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Abstract
We prove that for a large class of well-behaved cocomplete categories C the weak and strong
Drinfeld centers of the monoidal category E of cocontinuous endofunctors of C coincide.
This generalizes similar results in the literature, where C is the category of modules over a
ring A and hence E is the category of A-bimodules.
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1 Introduction

The present note is motivated by the following result from [2] (see Theorem 2.10 therein):

Theorem 1.1 For a ring A, the weak and strong centers of the monoidal category AMA of
A-bimodules coincide.

We give a refresher on the terminology in Section 2.2 below, pausing here only for a
broad-strokes perspective on the result.

As seen from Definitions 2.8 and 2.10 below, Theorem 1.1 says, essentially, that a certain
morphism

A ⊗ V → V ⊗ A

of A ⊗ A-bimodules (for a bimodule V ∈ AMA underlying a weak-center object) is auto-
matically an isomorphism. The proofs of [2, Propositions 2.5 and 2.6] make it clear that this
is the type of rigidity phenomenon familiar from the theory of descent in ring theory and /
or algebraic geometry [13]. In the latter setup one typically starts with commutative rings
R → S and an S-module M and seeks to recover an R-module MR such that

M ∼= S ⊗R MR;
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in other words, the goal is to descend the S-module to an R-module. The sort of struc-
ture necessary to achieve this in good cases (e.g. S is faithfully flat over R [13, Théorème
3.2]) is a descent datum (see [13, discussion preceding Proposition 3.1]): an S ⊗ S-module
morphism

g : S ⊗ M → M ⊗ S

(where ‘⊗’ means ‘⊗R’) such that

(1) the diagram

S ⊗ S ⊗ M

S ⊗ M ⊗ S

M ⊗ S ⊗ S

g23 g12

g13

commutes (with the indices indicating the tensorands on which g operates), and
(2) the morphism

M → S ⊗ M
g−→ M ⊗ S → M

is the identity, where the leftmost arrow is the natural inclusion obtained by tensoring
the unit R → S of S with idM and the rightmost arrow is multiplication by scalars in
S.

Under these circumstances it turns out [13, Proposition 3.1] that in fact g is automatically
an isomorphism. This is essentially the same phenomenon as that captured in Theorem 1.1
in the broader context of non-commutative rings.

In attempting to isolate precisely what it is about categories of bimodules that occasions
such rigidity results one is led to consider the celebrated Eilenberg-Watts theorem ([21,
Theorem 1] or [8]):

• AMA is equivalent to the category of cocontinuous (i.e. colimit-preserving [15, §V.4])
endofunctors of the category AM of left A-modules (or its right-handed versionMA),

• such that the monoidal structure given by ‘⊗A’ is identified with endofunctor compo-
sition.

This is the starting point for the generalization of Theorem 1.1 appearing as Theorem 3.1
below. The pattern we extrapolate can be summarized as follows (with a forward reference
to Section 2.1 below for category-theoretic terminology).

• One can substitute other “well-behaved” cocomplete categories C for AM;
• and their duals C∗ ∼= consisting of cocontinuous functors C → (some “base” category)

forMA;
• and their endomorphism 2-rings

E := C � C∗ ∼= cocontinuous endofunctors of C (1.1)

for AMA.

For Eq. 1.1 to be both meaningful and valid C needs to be what in Definition 2.6 (and
[4, Definition 1.1]) we refer to as dualizable (this is what ‘well-behaved’ means in the above
discussion). With all of this behind us, Theorem 3.1 reads more or less as follows.

Theorem 1.2 If C is a dualizable locally presentable category then the weak center of its
category of cocontinuous endofunctors coincides with its strong center.



Centers of Categorified Endomorphism Rings

In addition to recovering Theorem 1.1, this applies to categories C going beyond
modules, as we recall in Section 3: C can be, for instance,

• the category MC of right-comodules over a right-semiperfect [14, p.369] coalgebra
over a field;

• the category QCOH([X/G]) of quasicoherent sheaves over the quotient stack [X/G]
where X is affine and G is a virtually linearly reductive [7, §1] linear algebraic group
acting on X.

