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Dynamical perturbations of black-hole punctures:
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While numerous numerical relativity simulations adopt a 1 + log slicing condition, shock-avoiding
slicing conditions form a viable and sometimes advantageous alternative. Despite both conditions
satisfying similar equations, recent numerical experiments point to a qualitative difference in the behavior
of the lapse in the vicinity of the black-hole puncture: for 1 + log slicing, the lapse appears to decay
approximately exponentially, while for shock-avoiding slices it performs approximately harmonic
oscillation. Motivated by this observation, we consider dynamical coordinate transformations of the
Schwarzschild spacetime to describe small perturbations of static trumpet geometries analytically. We find
that the character of the resulting equations depends on the (unperturbed) mean curvature at the black-hole
puncture: for 1 + log slicing it is positive, predicting exponential decay in the lapse, while for shock-
avoiding slices it vanishes, leading to harmonic oscillation. In addition to identifying the value of the mean
curvature as the origin of these qualitative differences, our analysis provides insight into the dynamical
behavior of black-hole punctures for different slicing conditions.
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I. INTRODUCTION

Among the most commonly used slicing conditions in
numerical relativity is the Bona-Masso condition

(0, = p'oj)a = - f(a)K, (1)

where «a is the lapse function, ﬂi the shift vector, K the mean
curvature (i.e. the trace of the extrinsic curvature), and the
Bona-Massé function f(a) is a function of the lapse that
has yet to be determined (see [1]). The properties of the
resulting slices depend, of course, on the choice for f(a);
for f(a) =1, for example, the slicing condition (1) is
equivalent to the lapse condition in harmonic coordinates.

A particularly successful choice for the Bona-Massé
function is

fla) =~, )

especially for simulations of black-hole spacetimes. In the
absence of a shift vector, Eq. (1) can then be integrated to
yield a = 1 +log(y), where y is the determinant of the
spatial metric, which lends this slicing condition its name
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1 + log slicing (see [2-7] for textbook discussions).
Dynamical simulations with 1 + log slicing render black
holes in a trumpet geometry, which, in the static limit, have
been analyzed by a number of different authors [8—10].
These studies, together with those of similar trumpet
geometries (e.g., [11-14]) have helped explain the remark-
able numerical properties of these slicing conditions,
especially in the context of black-hole simulations.

Even in the context of vacuum evolution calculations,
however, 1 4+ log slicing is known to lead to coordinate
shocks in some circumstances (see [15-17]). Alcubierre
[15,18] therefore suggested an alternative shock-avoiding
Bona-Massé slicing condition with

fla) =1+, (3)

a

where k > 0 is a constant. While this condition has indeed
been found to avoid some coordinate pathologies that
arise in 1 + log slicing, it also has some very unusual
properties—in particular, it allows the lapse to become
negative (see the discussion in [18], as well as Fig. 1 below
for an example), which may explain why it has been
adopted only rarely (see, e.g., [19]).

Despite the appearance of negative values for the lapse,
shock-avoiding slicing has recently been shown to perform
very similarly to 1 4 log slicing in terms of stability and
accuracy for a number of test calculations involving black

© 2023 American Physical Society
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FIG. 1. The lapse a at the black-hole puncture in the evolution
of a single black hole with the Bona-Mass6 slicing condition (1).
All simulations start with wormhole initial data together with a
“precollapsed lapse,” @ = w2, where y is the initial conformal
factor, and transition to a trumpet geometry determined by the
choice of the Bona-Massé function f(a). Note the qualitatively
different behavior of the lapse for different functions f(a) after
the initial perturbation: for 1+ log slicing with (2), the lapse
appears to decay approximately exponentially, while for shock-
avoiding slicing conditions (3) it appears to perform harmonic
oscillations, with a period that appears to depend on «. (Figure
adapted from Fig. 2 of [20], to where the reader is referred for
numerical details.)

holes, neutron stars, and gravitational collapse (see [20]).
One of these tests considered a Schwarzschild black hole
initially represented on a slice of constant Schwarzschild
time, i.e. in a wormhole geometry. These data are then
evolved with the Bona-Massé slicing condition (1), which
results in a coordinate transition to a trumpet geometry.
In Fig. 1 we reproduce results from this test and show the
values of the lapse at the black-hole puncture, i.e. at the
center of the isotropic coordinate system.

