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Abstract

The algebras Q, « (E, ) introduced by Feigin and Odesskii as generalizations of the
4-dimensional Sklyanin algebras form a family of quadratic algebras parametrized by
coprime integers n > k > 1, a complex elliptic curve E, and a point T € E. The main
result in this paper is that Q, «(E, t) has the same Hilbert series as the polynomial
ring on n variables when 7 is not a torsion point. We also show that O, x(E, ) is a
Koszul algebra, hence of global dimension n when 7 is not a torsion point, and, for all
but countably many 7, Q, x(E, ) is Artin—Schelter regular. The proofs use the fact
that the space of quadratic relations defining Q, x (E, t) is the image of an operator
R (7) that belongs to a family of operators R;(z) : C" @ C" — C" ® C", z € C, that
(we will show) satisfy the quantum Yang—Baxter equation with spectral parameter.
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1 Introduction

Until the end of Proposition 1.3, E is a complex elliptic curve, t is a point on E,
n > k > 1 are relatively prime integers, and O, x (E, t) denotes the elliptic algebra
that was defined by Feigin and Odesskii in their 1989 papers [25] and [37]. This
and our earlier papers [16—18] are the first steps in a project to develop a “geometric
representation theory” for the O, «(E, 7)’s. This paper establishes some fundamental
algebraic properties of O, «(E, t) (Theorems 1.1 and 1.2 and Proposition 1.3 below).

The algebras Q, 1(E, t) are called Sklyanin algebras in honor of Sklyanin’s dis-
covery of Q4 1(E, 7).

It is often useful to think of the Q, «(E, t)’s as generalizations of enveloping
algebras, U (g), of finite dimensional semisimple Lie algebras and their quantizations

Uy(9).
1.1 Geometric representation theory and elliptic algebras

Geometric representation theory is one of the major mathematical developments of
the past half-century. It emerged in the context of Lie theory but its development has
required and stimulated connections and tools that play a role in many other areas.
Remarkably, the algebraic varieties that appear in “classical” geometric representation
theory! over C are almost always rational varieties.” (The only exceptions we know
are some Hessenberg varieties: see [21, Rmk. 4.2].) We do not know any meta-theorem
that explains this phenomenon, but its first manifestation is Chevalley’s theorem prov-
ing that every connected linear algebraic group over an algebraically closed field of
characteristic zero is rational [12]. Over the past 35 years evidence has accumulated
that there should be a “geometric representation theory” for elliptic algebras in which
the relevant geometric objects are no longer rational varieties but elliptic curves, pow-
ers of elliptic curves, symmetric powers of elliptic curves, higher secants and secant
varieties to elliptic curves, and mixtures of such things. One reason this might not be
surprising is that many rational affine varieties can be usefully thought of as degener-
ations of such non-rational varieties. Likewise some of the algebras that appear in the
context of quantum groups are degenerations of elliptic algebras, and some represen-
tations of quantum groups are degenerations of representations of elliptic algebras.’
See, for example, Cherednik’s papers [13—15] and, more recently, [20] which shows
that some of the representation theory of U, (sly) is a “degenerate” version of the
representation theory of Q4 1(E, 7). We note, too, the similarity between the results

1 By “classical” we mean the representation theory of the enveloping algebra U (g) and its quantization
Uq (9), where g is a finite dimensional Lie algebra over C.

2 An irreducible algebraic variety X over an algebraically closed field k is rational if k(X), its field of
rational functions, is a purely transcendental extension k(x, ..., x;) of k; in more geometric terms, there
is a non-empty open set U < X and an openset V.S A}, . suchthatU = V.

3 This is related to the fact that Belavin’s elliptic solutions to the quantum Yang—Baxter equation with
spectral parameter degenerate to trigonometric and rational solutions.
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about finite dimensional representations of Q4 1(E, 7) in [49, 52] and [57, 58] and
results about the representation theory of U, (s )4

One way in which the Q, x(E, t)’s differ from enveloping algebras is that no
information can be gleaned from induced representations of subalgebras; O, «(E, T)
does not appear to have any useful subalgebras that one can induce from; this seems to
be related to the fact that O, x(E, T) does not possess anything like a PBW basis (but
see [55]); indeed, one can hardly do any hand calculations in Q, x (E, 7). Nevertheless,
there is a rich theory of “linear modules” for elliptic algebras and these are good
replacements for induced modules of the form U(g) ®y ) Ci (where p is a Lie
subalgebra of a Lie algebra of g and C, is a 1-dimensional representation of p).
Evidence supporting the claims in the previous sentence can be found in [31, Thm. 2.2],
[55, Thm. 1.4], [53, §5] and [20, §1B]. Feigin and Odesskii were the first to recognize
that linear modules for Q, «(E, 7), and the homomorphisms between them, are related
to the higher secants to E embedded as a degree n normal curve in P" 1.

The simplest linear modules are the point modules: a point module is a cyclic graded
left O, x (E, t)-module having Hilbert series (1 — )~ !. Point modules played a central
rolein [2, 3]. When k = 1, the isomorphism classes of point modules are parametrized
by E for generic t, except when n = 4 in which case there are four additional points.
The survey article [49] describes the beautiful interaction between linear modules for
Q4,1(E, 7) and the geometry associated to E embedded as a quartic normal curve in
P3.

For all k, Feigin and Odesskii showed there is a certain variety, X, /x € P! called
the characteristic variety (see [16] for its definition), that parametrizes an important
subset of the point modules (in many cases this might be all the point modules but we
don’tknow this yet). In [16], itis shown that X, ;x = E$/ X, t, the quotient of a certain
power E& by the action of a subgroup of the symmetric group of order (g + 1)!. In [18]
it is shown that for some (n, k) there is a fully faithful embedding of Qcoh(X,,/x) into
a certain quotient category of graded O, x (E, 7)-modules. This is strikingly different
from what happens for U (g) or U, (g).

Despite the differences some of the themes in the representation theory of U (g)
appear in the context of the O, x(E, 7)’s: for example, Van den Bergh’s remarkable
paper [56] establishes a “translation principle” for Q4 1(E, t), which is expressed in
terms of an equivalence between certain categories of representations having “different
central characters”. It seems likely that there will be translation principles for other
elliptic algebras. For example, when 7 is even Feigin and Odesskii [37, §3, Rmk. 2]
surmise that Q, 1(E, t) has two linearly independent central elements of degree %n
that “correspond” to the Poisson central elements that appear in [40, Thm. A] and
there might be a translation principle relating certain categories of modules that are
annihilated by different linear combinations of those central elements.

Since Q, «x(E, 0) = C[xo, ..., x,—1] is a polynomial ring on n variables, there is a

Poisson structure {x;, x} := hmf_>0 L. x’ on O, «(E, 0) and, because deg{x;, x;} =

2, this induces a Poisson structure on IP’" I — Proj(Qn «(E, 0)), which is commonly
denoted g, « and called the Feigin—Odesskii bracket [25, 37]. It is conjectured that g, x

4 Odesskii and Feigin [38] examine finite dimensional representations of Q, x(E, t) when t has finite
order.
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coincides with a “natural” Poisson structure discovered in 1998 by Feigin—Odesskii
[26] and Polishchuk [39], on P(Extg(vn’k, OE)) where V, x is a stable bundle on E
of rank k and degree n. Hua and Polishchuk [27, Thm. 5.2] showed that the conjecture
holds when k = 1.5 The symplectic leaves for ¢, ; are known only when k = 1
[19]. The symplectic leaves for g, 1 can be described in terms of the higher secant
varieties to E embedded in P"~! as a degree-n elliptic normal curve: see [19, §1] for
a precise description.®” Since linear modules for Q,, x (E, T) seem to be analogous to
Verma modules, and linear modules for O, 1 (E, ) (for the most part) correspond to
higher-dimensional secants to E, the fact that the symplectic leaves for g, 1 are related
to the secants suggests, again, that the relation between the representation theory of
O,k (E, 7) and the geometry of E € P"~! is analogous to the relation between the
representation theory of U (g) and the geometry associated to the action of the adjoint
group on g*.

When k > 1, very little is known about g, . It is possible that the symplectic leaves
for g, x are related to the geometry of the higher secant varieties for the characteristic
variety, X, /k, embedded in P"~! = P(Ext}. (Vyx, Og)). When P(ExtL(V, x, Op))
is interpreted as a moduli space for certain stable bundles on E of degree n and rank
k 41 it has a “natural” Poisson structure [39], which is expected to coincide with gy, k.
For more about g, «, see [27-29] and [42—44]. It would be good to know whether each
point on X, is a symplectic leaf for g, 1.

Feigin and Odesskii’s explicit construction of certain linear modules, and the results
about linear modules for O, 1 (E, t) due to Staniszkis [53] and Tate—Van den Bergh
[55], provide evidence that the representation theory of Q, x(E, 7) is related to the
symplectic leaves for g, x, and their Lagrangian subvarieties, in “the same way” as
the representation theory of a finite dimensional semisimple Lie algebra g is related
to the symplectic leaves (= the coadjoint orbits) in g* for the natural Poisson bracket
on the symmetric algebra S(g) (see [30] for a nice survey of the role codajoint orbits
play in representation theory).

The Poincaré—Birkhoff—Witt theorem allows one to use filtered-graded methods to
show that if g is a finite dimensional Lie algebra, then U (g) is a noetherian domain
whose global dimension and Gelfand—Kirillov dimension equal dim(g). We do not
know if Q, x (E, T) is anoetherian domain, though it is when k = 1 [55]. Having finite
global dimension is a rather weak property for non-commutative rings so one often
seeks to establish additional homological properties that are consequences of finite
global dimension in the commutative case. It is known that U (g) has essentially all the
homological properties the polynomial ring has: U (g) is Cohen—Macaulay in the sense
that if M is a non-zero finitely generated left U (g)-module, then GKdim(M)+j (M) =

dim(g) where j(M) = min{j | Ext{](g)(M, U(g)) # 0} (see [9, Ch. 2, Thm. 7.1]

and [32]); U(g) has the Auslander property, meaning that if M is as before, then

Ext"U(g)(N, U(g)) = O for all submodules N C Ext{](g)(M, U(g)) wheni < j

5 The Poisson structure qn.k 1s analogous to the Poisson structure {x, y} := [x, y] on the symmetric algebra
S(g).
6 [40, Thm. A] shows that certain Poisson central elements for qn,1 are related to a higher secant variety.

7 The symplectic leaves for the Poisson structure on the affine variety C" = Spec(Q,, x(E, 0)) have been
studied by Feigin and Odesskii in [25, 26] and [35, 36], for example.
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[7, 10]. The algebras Q, 1(E, ) also have all these properties, though the methods
required to establish them are very different [3, 51, 55].

Amongst other things, the results in this paper, in particular Theorem 1.1(1) and
Theorem 1.2, determine the size (i.e., the Gelfand—Kirillov dimension) of Q, x(E, 7)
and some of its fundamental homological properties. Roughly, these results say that
like U(g), On.x(E, T) shares some of the homological properties of the polynomial
ring on n variables.

1.2 The algebras Q,, « (E, T) are deformations of polynomial rings

It has long been expected that the Q, x(E, t)’s have the same size as the polyno-
mial ring on n variables. More formally, for fixed (E, n, k), it was expected that the
On.k(E, v)’s form a flat family of graded algebras that are deformations of polynomial
rings—the algebra Q, x (E, 0) is a polynomial ring on n variables. To prove that the
On.k(E, 7)’s form a flat family of graded algebras that are deformations of polyno-
mial rings one must show that the homogeneous components of Q, x(E, t) have the
same dimension as those of the polynomial ring on n variables. When k = 1, this was
proved by Tate and Van den Bergh [55] over 20 years ago. One of the main results in
this paper is that this is true for all k provided 7 is not a torsion point on E (Theorem
1.1).

The fundamental homological properties of O, 1(E, ) were worked out by Tate
and Van den Bergh [55]: they are Artin—Schelter regular, Auslander—Gorenstein, and
Cohen—Macaulay. The starting point for [55] is the geometric description of the
quadratic relations for Q, 1(E, t) in [55, §4.1], which is inspired by [37, §2]; the
relation between these two geometric descriptions of the relations is explained in [17,
§3.2]. Because there is not yet a similar geometric description of the relations for
On.x(E,v) when k > 1 we need a new method to understand Q, «(E, t). The start-
ing point for the results in this paper is the fact that the quadratic defining relations for
On.k(E, 7) can be defined in terms of an elliptic solution of the quantum Yang—Baxter
equation. Although we focus on Q, «(E, ), the techniques we develop in this paper
should be useful for other algebras.

The O, «(E, t)’s are graded C-algebras generated by n degree-one elements. The
Hilbert series of 0, «(E, ) is the formal power series Y .o dim(Qy x (E, 7);)t'. The
quadratic dual of Q, «(E, 7) is denoted by Q,, «(E, )

The main results in this paper are as follows. (The notation is explained after their
statement.)

Theorem 1.1 Assume t € E is not a torsion point.

(1) (Theorem 6.12) The Hilbert series of Q, k(E, T) is the same as that of the poly-
nomial ring on n variables placed in degree one, namely (1 —t)™".

(2) (Theorem7.7) The Hilbert series of Qn i (E, )" is the same as that of the exterior
algebra on n variables placed in degree one, namely (1 4 t)".

(3) (Theorems9.17 and 10.1) O, r(E, t) is a Koszul algebra whose global dimension
is n.
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Theorem 1.2 (Theorem 10.4) Q, «(E, ) is Artin—Schelter regular for all but count-
ably many t € E.

Proposition 1.3 (Proposition 10.3) O, «(E, )" is a Frobenius algebra for all but
finitely many t € E.

Although Q, 1 (E, 0) is a polynomial ring, most Q,, «(E, T)’s are not commutative.
We observed in [17, §4.2.1] that there are some values of T € C — A for which
On.k(E, T) is commutative (in fact, a polynomial ring); for example, Q4 1(E, 7) isa
polynomial ring when 7 € %A.

The algebras Q, «(E, ) depend on a pair of relatively prime integers n > k > 1,
a point T € C, and a complex elliptic curve E := C/A where A := Z + Zn is the
lattice spanned by 1 and a point n lying in the upper half plane. Fix a vector space
V = C" with basis x, .. ., x,—1 indexed by the cyclic group Z,. We fix this notation
for the rest of the paper.

The algebra Q, «(E, t) is defined to be the quotient of the tensor algebra 7V
modulo the ideal generated by the subspace rel, ((E, 7) € V®? spanned by the n?

elements 9 ©)
j—i+(k—1)r
rii = Xi_r ®x; (1.1)
Y GXZ: Oj—ir (=T (1) /T
where the indices i and j belongto Z, = Z/n and 6y(z), . . ., 6,,—1(z) are certain theta

functions of order n (defined in [17, Prop. 2.6] and (2.1) below), indexed by Z, that
are quasi-periodic with respect to A.

Ifrt e %A, then O, (t) = O for some r so the relations do not make sense.
Nevertheless, we can extend the definition of Q, x(E, t) to all T € C (see Sect. 5.4.1
and [17, §3.3]).

Up to isomorphism, Q x(E, t) depends only on the image of 7 in E so we often
regard T as a point in E and call it a torsion point if mt = 0 in E for some integer
m > 1.

1.3 The algebra Q, 4 (E, 7) can be defined in terms of Belavin’s elliptic solutions to
the quantum Yang-Baxter equation

Belavin’s solution [8] to the quantum Yang—Baxter equation with spectral parameter
(see (QYBEL) in Sect. 2.2 below) is the linear operator

Sk(z) : V& — @2
defined in (3.6) below. As we will now explain,
the space of relations for Q, «(E, ) = the image of P o Sx(—nt) (1.2)
where P is the linear operator v ® v’ > v’ ® v on V®2_ The fact that Si(z) satisfies

(QYBEI) seems to account for the rich structure of Q, «(E, 7). In particular, the
proofs of the main results in this paper use this fact repeatedly.®

8 Surprisingly, the results in our earlier papers about O, 4 (E, t) do not use this fact in an explicit way.
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1.3.1 The linear operator R;(z)
Fix (n,k)andt € C — %A. We define the linear operator
Rukc(2) = Re(2) = R(z) : V- v&?

by the formula

Oo(=2) -+ - Op—1(—2) Z Oj—ivrk—1)(—=2+ 1)

R@G®x) = = o) 6u1(0) 01—+ (=i (1)

Xj—r  Xitr

r€’Zy

(1.3)

for all (i, j) € Z%. Since t ¢ %A, the 6, (t) term in the denominator is never

zero; the term 0 _; ,(—z) in the denominator always cancels with a factor in the

numerator before the X sign; hence z — R (z) is a well defined holomorphic function

C — Endc(V®?). By [17, Lem. 3.13], the function T > R (7), initially defined on

C- %A, extends in a unique way to a holomorphic function C — Endc (V ®2); from
now on R (1), or just R(t), denotes this extension.’

Comparing the formula for R;(z) with the defining relations for Q, «(E, 7) in

(1.1), one sees that

rel, x(E, t) = span{r;j |i, j € Z,} = the image of R; (7). (1.4)
In Propositions 3.4 and 3.5 we show that
Sk(—nz) = ne(in(n + 1)2) PRy k. (2). (1.5)

This equality implies the equality in (1.2). The operator Sx(z) is defined in terms
of certain theta functions with characteristics, i.e., the functions Z defined in
Sect. 2.5, whereas R(z) is defined in terms the 6,’s defined in (2.1); the relation
between the two types of theta functions is given in Lemma 2.9. A version of (1.5)
must have been known to Feigin and Odesskii, but we could not find it in the literature

so we have proved it here.!?

1.3.2. It has been known since the 1980’s that Si(z) satisfies (QYBEL) (see the
discussion after Theorem 3.1). Hence P Sk (z), and therefore R(z), satisfies (QYBEZ2).
We record this fact in Theorem 3.7.

9 In this paper we need an improved version of [17, Lem. 3.13]: Lemma 5.1 below shows that for each
m € Zandeach ¢ € %A there is a holomorphic function C — End(c(V®2), T Ry (mt +8).

10 15 [37, Rmk. 4, §1], Feigin and Odesskii say there is a close connection between the O, ((E, 7)’s and
Belavin’s elliptic solutions to the QYBE. They do not specify the connection but refer the reader to [15];
although [15, §4] concerns an algebra ’R‘,f that is defined in terms of Si (z), [15] does not refer to R(z). The

algebras Rf?l in [15, §4] are generated by n%d elements whereas On k(E, T) is generated by n elements. At
the end of the introduction to [37] is an equality A = 0,24 nd—1(E, ). The algebra A@ s not defined
(perhaps it is Rg) and there is no explanation of the equality.
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It is easy to see that R, (0) = I ® I where I denotes the identity operator on V
(Proposition 2.4). As a consequence of this and the fact that R(z) satisfies (QYBE?2),
foreach z € C, R;(z) is either an isomorphism or satisfies R; (z) R; (—z) = 0 (Lemma
2.3). Corollary 5.9 shows that R; (z) is anon-isomorphismifandonlyifz € £ v+ %A.

That result also shows that rank R;(t + ¢) = (;) forall ¢ € %A.“ It follows that
the image of R;(z) = the kernel of R, (—z)

forall z € +7 + %A. The next result follows from these remarks and the calculation
before Theorem 7.4.

Theorem 1.4 (Theorem 7.4) The quadratic dual Q, i (E, 1) is isomorphic to the ten-
soralgebra TV modulo the ideal generated by the kernel of the operator Ry, —k (T) :
Ve . yez,

1.3.3. Thefactthat Q, x(E, 0) is a polynomial ring on n variables (see [17, Prop. 5.1]
for a proof) is related to the fact that lim,_, g R; (7) is the anti-symmetrization operator
v®V = v®v — v ®v. The fact that Q, 1 (E,0)" is an exterior algebra on n
variables is related to the fact that lim;_.o R;(—7) is the symmetrization operator
v®v = v®v' + v’ ®v. These are special cases of Proposition 5.2 which shows that
lim;_.¢ R; (m7) is the skew-symmetrization operator v @ v’ — v ® v’ — mv’ ® v for
allm € Z. This observation is used in an essential way in the proof of Theorem 1.1(1):
it is used to show that the space of degree-d relations for Q, (E, t) is the kernel
of a certain operator Fy(—1) : y®d _ y®d 1ike R, (1), Fi(—7) belongs to a
family of operators Fy;(z), z € C, and Proposition 6.4 shows that the limits of F;(—1)
and Fy(t) as t — 0 are the symmetrization and anti-symmetrization operators on
V@4 respectively. This gives a heuristic explanation as to why we might expect that
Oni(E, ) and Qn k(E, 7)! should be deformations of the polynomial and exterior
algebras, respectively.

1.4 Methods

The methods in this paper might be useful in other situations so we say a little about
them. For the purposes of the discussion we write A(t) = Qp «(E, 7). Thus, A(0) is
the polynomial ring SV = Clxo, ..., Xp—1].

The main results in this paper are of the following form: A(t) has property P(7),
where P(0) is a property of A(0). In all cases of interest P(t) can be formulated as a
statement that a certain subspace S(t) C V®4 has the same dimension as S(0).

