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Motivated by recent numerical relativity simulations of charged black holes and their interactions, we
explore the properties of common slicing conditions in Reissner-Nordstrom spacetimes. Specifically,
we consider different choices for the so-called Bona-Mass6 function and construct static and spherically
symmetric slices of the Reissner-Nordstrom spacetime satisfying the corresponding slicing conditions.
For some of these functions the construction is entirely analytical, while for others we use numerical root-
finding to solve quartic equations. Our solutions are parametrized by the charge-to-mass ratio A = Q/M
and approach a unique slice, independent of the Bona-Massé functions considered here, in the extremal

limit 4 — 1.
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I. INTRODUCTION

In many numerical relativity simulations, the time
coordinate is specified by imposing a slicing condition
for the lapse function a. A very common condition is the
Bona-Mass6 slicing condition [1]

(0, = p'oj)a = - f(a)K, (1)

where f' is the shift vector, f(a) a yet-to-be-specified
function of the lapse, and K = K ﬁ the mean curvature, i.e.,
the trace of the extrinsic curvature. Choosing a Bona-Mass6
function f(a) identifies a specific slicing of the spacetime;
for f = 1, for example, (1) reduces to harmonic slicing. A
very common choice is f = 2/a, which results in so-called
“l + log” slicing. Combined with a “Gamma-driver” con-
dition for the shift [2-4], 1 + log slicing forms the so-called
“moving-puncture” coordinates that have been used, for
example, in numerous simulations of black-hole binaries
(see, e.g., [5,6]).

Significant insight into the properties of 1 + log slicing,
and hence our understanding of the above simulations,
resulted from analytical studies of 1+ log slices of the
Schwarzschild spacetime (e.g., [7-11]). In particular, these
studies revealed the “trumpet geometry” of the resulting
slices, which helped to explain their remarkable numerical
properties.

“sli@bowdoin.edu

“tbaumgar @bowdoin.edu
’Jfkdenniso @bowdoin.edu
“henrique.oliveira@uerj.br

2470-0010/2022/106(10)/104059(10)

104059-1

In recent years, several authors have also considered
black holes with charge, and have simulated their inter-
action in the framework of FEinstein-Maxwell theory
[12-22]. In part, these simulations are motivated by
astrophysical considerations—for example, to explore
whether current observations of gravitational-wave signals
can be used to place bounds on the black-hole charge—and
in part by the recognition that Einstein-Maxwell theory is a
well-posed example of a tensor-vector theory, and may
therefore serve as a stand-in for more exotic extensions of
general relativity. Many of the above simulations also adopt
1 + log slicing, raising the question of whether its desirable
properties for uncharged black holes also exist for charged
black holes.

Motivated by these considerations we generalize in this
paper previous work on Bona-Mass6 slices of Schwarzschild
spacetimes to their charged counterparts, namely Reissner-
Nordstrom (RN) spacetimes. Specifically, we follow [23]
and consider a number of different families of Bona-Mass6
functions f(a), but apply these to charged, rather than
uncharged, static black holes. We outline our mathematical
approach in Sec. II, consider extremal black holes in Sec. III,
discuss results for specific choices of the Bona-Massé
function in Sec. IV, and briefly summarize in Sec. V.

Throughout this paper we use geometrized units with
G = ¢ = 1 and adopt the convention that indices a, b, c, ...
represent spacetime indices while i, j, k, ... denote spatial
indices.

I1. BASIC EQUATIONS

Most of this section is a direct extension of previous
work on 1 +log slices of Schwarzschild spacetimes,

© 2022 American Physical Society
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e.g., [7,10,11]. We generalize those previous treatments by
considering different families of Bona-Massé functions
(see also [23]) and by applying these to Reissner-
Nordstrom spacetimes.

