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ABSTRACT

We prove a number of structural and representation-theoretic results on lin-
early reductive quantum groups, i.e., objects dual to those of cosemisimple
Hopf algebras: (a) a closed normal quantum subgroup is automatically linearly
reductive if its squared antipode leaves invariant each simple subcoalgebra
of the underlying Hopf algebra; (b) for a normal embedding H � G there
is a Cli�ord-style correspondence between two equivalence relations on irre-
ducible G- and, respectively, H-representations; and (c) given an embedding
H ≤ G of linearly reductive quantum groups, the Pontryagin dual of the
relative center Z(G) ∩ H can be described by generators and relations, with
one generator gV for each irreducible G-representation V and one relation
gU = gVgW whenever U and V ⊗ W are not disjoint overH.
This latter center-reconstruction result generalizes and recovers Müger’s
compact-group analogue and the author’s quantum-group version of that
earlier result by settingH = G.
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1. Introduction

The quantumgroups in the title are as in [25, Section 1.2]: objectsG dual to correspondingHopf algebras
O(G), with the latter regarded as the algebra of regular functions on (the otherwise non-existent)
linear algebraic quantum group G. Borrowing standard linear-algebraic-group terminology (e.g. [23,
Chapter 1, Section 1, De�nition 1.4]), the linear reductivity condition then simply means that the Hopf
algebraO(G) is cosemisimple.

The unifying thread through the material below is the concept of a (closed) normal quantum
subgroup. In the present non-commutative setting normality can be de�ned in a number of ways that
are frequently equivalent [34, Theorem 2.7]. We settle here on the concept introduced in [25, Section
1.5] (and recalled in De�nition 3.1): a quotient Hopf algebra

O(G) → O(H)

dual to a closed quantum subgroupH ≤ G is normal if that quotient is anO(G)-comodule under both
adjoint coactionsO(G) → O(G)⊗2:

x �→ x2 ⊗ S(x1)x3 and x �→ x1S(x3) ⊗ x2

One piece of motivation for the material is the observation (cf. Remark 3.9) that classically, nor-
mal closed subgroups of linearly reductive algebraic groups are again linearly reductive. The non-
commutative version of this remark, appearing as Theorem 3.2, can be phrased (in somewhat weakened
but briefer form) as follows.

Theorem 1.1. Anormal quantum subgroupH � G of a linearly reductive quantum group is again linearly
reductive, provided the squared antipode ofO(H) leaves invariant all simple subcoalgebras of the latter.
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In particular, this recovers the classical version: in that case the squared antipode is trivial.
Keeping with the theme of what is (or isn’t) a�orded by normality, another motivating strand is that

of Cli�ord theory (so named for [12], where the relevant machinery was introduced). This is a suite of
results relating the irreducible representations of a (�nite, compact, etc.) group and those of a normal
subgroup via induction/restriction functors; the reader can �nd a brief illuminating summary in [7,
Section 2] (in the context of �nite groups).

Hopf-algebra analogues (both purely algebraic and analytic) abound. Not coming close to doing
the literature justice, we will point to a selection: [6, 30, 33, 36, 37], say, and the references therein.
[13, Section 5, especially Theorem 5.4] provides a version for compact quantum groups [38], which are
(dual to) cosemisimple complex Hopf ∗-algebras with positive Haar integral (the CQG algebras of [14,
De�nition 2.2]); they thus �t within the con�nes of the present paper.

The following result paraphrases and summarizes Theorems 4.4, 4.5 and Proposition 4.6. To make
sense of it:
• In the language of Section 4, the surjectionO(G) → O(H) of Theorem 1.2 is H → B.
• As explained in Section 2, for a quantum group G the symbol Ĝ denotes its category of irreducible

representations (i.e. simple rightO(G)-comodules).
• IndG

H
and ResG

H
denote the induction and restriction functors respectively, as discussed in Section 2.1.

Theorem 1.2. LetH � G be a normal embedding of linearly reductive quantum groups, and consider the
binary relation ∼ on Ĝ × Ĥ de�ned by

Ĝ 	 V ∼ W ∈ Ĥ ⇔ homH

(
ResG

H
V ,W

)
�= 0 ⇔ homG

(
V , IndG

H
W

)
�= 0.

The following statements hold.

