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ABSTRACT 

 Diodes are a basic component of electrical circuits to control the flow of charge, and 

geometric diodes (GDs) are a special class that can operate using ballistic or quasi-ballistic 

transport in conjunction with geometric asymmetry to direct charge carriers preferentially in one 

direction, enabling an electron ratcheting effect. Nanomaterials present a unique platform for 

development of GDs, and silicon nanowire (NW) based GDs—cylindrically symmetric but 

translationally asymmetric three-dimensional nanostructures—have recently been demonstrated 

functioning at room temperature. These devices can theoretically achieve near zero-bias turn-on 

voltage and rectify up to THz frequencies. Here, we synthesize silicon NW GDs and fabricate 

single-NW devices from which significant changes in diode performance are observed from 

relatively minor changes in geometry. To elucidate the interplay between geometry and ballistic 

behavior, we develop a Monte Carlo simulation that describes the quasi-ballistic behavior of 
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electrons within a three-dimensional NW GD. We examine the effects of doping level, 

temperature, and geometry on charge carrier transport, revealing the relationships between 

charge carrier mean free path (MFP), specular reflection at surfaces, and geometry on GD 

performance. As expected, geometry strongly influences performance by directing or blocking 

charge carrier passage through the nanostructure. Interestingly, we find that the blocking effect is 

at least as important as the directing effect. Moreover, within certain geometric limits, the diode 

behavior is less sensitive to MFP than might be initially expected because of the short relevant 

length scales and importance of the blocking effect. The results provide guidelines for the future 

design of NW GDs and enable the prediction and interpretation of trends in experimental results. 

Improved understanding of quasi-ballistic transport is crucial to guiding future experiments 

toward realizing THz rectification for applications in high-speed data transfer and long-

wavelength energy harvesting. 

 

INTRODUCTION 

A ratcheting mechanism can describe a broad set of physical phenomena in inherently 

asymmetric systems,1-4 including the unidirectional motion of motor molecules and proteins,5, 6 

particle separation in microfluidic devices,7, 8 and the directed flow of current in electron 

ratchets.1 Electron ratchets, geometric diodes (GDs), and ballistic rectifiers, are related concepts 

that have been of continuing interest to condensed matter physics, chemistry, and electrical 

engineering disciplines since the concept was introduced more than 70 years ago.9 In general, an 

electron ratchet is a system with spatial inversion asymmetry (i.e. broken spatial inversion 

symmetry) that is out of thermal equilibrium and subjected to a time-varying force (e.g. 

alternating current (AC) signals) with a time average of zero. The combination of inversion 
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asymmetry and disequilibrium allows the system to rectify a time-varying force to produce a net 

direct current (DC) and electrical power. At thermal equilibrium, thermal fluctuations cancel out, 

and electron ratchet systems produce no time-averaged DC power (as required by the Second 

Law of Thermodynamics). 

There are several ways in which electron ratchets can be classified. Most fundamentally, 

they can be classified as either tilting or flashing ratchets. A tilting ratchet contains a constant, 

asymmetric potential (or shape) with a time-varying bias whereas a flashing ratchet contains a 

time-varying asymmetric potential and a constant bias (typically zero). In addition, electron 

ratchets can be classified as those that rely on ballistic or quasi-ballistic transport of charge 

carriers and those that do not (non-ballistic, or diffusive, electron ratchets), where the differences 

between ballistic, quasi-ballistic, and diffusion transport are illustrated in Figure 1A. The term 

quasi-ballistic refers to geometric, temperature (T), or doping conditions where some degree of 

charge carrier scattering is expected within the nominally ballistic region, but the degree and 

effect of scattering is sufficiently small that a ballistic mechanism still results in a GD effect. 

Ballistic electron ratchet systems (also called ballistic rectifiers), rely on the ballistic 

motion of charge carriers in an asymmetric geometry and are best classified as tilting ratchets. 