Evidently, the behavior of the lapse at the black-hole
puncture for 1 4 log versus shock-avoiding slices shows
not only quantitative but also qualitative differences. For
1 4 log slices the lapse appears to decay approximately
exponentially after a brief dynamical period, while, for
shock-avoiding slices, the lapse appears to perform
harmonic oscillations. At early times these oscillations
appear to be damped, but at later times the amplitude
remains approximately constant. We also observe that the
period of the oscillations is larger for a smaller value of the
constant x in (3).

We caution that neither the exponential decay nor the
harmonic oscillation is exact. We also note that, because of
the lack of differentiability at the center of the black hole,
numerical error arising from finite-differencing across the
black-hole puncture is large and prevents pointwise con-
vergence. Using a completely independent code based on

a multidomain spectral method (see [21]) we found some
quantitative differences resulting from the different treat-
ment of the puncture, but the same qualitative behavior as
with the finite-difference code: exponential decay, typi-
cally associated with a first-order ordinary differential
equation, for 1 + log slicing, versus harmonic oscillation,
pointing to a second-order equation, for shock-avoiding
slicing. Since both slicing conditions are imposed by the
same equation, the Bona-Mass6 condition (1), the origin
of this qualitatively different behavior is, a priori, not
clear at all.

Our goal in this paper is to gain analytical insight into
what causes these qualitative differences. We employ a
dynamical height-function approach to describe time-
dependent coordinate transformations of Schwarzschild
black holes, and to explore the behavior of the lapse at
the black-hole puncture. We introduce this formalism in
Sec. II, and review results for static slices in Sec. III.
In Sec. IV we then consider dynamical slices in the limit
that they can be considered small perturbations of static
slices. At large distances from the black hole, the Bona-
Massé condition (1) results in well-known wave equations
for the lapse, as expected. At the black-hole puncture,
however, the resulting equation depends on whether or
not the (unperturbed) mean curvature K vanishes at the
puncture. Typically, including for 1 + log slicing, K is
positive at the puncture, in which case one obtains
exponential damping. Shock-avoiding slices, however,
form an exception in that K vanishes at the puncture,
in which case one obtains harmonic oscillation. We briefly
summarize in Sec. V, concluding that the vanishing
of K at the black-hole puncture results in the qualitative
differences observed.

II. DYNAMICAL HEIGHT FUNCTIONS

We start with the Schwarzschild line element in
Schwarzschild coordinates,1

ds* = —F di* + F~' dR* + R* dQ?, (4)

where R is the areal radius, F = F(R) = 1 —2M /R, and M
is the black-hole mass.”> We then transform to a new time
coordinate’ r by introducing a height-function h(t,R)

'We adopt geometrized units with G = 1 = ¢ unless noted
otherwise.

2We focus on uncharged Schwarzschild black holes here, but
note that our calculation generalizes to charged Reissner-Nord-
strom black holes simply by letting F = 1 —2M/R + Q*/R?,
where Q is the black-hole charge.

3Unlike in [22], where we denoted the Schwarzschild time as ¢
and the new time coordinate as 7, we here adopt the opposite
convention in order to reduce notational clutter for dynamical
slices.
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that measures how far the new time slices lift off the old
time slices,

t=7+h(t,R) (5)

(see, e.g., [23-26], as well as [4] for a textbook treatment).
Unlike in many previous applications, we allow the height-
function to depend on time in order to study dynamical
coordinate transitions. Inserting (5) into the line element (4)
results in

ds® = —F(1 — h)2di* + 2F(1 — h)W'dtdR
+ (F~' = Fh?)dR? + R*dQ?, (6)

where the dot denotes a partial derivative with respect to
time and a prime with respect to areal radius R. From (6) we
can identify the RR-component of the spatial metric y;; as

vre = F~'(1 = F?1"), (7a)

the lapse function a as
, F(1-h)?
1= Fh"?’

and the R-component of the shift vector X as

P F2(1 = h)n

1— F2h/2 .
Finally we compute the mean curvature from
K ==V,n" = —|g|7"29,(|g"/*n%), (8)

where V, is the covariant derivative associated with the
spacetime metric, n? the future-oriented normal to the
spatial hypersurface, n = a~!(1, —f"), and g the determi-
nant of the spacetime metric, g = —a’yggrR*sin’6.

While the height-function approach has been adopted
to study the Schwarzschild spacetime in many different
coordinate systems, we focus here on transformations to
trumpet geometries that satisfy the Bona-Massé slicing
condition (1).