(a) The le�-hand slices

sliceW := {V ∈ Ĝ | V ∼ W}, W ∈ Ĥ

of ∼ are the classes of an equivalence relation ∼G, given by

V ∼G V ′ ⇔ ResG
H
V and ResG

H
V ′ have the same simple constituents.

(b) The right-hand slices

Vslice := {W ∈ Ĥ | V ∼ W}, V ∈ Ĝ

are the �nite classes of an equivalence relation.

A third branch of the present discussion has to do with the relative centers of the title: having de�ned
the center Z(G) of a linearly reductive quantum group (De�nition 5.3), and given a closed linearly
reductive quantum subgroup H ≤ G, one can then make sense of the relative center Z(G,H) as the
intersectionH ∩ Z(G); see De�nition 5.4.

Though not immediately obvious, it follows from [11, Section 3] (cited more precisely in the text
below) that for embeddings H,K ≤ G of linearly reductive quantum groups, operations such as the
intersectionH∩K and the quantum subgroupHK generated by the two are well de�ned and behave as
usual whenK, say, is normal (hence the relevance of normality, again).

The initial spark of motivation for Section 5 was provided by the main result of [22] (Theorem 3.1
therein), reconstructing the center of a compact group G as a universal grading group for the category
ofG-representations. This generalizes to linearly reductive quantum groups [8, Proposition 2.9], and, as
it turns out, goes through in the relative setting; per Theorem 5.5:

Theorem 1.3. Let H ≤ G be an embedding of linearly reductive quantum groups, and de�ne the relative
chain group C(G,H) by generators gV , V ∈ Ĝ and relations gU = gVgW whenever U and V ⊗ W have
common simple constituents overH.
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Then, the map

C(G,H) 	 gV �→ W ∈ Ẑ(G,H) where ResGZ(G,H)
∼= sum of copies of W

is a group isomorphism.

Or, in words: mapping gV to the “central character” of V restricted to Z(G,H) gives an isomorphism

C(G,H) ∼= Ẑ(G,H). The “plain” (non-relative) version [8, Proposition 2.9] (and hence also its classical
compact-group counterpart [22, Theorem 3.1]) are recovered by settingH = G.

Although strictly speaking outside the scope of the present paper, some further remarks, suggestive of
an intriguing connection to semisimple-Lie-group representation theory, will perhaps serve to further
motivate the relative chain groups discussed in Theorem 1.3.

De�nition 5.1 was inspired by the study of plain (non-relative) chain groups of connected, semisimple
Lie groupsG with �nite center, studied in [10, Section 4]; speci�cally, the problem of whether

homH(σ ′′, σ ⊗ σ ′) �= 0, σ , σ ′, σ ′′ ∈ M̂ (1.1)

for a compact-group embedding H ≤ M arises naturally while studying the direct-integral decompo-
sition of a tensor product of two principal-series representations of such a Lie group G. To summarize,
consider the setup of [20] (to which we also refer, along with its own references, for background on the
following).
• a connected, semisimple Lie groupG with �nite center, with its Iwasawa decomposition

G = KAN

(K ≤ Gmaximal compact, A abelian and simply-connected, N nilpotent and simply-connected);
• the corresponding decomposition

P = MAN

of a minimal parabolic subgroup, withM ≤ K commuting with A;
• the resulting principal-series unitary representations

πσ ,ν := IndG
P
(σ ⊗ ν ⊗ triv),

where σ ∈ M̂ and ν ∈ Â unitary irreducible representations over those groups.
One is then interested inwhichπσ ′′,ν′′ areweakly contained [3, De�nition F.1.1] in tensor productsπσ ,ν⊗

πσ ′,ν′ (i.e. feature in a direct-integral decomposition of the latter); we write

πσ ′′,ν′′ � πσ ,ν ⊗ πσ ′,ν′ .

It turns out that in the cases worked out in the literature there is a closed subgroup H ≤ M that
determines this weak containment via (1.1). Examples:
• When the (connected, etc.) Lie groupG is complex, one can simply takeH = Z(G) (the center ofG,

which is always automatically contained inM). This follows, for instance, from [35, Theorem 3.5.5]
in conjunction with [20, Theorems 1 and 2].

• For G = SL(n,R), n ≥ 2 one can again set H = Z(G): [27, Section 4] for n = 2 and [20, p.210,
Theorem] for the rest.