We realize S(t) as the image or kernel of a linear operator P(t’) : yed _, yed,
where 7’ is usually an integer multiple of 7, and reduce the question of interest to a
question about the rank of P(z’). In all cases of interest, P (") belongs to a family
of linear operators P(z) : V® — V®4 7 ¢ C, whose matrix entries (with respect
to some, hence every, basis) are theta functions with respect to A having the same
quasi-periodicity properties. We call such a P (z) a theta operator (see Sect. 4.2). The

' This implies that the dimension of rel, 4 (E, 7) is (3), which is the first step toward proving Theo-

rem 1.1(1).
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determinant det P (z) is then a theta function, of order r say, and Lemma 2.5 tells us that
det P (z) has r zeros (counted with multiplicity) in a fundamental parallelogram (and
also tells us the sum of those zeros). In other words, if mult, (det P(z)) denotes the
multiplicity of p asazeroofdet P(z),Y » mult, (det P(z)) = r where the sum s taken
over all points in a fundamental parallelogram. By Lemma 4.1, mult, (det P(z)) >
dim(ker P(p)).

Often, we are able to narrow down the possibilities for the zeros of det P(z) to afinite
number of %A—cosets of the form mt + %A; see Propositions 5.8 and 9.8 for example.
We then obtain for “enough” of those m’s a result of the form dim(ker P(mt)) >
some number, d,, say. It then follows that

r= > mult,(det P(z)) = Y dim(ker P(p)) > > dn.
p p m

If the right-most sum equals r, then these inequalities are equalities and we conclude
that we have found all the zeros of det P(z) and their individual multiplicities. In
particular, we now know dim(ker P(z")).

Among the operators playing the role of P(z) are:

e R(z) in Sect. 5 where we show that R(z) is not an isomorphism if and only if
zext+ %A and that rank R(7) = (;), the dimension of the space of quadratic
relations for O, x(E, 7) is therefore the same as for SV;

e F;(z) and G;(z) in Sect. 6 where we show that the dimension of the space of
degree-d relations for O, «(E, ), which is the kernel of F,;(—7), is the same as
for SV;

e H.(z) in Sect. 9 where we prove that a certain lattice of subspaces of V& is
distributive by showing that certain elements of it have the same dimension as
their counterparts for SV.

The operators G (z) and H;(z) are not defined on all of yed,

1.5 Contents of this paper

The main result in Sect. 3 is a proof of (1.5) then, as a consequence of that and the fact
that S (z), which is defined in (3.6), satisfies (QYBEI), we conclude that Ry, x - ()
satisfies (QYBE2).

Section 4 establishes some general results about a holomorphic linear operator A(z)
on a finite-dimensional vector space and relates the location and multiplicities of the
zeros of det A(z) to the dimension of the kernel of A(z). These results are used in
Sects. 5, 6 and 9. We also introduce the notion of a theta operator in this section.

Section 5 takes the first step toward showing that Q, «(E, 7) has the same Hilbert
series as the polynomial ring C[xp, ..., x,—1] by showing that the dimension of
rel, x(E, 7) is (;) This is not straightforward. We must understand the kernel and
image of lim; .o R(+7+4¢) when¢ € %A. To do this we show that det R(z) is a theta
function with respect to %A; we also need to know the location and multiplicities of
the zeros of det R(z). Odesskii already knew this but he did not prove the formula for
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det R(z) in his survey [36] so we do that in Proposition 5.8 (and in doing so make a
small correction to his formula); that, and a proof that the dimension of rel, x (E, 7)
is (3), are the main results in Sect. 5.

In Sect. 6 we show that the Hilbert series of Q, x(E, t)is (1 —¢)™" forall T €
(C—=Up=1 %A) U %A. The method is a jazzed up version of the method in Sect. 5.
The space of degree-d relations for Q, x(E, t) is realized as the kernel of the linear
operator Fy(—7) : V® — V® and the proof of the Hilbert series result requires
a careful analysis of the theta operator F;(z) that is similar in spirit to some of the
arguments in Sect. 5. The argument we use to prove the Hilbert series result bears
no resemblance to earlier arguments showing that the Hilbert series of O, 1(E, 7) is
(1 — t)™". We make some further remarks about this in Sect. 6.4.3.

In Sect. 7 we show that the Hilbert series of Q, x(E, )is (1 + )" forall T €

(C — U”+1 LA) U %A. The methods there resemble those in Sect. 6 but now the

m=1 mn
space of degree-d relations for (a quotient of 7'V that is isomorphic to) Q, (E, 7)'
is realized as the kernel of F; (7).

Since the space of degree-d relations for Q,, x (E, t) is the kernel of F;(—1), there
is a canonical graded vector space isomorphism Q x (E, T) = @2020 im Fy(—1).The
multiplication on O, «(E, 7) can therefore be transferred to this subspace of TV in
a canonical way. Section 8§ gives an explicit description of this multiplication via the
operators M, ; defined there. This multiplication is analogous to the shuffle product
on the subspace of the tensor algebra consisting of the symmetric tensors.

InSect. 9, we show O, «(E, t)isaKoszul algebraforall T € ((C—UmZl %A)U%A
by verifying the “distributive lattice” criterion. The operators M, ; defined in Sect. 8,
and others derived from them, play a crucial role. Once more, we use the methods
described in Sect. 1.4.

In Sect. 10 we show that, for fixed n, k, and E, Q, x(E, t) is an Artin—Schelter
regular algebra for all but countably many .

2 Preliminaries

Whenever possible, the notation in this paper is the same as that in our earlier papers
[16-18]. (We will advise the reader to consult those papers when necessary.) For
example, we always use the notation
e( Z) — eZﬂi Z‘
We introduced the notation (n, k, E), n, A, T € C, and rel,, x(E, 7) in Sect. 1.2.
This notation will be fixed throughout the paper. The space of theta functions ®, (A)
and its distinguished basis 6y, ¢ € Z,, are defined in [17, §2]. The basic properties

of the 6,’s are recorded in [17, Prop. 2.6], so we pause here briefly only to recall the
definition:
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n—1

bu(0) = bo(z|m) = e (az+ g5+ 4500) [T0(+2+2n), @D

m=0

where 6 is the order-1 theta function

0(2) = 0G| == Y (=1)"e(nz+ 3n(n — Dn).

nez

An explicit formula for 6,(z) as an infinite exponential sum can be obtained by com-
bining Lemma 2.9 with the definition of the function ¢ [Z] (z|n) at the start of
Sect. 2.5.

2.1 Notation for linear operators

Always, V denotes a complex vector space of dimension n with basis x;, i € Zj,.

We will write I for the identity operator on V.

If A: V — Visalinear operator and 1 < i < d, we write A; for the operator
186D RAR® I®(d—i) on V®d.

If A: V®2 — V®2isalinear operator and 1 <i < d — 1, we write A; ;| for the
operator I®0~1D @ A ® [®W~i=1) on Y&,

Given integers 0 < p < d and a linear operator A : VOr 5 VOr we write AL
(resp., AR) for the operator A @ I®@=P) (resp., I®@~P) ® A) on V¥ given by A
acting on the left-most (resp., right-most) p tensorands of V®¢. For a family of linear

operators A(z1, ..., Zp), We write AL(zl, ..., zp) for A(zy, ..., zp)L. We also write
AR(zy, o 2p) = Az, ...,z,,)R.

Various linear operators of the form A(zy, ..., zp) will be evaluated when sev-
eral of its arguments are the same. If i < jand z; = --- = z; = v we write
AQzy, oo zim, VT i, zp) for Azr, - 2p).

2.2 The quantum Yang-Baxter equation with spectral parameter

The material in this subsection is standard.

Let A € Endc(V ® V). We define linear operators A1z, A2z, A13 € End(V®3) by
Appi=AQ®I, Az ;=1 ® A, where I is the identity operator on V, and A3 acts as
the identity on the middle V and as A does on the first and third factorsof V@ V@ V.

A family of linear operators R(z) € End(V ® V), parametrized by z € C, satisfies
the first quantum Yang-Baxter equation if

Rw)12R(u +v)13R(v)23 = R()23R(u +v)13R(u)12 (QYBEID)

for all u, v € C. We say that R(z) satisfies the second quantum Yang-Baxter equa-
tion if

Ru)12R(u +v)23R(v)12 = R(W)23Ru + v)12R(u)23 (QYBE2)
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for all u, v € C. The family of operators R(z) satisfying (QYBE1) or (QYBE2) is
called an R-matrix.
Let P € End(V ® V) be the linearmap P(x ® y) = y @ x.If A € End(V ® V)
we define
A" := PA and A" := AP.

Multiplication by P provides a bijection between solutions to (QYBE1) and (QYBE2).

Proposition 2.1 A family of operators R(z) satisfies (QYBEL) if and only if R(z)
satisfies (QYBE2) if and only if R(z)"” satisfies (QYBE2).

This is an immediate consequence of the following routine lemma.

Lemma2.2 Let A, B,C € End(V ® V). Then A12B13Cy3 = C23B13A12 if and only
if A1,B)3Cly = Cy3 B, Ay if and only if A}, By;Cy, = Cy3B|, A

The next result plays a crucial role in Sect. 5.3.

Lemma 2.3 Let R(z), z € C, be a family of operators satisfying (QYBE2). If R(0) =
I ® I, then there are scalars c(z) € C such that

R(Z)R(—z2) = R(—2)R() = c() IR 1.

In particular, if R(z) is not an isomorphism, then R(z)R(—z) = 0 = R(—2)R(2).
Proof Since R(0) = I ® I, substituting u = —v = z in (QYBE2) yields

R(2)12R(=2)12 = R(—2)23R(2)23. (22)
We use the fixed basis {x;}; for V. Applying both sides of (2.2) to x; ® x; ® x yields

R@R(—=2)(xi ® xj) @ xx = xi @ R(=2)R(2)(xj @ xi).
Hence there is a linear map F(u) : V — V such that
R(DR(-21)Q®I = IQF()®1 = I ® R(—=2)R(2),

which implies R(z)R(—z) = I ® F(z) and R(—z)R(z) = F(z) ® I. The same
argument for —z implies R(—z)R(z) = I ® F(—z) and R(z)R(—z) = F(—2) ® I.
Hence there is ¢(z) € C such that

IQF)=F(2)®I=cI®I.

Therefore F(z) = c(z)1. O

Proposition 2.4 [f R;(z) is the operator defined in (1.3), then

(1) R;(0) = I ® I and
(2) Re(T)R:(—=7) = 0 = R (—=7)R (7).
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Proof (1) Since the zeros of 0, (z) are the points in — 7 n+Zn+ %Z ([17,Prop.2.6(6)]),
the 6p(0) term appearing before the ¥ sign in the expression for R;(0) annihilates
all the terms after the ¥ sign except the r = j — i summand whose denominator,
0;—i—r(0), cancels the 6y(0) term. Hence

R:(0)(x; ® xj) = xi Qx;

foralli, j € Z,.

(2) Theorem 3.7 below shows that the R; (z) defined in (1.3) satisfies (QYBE2) so,
since R;(0) = I ® I, the conclusion of Lemma 2.3 applies to R (z).

Since O, x(E, 7) has an infinite-dimensional cyclic module, namely a point module
(see [16, §1.4]), rel,, x(E, T) # V®Z But rel, « (E, 7) is the image of R;(t) so the
result follows from Lemma 2.3. O

2.2.1 R-matrices in arbitrary algebras

It will be convenient to generalize the setup for R-matrices and the quantum Yang—
Baxter equation. Instead of operators R(z) in End(V ® V) we can take elements
R(z) € S ®@z S where S is a C-algebra and Z C S is a central subalgebra. There
are obvious definitions of R(z);; € S ®z S ®z S for (ij) € {(12), (13), (23)}. The
equations (QYBEI) and (QYBEZ2) then acquire the obvious meanings. If V is a left
S-module, then the various R(z);; act on V®3_If S is a finite-dimensional C-algebra
we can speak of holomorphic or meromorphic R(z).

Section 3 uses this idea with S = CT" for a finite group I" and Z = CA for a central
subgroup A < T.

2.3 Theta functions in one variable

We make frequent use of the following result. A proof of it appears in the appendix to
[17].

Lemma 2.5 Assume A = Zn; + Zn, is a lattice in C such that Im(ny/n1) > 0,
and suppose f is a non-constant holomorphic function on C. If there are constants
a,b,c,d e C such that

fz+m) = e @D £y and
fz+m) = e 2D £,

then

(1) ecm —any € Zso, and

(2) f has cny — any zeros (counted with multiplicity) in every fundamental parallel-
ogram for A, and

(3) the sum of those zeros is %(cn% — an%) + (¢ — a)nina + bny — dny modulo A.
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2.4 Transformation properties of R;(2)

LetS, T,N e GL(V),and P € GL(V®2), be the automorphisms
S - X =e(%)xa, T x4 =Xq1+1, N -Xq=%x_4, PU®v):=vQu.

The group generated by S and 7 is the Heisenberg group H,, of order n°, and V is an
irreducible representation of H,, (see (3.3)). At [37, §1, Rmk. 2], Odesskii and Feigin
observed that § and T extend to automorphisms of O, x(E, ) (see [17, Prop. 3.23]
for the details). We will often use the projective representation of %A /A on V given
by

b b ¢k

Let
b(z) := e(—nz+1+ 5 — 2ty). (2.3)

Proposition 2.6 Let k' € Z be the unique integer such thatn > k' > 1 and kk’ = 1 in
Zy. Then

Re(z+1) = D"'UR@SHR (@) (S @D, 24)
Re(z+1n) =b@UT HR (T ®D), (2.5)
R.(—z) = e(n’z2)P R_.(z) P, (2.6)
R:(=2) = e(n*2))(N ® N) R+ () (N ® N), 2.7)

R 1) = (S®DR(2) (ST ® ), 2.8)
R1,@) = e@U T ) Re() U ®TY). 2.9

Furthermore,

(1) rank R (z +¢) = rank R;(2) forall ¢ € 1 A;
(2) Rt(29)R:(—2) =0= R (—2)R.(2) forallz € £t + %A;12
(3) S®Sand T ® T commute with R, (2).13

Proof We will use the notation D := 6{(0) - - - 6,—1(0).
Proof of (2.4). Since 6, (z + 1) = ¢ (%) 6 (2), by [17, Prop. 2.6(3)], and

e(—5xj . @ xir = e(B)YT @ ST (xj—r ® Xir),

12 It follows from Corollary 5.9 that R(z)R(—z) = 0 = R(~z)R(z) if and only if z € £+ 1 A, and that
R(z) is an isomorphism if z ¢ +7 + %A.
13 This implies that S and T extend to automorphisms of Onk(E,T) (cf., [17, Prop. 3.23]).
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we see that R, (z + %)(xi ® x;) equals

1 | O itr—n(—2— 3 +7)
- Oa (=2 = 3) Xj_p ® Xit
D(n ”)Z (2= e

aely rely ej_’_r(_z

n—1y 1 r Oj—itrk—1)(—z+7)
(="3p ( I 9“(‘2)) 2 (=) ]0,-1:_(,<—)z)9kr<r> Yo @ Fisr

a€ly reln

<—1>”—1e<%)% ( I %(—z))

a€ly

9._. _ _Z+T
oy G DD g gk )
rel gjfifr(_z)ekr(f) ’

= ()" e!)y 1 © STHR: ()(x; ® %))
= D" USRS @ D ®x)).

Proof of (2.5). By [17 Prop. 2.6(4)], 0u(z — 1n) = e(z + 2 — 51n) Ou—1(2).

Therefore R, (z + o n)(x, ® x;) equals

1 0 —itr—1)(—2 — &1 +7)
D(H 9a(—z—,l,n)) Yo e Xj_p ® Xigr

weZ,, rez, 0i—i—r(=2—= Mk (1)

= (nz-l—*—""_l) (1—[9(1 1(—= Z))

a€ly,

Oiitrt——1(—z2+7
' e i+r(k—1)—1( )X'—r®x,' )
0: ) J +
rel, j*l*}‘f](_z) kr (T)

1 B O —itr@—n—1(=z2+7) 1 _
b() 7 (al;z[ O ( z)) g oot O T 8 i)

=b@) U T YR ()T ® N(x; @ x;).

Proof of (2.6). Since 6,(—z) = —e( —nz+ %)9_0[(2) by [17, Prop. 2.6(5)],

00(2) - Oy—1(2) Z Oj—itr(k—1)(z+7)
01(0)--- 6‘n—1(0) 0j—i—r @)k (T)

n— 1)00( 2) Oy 1( 2)
61(0)---6,-1(0)

Oi—j—r(k—1)(—=2 — 1)
N (=) L Xjior ®x;
EZZ Oi—jar (=20 (1) T

R (—2)(x; ® xj) = Xj—r @ Xjgr

= (=1)'e(n®z +

0o(—=2) - Op—_1(—2) O _jirk—1)(—z2— 1)
01(0)---6,-1(0) 0i— j—r (=2)0kr (—7)

= e(nzz) P(xj—y @ Xjyr)

rely
e(nzz)P R:(QP(x® xj).
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Proof of (2.7). This follows from (2.6) and

O0(—=2) -+ - Op—1(—2) Z Oi—jirth—1(=2+7T)
61(0)---6,-1(0) = Oi—j—r (—=2)0kr (T)

(N®N)R:(2)(N ® N)(x; @ xj).

PR:(2)P(xi ® xj) =

Xjtr @ Xi—r

Proof of (2.8). Since 6, (z + %) =¢(2)0u(2), R, 1(2)(x; ® x;) equals

1 Oj—itrt—n(—2+T+3)
= 0o (—2) T Xjor ® Xig
o\l 2 0j-i—r(=20r(c+3) T

€Ly r€ly
1 o 9‘7'+r(k71)(_z + 1)
- = 0o (—2 (=) - Xjor @ Xi
D l_[ o (—2) Z ( n ) 0j—i—r(—2)kr (1) I o
€Ly r€ly
o O —itrt—1)(—2+ 1)
— ()= [ [T a2 | 32 (§® DGjmr & xitr)
( n )D alE_Z[ o rEXZ: ijifr(—Z)ekr(T) o v

(S®DR(2)(S™'® N(x; @ x)).

Proof of (2.9). Since 6y (z + L) = e(—z — & + =L) 611 (2), R
equals

1y (D (i ®x))

1 0j—itrt—1)(—z + T + 1)
— O (—2) n U i ®xis
p | L1 2 0j—imr (=)0 (x + Ly T

€Ly reZy

1 Oj—itrk—1)+1(—2 + T)
= e(@)— O (—2) ! Xjor ® X
p| 1% 2 0 —i—r(—2)rr1 () T
€Ly r€ly

1 O itk +stk—1)(—2 + )
e(z)— 0o (—2) ] Xjap s @ Xi
p | Ll | e i @ik

(where s = r + k')

1 Oj itk +stk—1)(—2 + ) ¥
) — O (— L I®T k—s @ Xigs
e(Z)D 1_[ o (—2) Z 0111y (—2)0ks (T) ( )(x]+k s its)

a€ly SE€ZLy
eI ® T™F) Re(2) (xi ® xj140)
e@U®T¥)Re(2) (1 ® T (i ® x).

(1) This is an immediate consequence of (2.4) and (2.5).
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(2) We observed in Proposition 2.4 that R;(t) is not an isomorphism. Hence
R (t + ¢) is not an isomorphism either. The result now follows from Lemma 2.3
and Proposition 2.4(1).

(3) To show that [R;(z), S ® S| = 0 we make V®? a Z,,-graded vector space by
setting deg(xy ® xg) := a + B. Since the action of R;(z) preserves degree and the
homogeneous components are S®2-eigenspaces, the actions of R;(z) and S ® S on
V®2 commute with each other.

Write ¢; j » for the coefficient of x;_, ® x; 4, in R (2)(x; ® x;). Since ¢j 11, j41,r =
Ci,j,rs

Ri@DT ®T)xi ®xj) = Re(2)(xi11 ® xjy1)

= Z Citl,j+1,rXj+1—r @ Xit14r

r

= @ &T)( Y cijr ¥jor @ity )-
r

Hence R, (2)(T ® T) = (T ® T)R.(z), as claimed. O
An induction argument using (2.4) and (2.5) proves the following.
Corollary 2.7 Ifa,b e Zand § = § + Zn, then
Rz+0) = [ 80U @T' ") ' Re@(T"s" ® 1)

where f(z,¢,T) = e(—bnz)e(bt + }w — Mn)

2.5 Theta functions with characteristics

The Jacobi theta function with respect to A is the holomorphic function

pim = 3 e(mz+ smn)

mez

Clearly, #(z + 1|n) = ¥(z|n) and ¥ (z +n|n) = e(—z — %n) B(z|n).
For real numbers a and b the theta function with characteristics a and b is

ﬁ[ﬂ(zm) = elae+b) + @) +an+ bl

= Z e((a +m)(z+b) + %(a + m)zﬂ)-

mez

This is the same as the definition at [46, (2.5)]. In [34, p. 10] and [54, (3.1)], & |:Z ] (z|n)
is denoted by ¥, ,(z, 7). The papers [46] and [54] play a role in Sect. 3.
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It is easy to see that

l‘/‘[a-‘_l}( [n) = 19[ }(Zln) and l?[b+1](z|n) = e(a)ﬂ[ ](zln)
(2.10)

Since ¥ (z|n) =0ifandonly if z € %(1 + 1) + A by Lemma 2.5, 19|:Zi|(z |n) =0

if and only if
z€ 3(1+n — @n+b) + A.

