ ) = (n
2

) = dim(Alt2 V ), every Wi has classical dimension;
its classical counterpart is V ⊗(i−1) ⊗ Alt2 V ⊗ V ⊗(d−i−1). The subspaces

�s :=
s∑

i=1

Wi , and It :=
d−1⋂

j=d−t

W j

also have classical dimension for all s and t by Theorems 6.5 and 7.6. It follows that
�s ∩ It has classical dimension if and only if �s + It does.

Because Lat(V ⊗d) is modular, the second half of [41, Thm. 1.6.3] tells us the
following.

Proposition 9.2 Let d ≥ 3 and let Wi , 1 ≤ i ≤ d −1, be the subspaces of V ⊗d defined
in (9.1). If Lat(2), . . . , Lat(d − 1) are distributive and, for 1 ≤ � ≤ d − 1, the triple

⎛

⎝
�−1∑

i=1

Wi , W�,

d−1⋂

j=�+1

W j

⎞

⎠ (9.4)

is distributive, then Lat(d) is distributive and Qn,k(E, τ ) is a Koszul algebra.

We will prove that Lat(d) is distributive by induction on d.

Lemma 9.3 Fix d ≥ 3. Assume Lat(2), . . . , Lat(d −1) are distributive. If �i ∩ Id−i−1
has classical dimension for all i = 0, . . . , d − 1, then Lat(d) is distributive.

Proof It suffices to show that (��−1, W�, Id−�−1) is a distributive triple for all integers
� in [1, d − 1].

Fix � and write r := d − � − 1.
Since ��−1 + W� = �� and W� ∩ Ir = Ir+1, the distributivity condition

��−1 + (W� ∩ Ir ) = (��−1 + W�) ∩ (��−1 + Ir ).

is equivalent to the condition

��−1 + Ir+1 = �� ∩ (��−1 + Ir ). (9.5)

The two terms on the right-hand side of (9.5) have classical dimensions:

• �� does by Theorem 6.5;
• ��−1 + Ir does by Theorem 6.5 and the observation that ��−1 = X ⊗ V ⊗d−� and

Ir = V ⊗� ⊗ Y where

X = ��−1 ⊆ V ⊗�, and Y = Ir ⊆ V ⊗(d−�)
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whencedim(��−1∩Ir ) = dim(X⊗Y ) = dim X ·dim Y = the classical dimension.

Since �� and Ir have classical dimension, and �� ∩ Ir has classical dimension
by assumption, �� + Ir also has classical dimension. But this is true for all � so the
left-hand side of (9.5) has classical dimension. So does the right-hand side because

dim(�� ∩ (��−1 + Ir )) = dim�� + dim(��−1 + Ir ) − dim(�� + (��−1 + Ir ))

= dim�� + dim(��−1 + Ir ) − dim(�� + Ir ).

Thus the left- and right-hand sides of (9.5) have classical dimensions. However,

��−1 + Ir+1 ⊆ �� ∩ (��−1 + Ir )

and this inclusion is an equality in the case of the polynomial ring so both the left-
and right-hand sides have the same dimension for the polynomial ring and in the
present situation too because they have classical dimensions (by hypothesis). Hence
this inclusion is an equality in our case too; i.e., (9.5) holds, and the proof is complete.

��
Thus, to show that Qn,k(E, τ ) is a Koszul algebra it suffices to show that �� ∩ Ir

(with r = d − � − 1) has classical dimension for all d ≥ 3 and 0 ≤ � ≤ d − 1. We
will achieve this goal in Proposition 9.16.

Let r = d − � − 1. If � ∈ {0, 1, d − 1}, then �� ∩ Ir has classical dimension so we
can assume that 2 ≤ � ≤ d − 2 (i.e., 1 ≤ r ≤ d − 3), but for now we also allow the
case � = 1 (i.e., r = d − 2) to show some necessary results for induction and exclude
this case later.

To show that �� ∩ Ir has classical dimension we first convert the problem into a
question about the rank of the operator F L

�+1(−τ)F R
r+1(τ ) : V ⊗d → V ⊗d .

Lemma 9.4 Let Fp(z) be the operator on V ⊗p defined in (6.2). We have

dim(�� ∩ Ir ) = dim
(
ker F L

�+1(−τ)F R
r+1(τ )

)
− n�

(
nr+1 − ( n

r+1

))
.

Proof Since �� ∩ Ir = ∑�
i=1 Wi ∩ ⋂d−1

j=�+1 W j (by definition),

�� ∩ Ir = ker
(
F L

�+1(−τ) : V ⊗d → V ⊗d) ∩ im
(
F R

r+1(τ ) : V ⊗d → V ⊗d)

by Theorems 6.5 and 7.6. Therefore

dim (�� ∩ Ir ) = dim
(
ker F L

�+1(−τ)F R
r+1(τ )

)
− dim

(
ker F R

r+1(τ )
)

.

But dim
(
ker F R

r+1(τ )
) = n�

(
nr+1 − ( n

r+1

))
byTheorem7.6, so the proof is complete.

