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ABSTRACT

We prove a number of structural and representation-theoretic results on lin-
early reductive quantum groups, i.e., objects dual to those of cosemisimple
Hopf algebras: (a) a closed normal quantum subgroup is automatically linearly
reductive if its squared antipode leaves invariant each simple subcoalgebra
of the underlying Hopf algebra; (b) for a normal embedding H < G there
is a Clifford-style correspondence between two equivalence relations on irre-
ducible G- and, respectively, H-representations; and (c) given an embedding
H < G of linearly reductive quantum groups, the Pontryagin dual of the
relative center Z(G) N H can be described by generators and relations, with
one generator gy for each irreducible G-representation V and one relation
gu = gvgw Whenever U and V ® W are not disjoint over H.
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1. Introduction

The quantum groups in the title are as in [25, Section 1.2]: objects G dual to corresponding Hopf algebras
O(G), with the latter regarded as the algebra of regular functions on (the otherwise non-existent)
linear algebraic quantum group G. Borrowing standard linear-algebraic-group terminology (e.g. [23,
Chapter 1, Section 1, Definition 1.4]), the linear reductivity condition then simply means that the Hopf
algebra O(G) is cosemisimple.

The unifying thread through the material below is the concept of a (closed) normal quantum
subgroup. In the present non-commutative setting normality can be defined in a number of ways that
are frequently equivalent [34, Theorem 2.7]. We settle here on the concept introduced in [25, Section
1.5] (and recalled in Definition 3.1): a quotient Hopf algebra

O(G) - OH)
dual to a closed quantum subgroup H < G is normal if that quotient is an O(G)-comodule under both
adjoint coactions O(G) — O(G)®2%

x> x ®S(x1)x; and x> x15(x3) ® x;

One piece of motivation for the material is the observation (cf. Remark 3.9) that classically, nor-
mal closed subgroups of linearly reductive algebraic groups are again linearly reductive. The non-
commutative version of this remark, appearing as Theorem 3.2, can be phrased (in somewhat weakened

but briefer form) as follows.

Theorem 1.1. A normal quantum subgroup H < G of a linearly reductive quantum group is again linearly
reductive, provided the squared antipode of O (H) leaves invariant all simple subcoalgebras of the latter.

CONTACT Alexandru Chirvasitu 8 achirvas@buffalo.edu @ Department of Mathematics, University at Buffalo, Buffalo, NY 14260-
2900, USA.
© 2023 Taylor & Francis Group, LLC
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In particular, this recovers the classical version: in that case the squared antipode is trivial.

Keeping with the theme of what is (or isn’t) afforded by normality, another motivating strand is that
of Clifford theory (so named for [12], where the relevant machinery was introduced). This is a suite of
results relating the irreducible representations of a (finite, compact, etc.) group and those of a normal
subgroup via induction/restriction functors; the reader can find a brief illuminating summary in (7,
Section 2] (in the context of finite groups).

Hopf-algebra analogues (both purely algebraic and analytic) abound. Not coming close to doing
the literature justice, we will point to a selection: [6, 30, 33, 36, 37], say, and the references therein.
[13, Section 5, especially Theorem 5.4] provides a version for compact quantum groups [38], which are
(dual to) cosemisimple complex Hopf *-algebras with positive Haar integral (the CQG algebras of [14,
Definition 2.2]); they thus fit within the confines of the present paper.

The following result paraphrases and summarizes Theorems 4.4, 4.5 and Proposition 4.6. To make
sense of it:

+ In the language of Section 4, the surjection O(G) — O(H) of Theorem 1.2is H — B.

« As explained in Section 2, for a quantum group G the symbol G denotes its category of irreducible
representations (i.e. simple right O(G)-comodules).

. Ind% and Res% denote the induction and restriction functors respectively, as discussed in Section 2.1.

Theorem 1.2. Let H < G be a normal embedding of linearly reductive quantum groups, and consider the
binary relation ~ on G x H defined by

G5V~ W el & homg (Res§V, W) #0 & homg (V,Ind§ W) 0.
The following statements hold.

