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While numerous numerical relativity simulations adopt a 1þ log slicing condition, shock-avoiding
slicing conditions form a viable and sometimes advantageous alternative. Despite both conditions
satisfying similar equations, recent numerical experiments point to a qualitative difference in the behavior
of the lapse in the vicinity of the black-hole puncture: for 1þ log slicing, the lapse appears to decay
approximately exponentially, while for shock-avoiding slices it performs approximately harmonic
oscillation. Motivated by this observation, we consider dynamical coordinate transformations of the
Schwarzschild spacetime to describe small perturbations of static trumpet geometries analytically. We find
that the character of the resulting equations depends on the (unperturbed) mean curvature at the black-hole
puncture: for 1þ log slicing it is positive, predicting exponential decay in the lapse, while for shock-
avoiding slices it vanishes, leading to harmonic oscillation. In addition to identifying the value of the mean
curvature as the origin of these qualitative differences, our analysis provides insight into the dynamical
behavior of black-hole punctures for different slicing conditions.
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I. INTRODUCTION

Among the most commonly used slicing conditions in
numerical relativity is the Bona-Massó condition

ð∂t − βi∂iÞα ¼ −α2fðαÞK; ð1Þ

where α is the lapse function, βi the shift vector,K the mean
curvature (i.e. the trace of the extrinsic curvature), and the
Bona-Massó function fðαÞ is a function of the lapse that
has yet to be determined (see [1]). The properties of the
resulting slices depend, of course, on the choice for fðαÞ;
for fðαÞ ¼ 1, for example, the slicing condition (1) is
equivalent to the lapse condition in harmonic coordinates.
A particularly successful choice for the Bona-Massó

function is

fðαÞ ¼ 2

α
; ð2Þ

especially for simulations of black-hole spacetimes. In the
absence of a shift vector, Eq. (1) can then be integrated to
yield α ¼ 1þ logðγÞ, where γ is the determinant of the
spatial metric, which lends this slicing condition its name

1þ log slicing (see [2–7] for textbook discussions).
Dynamical simulations with 1þ log slicing render black
holes in a trumpet geometry, which, in the static limit, have
been analyzed by a number of different authors [8–10].
These studies, together with those of similar trumpet
geometries (e.g., [11–14]) have helped explain the remark-
able numerical properties of these slicing conditions,
especially in the context of black-hole simulations.
Even in the context of vacuum evolution calculations,

however, 1þ log slicing is known to lead to coordinate
shocks in some circumstances (see [15–17]). Alcubierre
[15,18] therefore suggested an alternative shock-avoiding
Bona-Massó slicing condition with

fðαÞ ¼ 1þ κ
α2

; ð3Þ

where κ > 0 is a constant. While this condition has indeed
been found to avoid some coordinate pathologies that
arise in 1þ log slicing, it also has some very unusual
properties—in particular, it allows the lapse to become
negative (see the discussion in [18], as well as Fig. 1 below
for an example), which may explain why it has been
adopted only rarely (see, e.g., [19]).
Despite the appearance of negative values for the lapse,

shock-avoiding slicing has recently been shown to perform
very similarly to 1þ log slicing in terms of stability and
accuracy for a number of test calculations involving black
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holes, neutron stars, and gravitational collapse (see [20]).
One of these tests considered a Schwarzschild black hole
initially represented on a slice of constant Schwarzschild
time, i.e. in a wormhole geometry. These data are then
evolved with the Bona-Massó slicing condition (1), which
results in a coordinate transition to a trumpet geometry.
In Fig. 1 we reproduce results from this test and show the
values of the lapse at the black-hole puncture, i.e. at the
center of the isotropic coordinate system.
Evidently, the behavior of the lapse at the black-hole

puncture for 1þ log versus shock-avoiding slices shows
not only quantitative but also qualitative differences. For
1þ log slices the lapse appears to decay approximately
exponentially after a brief dynamical period, while, for
shock-avoiding slices, the lapse appears to perform
harmonic oscillations. At early times these oscillations
appear to be damped, but at later times the amplitude
remains approximately constant. We also observe that the
period of the oscillations is larger for a smaller value of the
constant κ in (3).
We caution that neither the exponential decay nor the