��
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9.1.1 Notation for the classical case

For the symmetric algebra, SV , the analogue of Wi is

�i,i+1 := V ⊗(i−1) ⊗ Alt2 V ⊗ V ⊗(d−i−1)

The classical analogue of �� ∩ Ir is therefore the space

W �+1,r+1 :=
�∑

i=1

�i,i+1 ∩
d−1⋂

i=�+1

�i,i+1.

9.2 The operators T�,r(z) and H�(z) on V⊗d

When � ≥ 2, we will use the notation

T�,r (z) := Td(τ r ,−(r + 1)τ, (−τ)�−2, z).

When � = 1, we only define

T1,r (−τ) := Td(τ r ,−(r + 1)τ ).

Lemma 9.5 With the above notation,

T�,r (z) = Mr+1,�(−(r + 1)τ ; τ r ; (−τ)�−2, z) · T L
� ((−τ)�−2, z) · T R

r+1(τ
r ). (9.6)

Proof This follows from Lemma 8.4. ��
We now define Hτ (z).

Proposition 9.6 If � ≥ 2, then the theta operator

Srev
d→1(z, (−τ)�−2, −(r + 1)τ, τ r ) (9.7)

on V ⊗d restricts to a theta operator

Hτ (z) : V ⊗ im T�−1,r (−τ) −→ im T�−1,r (−τ) ⊗ V

and im Hτ (z) = im T�,r (z).

Proof By Lemma 6.1,

T�,r (z) = Srev
d→1(z, (−τ)�−2, −(r + 1)τ, τ r ) · T R

d−1(τ
r , −(r + 1)τ, (−τ)�−2)

= T L
d−1(τ

r , −(r + 1)τ, (−τ)�−2) · Sd→1(τ
r , −(r + 1)τ, (−τ)�−2, z).

(9.8)
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In other words,

T�,r (z) = Srev
d→1(z, (−τ)�−2, −(r + 1)τ, τ r ) · T R

�−1,r (−τ)

= T L
�−1,r (−τ) · Sd→1(τ

r , −(r + 1)τ, (−τ)�−2, z) (9.9)

The results followbecause im T R
�−1,r (−τ) = V ⊗im T�−1,r (−τ) and im T L

�−1,r (−τ) =
im T�−1,r (−τ) ⊗ V . ��
Lemma 9.7 Let 1 ≤ � ≤ d − 2. Then �� ∩ Ir has classical dimension if and only if

dim
(
im T�,r (−τ)

) = n�
( n

r+1

) − dim W �+1,r+1. (9.10)

Proof Setting z = −τ and using (8.2) to factor the Mr+1,� term in (9.6) as A ·
Srev
1→�+1((−τ)�), we have

T�,r (−τ) = A · Srev
1→�+1((−τ)�)T L

� ((−τ)�−1)T R
r+1(τ

r )

= A · T L
�+1((−τ)�)T R

r+1(τ
r ) by Lemma 6.1

= A · F L
�+1(−τ)F R

r+1(τ ).

Since the R’s appearing in A belong to {R(−2τ), . . . , R(−(d −1)τ )}, the assumption
τ ∈ C − ⋃

m≥1
1
m � implies that A is an isomorphism. Hence, by Lemma 9.4,

dim(�� ∩ Ir ) = dim
(
ker F L

�+1(−τ)F R
r+1(τ )

)
− n�

(
nr+1 − ( n

r+1

))

= dim V ⊗d − dim(im T�,r (−τ)) − n�
(

nr+1 − ( n
r+1

))

= n�
( n

r+1

) − dim(im T�,r (−τ)).

Since W �+1,r+1 is the classical analogue of �� ∩ Ir , the result follows. ��

9.2.1 The induction hypothesis

We will prove that (9.10) holds by induction on d. Thus, we assume (9.10) is true
for d − 1 or fewer tensorands. If � = 1, then (9.10) follows from Lemma 9.7 since
�1 ∩ Ir = Ir+1 has classical dimension. So we also assume 2 ≤ � ≤ d − 2, i.e.,
1 ≤ r ≤ d − 3. The induction hypothesis implies that

dim
(
the domain of Hτ (z)

) = n�
( n

r+1

) − n dim W �,r+1. (9.11)

The function det Hτ (z) in the next result is only defined up to a non-zero scalar
multiple (see Sect. 4.2.1).

Proposition 9.8 The function det Hτ (z) is a theta function with respect to 1
n � having

(d − 1) dim
(
V ⊗ im T�−1,r (−τ)

) = (d − 1)
(

n�
( n

r+1

) − n dim W �,r+1
)

(9.12)
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zeros in each fundamental parallelogram for 1
n �, all of which belong to

{−τ, 0, τ, . . . , (d − 1)τ } + 1
n �. (9.13)

Proof Since R(z) is a theta operator of order n2 with respect to�, Srev
1→d(z, . . .) in (9.7)

is a theta operator of order (d − 1)n2 with respect to �. Since Hτ (z) is the restriction
of Srev

1→d(z, . . .) to im T R
�−1,r (−τ), Proposition 4.6 tells us that det Hτ (z) has

(d − 1)n2 dim
(
im T R

�−1,r (−τ)
)

zeros in every fundamental parallelogram for �. However, since det R(z) is a
theta function with respect to 1

n �, so is det Hτ (z). Hence det Hτ (z) has (d −
1) dim

(
im T R

�−1,r (−τ)
)
zeros in every fundamental parallelogram for 1

n �.