II1. STATIC SLICES

The construction of static trumpet geometries using a
time-independent height function 7 = hy(R) has been
discussed by a number of authors (see, e.g., [8—14,22]),
and we therefore review only some important results that
are relevant for our discussion in the following sections.

For static slices, the Bona-Massé condition (1) is

ploa =’ f(a)K. ©)

the expression (7a) for the RR-component of the
spatial metric remains unchanged, Eq. (7b) for the lapse
reduces to*

F
2= 1_7[,2%2 = Yrk> (10a)
and Eq. (7c) for the shift becomes
F2h/
R = T onh{)z =aVva*-F. (10b)

Inserting the above expressions together with (8) into (9)
then yields an ordinary differential equation that, for many
choices of the Bona-Mass6 function f(a), can be integrated
in closed form. A constant of integration can be determined
by imposing regularity across a singular point, making
the solution unique. For some choices of f(a), this solution
can be expressed as an explicit function @ = a(R), but for
others the solution can be written in implicit form for
a only.

In either case we may find the location R of the root
of the lapse, a(Ry) = 0, which must be inside the horizon,
i.e. Ry < 2M, for horizon-penetrating slices. Defining

_ [(da
"= ()
we see from (10a) that ygg ~ a7?(R — Ry) ™2 close to the
root of the lapse. Assuming that a; is positive and finite, we
may integrate ds = y,le/ﬁ dR to find that the root is located at
an infinite proper distance from all points R > R,. We

therefore refer to this location as the puncture and note that,
in its vicinity, the height function diverges according to

(11)

R=R,

1
hy =~ — (12)

V—-F(Ro)a;(R—R,)’

where we have adopted a negative sign in taking a square
root (note also that F(R,) < 0 since Ry < 2M). Even for
the time-dependent slices in the following sections, we
will identify the puncture with a divergence of the metric
component ypr, Which, according to (7a), coincides with a
divergence of the height function z at R < 2M. In terms of
an isotropic radius r, which is typically employed in
numerical simulations, the puncture corresponds to the
origin r = 0. For static slices the divergence of A, auto-
matically coincides with a root of the lapse, but this need
not be the case for time-dependent slices (see Sec. IV
below). Also note that, for horizon-penetrating slices, a is
nonzero and finite on the horizon, where F = 0, so that
(10a) indicates that the height-function necessarily has to

“We note a typo in the corresponding Eq. 7 of [14], where the
factor F, denoted f, there, should be squared in the denominator.
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TABLE I. Summary of properties of static slices for three
different choices of the Bona-Massé function f(a). For each f(a)
we list the areal radius of the black-hole puncture R, (which, for
static slices, coincides with a root of the lapse function a), as well
as the values of F, the mean curvature K, and the derivative
dK/dR as computed from (30), all evaluated at the puncture.

fl@) Reference Ry/M F(Ry) Ko(Ro)M Kjy(Ry)M?
2/a [1] 1312 -0.524  0.301 -1.730
(1-a)/a  [13] 1 -1 1 -3

1 +K/a? [15] 3/2  -1/3 0 —8/3/9

diverge there, t00.> Finally we note that we can compute the
static mean curvature at the puncture from

KulRo) = b i - VR 1y

where we have used (10b) and (11) in the second equality.
Evidently, whether or not Ky(R,) is finite depends on
the behavior of af(a) as @ — 0, which we have not yet
evaluated in (13).

After this general discussion, we consider some
examples for specific choices of the Bona-Mass6 function
f(a), and summarize the key results for these static slices
in Table I.

By far the most common choice for f(a) is (2), which
leads to 1 + log slices [1]. For 1 + log slicing the integral
for the lapse a cannot be solved for a directly, so that
the resulting equations are usually solved numerically.
In particular, this yields Ry~ 1.312M for the root of the
lapse and a; ~ 0.832M~! for the derivative of the lapse at
the root (see [9—11]). Finally, we use af(a) = 2 in (13) to
find Ky(Ry) = 0.301M~! for the mean curvature at the
puncture.