(a) The left-hand slices
slicew :={VeG|V~W), Wel
of ~ are the classes of an equivalence relation ~g, given by

Ve Vs ReS%V and Resﬁ(_;ﬁ V' have the same simple constituents.

(b) The right-hand slices
yslice:= (WeH|V~W), VeG

are the finite classes of an equivalence relation.

A third branch of the present discussion has to do with the relative centers of the title: having defined
the center Z(G) of a linearly reductive quantum group (Definition 5.3), and given a closed linearly
reductive quantum subgroup H < G, one can then make sense of the relative center Z(G, H) as the
intersection H N Z(G); see Definition 5.4.

Though not immediately obvious, it follows from [11, Section 3] (cited more precisely in the text
below) that for embeddings H, K < G of linearly reductive quantum groups, operations such as the
intersection H N K and the quantum subgroup HK generated by the two are well defined and behave as
usual when K, say, is normal (hence the relevance of normality, again).

The initial spark of motivation for Section 5 was provided by the main result of [22] (Theorem 3.1
therein), reconstructing the center of a compact group G as a universal grading group for the category
of G-representations. This generalizes to linearly reductive quantum groups [8, Proposition 2.9], and, as
it turns out, goes through in the relative setting; per Theorem 5.5:

Theorem 1.3. Let H < G be an embedding of linearly reductive quantum groups, and define the relative
chain group C(G, H) by generators gy, V € G and relations gy = gvgw whenever U and V @ W have
common simple constituents over H.
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Then, the map
CGH)ys>gv— We Z(/G,Tﬂ) where Resg(G’H) = sum of copies of W

is a group isomorphism.

Or, in words: mapping gv to the “central character” of V restricted to Z(G, H) gives an isomorphism
CG,H) = Z(/G,\]HI). The “plain” (non-relative) version [8, Proposition 2.9] (and hence also its classical
compact-group counterpart [22, Theorem 3.1]) are recovered by setting H = G.

Although strictly speaking outside the scope of the present paper, some further remarks, suggestive of
an intriguing connection to semisimple-Lie-group representation theory, will perhaps serve to further
motivate the relative chain groups discussed in Theorem 1.3.

Definition 5.1 was inspired by the study of plain (non-relative) chain groups of connected, semisimple
Lie groups G with finite center, studied in [10, Section 4]; specifically, the problem of whether

homu(c”,0 ®0’) #0, 0,0, 0" €M (1.1)

for a compact-group embedding H < M arises naturally while studying the direct-integral decompo-
sition of a tensor product of two principal-series representations of such a Lie group G. To summarize,
consider the setup of [20] (to which we also refer, along with its own references, for background on the
following).

« aconnected, semisimple Lie group G with finite center, with its Iwasawa decomposition

G = KAN

(K < G maximal compact, A abelian and simply-connected, N nilpotent and simply-connected);
o the corresponding decomposition

P = MAN

of a minimal parabolic subgroup, with M < K commuting with A;
o the resulting principal-series unitary representations

T = Ind%(o ® v Q triv),

where 0 € M and v € A unitary irreducible representations over those groups.
One is then interested in which 7~ ,,» are weakly contained [3, Definition F.1.1] in tensor products 75, ®
7y, (Le. feature in a direct-integral decomposition of the latter); we write

Ty X Moy @ Tyl .

It turns out that in the cases worked out in the literature there is a closed subgroup H < M that

determines this weak containment via (1.1). Examples:

o When the (connected, etc.) Lie group G is complex, one can simply take H = Z(G) (the center of G,
which is always automatically contained in M). This follows, for instance, from [35, Theorem 3.5.5]
in conjunction with [20, Theorems 1 and 2].

o For G = SL(n,R), n > 2 one can again set H = Z(G): [27, Section 4] for n = 2 and [20, p.210,
Theorem)] for the rest.

o Finally, for real-rank-one G the main result of [20], Theorem 16 of that paper, provides suchan H < M
(denoted there by My; it is in general non-central, and in fact not even normal).

