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ABSTRACT

Diodes are a basic component of electrical circuits to control the flow of charge, and
geometric diodes (GDs) are a special class that can operate using ballistic or quasi-ballistic
transport in conjunction with geometric asymmetry to direct charge carriers preferentially in one
direction, enabling an electron ratcheting effect. Nanomaterials present a unique platform for
development of GDs, and silicon nanowire (NW) based GDs—cylindrically symmetric but
translationally asymmetric three-dimensional nanostructures—have recently been demonstrated
functioning at room temperature. These devices can theoretically achieve near zero-bias turn-on
voltage and rectify up to THz frequencies. Here, we synthesize silicon NW GDs and fabricate
single-NW devices from which significant changes in diode performance are observed from
relatively minor changes in geometry. To elucidate the interplay between geometry and ballistic

behavior, we develop a Monte Carlo simulation that describes the quasi-ballistic behavior of



electrons within a three-dimensional NW GD. We examine the effects of doping level,
temperature, and geometry on charge carrier transport, revealing the relationships between
charge carrier mean free path (MFP), specular reflection at surfaces, and geometry on GD
performance. As expected, geometry strongly influences performance by directing or blocking
charge carrier passage through the nanostructure. Interestingly, we find that the blocking effect is
at least as important as the directing effect. Moreover, within certain geometric limits, the diode
behavior is less sensitive to MFP than might be initially expected because of the short relevant
length scales and importance of the blocking effect. The results provide guidelines for the future
design of NW GDs and enable the prediction and interpretation of trends in experimental results.
Improved understanding of quasi-ballistic transport is crucial to guiding future experiments
toward realizing THz rectification for applications in high-speed data transfer and long-

wavelength energy harvesting.

INTRODUCTION

A ratcheting mechanism can describe a broad set of physical phenomena in inherently
asymmetric systems,'™ including the unidirectional motion of motor molecules and proteins,™ ®
particle separation in microfluidic devices,”® and the directed flow of current in electron
ratchets.! Electron ratchets, geometric diodes (GDs), and ballistic rectifiers, are related concepts
that have been of continuing interest to condensed matter physics, chemistry, and electrical
engineering disciplines since the concept was introduced more than 70 years ago.’ In general, an
electron ratchet is a system with spatial inversion asymmetry (i.e. broken spatial inversion
symmetry) that is out of thermal equilibrium and subjected to a time-varying force (e.g.

alternating current (AC) signals) with a time average of zero. The combination of inversion



asymmetry and disequilibrium allows the system to rectify a time-varying force to produce a net
direct current (DC) and electrical power. At thermal equilibrium, thermal fluctuations cancel out,
and electron ratchet systems produce no time-averaged DC power (as required by the Second
Law of Thermodynamics).

There are several ways in which electron ratchets can be classified. Most fundamentally,
they can be classified as either tilting or flashing ratchets. A tilting ratchet contains a constant,
asymmetric potential (or shape) with a time-varying bias whereas a flashing ratchet contains a
time-varying asymmetric potential and a constant bias (typically zero). In addition, electron
ratchets can be classified as those that rely on ballistic or quasi-ballistic transport of charge
carriers and those that do not (non-ballistic, or diffusive, electron ratchets), where the differences
between ballistic, quasi-ballistic, and diffusion transport are illustrated in Figure 1A. The term
quasi-ballistic refers to geometric, temperature (7), or doping conditions where some degree of
charge carrier scattering is expected within the nominally ballistic region, but the degree and
effect of scattering is sufficiently small that a ballistic mechanism still results in a GD effect.

Ballistic electron ratchet systems (also called ballistic rectifiers), rely on the ballistic
motion of charge carriers in an asymmetric geometry and are best classified as tilting ratchets.
They have been reported in two-dimensional (2D) systems with relatively long mean free paths
(MFPs) such as 2D electron gases® 12! (typically GaAs/AlGaAs quantum wells) and the 2D
material graphene.???® Ballistic rectifiers are often fabricated with asymmetric “quantum dots”
(e.g. triangle or semicircle shapes) within the 2D electron gases or materials, and they can be
configured as two or four-terminal devices. Under a DC bias, these systems can exhibit non-
linear (voltage sign and magnitude dependent) conductance originating from a GD effect in

which ballistic charge carriers have differing probabilities of transmission between electrical



contacts depending upon their initial position, momentum, and the system geometry. Upon the
application of AC signals, these systems can rectify to produce a DC current/voltage as a result
of the ratcheting mechanism induced by the asymmetric morphology and transport. These GD
electron ratchet systems are termed ballistic (or quasi-ballistic) because the effect is induced by
specular (or quasi-specular) reflection at the asymmetric system boundaries of charge carriers
that follow otherwise linear (or curvilinear) ballistic trajectories, resulting in the higher
transmission of charge carriers in one direction over the other.