harmonic oscillation is exact. We also note that, because of
the lack of differentiability at the center of the black hole,
numerical error arising from finite-differencing across the
black-hole puncture is large and prevents pointwise con-
vergence. Using a completely independent code based on

a multidomain spectral method (see [21]) we found some
quantitative differences resulting from the different treat-
ment of the puncture, but the same qualitative behavior as
with the finite-difference code: exponential decay, typi-
cally associated with a first-order ordinary differential
equation, for 1þ log slicing, versus harmonic oscillation,
pointing to a second-order equation, for shock-avoiding
slicing. Since both slicing conditions are imposed by the
same equation, the Bona-Massó condition (1), the origin
of this qualitatively different behavior is, a priori, not
clear at all.
Our goal in this paper is to gain analytical insight into

what causes these qualitative differences. We employ a
dynamical height-function approach to describe time-
dependent coordinate transformations of Schwarzschild
black holes, and to explore the behavior of the lapse at
the black-hole puncture. We introduce this formalism in
Sec. II, and review results for static slices in Sec. III.
In Sec. IV we then consider dynamical slices in the limit
that they can be considered small perturbations of static
slices. At large distances from the black hole, the Bona-
Massó condition (1) results in well-known wave equations
for the lapse, as expected. At the black-hole puncture,
however, the resulting equation depends on whether or
not the (unperturbed) mean curvature K vanishes at the
puncture. Typically, including for 1þ log slicing, K is
positive at the puncture, in which case one obtains
exponential damping. Shock-avoiding slices, however,
form an exception in that K vanishes at the puncture,
in which case one obtains harmonic oscillation. We briefly
summarize in Sec. V, concluding that the vanishing
of K at the black-hole puncture results in the qualitative
differences observed.

II. DYNAMICAL HEIGHT FUNCTIONS

We start with the Schwarzschild line element in
Schwarzschild coordinates,1

ds2 ¼ −F dt̄2 þ F−1 dR2 þ R2 dΩ2; ð4Þ

where R is the areal radius, F ¼ FðRÞ ¼ 1 − 2M=R, andM
is the black-hole mass.2 We then transform to a new time
coordinate3 t by introducing a height-function hðt; RÞ

FIG. 1. The lapse α at the black-hole puncture in the evolution
of a single black hole with the Bona-Massó slicing condition (1).
All simulations start with wormhole initial data together with a
“precollapsed lapse,” α ¼ ψ−2

0 , where ψ0 is the initial conformal
factor, and transition to a trumpet geometry determined by the
choice of the Bona-Massó function fðαÞ. Note the qualitatively
different behavior of the lapse for different functions fðαÞ after
the initial perturbation: for 1þ log slicing with (2), the lapse
appears to decay approximately exponentially, while for shock-
avoiding slicing conditions (3) it appears to perform harmonic
oscillations, with a period that appears to depend on κ. (Figure
adapted from Fig. 2 of [20], to where the reader is referred for
numerical details.)

1We adopt geometrized units with G ¼ 1 ¼ c unless noted
otherwise.

2We focus on uncharged Schwarzschild black holes here, but
note that our calculation generalizes to charged Reissner-Nord-
ström black holes simply by letting F ¼ 1 − 2M=RþQ2=R2,
where Q is the black-hole charge.

3Unlike in [22], where we denoted the Schwarzschild time as t
and the new time coordinate as t̄, we here adopt the opposite
convention in order to reduce notational clutter for dynamical
slices.
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that measures how far the new time slices lift off the old
time slices,

t ¼ t̄þ hðt; RÞ ð5Þ

(see, e.g., [23–26], as well as [4] for a textbook treatment).
Unlike in many previous applications, we allow the height-
function to depend on time in order to study dynamical
coordinate transitions. Inserting (5) into the line element (4)
results in

ds2 ¼ −Fð1 − _hÞ2dt2 þ 2Fð1 − _hÞh0dtdR
þ ðF−1 − Fh02ÞdR2 þ R2dΩ2; ð6Þ

where the dot denotes a partial derivative with respect to
time and a prime with respect to areal radius R. From (6) we
can identify the RR-component of the spatial metric γij as