As a second example we consider the choice

_l—a

fla) = ; (14)

a

which results in a completely analytical trumpet slicing of
the Schwarzschild spacetime (see [13]). In this case the
integral for the lapse can be solved explicitly, yielding

R-—-M
=—. 15
a=" (15)
We evidently have Ry, = M, from which we compute
a; = M~" and, using af(a) = 1 — a, the mean curvature
at the puncture, Ko(Ry) = M~!, in agreement with Eq. (17)
in [13]. Because of the simplicity of the above expressions,

>This divergence could have been avoided by starting with a
horizon-penetrating coordinate system in (4), rather than with
Schwarzschild coordinates.

6
44
24
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FIG. 2. Graph of the static height function hy(R), Eq. (16),
for the analytical trumpet slice (solid line), together with a
hypothetical perturbation (dashed line). As discussed in Sec. IV,
these perturbations can be described by changes # in 4 far from
the puncture, and changes p in the radius R close to the puncture
at RO =M.

it is also straightforward to insert (15) into (10a), solve for
h{, and integrate to obtain

2(R —2M)?

ho(R) = Mlnm

(R> M), (16)

where we have arbitrarily chosen a constant of
integration so that hy; = 0 at R = 3M. Note that &, diverges
logarithmically both at the puncture Ry = M as well as
the horizon R =2M, as expected from our discussion
above. In the vicinity of the puncture at R = M we have
0 ~—M/(R— M), in agreement with (12). We graph (16)
in Fig. 2 together with a hypothetical time-dependent
perturbation as considered in Sec. IV.
We next consider the shock-avoiding slicing condition
with f(a) given by (3). In this case the lapse function a can
again be expressed explicitly in terms of R,

R* —2MR3 + C\ /2
:<—+) ) (17)

R*—C/k

where the constant of integration C is given by C =
33M*/2* (see [14]). The puncture is now located at
Ry = 3M/2, independently of k, and we can determine
a; = 2(6x/(3k — 1))'/2/(3M). In a key difference from the
other slicing conditions, however, we now observe that
af(a) = a + x/a diverges at the puncture, so that the mean
curvature (13) vanishes there, Ky(R,) = 0.
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IV. DYNAMICAL SLICES: PERTURBATIVE
TREATMENTS

We now consider dynamical slices in the limit that they
may be considered linear perturbations of the static slices of
Sec. III. Inspecting Fig. 2 we note that these perturbations
need to be described in different ways in different regimes.
Far from the black hole, where the slope of & becomes
increasingly small, the perturbed slice can be described in
terms of a perturbation # of the height function A, itself,
so that i(z, R) = ho(R) + n(t, R). We will briefly discuss
this approach in Sec. IVA, recovering well-known wave
equations for the lapse function a. Close to the puncture,
however, h and its derivative diverge, so that changes in &
may also diverge. In this region it is more natural to
describe the perturbation in terms of a small shift p in the
radius R. As we will show in Sec. IV B, this approach will
yield our main result concerning the dynamical behavior of
different slicing conditions at the black-hole puncture.

A. Perturbations in the far limit

We first consider perturbations to the height function &
in the far limit R > M, where we assume hj — 0. As
discussed above we describe the perturbation as

h(t.R) = ho(R) + (. R) (18)

in this regime. Given our assumption A, < 1 we have

h =1 and h' ~#'. Since we also have F ~ 1 in this limit,
we obtain, to leading order in 7,

2
a~1-n, PR~y K:n”JrEn’:Vzn. (19)

Inserting these expressions into the Bona-Massé condition
(1) we obtain the wave equation

=i+ f(1)V?n =0, (20)

where f(1) denotes the Bona-Massé function f(a) evalu-
ated for « = 1. We may now take a time derivative of this
equation to see that, in this limit, the lapse function «
satisfies a wave equation, and that perturbations in the lapse
travel at speeds v = \/f(1)c, where we have inserted the
speed of light ¢ for clarity. For 1 4+ log slicing with (2)
we have f(1)=2, confirming the well-known result
that gauge modes travel at a speed v = v/2¢, while for
shock-avoiding slices with (3) gauge modes travel at a

speed v = /1 4 kc (see, e.g., [15,18]).6

SRecall that the above waves describe pure gauge modes, SO
that a wave speed v exceeding the speed of light ¢ does not violate
causality.