2 Preliminaries

Some standard background on monoidal categories is needed, as covered for instance in
[11, Chapter XI], [5, §5.1], [15, Chapter XI], and any number of other sources.

2.1 Some 2-algebra

We reprise some terminology from [6, §2].

Definition 2.1 (a) A 2-abelian group is a locally presentable category in the sense of
[1, Definition 1.17]. 2-abelian groups form a 2-category 2AB with left adjoints as
1-morphisms and natural transformations as 2-morphisms.

(b) A 2-ring is a 2-abelian group C which is in addition a monoidal category with tensor
product ‘⊗’, so that all functors of the form x ⊗ − and − ⊗ x are left adjoints. 2-rings
similarly form a 2-category 2RNG with monoidal left adjoints as 1-morphisms.

(c) A commutative 2-ring is a 2-ring additionally equipped with a symmetry (i.e. it is a
symmetric monoidal category). As before, these form the 2-category 2COMRNG with
symmetric monoidal left adjoints as 1-morphisms.

It turns out (e.g. [6, Corollary 2.2.5]) that 2AB is symmetric monoidal, being equipped
with a tensor product denoted by ‘�’. For 2-abelian groups A and B their tensor product
A� B is the universal recipient of a bifunctor

A × B → A� B

that is separately cocontinuous (i.e. a “bilinear map” of 2-abelian groups). The symmetric
monoidal structure lifts to 2RNG and 2COMRNG in the sense that ifA and B are 2-rings so
isA� B in a natural fashion, etc.

This machinery allows us to employ the usual language of rings and modules in the
context of 2-abelian groups:

Definition 2.2 Let R be a 2-ring. A left (2-)R-module is a 2-abelian group X equipped
with a morphism R � X → X in 2AB, satisfying the obvious unitality and associativity
conditions. Right (2-)R-modules are defined analogously, as are bimodules, etc.

The respective 2-categories of left or right or bimodules are denoted by RM, MR and
RMS . respectively.

As usual, we have tensor product 2-bifunctors

RMS × SMT
�S−→ RMT :
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For 2-S-modules X and Y with module-structure functors

X � S �−→ X and S � Y �−→ Y

we can define X �S Y as the universal functor π admitting a natural isomorphism θ as
depicted below:

X � S � Y
X � Y

X � Y
X �S Y∼= ⇓θ

��id π

id�� π

This is a 2-colimit, and can be obtained as a combination of a co-inserter and a co-equifier:
constructions dual to the inserters and equifiers of [1, §2.71 and Lemma 2.76], for instance.
[6, Proposition 2.1.11] outlines a more explicit construction for such 2-colimits in 2AB,
which do exist.

In particular, for a commutative 2-ring R, the 2-category RM ∼= MR is symmetric
monoidal under �R.

Definition 2.3 For a commutative 2-ring R an R-algebra (or 2-R-algebra for extra
precision) is an algebra in the symmetric monoidal 2-category RM.

It turns out that 2AB is not only symmetric monoidal but also monoidal-closed, i.e. has
internal homs. More precisely, we have the familiar hom-tensor adjunction in the present
higher-categorical setting (see e.g. [12, §6.5], [1, Exercise 1.l]). The following result is a
“relative” version of [4, Lemma 2.7] (which cites the preceding two sources), in the sense
that it deals with modules over 2-rings rather than plain 2-abelian groups. The techniques
involved in the proofs are no different.

Lemma 2.4 LetR, S and T be three 2-rings.

(a) For any two bimodules

• X ∈ RMT
• Y ∈ SMT

the category

HOMT (Y,X ) := {left adjoints X → Y compatible with the 2-module structures}
has a natural structure of aR-S-bimodule.

(b) This gives us, for each bimodule Y ∈ SMT , a 2-adjunction

RMS RMT

−�SY

HOMT (Y,−)

with the top arrow as the left (2-)adjoint.

Remark 2.5 We leave it to the reader to formulate analogous versions for tensoring on the
left rather than right, etc.
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Definition 2.6 LetR be a 2-ring and X a leftR-module.

(a) The dual X ∗ of X over R is RHOM(X ,R); it is a right R-module. Similarly, duals
of right modules are naturally left modules.