The phenomenon presumably merits some attention in its own right.

2. Preliminaries

Everything in sight (algebras, coalgebras, etc.) will be linear over a fixed algebraically closed field k. We
assume some background on coalgebras and Hopf algebras, as covered by any number of good sources
such as [1, 21, 26, 31].
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Notation 2.1. A number of notational conventions will be in place throughout.

o A, ¢ and S denote, respectively, coproducts, counits and antipodes. They will occasionally be
decorated with letters indicating which coalgebra, Hopf algebra, etc. they are attached to; Sy, for
instance, is the antipode of the Hopf algebra H.

o We use an un-parenthesized version of Heyneman-Sweedler notation ([21, Notation 1.4.2] or [26,
Section 2.1]):

Ald=c®c (A®iIdD)oA)o)=c1®c2Qc3
and so on for coproducts and
CH—®c1, ¢ c-1Qc¢

for right and left comodule structures respectively.

+ O(G), O(H), and so on denote Hopf algebras over a fixed algebraically closed field k; they are to be
thought of as algebras of representative functions on linear algebraic quantum groups G, H, etc.

o Anembeddinglll < G of quantum groups means a Hopf algebra surjection O(G) — O(H) and more
generally, a morphism H — G is one of Hopf algebras in the opposite direction O(G) — O(H).

« Categories of (co)modules are denoted by M, decorated with the symbol depicting the (co)algebra,
with the left/right position of the decoration matching the chirality of the (co)module structure.
Examples: 4 M means left A-modules, M€ denotes right C-comodules, etc. Comodule structures
are right unless specified otherwise.

o These conventions extend to relative Hopf modules ([21, Section 8.5] or [26, Section 9.2]): if, say, A is
a right comodule algebra [21, Definition 4.1.2] over a Hopf algebra H with structure

Asaray®a € AQH

then M denotes the category of right A-modules internal to M; that is, right A-modules M that
are also right H-comodules via

mi— my Q mq
such that
(ma)o ® (ma); = moap ® maj.
There are analogues M, say, for right H-module coalgebras C, left- or half-left-handed versions
thereof, and so on.

o An additional ‘f* adornment on one of the above-mentioned categories means finite-dimensional
(co)modules: /\/lfc is the category of finite-dimensional right C-comodules, for instance.

+ Reprising a convention common in the operator-algebra literature (e.g. [15, Section 2.3.2, Section
18.1.1]), C denotes the isomorphism classes of simple and hence finite-dimensional [21, Theorem
5.1.1] (right, unless specified otherwise) C-comodules and G= O(G)

The purely-algebraic and operator-algebraic notations converge when G is compact and O(G)
denotes the Hopf algebra of representative functions on G: G as defined above can then be identified

with the set of isomorphism classes of irreducible unitary G-representations.
o In the same spirit, it will also occasionally be convenient to write

Rep(G) := MO©,

The linear algebraic quantum groups G in the sequel will frequently be linearly reductive, in the sense
that the Hopf algebra O(G) is cosemisimple [21, Section 2.4]: Rep(G) is a semisimple category, i.e. every
comodule is a direct sum of simple subcomodules. Equivalently ([21, Definition 2.4.1]), O(G) is a direct
sum of simple subcoalgebras.