A. Transformation to Bona-Massoé slices

The line element for a nonrotating, charged black hole
can be written as

ds* = —fodf* + f3'dR> + R?dQ?, (2)
where we have defined

2M Q?

f051—7+ﬁ 3)

[not to be confused with the Bona-Massé function f(a)
defined in Eq. (1)]. In the above equations, R is the areal
radius, M the black-hole mass, and Q the black-hole
charge. We also note that the two horizons of an RN
spacetime are located at the roots of the function

fo = fo(R), i.e., at
R, =M+ VM - Q. (4)

We now transform to new spatial slices using a height
function approach (see, e.g., Sec. IV. 2 in [24] for a textbook
treatment), i.e., we write a new time coordinate 7 as

7=1t+h(R). (5)

By allowing the height function & = h(R) to depend on
radius only, we restrict our focus to time-independent and
spherically symmetric slices. Inserting (5) into the line
element (2) then yields'

ds*> = —fodt* + 2foh'didR + (f5' — foh®)dR* + R*dQ?,
(6)
where the prime denotes differentiation with respect to R,
I = dh/dR. We compare (6) with the general 3 + 1 form of
the spacetime metric,
ds? = —=2di* + y,;(dx’" + pidi)(dx) + p/di),  (7)
to identify the RR-component of the spatial metric

rre = f3' = foh”, (8)

the R-component of the shift vector

'See also [25,26], who adopted the height-function approach
to construct maximal slices in nonextremal RN spacetimes, and
[27], who constructed hyperboloidal slices of RN spacetimes
using this approach.

RS (i )
vre 1—f <2)h/2 ’
and the square of the lapse
f
@ = fo+rre(f*)? :1_7;%}1/2- (10)

We note that @ does not necessarily vanish atarootof f,i.e.,
on the black-hole horizons, since &’ may diverge there.
Using (10) we may also rewrite the shift (9) as

ﬁR:a\/az—fO:a2|f0h’|, (11)

where we have taken a positive root. We compute the mean
curvature from

K=V =———a,(Vidn). (12

Vgl

where g = —R*sin? @ is the determinant of the metric, and
n® the future-oriented normal of the hypersurface

n®=a '(1,-p). (13)

For static and spherically symmetric slices, (12) becomes

_ 1 d N _2p% (BY) R
Kegar () =R+ e 09

and the Bona-Massé condition (1) reduces to
pRa = P f(a)K. (15)
Substituting (14) into (15) then yields

da  da 2dR dpR
—t— =",
af(a)  «a R p

which, using (11), we may integrate to obtain

oM Q2 CeZI(a)
"R RTTR

CeZI(a)
:fO(R) + RY

at =1

(17)

In (17) we defined the integral

_ [ du

and C is an undetermined constant of integration with units
of M*. We note that the above expressions differ from their
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counterparts for uncharged black holes only by the appear-
ance of the term Q?/R? in Eq. (17).

B. Regularity condition

We will be interested in regular slices that penetrate the
outer horizon R, [see (4)], meaning that the lapse  should
connect @ = 1 in the asymptotic region R — oo with a root
a =0 at a radius Ry < R, . If such a slice penetrated the
inner horizon also we would have f,(Ry) > 0, in which
case we could evaluate (17) at R to find C < 0. At either
one of the horizons, however, (17) would then yield o® < 0,
which does not have a real solution. We therefore conclude
that regular slices can penetrate the outer horizon only;
those that do penetrate the outer horizon then have R_ <
Ry <R, with fy(Ry) <0 and hence C>0. As we
observed below Eq. (10), the derivative of the height
function A’ will necessarily diverge at R, for such a slice.

For general values of the constant C in Eq. (17) the
resulting lapse a will not connect a root at R, with the
asymptotic region; instead, there may be regions at radii
R > R, for which (17) does not yield real values of a at all.
The regular slices that we are interested in therefore exist
for special values of C only. In order to identify these values
of C we follow [8,10] and consider an equation for the
derivative of the lapse. Inserting (11) into both (14) and
(15) we obtain

. af(e) 2-3/R+212/R*-2d
a = = = ~
MR 1-2/R+22/R* + f(a) — &®
_af(a)2—-3/R+2*/R* - 2a°
- MR fo(R) +a*(f(a) = 1)

(19)

where we have introduced a dimensionless areal radius

R=R /M and the dimensionless charge-to-mass ratio
A= Q/M. We now observe that the denominator on the
right-hand side may have a root for R > Ry; if so, &’ can
remain regular at that root of the denominator only if the
numerator has a simultaneous root. The radius and lapse at

such a critical point (denoted by R, and a,) must therefore
satisfy the two equations

*Assuming that o2(f(a) — 1) vanishes for @ =0, and that
f(a) > 1 for all a, horizon-penetrating slices necessarily go
through a critical point at a point R. such that Ry < R. <R,.
This is because f,(R) has aroot at R, , while —a?(f(a) — 1) has a
root at Ry; both are nonpositive between these two points, and
intersect so that the denominator of the second term of (19)
vanishes. The assumption f(a) > 1 for all a holds for most
Bona-Massé functions considered in this paper, but not for the
analytical trumpet slices of Sec. IV B. For the latter it is possible
to construct slices that avoid a critical point altogether, but we will
instead focus on slices that pass through a critical point in this

paper.