(b) If R is commutative the 2-R-module X is (1-)dualizable over R if the canonical
morphism

X �R X ∗ CAN−→ ENDR(X ) (2.1)

is an isomorphism of 2-R-modules.

Remark 2.7 For any 2-ring R and 2-R-module X ENDR(X ) is naturally a 2-ring (and a
2-R-algebra when R is commutative), with composition as the tensor product and idX as
the unit.

Dualizable objects (typically over R = VECTK for some field K) were the focus of [4],
where we give alternative characterizations of dualizability in [4, Lemma 3.1]. In particular,
it is enough to require that the identity

idX ∈ ENDR(X )

belong to the image of Eq. 2.1.

2.2 Centers

Recall (e.g. [11, Definition XIII.4.1] or [10, Definition 3]):

Definition 2.8 Let (C,⊗, 1) be a monoidal category. The (Drinfeld) center Z(C) of C is
the category of pairs (x, θ) where x ∈ C is an object and

θ : − ⊗ x
∼=−→ x ⊗ − (2.2)

is a natural isomorphism satisfying the following conditions (suppressing the associativity
constraints in the monoidal category):

(1) For y, z ∈ C the diagram

y ⊗ z ⊗ x

y ⊗ x ⊗ z

x ⊗ y ⊗ z

idy ⊗θz θy⊗idz

θy⊗z

commutes, and
(2) the isomorphism

θ1 : 1 ⊗ x → x ⊗ 1

is the canonical one attached to the monoidal structure (C,⊗, 1).

Remark 2.9 In fact, in Definition 2.8 condition (2) follows from (1), but this uses the
fact that θ is an isomorphism; we have displayed both conditions with an eye towards
Definition 2.10 below.

Following [18, Definition 4.3] (where the notion seems to have been introduced) and
[2, §1.1], we give
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Definition 2.10 For (C,⊗, 1) as in Definition 2.8 the weak right center WZr(C) is the
category of pairs (x, θ) as above, satisfying conditions (1) and (2), but requiring only that
Eq. 2.2 be a natural transformation.

One defines the weak left center WZ�(C) analogously, requiring a natural transformation

x ⊗ − → − ⊗ x

instead.
Unless specified otherwise weak center means weak right center, and we simply write

WZ for WZr .

3 Main Results

Theorem 3.1 LetR be a commutative 2-ring, X ∈ RM a dualizableR-module, and

E := X �R X ∗ ∼= ENDR(X ) (3.1)

its endomorphism ring. Then, the canonical fully faithful inclusion

Z(E) → WZ(E) (3.2)

is an equivalence.

This requires some preliminary discussion and tooling, starting with the observation that
this weak-equals-strong principle cannot be expected to hold in general: Definition 2.10
is indeed a weakening of Definition 2.8, in the sense that there are examples of monoidal
categories (even 2-algebras) C where the canonical functor Eq. 3.2 is not an equivalence.

Example 3.2 Let (C,⊗, 1) be any symmetric, additive monoidal category. Recall (e.g.
[9, Definition 2.1]) that its Bernstein center is the (commutative) ring of natural endomor-
phisms of the identity functor. Any element θ of the Bernstein center gives an element
(1, ψ) of the weak center WZ(C), whereby

y ∼= y ⊗ 1
ψy−→ 1 ⊗ y ∼= y

is simply θy , provided θ1 is the identity. Furthermore, if θy fails to be an isomorphism for
any y we obtain an element outside the plain center Z(C).

All of this is easily arranged. Let C, for instance, be the (symmetric, monoidal) category
Repf (G) of finite-dimensional complex representations over a finite group G. Every y ∈
Repf (G) has a canonical 1-isotypic component: the space yG of all G-invariant vectors in
y. There is an element θ of the Bernstein center that surjects every object onto this isotypic
component:

y 
 v
θy�−→ 1

|G|
∑

g∈G

gv ∈ y

If G is non-trivial then θy will fail to be an isomorphism on those y that are not sums of
copies of 1, and we have an example as required above.