By the inductionhypothesis, (9.10) tells us that dim(im T�−1,r (−τ)) = n�−1
( n

r+1

)−
dim W �,r+1. The equality in (9.12) now follows once we observe that det Hτ (z) is not
identically zero: it isn’t because the factors of Srev

1→d(z, . . .) are invertible for all but
finitely many z’s.

Since Hτ (z) is the restriction of a product of terms of the form R(z − mτ)i,i+1 for
various i’s and m = 0, . . . , d − 2, the zeros of det Hτ (z) belong to

{z | det R(z − mτ) = 0 for some m ∈ [0, d − 2]}.

But det R(z) = 0 if and only if z ∈ ±τ + 1
n �, so this set is {−τ, 0, τ, . . . , (d −1)τ }+

1
n �. ��

We now examine mult p(det Hτ (z)) for the p’s in (9.13). In truth, we will only
examine mult p(det Hτ (z))when p ∈ {−τ, 0, τ, . . . , (d −1)τ } and then apply Lemma
9.14.

As the next result shows, Hτ (p) = 0 for some of these p’s.

Lemma 9.9 If m ∈ Z∩[1, d −3], then dim(ker Hτ (mτ)) ≥ n�
( n

r+1

) − n dim W �,r+1.

Proof By (9.11), the inequality is equivalent to Hτ (mτ) = 0.
Since im Hτ (mτ) = im T�,r (mτ) byProposition 9.6, Hτ (mτ) = 0 if T�,r (mτ) = 0.

Thus we will prove the lemma by showing that T�,r (mτ) = 0 for the m’s in [1, d −3].
We split the proof into two parts.

(1) Assume 1 ≤ m ≤ � − 2. (This case is vacuous if � = 2 so we assume � ≥ 3.)
By Lemma 9.5, T L

� ((−τ)�−2, mτ) is a factor of T�,r (mτ) so it suffices to show that
T�((−τ)�−2, mτ) = 0. By Lemma 6.1,

T�((−τ)�−2, mτ) = Srev
�→1(mτ, (−τ)�−2) · T R

�−1((−τ)�−2).

But

Srev
�→1(mτ, (−τ)�−2) = R(mτ)�−1,� R((m − 1)τ )�−2,�−1 · · · R((m − � + 2)τ )12
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and this has two consecutive factors of the form

R(τ ) j, j+1 R(0) j−1, j

for some j ≥ 2. The R(τ ) j, j+1 commutes past the R(0) = I ⊗ I term, and
also commutes past the other factors to its right, to ultimately annihilate the term
T R

�−1((−τ)�−2) = R(−τ) j, j+1Q′ (where the latter equality uses Proposition 6.3(1)).
(2) Assume � − 1 ≤ m ≤ d − 3. By (8.3), Mr+1,�(−(r + 1)τ ; τ r ; (−τ)�−2, mτ)

is right-divisible by

Srev
d→�((m − d + 2)τ, τ r )

= R((m − d + 2)τ )d−1,d R((m − d + 3)τ )d−2,d−1 · · · R((m − � + 1)τ )�,�+1,

and m − d + 2 ≤ −1 ≤ 0 ≤ m − � + 1. Hence it has two consecutive factors of the
form R(−τ) j, j+1R(0) j−1, j for some j ≥ � + 1. Since R(0) = I ⊗ I , R(−τ) j, j+1
commuteswith all factors to the right of it in Srev

d→�((m−d+2)τ, τ r ). Aftermoving it all
the way to the right in the expression (9.6), we conclude that T�,r (mτ) is right-divisible
by R(−τ) j, j+1T R

r+1(τ
r ). However, by Proposition 6.3(2), T R

r+1(τ
r ) = R(τ ) j, j+1Q

for some Q so R(−τ) j, j+1T R
r+1(τ

r ) = 0. ��
Lemma 9.10 If T R

�−1,r (−τ) denotes I ⊗ T�−1,r (−τ) acting on V ⊗d , then

rank T R
�−1,r (−τ)S1→�((−τ)�−1) = (n+�−1

�

)( n
r+1

)
.

Proof As operators on V ⊗(d−1),

T�−1,r (−τ) = Mr+1,�−1(−(r + 1)τ ; τ r ; (−τ)�−2) · T L
�−1((−τ)�−2) · T R

r+1(τ
r )

= M R
r ,�−1(−(r + 1)τ ; τ r−1; (−τ)�−2) · Srev1→�((−τ)�−1) · T L

�−1((−τ)�−2) · T R
r+1(τ

r )

= M R
r ,�−1(−(r + 1)τ ; τ r−1; (−τ)�−2) · T L

� ((−τ)�−1) · T R
r+1(τ

r )

where M R
r ,�−1(· · · ) is acting on the (d − 2) right-most tensorands of V ⊗(d−1); the

second equality comes from (8.2), and the third from Lemma 6.1. We now view this
as an equality of operators on V ⊗d = V ⊗ V ⊗(d−1) by considering each of the four
operators in it as acting on the right-most (d − 1) tensorands; i.e., we replace each
operator by (I ⊗ itself). But I ⊗ T�−1,r (−τ) = T R

�−1,r (−τ), so the equality implies

T R
�−1,r (−τ) · S1→�((−τ)�−1) = M R

r ,�−1(· · · ) · (I ⊗ T L
� ((−τ)�−1)) · T R

r+1(τ
r )

·S1→�((−τ)�−1).