B. Perturbations at the puncture

We now turn to perturbations close to the puncture.
In this regime, where the static height function and its
derivative diverge, a perturbative ansatz like (18) cannot
describe a perturbation like the one sketched in Fig. 2,
i.e. one that shifts the puncture to a different radius, with
finite 5. Instead, we describe perturbations in the vicinity of
the puncture in terms of a perturbation p = p(t, R) of the
radius R. Specifically, we will equate the (perturbed) height
function A(#, R) with the static height function A at a radius

R=R+p(t,R) (21)
as sketched in Fig. 2, with p defined by
h(t.R) = ho(R) = ho(R + p). (22)

Derivatives of h are then given by

h(t,R) = hy(R)p(t,R) and (23a)
W(tR) = By(R)(1+p/(LR).  (23b)

Inserting (23) into (7) we obtain
vre = F' (1= F2hg (14 0)?) (24a)

for the radial metric component,

F(l=Hh/ 2
(12 — (2 5 Op) 5 (24b)
1= F*hg (1 +p')
for the lapse, and
F2(1 = hyp)h) (1 /

pR — ( o)1 +p') (24c)

1= PPh2(1+p')?

for the radial shift component.

We observe from (24a) that ygg diverges when hj(R)
diverges. As in the static case, we may therefore identify
the puncture with a divergence of hj at R = R, except
that it is now located at R = Ry — p (as suggested in the
sketch of Fig. 2). Evaluating the lapse (24b) at the puncture,
we obtain

_ P
a = (—F) l/zl—pl, (25a)
while the shift (24c) becomes
R p
= . 25b

Defining the derivative along the normal vector n* as

0, = and, = 0, — pRog, (26)
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we may rewrite Egs. (25) in the more compact form
a= <_F>_1/20n/) and R = 0,p. (27)

Unlike in the static case (see Eq. (10a)), the lapse function
does not necessarily vanish at the puncture for time-
dependent slices, as has been observed in numerous
numerical simulations (see Fig. 1 for an example).

We next evaluate the Bona-Masso condition (1) at the
puncture. On the left-hand side we use the definition (26)
together with (27) to obtain

(0, = pRog)a = 0,((=F)~"20,p). (28)

while on the right-hand side we insert the expressions (24)
into (8) and evaluate the result at the puncture, where
hyy — oo and R = Ry, to obtain

4F + RF'

In both (28) and (29) the function F and its derivative
are evaluated at R = R, — p. For p < Ry, we may expand
the above expressions about R = R, and rewrite (29) as

K(R) ~ K(Ry) — pK'(Ry), (30)

where K’ = dK/dR. As expected, evaluating K(R)
from (29) yields the values listed in Table I, where we
also list the values of K'(Ry) for the different slicing
conditions. We now insert (28) and (30) into the Bona-
Massé condition (1) and obtain

0,((=F)7"20,p) = —a’f(a)[K(Ry) = pK'(Ro)].  (31)

where we have not yet evaluated the term o’f(a).
Remarkably, all spatial derivatives of p other than those
contained in the operators 9, on the left-hand side disappear
in the limit 4{, — oo, resulting in an ordinary differential
equation for p at the puncture. As we will explore in the
next two subsections, even the qualitative behavior of
solutions to this equation depends on the choice of f(a)
and hence K(Ry), because it determines whether (31) acts
as a first- or second-order equation.

1. 1+ log slicing

For almost all slicing conditions, the leading-order mean
curvature term K(R,) on the right-hand side of (31) is
nonzero. One such slicing condition is 1 + log slicing with
fla) =2/a (see (2)), for which (31) becomes

0,((=F)~1/20,p) =2(~F)~10,plK (Ry) ~ pK'(Ro)] (32)

after inserting (27) for @ on the right-hand side. We now
observe that, to leading order in p, the term pK’(R) on the

right-hand side disappears and with it the only appearance
of p itself (rather than its derivatives). To linear order in p,
we may therefore replace the term (—F)~'/29,p with a to
obtain a first-order equation for the lapse alone,

0,a = —2aK(Ry). (33)

This equation is identical to our starting point (1), of course,
except that now, in the linear limit, we assume the mean
curvature K to be given by a positive and constant value. In
this case we may integrate to obtain

a = Ce 2K(Ro)t (34)

where C is a constant of integration, demonstrating that,
to linear order, we should expect the lapse function at the
puncture to decay exponentially for 1 4 log slicing.