Since R is our “base ring” throughout the discussion we henceforth abbreviate ‘�R’
to simply ‘�’, and similarly for HOM := HOMR. Recall also our notation Eq. 3.1 for the
endomorphism 2-ring E of X .
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Because X is assumed dualizable overR, the canonical morphism

X → X ∗∗

is an isomorphism (of abelian 2-groups, i.e. an equivalence of categories). It follows from
this that E is also dualizable and in fact self-dual, and we can identify

ENDR(E) ∼= E � E∗ ∼= E � E ∼= X �X ∗ �X �X ∗. (3.3)

Given that 2AB is a symmetricmonoidal 2-category, there is some choice in how we identify
the right and left-hand sides of Eq. 3.3. In the sequel, it will be convenient to make this
identification by pairing the two middle tensorands on the right-hand side of Eq. 3.3 against
E ∼= X �X ∗ in the obvious fashion (by pairing each X to a X ∗). Concretely, simple-tensor
object

x � f � y � g ∈ X �X ∗ �X �X ∗

corresponds to the element

E 
 ψ �−→ f (ψ(y))x � g ∈ X �X ∗ ∼= E
of ENDR(E).

Now fix an object (e, θ) ∈ WZ(E) of the weak right center and consider the two
endomorphisms

− ⊗ e and e ⊗ − ∈ END(E) ∼= E � E .
With the above convention in mind, they are identifiable, respectively, with

1� e and e � 1 (3.4)

where
1 := idX = 1E ∈ E = END(X ) ∼= X �X ∗

is the identity functor on X (i.e. the monoidal unit of E). We caution the reader that the
tensor product in Eq. 3.4 is external, i.e. it is not to be confused with the internal tensor
product ‘⊗’ of E . Indeed, under the latter we of course have

1 ⊗ e ∼= e ∼= e ⊗ 1

(as in any monoidal category).
The natural transformation

− ⊗ e → e ⊗ −
that constitutes the structure of a weak-center element (Definition 2.10) translates to a
morphism

1� e
θ−→ e � 1 (3.5)

in E�E (denoted slightly abusively by the same symbol ‘θ ’ we used for the natural transfor-
mation in Definition 2.10). The conditions (1) and (2) can then be recast in terms of Eq. 3.5
as we explain presently.

To express condition (1) we need to work in the triple tensor product E�3. To that end,
we consider morphisms between tensor products of e and two copies of 1, with two indices
among 1, 2 and 3 indicating where θ operates. Thus:

θ12 := θ � id1 : 1� e � 1 → e � 1� 1,

θ23 := id1�θ : 1� 1� e → 1� e � 1,

and similarly,
θ13 : 1� 1� e → e � 1� 1
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is the morphism acting identically on the middle tensorand and as θ on the two outer ones.
(1) in Definition 2.8 can now be recovered simply as

θ13 = θ12 ◦ θ23 : 1� 1� e → e � 1� 1. (3.6)

Next, denote by
m : E � E → E

the “multiplication” morphism, imparting on E = END(X ) its monoidal category structure.
In terms of the decomposition

E � E ∼= X �X ∗ �X �X ∗

m is simply the evaluation of the two middle tensorands X and X ∗ against each other. With
this in place, condition (2) in Definition 2.8 simply asks that

m(θ) : 1 ⊗ e → e ⊗ 1

be the canonical isomorphism, i.e. the identity once we have made the usual identifications

1 ⊗ e ∼= e ∼= e ⊗ 1.

In short, for future reference:

m(θ) = ide : e ∼= 1 ⊗ e → e ⊗ 1 ∼= e. (3.7)

Proof of Theorem 3.1 Since we already know that Eq. 3.2 is fully faithful (as is immediate
from Definitions 2.8 and 2.10), it remains to show that it is essentially surjective: for an
arbitrary object (e, θ) ∈ WZ(E) the morphism Eq. 3.5 is an isomorphism in E � E . What
we will in fact do is identify the inverse of θ : it is precisely

θ ′ := τ ◦ θ ◦ τ : e � 1 → 1� e,

where τ is the tensorand-reversal functor on E � E .
Denote by

m13 : E � E � E → E � E
the functor that multiplies the outer (first and third) tensorands of the domain onto the
second tensorand of the codomain. We then have

θ = m13(θ23) and

θ ′ = m13(θ12),

meaning that
m13(θ13) = m13(θ12 ◦ θ23) = θ ′ ◦ θ (3.8)

(where the first equality uses Eq. 3.6 above). On the other hand though, Eq. 3.7 implies that
the left-hand side m13(θ13) of Eq. 3.8 is nothing but the identity, and thus

θ ′ ◦ θ = id1�e .