To achieve ballistic or quasi-ballistic transport, the length scales of the geometry must be
similar to the MFP of the charge carriers. This type of charge transport has been characterized in

the Landauer-Biittiker formalism,?°-33

which was developed to describe charge flow through a
1D ballistic point contact where classical descriptions cannot explain experimental behavior.
Originally it was designed for two reservoirs of charges connected by a 1D channel,*® but was
later generalized to include more than one channel.3!33

As illustrated in Figure 1B, Si nanowire (NW) GDs are translationally-asymmetric but
cylindrically-symmetric nanostructures that function as electron ratchets at room 7' by
preferentially directing quasi-ballistic electron transport through specular reflection at the NW
surface. They have recently been shown to rectify at frequencies through at least 40 GHz, and
their performance can depend sensitively on various geometric parameters, as illustrated in
Figure 1C.** In this work, we demonstrate the fabrication of exemplary Si NW GD devices and
analyze the significant relationship between geometry and diode performance by developing a
Monte Carlo simulation of quasi-ballistic transport in NW GDs. Understanding the quasi-

ballistic nature of the charge carriers in GDs is critical to explaining their behavior and fully

realizing their advantages, such as near zero-bias turn-on voltage and exceptionally high



frequency response into the THz regime.?>>* These advantages can unlock many potential
applications such as high-speed data transfer, astronomical exploration, materials defect

characterization, security screening, and long wavelength energy harvesting.*
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Figure 1. Ballistic effects in NW GDs. (A) Illustration of particle trajectories during diffusive,
quasi-ballistic, and ballistic charge transport. (B) Schematic of a NW GD with a sawtooth
geometry and degenerately doped n-type sections (yellow) that serve as metallic reservoirs and a
quasi-ballistic section (white) into which electrons are injected and specularly reflect off the
transmission taper (left) and rejection taper (right). Included geometric parameters are wire
diameter (Dnw), maximum transmission taper length (Lmax), and maximum rejection taper length

(Imax); scale bar, 20 nm. (C) Schematic of a NW GD quasi-ballistic region with geometric



parameters including transmission taper diameter (D), rejection taper diameter (Dr), constriction
diameter (d), transmission taper length (L), rejection taper length (/), transmission taper angle

(0), and rejection taper angle (¢); scale bar, 20 nm.

RESULTS AND DISCUSSION

Si NW GDs were fabricated by the ENGRAVE (Encoded NW GRowth and Appearance
through VLS and Etching) method,*® a bottom-up vapor-liquid-solid (VLS) growth process that
synthetically encodes three dimensional (3D) morphology with sub-10 nm resolution in single-
crystal Si structures. As illustrated in Figure 2A, the asymmetric GD geometry is controlled by
using a specific Au catalyst diameter and then precisely modulating the flow rate of the P dopant
precursor gas PHs during the VLS process to achieve a specific dopant profile. Dopant-
dependent wet chemical etching after VLS growth then yields the asymmetric geometry. Single-
NW devices were fabricated using electron-beam lithography followed by metal evaporation to
define Ohmic contacts to single NWs, as shown by the exemplary scanning electron microscopy
(SEM) image in Figure 2B. GD performance was evaluated by measuring direct current (DC)
current-voltage (/I-V) characteristics. From the /-V characteristics, the DC asymmetry, 0, was
determined by taking the ratio of the forward bias current (/") and reverse bias current (') current

at a given magnitude of applied bias, |Vapp|, as:
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Figure 2. Synthesis, fabrication, and measurement of Si NW GDs. (A) Schematic of NW GD
fabrication through dopant-encoded VLS growth with the PH3 dopant precursor gas flow profile
(left) that encodes a dopant density gradient in the NW for subsequent dopant-selective wet
chemical etching to create the GD sawtooth geometry (right). (B) SEM image of single NW
device; scale bar, 2 pm. Inset: higher magnification SEM image of the GD portion of the NW;

scale bar, 200 nm. (C) Semi-logarithmic /- curves (left) and SEM images (right) from three Si

NW GD devices; scale bars, 200 nm.

Figure 2C displays /-V curves and SEM images measured from three Si NW GD devices,
and the J values calculated from data from devices labeled I, II, and III are 1.5, 6, and 23,
respectively, for |Vapp| = 1 V. The primary differences between these structures are geometric,

including the rejection taper angle ¢ and the constriction diameter d. For instance, device I has a



smaller ¢ and device III has a smaller d than the other devices. These experimental results
illustrate that minor changes in geometry can have significant impact on GD performance.

To more fully understand the influence of geometry on Si NW GD behavior, we
developed a MC model for simulating the ballistic nature of charge carriers within NW GDs
taking motivation from the Landauer-Biittiker formalism and its generalizations.’” Considering
the encoded dopant profile of the experimentally demonstrated Si NW GDs, the full 3D Monte
Carlo (MC) simulation developed herein treats the NW GD as two metallic reservoirs
(corresponding to degenerately-doped n-type regions) connected by a quasi-ballistic region into
which electrons are injected and specularly reflect (Figure 1B). This quasi-ballistic region has an
asymmetric ‘sawtooth’ geometry that is the hallmark of a two-terminal NW GD. As shown in
Figure 1C, it is composed of two conical sections denoted the transmission taper (defined by
angle 4 and length L) and rejection taper (defined by angle ¢ and length /) connected by a
constriction of diameter d.

The MC method is a standard method for simulating carrier transport in semiconductors?®
and is appropriate for investigating the behavior of ballistic carrier transport in NW GDs by
modeling the trajectories of single charge carriers within the nanostructure subject to bulk and
surface scattering events. As detailed in the Methods section and Supporting Information, our
MC model follows a standard model for Si and an algorithm outlined by Lundstrom.*

To determine the MFP of charge carriers, we considered a free carrier in the bulk under
no field and without physical boundaries. For a given 7 and Np, the MFP was taken as the
average length of all free paths between scattering events within the MC simulation. Figure 3A
displays a heat map of MFP for carriers traveling through bulk Si with varying Np and 7,

allowing a specific MFP to be identified for a given set of parameters.
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Figure 3. MC simulation methods. (A) Heat map of MFP for carriers traveling through bulk Si
with varying Np and 7. (B) Schematic illustrations of particles injected from the transmission

side at terminal ¢ (I, II) and rejection side at terminal » (III, IV) of the structure and passing either
successfully (I, IIT) or unsuccessfully (II, IV) from one side to the other through the constriction;

scale bar, 20 nm.