• Finally, for real-rank-oneG themain result of [20], Theorem16 of that paper, provides such anH ≤ M

(denoted there byM0; it is in general non-central, and in fact not even normal).
The phenomenon presumably merits some attention in its own right.

2. Preliminaries

Everything in sight (algebras, coalgebras, etc.) will be linear over a �xed algebraically closed �eld k. We
assume some background on coalgebras and Hopf algebras, as covered by any number of good sources
such as [1, 21, 26, 31].
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Notation 2.1. A number of notational conventions will be in place throughout.
• �, ε and S denote, respectively, coproducts, counits and antipodes. They will occasionally be

decorated with letters indicating which coalgebra, Hopf algebra, etc. they are attached to; SH , for
instance, is the antipode of the Hopf algebra H.

• We use an un-parenthesized version of Heyneman-Sweedler notation ([21, Notation 1.4.2] or [26,
Section 2.1]):

�(c) = c1 ⊗ c2, ((� ⊗ id) ◦ �)(c) = c1 ⊗ c2 ⊗ c3

and so on for coproducts and

c �→ c0 ⊗ c1, c �→ c−1 ⊗ c0

for right and le� comodule structures respectively.
• O(G), O(H), and so on denote Hopf algebras over a �xed algebraically closed �eld k; they are to be

thought of as algebras of representative functions on linear algebraic quantum groupsG, H, etc.
• An embeddingH ≤ G of quantum groupsmeans a Hopf algebra surjectionO(G) � O(H) andmore

generally, a morphismH → G is one of Hopf algebras in the opposite directionO(G) → O(H).
• Categories of (co)modules are denoted byM, decorated with the symbol depicting the (co)algebra,

with the le�/right position of the decoration matching the chirality of the (co)module structure.
Examples: AM means le� A-modules, MC denotes right C-comodules, etc. Comodule structures
are right unless speci�ed otherwise.

• These conventions extend to relative Hopf modules ([21, Section 8.5] or [26, Section 9.2]): if, say, A is
a right comodule algebra [21, De�nition 4.1.2] over a Hopf algebra H with structure

A 	 a �→ a0 ⊗ a1 ∈ A ⊗ H

thenMH
A denotes the category of right A-modules internal toMH ; that is, right A-modulesM that

are also right H-comodules via

m �→ m0 ⊗ m1

such that

(ma)0 ⊗ (ma)1 = m0a0 ⊗ m1a1.

There are analogues MC
H , say, for right H-module coalgebras C, le�- or half-le�-handed versions

thereof, and so on.
• An additional ‘f ’ adornment on one of the above-mentioned categories means �nite-dimensional

(co)modules:MC
f is the category of �nite-dimensional right C-comodules, for instance.

• Reprising a convention common in the operator-algebra literature (e.g. [15, Section 2.3.2, Section
18.1.1]), Ĉ denotes the isomorphism classes of simple and hence �nite-dimensional [21, Theorem

5.1.1] (right, unless speci�ed otherwise) C-comodules and Ĝ = Ô(G).
The purely-algebraic and operator-algebraic notations converge when G is compact and O(G)

denotes the Hopf algebra of representative functions onG: Ĝ as de�ned above can then be identi�ed
with the set of isomorphism classes of irreducible unitaryG-representations.

• In the same spirit, it will also occasionally be convenient to write

Rep(G) := M
O(G).

The linear algebraic quantum groupsG in the sequel will frequently be linearly reductive, in the sense
that the Hopf algebraO(G) is cosemisimple [21, Section 2.4]: Rep(G) is a semisimple category, i.e. every
comodule is a direct sum of simple subcomodules. Equivalently ([21, De�nition 2.4.1]),O(G) is a direct
sum of simple subcoalgebras.