The other composition θ ◦ θ ′ is treated similarly, so we do not repeat the argument.

Remark 3.3 The proof of Theorem 3.1 given above is a paraphrase, in the present categori-
fied context, of an argument familiar from descent theory. See e.g. [13, Proposition 3.1].
Where X would have been the category of modules over (in those authors’ notation) a ring
S.
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In the context of k-linear 2-abelian groups (for some field k) the examples of dualizable
C in [4] are all, abstractly, of the form

k-linear functors �op → kVECT (3.9)

for small k-linear categories �. These are also

• the k-linear abelian categories admitting a generating set of small projective objects
[17, §3.6, Corollary 6.4];

• the k-linear locally presentable admitting a strongly generating set of small projective
objects [12, Theorem 5.26];

recall that the small projective objects in an abelian category C are simply those x ∈ C for
which the representable functor

hom(x,−) : C → SET

is cocontinuous. This is taken as the definition of the hyphenated term ‘strong-projective’
in [12, §5.5], and we reuse that term in Corollary 3.4 below for consistency.

Conversely, [4, Lemma 3.5] shows that all categories of the form Eq. 3.9 are dualizable
2-modules over kVECT. The same argument goes through for arbitrary commutative 2-rings
R (in place of kVECT), so we have

Corollary 3.4 Let R be a commutative 2-ring and X a 2-R-module with a strong
generating set of small-projective objects. Then, the weak center of the monoidal category

X �R X ∗ ∼= ENDR(X )

coincides with its strong center.

We end with some examples of categories falling under the scope of Corollary 3.4 (and
hence Theorem 3.1).

Example 3.5 Throughout the present discussion we assume C is a coalgebra over a field.
By [4, Theorem 1.3], Theorem 3.1 applies to categories of right comodules MC over

right-semiperfect coalgebras C in the sense of [14, p.369]: every right C-comodule has a
projective cover.

This of course includes cosemisimple coalgebras (i.e. those with only projective modules
or equivalently, direct sums of simple coalgebras; [20, Definition, p.290] or [16, Definition
2.4.1]).

Example 3.6 Overlapping Example 3.5 to a degree, consider a linear algebraic group [3,
§1.6] G acting on an affine scheme X and the category

QCOH(X)G ∼= QCOH([X/G]) (3.10)

of G-equivariant quasicoherent sheaves on X, or equivalently, as Eq. 3.10 recalls [19, Tag
06WV], that of quasicoherent sheaves on the quotient stack [19, Tag 044O] [X/G].

According to [4, Theorem 1.5] Eq. 3.10 is dualizable provided G is virtually linearly
reductive in the sense of [7, §1]:G has a normal linearly reductive closed algebraic subgroup
H � G such that G/H is a finite group scheme. This means that

• the Hopf algebra O(H) is cosemisimple while O(G/H) is finite-dimensional;
• equivalently by [7, Theorem, p.76], the Hopf algebra O(G) of regular functions on G

is (left and right) semiperfect in the sense of Example 3.5.
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Example 3.7 One can generalize Example 3.6 as follows. Note that the category Eq. 3.10
can be recovered as that ofO(X)-modules (whereO(X) is the algebra of regular functions
on X) internal to the category ofO(G)-comodules. In short:

QCOH([X/G]) ∼= MO(G)
O(X).

Mimicking this construction, we can take X in Theorem 3.1 to be the category MA of
(right, say) modules over an algebra A internal to the commutative 2-algebra R (so that in
Example 3.6 we would haveR = MO(G) and A = O(X)).

This means that Theorem 3.1 applies, for instance, to categories of graded modules over
graded algebras (for arbitrary grading monoids), etc.
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