Cosemisimple Hopf algebras H are equipped with unique unital integrals [ : H — k [21, Theorem
2.4.6] and hence have bijective antipodes (by [16, Corollary 5.4.6], say); more is true, though. Still
assuming H cosemisimple, for a simple comodule V' € H the canonical coalgebra morphism

End(VW)*=ZXV*QV > H
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(conceptually dual to the analogous map A — End(V) giving V' a module structure over an algebra A)
is one-to-one and gives the direct-sum decomposition

H=Pev)=Pcy (2.1)
VeH VeH
into simple subcoalgebras Cy := V* @ V (the Peter-Weyl decomposition, in compact-group parlance:
[14, Definition 2.2], [17, Theorem 27.40], etc.) that makes H cosemisimple to begin with. With this in
place, not only is the antipode S := Sy bijective but in fact its square leaves every Cy, V € H invariant
and acts as an automorphism thereon [16, Theorem 7.3.7].
We refer to Cy = V* ® V as the coefficient coalgebra of the simple H-comodule V. This is the
coalgebra associated to V in [16, Proposition 2.5.3], and is the smallest subcoalgebra C < H for which
the comodule structure

V- V®H
factors through V ® C.

2.1. Restriction, induction and the like
Given a coalgebra morphism C — D, the cotensor product ([21, Definition 8.4.2] or [5, Section 10])
— Op Cis right adjoint to the natural “scalar corestriction” functor M¢ — M?P:

cores

— T

—0OpC

the central symbol indicating that the top functor is the left adjoint. When H < G is, say, an inclusion of
compact groups and C — D the corresponding surjection O(G) — O(H) of algebras of representative
functions, the cotensor functor

— Do O(G) : Rep(H) — Rep(G)

is naturally isomorphic with the usual induction Ind% [28, p. 82]. For that reason we repurpose this same
notation for the general setting of quantum-group inclusions, writing

Ind? := — Dom) O(G) : Rep(H) — Rep(G)

for any quantum-group inclusion H < G; for consistency, we also occasionally also denote the rightward
functor in (2.2) by

Resﬁ : Rep(G) — Rep(H).

3. Normal subgroups and automatic reductivity

Consider a quantum group embedding H < G, expressed as a surjective Hopf-algebra morphism 7 :
O(G) — O(H). As is customary in the literature on quantum homogeneous spaces (e.g. [34, proof of
Theorem 2.7]), we write

OG/H) :={x e O(GQ) | (([d®1)A(x) =xQ 1}
OH\G) ={x € OG) | (Tt ®id)A(x) = 1R x}.

According to [2, Definition 1.1.5] a quantum subgroup H < G would be termed normal provided
the two quantum homogeneous spaces O(G/H) and O(H\G) coincide. This will not quite do for our
purposes (see Example 3.8), so instead we follow [25, Section 1.5] (also, say, [34, Definition 2.6], relying
on the same source) in the following
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Definition 3.1. The quantum subgroup H < G cast as the surjection 7 : O(G) — O(H)
o left-normal if 7 is a morphism of left O(G)-comodules under the left adjoint coaction

ad; ;= ad;g : x > x1S(x3) ® x,.
o right-normal if similarly, 7 is a morphism of right O(G)-comodules under the right adjoint coaction
ad, ;= ad, g : x > x2 ® S(x1)x3. (3.1)
« normal if it is both left- and right-normal.
The following result is essentially a tautology in the framework of [11, Section 1.2], but only because
in that paper the definition of a normal quantum subgroup is more restrictive (see [11, Definition 1.2.3],
which makes an additional (co)flatness requirement).
Theorem 3.2. Let H < G be a left- or right-normal quantum subgroup of a linearly reductive group such
that S leaves invariant every simple subcoalgebra of O (H).
H is then linearly reductive and normal.
Remark 3.3. The condition that S? leave invariant the simple subcoalgebras is certainly necessary for
cosemisimplicity [16, Theorem 7.3.7], but I do not know if it is redundant as a hypothesis in the context

of Theorem 3.2.

In particular, the squared-antipode condition of Theorem 3.2 is automatic when $? = id (i.e. when
O(G), or G, is involutory or involutive [26, Definition 7.1.12]). We thus have

Corollary 3.4. Left- or right-normal quantum subgroups of involutive linearly reductive quantum groups
are normal and linearly reductive.

The proof of Theorem 3.2 requires some preparation. First, a simple remark for future reference.