By the assumption τ ∈ C−⋃
m≥1

1
m �, all the R’s appearing in the term M R

r ,�−1(· · · )
are isomorphisms. The rank of T R

�−1,r (−τ)S1→�((−τ)�−1) therefore equals that of

(
I ⊗ T L

� ((−τ)�−1)
) · T R

r+1(τ
r ) · S1→�((−τ)�−1). (9.14)
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The left-most � tensorands of V ⊗d are “disjoint” from the right-most (r+1) tensorands
so

(9.14) = (
I ⊗ T L

� ((−τ)�−1)
) · S1→�((−τ)�−1) · T R

r+1(τ
r ).

But S1→�(z1, . . . , z�−1) = S1→�+1(z1, . . . , z�−1, 0) and

T R
� (z2, . . . , z�) · S1→�+1(z�, . . . , z1) = Srev

1→�+1(z1, . . . , z�) · T L
� (z2, . . . , z�)

by Lemma 6.1, so, as operators on V ⊗(�+1),

(9.14) = (
I ⊗ T L

� ((−τ)�−1)
) · S1→�((−τ)�−1) · T R

r+1(τ
r )

= (
I ⊗ T L

� ((−τ)�−1)
) · S1→�+1((−τ)�−1, 0) · T R

r+1(τ
r )

= Srev
1→�+1(0, (−τ)�−1) · T L

� ((−τ)�−1) · T R
r+1(τ

r ).

By Lemma 6.11, Gτ (0) is an isomorphism. But Gτ (0) is the restriction of
Srev
1→�+1(0, (−τ)�−1) to the image of T L

� ((−τ)�−1) so Srev
1→�+1(0, (−τ)�−1) acts injec-

tively on the image of T L
� ((−τ)�−1), whence

rank(9.14) = rank T L
� ((−τ)�−1)T R

r+1(τ
r ).

As operators on V ⊗d = V ⊗� ⊗ V ⊗(r+1), T L
� ((−τ)�−1)T R

r+1(τ
r ) = T�((−τ)�−1) ⊗

Tr+1(τ
r ) so

rank T L
� ((−τ)�−1)T R

r+1(τ
r ) = rank T L

� ((−τ)�−1) · rank T R
r+1(τ

r )

= rank F�(−τ) · rank Fr+1(τ )

which is
(n+�−1

�

)( n
r+1

)
by Theorems 6.5 and 7.6. ��

9.2.2 Terminology

A family of linear operators A(z) has a zero of multiplicity m at a point p ∈ C if
A(z) = (z − p)m B(z) where B(z) is an operator such that det B(z) has neither a zero
nor a pole at p.

Lemma 9.11 The restriction of Hτ (z) to im T R
�−1,r (−τ)S1→�((−τ)�−1) has a zero of

multiplicity ≥ 2 at z = (� − 1)τ .

Proof Since Hτ (z) : im T R
�−1,r (−τ) → im T L

�−1,r (−τ) is the restriction of

Srev
d→1(z, (−τ)�−2, −(r + 1)τ, τ r ), it suffices to prove that

Srev
d→1(z, (−τ)�−2,−(r + 1)τ, τ r ) · T R

�−1,r (−τ) · S1→�((−τ)�−1) (9.15)

has a zero of multiplicity ≥ 2 on its domain V ⊗d . Since
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Srev
d→1(z, (−τ)�−2,−(r + 1)τ, τ r ) · T R

�−1,r (−τ)

= Td(τ r ,−(r + 1)τ, (−τ)�−2, z)

= Mr+1,�(−(r + 1)τ ; τ r ; (−τ)�−2, z) · T R
r+1(τ

r ) · T L
� ((−τ)�−2, z)

by (9.9) and Lemma 8.4, the operator in (9.15) is the composition of

Mr+1,�(−(r + 1)τ ; τ r ; (−τ)�−2, z) · T R
r+1(τ

r ) (9.16)

and
T L

� ((−τ)�−2, z) · S1→�((−τ)�−1). (9.17)

We will show that each of these operators is zero at z = (� − 1)τ .
First,

(9.16) = M L
r+1,�−1(−(r + 1)τ ; τ r ; (−τ)�−2) · Srevd→�(z − (� + r − 1)τ, τ r ) · T R

r+1(τ
r )

= M L
r+1,�−1(−(r + 1)τ ; τ r ; (−τ)�−2) · T R

r+2(τ
r , z − (� + r − 1)τ )

where the first and second equalities follow from (8.3) and Lemma 6.1, respectively.
When z = (�−1)τ , the right-most factor is T R

r+2(τ
r ,−rτ)which= 0 by (7.6). Hence

(9.16)= 0.
When z = (� − 1)τ ,

(9.17) = T L
�−1((−τ)�−2) · S�→1((−τ)�−2, (� − 1)τ ) · S1→�((−τ)�−1) by Lemma 6.1

= T L
�−1((−τ)�−2) · R(τ )�−1,� · · · R((� − 1)τ )12 · R(−(� − 1)τ )12 · · · R(−τ)�−1,�.