Proposition 2.8 If s,t € Z, then z9|: i|(z +sn+tln = e(at — sz +b) —
a

%szn)ﬂ[b}(zm).

Proof We observed above that #(z +1|n) = 9(z|n) and 3 (z +n|n) = e(—z —

%n) ¥ (z | 7). Aninduction argument shows that ¥ (z+sn | n) = e(—sz— %szn)ﬁ(z | n)

for all integers s and it follows from this that ¥ (z+sn+7 | n) = e(—sz— %szn)ﬂ (zln)
for all integers s and 7. Hence

1
0[Z:|(1+sn+t|n)=e(a(z+sn+t+b)+Eazn)ﬁ(z+sn+t+an+b|n)

15
=e(a(z+sn+t+b)+§a n)

-e(—s(z+an+b) — %szn)ﬁ(z +an+b|n)

e(a(sn +1))e(—s(z+an+b) — s n)z?|: ](Zln)
=e(at—s(z+b)—%szn)ﬁ[Z](Zln)

as claimed. O

The functions ¢ [a

b i| are related to the 6, ’s defined in [ 17, Prop. 2.6] in the following

way.
Lemma 2.9 There is a non-zero constant ¢ € C, independent of o and z, such that
243 1,01
19[ " 2}(zlnn) =c le(—=52)0u(¢|n)
2

foralla € Z and all 7 € C.

Proof Since the functions 6, (z), @ € Z, are characterized up to a common non-zero
scalar multiple by their quasi-periodicity properties

bu(z+ 1) = e(%)0u(2) and Ou(z+1n) = e(—z— & + 10)0at1(2)
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a4 1
it suffices to show that the functions e(%nz)z?[ no 2 :|(nz | nn) have the same quasi-

2
o 1

periodicity properties. The first equality in (2.10) implies that e(%nz)ﬁ |: n T 2 i| (nz|nn)
2
depends only on the image of « in Z,. By [34, p. 10],

0[2}(z+1|n)=e(a)l9[2](z|n) and l‘/‘[Z](er%nln)
1
=e(—5z—5 - ﬁn)ﬁ[“?}(un).

Therefore

| 1 Lty 1
e(3nz+DH)o| " T2 |(n+ 1y 1nn)

[

I

Q
—_~
B —
—

Q
—_~~~
B —

S
N
SN—

Y
—_~
>
Bl —
N

<

1
3R

D= 4
=

| I

—

N
I

N
=
N—

—

and

£
n

+

1
e(3n(z + %’7))1‘/“[ 2 ](n(z + In)Inn)

1
2

S

1 1 1 1 + 42
= e(be(dn)e( ==& = oo 77 |anciom)

2

_ 1, n-1 1 atl +%
= e(—z— 54‘777)6’(5"2)19 oy (nz | nn).

+

@
n

1
Thus, e(%nz)ﬁ[ 2 :|(nz | nn) has the same quasi-periodicity properties as 0y (z).

1
2
O

3 Elliptic solutions to the quantum Yang-Baxter equation
In this section we assume T ¢ %A and set

£:=1 4+ 3(1+n).
Notice that £ ¢ S(1 +n) + LA.

We will use the proof of Theorem 3.1 in [46] to show that R(z) satisfies (QYBE2),
i.e., to prove Theorem 3.7 below.'*

14 The > symbol in [46, (3.11)] should be [ ], and the symbol yy in that equation denotes a non-zero scalar.
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Following [46, (3.2)], for each (a, b) € 72, we define

ﬂ[ZfZ}@-+s|n)
Wia,b)(2) 1=
d

3.1)

a/n

bm}@|m

Since & ¢ %(1 +n)+ %A, the denominator of w, ) (z) is non-zero whence w,, p)(z)
is a holomorphic function of z. It follows from (2.10) that w, »)(z) depends only
on the images of @ and b in Z,. Thus, if p = (a,b) € Zﬁ, there is a well-defined
holomorphic function w(z).

Theorem 3.1 [54, Thm. 4.4] For p = (a, b) € Z,zl, let1, : V — V be the linear map

Ip(x;) = @'x;_,, where w = e(%). The operator
S@ = Y wy@,®I," (3.2)
peL;

satisfies (QYBEL).

We will refer to S(z) as Belavin’s elliptic solution to the QYBE.

For n = 2, S(z) was discovered by R. Baxter who also proved Theorem 3.1 [4-6].
Theorem 3.1 was formulated and conjectured to be true for all n by Belavin [8], and
was subsequently proved by Cherednik [13], Chudnovsky and Chudnovsky [11], and
by Tracy [54].

We need a slightly more elaborate version of Theorem 3.1. In [46, 54], and in the
other papers showing that S(z) satisfies (QYBEI), the operators [, are defined after
first realizing V as an irreducible representation of the Heisenberg group

Hy =y, x.e|ly"=x"=€"=1,ly.el=lx.el=1, [y, xI1=¢). (33)

of order 1. The representation on V is via operators y > g € End(V)and x + h €
End(V) where g - x; == o'x; and /i - x; = x;_j and @ = e(); the central element
€ € H, now acts as multiplication by @™, and we have I = h? gb.

We can now apply the discussion in Sect. 2.2.1 to the group algebra S := CH,

with Z := C(e), the group algebra of the center (¢) < H,.

Theorem 3.2 For p = (a, b) € Zﬁ, let J,, € CH, be the element x*y?. The family of
operators

S(2) == Y wpJp,®J,' € CH,®c() CH, (3.4)
pel

satisfies (QYBEL).

Proof This is essentially what the proof of [54, Thm. 4.4] shows; at no point does that
proof use the specific realization of & and g as operators on V, beyond the fact that
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their commutator is a root of unity of order (dividing) n. One can therefore replace
those operators with their abstract versions in (3.3), and w with the generator € of the
center of H,. O

As a consequence, we have the following generalization of Theorem 3.1.

Corollary 3.3 Let ¢ : H, — End(V) be a representation such that € acts on V as a
scalar multiplication and define I((Z,b) =0(Jw,p) = d)()(“yh). The operator

$(2) = Y wpIf @ (U)! (3.5)
pez?

satisfies (QYBEL).
Recall that P € End(V ® V) isdefined by P(x ® y) = y ® x.
Proposition 3.4 Let k' be the unique integer such that kk' = 1in Z, andn > k' > 1,
and define 1
Sk(z) = Z W(a,b) (Z)[(fk’u,b) & ](—k/a,h) (3.6)

(a,b)e72

b

where I(_yq.p)y 1 V — V is the operator x; — o' x,-+k/a.15 Then

Sk(—nz) = ne(3n(n + 1)2) PRy k.7 (2). (3.7

Proof We first prove the result for k = —1. When k = —1, Sk (z) is the operator S(z)
in (3.2). The coefficient of x; 1, ® x;_, in S(z)(x; @ x;) is

S@iily i = Z w(—rpy(2) @ PUTI,
beZly

This is the function S"/~1—" (z, w,...)in [46, (3.4)] (after replacing their a, b, v, and
Tin[46, (3.4)] byourr, j —i —r, b, and n, respectively). If, in [46, (3.3)], we replace
their T and w by our n and nt, respectively, then their n becomes our &. The second
variable w in §™/~~"(z, w, ...) becomes nt. We now have

j—i—=2r 1
17[ " +2}(z+nflnn)

2

_ry1 J—izr 1
ﬁ[ ”1+2}(nr|nn)~l9[ ”1+2}(1|nn)
2 2

cle(— %(Z +n1))0j_i—2r (3 + 1)
c_le( - %nr)é_r(r) . c_le( — %z)gj_i_,(%)
0j_i—or(341)

by [46, (3.10)]

S@it iy = @

f@ by Lemma 2.9

cf(2)

15 The operator Sy (z) is defined in the same way as S(z) after replacing the generator / by the new generator
hK
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where c is the constant in Lemma 2.9 and

£_|_l
1 ﬁ[n i 2}(Z|nn)
f@) = ne(=32) ¥ [Z}(zlnn) H T by [46. (3.10)]
2 ﬁ[ﬁff}(omm
2

= ne(— it )c Z)90( ) l_[ (g( ZZ)QO[( )> by Lemma 2.9.

6, (0)
Therefore
i—or(—z24+71)
S(= nz)l+"] r= Cf( nz) —]r( )Q] —i—r(—2)

00(=2) - Oh—1(=2) Oj—i—2r(—=2+7)

1
meCn DY S ) 60 (0 (-0

The last expression is ne(%n (n+1)z) times the coefficient of x; _, ® x; 4, in R(2) (x; ®
xj) when k = —1 (see (1.3)). Thus, the proposition is true for k = —1.

We now address the general case.

The coefficient of x; 4, @ xj_, in Sp(—nz)(x; @ x;) is

Si(= nz)l+” L= Y Wiy (—nz) @ PO,
beZy

A suitable adjustment to the arguments in [46, §3] shows that

Jj—i4rk— 1)_|_
19[ "y }( nz +nt |nn)
Se(=n2)i, oy = f(=n2) k1 imimr 1
19[" 1 2}(nr|nn)-l9[ " 2}(—nz|nn)
2 2

Oj—itrk—1)(—2+71)
Okr (T)0j—i—r(—2)

n—1
= ne(%n(n + 1)z) 6o(—2) (H Qa(_2)> O 2

= cf(=nz)

00(0) ) Okr(T)0j—i—r(—2)

a=1

where c is the constant in Lemma 2.9. Comparing this with the definition of R(z) in
(1.3) completes the proof. O

We now give another proof of Proposition 3.4 that does not rely on the calculations
in [46].

Proposition 3.5 Let k' and Si(z) be as in Proposition 3.4. Then

Si(—nz) = ne(3n(n +1)z) PRy k- (2). (3.8)
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Proof'® When the operators on the left- and right-hand sides of (3.8) are evaluated
at x; ® x; the result is a linear combination of x;, ® x;_,, ¥ € Zj,. Thus, to prove
the proposition it suffices to show that the coefficients of all x;, ® x;_, in these
evaluations are the same (for all i, j, r). This is what we will prove.

For the remainder of the proof we fix i, j,r andsets := j —i —r.

The coefficient of x;1, ® x;j_, in S(—nz)(x; ® x;) is

F(Z) = Z w(kr,h)(_nz) w—bs.
bely

The coefficient of x; , ® x;_, in ne(%n(n + l)z)PRn,k,t(z)(xi ® xj)is

Oo(=2) -+ - On—1(=2) bshr (=2 + 10)
01(0) -+ 6y—1(0)  65(=2)bpr (7)

G(z) == ne(yn(n+1)z)

We must show that F(z) = G(z). To do this we will show that F'(z) and G(z) have
the same quasi-periodicity properties (with respect to the lattice %Z + Zn), the same
zeros, and that F (%r/) =G (%n) It follows from the first two of these facts that F (z)
and G (z) are scalar multiples of each other, and it then follows from the equality that
this scalar is 1.

Quasi-periodicity properties of G (z): Since 0, (z + %) =¢(%)0u(2),
Ge+1) = o( - )60,

Since O (—z — 1) = e(n(—z —n) — %)%(-Z),

n—1

n—1
[[0a(-2—m = e((n — Dn(—z — ) = 27) [ bu(~2)
a=0 a=0
oFES aFESs

and
Opskr (=2 =0 +71) = e(n(=z = n+7) = §)bsrr (—2 + 7).

Therefore

GG+ = e(intn+ D) e(n*(—z —n) +nt — 2) G(2)

= e(—n’z = tn’n+ 21 +1n) +n7) G@).
Computation of G (27): By [17, Prop. 2.6(7)],

2
O (z — %77) = e(sz + ﬁ - %n)%—s(Z),

16 Whenk=n—1, Sk (2) equals the operator S(z) in Eq. (3.1) of Richey and Tracy’s paper [46]. Some of
the calculations in this proof are similar to those that produce Egs. (3.3)—(3.12) in [46].
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whence ;
Gs—i-kr (= ah + 1)

Okr (T)

= e(sT+ £ — iy

and

2
90:(_,%77) = e(zs_n - mz—',—,s n)ea—s(o)-

The singularity of the function

O0(—=z) -+ Op—1(—2)
05(—2)

atz = 7 nisremovable and the value of the associated holomorphic functionatz = 71
is

n—1

]_[0 = He - ”’+S 1)0a—s (0).

Ol;ﬁs ot;és

= e((n— 1)(% — By ]‘[9 0.

Therefore

G(3n) = ne(Ln+ Dsn)e((n = 1)(55 — 25n)) et + 35 — 255 n)
ne(%(n +1) — % n +st).

The zeros of G(z): Since 6,(z) has zeros at points in —%n + %Z + Zn, G(z) has
zeros at the points in the set

[

{r+=nb o, gn . 2} = )
Quasi-periodicity properties of F(z): Since 19[ :|(z+1 [n) = e(a)ﬂ[ :|(Z [17),

Fe+1) = > werp(-nz—1o™

beZy,
ﬂ[lz/n}(—nz—“réln)
:Z / w—bs
= ["’/ ”}(& n)
k 19[7//n}(—nz+éln) b
=b€ZZne(—7) ["r/”]@n ’
b/n
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= 0 " F(2).

Ifp,g eZ,thenz?[Z](z-i—pn-i—qln) :e(aq—p(z+b)—

by Proposition 2.8, so

FE+2m) = Y werp(—nz—mpo™

én)ﬁ[i]mm

beZy,
ﬁ[k’/”}—nz —mn+&|n)
_ Z b/n s
= ["”"}(ﬂ )
b/
ﬂ[lz//:}(—nz +&In .
- bEXZ: e(m(—nz +&+0b/n) — %) o o w
n b/
2 ZSL[];;r//n}(—”ﬂréln)
= e(—nmz+mé — %) Z e(2m) o w b
beZy / (é |
, 7}[kbr//n}(—”z +E|n)
= e( —nmz + mé — an) Z @ b—m)

bez [" /”]@m)

b/n

Setting m = n, we see that

Fz+m) = e(—n’z+nt+ 21 +n) — Tn)FQ).

Thus, F(z) and G(z) have the same quasi-periodicity properties with respect to %Z +

Zn.

The zeros of F(z): It follows from the formulas for F(z + %) and F(z + n) that

F(z) hasn zeros!’

these zeros is T + ]%17 + %(n + 1)n modulo %Z + Zn.

17 Since F(z + %) = e(—%’)F(z) we may apply Lemma 2.5 to F(z) with 1
b= ]%, c=n%andd = n(—t — %(1 +n) + %n). Thus, cny —any = n and

in each fundamental parallelogram for %Z + Zn, and the sum of

1 _ —
am=na=0,

%(cn%—an§)+(c—a)n1n2+bn2—dm = %+nn+'§%n+f+%(l+n)—%n

W Birkhauser
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Setting z = 0 above, we see that

w—b(s—m)

kr/n
2| 1 e 1y
m le b/n
FCm = e(ms —"rn) ) —sp o9 ——
beZy,
c 1’[17/,1 ](&M)
which is zero when m # s in Z,. Thus, F(z) vanishes at the n — 1 points in the set
(0, . 2] = (3l 39

These points belong to a single fundamental parallelogram for %Z + Zn and their sum
is %(n — 1)n — +n. Hence there is another zero at

T+ + i+ Dy — - Dy + in = v+ =Ky modulo 1Z + Zn.

Comparison of F(z) and G(z): Thus F(z) and G(z) have the same zeros. They
also have the same quasi-periodicity properties with respect to %Z + Zn so their ratio
is a doubly periodic meromorphic function without zeros or poles, and therefore a
constant. However, the formula for F (%n) above gives

F(in) = ne(s —%n) = ne(sr+%(l+n)—§n)

which equals G (5 1) so that constant is 1. The proof is complete. O

Corollary3.6 O, k(E, ©)°P is the quotient of TV by the ideal generated by the image
of Sk(—nr).

Theorem 3.7 The family of operators R (z) : V&% — V®2in(1.3)satisfies (QYBE2).
Proof Since Si(z) = S?(z) where

¢ : H, — End(V)

is the representation
X hk, Yy = g,
and € acts as multiplication by o, Corollary 3.3 tells us that S (z) satisfies (QYBE1)

and hence so does S;(—nz). It now follows from (3.7) that P R(z) satisfies (QYBE1)
and therefore R(z) satisfies (QYBEZ2) by Proposition 2.1. O

4 Families of linear operators

In Sects. 6, 7 and 9, we need to determine the zeros, and their multiplicities, of the
determinants of certain linear operators G.(z), G} (z) and H(z), on V®d_ These
operators, which are analytic functions of z, are compositions of operators of the form
19 -1 @ R(w) ® I9*! for various w’s and i’s.
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4.1 Dimensions of kernels and the multiplicity of the zeros of the determinant

The multiplicity of a point p € C as a zero of a meromorphic function f(z) is denoted

mult, f(z).

If f(z) is identically zero in a neighborhood of p we set mult,, f(z) = co.
The next result is used in Sects. 6, 7 and 9.

Lemma 4.1 LetV be afinite-dimensional complex vector spaceand A : D — End(V)
a holomorphic map defined on a domain D C C. Forall p € D,

mult, (det A(z)) > nullity A(p).

Proof This is trivial if det A(z) is identically zero in a neighborhood of p, so we
assume that p is an isolated zero of det A(z). Let eq, ..., e; be an ordered basis for
ker A(p), and extend it to an ordered basis ey, ..., eg, ... for V. With respect to this
basis, the entries of the matrix A(z) are holomorphic functions whose first £ columns
are divisible by z — p (in the ring of functions holomorphic in a neighborhood of p).
Hence det A(z) is divisible by (z — p)*, finishing the proof. O

In Sect. 9, we need a stronger version of Lemma 4.1. First, some terminology. If
A : D — End(V) is a holomorphic map as above and p is a fixed point in D, we
define
A(2)

An(2) = m

with the convention that A_;(z) = 0.

Definition 4.2 The singularity partition of A(z) at a point p € D is the tuple
0p(A) :== (Ao = A1 > ---) of non-negative integers defined by

Am = the dimension of the kernel of A,, (p)|kerA L)

The size of the singularity partition is the number |0, (A)| := ), A;.

Remark 4.3 Since A, = 0 for m > 0, we ignore those zeros and regard the partition
as a finite tuple.

The next result, which improves on Lemma 4.1, is used in the proof of Proposition
9.15.

Lemma 4.4 LetV be afinite-dimensional complex vector spaceand A : D — End(V)
a holomorphic map for a domain D C C. Forall p € D,

mult, (det A(z)) > |o,(A)].
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Proof Without loss of generality, we assume that p = 0. A direct sum decomposition
V = ker A(0) & Vj leads to a decomposition

Ag = A: D — Hom(ker A(0), V) & Hom(Vy, V) “.1)
whose left-hand component is a multiple of z, contributing z*° to det A(z) where
00(A) = (Ao Z A1 = --).

Dividing the left hand component of (4.1) by z and using a splitting ker Ag(0) =
ker A{(0) & Vi, we obtain

A1 : D — Hom(ker A1(0), V) ® Hom(Vy, V),

with the left-hand component once more a multiple of z contributing z*! to the deter-
minant. Simply repeat the procedure until the singularity partition has been exhausted,
noting that if at any point any of the functions

A (0) |ker An—1(0)

vanish identically then det A(z) does too, making the statement trivial. O

4.2 Theta operators

Assume A = Zny +Zn; is alattice in C such that Im(n,/n1) > 0. A theta function of
order r with respect to A is a holomorphic function f : C — C satisfying the quasi-
periodicity conditions f(z+n1) = e(—az—>b) f(z) and f(z+n2) = e(—cz—d) f(2)
in Lemma 2.5 for some constants a, b, ¢, d such thatcn; —an, = r.If f is not the zero
function it has r zeros in every fundamental parallelogram for A. For example, the
functions that belong to the space ®, .(A), defined in [17, §2.1], are theta functions
of order r. In particular, 6, is a theta function of order n with respect to A and
{60, ...,0,_1}1s abasis for O, (A) = @n’nz;l(A) [17, Prop. 2.6].

Definition 4.5 A holomorphic map A : C — End(V) is a theta operator of order r
with respect to A if A(z +n1) = e(—az —b)A(z) and A(z + ) = e(—cz — d)A(2)
for some constants a, b, ¢, d such that cn| — any = r. Equivalently, if (v*, A(—)v) is
a theta functions of order  having the same quasi-periodicity properties for allv € V
and all v* € V*, where V* is the dual vector space of V. Equivalently, the matrix
entries for A(z) with respect to any basis for V are theta functions of order r having
the same quasi-periodicity properties.

For example, R(z) is a theta operator of order n? with respect to A because its
matrix entries belong to ©,2 .2, (A) (see [17, §2.1.2]).

If A;(z), i = 1,2, are theta operators whose matrix entries belong to ©,, ., (A),
then A1(z)A2(z) is a theta operator of order 7 4 r, because its matrix entries belong

0 Ory 41y 014, (A).

) Birkhauser



31 Page 30 of 81 A. Chirvasitu et al.

If A(z) is a theta operator whose matrix entries belong to ®, .(A) and d € C, then
A(z+d) is a theta operator of order r because its matrix entries belong to O, .4 (A).