To simulate a NW GD device, we introduce radial boundaries representative of the
asymmetric NW geometry, and as illustrated in Figure 3B, we represent the axial termination of
the GD device as co-parallel planes at either end (termed terminal ¢ and terminal » for the
terminals on the transmission side and rejection side, respectively) that define the quasi-ballistic
region of the device. These planes act to define both the start points (located on green discs in
Figure 3B) and end points (located at red circles in Figure 3B) of each MC simulation trajectory
within the physical bounds of the structure. Simulations are informed by the elastic resistor
model that considers electrons traveling along fixed energy channels between two contacts
driven by the difference in electrochemical potential between the contacts and not by an electric
field.*> Thus, except where explicitly noted, we consider quasi-ballistic transport within the
quasi-ballistic region without the presence of an electric field.

31,32 \which can be modified to account for

Motivated by the Landauer-Biittiker formalism,
nonlinear transport,'' we model the DC asymmetry in terms of charge carrier transmission
between the end terminals of the quasi-ballistic simulation domain. As discussed previously,**
the theoretical 6 of a NW GD, under the assumptions that Ve introduces nonlinearity by altering

the momentum distribution of charge carriers'! and that transmission probabilities against the

applied field are zero, can be approximated as the ratio:

0 T;—P?- 2
NTV__P;’ ()

where T} represents the transmission probability under forward bias from the transmission
terminal ¢ to the rejection terminal » whereas 7' represents the transmission probability under
reverse bias from the rejection terminal 7 to the transmission terminal . A billiard ball model of
ballistic electron motion,*? similar to our MC simulations, can be used to determine the ratio of

transmission coefficients by simply calculating the analogous ratio of the probabilities of
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transmission, A and A, as shown on the right-hand side of eq. 2, assuming the same number of
transmission channels from either terminal. This ratio is directly provided by our MC simulations
by tracking the fraction of trajectories that successfully transmit from terminal ¢ to terminal »
(and vice versa), allowing direct prediction of d. Figure 3B illustrates the four possible outcomes
for individual charge carrier trajectories when they are injected from terminal ¢ (I, IT) or terminal
r (111, IV) and either transmit through the constriction (I, III) or are rejected and scattered back to
the starting terminal (II, IV). The number of carriers that successfully transmit from start
terminal to end terminal of the structure in the allowed simulation time (3.3 x 10"'! s) are divided
by the total number of carriers injected from the start terminal to determine the probability of
transmission.

To understand the charge carrier concentration (n), charge density (p), and electric field
(E) profiles in a NW GD, finite-element simulations of an n-type device were performed based
on measured experimental geometries and expected dopant profiles to delineate the most likely
quasi-ballistic regions of the device. Figure 4A displays a schematic of a typical dopant profile
that would be encoded during the growth of Si NW diode in order to produce, after wet-chemical
etching of the NW, the asymmetric geometry needed for a GD. Using this dopant profile, finite-
element simulations were performed and plots of n, p, and E at Vapp = 1 V are shown in Figure
4B. The geometry and dopant profile produce an electric field that changes direction within the
ratchet structure because of the change in the space charge density across the nanostructure. Note
that the addition of a positive surface charge density to the simulations in Figure 4B results in
band bending and depletion in the vicinity of the constriction, causing the effective constriction

diameter d to be smaller than the physical geometry. However, the overall shape of the
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conductive channel remains similar; thus, the geometries used in MC can be considered effective
geometries that reflect both the physical geometry and electrostatic effects from surface charge.
Figure 4C displays the bulk Si MFP, calculated from the empirical mobility*’ and thermal
velocity, as a function of position within the NW GD, where the MFP value is primarily limited
by ionized impurity scattering based on the expected dopant concentration at each position.
Because of the modulated doping within the nanostructure, the MFP peaks within the
constriction and decays sharply into the rejection taper. On the side of the transmission taper, the
MFP plateaus at ~12 nm close to the constriction and decays less rapidly into the transmission
taper. Considering the MFP, E, and » distributions, we consider the most likely quasi-ballistic
region to be encompassed within the dashed boxed region shown in Figure 4B, and the simulated
quasi-ballistic region of the ratchet structure will generally involve quasi-ballistic transport

through ~20 nm of the structure on both sides of the constriction.
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Figure 4. Electrostatics and MFP. (A) Donor dopant (Np) profile used in the finite-element
simulation; scale bar, 40 nm. (B) Finite-element simulation results at Vap, = 1 V showing the
electric field |E| with normalized field lines (top), space charge density p (middle), and carrier
density n (bottom); scale bar, 40 nm. (C) Plot of MFP at room T as a function of axial position
through the transmission and rejection tapers of the structure based on the dopant profile in panel

A, with a dashed line denoting the position of the constriction.