γRR ¼ F−1ð1 − F2h02Þ; ð7aÞ

the lapse function α as

α2 ¼ Fð1 − _hÞ2

1 − F2h02
; ð7bÞ

and the R-component of the shift vector βR as

βR ¼ F2ð1 − _hÞh0

1 − F2h02
: ð7cÞ

Finally we compute the mean curvature from

K ¼ −∇ana ¼ −jgj−1=2∂aðjgj1=2naÞ; ð8Þ

where ∇a is the covariant derivative associated with the
spacetime metric, na the future-oriented normal to the
spatial hypersurface, na ¼ α−1ð1;−βiÞ, and g the determi-
nant of the spacetime metric, g ¼ −α2γRRR4sin2θ.
While the height-function approach has been adopted

to study the Schwarzschild spacetime in many different
coordinate systems, we focus here on transformations to
trumpet geometries that satisfy the Bona-Massó slicing
condition (1).

III. STATIC SLICES

The construction of static trumpet geometries using a
time-independent height function h ¼ h0ðRÞ has been
discussed by a number of authors (see, e.g., [8–14,22]),
and we therefore review only some important results that
are relevant for our discussion in the following sections.
For static slices, the Bona-Massó condition (1) is

βi∂iα ¼ α2fðαÞK; ð9Þ

the expression (7a) for the RR-component of the
spatial metric remains unchanged, Eq. (7b) for the lapse
reduces to4

α2 ¼ F
1 − F2h020

¼ γ−1RR; ð10aÞ

and Eq. (7c) for the shift becomes

βR ¼ F2h00
1 − F2h020

¼ α
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α2 − F

p
: ð10bÞ

Inserting the above expressions together with (8) into (9)
then yields an ordinary differential equation that, for many
choices of the Bona-Massó function fðαÞ, can be integrated
in closed form. A constant of integration can be determined
by imposing regularity across a singular point, making
the solution unique. For some choices of fðαÞ, this solution
can be expressed as an explicit function α ¼ αðRÞ, but for
others the solution can be written in implicit form for
α only.
In either case we may find the location R0 of the root

of the lapse, αðR0Þ ¼ 0, which must be inside the horizon,
i.e. R0 < 2M, for horizon-penetrating slices. Defining

a1 ≡
"
dα
dR

#$$$$
R¼R0

ð11Þ

we see from (10a) that γRR ≃ a−21 ðR − R0Þ−2 close to the
root of the lapse. Assuming that a1 is positive and finite, we
may integrate ds ¼ γ1=2RR dR to find that the root is located at
an infinite proper distance from all points R > R0. We
therefore refer to this location as the puncture and note that,
in its vicinity, the height function diverges according to

h00 ≃ −
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

−FðR0Þ
p

a1ðR − R0Þ
; ð12Þ

where we have adopted a negative sign in taking a square
root (note also that FðR0Þ < 0 since R0 < 2M). Even for
the time-dependent slices in the following sections, we
will identify the puncture with a divergence of the metric
component γRR, which, according to (7a), coincides with a
divergence of the height function h at R < 2M. In terms of
an isotropic radius r, which is typically employed in
numerical simulations, the puncture corresponds to the
origin r ¼ 0. For static slices the divergence of h0 auto-
matically coincides with a root of the lapse, but this need
not be the case for time-dependent slices (see Sec. IV
below). Also note that, for horizon-penetrating slices, α is
nonzero and finite on the horizon, where F ¼ 0, so that
(10a) indicates that the height-function necessarily has to

4We note a typo in the corresponding Eq. 7 of [14], where the
factor F, denoted f0 there, should be squared in the denominator.
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diverge there, too.5 Finally we note that we can compute the
static mean curvature at the puncture from