4.2.1 “Determinants”

We often encounter theta operators that preserve a fixed subspace W C V or, more
generally, map it to a fixed subspace W’ C V of the same dimension. If A(z) (W) € W’
forall z € C and dim W = m = dim W', then A induces a holomorphic function

detww (A@) = A" A@) : "W — A" W' 4.2)

that is well-defined up to a non-zero scalar multiple (depending on a choice of bases for
W and W’). We will often be interested in the location and multiplicities of the zeros
of this function. That data does not depend on the choice of bases. These remarks, and
the next result, apply to the theta operators G;(z) defined in Sect. 6.4.1 and H;(z)
defined in Proposition 9.6.

Proposition 4.6 Assume W and W' are subspaces of V of the same dimension. If A :
C — End(V) is a theta operator of order N with respect to A such that A(z)(W) C W’
for all z, then dety . w (A(2))

(1) is a theta function of order N dim W and
(2) has N dim W zeros in every fundamental parallelogram for A ifit is not identically
zero.

In particular, det A(z) is a theta function of order N dim V with respect to A.

Proof (1) Composing A with an automorphism of V that maps W’ isomorphically
onto W, we may as well assume W = W', whence detw _, w (A(z)) becomes the usual
determinant of A(z)|w.
Choose an ordered basis for W and extend it to one for V. The operators A(z) then
have the shape
<A11(Z) A12(Z))
0 An(2))’

and det(A(z)|w) = det A11(z). Since the summands in the usual expression for
det A1 (z) are products of dim W theta functions of order N having the same quasi-
periodicity properties, those summands, and therefore their sum, are theta functions
of order N x dim W.

(2) A non-zero theta function of order r has r zeros in a fundamental parallelogram
(Lemma 2.5). O

4.3 Families of kernels and images

Let Grass(d, W) denote the Grassmannian of d-dimensional subspaces of a finite-
dimensional C-vector space W.
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In this subsection we consider algebraic or analytic morphisms f; from a complex
variety (algebraic or analytic,'® though we typically specialize to the algebraic case)
to either

e the Grassmannian Grass(d, W), or
e the space of linear maps Hom(W, W) for finite-dimensional C-vector spaces W
and W'.

We will be interested in the families of intersections (or sums) of f; (y) in the first case
or ker f;(y) (or im f;(y)) in the second.

Proposition 4.7 [47, Prop. 13.4] Let f : Y — Hom(W, W’) be a morphism of alge-
braic or analytic varieties and write r := max{rank f(y) | y € Y'}.

(1) The set U :={y € Y | rank f(y) = r} is an open dense subset of Y.
(2) The map ker f : U — Grass(dim W —r, W), u — ker f(u), is a morphism.
(3) The map im f : U — Grass(r, W'), u — im f(u), is a morphism.

Proof As we said above, we focus on the algebraic situation.

(1) Since Y is a variety, and therefore irreducible, density follows from openness
and non-emptiness. The latter holds by construction (since the maximal rank is, of
course, achieved somewhere), so it remains to argue that U C Y is open. This is clear
from the fact that the condition rank < r is expressible as a collection of algebraic
equations (the vanishing of r x r minors).

Parts (2) and (3) are proved in [17, Prop. 3.17]. O

To further strengthen the connection between families of subspaces and families of
operators, we have a kind of converse to parts (2) and (3) of Proposition 4.7.

If F: X — Hom(W, W) is a function we write ker F and im F for the functions
x — ker F(x) and x — im F (x), respectively.

Lemma4.8 Let f : Y — Grass(d, W) be a morphism.

(1) Let W' be a fixed vector space of dimension > dim W —d. Then Y can be covered
with open subvarieties U for which there are morphisms

Fy : U — Hom(W, W)
such that f|y = ker Fy.
(2) Let W be a fixed vector space of dimension > d. Then Y can be covered with
open subvarieties U for which there are morphisms

Gy : U — Hom(W”’, W)

such that |y =im Gy.

18 we adopt the following convention: a (complex) algebraic variety is a scheme over C that is reduced,
irreducible, separated, and of finite type. An analytic variety is a (Hausdorff) analytic space that is reduced
and irreducible.
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Proof We prove (1); the dual argument shows (2) (using possibly different U’s).
Cover the Grassmannian G := Grass(d, W) with the affine open sets Ur described in
[23, §3.2.2], consisting of the d-subspaces of W that intersect a fixed (dim W — d)-
dimensional subspace I" trivially. Pulling these back to Y, we may as well assume the
image of f lies entirely within a single open patch Ur C G for a fixed I'; i.e., we are
now assuming that f(y) NI" = {0} forall y € Y.

Now T is naturally isomorphic to W/ f(y) via the quotient map W — W/ f(y)
so, for each y € Y, define F(y) € Hom(W, W’) to be the composition

W — W/ fo) =T - W

where ' — W’ is some fixed embedding. This is the desired morphism F : ¥ —
Hom(W, W'). O

Proposition 4.9 [47, Prop. 13.5] Let f;, 1 <i <r, be morphisms Y — Grass(d, W).
Then,

(1) The sets
U = {y € Y‘ mfi(y) has minimal dimension e} and
i

U = {y €Y ‘ Z [fi (y) has maximal dimension e/}
i

are open dense subsets of Y.
(2) The maps

ﬂf,- :U — Grass(e, W), y— ﬂf,-(y), and
Y fi:U = Grass(e, W),y > fiy),

are morphisms.

Proof Both (1) and (2) are true if they are true locally so, after Lemma 4.8, we
can assume that there are morphisms F; : ¥ — Hom(W,W') and G; : Y —
Hom(W"”, W) such that ker F; = f; = im G;. Now

ﬂf,- =ker(F® - ®F, : Y — Hom(W, W®)),

l

and
> fi =im((G1,....G,) : Y > Hom(W"®, W),
i

so (1) and (2) follow from Proposition 4.7. O
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4.3.1 Generically large and generically small functions

Let X be a topological space. We say that a function f : X — R is generically large
(resp., generically small) if f~!(c) is an open dense set for some ¢ € Rand f(x) < ¢
(resp., f(x) > c)forallx ¢ f~1(c).

In the setting of Proposition 4.7, the function rank f(x) on X is generically large
(images are generically large) and nullity f (x) is generically small (kernels are gener-
ically small).

We also say that sums are generically large and intersections are generically small

based on the facts in Proposition 4.9.
4.3.2. We will apply these ideas to situations where we have two functions fi, f> :
X — R with the following properties: f is generically small (e.g., nullity); f> is
generically large (e.g., rank); f1(x) < fa(x) for all x; f1(x) = f>(x) on an open
dense subset of X. It follows that f1(x) = f>(x) for all x.

5 The determinant of R;(z) and the space of quadratic relations for
Qn,k(E, T)

In Sect. 6.4 we will show, forall t € (C— Umz 1 %A) U %A, that the Hilbert series for
On k(E, 7) is the same as that for the polynomial ring C[x, . .., x,—1]. In this section

we prove that, forallt € C— (ﬁA — %A), the degree-two components of Q, «(E, T)
and Clxp, ..., x,—1] have the same dimension, namely (”;’1). Since rel, x(E, T) is
the image of R;(7) (see Sect. 5.4.1), it suffices to show that the nullity of R, (7) is
("erl) That is what we will do.

Since we showed that Q, x(E, t) has the same Hilbert series as the polynomial
ring on n variables when 7 € %A in [17, §5], we only have to prove the result for

1
T €E C — %A
5.1 Thelimitof R,(mT+ {)as7— 0

As a function of z, R;(z) is not defined when 7 € %A (because some G, (t) will
then be 0). Nevertheless, as we observed in [17, §3.3.2], the holomorphic function
T R (t)onC— %A extends in a unique way to a holomorphic function on C. We
need a slightly more general result here.

Lemma5.1 Fix ¢ € %A and m € 7. As a function of t, the operator Ry (mt + {) is

holomorphic on C — %A, and its singularities at %A are removable; i.e., Rr(mt + )
extends in a unique way to a holomorphic function of T on the entire complex plane.

Proof By definition, R (mt + ¢)(x; ® x;) is

. e Oj—itra—n((L —m)T —¢) .
61(0)---6,-1(0) <ile_Z[,1 Oi(=mz O) Z 0, i (—mT — )0k (7) Xj—r @ Xitr-

r€Zy
.1
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Suppose both theta functions in the denominator of a summand are zero at . Then

T = _1% and —mt —-¢ = —jinﬁ modulo %Z‘FZU, so (1—-m)z —{= _j7i+n(k71)

modulo %Z—I—Zn; thus the numerator in the same summand is also zero; each summand

therefore has at most a pole of order one at T and, since mt 4+ ¢ € %A, such a pole is
canceled out by the order-one zero in the term before the X sign. O

Proposition 5.2 For all m € Z,

lin}) R:(mt) = sym,, 5.2)
T—

where sym,,, : V®2 5 V@2 s the skew-symmetrization operator
sym,,(v® V) = v®v —mv Q.
Proof The limitas t — 0 of R;(m7) is the same as the limit as T — 0 of the operator

j—itrk—1) (1 —m)T)
0j—i—r (—mT) 0k (T)

0
X ®xj = Gy(—m7) Z

r€ln

Xj—r @ Xitr.

As 7 — 0, multiplication by 6y(—m7) annihilates those terms in the sum ZreZn
whose denominators do not vanish at O so only the r = 0 and r = j — i terms
contribute to lim;_, ¢ R; (mt). Hence lim; .o R;(m1) = lim; .o X; (m1) where

X () (x; ® x;) 1= bo(~m7)

. < Ok(j—iy (1 —m)T) 5 ®x; + 0j—i((1 —m)T) 5 xi)
Oo(—mT) O (j—i)(T) 0;_i(—m7)0p(7)
(5.3)
fori # j and
Xe(mo) (s ® x1) = bp(—mr) - LD g (5.4)

e
Bo(7)0o(—m7)

Assume i # j. The two 6y (;—;(-) factors in the left-hand term of (5.3) cancel out
as T — 0 because both converge to 6i(;—;)(0) which is non-zero; the two 6y(—mT)
terms also cancel out so the first term on the right-hand side of (5.3) converges to
x; ® x;. Since 6y (t) vanishes at T = 0 with multiplicity 1,

Op(t) = ait +a212 + -
with a; # 0. Hence the ratio 609(0_(21;) converges to —m. The two 6;_; (- ) factors in the
right-hand term of (5.3) cancel out as T — 0 because both converge to 6;_; (0) which
is non-zero. The second term on the right-hand side of (5.3) therefore converges to
—mx; ® x;. Thus, X;(m7)(x; ® x;) converges tox; ® x; —mx; @ x; as T — 0.
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Assume i = j. Similar analysis shows that X, (mt)(x; ® x;) converges to (1 —
m)x; ® x; ast — 0.
Combining the cases i # j and i = j gives the uniform result

X (mt)(x; @ xj) —> x; @ x; —mx;  X;
as T — 0. The proof is now complete. O

Foreach ¢ € %A, we define
R, (¢) := 1in% R (t+¢) and R_(¢) = lirrb R (=t +0). (5.5)
g T—

Corollary 5.3 When ¢ = 0, the operators in (5.5) are R+(0)(x; @ x;) = x; @ xj F
Xj ® Xxi.

Proof Apply Proposition 5.2 with m = 1 for R4 (0) and withm = —1 for R_(0). O

Lemma5.4 Forall¢ € %A,

ker R.(¢) = im R_(—¢),
imR,(¢) = ker R_(—¢),

nullity R(¢) = ("3,
nullity R_(¢) = (3).
Proof By Proposition 5.2,

R (0)(x; Rxj)=x,®xj —x; QX and R_(0)(x; ®xj)=x; ®xj +x; ®x;.

Therefore im R4 (0) = ker R_(0), im R_(0) = ker R4 (0), nullity R (0) = (";1),
and nullity R_(0) = ('2’) Thus, the lemma is true when ¢ = 0.

We now consider an arbitrary { = %—i—%n. The argument in the next two paragraphs
will show that Ry ({)R_(—¢) = R_(—¢)R+(¢) = 0.

Define C :=T0§%, C" :=T7P57" A:=C®I,A =C'Q®I1,B:=1)C!,
and B’ := I @ C'~!. By Corollary 2.7,

Ry(0) = lim f(z. £, 1)BR:()A = f(0, £, 0)B( lir%Rr(f))A
= f(0,¢,0)BR(0)A

and

R_(=¢) = limof(—r, —¢, 71)B'R(—1)A" = £(0, —;“,O)B/(limOR,(—t))A’
= f(0,—=¢,00B'R_(0)A’
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where f(z, ¢, t) does not vanish at any point in C x %A x C. To show that
R ($)R_(—=¢) = 0 it suffices to show that R, (0)AB’'R_(0) = 0; i.e., that
R (0)(C®C'~HR_(0)=0.

Lete = e(l).Since ST =TS, ¢! = Skab — ghabbgka — gkabC Therefore

n

R (0)(C ® C"™HR_(0) = R4 (0)(I ® £"“")(C & C)R-(0)
= (C ® C)RL(0)(I ® e*")R_(0);

we used the fact that S®2 and 7®% commute with R;(z) and hence with limits of
R:(mt + ¢). Since I ® £%?? is a scalar multiple of the identity, it also commutes
with R1(0). Hence R, (0)(C ® C'~")R_(0) = 0. This completes the proof that
R+ (Z)R_(—¢) = 0. A similar argument shows that R_(—¢)R(¢) = 0.

Since A and B are invertible operators and f(0, {,0) is a non-zero scalar,
rank R4 (¢) = rank R4 (0). Similarly, rank R_(¢) = rank R_(0). The lemma there-
fore holds for all ¢ € %A. O

5.2 The ranks of R;(7) and R;(—17)

Lemma5.5 Assume v € C — %A. Forall ¢ € %A,

imR(t+¢) C kerRe (=T —¢), imR. (=t —¢) C kerR;(r +¢), (5.6)
nullity R, (t +¢) > (";1), and nullity R-(—7 —¢)) > (5). (5.7

Proof (5.6) is an immediate consequence of Proposition 2.6(2).
By Lemma 5.1, R; (7 + ¢) and R, (—1 — ¢) extend to holomorphic functions of T
on the whole complex plane. By Lemma 5.4,

. . 41 .
nullity (111_1)1}) R(t+79)) = (") = rank (Th_lz}) Re(—7 —0)).
Since nullity is generically small and rank is generically large it follows that
nullity R (z +¢) < ("3') < rank Ry (—7 — ¢)
for generic . Butim R;(—7 — ¢) C ker R;(t + ¢) so
nullity R, (r +¢) = ("}') = rank Re (=7 — ¢)
for generic t. However, nullity is generically small and rank is generically large so

nullity R, (t +¢) > (";1) > rank R, (—7 — ¢)
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for all € C. This proves the first inequality in (5.7). A similar argument proves the
second.'” O

5.3 The determinant of R;(2)

Since R(z) is a theta operator of order n? with respect to A, det R(z) is a theta function
of order n* with respect to A (Proposition 4.6). The next result improves on this.
Proposition5.6 Ift ¢ %A, then det R (z) is a theta function of order n* with respect
to %A,

(1) det Ry (z + 1) = det R (2),

(2) det Re(z + 1) = b(2)"" det R (2), and

(3) det R (z) has n?® zeros in every fundamental parallelogram for %A.

Proof By (2.4)and (2.5), R:(z+ 1) = (=" "I @ S7%) R (2) (S*® I) and R (z +
1n) =b@UQT™") R (2) (T®I). Sincedim(V®?) = n? implies det(—I®1)"~! =
1, it follows that det R (z + 1) = det R (z) and det R; (z + 1) = b(z)" det R, (2).

(3) We note that b(z)”2 = e(—n3z — B) as functions of z for a suitable B € C.
Applying Lemma 2.5 to the function f(z) = det R(z), with n; = %, N = %n,

a=b=0,c=n%andd = B, we see that the number of zeros (counted with

multiplicity) in each fundamental parallelogram for %A iscny —an =n’ x % =n?.

O
Theorem 5.7 If 7 ¢ %A, then

(1) R (z) is an isomorphism if and only if z ¢ +1 + %A;

(2) imR;(t +¢) = ker Ry (—t — ¢) and im R (—t — ) = ker R;(t + ¢) for all
¢ € %A;

(3) if p € C, then

('3) o per+A,
mult,(det Ry (z)) = nullity R, (p) = {(}) if pe—1+ rltA’
0 otherwise;
Ift € A — LA, then nullity R, (v) = nullity R, (—7) > ("3").

Proof If 1 € C — %A, then 7 and —t are distinct points modulo %A.
Lemmas 5.5 and 4.1 imply that

mult, (det R;(z)) > nullity R, (r) > ("erl)

19 Alternatively, the second inequality in (5.7) follows from the first because

nullity Ry (=7 — ¢) = dim V&2 —rank Ry (7 — ¢) = n? — (") = (3).
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and
mult_, (det R;(z)) > nullity R;(—7) > (2).

But det R, (z) has exactly n> = (”;‘1) + ('2’) zeros in every fundamental parallelogram
for %A so the displayed inequalities are equalities, which then implies (1) and (2).
Since the rank of R;(z) is the same as that of R;(z + ¢) (Proposition 2.6(1)), part (3)
follows from (2) and the inclusions in (5.6).

Finally, if T € %A — %A, then —t = 7 4 ¢ for some ¢ € %A so R;(t) and
R (—7) have the same nullity by Proposition 2.6(1), and this is > ("erl) by (5.7). O

Proposition 5.8 Forallt € C — 1A,

nn—1) n(n+1)

2
O (—7 — B (—
det Re(2) = | [ % I1 % .58

Y/ €Ly

In particular, det R, (z) does not depend on k.

Proof We first prove this under the assumption that t ¢ 2]7A'

Let D(z) denote the function on the right-hand side of (5.8). Both det R(z) and D(z)
are holomorphic functions of z. It follows from Proposition 5.6 and [17, Prop. 2.6]
that det R(z) and D(z) have the same quasi-periodicity properties with respect to the
lattice %A. It follows from Theorem 5.7(3) and [17, Prop. 2.6] that det R(z) and D(z)
have the same zeros with the same multiplicities; the ratio (det R(z))/D(z) is therefore
a meromorphic function on the elliptic curve C/ %A with neither zeros nor poles, and
therefore a constant. Since R(0) = I ® I by Proposition 2.4, det R(0) = 1 = D(0).
So the constant is 1.

The result is therefore true when v ¢ ﬁA. By continuity, it also holds when

1 1
TG%A—EA ]

Corollary 5.9 Let v € C — %A. Then R:(z) is an isomorphism if and only if z ¢
+r + %A.

Proof Proposition 5.8 tells us that det R;(z) = O if and only if z € 7 + %A. Thus
the result follows. O

5.4 The space of quadratic relations for Q, x(E, 7) has dimension (3)
This subsection completes the proof that the dimension of rel, x(E, 7) is the same as
that of the space of quadratic relations for the polynomial ring on n variables when

T ¢ (=A— 1A
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5.4.1 Definition of rel, x(E, 7) forallT € C

Since Lemma 5.1 ensures that R; (t) extends in a unique way to a holomorphic function
on C, we can now define, for all T € C,

rel, (E, ) := im R, (1),
TV

QnilE 1) = o)

where, if T € rllA, then R (7) is not defined so it should be regarded as the limit R ()
in (5.5).20

5.4.2 Remark

In their first paper [37], Odesskii and Feigin define rel,, x (E, t) to be im R, (t); how-
ever, in his survey [36, p. 1145], Odesskii defines rel, x(E, ) to be ker R;(—7). By
Theorem 5.7(2), im R, (t) = ker R;(—7) if T ¢ %A (we do not know whether this

equality holds when 7 € ﬁA - %A).
Theorem 5.10 Forall T € C — (5; A — 1 A), dimrel, 4 (E, 7) = (3).

Proof We provedthisin[17,§5]fort € %A. Suppose T € C— %A. Thenrel, x(E, T)
is the image of R;(7) and, by Theorem 5.7(3),

rank R, (t) = dim V®? — nullity R, (r) = n* — (";1) = (5).

5.5 Some twists of Q, «(E, T)

By Proposition 2.6(1), rank R;(t + ¢) = rank R;(t) for all ¢ € %A. Since
Oni(E,t) = TV/(imR.(7)) it is reasonable to ask whether the algebras
TV /(im R (t + ¢)) are, perhaps, “new” elliptic algebras.

Proposition 5.11 Assume a,b € Z. Lett € C, { = 7 + %n, and ¢ == S7kaT=" ¢
GL(V).

(1) The map ¢ extends in a unique way to an algebra automorphism of TV that
descends to an automorphism of Q, x(E, T) (that we also denote by ¢) and

TV

— = 0,(E, ¢
mR. oy  2ED

where Q, k(E, 7)® is the twist of On.k(E, v) in the sense of [17, §4.1].

20 There are some other ways to extend the definition of rel,, x (E, 7) to all T € C; see [17, §3.3] for more
discussion.
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(2) The categories of Z-graded left modules over TV /(im R (v +¢)) and Qn 1 (E, T)
are equivalent.

(3) Ifk+1isaunitinZy, then TV /(im R; (7 +£)) is isomorphic to Qn x(E, T +¢’)
where [’ = —k¢ %n and c and d are arbitrary integers such that (k + 1)c = a

n

and (k + 1)d = b in Z,.

Proof We use the convention that, for T € %A, R:(7) and R, (7t 4 ¢) mean Ry (1)
and R4 (T + ¢), respectively.