They have been reported in two-dimensional (2D) systems with relatively long mean free paths 

(MFPs) such as 2D electron gases4, 10-21 (typically GaAs/AlGaAs quantum wells) and the 2D 

material graphene.22-28 Ballistic rectifiers are often fabricated with asymmetric “quantum dots” 

(e.g. triangle or semicircle shapes) within the 2D electron gases or materials, and they can be 

configured as two or four-terminal devices. Under a DC bias, these systems can exhibit non-

linear (voltage sign and magnitude dependent) conductance originating from a GD effect in 

which ballistic charge carriers have differing probabilities of transmission between electrical 
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contacts depending upon their initial position, momentum, and the system geometry. Upon the 

application of AC signals, these systems can rectify to produce a DC current/voltage as a result 

of the ratcheting mechanism induced by the asymmetric morphology and transport. These GD 

electron ratchet systems are termed ballistic (or quasi-ballistic) because the effect is induced by 

specular (or quasi-specular) reflection at the asymmetric system boundaries of charge carriers 

that follow otherwise linear (or curvilinear) ballistic trajectories, resulting in the higher 

transmission of charge carriers in one direction over the other.    

To achieve ballistic or quasi-ballistic transport, the length scales of the geometry must be 

similar to the MFP of the charge carriers. This type of charge transport has been characterized in 

the Landauer-Büttiker formalism,29-33 which was developed to describe charge flow through a 

1D ballistic point contact where classical descriptions cannot explain experimental behavior. 

Originally it was designed for two reservoirs of charges connected by a 1D channel,30 but was 

later generalized to include more than one channel.31, 33  

As illustrated in Figure 1B, Si nanowire (NW) GDs are translationally-asymmetric but 

cylindrically-symmetric nanostructures that function as electron ratchets at room T by 

preferentially directing quasi-ballistic electron transport through specular reflection at the NW 

surface. They have recently been shown to rectify at frequencies through at least 40 GHz, and 

their performance can depend sensitively on various geometric parameters, as illustrated in 

Figure 1C.34 In this work, we demonstrate the fabrication of exemplary Si NW GD devices and 

analyze the significant relationship between geometry and diode performance by developing a 

Monte Carlo simulation of quasi-ballistic transport in NW GDs. Understanding the quasi-

ballistic nature of the charge carriers in GDs is critical to explaining their behavior and fully 

realizing their advantages, such as near zero-bias turn-on voltage and exceptionally high 
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frequency response into the THz regime.23, 34 These advantages can unlock many potential 

applications such as high-speed data transfer, astronomical exploration, materials defect 

characterization, security screening, and long wavelength energy harvesting.35 

 

 

Figure 1. Ballistic effects in NW GDs. (A) Illustration of particle trajectories during diffusive, 

quasi-ballistic, and ballistic charge transport. (B) Schematic of a NW GD with a sawtooth 

geometry and degenerately doped n-type sections (yellow) that serve as metallic reservoirs and a 

quasi-ballistic section (white) into which electrons are injected and specularly reflect off the 

transmission taper (left) and rejection taper (right). Included geometric parameters are wire 

diameter (DNW), maximum transmission taper length (Lmax), and maximum rejection taper length 

(lmax); scale bar, 20 nm. (C) Schematic of a NW GD quasi-ballistic region with geometric 
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parameters including transmission taper diameter (Dt), rejection taper diameter (Dr), constriction 

diameter (d), transmission taper length (L), rejection taper length (l), transmission taper angle 

(θ), and rejection taper angle (φ); scale bar, 20 nm. 

 

RESULTS AND DISCUSSION 

Si NW GDs were fabricated by the ENGRAVE (Encoded NW GRowth and Appearance 

through VLS and Etching) method,36 a bottom-up vapor-liquid-solid (VLS) growth process that 

synthetically encodes three dimensional (3D) morphology with sub-10 nm resolution in single-

crystal Si structures. As illustrated in Figure 2A, the asymmetric GD geometry is controlled by 

using a specific Au catalyst diameter and then precisely modulating the flow rate of the P dopant 

precursor gas PH3 during the VLS process to achieve a specific dopant profile. Dopant-

dependent wet chemical etching after VLS growth then yields the asymmetric geometry. Single-

NW devices were fabricated using electron-beam lithography followed by metal evaporation to 

define Ohmic contacts to single NWs, as shown by the exemplary scanning electron microscopy 