K0ðR0Þ ¼
βR∂Rα
α2fðαÞ

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−FðR0Þ

p
a1

αfðαÞ
; ð13Þ

where we have used (10b) and (11) in the second equality.
Evidently, whether or not K0ðR0Þ is finite depends on
the behavior of αfðαÞ as α → 0, which we have not yet
evaluated in (13).
After this general discussion, we consider some

examples for specific choices of the Bona-Massó function
fðαÞ, and summarize the key results for these static slices
in Table I.
By far the most common choice for fðαÞ is (2), which

leads to 1þ log slices [1]. For 1þ log slicing the integral
for the lapse α cannot be solved for α directly, so that
the resulting equations are usually solved numerically.
In particular, this yields R0 ≃ 1.312M for the root of the
lapse and a1 ≃ 0.832M−1 for the derivative of the lapse at
the root (see [9–11]). Finally, we use αfðαÞ ¼ 2 in (13) to
find K0ðR0Þ ¼ 0.301M−1 for the mean curvature at the
puncture.
As a second example we consider the choice

fðαÞ ¼ 1 − α
α

; ð14Þ

which results in a completely analytical trumpet slicing of
the Schwarzschild spacetime (see [13]). In this case the
integral for the lapse can be solved explicitly, yielding

α ¼ R −M
R

: ð15Þ

We evidently have R0 ¼ M, from which we compute
a1 ¼ M−1 and, using αfðαÞ ¼ 1 − α, the mean curvature
at the puncture, K0ðR0Þ ¼ M−1, in agreement with Eq. (17)
in [13]. Because of the simplicity of the above expressions,

it is also straightforward to insert (15) into (10a), solve for
h00 and integrate to obtain

h0ðRÞ ¼ M ln
2ðR − 2MÞ2

ðR −MÞM
ðR > MÞ; ð16Þ

where we have arbitrarily chosen a constant of
integration so that h0 ¼ 0 at R ¼ 3M. Note that h0 diverges
logarithmically both at the puncture R0 ¼ M as well as
the horizon R ¼ 2M, as expected from our discussion
above. In the vicinity of the puncture at R ¼ M we have
h00 ≃ −M=ðR −MÞ, in agreement with (12). We graph (16)
in Fig. 2 together with a hypothetical time-dependent
perturbation as considered in Sec. IV.
We next consider the shock-avoiding slicing condition

with fðαÞ given by (3). In this case the lapse function α can
again be expressed explicitly in terms of R,

α ¼
"
R4 − 2MR3 þ C

R4 − C=κ

#
1=2

; ð17Þ

where the constant of integration C is given by C ¼
33M4=24 (see [14]). The puncture is now located at
R0 ¼ 3M=2, independently of κ, and we can determine
a1 ¼ 2ð6κ=ð3κ − 1ÞÞ1=2=ð3MÞ. In a key difference from the
other slicing conditions, however, we now observe that
αfðαÞ ¼ αþ κ=α diverges at the puncture, so that the mean
curvature (13) vanishes there, K0ðR0Þ ¼ 0.

TABLE I. Summary of properties of static slices for three
different choices of the Bona-Massó function fðαÞ. For each fðαÞ
we list the areal radius of the black-hole puncture R0 (which, for
static slices, coincides with a root of the lapse function α), as well
as the values of F, the mean curvature K0, and the derivative
dK=dR as computed from (30), all evaluated at the puncture.

fðαÞ Reference R0=M FðR0Þ K0ðR0ÞM K0
0ðR0ÞM2

2=α [1] 1.312 −0.524 0.301 −1.730
ð1 − αÞ=α [13] 1 −1 1 −3
1þ κ=α2 [15] 3=2 −1=3 0 −8

ffiffiffi
3

p
=9

FIG. 2. Graph of the static height function h0ðRÞ, Eq. (16),
for the analytical trumpet slice (solid line), together with a
hypothetical perturbation (dashed line). As discussed in Sec. IV,
these perturbations can be described by changes η in h far from
the puncture, and changes ρ in the radius R close to the puncture
at R0 ¼ M.

5This divergence could have been avoided by starting with a
horizon-penetrating coordinate system in (4), rather than with
Schwarzschild coordinates.
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IV. DYNAMICAL SLICES: PERTURBATIVE
TREATMENTS

We now consider dynamical slices in the limit that they
may be considered linear perturbations of the static slices of
Sec. III. Inspecting Fig. 2 we note that these perturbations
need to be described in different ways in different regimes.
Far from the black hole, where the slope of h becomes
increasingly small, the perturbed slice can be described in
terms of a perturbation η of the height function h0 itself,
so that hðt; RÞ ¼ h0ðRÞ þ ηðt; RÞ. We will briefly discuss
this approach in Sec. IVA, recovering well-known wave
equations for the lapse function α. Close to the puncture,
however, h0 and its derivative diverge, so that changes in h
may also diverge. In this region it is more natural to
describe the perturbation in terms of a small shift ρ in the
radius R. As we will show in Sec. IV B, this approach will
yield our main result concerning the dynamical behavior of
different slicing conditions at the black-hole puncture.