Cosemisimple Hopf algebras H are equipped with unique unital integrals
∫
: H → k [21, Theorem

2.4.6] and hence have bijective antipodes (by [16, Corollary 5.4.6], say); more is true, though. Still
assuming H cosemisimple, for a simple comodule V ∈ Ĥ the canonical coalgebra morphism

End(V)∗ ∼= V∗ ⊗ V → H
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(conceptually dual to the analogous map A → End(V) giving V a module structure over an algebra A)
is one-to-one and gives the direct-sum decomposition

H =
⊕

V∈Ĥ

(V∗ ⊗ V) =
⊕

V∈Ĥ

CV (2.1)

into simple subcoalgebras CV := V∗ ⊗ V (the Peter-Weyl decomposition, in compact-group parlance:
[14, De�nition 2.2], [17, Theorem 27.40], etc.) that makes H cosemisimple to begin with. With this in
place, not only is the antipode S := SH bijective but in fact its square leaves every CV , V ∈ Ĥ invariant
and acts as an automorphism thereon [16, Theorem 7.3.7].

We refer to CV = V∗ ⊗ V as the coe�cient coalgebra of the simple H-comodule V . This is the
coalgebra associated to V in [16, Proposition 2.5.3], and is the smallest subcoalgebra C ≤ H for which
the comodule structure

V → V ⊗ H

factors through V ⊗ C.

2.1. Restriction, induction and the like

Given a coalgebra morphism C → D, the cotensor product ([21, De�nition 8.4.2] or [5, Section 10])
− �D C is right adjoint to the natural “scalar corestriction” functorMC → MD:

MC ⊥ MD

cores

−�DC

(2.2)

the central symbol indicating that the top functor is the le� adjoint. WhenH ≤ G is, say, an inclusion of
compact groups and C → D the corresponding surjectionO(G) → O(H) of algebras of representative
functions, the cotensor functor

− �O(H) O(G) : Rep(H) → Rep(G)

is naturally isomorphic with the usual induction IndGH [28, p. 82]. For that reason we repurpose this same
notation for the general setting of quantum-group inclusions, writing

IndG
H
:= − �O(H) O(G) : Rep(H) → Rep(G)

for any quantum-group inclusionH ≤ G; for consistency, we also occasionally also denote the rightward
functor in (2.2) by

ResG
H
: Rep(G) → Rep(H).

3. Normal subgroups and automatic reductivity

Consider a quantum group embedding H ≤ G, expressed as a surjective Hopf-algebra morphism π :
O(G) → O(H). As is customary in the literature on quantum homogeneous spaces (e.g. [34, proof of
Theorem 2.7]), we write

O(G/H) := {x ∈ O(G) | (id⊗π)�(x) = x ⊗ 1}

O(H\G) := {x ∈ O(G) | (π ⊗ id)�(x) = 1 ⊗ x}.

According to [2, De�nition 1.1.5] a quantum subgroup H ≤ G would be termed normal provided
the two quantum homogeneous spaces O(G/H) and O(H\G) coincide. This will not quite do for our
purposes (see Example 3.8), so instead we follow [25, Section 1.5] (also, say, [34, De�nition 2.6], relying
on the same source) in the following
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De�nition 3.1. The quantum subgroupH ≤ G cast as the surjection π : O(G) → O(H)

• le�-normal if π is a morphism of le�O(G)-comodules under the le� adjoint coaction

adl := adl,G : x �→ x1S(x3) ⊗ x2.

• right-normal if similarly, π is a morphism of rightO(G)-comodules under the right adjoint coaction

adr := adr,G : x �→ x2 ⊗ S(x1)x3. (3.1)

• normal if it is both le�- and right-normal.

The following result is essentially a tautology in the framework of [11, Section 1.2], but only because
in that paper the de�nition of a normal quantum subgroup is more restrictive (see [11, De�nition 1.2.3],
which makes an additional (co)�atness requirement).

Theorem 3.2. LetH ≤ G be a le�- or right-normal quantum subgroup of a linearly reductive group such
that S2 leaves invariant every simple subcoalgebra ofO(H).

H is then linearly reductive and normal.

Remark 3.3. The condition that S2 leave invariant the simple subcoalgebras is certainly necessary for
cosemisimplicity [16, Theorem 7.3.7], but I do not know if it is redundant as a hypothesis in the context
of Theorem 3.2.

In particular, the squared-antipode condition of Theorem 3.2 is automatic when S2 = id (i.e. when
O(G), orG, is involutory or involutive [26, De�nition 7.1.12]). We thus have

Corollary 3.4. Le�- or right-normal quantum subgroups of involutive linearly reductive quantum groups
are normal and linearly reductive.

The proof of Theorem 3.2 requires some preparation. First, a simple remark for future reference.