We first consider the effect of MFP and transmission taper length on the apparent DC
asymmetry, 0. As illustrated in Figure 5A, all geometric parameters are held constant except for

13



the transmission taper length L, which is varied from 2 to 200 nm. For shorter L, carriers are
injected into the simulation domain very close to the constriction, within the region that should
behave quasi-ballistically. As L increases, carriers are injected farther from the constriction and
eventually transition out of the region that should behave quasi-ballistically, increasing the
likelihood of scattering events that direct carriers away from the constriction. Thus, as L
increases, transport should transition from ballistic to quasi-ballistic to diffusive. On the rejection
taper side, the geometry is held constant with the rejection terminal at a fixed distance / = 10 nm

from the constriction.
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Figure 5. Effects of MFP and transmission taper length. (A) Schematic of a NW GD with
varying L (denoted schematically as L;, L2, and L3) for fixed D =100 nm, d = 10 nm, / = 10 nm,
6 =13°, and ¢ = 77°; scale bar, 40 nm. (B, C) Plots of ¢ as function of L without an electric field
and with MFPs of 10 nm (orange), 20 nm (yellow), 35 nm (cyan), and 60 nm (purple) produced
at constant 7= 100 K and Np = 10'7 cm?, 10'® cm™, 10" cm™, and 10" cm™ respectively (panel

B), or produced at constant Np = 103 cm™ and T'= 450 K, 300 K, 200 K, and 100 K, respectively
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(panel C). Insets: plots of P: (dashed line) and P (solid line) for MFPs of 10 nm (orange) and 60
nm (purple). Black dashed lines represent the ratios of the transmission terminal ¢ areas to the
rejection terminal 7 areas. (D) Plot of § as function of L with an electric field (£ = 10* V/cm) and
MFP of 20 nm (blue curve), without an electric field (£ = 0 V/cm) and MFP of 20 nm (cyan
curve), and without an electric field (£ = 0 V/cm) and without scattering (dashed cyan curve) to

reflect pure ballistic transport.

Figures 5B and 5C display ¢ as a function of L for electrons without an electric field and
with different MFPs as determined by changing Nb at constant 7 or changing 7 at constant Np,
respectively. MFPs were varied from ~10 to ~60 nm, and both data sets show similar trends with
MFP and L, with ¢ approaching 1 (i.e. no difference in transmission probabilities from either
side) at longer values of L. Interestingly, the impact of MFP on ¢ is less pronounced than might
initially be expected, with even a short MFP of ~10 nm able to produce a ¢ above 20 for shorter
L values. The origin of this relatively weak MFP dependence can be understood by examining
the individual transmission probabilities Pr and P, from the transmission and rejection tapers of
the nanostructure, respectively, as shown in in the insets of Figure 5B,C. As apparent from these
plots, the rejection taper has a uniformly low Pr, implying that the rejection taper effectively
prevents electrons from passing through the constriction under all conditions. The transmission
taper has a much higher P: that relatively slowly decays as L increases. Thus, the relatively weak
dependence of 6 on MFP for shorter L can be interpreted to result from the good rejection
characteristics on one side but also from the relatively good transmission on the other. Plots of P;
and P; at all values of MFP are shown in Figure S1. MFP does begin to strongly effect the GD

performance at intermediate values of L, where higher MFP values enable substantially larger
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values of 0, driven by higher P: values while Pr remains approximately constant. The results also
highlight the importance of correctly identifying the quasi-ballistic region of Si NW GDs (i.e.
choosing physical reasonable values of L) when modeling data for comparison to experimental
measurements.

Figure 5D compares ¢ as a function of L for MC simulations without an electric field and
with a uniform electric field (E = 10* V/cm) directed along the NW axis, a value motivated by
the finite-element results in Figure 3B. The axial momentum distribution is not biased when the
electric field is non-zero, as the explicit electric field instead serves to bias the momentum. For
simulations with zero electric field in Figure 5D, the MFP is either 20 nm (solid cyan curve) or
infinite (dashed cyan curve), with the latter reflecting pure ballistic transport without scattering
inside the structure. For the non-zero electric field simulation (blue curve, Figure 5D), the MFP
is also 20 nm. However, regardless of MFP or electric field, the value of ¢ initially decreases
with increasing L. However, with an electric field, 0 begins increasing for L greater than the
MFP. This effect results from the electric field redirecting electrons toward the constriction
(effectively serving to inject them into the quasi-ballistic region closer to the constriction) to
facilitate transmission. The electric field can compensate for short MFPs and for non-
transmissive initial trajectories by mitigating the rejection of carriers on the transmission side,
resulting in greater ¢ values than both the short MFP and purely ballistic, infinite MFP
simulations at longer L. For carriers with the same MFP, the similarity of the curves with and
without an electric field for small values of L, combined with the prediction of ¢ values at longer
L with an electric field that are similar to the ones at shorter L, together provide further

motivation to perform MC models of the NW GDs with relatively small values of L, a biased
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axial momentum distribution (Figure S2), and no electric field, as done in the remainder of this
work.

The MC simulation makes possible a systematic examination of the relationship between
individual geometric parameters and J. Toward this end, we focus first on the geometry of the
transmission taper (Figure 6) and then the rejection taper (Figure 7) to identify the most
influential geometric trends. Figure SA displays a heat map of 0 as a function of the geometric
parameters d and 6 with D, [, and MFP fixed at 100 nm, 10 nm, and 12 nm, respectively, while L
and ¢ change accordingly with 6 and d. Figures 6B,C also display heat maps of P: and Pr, where
the ratio of the data in Figure 6B and 6C produces the J values shown in Figure 6A. Sweeping
over values for d and 6 reveals the interdependence of the parameters to determine the
performance of the GD devices, as exemplified by the four geometries (Figure 6D)

corresponding to the points labeled I-IV in Figures 6A-C.
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Figure 6. Transmission taper geometric effects. Heat maps of (A) J, (B) P, (C) Pr for a GD
structure with varying d and 6 for fixed D = 100 nm, / = 10 nm, and MFP = 12 nm. (D)
Schematics of GD geometry corresponding to the four points labeled I-IV in panels A-C; scale

bar, 20 nm.