A. Perturbations in the far limit

We first consider perturbations to the height function h
in the far limit R ≫ M, where we assume h00 → 0. As
discussed above we describe the perturbation as

hðt; RÞ ¼ h0ðRÞ þ ηðt; RÞ ð18Þ

in this regime. Given our assumption h00 ≪ 1 we have
_h ¼ _η and h0 ≃ η0. Since we also have F ≃ 1 in this limit,
we obtain, to leading order in η,

α ≃ 1 − _η; βR ≃ η0; K ≃ η00 þ 2

R
η0 ¼ ∇2η: ð19Þ

Inserting these expressions into the Bona-Massó condition
(1) we obtain the wave equation

−η̈þ fð1Þ∇2η ≃ 0; ð20Þ

where fð1Þ denotes the Bona-Massó function fðαÞ evalu-
ated for α ¼ 1. We may now take a time derivative of this
equation to see that, in this limit, the lapse function α
satisfies a wave equation, and that perturbations in the lapse
travel at speeds v ¼

ffiffiffiffiffiffiffiffiffi
fð1Þ

p
c, where we have inserted the

speed of light c for clarity. For 1þ log slicing with (2)
we have fð1Þ ¼ 2, confirming the well-known result
that gauge modes travel at a speed v ¼

ffiffiffi
2

p
c, while for

shock-avoiding slices with (3) gauge modes travel at a
speed v ¼

ffiffiffiffiffiffiffiffiffiffiffi
1þ κ

p
c (see, e.g., [15,18]).6

B. Perturbations at the puncture

We now turn to perturbations close to the puncture.
In this regime, where the static height function and its
derivative diverge, a perturbative ansatz like (18) cannot
describe a perturbation like the one sketched in Fig. 2,
i.e. one that shifts the puncture to a different radius, with
finite η. Instead, we describe perturbations in the vicinity of
the puncture in terms of a perturbation ρ ¼ ρðt; RÞ of the
radius R. Specifically, we will equate the (perturbed) height
function hðt; RÞwith the static height function h0 at a radius

R̄ ¼ Rþ ρðt; RÞ ð21Þ

as sketched in Fig. 2, with ρ defined by

hðt; RÞ ¼ h0ðR̄Þ ¼ h0ðRþ ρÞ: ð22Þ

Derivatives of h are then given by

_hðt; RÞ ¼ h00ðR̄Þ_ρðt; RÞ and ð23aÞ

h0ðt; RÞ ¼ h00ðR̄Þð1þ ρ0ðt; RÞÞ: ð23bÞ

Inserting (23) into (7) we obtain

γRR ¼ F−1ð1 − F2h020 ð1þ ρ0Þ2Þ ð24aÞ

for the radial metric component,

α2 ¼ Fð1 − h00 _ρÞ2

1 − F2h020 ð1þ ρ0Þ2
ð24bÞ

for the lapse, and

βR ¼ F2ð1 − h00 _ρÞh00ð1þ ρ0Þ
1 − F2h020 ð1þ ρ0Þ2

ð24cÞ

for the radial shift component.
We observe from (24a) that γRR diverges when h00ðR̄Þ

diverges. As in the static case, we may therefore identify
the puncture with a divergence of h00 at R̄ ¼ R0, except
that it is now located at R ¼ R0 − ρ (as suggested in the
sketch of Fig. 2). Evaluating the lapse (24b) at the puncture,
we obtain

α ¼ ð−FÞ−1=2
_ρ

1þ ρ0
; ð25aÞ

while the shift (24c) becomes

βR ¼
_ρ

1þ ρ0
: ð25bÞ

Defining the derivative along the normal vector na as

∂n ≡ α na∂a ¼ ∂t − βR∂R; ð26Þ

6Recall that the above waves describe pure gauge modes, so
that a wave speed v exceeding the speed of light c does not violate
causality.
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we may rewrite Eqs. (25) in the more compact form