Lemma 3.5. Let π : H → K be a surjective morphism of Hopf algebras with H cosemisimple. K then has
bijective antipode, and hence π intertwines antipode inverses.

Proof. That a morphism of bialgebras intertwines antipodes or antipode inverses as soon as these exist
is well known, so we focus on the claim that SK is bijective.

By the very de�nition of cosemisimplicityH is the direct sum of its simple (hence �nite-dimensional
[21, Theorem 5.1.1]) subcoalgebras Ci ≤ H. The assumption is that π is a morphism of Hopf algebras,
so the antipode S := SH restricts to maps

S : ker(π |Ci) → ker(π |S(Ci)), (3.2)

injective because S is bijective. On the other hand though, for cosemisimple Hopf algebras the squared
antipode leaves every subcoalgebra invariant [16, Theorem 7.3.7], so

S2 : ker(π |Ci) → ker(π |S2(Ci)
) = ker(π |Ci),

being a one-to-one endomorphismof a �nite-dimensional vector space,must be bijective. Since thatmap
decomposes as (3.2) followed by its (similarly one-to-one) analogue de�ned on S(Ci), (3.2) itself must be
bijective, and hence the inverse antipode S−1 leaves ker(π) invariant. This, in essence, was the claim.
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The conclusion of Lemma 3.5 is by no means true of arbitrary bijective-antipode Hopf algebras H:

Example 3.6. [29, Theorem 3.2] gives an example of a Hopf algebra H with bijective antipode and a
Hopf ideal I � H that is not invariant under the inverse antipode. In other words, even though H has
bijective antipode, the quotient Hopf algebra H → H/I does not.

Proof of Theorem 3.2. The proof proceeds gradually.

Step 1: normality. According to Lemma 3.5 the antipode S := SO(G) and its inverse both leave the
kernelK of the surjection

π : O(G) → O(H)

invariant, so S(K) = K. The fact that le�- and right-normality are equivalent now follows from [25,
Proposition 1.5.1].

Step 2: The homogeneous spacesG/H andH\G coincide. This means that

O(H\G) = O(G/H) =: A, (3.3)

and follows from [2, Lemma 1.1.7].

Step 3: Reduction to trivialG/H. The subspace A ≤ O(G) of (3.3) is in fact a Hopf subalgebra [2,
Lemma 1.1.4]. A is also invariant under the right adjoint action

O(G) ⊗ O(G) 	 x ⊗ y �→ S(y1)xy2 ∈ O(G)

([11, Lemma 1.20]), so by [2, Lemma 1.1.11] the le� ideal

O(G)A− ≤ O(G) where A− := ker(ε|A)

is bilateral. The quotientO(G)/O(G)A− must then be a cosemisimplequotientHopf algebra [9, Theorem
2.5]O(G) → O(K), and we have an exact sequence

k

O(G/K) O(G) O(K)

k‖

O(G/H)

of quantum groups in the sense of [2, Section 1.2], with everything in sight cosemisimple. Since
furthermore A− is annihilated by the original surjection O(G) → O(H), H can be thought of as a
quantum subgroup ofK (rather thanG):

O(K) → O(H).

I now claim that the corresponding homogeneous space is trivial:

O(K/H) = O(H\K) = k. (3.4)

To see this, consider a simple representationV ∈ K̂ that contains invariant vectors overH. BecauseO(K)

is cosemisimple, V is a subcomodule (rather than just a subquotient) of a simple comoduleW ∈ Ĝ, and
it follows that

W|H ≥ V|H

contains invariant vectors. The fact that (3.3) is a Hopf subalgebra means that it is precisely
⊕

U

CU , U ∈ Ĝ and U|H has invariant vectors,
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so CW ≤ A and the restrictionW|K decomposes completely as a sum of copies of the trivial comodule
k. But thenV ≤ W|K itself must be trivial, proving the claim (3.4). Now simply switch the notation back
toG := K to conclude Step 3:

O(G/H) = O(H\G) = k. (3.5)

This latter condition simply means that for anO(G)-comodule V itsG- andH-invariants coincide:

homG(k,V) = homH(k,V).

Equivalently, since

homG(V ,W) = homG(k,W ⊗ V∗),

this simply means that the restriction functor

Rep(G) 	 V �→ V|H ∈ Rep(H) (3.6)

is full (for both le� and right comodules, but here we focus on the latter).