Lemma 3.5. Let w : H — K be a surjective morphism of Hopf algebras with H cosemisimple. K then has
bijective antipode, and hence 1 intertwines antipode inverses.

Proof. That a morphism of bialgebras intertwines antipodes or antipode inverses as soon as these exist
is well known, so we focus on the claim that Sk is bijective.

By the very definition of cosemisimplicity H is the direct sum of its simple (hence finite-dimensional
[21, Theorem 5.1.1]) subcoalgebras C; < H. The assumption is that 7 is a morphism of Hopf algebras,
so the antipode S := Sy restricts to maps

S :ker(m|c,) = ker(w|sc)) (3.2)

injective because S is bijective. On the other hand though, for cosemisimple Hopf algebras the squared
antipode leaves every subcoalgebra invariant [16, Theorem 7.3.7], so

2
§° :ker(r|c;,) — ker(r|g(c,)) = ker(r|c,),
being a one-to-one endomorphism of a finite-dimensional vector space, must be bijective. Since that map

decomposes as (3.2) followed by its (similarly one-to-one) analogue defined on S(C;), (3.2) itself must be
bijective, and hence the inverse antipode S~! leaves ker(rr) invariant. This, in essence, was the claim. [
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The conclusion of Lemma 3.5 is by no means true of arbitrary bijective-antipode Hopf algebras H:

Example 3.6. [29, Theorem 3.2] gives an example of a Hopf algebra H with bijective antipode and a
Hopfideal I < H that is not invariant under the inverse antipode. In other words, even though H has
bijective antipode, the quotient Hopf algebra H — H /I does not.

Proof of Theorem 3.2. The proof proceeds gradually.

Step 1: normality. According to Lemma 3.5 the antipode S := Sp(g) and its inverse both leave the
kernel KC of the surjection

7:0(G) - O(H)

invariant, so S(C) = K. The fact that left- and right-normality are equivalent now follows from [25,
Proposition 1.5.1].

Step 2: The homogeneous spaces G /H and H\G coincide. This means that
OMH\G) = O(G/H) =: A, (3.3)

and follows from [2, Lemma 1.1.7].

Step 3: Reduction to trivial G/H. The subspace A < O(G) of (3.3) is in fact a Hopf subalgebra [2,
Lemma 1.1.4]. A is also invariant under the right adjoint action

OG)ROG) 3xQy— SH)xy: € O(G)
([11, Lemma 1.20]), so by [2, Lemma 1.1.11] the left ideal
O(G)A™ < O(G) where A~ := ker(e|a)

is bilateral. The quotient O(G)/O(G)A™ must then be a cosemisimple quotient Hopf algebra [9, Theorem
2.5] O(G) — O(K), and we have an exact sequence

OG/K) — O0(G) —— O(K)
/ —
k I k
O(G/H)
of quantum groups in the sense of [2, Section 1.2], with everything in sight cosemisimple. Since
furthermore A~ is annihilated by the original surjection O(G) — O(H), H can be thought of as a
quantum subgroup of K (rather than G):

O(K) — O(H).
I now claim that the corresponding homogeneous space is trivial:
O(K/H) = O(H\K) = k. (3.4)

To see this, consider a simple representation V' € K that contains invariant vectors over H. Because O(K)
is cosemisimple, V is a subcomodule (rather than just a subquotient) of a simple comodule W € G, and
it follows that

Wia = Vi
contains invariant vectors. The fact that (3.3) is a Hopf subalgebra means that it is precisely

@ Cu, U € G and U|y has invariant vectors,
U
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so Cw < A and the restriction W|k decomposes completely as a sum of copies of the trivial comodule
k.But then V < W/ itself must be trivial, proving the claim (3.4). Now simply switch the notation back
to G := K to conclude Step 3:

O(G/H) = OH\G) = k. (3.5)
This latter condition simply means that for an O(G)-comodule V its G- and H-invariants coincide:
homg (k, V) = hompg(k, V).
Equivalently, since
homg(V, W) = homg (k, W @ V*),
this simply means that the restriction functor
Rep(G) > Vi V|g € Rep(H) (3.6)

is full (for both left and right comodules, but here we focus on the latter).