α ¼ ð−FÞ−1=2∂nρ and βR ¼ ∂nρ: ð27Þ

Unlike in the static case (see Eq. (10a)), the lapse function
does not necessarily vanish at the puncture for time-
dependent slices, as has been observed in numerous
numerical simulations (see Fig. 1 for an example).
We next evaluate the Bona-Massó condition (1) at the

puncture. On the left-hand side we use the definition (26)
together with (27) to obtain

ð∂t − βR∂RÞα ¼ ∂nðð−FÞ−1=2∂nρÞ; ð28Þ

while on the right-hand side we insert the expressions (24)
into (8) and evaluate the result at the puncture, where
h00 → ∞ and R̄ ¼ R0, to obtain

K ¼ −
4F þ RF0

2Rð−FÞ1=2
: ð29Þ

In both (28) and (29) the function F and its derivative
are evaluated at R ¼ R0 − ρ. For ρ ≪ R0 we may expand
the above expressions about R̄ ¼ R0 and rewrite (29) as

KðRÞ ≃ KðR0Þ − ρK0ðR0Þ; ð30Þ

where K0 ¼ dK=dR. As expected, evaluating KðR0Þ
from (29) yields the values listed in Table I, where we
also list the values of K0ðR0Þ for the different slicing
conditions. We now insert (28) and (30) into the Bona-
Massó condition (1) and obtain

∂nðð−FÞ−1=2∂nρÞ ¼ −α2fðαÞ½KðR0Þ − ρK0ðR0Þ&; ð31Þ

where we have not yet evaluated the term α2fðαÞ.
Remarkably, all spatial derivatives of ρ other than those
contained in the operators ∂n on the left-hand side disappear
in the limit h00 → ∞, resulting in an ordinary differential
equation for ρ at the puncture. As we will explore in the
next two subsections, even the qualitative behavior of
solutions to this equation depends on the choice of fðαÞ
and hence KðR0Þ, because it determines whether (31) acts
as a first- or second-order equation.

1. 1+ log slicing

For almost all slicing conditions, the leading-order mean
curvature term KðR0Þ on the right-hand side of (31) is
nonzero. One such slicing condition is 1þ log slicing with
fðαÞ ¼ 2=α (see (2)), for which (31) becomes

∂nðð−FÞ−1=2∂nρÞ¼2ð−FÞ−1=2∂nρ½KðR0Þ−ρK0ðR0Þ& ð32Þ

after inserting (27) for α on the right-hand side. We now
observe that, to leading order in ρ, the term ρK0ðR0Þ on the

right-hand side disappears and with it the only appearance
of ρ itself (rather than its derivatives). To linear order in ρ,
we may therefore replace the term ð−FÞ−1=2∂nρ with α to
obtain a first-order equation for the lapse alone,

∂nα ¼ −2αKðR0Þ: ð33Þ

This equation is identical to our starting point (1), of course,
except that now, in the linear limit, we assume the mean
curvature K to be given by a positive and constant value. In
this case we may integrate to obtain

α ¼ Ce−2KðR0Þt; ð34Þ

where C is a constant of integration, demonstrating that,
to linear order, we should expect the lapse function at the
puncture to decay exponentially for 1þ log slicing.
As one might expect from the discussion in Sec. I, a

quantitative comparison of (34) with the numerical data of
Fig. 1 shows some differences. During the time around
10M ≲ t≲ 15M, when Fig. 1 suggests an approximately
exponential decay, the numerical data fall off more rapidly
than predicted by (34). A rough fit to the numerical data
suggests a time constant τ that is smaller than ð2KðR0ÞÞ−1
by about a factor of two. However, rather than being
constant, K also changes rapidly during this period, as it
transitions from its initial value of zero to the equilibrium
value of KðR0Þ ≃ 0.301, indicating that nonlinear terms are
still important during this time. At later times numerical
error becomes important; in particular, the lapse settles
down to a small but nonzero value (that depends on the
numerical resolution), so that exponential decay can no
longer be observed.