For smaller 8 angles of ~15°, the impact of the constriction diameter d is evident as 0
increases as d decreases (e.g. moving from point I to point II). The plots of P; and Pr reveal that
as d decreases the rejection taper becomes more effective at blocking carriers, while electron
transmission from the transmission taper is approximately constant because the small 8 angle is
highly favorable to transmission. On the rejection taper, the angle ¢ increases significantly as d
decreases, causing significant back scattering of the electron and reducing P;. This result
highlights the important role of the rejection taper and high ¢ angles in improving the GD
performance.

For smaller d values of ~15 nm, the impact of the transmission angle 4 is evident as ¢
decreases from a maximum to a value of ~1 as @ increases (e.g. moving from point II to point
III). As apparent from the plots of P; and Pr, 6 decreases because P decreases as the transmission
taper shifts from tending to direct electrons through the constriction to tending to direct them
back toward the transmission terminal. On the rejection taper, the value of Pr is approximately
constant. As apparent from geometries II and III in Figure 6D, the transmission taper transitions
from a highly asymmetric structure at small § to a largely symmetric bowtie structure at large 6,
where the symmetric structure has lost the GD behavior as manifested by o ~ 1.

For larger 6 angles of ~75°, ¢ 1s ~1 for all values of d (e.g. moving from point III to point

IV) because the transmission taper rejects carriers by directing them away from the constriction,
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just as the rejection taper does. This results in nearly identical values for P: and P», indicating
symmetric transport of charge carriers and absence of diode behavior. While small d (point III)
results in smaller Pr and Pr values than large d (point IV), the change in both with d is
approximately the same, leading to a static value of 6 ~ 1. Finally, for large values of d ~ 95 nm,
the NW structure is almost geometrically uniform, causing 0 ~ 1 and causing all transmission
probabilities to be high even for a substantial change in 0 (e.g. moving from point IV to point I).
Overall, the heatmaps in Figure 6A-C highlight the importance of a small constriction d, small
transmission taper angle 6, and large rejection taper angle ¢ to achieve asymmetric charge carrier

transport, expressed quantitatively as a large 0 value.
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Figure 7. Rejection taper geometric effects. Heat maps of (A) J, (B) P:, and (C) P, for a GD

structure with varying d and ¢ for fixed D = 100 nm, L = 20 nm, and MFP = 12 nm. (D)
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Schematics of GD geometry corresponding to the four points labeled I-IV in panels A-C; scale

bar, 20 nm.

Analogous to Figure 6, Figure 7 displays GD MC data as a function of the parameters d
and ¢ with D, L, and MFP fixed at 100 nm, 200 nm, and 12 nm, respectively, while / and 8
change accordingly with ¢ and d. Figure 7A displays a heat map of J while Figures 7B,C display
heat maps of P and Pr. Four exemplary geometries, denoted I-IV, are shown in Figure 7D. For
smaller ¢ angles of ~15°, J is ~1 for all values of d (e.g. from point I to point II) because, just
like the transmission taper, the rejection taper transmits carriers by directing them toward the
constriction, as indicated by the nearly identical values of Pr and P,. The larger d geometries (e.g.
point I) result in slightly larger P: and P, values than smaller d (e.g. point II) because the majority
of carriers pass through the large constriction without reflecting off the structure, making them
more likely to successfully transmit without back scattering.

For smaller d values of ~15 nm, ¢ increases from ~1 to the maximum value as ¢ increases
(e.g. from points II to IIT) because the transmission taper transitions from directing carriers
toward the constriction to reflecting them away, leading to a decreasing P- while P; stays
approximately constant. The geometries corresponding to points II and III (Figure 7D) highlight
how the transmission taper remains unchanged while the rejection taper transitions from an
approximately symmetric bowtie structure to an asymmetric structure that is able to effectively
direct carriers away from the constriction.

For larger ¢ angles of ~75°, ¢ decreases as d increases (e.g. moving from points III to
IV), changing from the maximum value to ~1. The expanding constriction d becomes less

effective at blocking carriers on the rejection side, leading to an increasing P while P: remains
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approximately constant. Finally, for large values of d ~ 95 nm, the NW structure is almost

geometrically uniform, causing d ~ 1 and causing all transmission probabilities to be high even
for a substantial change in ¢ (e.g. moving from point IV to point I). In general, these heatmaps
highlight the importance of a small constriction d and large rejection taper angle ¢ to achieve a

large o.
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Figure 8. Comparison of Simulation and Experiment. (A) Plot of the experimental values of
DC asymmetry at |Vapp| = 1 V collected from 81 single-NW devices plotted as a function of the
rejection taper angle ¢ for different ratios, d/Dnw, of constriction diameters, d, to NW outer
diameter, Dnw. Data was replotted from reference 34. (B) Plot of 6 from MC simulations as a
function of ¢ for different ratios of constriction diameters to NW diameters (d/Dnw = 0.2, 0.3,
0.4, 0.5, 0.6, and 0.7 for purple through red curves, respectively) with fixed D = 100 nm, L =20