(SEM) image in Figure 2B. GD performance was evaluated by measuring direct current (DC) 

current-voltage (I-V) characteristics. From the I-V characteristics, the DC asymmetry, δ, was 

determined by taking the ratio of the forward bias current (I+) and reverse bias current (I-) current 

at a given magnitude of applied bias, |Vapp|, as: 

                                    δ ൌ െ
I 

 ൅൫൅หV app
 ห൯

I 
 ି൫െหV app

 ห൯
 .                  (1) 
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Figure 2. Synthesis, fabrication, and measurement of Si NW GDs. (A) Schematic of NW GD 

fabrication through dopant-encoded VLS growth with the PH3 dopant precursor gas flow profile 

(left) that encodes a dopant density gradient in the NW for subsequent dopant-selective wet 

chemical etching to create the GD sawtooth geometry (right). (B) SEM image of single NW 

device; scale bar, 2 µm. Inset: higher magnification SEM image of the GD portion of the NW; 

scale bar, 200 nm. (C) Semi-logarithmic I-V curves (left) and SEM images (right) from three Si 

NW GD devices; scale bars, 200 nm. 

 

Figure 2C displays I-V curves and SEM images measured from three Si NW GD devices, 

and the δ values calculated from data from devices labeled I, II, and III are 1.5, 6, and 23, 

respectively, for |Vapp| = 1 V. The primary differences between these structures are geometric, 

including the rejection taper angle φ and the constriction diameter d. For instance, device I has a 
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smaller φ and device III has a smaller d than the other devices. These experimental results 

illustrate that minor changes in geometry can have significant impact on GD performance. 

 To more fully understand the influence of geometry on Si NW GD behavior, we 

developed a MC model for simulating the ballistic nature of charge carriers within NW GDs 

taking motivation from the Landauer-Büttiker formalism and its generalizations.37 Considering 

the encoded dopant profile of the experimentally demonstrated Si NW GDs, the full 3D Monte 

Carlo (MC) simulation developed herein treats the NW GD as two metallic reservoirs 

(corresponding to degenerately-doped n-type regions) connected by a quasi-ballistic region into 

which electrons are injected and specularly reflect (Figure 1B). This quasi-ballistic region has an 

asymmetric ‘sawtooth’ geometry that is the hallmark of a two-terminal NW GD. As shown in 

Figure 1C, it is composed of two conical sections denoted the transmission taper (defined by 

angle θ and length L) and rejection taper (defined by angle φ and length l) connected by a 

constriction of diameter d. 

The MC method is a standard method for simulating carrier transport in semiconductors38 

and is appropriate for investigating the behavior of ballistic carrier transport in NW GDs by 

modeling the trajectories of single charge carriers within the nanostructure subject to bulk and 

surface scattering events. As detailed in the Methods section and Supporting Information, our 

MC model follows a standard model for Si and an algorithm outlined by Lundstrom.39 

To determine the MFP of charge carriers, we considered a free carrier in the bulk under 

no field and without physical boundaries. For a given T and ND, the MFP was taken as the 

average length of all free paths between scattering events within the MC simulation. Figure 3A 

displays a heat map of MFP for carriers traveling through bulk Si with varying ND and T, 

allowing a specific MFP to be identified for a given set of parameters.  
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Figure 3. MC simulation methods. (A) Heat map of MFP for carriers traveling through bulk Si 

with varying ND and T. (B) Schematic illustrations of particles injected from the transmission 

side at terminal t (I, II) and rejection side at terminal r (III, IV) of the structure and passing either 

successfully (I, III) or unsuccessfully (II, IV) from one side to the other through the constriction; 

scale bar, 20 nm. 
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 To simulate a NW GD device, we introduce radial boundaries representative of the 

asymmetric NW geometry, and as illustrated in Figure 3B, we represent the axial termination of 

the GD device as co-parallel planes at either end (termed terminal t and terminal r for the 

terminals on the transmission side and rejection side, respectively) that define the quasi-ballistic 

region of the device. These planes act to define both the start points (located on green discs in 

Figure 3B) and end points (located at red circles in Figure 3B) of each MC simulation trajectory 

within the physical bounds of the structure. Simulations are informed by the elastic resistor 

model that considers electrons traveling along fixed energy channels between two contacts 

driven by the difference in electrochemical potential between the contacts and not by an electric 

field.45 Thus, except where explicitly noted, we consider quasi-ballistic transport within the 

quasi-ballistic region without the presence of an electric field. 