By Lemma 2.3, for all u the operator R(u)R(−u) is a scalar multiple of the iden-
tity so we can rearrange the terms in this product to obtain a factor of the form
R(τ )�−1,� R(−τ)�−1,� which = 0. ��
Lemma 9.12 dim(ker Hτ (−τ)) ≥ dim W �+1,r+1 − n dim W �,r+1.

Proof Since im Hτ (mτ) = im T�,r (mτ) by Proposition 9.6,

dim(ker Hτ (z)) + dim(im T�,r (z)) = dim(im T R
�−1,r (−τ))

= n�
( n

r+1

) − n dim W �,r+1

where the second equality follows from the induction hypothesis. Thus, to prove the
lemma we must show that

n�
( n

r+1

) − dim(im T�,r (−τ)) ≥ dim W �+1,r+1.

However,

dim(ker T�,r (−τ)) ≥ dim(ker F L
�+1(−τ)F R

r+1(τ )) because, as observed in Lemma 9.7,
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T�,r (−τ) = A · F L
�+1(−τ)F R

r+1(τ ) for some A

= dim
(
ker F L

�+1(−τ) ∩ im F R
r+1(τ )

)
+ dim(ker F R

r+1(τ ))

= dim
(
ker F L

�+1(−τ) ∩ im F R
r+1(τ )

)
+ nd − n�

( n
r+1

)
by Theorem 7.6

= dim

⎛

⎝
�∑

i=1

Wi ∩
d−1⋂

j=�+1

W j

⎞

⎠ + nd − n�
( n

r+1

)
by Theorems 6.5 and 7.6

= dim (�� ∩ Ir ) + nd − n�
( n

r+1

)
.

It follows that nd − dim(im T�,r (−τ)) ≥ dim (�� ∩ Ir ) + nd − n�
( n

r+1

)
; i.e.,

n�
( n

r+1

) − dim(im T�,r (−τ)) ≥ dim (�� ∩ Ir ) .

Thus, the proof will be complete once we show that

dim (�� ∩ Ir ) ≥ dim W �+1,r+1

(note that the right-hand side is the classical analogue of the left-hand side). Since

�� ∩ Ir ⊇
�∑

i=1

⎛

⎝Wi ∩
d−1⋂

j=�+1

W j

⎞

⎠ ,

with equality when Lat(d) is distributive, we consider the expression on the right. The
term inside the parentheses has classical dimension by Theorem 7.6 and hence the
right hand sum has generically large dimension by Proposition 4.9. By Corollary 5.3
the sum on the right has classical dimension in the limit as τ → 0, so

dim (�� ∩ Ir ) ≥ dim
�∑

i=1

⎛

⎝Wi ∩
d−1⋂

j=�+1

W j

⎞

⎠ ≥ dim W �+1,r+1

on a dense set of τ ’s. But dim (�� ∩ Ir ) is generically small because
dim(ker F L

�+1(−τ)F R
r+1(τ )) is, so dim (�� ∩ Ir ) ≥ dim W �+1,r+1 for all τ . ��

Lemma 9.13 We have

dim(ker Hτ ((d − 1)τ )) ≥ dim W �,r+2 + n�
( n

r+1

) − n�−1( n
r+2

) − n dim W �,r+1.

(9.18)

Proof As observed in the proof of Lemma 9.12,

dim(ker Hτ (z)) + dim(im T�,r (z)) = n�
( n

r+1

) − n dim W �,r+1.
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Thus, to prove the lemma we must show that

n�
( n

r+1

) − n dim W �,r+1 − dim(im T�,r ((d − 1)τ )) ≥ the right-hand side of (9.18)

or, equivalently, that

dim(ker T�,r ((d − 1)τ )) ≥ nd − n�−1( n
r+2

) + dim W �,r+2. (9.19)

We now consider dim ker T�,r ((d − 1)τ ). We have

T�,r ((d − 1)τ )

= Mr+1,�(−(r + 1)τ ; τ r ; (−τ)�−2, (d − 1)τ )

· (T�((−τ)�−2, (d − 1)τ ) ⊗ Tr+1(τ
r )
)

by (9-6)

= B · Srev
d→�(τ, τ

r ) · (T�((−τ)�−2, (d − 1)τ ) ⊗ Tr+1(τ
r )
)

by (8-3)

where

B = Srev
r+2→1(−(r + 1)τ, τ r )Srev

r+3→2(−(r + 2)τ, τ r ) · · · Srev
d−1→�−1(−(d − 2)τ, τ r )