Step 4: Wrapping up. Because the restriction functor (3.6) is full, simple, non-isomorphic
G-representations that remain simple over H also remain non-isomorphic.

Now, assuming H < G is not an isomorphism (or there would be nothing to prove), some irreducible
V € G must become reducible over H. There are two possibilities to consider:

(a) All simple subquotients of the reducible representation Vg are isomorphic. We then have
(in Rep(H)) a surjection of V onto a simple quotient thereof, which then embeds into V again.
All in all this gives a non-scalar endomorphism of V over H, contradicting the fullness of the
restriction functor (3.6).

(b) V acquires at least two non-isomorphic simple subquotients V;, i = 1,2 over H. Then, the image of
the coefficient coalgebra Cy = V* @ V of (2.1) through 7 : O(G) — O(H) will contain both

Cv,=V/®Vi<OM), i=12
as (simple) subcoalgebras.

The requirement that $>(Cy,) = Cy, means that the simple comodules V; are isomorphic to their
respective double duals V;* (as O(H)-comodules, not just vector spaces). But then

Cv =V/@V,=V/® V™
contains an H-invariant vector, namely the image of the coevaluation [19, Definition 9.3.1]

coevyr 1k — VI ® Vi™.

It follows that the space of H-invariants of the O(G)-comodule 7 (Cy) is at least 2-dimensional,
whereas that of G-invariants is at most 1-dimensional (because the same holds true of Cy = V*®V).
This contradicts the fullness of (3.6) and hence our assumption that H < G is not an isomorphism.

The proof of the theorem is now complete. O

Remark 3.7. Left and right normality are proven equivalent to an alternative notion ([34, Definition
2.3]) in [34, Theorem 2.7] in the context of CQG algebras, i.e. complex cosemisimple Hopf *-algebras
with positive unital integral (this characterization is equivalent to [14, Definition 2.2]).

The substance of Theorem 3.2, however, is the cosemisimplicity claim; this is of no concern in the
CQG-algebra case, as a Hopf *-algebra that is a quotient of a CQG algebra is automatically again CQG
(as follows, for instance, from [14, Proposition 2.4]), and hence cosemisimple.
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Example 3.8. The weaker requirement that O(G/H) = O(H\G) for normality would render Theo-
rem 3.2 false.

Let G be a semisimple complex algebraic group and B < G a Borel subgroup [18, Part II, Section 1.8].
The restriction functor

Res : Rep(G) — Rep(B)
is full [18, Part II, Corollary 4.7], so in particular
O(G/B) = homg(triv, O(G)) = homg(triv, O(G)) = C

and similarly for O(B\G). This means that O(G/B) = O(B\G), but B is nevertheless not reductive.

Remark 3.9. The classical (as opposed to quantum) analogue of Theorem 3.2 admits an alternative,

more direct proof relying on the structure of reductive groups:

« In characteristic zero linear reductivity is equivalent (by [24, p.88 (2)], for instance) to plain
reductivity [4, Section 11.21], i.e. the condition that the unipotent radical R,,(G) of G (the largest
normal connected unipotent subgroup) be trivial.

Assuming G is reductive, for any normal K < G the corresponding unipotent radical R, (K) is
characteristic in N and hence normal in G, meaning that

Ru(K) = Ru(G) = {1}

and hence N is again reductive (so linearly reductive, in characteristic zero).
« On the other hand, in positive characteristic p [24, p.88 (1)] says that the linearly reductive groups G
are precisely those fitting into an exact sequence

{1}l > K-> G— G/K — {1}

with K a closed subgroup of a torus and G/K finite of order coprime to p. Clearly then, normal
subgroups of G have the same structure.