32,
2—,\——’—,\—2—2(16:0 and (208_)
R, R;
2 2, 5
|-+ 55+ af(a)-a2 =0, (20b)

R, R:

where we have assumed that the root of the denominator
of (19) results from a vanishing of the denominator of the
second fraction in (19), rather than the first.

We can eliminate A from Egs. (20) to obtain one equation

for R, and «, alone,

A 1
Cl-afla) -al

(1)

We then reinsert (21) into (20a) and, depending on the
specific choice of f(a), find a, either by numerical root-
finding for a given 4 or by solving for . analytically. Given
a, we then find R, from (21), and finally insert both into
(17) to obtain the constant C.

The above procedure works as long as af () in the first
term on the right-hand side of (19) remains finite as @ — 0.
This is the case for most Bona-Mass6 functions considered
in this paper, but not for the shock-avoiding slices with
f(@) =1+ k/a? (see [28]). For the latter, the (outer-most)
root of the denominator of Eq. (19) occurs for @ = 0 rather
than a root of (20b), provided x satisfies condition (52).
Inserting @, = 0 into (20a) then yields the critical radius R,
(see also Sec. IV C 1 below).

C. The root of the lapse

For a given f(a) whose integral I(a) is known, evalu-
ating (17) at the critical point, for known values of R, and
a., allows computing the constant of integration C. From
there, we compute the root R, of the lapse by setting a = 0
in (17). For some choices of the Bona-Massé function f(«)
we can solve the resulting quartic equation for RO analyti-
cally, while for others we use numerical root-finding.

As the next step we compute the dimensionless deriva-
tive of the lapse evaluated at its root,

a, = Ma'(Ry). (22)

In most cases this is done via implicit differentiation of
(17), except for the fully shock-avoiding slicing condition
of Sec. IV C, for which it is more convenient to take the
limit R — R of Eq. (19). In order to choose valid roots R,
among the real solutions to the above quartic equation we
check that a@; > 0 so that the lapse stays non-negative near
the root.
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D. Transformation to isotropic coordinates

Finally, we transform to isotropic coordinates with radial
coordinate r. To do so, we compare the spatial part of the
line element (6),

di> = a 2dR? + R*dQ?, (23)
with the spatial line element in isotropic coordinates,

dP = y*(dr? + r2dQ?), (24)

where y is a conformal factor, which yields the system

a 'dR = y*dr and (25a)
R = y’r. (25b)
Together, Eqgs. (25) yield
dr dR dR/dad
dr _dR _ dR/dada (26)
r  Ra R «
which we may integrate to obtain
dR/dada
= —_—. 27
r = exp / R a (27)

Making the leading-order approximation dR/da=~1/a,
and R ~ R, we further integrate (27) to find

acx '/t (r—0), (28)

where we have adopted the notation of [11] in defining

. (29)

alRO '

For general values of R > R, we integrate (27) following
the prescription laid out in Egs. (46), (47), and (67) of [11]
in order to obtain the isotropic radius r as a function of
the areal radius R. As a consistency check we verify that,
in the vicinity of the root, the lapse behaves according to
the power law (28) (see also Eq. (56) in [11]). Having
obtained r, we can compute the conformal factor y from
(25b) as

V= 7 (30)

where we see that near the root of the lapse, where R
approaches R, we have

w o r /2 (r—0) (31)

as is characteristic for a trumpet geometry.

III. THE EXTREMAL LIMIT

Before discussing specific choices for the Bona-Massé
function f(a) in Sec. IV we first consider extremal
Reissner-Nordstrom black holes with Q = M, ie., A = 1.

For 2 =1, Eq. (17) becomes

R-1\2 Ce¥@
a2:<R>—|— R (32)

where we have defined the dimensionless constant of
integration C = M~C. Since the exponential term is always
positive, solutions for the lapse must have C < 0 in order to
have a root in this case, independently of the choice of f(a).