Step 4: Wrapping up. Because the restriction functor (3.6) is full, simple, non-isomorphic
G-representations that remain simple overH also remain non-isomorphic.

Now, assumingH ≤ G is not an isomorphism (or there would be nothing to prove), some irreducible
V ∈ Ĝmust become reducible overH. There are two possibilities to consider:

(a) All simple subquotients of the reducible representation V|H are isomorphic. We then have
(in Rep(H)) a surjection of V onto a simple quotient thereof, which then embeds into V again.
All in all this gives a non-scalar endomorphism of V over H, contradicting the fullness of the
restriction functor (3.6).

(b) V acquires at least two non-isomorphic simple subquotients Vi, i = 1, 2 overH. Then, the image of
the coe�cient coalgebra CV = V∗ ⊗ V of (2.1) through π : O(G) → O(H) will contain both

CVi = V∗
i ⊗ Vi ≤ O(H), i = 1, 2

as (simple) subcoalgebras.

The requirement that S2(CVi) = CVi means that the simple comodules Vi are isomorphic to their
respective double duals V∗∗

i (asO(H)-comodules, not just vector spaces). But then

CVi = V∗
i ⊗ Vi

∼= V∗
i ⊗ V∗∗

i

contains anH-invariant vector, namely the image of the coevaluation [19, De�nition 9.3.1]

coevV∗
i
: k → V∗

i ⊗ V∗∗
i .

It follows that the space of H-invariants of the O(G)-comodule π(CV) is at least 2-dimensional,
whereas that ofG-invariants is atmost 1-dimensional (because the sameholds true ofCV = V∗⊗V).
This contradicts the fullness of (3.6) and hence our assumption thatH ≤ G is not an isomorphism.

The proof of the theorem is now complete.

Remark 3.7. Le� and right normality are proven equivalent to an alternative notion ([34, De�nition
2.3]) in [34, Theorem 2.7] in the context of CQG algebras, i.e. complex cosemisimple Hopf ∗-algebras
with positive unital integral (this characterization is equivalent to [14, De�nition 2.2]).

The substance of Theorem 3.2, however, is the cosemisimplicity claim; this is of no concern in the
CQG-algebra case, as a Hopf ∗-algebra that is a quotient of a CQG algebra is automatically again CQG
(as follows, for instance, from [14, Proposition 2.4]), and hence cosemisimple.
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Example 3.8. The weaker requirement that O(G/H) = O(H\G) for normality would render Theo-
rem 3.2 false.

LetG be a semisimple complex algebraic group andB ≤ G a Borel subgroup [18, Part II, Section 1.8].
The restriction functor

Res : Rep(G) → Rep(B)

is full [18, Part II, Corollary 4.7], so in particular

O(G/B) = homB(triv,O(G)) = homG(triv,O(G)) = C

and similarly forO(B\G). This means thatO(G/B) = O(B\G), but B is nevertheless not reductive.

Remark 3.9. The classical (as opposed to quantum) analogue of Theorem 3.2 admits an alternative,
more direct proof relying on the structure of reductive groups:
• In characteristic zero linear reductivity is equivalent (by [24, p.88 (2)], for instance) to plain

reductivity [4, Section 11.21], i.e. the condition that the unipotent radical Ru(G) of G (the largest
normal connected unipotent subgroup) be trivial.

Assuming G is reductive, for any normal K � G the corresponding unipotent radical Ru(K) is
characteristic in N and hence normal inG, meaning that

Ru(K) ≤ Ru(G) = {1}

and hence N is again reductive (so linearly reductive, in characteristic zero).
• On the other hand, in positive characteristic p [24, p.88 (1)] says that the linearly reductive groupsG

are precisely those �tting into an exact sequence

{1} → K → G → G/K → {1}

with K a closed subgroup of a torus and G/K �nite of order coprime to p. Clearly then, normal
subgroups ofG have the same structure.

4. Cli�ord theory

We work with an exact sequence (4.1)

k → A → H → B → k (4.1)

of cosemisimple Hopf algebras in the sense of [2, p. 23]. Note that we additionally know that H is le�
and right co�at over B (simply because the latter is cosemisimple) and le� and right faithfully �at over
A (by [9, Theorem 2.1]).