= Srev
r+1→d−1(−(r + 1)τ, (−τ)�−2)Srev

r→d−2(−rτ, (−τ)�−2) · · · Srev
1→�((−τ)�−1),

the equality being essentially the same as (8.2) = (8.3). We write B = C ·
Srev
1→�((−τ)�−1).
By Lemma 6.1, T�((−τ)�−2, z) = T L

�−1((−τ)�−2) · S�→1((−τ)�−2, z). Hence
dim ker T�,r ((d − 1)τ ) is ≥ the dimension of the kernel of

B · Srev
d→�(τ, τ

r ) · (T�−1((−τ)�−2) ⊗ I ⊗ Tr+1(τ
r )
)

= B · (I ⊗(�−1) ⊗ Srev
r+2→1(τ

r+1)
) · (T�−1((−τ)�−2) ⊗ I ⊗ Tr+1(τ

r )
)

= B · (T�−1((−τ)�−2) ⊗ Srev
r+2→1(τ

r+1)T R
r+1(τ

r )
)

= B · (T�−1((−τ)�−2) ⊗ Tr+2(τ
r+1)

)
by Lemma 6.1

= B · T L
�−1((−τ)�−2) · T R

r+2(τ
r+1)

= C · Srev
1→�((−τ)�−1) · T L

�−1((−τ)�−2) · T R
r+2(τ

r+1)

= C · T L
� ((−τ)�−1) · T R

r+2(τ
r+1) by Lemma 6.1.

In particular,

dim(ker T�,r ((d − 1)τ )) ≥ dim
(
ker F L

� (−τ)F R
r+2(τ )

)

= dim
(
ker F L

� (−τ) ∩ im F R
r+2(τ )

) + dim(ker F R
r+2(τ ))

= dim(��−1 ∩ Ir+1) + dim(ker F R
r+2(τ )) by Theorems 6.5 and 7.6

≥ dim W �,r+2 + dim(ker F R
r+2(τ )) as in the proof of Lemma 9.12

= dim W �,r+2 + nd − n�−1( n
r+2

)
by Theorem 7.6.
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Thus, the inequality in (9.19) holds and the proof is complete. ��
Lemma 9.14 For all ζ ∈ 1

n �, Hτ (z + ζ ) and Hτ (z) have the same nullity.

Proof The proof resembles that of Lemma 6.10; actually, it’s a little simpler because
of some cancellation. As in that proof, we write ζ = a

n + b
n η with a, b ∈ Z and set

C := T b Ska .
By Corollary 2.7, Rτ (z + ζ ) = f (z, ζ, τ )C−1

2 Rτ (z)C1.
By definition, Hτ (z) is the restriction of Srev

d→1(z, . . .) = R(z + ∗)d−1,d · · · R(z +
∗)12, where the ∗’s represent some terms that play no role in the calculations below,
to the image of T R

�−1,r (−τ). Hence Hτ (z + ζ ) is the restriction of

R(z + ζ + ∗)d−1,d R(z + ζ + ∗)d−2,d−1 · · · R(z + ζ + ∗)12

= g(z, ζ, τ )C−1
d R(z + ∗)d−1,dCd−1 · C−1

d−1R(z + ∗)d−2,d−1Cd−2

· · · C−1
2 R(z + ∗)12C1

= g(z, ζ, τ )C−1
d R(z + ∗)d−1,d R(z + ∗)d−2,d−1 · · · R(z + ∗)12C1

= g(z, ζ, τ )C−1
d Srevd→1(z, . . .) C1

to the image of T R
�−1,r (−τ), where the function g(z, ζ, τ ) is a product of various

f (·, ·, ·)’s and therefore never vanishes.
Thus, the nullity of Hτ (z + ζ ) is the same as the nullity of the restriction of

Srev
1→d(z, . . .)C1 to im T R

�−1,r (−τ) = V ⊗ im T�−1,r (−τ). But C1 is an automorphism
so the nullity of Hτ (z + ζ ) equals the nullity of the restriction of Srev

1→d(z, . . .) to
V ⊗ im T�−1,r (−τ); i.e., it equals the nullity of Hτ (z). ��

Lemmas 9.9, 9.12 and 9.13, which also hold when ζ ∈ 1
n � is added to the input of

Hτ (z), tell us that

dim(ker Hτ (p))

≥

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

dim W �,r+2 + n�
( n

r+1

) − n�−1
( n

r+2

)

−n dim W �,r+1 p ∈ (d − 1)τ + 1
n �,

n�
( n

r+1

) − n dim W �,r+1 p ∈ mτ + 1
n � and

m ∈ {1, . . . , d − 3},
dim W �+1,r+1 − n dim W �,r+1 p ∈ −τ + 1

n �,

0 otherwise.

(9.20)

Further taking into account the multiplicity-two result in Lemma 9.11 for p =
(� − 1)τ , and for p = (� − 1)τ + ζ with ζ ∈ 1

n �, the following inequalities for the
singularity partitions of Hτ (Definition 4.2) hold:
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|σp(Hτ )|

≥

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dim W �,r+2 + n�
( n

r+1

) − n�−1
( n

r+2

)

−n dim W �,r+1 p ∈ (d − 1)τ + 1
n �,

n�
( n

r+1

) − n dim W �,r+1 p ∈ mτ + 1
n � and

m ∈ {1, . . . , d − 3} − {� − 1},
n�
( n

r+1

) − n dim W �,r+1 + (n+�−1
�

)( n
r+1

)
p ∈ (� − 1)τ + 1

n �,

dim W �+1,r+1 − n dim W �,r+1 p ∈ −τ + 1
n �,

0 otherwise.