As we discussed in Sec. II B, the procedure for finding
the critical point depends on the behavior of af(a) as
a — 0. If af (a) remains finite in this limit, we identify the
critical point by finding simultaneous roots of Egs. (20). In
the extremal limit, we may then rewrite Eq. (20b) as

Q—§)2+¢Uwa—n:o. (33)

c

Assuming f(a.) > 1, (33) implies that the only critical
point for non-negative @, occurs at R, = 1 with a, =0
(for which (20a) features a root also). Inserting these values
into (17) then yields C = 0 in the extremal limit.

For shock-avoiding slices with f(a) = 1 + k/a?, on the
other hand, the critical point is given by @, = 0 and R, by a
root of (20a). In the extremal limit, these two roots are
Ry =1and R, = 1/2. Only for the former, however, does
a, take a nonimaginary value, so that we obtain the exact
same critical values as in the case above.

For all Bona-Massé functions f(a) considered here we
therefore have C = 0 in the extremal limit, so that Eq. (17)
yields

a=— (34)

independently of f(«a). Finally, we observe that we have
a; = 1 and hence 1/y = 1 in the extremal limit.

IV. RESULTS FOR SPECIFIC SLICES

In the following we consider four different families of
Bona-Massé functions and explore the associated slicing
conditions. For each one we compute values of the param-
eters R, a,, C, Ry, and 1/y for different values of A = Q/M
(see Figs. 1 and 2). For each family we also compute profiles
of the lapse3 as a function of the isotropic radius and show
results for selected values of 4 in Figs. 3, 4, 5, 6.

The lapse a as a function of R can be found from Eq. (17)
using root-finding; we found it helpful to adopt . as an initial
guess.
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FIG. 1. The critical lapse a, (top), constant of integration C
(center), and exponent 1/y (bottom) plotted against the charge-to-
mass ratio A (up to 0.999) on a shared horizontal axis for each of
the slices given by f(a) that we consider. The solid (blue) line
corresponds to 1+ log slices (with k = 2), the short-dashed
(orange) line to analytical trumpet slices, the long-dashed (green)
line to fully gauge-shock-avoiding slices (with x = 1), and the
dash-dotted (red) line to zeroth-order gauge-shock-avoiding
slices (with ag = 4/3). All slicing conditions yield the same
critical values in the extremal limit Q — M.

A. 1+ log slicing

We first consider Bona-Masso functions of the form

fla) =~. (35)

Even though, strictly speaking, 1+ log slicing corre-
sponds to the case k =2 only (see [1]), we refer to the
entire family as “1 + log” slicing. For (35), the integral
(18) can be evaluated to yield I(a) = a/k, so that (17)
becomes

2 2 et
2 _

“h-a — k/a
Sel == (1-a)/a

Q/M

FIG. 2. The critical areal radius R, (top) and the areal radius R
at which the lapse vanishes (bottom) versus A for each f(a). The
inset in the top-right corner of the bottom panel shows an
expanded view of the bottom-right region, where the root of
the lapse for zeroth-order shock-avoiding slices falls slightly
below Ry = 1 near the extremal limit.

10!
1071 . =
L2 . |7
= L
- 1047 =z
LoAax 101 100 2x 1002 y
10 s = b
e - //// / == (1-a)/a
. ‘_,,-"/ //’/ // — = 1+k/a?
I / a
- //// /'/ T %0+ (ag — 2)a?
10°¢ 107° 100t 107 1072 1070 100 10!
r/M
FIG. 3. Profiles of the lapse a as a function of isotropic radius r

for each of the slices we consider (with k=2, x =1, and
ay = 4/3), with charge-to-mass ratio 1 = 0 (the Schwarzschild
spacetime). The dotted lines represent the expected power-law
behavior @ o r!/7 in the limit r — 0. The inset in the top-left
corner expands a crowded region of the plot where the lapse
profiles depart from their small-radius power-law behavior.

Evaluating this either at the critical point (for a, and R ) or at

the root of the lapse (for @ = 0 and R,) yields two different
expressions for the constant of integration, namely

A oA 2 2
C = R4e—2ac/k a2 -1 +—— 11_ (37)
c c R i 2.
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FIG. 4. Same as Fig. 3, but with 4 = 0.400.
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FIG. 5. Same as Fig. 3, but with 1 = 0.800.
10!
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3
10-3
10 —
-== (l-a)/a
. —— 1l+k/a?
sy a
20+ (ag — 2)a?