2. Shock-avoiding slices

For shock-avoiding slices the unperturbed puncture
is located at R0 ¼ 3M=2 so that the mean curvature
KðR0Þ on the right-hand side of (31) vanishes. Inserting
fðαÞ ¼ 1þ κ=α2 (see (3)) into (31) we now obtain

∂nðð−FÞ−1=2∂nρÞ ¼ κK0ðR0Þρ; ð35Þ

where we have already neglected a term quadratic in α on
the right-hand side. In contrast to 1þ log slicing, the term
proportional to ρ now dominates the right-hand side, so we
cannot rewrite this second-order equation as a first-order
equation for α. We instead expand to linear order in ρ to
obtain the harmonic-oscillator equation

∂2nρ ¼ −ω2ρ; ð36Þ

with the angular frequency ω given by

ω2 ¼ −ð−FÞ1=2κK0ðR0Þ ¼
8κ
9M2

: ð37Þ
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Accordingly, ρ, and hence α, performs harmonic oscilla-
tions with period

P ¼ 3πMffiffiffiffiffi
2κ

p : ð38Þ

Note that we have assumed κ > 0 in the above arguments,
in accordance with our original assumption in (3) (see
also [15]).
As in Sec. IV B 1 we attempt a quantitative comparison

with the numerical data with some caution. Measuring the
period of the oscillations observed for the shock-avoiding
slices around 130M ≲ t≲ 170M, we find P1 ≃ 8M for
κ ¼ 1 and P2=3 ≃ 11M for κ ¼ 2=3 (even though the latter,
in particular, shows some variation). Evaluating (38), on the
other hand, we obtain P1 ≃ 6.7M and P2=3 ≃ 8.2M. While
we again do not find accurate quantitative agreement, we
see that our analysis does explain the origin of the observed
harmonic oscillation and correctly predicts that the period
increases with decreasing κ.
We suspect that nonlinear terms cause the damping of

the oscillations at early times, as seen in Fig. 1. Once the
amplitude is sufficiently small, however, the oscillations
should be governed by (36), which does not have a
damping term. Accordingly, one would expect these
oscillations to persist at a small amplitude, which is
consistent with the numerical results.

V. SUMMARY

Motivated by recent numerical experiments with shock-
avoiding slicing conditions as alternatives to 1þ log
slicing, we explore the origins of a qualitative difference
observed in these simulations: while, for the latter, the lapse
function at the black-hole puncture appears to decay in an
approximately exponential fashion, the former leads to
approximately harmonic oscillations in the lapse. We apply
a dynamical height-function approach to Schwarzschild
black holes to describe time-dependent coordinate transi-
tions, impose the Bona-Massó condition (1) with different
choices for the function fðαÞ, evaluate the resulting

equation at the black-hole puncture, and finally consider
small perturbations of a background trumpet solution.
Describing these perturbations in terms of the displace-

ment ρ of the location of the puncture, the Bona-Massó
equation becomes a second-order equation for ρ (see (31)).
The key difference between 1þ log slices and shock-
avoiding slices then arises from the behavior of the
(unperturbed) mean curvature KðR0Þ at the location of
the puncture. For 1þ log slicing, KðR0Þ takes a nonzero,
positive value, in which case ρ itself drops out of the
equation to linear order, resulting in a first-order equation
for ∂nρ that governs exponential decay. For shock-avoiding
slices, on the other hand, KðR0Þ vanishes, and the right-
hand side of (31) ends up being dominated by ρ at linear
order. The equation therefore remains a second-order
equation for ρ, resulting in harmonic oscillation. We further
observe that the period of the oscillations depends on the
constant κ in (3), with larger κ resulting in a shorter period.
While a quantitative comparison of our analytical results

with the numerical findings of [20] shows some discrep-
ancies as discussed in Sec. IV B, we believe that these can
be explained in terms of nonlinear effects and numerical
error resulting from the lack of differentiability at the black-
hole puncture. Despite these discrepancies, our findings
provide analytical insight into the dynamical behavior of
the lapse at the black-hole puncture, point to the origin of
qualitative differences between different slicing conditions,
and predict the dependence of decay constants and oscil-
lation periods on the given parameters.
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