nm, and MFP = 12 nm.
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As observed in experimental measurements (Figure 2) and predicted by MC simulations
(Figures 6,7), the ¢ angle of the rejection taper and the constriction diameter have significant
impacts on 0. As ¢ increases, 0 increases, and this trend is accentuated for structures with small d
values. Notably, the experimental results in Figure 2C show an increase in asymmetry and
decrease in current for GD structures with increased ¢ and decreased d values. Qualitatively, we
observe these same trends in ¢ and P: in Figures 6A,B in é and Pr in Figures 7A,C. To further
verify these ballistic trends, we compare simulation results to experimental measurements on Si
NW GDs.** Devices presented here (Figure 2) and from past experimental measurements** are
identical in fabrication and measurement procedures. Replotting the experimental data reported
in reference 34, Figure 8A correlates St NW GD ¢ angles with experimentally measured DC
asymmetry o values measured at |Vapp| = 1 V, showing more than an order of magnitude increase
as ¢ increases. The data are color-coded by the ratio of constriction diameter to NW diameter,
d/Dxw. For a majority of the measured structures, DC asymmetry increases as d/Dnw decreases.
Figure 8B plots analogous data from MC simulations for ¢ as a function of ¢ for several values
of d/Dnw. Similar to the experimental data, the trend of increasing ¢ with increasing ¢ is present
for all d/Dnw ratios, and it plays a more significant role as d/Dnw decreases because both the
transmission and rejection tapers are better able to direct carrier transport to yield diode
behavior. The good qualitative agreement between the experimental data in Figure 8A and MC
simulations in Figure 8B support the quasi-ballistic characteristics of the experimental Si NW
GDs and demonstrate that the MC methods and design principles described herein reproduce key

aspects of the GD performance.

CONCLUSION
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In this work, we develop a MC simulation of quasi-ballistic Si NW GDs to clarify the
experimentally observed relationship between NW GD geometry and device performance.
Through this model, we establish design principles that relate the physical geometry, temperature
(7), and dopant concentration (Np) to 6. Modeling charge carrier paths through the GD structure
revealed the importance of carrier MFP (determined by 7 and Nb), specular reflection at
surfaces, and geometry to quasi-ballistic transport under various conditions. Geometry is the
most influential factor, with the angles of the transmission and rejection tapers determining the
nanostructure’s effectiveness in directing and blocking charge carriers. The constriction size
strongly modulates the angles and affects carrier interactions with the boundaries of the GD.
Under ideal geometric conditions, the structure has a small 6 angle, large ¢ angle, and small
d/Dnw ratio, and the blocking effect is at least as important as the directing effect in achieving
asymmetric carrier transport. The importance of this blocking effect and the relative short
associated length scales leads to relative weak dependence of GD performance on charge carrier
MFP. These MC simulation results enable prediction and interpretation of experimental trends
and can be used to direct NW GD design and fabrication. They clarify the mechanism of quasi-
ballistic transport in NW GDs and can enable progress toward achieving THz rectification with

these structures.

METHODS

Nanowire Synthesis and Etching. Si NWs were synthesized from Au nanoparticle
catalysts by a vapor-liquid-solid (VLS) mechanism in a home-built, hot-wall chemical vapor
deposition (CVD) system.*® Silane (SiH4; Voltaix) was used as the source of Si and phosphine

(PH3; 1000 ppm PH3 in Hz; Voltaix) as the source of P for n-type doping, with hydrogen (Hz;
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Matheson TriGas 5 N semiconductor grade) as the carrier gas. Growth substrates, 1 x 2 cm Si
wafers (NOVA Electronic Materials, (100) p-type Si with 600 nm thermal oxide), were
functionalized with poly-L-lysine (Sigma-Aldrich) and citrate-stabilized 100 nm diameter Au
catalysts (Ted Pella) and then inserted into the center a single-zone 1-inch tube furnace
(Lindberg BlueM). NWs were nucleated for 15 minutes at 440-450 °C with 200 standard cubic
centimeter per minute (sccm) Hz and 2.00 scem SiHa at 40 torr total reactor pressure. After
nucleation, the temperature was ramped to 420 °C over 15 minutes, the PHs flow was set to 20
sccm, the total reactor pressure was ramped to 20 torr, and the H2 flow was ramped to 100 sccm
over 1 minute. The first degenerately doped n-type section was grown by maintaining the PH3
flow of 20 sccm for 60 minutes. The sawtooth geometry was encoded in the NW by controllably
ramping the PH3 flow from 20 to 0 sccm in steps with a duration of 3 seconds or more each and
then the flow rate was held at 0 sccm for 15 seconds to create the transmission taper of the
ratchet, and then abruptly returned to 20 sccm to create the rejection taper. Following the
sawtooth, second degenerately doped n-type section was encoded by again maintaining the PHs
flow at 20 sccm for 60 minutes. Based on dopant flow profile, the minimum doping level in the
ratchet section, near the constriction, is likely below 10'® cm™ due to suppression of the reservoir
effect.*!** To achieve the desired physical geometry, NWs were mechanically dry transferred to
device substrates, etched in buffered hydrofluoric acid (BHF, ~5% by volume) for ~10 seconds
to remove the surface oxide, and dopant-selectively etched with room-temperature aqueous KOH
solution (20% by weight) for 120-240 seconds.

Device Fabrication. Marker patterns were fabricated on device substrates, (100) p-type
Si wafers with 100 nm of thermal oxide and 200 nm Si3N4, by etching into the wafer with a spun

photo-resist stack (3 layers of MMA; MicroChem (8.5) EL9, 1 layer of (PMMA; MicroChem
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950PMMA.A7) with electron-beam lithography (EBL) using an FEI Helios 600 Nanolab Dual
Beam System with Nanometer Pattern Generation System (NPGS) and deep reactive ion etching
(DRIE; Alcatel AMS 100). Contacts to the NW were defined by spinning a photo-resist stack (2
layers of MMA; MicroChem (8.5) EL9, 1 layer of (PMMA; MicroChem 950PMMA.A2) onto
device substrates with etched NWs and using EBL with NPGS. Device substrates were then
developed, etched in BHF for 10 seconds, and metal contacts were fabricated by electron-beam
evaporation (Kurt Lesker PRO Line PVD75) of 3 nm of Ti and 150-200 nm of Pd.