(1) Let a denote the ideal in 7V generated by im R, (7); thus Q, x(E, 1) =TV /a.

Certainly ¢ extends in a unique way to an algebra automorphism of 7V that we
continue to denote by ¢. By Proposition 2.6(3), the operator ¢ ® ¢ on V ® V commutes
with R;(7) so im R, (1) is stable under the action of ¢ & ¢. The automorphism ¢ of
TV therefore preserves a, i.e., ¢(a) = a, and so descends to an automorphism of
On.k(E, T) (that we continue to denote by ¢). We define the algebra Q, «(E, 7)% as
in [17, §4].

By [17, Lem. 4.1], (TV/a)® = TV /¢'(a) where ¢'(a) denotes the image of a
under the action of the linear map ¢’ thatis / ® ¢ @ - -- ® $¢~! on each V. Since
our a is generated by its degree-two component, a, ¢’ (a) is generated by (I @ ¢)(a2).
But

(I ®¢)(mw) = (I @ P)R(1)(VE?)
(I @ PR (D) (™' @ D(V®?)
imR;(t +¢) by Corollary 2.7.

Hence
TV TV TV
(imR:(r+¢) (®¢)(a) ¢'(a)
(2) This is an immediate consequence of [3, Cor. 8.5].
(3) Assume k + 1 is a unit in Z,, (equivalently, k' + 11is a unit in Zj,).
Let ¢,d € Z be such that ¢ = (k + 1)"!a and id_ (k + )~ in Z,,. Define

= 0.4(E, 1)°.

o = SkeT=4 Then ¢ = okt andif ¢’ = %—7,
Oui(E. D) = Qui(E. D) " = Qui(E.T+¢)
by [17, Thm. 4.3]. O

5.6 The relation between R;(z) and Odesskii’s R-matrix

Odesskii defines a family of operators that we will denote by R%4(z) at [36, p. 1145].2!
The relation between the two operators is

21 What we are calling RO4(z) is obtained from Odesskii’s formula for Ry, k (€, n)(u — v) by identifying
Xxq (1) and x4 (v) with x4 and setting v = 0 and u = z.
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l—[ Ou(—z+ 1)

Od
82 (D) R™"(2). (5.9)

R:(2) =

a€ly

We chose to work with R; (z) rather than R99(z) for several reasons. For example,
the 6y (—z + 7) terms in (5.9) cancel the poles that occur in the formula for ROd (2)
when z € T + %A. Those poles mean that R%4(z) does not satisfy (QYBE2) for all
values of u and v. Nevertheless, away from those poles, R%4(z) satisfies (QYBE2) if
and only if R; (z) does. Our other reasons for preferring R, (z) included the following:
we wanted R, (0) to be the identity operator (Proposition 2.4), and also wanted the
equality lim;_,¢ R;(mt) = sym,, in Proposition 5.2 and the equalities in Proposition
6.4; other choices of R;(z) would only give those equalities up to a non-zero scalar
multiple.

Proposition 5.12 The determinant of the operator R%%(z) defined at [36, p. 1145] is

nn-—1)

B n2(n—1) w3 (n—1) (90(—z—t)...9n_1(—z—1:)> 2
=be e( 2 r) O0(—z2+ 1) Op_1(—2+ 1) ' 10

Proof 1t follows from (5.8) that

n2 n(n—1)
det ROd(Z) — l_[ 90[(‘[) 1_[ 9(3((_Z - T)
a€ln Ou(=2+T) a€ln Ou(=1)
n(n+1)
1—[ O (=2 + 1)
wcz, a(T)

We leave to the reader the pleasant task of showing this equals the expression in (5.10).
]

nz(nfl)

The formula for det RO%(z) at [36, p. 1145] omits the term (—1)" =7 (2=1 7).
p 2

6 The Hilbert series of Q, « (E, 7)

This section shows Q, «(E, ) has the same Hilbert series as the polynomial ring SV
forallt e (C— Y ]A)U%A.

m>1m
6.1 Introduction

Section 5 showed that, for all T € C — (%A — %A), the degree-two component of

On.k(E, 7) has the “right” dimension, namely ("“ZLI), by showing in Theorem 5.7(2)

that O, «(E, T)’s space of quadratic relations, which is, by definition, the image of
R (1), is equal to the kernel of R;(—7). A similar idea is used in this section: we

) Birkhauser



31 Page 42 of 81 A. Chirvasitu et al.

show, forall T € C— Um 1 fum LA, that the space of degree-d relations for Q, x(E, T),
whichis Y, »_; V® @im R (1) ® V¥, is the kernel of the operator Fy(—1) :
V®d — y®d defined in (6.2) below.

The analogy with the polynomial ring SV is helpful. The space of degree-d rela-
tions for SV, i.e., the kernel of the natural map y®d _, §dV s the kernel of the
symmetrization operator ) ¢ , 0 acting in the natural way on V®_ Proposition 6.4

shows that lim; .o F4(—7) is a non-zero scalar multiple of } ¢ o

6.2 The linear operators Ty, Sy_. 1, S ., F4, etc., on V&4

d—1’

The results in this subsection apply to any family of linear operators R(z) : V&% —
V®2 7 eC, satisfying (QYBE2), which is the parametrized braid relation

R)i2R(u +v)23R(W)12 = R(W)23R(u + v)12R()23
forallu,v € C.

Ift,,....15 € C we will write EZ ‘=1, +---+1,. Leti, j, and d be positive
integers with i < j < d. We will use the following operators on V®¢:

Siejtiy oo tjo) o= R(E )y REITY), oy R,
Sii(tjts .. i) = R(zif'*‘)j_l,j “R(E]), 1 R0} s
SISty tjm1) = R(ti)i,i—i-l R(Eq)q g+l R(Eijil)j—l’j’
S itj—1s e t) = R(tj—1); o R(zj 1)q,q+1 "'R(Eij_l)i,iﬂ’

with the convention that these are the identity operators when i = j. For example,
Sisa(ti, 12, 13) = R(ti + 12+ 13)12R(t2 + 13)2,3R(13)3 4.

Each of these is a theta operator (Definition 4.5) of order (i — j)n? with respect to A.
We also define

Ta(z1, ..oy 2a—1) == 25121835121, 22) - - Sa—1(21, - -5 Za—1)- (6.1)

and
Fy(z) == Ty(z, ..., 2). (6.2)

When d = 0, 1 we declare that these operators are the identity.
The choice of labeling for the arguments in the S-operators allows the elegant
factorizations

Siskiseoostp—1) = Sisjliy .. tj—2, X5 )S]—>k(tja-~-,tk—1)a

Sksi(tk=1s -+ 1)) = Sk j (k=14 -, Lj41, E,!)Sjai(tjf]a c i),
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Sty tem1) = S5 (W, ---,tj—l)Srevk(E, sty oo 1),
k-1
S i(te—1,s oo 1)) = S 1, - tj)S;e_V)l(Ej L=y 1),

when 1 <i < j < k. These factorizations make no use of the Yang—Baxter equation.
We also note that

Sicj (i tio) =SS T =), 6.3)
Sj_”'(lj_l,.. t) = S;ell(zij_l,—l‘j_l,...,—ti_H). (6.4)

These equalities make no use of the Yang—Baxter equation either.

Recall the notation in Sect. 2.1: TdL_1 (resp., TdR_ 1) denotes T, applied to the
left-most (resp., right-most) d — 1 tensorands of V®<. The identities in the next result
will be used repeatedly in subsequent sections.

Lemma 6.1 Foralld >2andall zy,...,z4-1 € C,
Ta(z1, - 2d-1) = TF (21, - 2d-2)Sa—1(21, - - - » Zd—1)
=TR (22, s 2a-1)S15d@d—1, - -, 21)
=S @ za-DTf (220 o Zd—1)
=S 1 Za—1s - ZDTR (1, -y 2d—2).
Proof (1) The equality Ty(z1, ..., za—1) = T} (- ++)Sq—1(- - -) follows at once from
the definition of T;(z1, ..., zZd—1).
(2) We will now show that Ty (z1, . . . , za—1) ST 4 (21, - .., 2a—)TE (22, ..., za—1).

We first replace each factor S;_1(z1, ..., zi—1) in (6.1) by
R(zi+ -+ zi-1)i-1,iSi-1-1(22, . . -, Zi—1)-

Since S;_1-1(z2, ..., zi—1) acts on the left-most i — 1 tensorands of yed , it commutes
with R(z1 +---+2zj-1)j—1,; whenever i < j. Therefore

Ty(z1, .-, 2d—1) = R(z1)12 - R(z1 + 22)235251(22)

- R(z1+ -+ zd-1)a-1,a84-1-1(z2, . . ., Zd—1)
=Rz R+ +2d-1)d—1.4
<S8 51(22) - Su—1-1(22, o, Za—1)

=S @y 2a DTy 22y -y Za—1).

(3) We now prove Ty(z1,...,2d—1) = TdR,] (-+-)S1->4(---) by induction on d.
The case d = 2 is trivial, so we assume the equality holds for all integers < d and
prove it for d + 1.

By (1) and the induction hypothesis,

L
Tav1(z1, ... 20) = Ty (za, oo, 2a=1)Sa+1-121, - -+, 24)
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=TM (22, 2a-1)S15d@d-1 - - » 21)Sd+151(21s - - - » 2d)
(6.5)

where Tdﬁf | denotes T,;— applied to the middle d — 1 tensorands of y®E+D,
The product S14(zg—15 -+, 21)Sd+1->1(21, - - -, Z4) equals

S1—»d@a—1,---»z2DR@ + -+ + 2d)d,d+15d—1(22, - - - 24)

d d
= S15a-1@a—1, -+, 23,21 +22) R(z1)a—1,a R (ZZ;’) R (Zzz’) (6.6)
d,d+1 d-1,d

i=1 i=2

“Sa-1-1(z3, ..., Zd)-

By (QYBE2), the product of the three R’s in the middle equals

R(za+ -+ za)aa+1R@1 + -+ zd)a—1.aR(z21)d.d+1- (6.7)

Since R4 4+1 commutes with S1_,4—1 and Sy—1-1, (6.6) equals

R+ +zd)d.d+151->d—1G@d—1, - - - 23,21 T 2)R@E1 + -+ 2d)d—1,d
“Sq—1—-1(23, -, 2Rz d,d+1-

The product of the three factors in the middle has the same form as the second
line of (6.6), so we can repeat the procedure. Eventually we see that (6.6) equals

Sa+1-2(22, « -+, 2a)S15a+1(2a, - - -, 21). Hence (6.5) equals
T (22, 2a-1)Sa4152(22s - -+, 20)S1>d+1(Zds - - -5 21)
= TRz, ..\ 2a)S1—>a+1(ds - - - 21)
as desired.
(4) Mimic the argument in (2) to show T8 (--)Sioq(--+) = S® (- TR,
G-). [m]

Lemma 6.2 Foreveryl <i <d —1,

Ty(z1, ... 2d-1) = R(z)ii+10i = QiR(Za—i)ii+1

where Q; and Q) are products of terms R(w) j j 1 for various integers 1 < j <d —1
and partial sums w of 21, ..., Zd—1.

Proof We argue by induction on d. The case d = 2 is trivial. Assuming the claim up
to and including d — 1, the first equality follows from the first and second identities in
Lemma 6.1, and second equality follows from the third and fourth identities in Lemma
6.1. a

Proposition 6.3 Assume 1 <i <d — 1.

(1) Fg(=t) = QR(=1)i.it1 = R(—=1)i ,i+1Q’ for some Q and Q' that are products
of terms R(mt)j j1 for various integers 1 < j <d — 1 and m.

W Birkhauser



Elliptic R-matrices and Feigin and Odesskii's elliptic... Page450f81 31

(2) Fg(t) = QR(0)ii+1 = R®@)ii+10Q’ for some Q and Q' that are products of
terms R(mt); jy1 for various integers 1 < j < d — 1 and m.
(3) If R(t)R(—71) = 0, then

im Fy(—7) C ﬂ V® Q@ ker R(7) @ V¥,
s+t+2=d
(4) If R(—t)R(t) =0, then
ker Fy(—1) D Z V® @im R(r) @ V.
s+t4+2=d

Proof Both (1) and (2) are special cases of Lemma 6.2.
(3) Since Fy(—1) = R(=1);,i+10Q", R(D)iix1F4(=1) = 0 ie., im Fy(—1) C
ker R(7);,;+1. But

ker R(T)i‘i+1 = V®(i_l) ®Rker R(1) ® V®(d—i—l)
so the result follows.

(4) Since Fy(—7) = QR(=7)i+1, Fu(=T)R(7)ii+1 = 0; i.e., ker Fy(—7)
im R(1)jit1. |

1V}

In proving that Q, «(E, t) has the “right” Hilbert series we will show that the
inclusions in parts (3) and (4) of Proposition 6.3 are equalities when R(z) is the
operator in (1.3).

6.3 Thelimit Fy(£1)as7— 0

To determine the Hilbert series of Q, x(E, t) and Q, i (E, 7)" we must understand
the limits of Fy(4t) as t — 0.

Proposition 6.4 Ifd is an integer > 2, then

d—1
lim Fy(—1) = ! d
11_1)1}) 4(—1) nﬂm Z o an

oESy

d—1
Tli_IR) Fy(r) = Hlm!- Z sgn(o)o
m=

o€eSy

where the symmetric group Sy acts on V®¢ by permuting tensorands.

Proof We prove the proposition for F;(—t). The argument for Fy(t) is virtually
identical.

We argue by induction on d. Since F»(z) = R(z), the d = 2 case is a consequence
of Corollary 5.3. Assume d > 3. Since Fy(—7) = Ty(—7, ..., —1), it follows from
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Lemma 6.1 and Proposition 5.2 that

rli_I)I%) Fa(=1) = 111_1)1%) R(=D)12++ R(—=(d = ))g-1.aF 1 (~7)

d—1,d .
symb7 - sym? ) lim Fj (=) (6.8)

where the superscripts on the operators sym,, indicate which tensorands of V& they
apply to. By the induction hypothesis, the factor lim,_,¢ F dL_l (—1) in (6.8) is the map

d—2
V] V4104 > 1_[ m! - Z Vs (1) - * - Vo(d—1)Vd (6.9)
m=1 oeSy—1

where we have suppressed tensor symbols for readability.
Claim: the product of the sym factors in (6.8) sends the sum part of (6.9) to

d—=D!Y " Vo) Vo)

O‘ESd

To see this, we will count, for every ¢ and every o’ € S;_1, the number of times the
term

Vo'(1) = ** Vo' (1—1) Vd Vo' (1) * * * Vo' (d—1) (6.10)
appears in
12 d—1,d
sym_) -~-sym(d’1)< Z Ua(l)"'va(d—l)vd) (6.11)
oeSy—1

If we write sym_,, = I +mP using I = idy and the flip P € End(V ® V), then
sym'f;;"'|r1 = 1% 4+ mP, ni1, where Py, 41 interchanges the m™ and (m + 1)™
tensorands in V®4. Since vy starts out on the extreme right in (6.11) and crosses
leftward past d — ¢t tensorands to reach its position in (6.10), the latter must be the

result of applying the summands

m

(d—=DPi—1,4, (d—=2)Pg—24-1, ..., 1Pr141
of the rightmost (d — ) sym operators in (6.11). These yield a factor of

d -1

d-—1)---@t+ 1Dt = 6.12
R (6.12)

in front of (6.10), and we must show that the remaining sym operators
symlf‘]2 . symt:(tl’_tl) (6.13)

contribute the missing ( — 1)! factor to produce the requisite (d — 1)!. Only the 1®¢
term in
sym " = 1% 4+ (1 — D Py,
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can contribute a (6.10) term because P;_1; would slide vy further to the left. On the
other hand, each of the product of the remaining sym factors in the product (6.13),
namely

1,2 t—2,t—1
sym_j .- ~sym_(t_2) s

contributes terms of the form (6.10) via both its /®¢ and P terms, whence each
Sym];’fl = 1% 4 jP 1, 1<j<t-2,

supplements (6.12) with an additional factor of 1 4 j scaling the (6.10) term. The
overall coefficient of (6.10) is therefore

d—1)!

= (=12 = (-1

as claimed. O

6.4 Computation of the Hilbert series for Q, 4 (E, 7)

d

Theorem 6.5 Letd > 2. Assume T € C — | J;,_; --A.
(1) We have
ker Fg(—1) = Y V& ®@imR (1)@ V® (6.14)
s+t+2=d
and its dimension is the same as the dimension of the space of degree-d relations
of a polynomial algebra in n variables, namely n® — (”+Z_l).
(2) We have
im Fy(—1) = ﬂ V® @ker R (1) @ V&' (6.15)
s+t+2=d

and its dimension is the same as the dimension of the degree-d component of a
n+d71)

polynomial algebra in n variables, namely ( P

We assume that t € C — Ui:l ﬁA until the end of the proof, i.e.,
+1, 427, ..., dT ¢ LA

When d = 2, Theorem 6.5 follows from Theorem 5.7 since F>(t) = R(t). We
now argue by induction on d.

6.4.1 The operators G;(z)

Taking (z1,...,24—1) = (z, —7,..., —7) in Lemma 6.1 we see that
Td(zs T, ..., _T) = ie_v)d(zv —T,..., _t)TdL—l(_t’ R _T)
= TdR_l(_Ta "‘7_T)S]*>d(_fy5 ey T, Z)
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which implies that the operator
154 =T, ..., =) = R@1REZ =13 Rz~ (d=2)0)a-1a (6.16)

on V® restricts to a linear map

G:(z):imF; 1(—1)®V — V®imF;_1(—1). (6.17)
Since Ty(z, —7, ..., —1) = S| (2. =7, ..., =D T} [ (-T,..., —1),
imG;(z) = imTy(z, —71,...,—T). (6.18)

In particular, im G, (—71) = im Fy(—71).
Since R, (z) (resp., det R;(z)) is a theta operator (resp., function) of order n? with
respect to A (resp., %A), the operator (resp., determinant of the operator) in (6.16) is

a theta operator (resp., function) of order (d — Dn? with respect to A (resp., %A).

6.4.2 The “determinant” of G;(2)

By the induction hypothesis, rank Fy;_1(—71) = ("Zd_Iz) so

dim@im Fy_1 (1) ® V) = dim(V @ im Fy_1(—7)) = n("5% ).

We fix arbitrary bases for the subspaces im Fdel (—7) and im Fa{il (—7) of V® and
write det G (z) for the determinant of the matrix for G (z) with respect to those bases;
although det G, (z) depends on the choice of bases, the location and multiplicities of
its zeros do not (see Sect. 4.2.1).

Proposition 6.6 det G (z) is a theta function with respect to %A and has exactly
d—- l)n("+d 2) zeros in every fundamental parallelogram for %A.

Proof Let W and W’ denote the domain and codomain in (6.17). By the induction
hypothesis,
dimW = dim W' = n("}4 7).

As remarked above, the operator in (6.16) is a theta operator of order (d — Dn? with
respect to A. It now follows from Proposition 4.6 a2pp11ed to A(z) = G(z) that
det G;(z) is a theta function of order (d — 1)n (”J”l ) with respect to A. However,
because the determinant of the operator in (6.16) is a theta function with respect to
1 - A s0is det G;(z), and it has exactly (d — l)n(”+d 2) zeros in every fundamental

parallelogram for ZA~ (Note that det G (z) does not vanish identically because each
factor in (6.16) is an isomorphism for all but finitely many z.) O

Lemma6.7 Forallm=1,...,d —2, G;(mt) = 0.
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Proof By definition, G, (mt) is the restriction of R(mt)12R((m — 1)T)23 ... R((m —
d+2)t)g—1,4toim Fz_1(—7) ® V so, to prove the lemma, it suffices to show that

R(mt)1oR((m —1)1)23--- R((m —d +2)1)g-1,0 - (Fa—1(=1)® 1) = 0. (6.19)

Assume 1 < m < d — 3. The product R(T)m.m+1R(O)m+1m+2 R(—T)m+2.m+3 18
a factor of the operator in (6.19). But R(0),,+1,m+2 is the identity so

R(T)m,m—HR(O)m+l,m+2R(_7)m+2,m+3 = R(O)m+1,m+2R(7)m,m+l R(_T)m+2,m+3

R(O)m+l,m+2R(_T)m+2,m+3R(T)m,m+1-

In fact, R(t)m m+1 commutes with all the R-factors to the right of it in (6.19) so
(6.19) can be written as Q" R(*)m.m+1 - (Fg—1(—1) ® I) for some Q”. However, by
Proposition 6.3, there is a factorization of the form Fy_1(—1) = R(—7)mu.m+1 Q" and
hence a factorization Fy_1(—t) ® I = R(—T)m.m+1(Q" ® I). The product in (6.19)
is therefore of the form

Q//R(T)m,m+l : R(_T)m,m+l(Q/ ®1),

and this product is zero (Lemma 5.5 tells us that R(t); j+1R(—7); ;+1 = 0 for all i).
Assume m = d — 2. The left-hand side of (6.19) is now

R((d —2)t)12R((d —3)1)23 -+ - R(T)a—2,d-1R(0)g-1,a - (Fa—1(-1) Q)

whichequals Q" R(t)4—2,4-1 - (Fg—1(—7)®1I) for some Q”. However, by Proposition
6.3, F—1(—7) = R(—7)g-2.4—10 for some Q so, as before, (6.19) is zero. m|

Lemma 6.8 nullity G, ((d — D7) > (""47").