1076 10° 107! 107! 10° 10!

FIG. 6. Same as Fig. 3, but with 1 = 0.999.

= —R} + 2R} — 2*R3. (38)
Inserting (35) into (21) and then substituting (21) for RC in
(20a), we obtain a quartic equation for a, whose analytical
solution is unwieldy. We thus use numerical root-finding to
determine the critical point for these slices. The solution to
(38) for Ry is similarly unwieldy, so we again use numerical
root-finding to locate the root of the lapse.

FIG. 7. The numerical profile of the lapse a(r) for 1€
{0,0.4,0.8,0.999} for 1+ log slices with k = 2. See Fig. 3
for an explanation of the inset and dotted lines.

Implicit differentiation of (36) yields

A

—2R3 +22°R} + 4C
a, =

(2C/k)R,

, (39)

from which we evaluate the exponent 1/y = a,R,. We
show graphs of all the above parameters, as a function of 4,
in Figs. 1 and 2, together with the corresponding results
for the other slicing conditions discussed in the following
subsections.

Finally, we carry out the transformation from the areal
radius R to isotropic radius r as discussed in Sec. I D, and
show profiles of the lapse for 1+ log slices for a few
selected values of 4 in Fig. 7.

B. Analytical trumpet slices

We next consider

(40)

which, for uncharged black holes, results in the completely
analytical trumpet slices of [29]. Inserting (40) into Eq. (20)
yields the critical lapse

1-22
=—, 41
G =3 (41)
together with the critical radius

R, =2-22 (42)

With I(a) = —1In(1 — a), (17) becomes

2 2 C
6(2:1—74—,\——'—,\7. 43
R R R (1-a)? (43)

Substituting (41) and (42) into (43), we then obtain the
constant of integration

104059-6
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FIG. 8. The analytical profile of the lapse a(r) for analytical

trumpet slices does not depend on the black-hole charge.

C=1-22 (44)

Inserting the above into (43) and searching for roots of
the lapse yields a quartic equation for R, with two real
solutions, one of which is RO = 1. We compute

R} + 2R} +2C
CR,

~

ay

(45)

by implicit differentiation of (43) and find that Ry = 1 is
the only root for which @, > 0. In particular, for R, = 1,
we find @, = 1, and hence 1/y = 1, independently of the
charge-to-mass ratio A.

Substituting (44) into (43), we find two real solutions for
the lapse as a function of the areal radius. Only the solution

a(R) = ——, (46)

however, which is identical to the extremal solution (34)
but, remarkably, holds for all values of A, satisfies &' > 0
for all R. We confirm that (46) agrees with the trumpet
slices derived in [30] in the appropriate limit.

We take the solution for the lapse (46) and convert from
areal radius R to isotropic radius r as explained in Sec. II D,
and show our results for the lapse a(r) in Fig. 8.

C. Slices that avoid gauge shocks
1. Full gauge-shock avoidance
We next consider Bona-Massé functions of the form

fla)=1+ % (47)

with x > 0, which Alcubierre [28] proposed as an alter-
native to 1+ log slicing that helps avoid gauge-shocks,
i.e., coordinate discontinuities that arise during evolution

(see also [31] for applications in simulations of critical
collapse, and [32] for tests and calibrations).
With f(a) given by (47), Eq. (19) becomes

o +xk2-3/R+12/R* - 207

Md = = = .
akR 1-2/R+22/R*+«

(48)

As we had discussed in Sec. II B, the denominator of the
right-hand side now vanishes for a = 0. For a = 0, the
numerator of (48), i.e., Eq. (20a), has a root for

a _3HVo-82
c_ﬁ

(49)
(where we have chosen the ‘“outermost” solution to a

quadratic equation for R,).
It is possible, of course, that the denominator of the

second factor in (48) has a root for a radius larger than R as
determined in (49). This root occurs at a radius

1++/1=22(1 +x)
1+«

R = (50)

(which we note exists only for x < 1/4% — 1). Substituting
(50) into (20a) we find the corresponding critical lapse

p —

1
We observe that for

_\/0 _ 2

no real solutions for !t exist, and conclude that, in this

case, the critical radius R, is given by (49) with a, = 0.
In the limit A — O condition (52) reduces to k > 1/3, in
agreement with [23].