(9.21)

Proposition 9.15 All inequalities in (9.21) are equalities. Furthermore, if p /∈ (� −
1)τ + 1

n �, all the inequalities in (9.20) are equalities.

Proof Let P be a fundamental parallelogram with respect to �.
We will show that

dim W �,r+2 + dim W �+1,r+1 = n�
( n

r+1

) + n�−1( n
r+2

) − (n+�−1
�

)( n
r+1

)
(9.22)

in the last paragraph of this proof. For now, assume that (9.22) is true. With that
assumption,

∑

p∈P

|σp(Hτ )| ≥ (d − 1)n2
(

n�
( n

r+1

) − n dim W �,r+1
)

= the number of zeros det Hτ (z) has in P by Proposition 9.8

=
∑

p∈P

mult p(det Hτ (z))

≥
∑

p∈P

|σp(Hτ )| by Lemma 4.4. (9.23)

Hence the two inequalities in (9.23) are equalities. It follows that the inequalities in
(9.21) are equalities, as claimed.

The second sentence in the proposition follows since the only points p where we
have to consider zeros of multiplicity ≥ 2 are those p ∈ (� − 1)τ + 1

n �.
We will now prove (9.22). Recall the notation in Sect. 9.1.1, and consider

W �+1,r+1 =
�∑

i=1

�i,i+1 ∩
d−1⋂

i=�+1

�i,i+1 = (X + Y ) ∩ Z

where

X =
�−1∑

i=1

�i,i+1, Y = ��,�+1, Z =
d−1⋂

i=�+1

�i,i+1.
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The lattice generated by the �i,i+1’s is distributive so (X +Y )∩ Z = X ∩ Z +Y ∩ Z .
Hence

dim W �+1,r+1 = dim(X ∩ Z) + dim(Y ∩ Z) − dim(X ∩ Y ∩ Z). (9.24)

But X ∩ Y ∩ Z = W �,r+2, dim(X ∩ Z) =
(

n� − (n+�−1
�

)) ( n
r+1

)
, and dim(Y ∩ Z) =

n�−1
( n

r+2

)
; substituting these into (9.24) yields (9.22). ��

Proposition 9.16 �� ∩ Ir has classical dimension.

Proof We have

dim(imT�,r (−τ))

= n�
( n

r+1

) − n dim W �,r+1 − dim(ker Hτ (−τ)) by the proof of Lemma 9.12

= n�
( n

r+1

) − n dim W �,r+1 − dim W �+1,r+1

+ n dim W �,r+1 by Proposition 9.15

= n�
( n

r+1

) − dim W �+1,r+1.

The result now follows from Lemma 9.7. ��
Theorem 9.17 For all τ ∈ (C − ⋃

m≥1
1
m �) ∪ 1

n �, Qn,k(E, τ ) is a Koszul algebra.

Proof We observed this in the proof of Theorem 7.7 for τ ∈ 1
n �. The result for

τ ∈ C − ⋃
m≥1

1
m � follows from the arguments in this section. ��

10 Artin–Schelter regularity ofQn,k(E, �)

In this section we show, for all but countably many τ , that Qn,k(E, τ ) is an Artin–
Schelter regular algebra in the sense of [1]. Suppose τ ∈ (C − ⋃

m≥1
1
m �) ∪ 1

n �.
Since Q := Qn,k(E, τ ) has finite Gelfand–Kirillov dimension, it is Artin–Schelter
regular of dimension n if the global dimension of Q is n and

ExtiQ(C, Q) ∼=
{
C if i = n,

0 if i 	= n.

The next result provides a partial confirmation of Artin–Schelter regularity.

Theorem 10.1 For all τ ∈ (C−⋃
m≥1

1
m �)∪ 1

n �, the global dimension of Qn,k(E, τ )

is n.

Proof Let A be a connected graded algebra over a field k. It is well known that the
global dimension of A is the largest integer d such that ExtdA(k,k) 	= 0 (see, e.g., [45,
Prop. 3.18] and [24, Thm. 11]). If A is a Koszul algebra, then ExtdA(k,k) ∼= A!

d so
its global dimension is the largest integer d such that A!

d 	= 0. Since Qn,k(E, τ )! is a
Koszul algebra with Hilbert series (1 + t)n , the global dimension of Qn,k(E, τ ) is n.

��
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We will use the following result with A = Qn,k(E, τ ); see, e.g., [50, Prop. 5.10]
or [33, Thm. 1.9].

Theorem 10.2 Let A be a connected graded Koszul algebra over a field k. If its global
dimension is finite, then A is Artin–Schelter regular if and only if A! is Frobenius.