Device Measurements. Single-NW device measurements were performed at room
temperature and in the dark, using a probe station (Lakeshore TTPX Cryogenic Probe Station),
under vacuum (<5 mTorr) and a source measure unit (SMU, Keithley 2636B) with triax cable
connections (Belden 9222 50 Q).

Electron Microscopy. SEM was performed with an FEI Helios 600 Nanolab Dual Beam
System with an imaging resolution of less than 5 nm.

Finite-element modeling. Finite-element simulations using COMSOL Multiphysics have
been previously employed to study the electrostatic nature of NW GDs.>* The finite-element
model employed here includes Poisson’s equation, explicit dopant profiles, drift-diffusion with
density-dependent electrical mobilities and diffusion constants, bandgap renormalization, and
Shockley-Read-Hall, Auger, and surface recombination, as described previously.*®

MC model. Our MC model follows a standard model for Si and an algorithm outlined by
Lundstrom, further details are in the Supporting Information.*” It considers four types of energy-
dependent electron scattering processes, including acoustic deformation potential scattering,
equivalent intervalley scattering by phonon absorption and emission, and ionized impurity

scattering.
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Considering the 7-dependent electrical mobility of Si, we note that mobility is
proportional to 7°? at low temperatures (7 < 350 K), where impurity scattering mechanisms are
dominant, and proportional to 7-*2 at high temperatures (7 > 350 K), where lattice scattering
mechanisms are dominant.** Because the scattering rate is well characterized at 7= 300 K, we
scaled the ionized impurity scattering rate by a factor of (77300 K)*? and the scattering rates due
to lattice mechanisms by (77300 K)~*2. This successfully reproduced the general trend in
experimental results for the T-dependent electrical mobility of Si,** as shown in Figure S3, where
electrical mobility was calculated from simulated carrier MFPs at different values of 7"and Np.

To simulate a NW GD device, we introduce boundaries that represent the NW physical
geometry as two 3D cartesian (x, y, z) cones with offset vertices, where each cone can be
expressed as:

yi+z2 =a’(x —x,)? (3)
with the x-axis as the central axis, the vertex at position (xy, 0, 0), and a, the slope of the cone.
The vertex positions xv and slopes a of two cones are varied to represent distinct GD geometries.
We consider the boundaries to be idealized surfaces that are atomically smooth and defect free.
At surface boundaries, we assume elastic scattering can be described as specular reflection at the
point of intersection between the charge carrier and surface; thus, the momentum vector after
reflection, pres, 1s calculated as:

P =P —2proj(p.N), (4)

where N is the normal vector to the surface at the point of reflection and proj(p,N) is the vector
projection of p onto N. We assume a surface boundary reflection is probabilistically independent
from a scattering event in the bulk, so the charge carriers continue their trajectories after

reflection until the next scattering event predicted by the model.
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The model requires identification of the points of intersection of a carrier trajectory with
the physical boundary. As shown in the Supporting Information, combining the equation of
motion of the charge carrier with the expressions (eq. 3) for the surface boundary leads to a
quartic expression for the time points at which an intersection will occur. Solving for the
resulting roots of the expression yields solutions that are then filtered to identify the first non-
imaginary, physically reasonable intersection (i.e. ones that represent the temporally first
intersection with a physically valid portion of a cone at a time point less than the free flight time
of the trajectory).

To start a trajectory, a charge carrier is injected into the quasi-ballistic region from either
termination plane by randomly selecting the start position from a uniform positional distribution
across the circular cross section. The starting momentum of the carrier is determined by selecting

non-axial momentum components from a Gaussian with mean p = 0 and standard deviation o =

Jm*kgT, where the axial component pgyiq1 = \/—Zm*kBT In(7,,iq1) 18 specified by selecting a

1'39

random number 7,,;,; from a uniform distribution from 0 to The axial momentum

distribution is biased by an applied voltage, Vapp, of 1 V by adding ,/2m*eV,,,, to the axial

momentum, resulting in a shift of the probability density (P(vaxiar)) for the initial carrier axial
velocity (vaxiar), as shown in Figure S2. To end a trajectory, a charge carrier within the radial
bounds of the geometry must intersect either termination plane. For simplicity, the MC
simulation domain is assumed to have a uniform dopant concentration. The quasi-ballistic region
therefore has a constant MFP and is constructed by placing the transmission and rejection
terminals within approximately one MFP of the constriction. We assume there is negligible flux

against the potential gradient.
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I Supporting Text
The scattering mechanisms and their associated scattering rate equation are:

1. acoustic deformation potential (ADP):

1 — (2 X 1013) @ (Sl)
T q

2. equivalent intervalley scattering by phonon absorption:

1 E
— = (1.5 x 10'3) E@) +.050 (52)
(%) q

3. equivalent intervalley scattering by phonon emission:

1. (1 x 10%%) /@ —.050 (S3)
T3 q

4. ionized impurity scattering:
1

L oy (N0 [EG)
—=(1x10 )(1016) - (S4)

where 7 is the free-flight time associated with each scattering event, p, E, and g, respectively, are
the momentum, energy, and charge of the carrier, and N; is the total concentration of ionized
impurities per cubic centimeter.