From here we assume that condition (52) holds, and
hence adopt the value (49) for RC together with @, = 0. As
in [23] we may integrate (18) to obtain

1 2
I(a) zzln(a :") (53)
so that (17) becomes
2 2 2+« C
R=1-24o T (54)
R R K R

Solving for the constant of integration C we obtain

2 2
_R_+F>’ (55)

c c

C_—ie;*<1
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FIG. 9. The analytical profile of the lapse a(r) for 1€
{0,0.4,0.8,0.999} for fully gauge-shock-avoiding slices with
k=1

and substituting (49) for R, yields

922 2*
(9 — 812)3/2 < T (56)

6—27+ 1
32 32

For 4 = 0, we recover C = 3%/2* as found by [23].
|

To evaluate a;, we apply L'Hopital’s rule to (48) and
impose Mda' — a; as a — 0 to find

4R, -3
o = KR -3) (57)
(1 + K)Rb - 2R0 + AQRO

Using (49) again we then have

1 18k 4 6KV9 — 812 — 1602k ) 12 (58)
)-3

v <9;< + (k= 1)VO =822 + 42(1 —«

and verify that we recover

1 | 6k
;_ 3k—1 (59)

for A =0 as in [23]. In the extremal limit A =1, (58)
reduces to 1/y = 1 independently of k, as expected from
our discussion in Sec. IIL.

We obtain an analytical expression for the lapse as a
function of areal radius by inserting (56) into (54),

32R* — 64R? + 32)2R* + 27 + (9 — 842)3/2 — 3642 + 81\ 1/2
a(R) = < v 2 (3/2 2 4 > Vk. (60)
32kR* — 27 — (9 — 822)3/% 43642 — 84

We use the above solution to transform from areal radius
R to isotropic radius r as described in Sec. II D, and show
results for the lapse a(r) in Fig. 9.

2. Shock-avoidance to leading order

The fully shock-avoiding slicing condition given by (47)
has the unusual property that it allows the lapse function
to become negative during a numerical evolution (see
[28,32,33]). Following [33] we therefore consider a lead-
ing-order shock-avoiding condition

2
ay

fla) :m (61)

(see, e.g., [34,35] for numerical applications). We note that
1 + log slicing (35) with k = 2 is a member of this family
for ay = 2.

As in [23] we can find the integral (17) analytically,

a
52
2a;

I(a) (4 = (ag = 2)a), (62)

and may therefore evaluate the derivative of the lapse at its
root to find

—2R3 + 22°R} + 4C

- 63
4CR, (63)

&lza%

Expressions for the critical point (a,, R.), the constant C,
and the root of the lapse R, however, are more compli-
cated, and we therefore find these quantities numerically
(see Figs. 1 and 2).

Using these values, we compute the lapse by applying
numerical root-finding to (17), then transform from areal to
isotropic radius as in Sec. II D, and plot the lapse profile
a(r(R)) for a few chosen 4 in Fig. 10.

V. SUMMARY

The 1 + log slicing condition has been extremely suc-
cessful in many numerical relativity simulations, including
simulations of black holes and their binaries. Our under-
standing and interpretation of these simulations have
greatly benefited from analytical studies that applied this
and other slicing conditions to single, static, and spherically
symmetric black holes, i.e., the Schwarzschild spacetime
(e.g., [8-11,23]).

Motivated by recent simulations of charged black holes
and their interactions we generalize some of the above
treatments by applying them to the charged counterpart of
Schwarzschild black holes, namely Reissner-Nordstrom
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FIG. 10. The numerical profile of the lapse a(r) for A€
{0,0.4,0.8,0.999} for zeroth-order shock-avoiding slices with
apg = 4/3

spacetimes. In addition to 1+ log slicing we consider
several other slicing conditions, specified by their corre-
sponding Bona-Mass6 functions f(a), that have been
adopted in numerical simulations. For some of these

conditions the slices can be constructed analytically, while
for others we use numerical root-finding to solve rather
unwieldy quartic equations. We identify critical parameters
for these slices, parametrized by the charge-to-mass ratio
A= Q/M, and transform to isotropic coordinates as they
would likely be adopted in numerical simulations. In
particular we observe that, in the extremal limit 4 — 1,
all slices approach a unique slice that is independent of the
Bona-Mass6é functions considered in this paper, as we
anticipate in Sec. III.
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