We will make frequent use of [32, Theorem 1], to the e�ect that

MH
A MB

M �→M/MA−

N⊗A← �N

(4.2)

is an equivalence, where the − superscript denotes kernels of counits.
Upon identifyingMB withMH

A via (4.2), the adjunction

MH MB

corestrict

−�BH

(4.3)

becomes

MH MH
A .

−⊗A

forget

(4.4)
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We will freely switch points of view between the two perspectives provided by (??). Consider the
following binary relation ∼B on B̂.

De�nition 4.1. For V ,W ∈ B̂, V ∼B W provided there is a simple H-comodule U such that V andW
are both constituents of the corestriction of U to B.

Similarly, we will study the following relation on Ĥ:

De�nition 4.2. For V ,W ∈ Ĥ we set V ∼H W provided homB(V ,W) �= 0.

Remark 4.3. In other words, ∼H signi�es the fact that the corestrictions of V and W to MB have
common simple constituents.

Our �rst observation is that∼H is an equivalence relation, and provides an alternate characterization
for it.

Theorem 4.4. ∼H is an equivalence relation on Ĥ, and moreover, for V ,W ∈ Ĥ the following conditions
are equivalent

(1) V ∼H W;

(2) as B-comodules, V and W have the same simple constituents;

(3) V embeds into W ⊗ A ∈ MH .

Proof. Note �rst that (2) clearly de�nes an equivalence relation on Ĥ, so the �rst statement of the theorem
will be a consequence of

(1) ⇔ (2) ⇔ (3).

We prove the latter result in stages.

(1) ⇔ (3). By de�nition, V ∼H W if and only if

homB(V ,W) �= 0.

Via (4.2) and the hom-tensor adjunction (4.4), this hom space can be identi�ed with

homH
A (V ⊗ A,W ⊗ A) ∼= homH(V ,W ⊗ A). (4.5)

The simplicity of V ∈ Ĥ now implies that every nonzero element of the right hand side of (4.5) is an
embedding, hence �nishing the proof of the equivalence of (1) and (3).

(1) ⇔ (2). Let us denote by const(•) the set of simple constituents of a B-comodule •.
By de�nition V ∼H W means that some of the simple constituents of V and W as objects in MB

coincide, so (2) is clearly stronger than (1). Conversely, note that by the equivalence (1) ⇒ (3) proven
above, whenever V ∼H W we have

const(V) ⊆ const(W ⊗ A), (4.6)

where the respective objects are regarded as B-comodules via the corestriction functorMH → MB.
In turn however, given thatA ∈ MH breaks up as a sumof copies of k inMB (because of the exactness

of (4.1)), the right hand side of (4.6) is simply const(W). All in all, we have

V ∼H W ⇒ const(V) ⊆ const(W).

This together with the symmetry of ∼H (obvious by de�nition from the semisimplicity ofMB) �nishes
the proof of (1) ⇒ (2) and of the theorem.
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Theorem 4.5. ∼B is an equivalence relation on B̂ with �nite classes.

Proof. Weknow fromTheorem4.4 that asU ranges over Ĥ, the sets const(U) of constituents ofU ∈ MB

partition B̂, thus de�ning an equivalence relation on the latter set.
The de�nition of ∼B ensures that V ∼B W if and only if V andW fall in the same set const(U), and

hence ∼B coincides with the equivalence relation from the previous paragraph.
Finally, the statement on �niteness of classes is implicit in their description given above: an equiva-

lence class is the set of simple constituents of a simple H-comodule U viewed as a B-comodule, and it
must be �nite because dim(U) is.

Theorems 4.4 and 4.5 establish a connection between the equivalence relations∼H and∼B on Ĥ and
B̂ respectively. We record it below.

Before getting to the statement, recall the notation const(•) ⊆ B̂ for the set of simple summands of
an object • ∈ MB. With that in mind, we have the following immediate consequence of Theorems 4.4
and 4.5.

Proposition 4.6. The range of the map

Ĥ → �nite subsets of B̂

sending V ∈ Ĥ to const(V) consists of the equivalence classes of ∼B, and its �bers are the classes of ∼H .