The sum of the rates due to these mutually independent processes is the total scattering

rate, ['(p), where
4
1
rp=) —, (S5)

T.
i=1 *

which, after repeatedly sampling from possible carrier trajectories, determines the average free-

flight duration of a carrier between scattering events. Due to its dependence on carrier energy,

S2



which varies over time, the total scattering rate, ['(p), is actually a function of time, I'(p(t)),
which is approximated as a(n) (arbitrary, user-defined) constant, [}, in order to simplify
derivations and reduce computational expenses. In order to yield a result that can be used to
model real semiconductors, in addition to the & real scattering types, a fictitious self-scattering

type is considered, where

— = Ler(p) =T, —T'(p) > 0. (56)

Tk+1

A single free flight and scattering event is simulated by generating four random numbers:
r1, 12, 13, 14, Wwhere each number is selected from a uniform distribution from O to 1. r1 is used in
conjunction with [, to determine the free-flight time until the next scattering event (real or self-

scattering):
1
te = —F—ln(rl), (S7)
0

where ¢ is the free-flight time between scattering events. The flight time is used to determine the
position and momentum of the carrier just before the next scattering event, in accordance with
Newton’s law,

d’r gq
i S8
a2 -E, (S8)

where r is position, m* is effective mass (0.26m.), and € is the electric field.
The scattering type is identified by comparing r2 to the partial sums of the fractional
contributions of all k+/ scattering mechanisms to the total scattering rate, and selecting

mechanism j if:

j-1 J
LT . L
Zlf—l "SH<TE—, j=12.0k+ 9
0 0
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where [ is the i-th scattering mechanism. If the scattering type is self-scattering, the simulation
determines a new free-flight time and the carrier continues on its current trajectory without
interruption.

When a real scattering mechanism is selected, the final momentum state after scattering
may change in magnitude, which is determined by the energy change AE associated with the
scattering mechanism, and orientation, which is determined by r3 and r4. Assuming a spherical

parabolic energy band, the magnitude of the momentum immediately after scattering is:

p(td) =p' =2m*[E(t;) + AE], (S10)
where #.* is the time at the instant after a scattering event and #. is the time at the instant before a
scattering event. In order to determine the new orientation, we can simplify our calculations by
considering a rotated coordinate system where the primary axis is now directed along the initial
momentum, the azimuthal angle f and the polar angle a (with respect to the primary axis which
is not necessarily the z-axis are determined by:
B =2nry (S11)
and
cos(a) =1—2rn,. (S12)
In the rotated coordinate system where the x-axis is pointing along the initial momentum, the
momentum vector is:

cos(a)
pr =p'| sin(a) cos(p) |. (S13)
sin(a) sin(pB)

Simply apply the inverse of the coordinate system rotation transformation operator to the

rotated final momentum vector in order to return to the original coordinate system. This process

S4



is repeated until an arbitrary simulation condition is satisfied (i.e. a number of real scattering
events or a maximum carrier flight time).

As a carrier trajectory is entirely deterministic between scattering events, it is simple to
identify the point of intersection of a carrier trajectory with a boundary if the surface is well-
defined and locally continuous (smooth) in the region. Solving Equation 8 yields an equation for

the trajectory of a carrier between scattering events:

&
r0<t<t)=ry+ %+ 25 2 (S14)
m* 2m*

where ro and po are the initial position and momentum, respectively, of the carrier immediately

after the last scattering event and

E
Xo pOxt_I_ qcyx 2
m* 2m*
x(t) p e
r@)=(y® | =]y, + n(;ft +—2my* t2 |, (S15)
28 Por. qE
Zo+—t+-—t2
m 2m

which, between any two consecutive scattering events, is just a parabola when the applied
electric field is constant in magnitude and direction or a straight line in a field with a magnitude
of zero. Combining Equation 15 and the equation for the conical boundary yields a quartic
equation of the form:

catt testd3tot? et +cy =0 (S17)

for the time solution of the intersection, where
g 2
€y = (ﬁ) SDP(E, €, a)

q
m*2

c3 = SDP(p,, &, a)

(S18)
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1
SDP(po, po, @) + %SDP(K, £ a)

C2 = m*z

2
€1 = %SDP(K' Do, a)

co =SDP(K,K,a),
where
K=ry,—v. (S19)
and SDP is a Special Dot Product function such that
SDP(A,B,c) = —c?AB, +A,B, + A,B,, (S20)
where 4 and B are 3D vectors and c is a constant.
A typical root finding method can be used here to determine the time solutions of

Equation 17.
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II. Supporting Figures
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Figure S1. Probabilities of transmission for ballistic simulations with various carrier MFPs.

Plots of (A) 0, (B) P+, and (C) Pr at fixed temperature (7 = 100 K) and variable Np with MFPs of

10 nm (orange), 20 nm (yellow), 35 nm (cyan), and 60 nm (purple) at Np = 10! cm™, 10'¢ cm™,

10! cm™, and 10" cm™, respectively. Plots of (D) 6, (E) Py, and (F) P at fixed carrier density

(Np = 10" cm™) and variable T with MFPs of 10 nm (orange), 20 nm (yellow), 35 nm (cyan),

and 60 nm (purple) at 7=450 K, 300 K, 200 K, and 100 K, respectively. Black dashed lines

represent the ratio of the areas of terminal ¢ to terminal 7 (panels A, D), the ratio of the areas of

terminal ¢ to the constriction (panels B, E), and the ratio of the areas of terminal » to the

constriction (panels C, F).
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Figure S2. Initial electron axial velocity. Probability density, P(vaxiar), for the initial charge

carrier axial velocity component, vaxiar, With (teal) and without (pink) additional kinetic energy

imparted by an applied bias.
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Figure S3. Simulated electron mobility. Plot of electron mobility at 7= 100 K to 800 K for Np

= 10" cm? (blue), 10" cm™ (green), 10! cm™ (purple), 10' cm™ (cyan), 10'° cm™ (yellow),
10" cm? (red).
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