4, Clifford theory

We work with an exact sequence (4.1)

k—A—-H-—>B—k (4.1)
of cosemisimple Hopf algebras in the sense of [2, p. 23]. Note that we additionally know that H is left
and right coflat over B (simply because the latter is cosemisimple) and left and right faithfully flat over

A (by [9, Theorem 2.1]).
We will make frequent use of [32, Theorem 1], to the effect that

MH — T MB (4.2)

is an equivalence, where the — superscript denotes kernels of counits.
Upon identifying M5 with M via (4.2), the adjunction

corestrict
H— = B (4.3)
\—/

—0gH

becomes

—®A

M oMl (4.4)

forget
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We will freely switch points of view between the two perspectives provided by (??). Consider the
following binary relation ~p on B.

Definition 4.1. For V,W € B,V ~3 W provided there is a simple H-comodule U such that V and W
are both constituents of the corestriction of U to B.

Similarly, we will study the following relation on H:
Definition 4.2. For V, W € H we set V ~p W provided hom?(V, w) # 0.

Remark 4.3. In other words, ~p signifies the fact that the corestrictions of V and W to M? have
common simple constituents.

Our first observation is that ~ is an equivalence relation, and provides an alternate characterization
for it.

Theorem 4.4. ~p is an equivalence relation on H, and moreover, forV,W e H the following conditions
are equivalent

(1) V~g W;
(2) as B-comodules, V and W have the same simple constituents;

(3) V embeds into W @ A € MH.

Proof. Note first that (2) clearly defines an equivalence relation on H, so the first statement of the theorem
will be a consequence of

1 < 2« 3.

We prove the latter result in stages.

(1) & (3). By definition, V ~y W if and only if
hom?(V, W) # 0.
Via (4.2) and the hom-tensor adjunction (4.4), this hom space can be identified with
homf (V@ A, W ® A) = hom™ (V, W ® A). (4.5)

The simplicity of V € H now implies that every nonzero element of the right hand side of (4.5) is an
embedding, hence finishing the proof of the equivalence of (1) and (3).

(1) < (2). Let us denote by const(e) the set of simple constituents of a B-comodule e.

By definition V ~y W means that some of the simple constituents of V and W as objects in M?
coincide, so (2) is clearly stronger than (1). Conversely, note that by the equivalence (1) = (3) proven
above, whenever V ~g W we have

const(V) C const(W ® A), (4.6)

where the respective objects are regarded as B-comodules via the corestriction functor M7 — M3,
In turn however, given that A € M breaks up as a sum of copies of k in M2 (because of the exactness
of (4.1)), the right hand side of (4.6) is simply const(W). All in all, we have

V ~g W = const(V) C const(W).

This together with the symmetry of ~ (obvious by definition from the semisimplicity of M?) finishes
the proof of (1) = (2) and of the theorem. O
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Theorem 4.5. ~p is an equivalence relation on B with finite classes.

Proof. Wel know from Theorem 4.4 that as U ranges over H, the sets const(U) of constituents of U € MB
partition B, thus defining an equivalence relation on the latter set.

The definition of ~p ensures that V ~p W if and only if V and W fall in the same set const(U), and
hence ~p coincides with the equivalence relation from the previous paragraph.

Finally, the statement on finiteness of classes is implicit in their description given above: an equiva-
lence class is the set of simple constituents of a simple H-comodule U viewed as a B-comodule, and it
must be finite because dim(U) is. O

Theorems 4.4 and 4.5 establish a connection between the equivalence relations ~y and ~p on Hand
B respectively. We record it below.

Before getting to the statement, recall the notation const(e) C B for the set of simple summands of
an object o € M5B, With that in mind, we have the following immediate consequence of Theorems 4.4
and 4.5.

Proposition 4.6. The range of the map
H— finite subsets 0f§

sending V € H to const(V) consists of the equivalence classes of ~p, and its fibers are the classes of ~y.