As one might expect from the discussion in Sec. I, a
quantitative comparison of (34) with the numerical data of
Fig. 1 shows some differences. During the time around
10M <t < 15M, when Fig. 1 suggests an approximately
exponential decay, the numerical data fall off more rapidly
than predicted by (34). A rough fit to the numerical data
suggests a time constant 7 that is smaller than (2K (R))~!
by about a factor of two. However, rather than being
constant, K also changes rapidly during this period, as it
transitions from its initial value of zero to the equilibrium
value of K(R;) ~ 0.301, indicating that nonlinear terms are
still important during this time. At later times numerical
error becomes important; in particular, the lapse settles
down to a small but nonzero value (that depends on the
numerical resolution), so that exponential decay can no
longer be observed.

2. Shock-avoiding slices

For shock-avoiding slices the unperturbed puncture
is located at Ry, =3M/2 so that the mean curvature
K(Ry) on the right-hand side of (31) vanishes. Inserting
fl@) =1+ «/a? (see (3)) into (31) we now obtain

0,((=F)™"20,p) = kK'(Ry)p. (35)

where we have already neglected a term quadratic in o on
the right-hand side. In contrast to 1 + log slicing, the term
proportional to p now dominates the right-hand side, so we
cannot rewrite this second-order equation as a first-order
equation for a. We instead expand to linear order in p to
obtain the harmonic-oscillator equation

Rp = —a’p, (36)
with the angular frequency @ given by

8k

> = —(=F)'’kK'(Ry) = ——.
@ = ~(=F)'"kK'(R)) = 5>
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Accordingly, p, and hence «a, performs harmonic oscilla-
tions with period

3zM
NI

Note that we have assumed x > 0 in the above arguments,
in accordance with our original assumption in (3) (see
also [15]).

As in Sec. IV B 1 we attempt a quantitative comparison
with the numerical data with some caution. Measuring the
period of the oscillations observed for the shock-avoiding
slices around 130M <t < 170M, we find P, ~8M for
k = 1 and P,/3 ~ 11M for x = 2/3 (even though the latter,
in particular, shows some variation). Evaluating (38), on the
other hand, we obtain P; ~6.7M and P, /3% 8.2M. While
we again do not find accurate quantitative agreement, we
see that our analysis does explain the origin of the observed
harmonic oscillation and correctly predicts that the period
increases with decreasing «.

We suspect that nonlinear terms cause the damping of
the oscillations at early times, as seen in Fig. 1. Once the
amplitude is sufficiently small, however, the oscillations
should be governed by (36), which does not have a
damping term. Accordingly, one would expect these
oscillations to persist at a small amplitude, which is
consistent with the numerical results.

P =

(38)

V. SUMMARY

Motivated by recent numerical experiments with shock-
avoiding slicing conditions as alternatives to 1+ log
slicing, we explore the origins of a qualitative difference
observed in these simulations: while, for the latter, the lapse
function at the black-hole puncture appears to decay in an
approximately exponential fashion, the former leads to
approximately harmonic oscillations in the lapse. We apply
a dynamical height-function approach to Schwarzschild
black holes to describe time-dependent coordinate transi-
tions, impose the Bona-Mass6 condition (1) with different
choices for the function f(a), evaluate the resulting

equation at the black-hole puncture, and finally consider
small perturbations of a background trumpet solution.

Describing these perturbations in terms of the displace-
ment p of the location of the puncture, the Bona-Mass6
equation becomes a second-order equation for p (see (31)).
The key difference between 1+ log slices and shock-
avoiding slices then arises from the behavior of the
(unperturbed) mean curvature K(R,) at the location of
the puncture. For 1 + log slicing, K(R,) takes a nonzero,
positive value, in which case p itself drops out of the
equation to linear order, resulting in a first-order equation
for d,p that governs exponential decay. For shock-avoiding
slices, on the other hand, K(R) vanishes, and the right-
hand side of (31) ends up being dominated by p at linear
order. The equation therefore remains a second-order
equation for p, resulting in harmonic oscillation. We further
observe that the period of the oscillations depends on the
constant « in (3), with larger x resulting in a shorter period.

While a quantitative comparison of our analytical results
with the numerical findings of [20] shows some discrep-
ancies as discussed in Sec. IV B, we believe that these can
be explained in terms of nonlinear effects and numerical
error resulting from the lack of differentiability at the black-
hole puncture. Despite these discrepancies, our findings
provide analytical insight into the dynamical behavior of
the lapse at the black-hole puncture, point to the origin of
qualitative differences between different slicing conditions,
and predict the dependence of decay constants and oscil-
lation periods on the given parameters.
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