A finite-dimensional k-algebra S is Frobenius if it is isomorphic as a left S-module
to its dual S∗ := Homk(S,k) equipped with the left module structure resulting from
right multiplication. By [50, Lem. 3.2], S := Sn,k(E, τ ) is Frobenius if and only if
the multiplication maps

Si × Sn−i −→ Sn ∼= k

are non-degenerate bilinear forms for all i = 0, . . . , n; this happens if and only if Sn

is the socle of S as a left (or right) S-module.

Proposition 10.3 For each (n, k, E), Sn,k(E, τ ) is a Frobenius algebra for all but
finitely many τ ∈ E.

Proof In this proof, τ denotes a complex number.
Let F = ⋃n+1

m=1 E[mn]. Assume τ + � ∈ E − F ; i.e., τ ∈ C − ⋃n+1
m=1

1
mn �.

Let S := Sn,k(E, τ ). By Theorem 7.6, Sn ∼= C and Sn+1 = 0. Since S is generated
in degree one, Sd = 0 for all d ≥ n + 1. In particular, S is finite-dimensional.

By Proposition 8.6(2), S is Frobenius if and only if the bilinear maps

im Fi (τ ) × im Fn−i (τ ) im Fi (τ ) ⊗ im Fn−i (τ ) im Fn(τ ) ∼= C
Mn−i,i (τ )

are non-degenerate for all i = 0, . . . , n. Since Mn−i,i (τ )·(Fi (τ )⊗ Fn−i (τ )) = Fn(τ )

(Lemma 8.5), this happens if and only if, for all i = 0, . . . , n, the rank of the bilinear
map

V ⊗i × V ⊗(n−i) V ⊗i ⊗ V ⊗(n−i) im Fn(τ ) ∼= C
Fn(τ )

(10.1)

equals dim(im Fi (τ )) = dim(im Fn−i (τ )) = (n
i

)
. Clearly, the rank can be no larger

than this.
Fix x ∈ V ⊗n such that Fn(0)(x) 	= 0. There is a Zariski-open dense subset U ⊆ E

such that Fn(τ )(x) 	= 0 for all τ + � ∈ U . Assume τ + � ∈ U .
Let {v j } and {wk} be bases for V ⊗i and V ⊗(n−i), respectively. The rank of the

bilinear map in (10.1) is the rank of the matrix (c jk(τ )) j,k where

Fn(τ )(v j ⊗ wk) = c jk(τ ) · Fn(τ )(x).

Since Fn(τ ) is a theta operator, c jk(τ ) is an elliptic function, and so are all minors of
(c jk(τ )) j,k . So the rank of (c jk(τ )) j,k is generically large. Since the rank attains the
maximal value

(n
i

)
at τ = 0, it equals

(n
i

)
for all τ + � belonging to a dense open

subset Ui ⊆ U . Since U0 ∩ · · · ∩ Un = E − F ′ for some finite subset F ′ ⊆ E , we
see that Sn,k(E, τ ) is Frobenius for all τ + � ∈ E − (F ∪ F ′). ��
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Suppose τ ∈ C−⋃n+1
m=1

1
mn �. Since the space of degree-d relations for Sn,k(E, τ )

is
ker Fd(τ ) =

∑

s+t+2=d

V ⊗s ⊗ im Rτ (−τ) ⊗ V ⊗t

(Theorem 7.6), the Frobenius property for Sn,k(E, τ ) can be reduced to a statement
about the kernel of the operators Fd(τ ) (defined in (6.2)) and G+

τ (τ ) (defined in the
proof of Theorem 7.6). The algebra Sn,k(E, τ ) is Frobenius if and only if the following
statements (and their left-right symmetric versions which we do not state) are true for
all d = 0, . . . , n − 1:

the largest subspace W ⊆ V ⊗d such that V ⊗ W ⊆ ker Fd+1(τ ) is W =
ker Fd(τ )

or, equivalently,

if V ⊗ {w} is in the kernel of G+
τ (τ ) : V ⊗ im Fd(τ ) −→ im Fd(τ ) ⊗ V , then

w = 0.

Theorem 10.4 Let τ ∈ C and fix (n, k, E).

(1) Qn,k(E, τ ) is Artin–Schelter regular of dimension n for all but countably many τ .
(2) If Qn,k(E, τ ) is a Koszul algebra for all τ , then it is Artin–Schelter regular of

dimension n for all but finitely many τ + �.

Proof (1) The algebra Qn,k(E, τ ) is Artin–Schelter regular of dimension n if the
following three statements are true: (a) it is a Koszul algebra; (b) the Hilbert series of
Qn,k(E, τ )! is (1 + t)n ; (c) Qn,k(E, τ )! is a Frobenius algebra. By Theorem 7.7 and
Theorem 10.3, there is a finite set F ⊆ E such that (b) and (c) are true. By Theorem
9.17, (a) is true for all but countably many cosets τ +� and hence for all but countably
many τ . Thus (a), (b), and (c) are simultaneously true for all but countably many τ .

(2)The argument follows that in (1). The only difference is thatwe are nowassuming
that (a) is true for all τ . Thus, since (b) and (c) are true for all but finitely many τ +�,
Qn,k(E, τ ) is Artin–Schelter regular of dimension n for all but finitelymany τ+�. ��
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