5. Relative chain groups and centers

De�nition 5.1. Let H ≤ G be an inclusion of linearly reductive quantum groups. The (relative) chain
group C(G,H) is de�ned by
• generators gV for simple comodules V ∈ Ĝ;
• relations

homH(U,V ⊗ W) �= 0 ⇒ gU = gVgW ; (5.1)

that is, one such relation whenever the restrictions of U and V ⊗ W to H have non-trivial common
summands (i.e. U and V ⊗ W are not disjoint overH).

We write C(G) := C(G,G).

Remark 5.2. For chained inclusions K ≤ H ≤ G we have a map C(G,K) → C(G,H) sending the
class of V ∈ Ĝ in the domain to the class of the selfsame V in the codomain. This is easily seen to be
well-de�ned and a group morphism.

Recall [8, De�nition 2.10].

De�nition 5.3. Let G be a linearly reductive quantum group. Its center Z(G) ≤ G is the quantum
subgroup dual to the largest Hopf algebra quotient

π : O(G) → O(Z(G))

that is central in the sense of [8, De�nition 2.1]:

π(x1) ⊗ x2 = π(x2) ⊗ x1 ∈ O(Z(G)) ⊗ O(G), ∀x ∈ O(G).

The relative version of this construction, alluded to in the title, is as follows.

De�nition 5.4. LetH ≤ G be an embedding of linearly reductive quantum groups. The corresponding
relative center Z(G,H) is the intersection Z(G) ∩ H denoted by Z(G) ∧ H in [11, De�nition 1.15].
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This is a quantum subgroup of bothH and Z(G) (and hence also ofG), and is automatically linearly
reductive by [11, Proposition 3.1].

Each irreducible G-representation breaks up as a sum of mutually isomorphic (one-dimensional)

representations over the center Z(G), and hence gets assigned an element of Ẑ(G): its central character.
Two such irreducible representations that are not disjoint over H must have corresponding central
characters agreeing on

Z(G,H) := Z(G) ∩ H

(the relative center associated to the inclusionH ≤ G), so we have a canonical morphism

can : C(G,H) → Ẑ(G,H) (5.2)

Theorem 5.5. For any embeddingH ≤ G of linearly reductive quantum groups (5.2) is an isomorphism.

Proof. Consider the commutative diagram

C(G)

C(G,H)

Ẑ(G)

Ẑ(G,H)

can

can

∼=
(5.3)

where
• the upper le�-hand morphism is an instance of the maps noted in Remark 5.2;
• the bottom right-hand map is the (plain) group surjection dual to the quantum-group inclusion

Z(G) ∩ H ≤ Z(G);
• and the fact that the bottom le�-hand map is an isomorphism is a paraphrase of [8, Proposition 2.9]

in conjunction with [8, De�nition 2.10].
The surjectivity of the bottom composition entails that of (5.2), so it remains to show that the latter is
one-to-one.

Let V ∈ Ĝ be a simple comodule where Z(G,H) operates with trivial character, i.e. one whose class
in C(G,H) is annihilated by (5.2). We can then form the quantum subgroup

Z(G)H := Z(G) ∨ H ≤ G

generated by Z(G) and H as in [11, De�nition 1.15] (the ‘∨’ notation is used there; we suppress the
symbol here for brevity), which then satis�es, according to [11, Theorem 3.4], a quantum-�avored
isomorphism theorem:

H/Z(G,H)
∼=

−→ Z(G)H/Z(G)

via the canonical map induced from H → Z(G)H. Since V (or rather its restriction V|H) is a
representation of the former group because Z(G,H) operates trivially, it li�s to a Z(G)H-representation
with Z(G) acting trivially. In summary:

The restriction V|H extends to a Z(G)H-representationW with trivial Z(G)-action.

But then the induced representation IndGZ(G)HW again has trivial central character, and hence so do all
of its simple summands V1. The adjunction (2.2) yields

homZ(G)H(V1|Z(G)H,W) ∼= homG

(
V1, Ind

G

Z(G)HW
)

�= {0},

meaning that V1 fails to be disjoint fromW over Z(G)H and hence also from

V|H = W|H overH.
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To conclude, observe that
• (5.2) agrees on V and V1 due to the noted non-disjointness

homH(V1,V) �= 0;

• while the bottom le�-hand map can : C(G) → Ẑ(G) of (5.3) annihilates V1 because the latter has
trivial central character;

• and hence the top right-hand can map in (5.3) must also annihilate V .
This being the desired conclusion, we are done.
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