Proof When z = (d — 1)1, the right-most factor in (6.16) is R(t)4—1.4 SO

ker G ((d — D7) 2 ker R(t)g—1,¢ N (im Fg—1(—=1) @ V)

= ﬂ V® @ker R, (1) @ V&'
s+t4+2=d
D im Fy(—1)

where the equality comes from the induction hypothesis (6.15) applied toim Fy_(—1).
The operator F;(—1) can be extended to all T and its rank is generically large. Thus

the desired inequality follows from the fact that rank (lim;_.¢ F;(—1)) = (”Jrg*]),
which is a consequence of Proposition 6.4. O
Lemma 6.9 nullity G, (—7) > n("}47?%) — ("*471).
Proof By Proposition 6.3,

D> VERImR(r)® V' C ker Fy(—1). (6.20)

s+t+2=d
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Extending the function R (7) to all T € C, the left-hand side of (6.20) makes sense for
all T and its dimension is generically large by Propositions 4.7 and 4.9. When t = 0
the left-hand side of (6.20) is the space of degree-d relations for the polynomial ring
SV by Corollary 5.3, so its dimension is nd — ("+j_1). Hence dim(ker F;(—71)) >

n? — ("*9=1) for generic t; but the dimension of this kernel is generically small by

Proposition 4.7, so this inequality holds for all t. Therefore

dim(ker G;(—71)) = dim(im Fy_{(—7) ® V) — dim(im G;(—71))
= ndim(im F;_1(—1)) — dim(im F;(—1))

(") = ()

where the inequality comes from the induction hypothesis dim(ker Fy_1(—71)) =

=t = (50). 0

v

Lemma6.10 Forall ¢ € %A, G (z+ ¢) and G (z) have the same nullity.

Proof Assume { = % + %7] where a,b € Z,and let C = T?S* . v — V. In this
proof we use the notation C; := I®~D @ C @ 1%,

By Corollary 2.7, R;(z + ¢) = f(z,¢, t)Cz_lR,(z)Cl where f(z,¢,7) is a
nowhere vanishing function.

By definition, G (z) is the restriction of S{% ,(z, —7,..., —71) to the image of
F del (—7). Therefore G (z + ¢) is the restriction of

Rz+OpRE—1t+8)23...RC—d -2t +8)a-14
= 8(2,£, 1)C5 'R()12C1 - €' R(z—1)23C2 -+ C ' R(z—(d—2)T)d1.aCat
= g(2,£,1)(C2C3---Ca) ' R(2)12(z—1)23- - -R(z—(d—2)T)g1.4(C1- - -Cy—1)
= 8(z, £, T(C2C3---C) 7 S 4 (2, =7, ..., —T) (Cy -~ Cy1)

to the image of F del(—r), where the function g(z, ¢, ) is a product of various
f(, -, +)’s and therefore never vanishes. It follows that G;(z + ¢) and the restric-

tion of 1% ,(z, —7,..., —1) (C; - - - C4_1) to the image of FdL_l(—r) have the same
nullity. Equivalently, the nullity of G;(z 4+ ¢) equals the nullity of the restriction of
S{e_")d(z, —7,...,—7) totheimage of C;--- Cy_1 FdL—l(_T)-

By Proposition 2.6(3), C®4-1 commutes with R(2)j 41 forallzandall 1 <i <
d — 2, and therefore with F;_1(z). The image of Cy - - - Cd_leL_l(—r) is therefore

the same as the image of Fdel (=7)Cq - -- C4—1 which s, since C is an automorphism

of V, the same as the image of FdL_1 (—7). Thus G;(z + ¢) has the same nullity as
Gr (Z) O

By Lemma 6.10, the results in Lemmas 6.7 to 6.9 hold when ¢ € %A is added to
the input of G;(z). Therefore
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nullity G, (z)
(el if ze(d—Dt+ 1A,
n(”ZiTz) if zemr+%A forsome m=1,...,d —2,
>
() - (T i e~ A,
0 otherwise.
(6.21)

Lemma 6.11 Equality holds in (6.21). Consequently,

rank Ty(z, —7,...,—1)
n(n-:i-gIZ) (n+d 1) lf zed—-Dr+ 1 A
0 lfzemr+nA forsome m=1,...,d =2,
(4 if z€ -1+ 1A,
n (":;i]z) otherwise.

Proof By Lemma 4.1, the sum of the dimensions of ker G, (2), as z runs over all zeros
of det G;(z) in a fundamental parallelogram for A, does not exceed the number of
zeros of det G;(z) in that parallelogram, which is (d — 1)n ("+d 2) by Proposition

6.6. By the assumption t € C — Um 1 mnA the cosets mt + = A —l<m<d-1,
are pairwise disjoint. Since the sum of the three non-zero numbers appearing on the
right-hand side of (6.21) is

(n+21171) + n(n+d 2) d—2)+ ( (n;d_Iz) _ (n+jfl)) d — l)n(n+d 2)

and the fundamental parallelogram for A contains exactly n” points in %A, every
inequality in (6.21) is an equality. Therefore

dim(im Ty (z, —7, ..., —7)) = dim(im G,(z)) by (6.18)
= dim(im Fy_1(—7) ® V) — dim(ker G;(z))
= n("ZiTz) — dim(ker G;(2))
where the last equality follows from the induction hypothesis. O

Proof of Theorem 6.5(2) We observed in the proof of Lemma 6.8 that

ker G.((d — 1)t) D ﬂ V® @ker R () ® V®' D im Fy(—1).
s+t+2=d

But dim(ker G ((d — 1)7)) = ("74~") and dim(im Fy(—7)) = ("*4~") by Lemma
6.11 since Fy(—t) = Ty(—7, ..., —1), so these three subspaces of V@ coincide. O
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Proof of Theorem 6.5(1) We must show that the inclusion

Z V® @imR(t) @ V&' C ker Fy(—1) (6.22)
s+t+2=d

(in Proposition 6.3(4)) is an equality. We will do this by showing that the dimension
of the left-hand side is > the dimension of the right-hand side.

By the induction hypothesis, the left-hand side of (6.22) equals ker F f_l (—7) +
im R(7)17 and its dimension is

dim(ker FR | (=7)) + dim(im R(7)12) — dim(ker FX | (—7) Nim R(7)12)
= n(nd_1 — ("Zi]z)) + nd_z(g) — dim(ker Fffl(—r) Nim R(7)12),

so it suffices to show that

n(nd—l _ (n;i;2)) T nd—2(g) — dim(ker FX | (—7) Nim R(7)12)
> dim(ker F;(—1)) = n¢ — dim(im Fy(—71)) = n? — (n+21171)

where the last equality appears in the proof of (2). Equivalently, it suffices to show
that

dim(ker FR | (=) Nim R(7)12)

IA

af = () + a2 ) — (- ()

—n("H) + 2 0) + (),

Since

dim(ker FX | (—=7) Nim R(7)12) = dim(ker FX | (—~7)R(t)12) — dim(ker R(7)12)

= dim(ker Ff | (—D)R(D)12) — (n? —n?72(3)),

it suffices to show that

A

dim(ker FR | (—0R®12) < —n("397H) + 08723 + (TN + (n? —nd72(3))

— )+ O,

By Lemma 6.1,
Ti(d— D7, —7,...,—1) = F (=R 12RQ20)23 - R((d — DT)a-1,4
SO
im FX [(—=0)R(t)12 2 imTy(d — Dz, -1, ..., —7)
and

IA

dim(ker FR | (=7)R(7)12) < dim(ker T;((d — )T, -7, ..., —T))
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=t () ()

where the equality comes from Lemma 6.11. The proof is now complete. O

Theorem 6.12 For all t € (C — J,,~; ~A) U LA, the Hilbert series of Qu x(E, T)

n>1 m
is the same as that of the polynomial ring on n variables.

Proof We proved this in [17, §5] for T € %A, so we assume that T € C —

UmZl %A. By Theorem 6.5(1), the space of degree-d relations for Q, x(E, t) has

the same dimension as that for a polynomial algebra in n variables. Hence the result
follows. O

6.4.3 Remarks

Our proof that O, x (E, t) has the “right” Hilbert series has nothing in common with
earlier proofs that Q, 1(E, ) has the “right” Hilbert series. The proofs for n = 3
and n = 4, and k = 1, by Artin—Tate—Van den Bergh [2] and Smith—Stafford [51],
respectively, relied on the following facts, none of which is guaranteed to hold for
other O, «(E, 7)’s: (1) Q3,1(E, v) has a central element of degree 3 ([1, p. 211],
[22, Thm. 4.4])*? and the quotient by it is a twisted homogeneous coordinate ring
for E; Q4.1(E, 7) has a regular sequence consisting of two degree-2 central elements
( [48, Thm. 2], [22, Thm. 6.5]) and the quotient by them is a twisted homogeneous
coordinate ring for E ;23 (2) the Riemann—-Roch theorem for curves allows one to
determine the Hilbert series of these two twisted homogeneous coordinate rings; (3)
a tricky induction argument then allows one to “climb up the regular sequence” to
show that the dimension of the degree-i component Q, 1(E, t); (for n = 3,4) is
“right” and, simultaneously, that the central elements form a regular sequence with
respect to homogeneous elements of degree < i. Tate—Van den Bergh [55] proved
that Q,.1(E, t) has the “right” Hilbert series when n > 5. Their argument relies on
modules of /-type (a notion they introduce) and a geometric definition of the defining
relations [55, (4.2)] (at the end of their Sect. 1, they suggest that Q, x(E, ) might be
amenable to their techniques).

It would be good to know whether the methods in this paper apply to other graded
algebras whose defining relations are the image of a specialization of a family of
operators R(z) satisfying the QYBE.

7 The Hilbert series for Q, x (E, 7)"

The argument in this section showing that the Hilbert series of Q,, «(E, lis (140)" is
modeled on the argument used in Sect. 6 to show that the Hilbert series of Q, x(E, T)
is(1—n~".

22 Artin-Schelter’s proof is “by computer”. De Laet’s is “by algebra”.

23 These facts are analogues of the fact that when E is embedded in P2 or P3 as an elliptic normal curve
of degree 3, or 4, respectively, it is a complete intersection. However, when E is embedded in P"~! a5 an
elliptic normal curve of degree n > 5 it is not a complete intersection.
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7.1 The algebras S, i (E, T)

By definition, O, x(E,t) = TV /(im R, (7)) with the convention that R, (7) is
replaced by R4 () in (5.5) when t € %A. We now define

Snx(E : —TV
kB D = G Reo)
with the same convention. Theorem 7.4 shows that O, x (E, r)! = Sun—k(E, 7).
By [17, Prop. 3.22], the automorphism N(x,) = x_, of V extends to algebra
isomorphisms Q, x(E, 7) = Qui(E, —7) and Q, k(E, v) — Qnk(E, v)°P. There
is a similar result for S, x(E, 7).

Proposition 7.1 Let N € GL(V) be the map N (xy) = x_q. Forall Tt € C, N extends
to algebra isomorphisms S, x(E, 7) — Sy x(E, —1) and S, k(E, 1) — Sy (E, 7)°P.
In particular,

Spi(E, 1) = Sy (E, 1) = S, 4 (E, —1).

Proof 1t is clear that

S (E.0)P = — 1V

m kA (ker R, (1) P)
where P isthe operator P (u®v) = v®u.By (2.6), R; (1) = e(—n?t)PR_.(—7) P for
allt e C— %A, and thus for all T € C (we define R, (t) and R_,(—1) as limits when
TE %A). Hence ker R, ()P = ker R_;(—7). Hence S, x(E, 7)°? = S, x(E, —7).
By (2.7),
(N ®N)R. (1) = e(—n’T)R_(—T) (N ® N)

for all T € C. It follows that ker R_;(—t) (N @ N) = ker R, (7).

Thus, N ® N is an automorphism of V®2 that sends ker R, (1), the space of
quadratic relations for S, x (E, 7), to ker R_; (—1), the space of quadratic relations for
Sn k(E, —7). Therefore N induces an isomorphism S, x(E, t) = S, x(E, —7). O

7.2 The quadratic dual of Q, «(E, 7)

Let (-,-) : VxV — Cand (-, ) : V® x V®2 _ C be the non-degenerate
symmetric bilinear forms (x;, x;) = §;; and (x; ® xx, x; ® x¢) = &;;Sk¢. The maps

V>V v (v, ),
VRV - VeV, uvr— u®u, ),
V*®V*_>(V®V)*v <I/t,')®<v,')|—>(1/l®v,'),

are isomorphisms. We will treat them as identifications. The third isomorphism is the
composition of V* @ V* — V ® V, induced by the first, and the second. We also
define the isomorphism V& — (V*)® for each d > 3 in the same way as d = 2
and identify TV with TV*.
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If R is a subspace of V ® V, then the quadratic dual A = TV /(R) is defined to
be A' := TV*/(R1), where R is the annihilator with respect to the form (-, -) :
V®2 x V®2 5 C and is regarded as a subspace of V* @ V*.

Given a linear operator R : V®2 — V®2 we denote by R® : V&> — V®?2 the
unique linear map such that (R®x, y) = (x, Ry) forall x, y € Ve,

Lemma 7.2 IfV is afinite-dimensional vector space and R* : (VQV)* — (VR V)*
is the dual of a linear map R : V®* — V%2, then

(1) (im R)* = ker R* and
(2) (ker R)* = im R*.

With the conventions stated just before this lemma,

TV TV
((imR)) " (kerR*)’

Proof Parts (1) and (2) are basic linear algebra. The displayed equality follows because
the left-hand side of it equals 7V */(ker R*) which we are identifying with the right-
hand side (by convention). ]

Lemma?7.3 Forallt € C — %A and z € C,

Ruk () = e(=n*2D) Ryt —r(—2).

Proof Let B = {x; ® x; |i, j € Z,}. This is a basis for V®2. We must show, for all
p.q,s,t € Zy,, that

(xp ®xq9 Rn,k,r(Z)(xs Qxy)) = e(_nzz)(Rn,n—k,—r(_Z)(xp ®xq)» Xy ®x). (7.1)

or, equivalently, that the coefficient of x, ® x; in Ry k7 (z) (x5 ® x;) with respect to
B equals e(—nzz) times the coefficient of x; ® x; in Ry, (—2)(xp ® x4) with
respect to B.

If p + g # s + t then both sides of (7.1) are zero so we assume p + g = s + ¢ for
the remainder of the proof.

By (2.7), the right-hand side of (7.1) is equal to

_ O0(=2) - On—1(=2) Op—gtr(—k—1) (=2 + T)
(Rn,nfk,r(Z)(xq ® )CP), X ® XS) = 91 (O) . 9’1_1 (0) ep—q—r(_Z)e—kr (‘[)

where r € Z, is determined by p — r = t or, equivalently, by ¢ + r = s. Since
p—q=t—s+2r,

O0(—=2) -+ Op—1(=2) O—s 4 (= k=) (=2 + T)
01(0) -+ 0,—1(0)  O—s—(—r) (—2)bk(—r)(T)’

<Rn,n—k,r(z)(xq ® xp)s X @ x5) =
which equals the left-hand side of (7.1). O
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Theorem 7.4 Forallt € C,
O0ni(E, 0" = Spui(E, 7). (7.2)

Proof Lemma 7.3 implies that R, ;- (7)* = e(—nzr)Rn,n_k,_r(—r) for all T €

C - %A, and thus for all T € C if we define both sides as limits when 7 € L1A.

Therefore, by Lemma 7.2, "

Qui(E. D) ~ r Spnt(E.~7)

n,k ,T) = ° = = n—k ,—T).

' (ker Ry ko () (ker Ryt —(=7)) ~ "

The desired isomorphism now follows from Proposition 7.1. O

Corollary 7.5 Forallt € C, S, 1(E, t) = AV, the exterior algebraon V.

Proof By Theorem7.4, S, 1(E, t)isisomorphic to the quadratic dualof O, ,—1(E, 7).
However, O, ,—1(E, t) = SV by [17, Prop. 5.5] so the result follows from the well-
known fact that the quadratic dual of the polynomial algebra SV is the exterior algebra
AV*, O

7.3 Computation of the Hilbert series for Q, , (E, 7

In this subsection we prove Theorem 7.7. After Theorem 7.4 it suffices to show that the
Hilbert series of S, x (E, t)is (1+1¢)" forallkand allt € (C— Ufntll ﬁA) U %A. The
arguments we use to show this are similar to those in Sect. 6.4 with the essential change
that images and kernels of R;(7) are replaced by images and kernels of R;(—71).

We adopt the convention that (ﬁ) =0 whene > n.

Theorem 7.6 Letd > 2. Assume T € C — | J? _, LA
(1) We have
ker Fg(r) = Y V' @imR (1)@ V® (7.3)
s+t+2=d

and its dimension is the same as the dimension of the space of degree-d relations
for the exterior algebra in n variables, namely n® — (:'1)
(2) We have
im Fy(t) = ﬂ V® @ ker Ry (—7) @ V&' (7.4)
s+t+2=d
and its dimension is the same as the dimension of the degree-d component of an
exterior algebra in n variables, namely (Z)

Proof The proof is like that for Theorem 6.5 with some natural changes. The binomial

coefficients ("*¢~") are replaced by ("). The operator

G:(z):imFy_1(—7) @V — V®imF;_1(—71)
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that is the restriction of S{% ;(z, —7, ..., —7) is replaced by

GT () :VeimFy_i1(t) — imF;_1(t) ® V

which is the restriction of S{f'l)l(z, 7,..., 7). The result in Proposition 6.6 showing
that det G, (z) has exactly (d — 1)n3(”;ﬁ2) zeros in a fundamental parallelogram

for A is replaced by the result that det G (z) has exactly (d — Dn? ( dfl) Zeros in a
fundamental parallelogram for A. The analogue of (6.21) is now

) if z€—(d-Dt+1a,
dim(ker G+ (2)) > ”(d%l) ?f z€ —mtl—i— LA forsome m=1,..., d-2,
n(gh) = (@) if zeT+gA,
0 otherwise.
(7.5)
(The hypothesis that T ¢ Ui: 1 ﬁA ensures that the four cases in (7.5) are pairwise

disjoint.) After these changes, the argument then proceeds as before since
rank (rh—% Fd(r)) = ()

by Proposition 6.4. O

In analogy with Lemma 6.11,

dim(im Ty(z, ..., T, 2))
M)~ () ifze—@= DT+ LA,
0 if ze—mr—i—%A forsome m=1,...,d —2,
%) if zet+ %A,
n(,")) otherwise.

(7.6)

Theorem 7.7 Ift € (C — ULt LAY U LA, then 0, 1 (E, ©)' has the same Hilbert

m=1 mn
series as the exterior algebra on n variables.

Proof If T € %A, then O «(E, 7) is a twist of the polynomial ring on n variables [17,
Cor. 5.2] so its category of graded modules is equivalent to the category of graded
modules over that polynomial ring. But the Koszulity of a finitely generated connected
graded algebra generated in degree one depends only on its category of graded modules
(see the argument preceding [59, Prop. 5.7]). Since the polynomial ring is a Koszul
algebra so is every twist of it. In particular, O, x (E, 7) is a Koszul algebra. The Hilbert
series for Q and Q! therefore satisfy the functional equation H, 0! (t)Hg(—t) = 1.The
Hilbert series for Q, «(E, 7)" is therefore (1 + 1)".

For the rest of the proof we assume that t ¢ Uﬁ:ll #A.

Since 7 ¢ ﬁA, im R;(—t) = ker R;(7) by Theorem 5.7(2). By Theorem 7.6(1),
the degree-d part of S, x(E, 7) has the same dimension as the degree-d part of the
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exterior algebra on n variables forall 0 < d < n+1.Inparticular, S, (E, 7)p4+1 = 0;
since Sy, x (E, 7) is generated in degree-one, S, (E, 7)¢g = O foralld > n 4 1. Thus
Su.k(E, 7) has the same Hilbert series as the exterior algebra on n variables for all .
The result now follows from Theorem 7.4. O

8 Multiplication in Q, « (E, T)

Let Sym? V (resp., Alt? V) denote the subspace of V® consisting of the symmet-
ric (resp., anti-symmetric) tensors. The restriction to Sym? V of the natural map
from the tensor algebra TV to the symmetric algebra SV := TV /(Alt? V) is an
isomorphism onto its image, S?V, the degree-d component of SV . The multiplica-
tion on SV can therefore be transferred in a canonical way to a multiplication on
SymV := @, Sym? V. The induced multiplication is called the shuffle product.

In a similar way, the equality in (6.14) leads to a canonical isomorphism from
On.x(E, 7) to the subspace of T'V that is the direct sum of the images of the opera-
tors F;(—t) which are, by Proposition 6.4, elliptic analogues of the symmetrization
operators. Following this line of reasoning, the multiplication on Q, (E, ) can be
transferred in a canonical way to this graded subspace of TV

In this section we make this multiplication explicit in terms of certain operators,
those in Proposition 8.6(1), that should be thought of as elliptic analogues of the shuffle
operators.

8.1 The operators My, , : V®? @ V&0 — y®(@+b)

At first sight, the calculations in this section might appear mysterious. They have been
guided by a desire to find an elliptic analogue of the equality (8.1) which says that
the product on Sym V induced by the usual product on SV is the shuffle product. We
need some notation to explain this.