5. Relative chain groups and centers

Definition 5.1. Let Hl < G be an inclusion of linearly reductive quantum groups. The (relative) chain
group C(G, H) is defined by

o generators gy for simple comodules V' € G;

« relations

homy (U, V@ W) # 0 = gu = gvgw; (5.1)

that is, one such relation whenever the restrictions of U and V ® W to H have non-trivial common
summands (i.e. U and V ® W are not disjoint over H).
We write C(G) := C(G, G).

Remark 5.2. For chained inclusions K < H < G we have a map C(G,K) — C(G,H) sending the
class of V € G in the domain to the class of the selfsame V in the codomain. This is easily seen to be
well-defined and a group morphism.

Recall 8, Definition 2.10].

Definition 5.3. Let G be a linearly reductive quantum group. Its center Z(G) < G is the quantum
subgroup dual to the largest Hopf algebra quotient

7 :OG) - OZ(G))
that is central in the sense of [8, Definition 2.1]:

T(x1) ®x =7(x2) ® x1 € OZ(G)) ® OG), Vx € OG).
The relative version of this construction, alluded to in the title, is as follows.

Definition 5.4. Let H < G be an embedding of linearly reductive quantum groups. The corresponding
relative center Z(G, H) is the intersection Z(G) N H denoted by Z(G) A H in [11, Definition 1.15].
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This is a quantum subgroup of both H and Z(G) (and hence also of G), and is automatically linearly
reductive by [11, Proposition 3.1].

Each irreducible G-representation breaks up as a sum of mutually isomorphic (one-dimensional)

representations over the center Z(G), and hence gets assigned an element of Z(G): its central character.
Two such irreducible representations that are not disjoint over H must have corresponding central
characters agreeing on

Z(G,H) := Z(G)NH
(the relative center associated to the inclusion H < G), so we have a canonical morphism

caN : C(G, H) — Z(G, H) (5.2)
Theorem 5.5. For any embedding Hl < G of linearly reductive quantum groups (5.2) is an isomorphism.

Proof. Consider the commutative diagram

C(G,H) CAN
\ —
cw—_. __sEm 8
o — 20

where

o the upper left-hand morphism is an instance of the maps noted in Remark 5.2;

o the bottom right-hand map is the (plain) group surjection dual to the quantum-group inclusion
Z(G)NH < Z(G);

« and the fact that the bottom left-hand map is an isomorphism is a paraphrase of [8, Proposition 2.9]
in conjunction with [8, Definition 2.10].

The surjectivity of the bottom composition entails that of (5.2), so it remains to show that the latter is

one-to-one.
Let V € G be a simple comodule where Z(G, H) operates with trivial character, i.e. one whose class

in C(G, H) is annihilated by (5.2). We can then form the quantum subgroup

ZGH:=ZG)VH <G

generated by Z(G) and H as in [11, Definition 1.15] (the ‘v’ notation is used there; we suppress the
symbol here for brevity), which then satisfies, according to [11, Theorem 3.4], a quantum-flavored
isomorphism theorem:

H/Z(G, H) —> Z(G)H/Z(G)

via the canonical map induced from H — Z(G)H. Since V (or rather its restriction V) is a
representation of the former group because Z(G, H) operates trivially, it lifts to a Z(G)H-representation
with Z(G) acting trivially. In summary:

The restriction Vg extends to a Z(G)H-representation W with trivial Z(G)-action.

But then the induced representation Ind([Z;’(G)HW again has trivial central character, and hence so do all
of its simple summands V. The adjunction (2.2) yields

homzcym(V1lz@m, W) = homg (V1> Indg’((g)H W) # {0},
meaning that V; fails to be disjoint from W over Z(G)H and hence also from

Vg = W|g over H.
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To conclude, observe that
o (5.2) agrees on V and V; due to the noted non-disjointness

hompg (V71, V) # 0;

« while the bottom left-hand map can : C(G) — Z/(\G) of (5.3) annihilates V; because the latter has
trivial central character;

o and hence the top right-hand cAN map in (5.3) must also annihilate V.

This being the desired conclusion, we are done. O
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