Let a,b € Zxp. Let S,4p denote the group of permutations of {1,...,a + b}.
Define

Sap = {0 €Sugplo(l) <---<o(@ando(@a+1) <--- <o(a+b)},
Sajo == {0 € Syyp|o(i) =iforalli >a+ 1},
Sojp = {0 € Saqp o) =iforalli <a}.

Elements in S, are called shuffles. If o € S,1p, then there are unique elements
® € Sa|p, & € Sajo, B € Sopp such that o = waB. Hence, in the group algebra CS,y,

we have
Z w Z o Z gl = Z o. 8.1)
WESyp aESy|o BESp oE€Satb

The shuffle product u®v > usvon V®@+) anditsrestriction Sym? V®Sym? V —
Sym®*? V' is given by % times the left-most term in (8.1).
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The second equality in Lemma 8.5, which is one of the main results in this section,
namely
Mp.a(—=7) - (Fa(—=7) ® Fp(—7)) = Faqp(—7),

is analogous to (8.1) (with some factorial terms thrown in). By Proposition 6.4,
lim;_ o Fy(—1) = ]_[,an_:l1 m! - ZueSa o i.e., F,(—1) is analogous to the the mid-
dle term on the left-hand side of (8.1). We now introduce the operator M}, ,(—7) that
will be analogous to the left-most term in (8.1).

Definition 8.1 Let a, b € Zx(. Define the operator
My p(Z5X10 - Xao 13 V1o ypo1) 2 VEUTD) 5 y@@ih)
to be

R(2)a,a+1 R(z+ yDatt,a+2 -+ R@+ D) Y)a+b—1,a+b
R+ x1)a—1a R@+x1 4+ YDaat+1 -+ R@+ X1+ D Yatb—2,a+b—1

R+ jxp)12 Rz+ 2% +y)23 - R+ D%+ Dk Vidbbt1

interpreted as either

(1) the downward product of the rightward products along rows, or
(2) the rightward product of the downward products along columns.

If a = 0 or b = 0, we regard the operator as the identity.
For example, M> 3(z; x; y1, y2) is

R(2)23R(z + y1)34R(z + y1 + y2)a45R(z + x)12R(zZ +x + y1)23R(Z +x + y1 + ¥2)34
= R(2)23R(z +x)12R(z + y1)34R(z + x + y1)23
“R(z+ y1 +y2)a5R(z+x + y1 + ¥2)34.

Letx := (x1,...,x4—1) and y := (y1, ..., yb—1). The interpretations in (1) and
(2) yield

Map(@ % Y) = Sg2% 4p @ VSg S agp1 @+ X1, Y) - S15 4 (2 + ij, y)
J

(8.2)
= St @08 @+ Yy X) S (@ Dk Vi X)
(8.3)

respectively. We leave the reader to verify that the procedures in (1) and (2) produce
the same result (this does not involve using the Yang—Baxter equation). The first step
in verifying this is to notice that if one starts with the product produced by (1), then the
factors R(z +x1 + -+ + Xj)a—j,a—j+1 coming from the left-most column commute

) Birkhauser



31 Page 60 of 81 A. Chirvasitu et al.

with all the entries in the array that appear to the northeast of that factor; thus the
product produced by (1) is equal to S;%; | (z, x) times

il arb @V VDS b1 @ F X1+ Y1, Y2, Ye—1)

S Z+ij+y1,yz,-..,yh—1
J

One then treats this product in the same way, and so on.

We write M, p(z) for My p(z; % y)ifz=x1= - =X4-1 =Y1 =+ = Yp—1.
Lemma8.2 Let x = (x1,...,x4—1) and 'y = (V1,...,Yp—1).- As operators on
V®(u+b)’

TEOM,p(z + 2% X Y) = Map(z XY VTR x) (8.4)
and
TRYMap @+ D5 v XV —y™) = Mo p(z; X5 y)TE(y) (8.5)
where X' 1= (xg—1, ..., x1) and y* 1= (Yp—1, - -, Y1)-

Proof By (8.3) and (6.4),
Map |24 xji—xy
j

Tev Tev
= Out1-1 Z+Z)Cj,—x S{l+2~>2 Z+ij+y1,—x
J J

rev
a+b—b Z+Zx]' +Zyk, —X
Jj k

= Sat1-51(X, 2)Sa2-2(%, 2+ Y1) - - Satb—b (X, 7+ Z yk) :
k

By Lemma 6.1,

Tf @y e 2a-2)Sas 12ty v oy 2a—1) = ST a1, s 2DTR (21 - - v 2a—2).
(8.6)

Hence TF (x) M, (2 + Z/ Xj; —X; y) equals

W Birkhauser



Elliptic R-matrices and Feigin and Odesskii's elliptic... Page 610f81 31

TE(X)Sa115106 2)Sa252( 2 4 Y1) Sat353(%, 2+ y1 + y2) - --
= S 12 XU ® Ty () Su22(%, 2+ Y1) Sa43-3(% 2+ y1 +32) -+
= S 1@ XS @+ v XU @ Ta(0))E SagamzX 2+ y1 +y2) -
where the last equality is obtained by applying (8.6) after observing that the previous

(I ® T,(x))* is of the form T,}(x) with respect to S,12-2(X, z + y1). Repeating this
procedure we eventually see that TaL OMgp(z+ > X=X y) equals

St @ XS (@ v X SE (2 D vk XD T (%)

which is My p(z; X5 y) TR (x).
A similar argument proves (8.5). O

Lemma 8.3 For positive integers a, b,

L
T,1, - s Za—1)Sav151215 -+ -5 Za)Sat2-52(215 - o5 Za—1, Za + Zat1) - -+
L
o Saqbsp (21 Za—1,2a F -+ Za+h—1)Tb (Za+1s -+ Zatb—1)
= a+b(Z1 PRI Za+b71)‘ 8.7
Proof Since TF |(z1,...,2a-2)Sa—>1(21, ..., 2a—1) = Ta(z1, ..., z4—1) (by Lemma

6.1), the product of the two left-most factors on the left-hand side of (8.7) equals

Th G 2a)
By definition (6.1), the right-most factor ThL (Za+1s - - - » Za+b—1) on the left-hand side
is
T (zat1s - s 2atb—1) = $251@at1)S351(Zat 15 Zat2) - - - Shs1 a1 -+ - » Zatb—1)-

(8.8)
Each of the b — 1 resulting S;_,; factors commutes with all S, factors ending
the left-hand side of (8.7) for k > j. Implementing this commutation for each of the
S factors in (8.8) means attaching S; .1 in (8.8) to S, j— ; in (8.7) to produce

Satjsj@ZlsesZa—1,2a + + Zarj—1)Sj>1(Zat1s -+ -5 Zatj—1)
= Satjs1(21s vy Zatj—1)-
Multiplying these by the TaL+1 (z1, - - -, 2q) We already have and applying Lemma 6.1
successively now yields the right-hand side 7,4 (z1, - - . , Za+b—1) 0f (8.7), as claimed.
O

Lemma8.4 Ifx = (x1,...,xq—1) andy = (y1, ..., Yb—1), then
Tarp(X,2.Y) = Map(z; x5 y) - TRX) - TE(y).

) Birkhauser



31 Page 62 of 81 A. Chirvasitu et al.

Proof Lemma 8.3 can be re-stated as

Tasp(X,2,Y) = TLEOO - Map(z+ 2 x5 =% y) - TEW).

So the result follows from (8.4). O

8.2 Multiplication in Q,,  (E, T)

Assume 7 € C — | J,,- L A. By (6.14),

m>1m
V®d

Oni(E,T)g = Ker Fy(—1)’

which is canonically isomorphic to im F;(—1). Thus

Qni(E, 7) = Pim Fa(—7)

d>0

as graded vector spaces, so the multiplication on Q, x(E, ) induces a multiplication
on the right-hand space making it a graded C-algebra. Proposition 8.6 describes the
induced multiplication.

Lemma 8.5 With the notation above,

Mp,a(7) - (Fa(7) ® Fp(7)) = Faqp(7),
Mp,a(=7) - (Fa(=7) ® Fyp(=1)) = Fayp(—7).

Proof By Lemma 8.4,
Faip(£7) = Mpo(£7; (0 (0 H TR (20T ((£0)*™)

= Mpo(+7)FR(£0)FL(+1)
= Mpo(£7) - (Fu(£7) ® Fp(£7))

as desired. m]
Proposition 8.6 Let 7 € C — |, ~A.
(1) Define a bilinear multiplication on A := @dzo im Fy(—1) by the maps

im F,(—7) ® im Fp(—17) —> im Fy45(—7)

induced from My 4(—7) forall a,b > 0. Then A is a graded algebra isomorphic
10 Qni(E, 7).
(2) Similarly, the maps induced from My (1) make @a+b20 im Fy4p(t) a graded

algebra isomorphic to the quadratic dual Q, x(E, )l
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Proof Write Q for Q, x(E, t) and Q; for its degree-i component. Consider the dia-
gram

V®a®v®b 5 Qa®Qb N%Aa@)Ab‘ )V®H®V®b

\ l M=)

V®(a+b) — Qa+h % Aa+h — V®(a+b)

where the first and second rows are factorizations of F,(—7)® Fp(—7) and F 15 (—7),
respectively. The left-hand square commutes since Q is defined as a quotient of the
tensor algebra, and the commutativity of the outer square follows from Lemma 8.5.
Thus the right-hand square also commutes, whence M}, ,(—71) induces a map A, ®
Ap — Ag4p, which is equal to the one induced from the multiplication of Q. This
proves the first statement.

If we replace all —1’s in the above argument by T we get a proof of the second
statement using (7.4). ]

9 Koszulity of Q, «(E, T)

1

Throughout this section, we assume that 7 € C — > 5~

rems 6.5 and 7.6.
Let Lat(V®?) denote the lattice of subspaces of V&<,
We will use the following result to show that Q, x(E, 7) is a Koszul algebra.

Lemma 9.1 (Backelin) [41, Thm. 2.4.1] Let T € C. Q, x(E, t) is a Koszul algebra if
and only if the sublattice of Lat(V®?) generated by

A so we can apply Theo-

Wi = VeI D @rel, ((E,0) @ VOYI=D =1, ... .d—1, 9.1)

is distributive for all d > 2.

9.1 Distributive lattices
Recall that a lattice (L, Vv, A) is distributive if

VYA =xVY) AKXV and 9.2)
XA(YVZD=EAY)V(XAZ) 9.3)

for all x, y, z € L. Condition (9.2) holds for all x, y, z if only if (9.3) holds for all
X, y, 2.

A lattice £ is modular if (9.2) (or equivalently, (9.3)) holds for all triples (x, y, z)
satisfying x > z. As explained in [41, Lem. 1.6.1], if £ is modular, then (9.2) and
(9.3) are equivalent for each triple (x, y, z) and these conditions are invariant under
permutations of x, y and z. If those equivalent conditions hold, we say that the triple
(x, v, z) is distributive.
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We write Lat(d) for the sublattice of Lat(V®d) generated by Wy, ..., Wy_;. Like
the lattice of subspaces of any vector space, Lat(V®?) is modular, and so is Lat(d).

We say that X € Lat(d) has classical dimension if it has the same dimension as
its counterpart for the polynomial ring SV. This terminology is not really for X, an

element of Lat(d), but rather for an expression of X using join and meet.

Since dimrel, ¢ (E, 1) = (3) = dim(Alt? V), every W; has classical dimension;

its classical counterpart is VO~ @ Alt? V @ V®@~=D_The subspaces

K d—1
Yy = ZWi, and [, := ﬂ W,
i=1 j=d—t

also have classical dimension for all s and ¢ by Theorems 6.5 and 7.6. It follows that
3¢ N I; has classical dimension if and only if ¥ + I; does.

Because Lat(V®d) is modular, the second half of [41, Thm. 1.6.3] tells us the
following.

Proposition9.2 Letd > 3 andlet W;, 1 <i < d—1, be the subspaces 0fV®d defined
in (9.1). If Lat(2), ..., Lat(d — 1) are distributive and, for 1 < { <d — 1, the triple

d—1

—1
dowiwe, () W 94)
i=1

j=t+1
is distributive, then Lat(d) is distributive and Q, i (E, t) is a Koszul algebra.

We will prove that Lat(d) is distributive by induction on d.

Lemma 9.3 Fixd > 3. Assume Lat(2), ..., Lat(d — 1) are distributive. If £; N I5_;_1
has classical dimension foralli =0, ...,d — 1, then Lat(d) is distributive.

Proof 1t suffices to show that (X¢_1, Wy, I;—¢—1) is a distributive triple for all integers
£in[1,d —1].
Fix ¢ and write r :=d — ¢ — 1.
Since X¢_1 + Wy = ¥y and W, N I, = Iy, the distributivity condition
Se—1+WenN 1) = (Ze—1+Wo) N (Zg—1 + 1).
is equivalent to the condition

Y1+ Ly = XN (g1 + 1). 9.5)

The two terms on the right-hand side of (9.5) have classical dimensions:
e ¥, does by Theorem 6.5;
e Yy_1+ I does by Theorem 6.5 and the observation that ¥, = X ® y®d—t 4nd
I, = V® QY where
X=%_,CV®, and Y=1I CVOID
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whencedim(Z,_1N/,) = dim(X®Y) = dim X-dim Y = the classical dimension.

Since X, and I, have classical dimension, and ¥, N I, has classical dimension
by assumption, X, + I, also has classical dimension. But this is true for all £ so the
left-hand side of (9.5) has classical dimension. So does the right-hand side because

dim(X, N (Zg—1 + 1)) = dim Xp +dim(Xe—1 + 1) — dim(Z¢ + (Zg—1 + 1))
= dim Z¢ + dim(Ze_1 + L) — dim(Z¢ + I,).

Thus the left- and right-hand sides of (9.5) have classical dimensions. However,
Sec1+ L1 € XN (B + 1)

and this inclusion is an equality in the case of the polynomial ring so both the left-
and right-hand sides have the same dimension for the polynomial ring and in the
present situation too because they have classical dimensions (by hypothesis). Hence
this inclusion is an equality in our case too; i.e., (9.5) holds, and the proof is complete.

(]

Thus, to show that O, «(E, 7) is a Koszul algebra it suffices to show that £, N I,
(with r = d — £ — 1) has classical dimension foralld > 3and 0 < ¢ <d — 1. We
will achieve this goal in Proposition 9.16.

Letr =d—¢—1.1f £ € {0, 1,d — 1}, then X; N I, has classical dimension so we
can assume that2 < £ <d — 2 (i.e.,, 1 <r < d — 3), but for now we also allow the
case £ = 1 (i.e.,r = d — 2) to show some necessary results for induction and exclude
this case later.

To show that ¥, N I has classical dimension we first convert the problem into a
question about the rank of the operator F, (LH (_T)Frli-l (7): yed _, y®d

Lemma 9.4 Let F,(z) be the operator on V®P defined in (6.2). We have

dim(S, N 1,) = dim(ker Fzﬁl(—r)Frﬁl(r)) — nt (n’+1 - (ril)>.

Proof Since T, NI, = Y \_, Wi N mj?;g +1 W; (by definition),
NI, = ker(FeL_H(—r) sy V®d) N im(FrlfH(r) cy®d V®d)

by Theorems 6.5 and 7.6. Therefore

dim (SN 1) = dim(ker F(ZLH(—r)Frﬁl(r)) - dim(ker Fr’fH(r)).

Butdim(ker FX | (1)) = n* (n“rl — (rj_l)) by Theorem 7.6, so the proof is complete.
O
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9.1.1 Notation for the classical case
For the symmetric algebra, SV, the analogue of W; is

Aiip1 = VOID @ A2V @ VO@=i—D
The classical analogue of X; N I, is therefore the space

+1,r+1
w thrt ZAI i+1 N m Al i+1-
i=0+1

9.2 The operators T, ,(z) and H(z) on V&4
When ¢ > 2, we will use the notation
Tpr(@) = Ta&", = + D1, (=02, 2).

When £ = 1, we only define

T, (=7) == Ty(z", = (r + D).
Lemma 9.5 With the above notation,

Tor(2) = Mrp1o(—(r+ D175 (-0 72 2) - TH(-D) 2 2) - TR, (2. (9.6)
Proof This follows from Lemma 8.4. O
We now define H; (7).

Proposition 9.6 If ¢ > 2, then the theta operator

St (072 =+ D, ) ©.7
on V® restricts to a theta operator

Hi(z2):V®imT;—1,(—7) — imTy_1 ,(—7)QV

and im H.(z) = im T ,(2).
Proof By Lemma 6.1,

Tor(2) = ST,z (=072 —(r+ D, o) - TR (", —(r + D7, (=1)7?)

= TF (&, =+ Dr, (—0)?) - Sym1 (&, —(r + D1, (=1)72, 2).
9.8)

W Birkhauser



Elliptic R-matrices and Feigin and Odesskii's elliptic... Page 67 of 81 31

In other words,

Tor(@) = S G (D2 =+ D1, 1) - TR (-1
= TL (=1) - Sam1(T", —(r + D7, (-1) 72, 2) 9.9)

The results follow because im thR—l,r(_T) =V®mT,_,(—7)andim TZL_M(—r) =
m7T_1,(-71)®V. O

Lemma9.7 Let1 < ¢ <d — 2. Then X; N I, has classical dimension if and only if

dim(im 7y, (—1)) = n*(,},) — dim w*THr+ (9.10)
Proof Setting z = —t and using (8.2) to factor the M, term in (9.6) as A -

S e (= )t ) we have

Ter(=0) = A- S (COOTH (0 DT )
A - T/z+1(( 1:) )7, +1(r ) byLemma6.1
A- Fe+1( 0F, +1(T)

Since the R’s appearing in A belong to {R(—27), ..., R(—(d — 1)1)}, the assumption
teC-UJ LA implies that A is an 1som0rphlsm Hence, by Lemma 9.4,

m>1m

dim(Z,N1I) = dlm(ker F£+1( 7)F, l(t)) (nr+1 - (r-’:-l))

— dim V® — dim(im Ty, (—1)) — n* (n’“ - (ril))
nﬁ(

41) — dim@im Ty (=7)).

Since WHLr+1 g the classical analogue of X, N I, the result follows. O
9.2.1 The induction hypothesis

We will prove that (9.10) holds by induction on d. Thus, we assume (9.10) is true
for d — 1 or fewer tensorands. If £ = 1, then (9.10) follows from Lemma 9.7 since
31 N I, = I41 has classical dimension. So we also assume 2 < £ < d — 2, i.e.,
1 <r <d — 3. The induction hypothesis implies that

dim (the domain of H,(z)) = n* (ril) — ndim W&t (9.11)

The function det H;(z) in the next result is only defined up to a non-zero scalar
multiple (see Sect. 4.2.1).

Proposition 9.8 The function det H; (z) is a theta function with respect to %A having
d—1)dim(V ® im Ty ,(-7)) = (d — 1)(n‘f(rj'rl) — ndim W““) 9.12)
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zeros in each fundamental parallelogram for %A, all of which belong to

{-71,0,7,...,(d = Dt} + 1A (9.13)
Proof Since R(z) is a theta operator of order n” with respect to A, S 4z, ..)in(9.7)
is a theta operator of order (d — Dn? with respect to A. Since H (z) is the restriction
of Si% ;(z,...) toim TeR_Lr(—r), Proposition 4.6 tells us that det H; (z) has

d— Dn*dim(im 77 |, (-1))

zeros in every fundamental parallelogram for A. However, since det R(z) is a
theta function with respect to %A, so is det H;(z). Hence det H;(z) has (d —

1) dim(im 7/ 1’r(—r)) zeros in every fundamental parallelogram for %A.

By the induction hypothesis, (9.10) tells us that dim (im T;—; ,(—7)) = n*~! (ril) -

dim W& +! The equality in (9.12) now follows once we observe that det H (z) is not
identically zero: it isn’t because the factors of S{e_‘; 42, .. .) are invertible for all but
finitely many z’s.

Since H;(z) is the restriction of a product of terms of the form R(z —mt); ;41 for

various i’sand m = 0, ..., d — 2, the zeros of det H;(z) belong to
{z| det R(z — mT) = 0 for some m € [0,d — 2]}.

Butdet R(z) = Oifandonlyifz € £t + %A, sothissetis {—7,0,7,...,(d—Dt}+

LA, O
n

We now examine mult,(det H(z)) for the p’s in (9.13). In truth, we will only
examine mult, (det H; (z)) when p € {—7,0, 7, ..., (d —1)7} and then apply Lemma
9.14.

As the next result shows, H; (p) = 0 for some of these p’s.

Lemma 9.9 Ifm € ZN[1,d —3], then dim(ker H; (m7)) > n*(,} ) — ndim W&+,

Proof By (9.11), the inequality is equivalent to H;(mt) = 0.

Sinceim H;(mt) = im Ty ,(m7) by Proposition 9.6, Hy (mt) = 0if Ty (mt) = 0.
Thus we will prove the lemma by showing that 7y . (mt) = O for the m’sin [1, d —3].
We split the proof into two parts.

(1) Assume 1 < m < £ — 2. (This case is vacuous if £ = 2 so we assume ¢ > 3.)
By Lemma 9.5, T(L((—r)e_z, mt) is a factor of Ty ,(m7) so it suffices to show that
Ty ((—=1)2, m7) = 0. By Lemma 6.1,

T ((—0) 2, mr) = S, (mr, (=) - TR (—0)).
But
SI (mt, (—1)2) = RmT)e—1,0R((m — 1)T)g—n4—1 - R((m — £ +2)T)12
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and this has two consecutive factors of the form

R()j j+1 R(0)j_1,;

for some j > 2. The R(t); j+1 commutes past the R(0) = I ® I term, and
also commutes past the other factors to its right, to ultimately annihilate the term
TZR_1 (=) = R(—=1)j,j+1 Q' (where the latter equality uses Proposition 6.3(1)).

(2) Assume £ — 1 <m < d —3.By (8.3), My 1.¢(—(r + D)7; 7" (—7) 7%, m7)
is right-divisible by

SE¥(m —d +2)r, ")
= R((m—d+2)1)4-1,4dR((m —d +3)T)g-24-1- - R((m — €L+ 1)T)g 041,

andm —d+2 < —1 <0 <m— £+ 1. Hence it has two consecutive factors of the
form R(—7);, j+1R(0)j_1,; for some j > £+ 1. Since R(0) =1 ® I, R(—1)j j+1

commutes with all factors to the right of itin S, , ((m—d+2)7, t"). After moving it all

the way to the right in the expression (9.6), we conclude that 7y - (mt) is right-divisible
by R(—=1)j,j+17, +1(r’) However, by Proposition 6.3(2), _H(r’) =R jn10
for some Q so R(—7); j+1 rH(t’) =0. m]

Lemma9.10 IfTZIEI ,(=7) denotes I @ Ty—1 ,(—7) acting on V® then

rank TR | (=D S1-e (=0 = ("FE ().

Proof As operators on V®@—D,

Tp1,(=7) = Mgy o1 (¢ + DTt (-0 TE (- - 1R (o)
=MF,_ e+ DT 0 S (- TE o TR e

=MF,_ o+ Do TRt R e

where Mfz_lﬂ -+) is acting on the (d — 2) right-most tensorands of y®W@=D: the
second equality comes from (8.2), and the third from Lemma 6.1. We now view this
as an equality of operators on V®? = V @ V®@=D by considering each of the four
operators in it as acting on the right-most (d — 1) tensorands; i.e., we replace each
operator by (I @itself). But I @ Ty—1 ,(—7) = e 1., (=7), 80 the equality implies

TR (0 Sime((—D Y =MF ¢ - aeTHED Y - TR o)
S1oe((=1)h.

By the assumption r € C— L A, all the R’s appearing in the term M WARLCERD.

m>1 m
are isomorphisms. The rank of TKIE RGN 7)¢~1) therefore equals that of

(I TF(=0) ™) - TR ") - Sime((=D) ). 9.14)
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The left-most £ tensorands of V®< are “disjoint” from the right-most (+ + 1) tensorands
SO
O.14) = (1@ TH(D)D) - Sime((—D) ™D - T, ().

But S1¢(z1, ..., 26—1) = S1=e+1(21, .-, 2¢-1,0) and
R L
T (22, .-, 20) - Stser1(zes o0 21) = S| 0@ - oze) - Ty (2, -0, 20)

by Lemma 6.1, so, as operators on V®¢+D,

0.14) = ITH(—=D D) - Sime (=Y - TR (z")
= (I TF(=D" ) - Simes1 (=) 0) - 7K ()
= 8,10, (=) TH=0hH - TR ().

By Lemma 6.11, G;(0) is an isomorphism. But G,(0) is the restriction of

Sre"Hl(O (—=1)t~ ])tothelmageofTL(( )t 1)soS{e_")ZJrl(O, (—7)t 1) acts injec-

tively on the image of TL(( 7)1, whence
rank(9.14) = rank - ((—0)" HTR, (z").

As operators on V& = V& @ VO TL(—)!"HTR (") = Ty((-0)""H ®
Tr41(t") so

rank T/ ((-0)*"HTR  (t")

rankT ((— r)e ]) rank T Jrl(1,')
rank Fy(—7) - rank F,11(7)

which is ("+ﬁ_l) (1) by Theorems 6.5 and 7.6. |

9.2.2 Terminology

A family of linear operators A(z) has a zero of multiplicity m at a point p € C if
A(z) = (z — p)" B(z) where B(z) is an operator such that det B(z) has neither a zero
nor a pole at p.

Lemma 9.11 The restriction of H;(z) to im T[R_Lr(—r)S]%g (=) has a zero of
multiplicity > 2 atz = (£ — 1)t.

Proof Since H.;(z) : im TlR—lr(_T) — im TKL_”(—I) is the restriction of
S, (= )72, —(r + D)z, "), it suffices to prove that

S (DR =+ DT ) TR (=) - Sime((—D ) (9.15)

has a zero of multiplicity > 2 on its domain V®¢. Since
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SE @ (D2 =+ DT ) TR (=)
= Ty(t", —(r + D, (-1)" 2, 2)

= Moy~ + D s (0720 - TR (@) - TH(-D) 2, 2)

by (9.9) and Lemma 8.4, the operator in (9.15) is the composition of

Mys1o(—(r + D1yt (=022 - TR () (9.16)
and
TH(=1) 2 2) - Sime((—D) . (9.17)
We will show that each of these operators is zero at z = (€ — 1)7.
First,
©.16) = ME | ((—+ DT (0D ST e~ U+ — DT ) TR @)

MrL+1,(Z—1 (—r+ D" () Trliz(rr, z—W+r—11)

where the first and second equalities follow from (8.3) and Lemma 6.1, respectively.
When z = (£ — 1)1, the right-most factor is Trliz(r’, —r71) which = 0 by (7.6). Hence
(9.16)= 0.

Whenz = (¢ — 1)z,

(9.17)

TE (D) - S 1 (02 (= Do) - S5 (D Y by Lemma 6.1
= TF (D) R@p—1,e- R = DDz - R—=EC = DD R(—T)p1 ¢
By Lemma 2.3, for all u the operator R(u) R(—u) is a scalar multiple of the iden-

tity so we can rearrange the terms in this product to obtain a factor of the form
R(t)¢—1¢R(—7)¢—1,¢ which = 0. O

Lemma9.12 dim(ker Hy (—7)) > dim Wt 1 — 5 dim wor+1,

Proof Since im H;(mt) = im T ,(mt) by Proposition 9.6,

dim(ker H(z)) + dim(im 7¢ ,(z)) dim(im T[Iil’r(—r))

= nz(r:l_l) — ndim W t!

where the second equality follows from the induction hypothesis. Thus, to prove the
lemma we must show that

nf(,2,) — dimm Ty, (~1)) = dim W7+
However,
dim(ker Ty, (—7)) > dim(ker Fgljrl(—T)Fril (t)) because, as observed in Lemma 9.7,
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To, (—7t)=A- Feﬁrl(—t)Frlil(r) for some A
= dim (ker F[L+1(—‘L') Nim Frli_l (r)) + dim(ker FISH ()

r

dim (ker FL (=1) Nim Fr’il(r)) +n? —n’(,",) by Theorem 7.6

14 d—1
dim Z W; N ﬂ W | +n?— ”E(rL) by Theorems 6.5 and 7.6
i=1 j=t+1

dim (Ze N 1) + nd —nf(1).

It follows that n¢ — dim(im Ty, (—7)) > dim (£, N 1,) + n? —n*(,1)):ie.

n‘(,1,) — dim@(im Ty, (7)) > dim (S, N 1,).
Thus, the proof will be complete once we show that
dim (T, N 1) > dim Wb+l

(note that the right-hand side is the classical analogue of the left-hand side). Since

4 d-1

eNI. 2 Z Wi N m Wi,
i=1 j=t+1

with equality when Lat(d) is distributive, we consider the expression on the right. The
term inside the parentheses has classical dimension by Theorem 7.6 and hence the

right hand sum has generically large dimension by Proposition 4.9. By Corollary 5.3
the sum on the right has classical dimension in the limit as T — 0, so

4 d—1
dim (2N 1) = dimY [w;n () W; | = dimwtrH
i=1 j=t+1

on a dense set of t’s. But dim(X,;N 1) is generically small because
dim(ker Ff, | (—7)FR | (1)) is, so dim (£, N ;) > dim W+ forall 7. o

Lemma9.13 We have

dim(ker Hy (d — 1)7)) > dim WO+ 4 ”e(ril) —nt! (rJ"rz) — ndim WLZ;rll.S)

Proof As observed in the proof of Lemma 9.12,
dim(ker H (2)) + dim(im T (2)) = n‘(,};) — ndim W&+,
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Thus, to prove the lemma we must show that

n‘(,%,) — ndim W&t — dim(im Ty, ((d — 1)1)) > the right-hand side of (9.18)

or, equivalently, that
dim(ker Ty, ((d — D)) = n? — n®'( 1)) + dim WO 2, (9.19)
We now consider dim ker 7y ((d — 1)7). We have

Ty ((d — D7)
= Myr1o(—(r+ DT 775 (=02, (d — D7)
-(Te((—f)g_z d—-1D1)® Tr41(r")) by (9-6)
S () (Te((—0) 2 (d = DT) @ Trg1 (7)) by (8-3)

where

B =S8 (= + D1, )8 (= +2)r, ") S (—d = 2)T, ")

= S a1 O+ DT CO TS (T (D)D) S (D),
the equality being essentially the same as (8.2) = (8.3). We write B = C -
Sreve(( ‘L')E 1)

By Lemma 6.1, Te((=0)%,2) = T/ (=0 7?) - S¢e»1((=1)" 72, 2). Hence
dimker 7y , ((d — 1)7) is > the dimension of the kernel of

SSE () (T (D) @ T @ Trpa (7))

= B- (1“8, (") (T—1 (-0 ) & I @ Tr41(7"))
= B (T-1(—0)" D) @ 8§, " THTR | (")

=B (T-1(-D)" ) @ T,12(r"™")) by Lemma6.1

= B T/ (-0 - TR,

= C-S (-0 DTl (0 - TR,

=C -TH(0" Y - TR,"™) by Lemma6.1.

In particular,

dim(ker T, ((d — 1)7)) > dim(ker F/(—1)F~ (1))
= dim(ker Fz (—1) ﬂlmF+2(r)) + d1m(kerF+2(r))
= dim(X2y—1 N I,4+1) + dim(ker F, +2(1)) by Theorems 6.5 and 7.6
> dim Wo 2 4+ dim(ker F, +z(r)) as in the proof of Lemma 9.12
= dim W& +2 4 pd — pt- 1(V+2) by Theorem 7.6.
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Thus, the inequality in (9.19) holds and the proof is complete. O
Lemma9.14 Forall ¢ € %A, H;(z + ¢) and H;(2) have the same nullity.

Proof The proof resembles that of Lemma 6.10; actually, it’s a little simpler because
of some cancellation. As in that proof, we write { = % + %n with a, b € Z and set
C :=Tbska

By Corollary 2.7, R; (z + ¢) = f(z, ¢, 1)C; ' R: (2)C1.

By definition, H;(z) is the restriction of S7 | (z,...) = R(z + *)g—1,4--- R(z +
%) 12, where the «’s represent some terms that play no role in the calculations below,
to the image of TZR_ 1.-(—7). Hence Hy(z +¢) is the restriction of

Rz+{+%)4-1,4R@+E+%)g—24-1 - Rz++%)12
= g(z,¢, T)Cd_lR(Z +%)d—1,dCa—1- Cj,ll R(z+#)g—2,d—1Ca—2
-Gy 'Rz+#)12Cy
= g(z,¢, T)le R(z+*)g—1,dRzZ+*)g—24-1R@z+*12Cy
8z 6. 0C SEY (2. €

to the image of T;i 1’r(—t), where the function g(z, ¢, 7) is a product of various
f(, -, -)’s and therefore never vanishes.

Thus, the nullity of H;(z + ¢) is the same as the nullity of the restriction of
S 4z, ..)Cy toim TZR—Lr(_T) =V ®im T;—1 (—7). But C; is an automorphism
so the nullity of H;(z + ¢) equals the nullity of the restriction of S1% ;(z,...) to

—

V ® im Ty—1 ,(—1); i.e., it equals the nullity of Hr(z). O

Lemmas 9.9, 9.12 and 9.13, which also hold when ¢ € %A is added to the input of
H;(2), tell us that

dim(ker H;(p))
; Gr2 4t -1
dim W r +n (r—rll—l) -n (r—ril-Z)
—ndim W&+ ped—Dr+ 1A,
¢ : £r+1 1
_n (1) — ndim Wt p €mt + 5 Aand 9.20)
- mef{l,...,d -3},
dim WL+ — p dim whr 1 pe—t+ 1A,
0 otherwise.

Further taking into account the multiplicity-two result in Lemma 9.11 for p =
@ —Dr,and for p = (£ — 1)t + ¢ with ¢ € %A, the following inequalities for the
singularity partitions of H; (Definition 4.2) hold:
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|Gp(Hr)|
: Cr42 4 ot -1
dim W5+ 4 n (ril) —-n (rZZ)
—ndim W&+ ped—1Dr+1iA,
nt(,) —ndim wor! pemt+ 1Aand
> me{l,...,d =3} —{£—1},

n'(4y) —ndim WOl (TN () pe @ — DT+ A,

dim WL+ dim wort! pe—-t1+ %A,
0 otherwise.

9.21)

Proposition 9.15 All inequalities in (9.21) are equalities. Furthermore, if p ¢ (£ —
Dt + %A, all the inequalities in (9.20) are equalities.

Proof Let P be a fundamental parallelogram with respect to A.
We will show that

dim W g dim WL = (1) (1)~ (L) 022

in the last paragraph of this proof. For now, assume that (9.22) is true. With that
assumption,

> lop(Ho)

peP

v

@ = (n(,1,) — ndim whr+T)

= the number of zeros det H;(z) hasin P by Proposition 9.8
= > mult,(det Hr (z))
peP

> lop(Hy)| by Lemma4.4. (9.23)
peP

%

Hence the two inequalities in (9.23) are equalities. It follows that the inequalities in
(9.21) are equalities, as claimed.

The second sentence in the proposition follows since the only points p where we
have to consider zeros of multiplicity > 2 are those p € (£ — 1)7 + %A.

We will now prove (9.22). Recall the notation in Sect. 9.1.1, and consider

Vi d—1
witlhr+l ZAi,i-H ) m Aiiy1 = X+Y)NZ
where
-1 d-1
XZZAMJFI, Y=Avey1, Z= m Ajiy1-
P i=0+1

) Birkhauser



31 Page 76 of 81 A. Chirvasitu et al.

The lattice generated by the A; ;41 s is distributiveso (X +Y)NZ =XNZ+YNZ.
Hence

dim W = dim(X N Z) + dim(Y N Z) —dim(X N Y N Z). (9.24)

ButXNYNZ=Wer2 dim(Xn2) = (n' = (")) (1), and dim(y N 2) =

n*=1(.1,); substituting these into (9.24) yields (9.22). o
Proposition 9.16 3, N I, has classical dimension.

Proof We have

dim(im7¢ ,(—7))

n' (rj_l) — ndim W& *! — dim(ker H;(—7)) by the proof of Lemma 9.12

L(n . Lr+l g {+1,r+1
n (r+1) — ndim W dim W

+ ndim W&+ by Proposition 9.15

n(( n ) — dim W€+1,r+1.

r+1
The result now follows from Lemma 9.7. O
Theorem 9.17 Forallt € (C -, %A) U %A, Onk(E, ) is a Koszul algebra.

Proof We observed this in the proof of Theorem 7.7 for v € %A. The result for
1€ C—Upsi %A follows from the arguments in this section. o

10 Artin-Schelter regularity of Q, x (E, 7)

In this section we show, for all but countably many 7, that Q, x(E, t) is an Artin—
Schelter regular algebra in the sense of [1]. Suppose t € (C — Umzl %A) U %A.

Since Q := O, x(E, 7) has finite Gelfand—Kirillov dimension, it is Artin—Schelter
regular of dimension r if the global dimension of Q is n and

‘ Cif i=n
Ext’, (C, = ’
oD =g e i 2

The next result provides a partial confirmation of Artin—Schelter regularity.

Theorem 10.1 Forallt € (C— Umz] %A) U %A, the global dimension of Q, x(E, T)
is n.
Proof Let A be a connected graded algebra over a field k. It is well known that the
global dimension of A is the largest integer d such that Extf‘ (k, k) # 0 (see, e.g., [45,
Prop. 3.18] and [24, Thm. 11]). If A is a Koszul algebra, then Exti k, k) = Aii SO
its global dimension is the largest integer d such that A!d # 0. Since Q, 4 (E, 1) is a
Koszul algebra with Hilbert series (1 4 )", the global dimension of Q, x(E, 7) is n.
O
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We will use the following result with A = O, «(E, 7); see, e.g., [50, Prop. 5.10]
or [33, Thm. 1.9].

Theorem 10.2 Let A be a connected graded Koszul algebra over a field k. If its global
dimension is finite, then A is Artin-Schelter regular if and only if A' is Frobenius.

A finite-dimensional k-algebra S is Frobenius if it is isomorphic as a left S-module
to its dual S* := Homy (S, k) equipped with the left module structure resulting from
right multiplication. By [50, Lem. 3.2], S := S, «(E, t) is Frobenius if and only if
the multiplication maps

SixS—i — S, =k

are non-degenerate bilinear forms for alli = 0, .. ., n; this happens if and only if S,
is the socle of § as a left (or right) S-module.

Proposition 10.3 For each (n,k, E), S,k (E, ) is a Frobenius algebra for all but
finitely many Tt € E.

Proof In this proof, T denotes a complex number.

Let F = U"mJ;ll E[mn]. Assumet + A € E — F;ie., 1 € C— Uf,;ll ﬁA.

Let S := S, x(E, t). By Theorem 7.6, S, = C and S,,+1 = 0. Since S is generated
in degree one, S; = 0 for all d > n + 1. In particular, S is finite-dimensional.

By Proposition 8.6(2), S is Frobenius if and only if the bilinear maps

My ;i .
im Fi(t) x im F,,_;(t) — im F;(t) ® im F,,_; (1) —(T)> imF,(t) = C

are non-degenerate foralli =0, ..., n.Since M,—; ; (7)-(F; (t) ® F,—i (t)) = Fu(7)
(Lemma 8.5), this happens if and only if, for alli = 0, ..., n, the rank of the bilinear
map

VO y®a—) __y y8i g yen-i) 0 e o)~ ¢ (10.1)

equals dim(im F; (7)) = dim(im F,,_; (7)) = (Z’) Clearly, the rank can be no larger
than this.

Fix x € V®" such that F,,(0)(x) # 0. There is a Zariski-open dense subset U C E
such that F,,(t)(x) #0Oforallt + A € U. Assumet + A € U.

Let {v;} and {w;} be bases for V® and V=) respectively. The rank of the
bilinear map in (10.1) is the rank of the matrix (c;x(7));,x where

Fo()(v; @ wi) = cjp(t) - Fr(T)(x).

Since Fy,(t) is a theta operator, c jx () is an elliptic function, and so are all minors of
(cjk (7)) k- So the rank of (cjr (7))« is generically large. Since the rank attains the
maximal value (f’) at T = 0, it equals (’;) for all T + A belonging to a dense open
subset U; € U. Since Uy N --- N U, = E — F' for some finite subset 7' C E, we
see that Sy, ¢ (E, t) is Frobenius forallt + A € E — (F U F). O
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n+1
m=1

Suppose T € C—
is

ﬁA. Since the space of degree-d relations for Sy, x (E, T)

ker F;(t) = Z V® @im R, (—7) @ V&'
s+t+2=d

(Theorem 7.6), the Frobenius property for S, x(E, T) can be reduced to a statement
about the kernel of the operators F;(t) (defined in (6.2)) and G/ (t) (defined in the
proof of Theorem 7.6). The algebra S, « (E, 7) is Frobenius if and only if the following
statements (and their left-right symmetric versions which we do not state) are true for
alld =0,...,n—1:

the largest subspace W C V@ guch that V@ W C ker Fari(r) is W =
ker F;(7)

or, equivalently,

if V ® {w} is in the kernel of G} (7) : V ® im F4(t) —> im F4(t) ® V, then
w =0.

Theorem 10.4 Let t € C and fix (n, k, E).

(1) Onik(E,7) is Artin-Schelter regular of dimension n for all but countably many t.
(2) If Onk(E, ) is a Koszul algebra for all t, then it is Artin-Schelter regular of
dimension n for all but finitely many t + A.

Proof (1) The algebra Q, x(E, 7) is Artin—Schelter regular of dimension n if the
following three statements are true: (a) it is a Koszul algebra; (b) the Hilbert series of
Onik(E, )b is (141" (c) Oni(E, 1) is a Frobenius algebra. By Theorem 7.7 and
Theorem 10.3, there is a finite set J € E such that (b) and (c) are true. By Theorem
9.17, (a) is true for all but countably many cosets T + A and hence for all but countably
many 7. Thus (a), (b), and (c) are simultaneously true for all but countably many t.
(2) The argument follows thatin (1). The only difference is that we are now assuming
that (a) is true for all . Thus, since (b) and (c) are true for all but finitely many t + A,
On.k(E, 7) is Artin—Schelter regular of dimension # for all but finitely many t+A. O
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