Motivated by the Landauer-Büttiker formalism,31, 32 which can be modified to account for 

nonlinear transport,11 we model the DC asymmetry in terms of charge carrier transmission 

between the end terminals of the quasi-ballistic simulation domain. As discussed previously,34 

the theoretical δ of a NW GD, under the assumptions that Vapp introduces nonlinearity by altering 

the momentum distribution of charge carriers11 and that transmission probabilities against the 

applied field are zero, can be approximated as the ratio: 

                                    δ ൎ
Tt
ା

Tr
 ି  ൌ

Pt
ା

Pr
ି ,                          (2) 

where Tt
ା represents the transmission probability under forward bias from the transmission 

terminal t to the rejection terminal r whereas Tr
 – represents the transmission probability under 

reverse bias from the rejection terminal r to the transmission terminal t. A billiard ball model of 

ballistic electron motion,32 similar to our MC simulations, can be used to determine the ratio of 

transmission coefficients by simply calculating the analogous ratio of the probabilities of 
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transmission, Pt
ା and Pr

 –, as shown on the right-hand side of eq. 2, assuming the same number of 

transmission channels from either terminal. This ratio is directly provided by our MC simulations 

by tracking the fraction of trajectories that successfully transmit from terminal t to terminal r 

(and vice versa), allowing direct prediction of δ. Figure 3B illustrates the four possible outcomes 

for individual charge carrier trajectories when they are injected from terminal t (I, II) or terminal 

r (III, IV) and either transmit through the constriction (I, III) or are rejected and scattered back to 

the starting terminal (II, IV). The number of carriers that successfully transmit from start 

terminal to end terminal of the structure in the allowed simulation time (3.3 x 10-11 s) are divided 

by the total number of carriers injected from the start terminal to determine the probability of 

transmission. 

To understand the charge carrier concentration (n), charge density (ρ), and electric field 

(E) profiles in a NW GD, finite-element simulations of an n-type device were performed based 

on measured experimental geometries and expected dopant profiles to delineate the most likely 

quasi-ballistic regions of the device. Figure 4A displays a schematic of a typical dopant profile 

that would be encoded during the growth of Si NW diode in order to produce, after wet-chemical 

etching of the NW, the asymmetric geometry needed for a GD. Using this dopant profile, finite-

element simulations were performed and plots of n, ρ, and E at Vapp = 1 V are shown in Figure 

4B. The geometry and dopant profile produce an electric field that changes direction within the 

ratchet structure because of the change in the space charge density across the nanostructure. Note 

that the addition of a positive surface charge density to the simulations in Figure 4B results in 

band bending and depletion in the vicinity of the constriction, causing the effective constriction 

diameter d to be smaller than the physical geometry. However, the overall shape of the 
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conductive channel remains similar; thus, the geometries used in MC can be considered effective 

geometries that reflect both the physical geometry and electrostatic effects from surface charge. 

Figure 4C displays the bulk Si MFP, calculated from the empirical mobility40 and thermal 

velocity, as a function of position within the NW GD, where the MFP value is primarily limited 

by ionized impurity scattering based on the expected dopant concentration at each position. 

Because of the modulated doping within the nanostructure, the MFP peaks within the 

constriction and decays sharply into the rejection taper. On the side of the transmission taper, the 

MFP plateaus at ~12 nm close to the constriction and decays less rapidly into the transmission 

taper. Considering the MFP, E, and n distributions, we consider the most likely quasi-ballistic 

region to be encompassed within the dashed boxed region shown in Figure 4B, and the simulated 

quasi-ballistic region of the ratchet structure will generally involve quasi-ballistic transport 

through ~20 nm of the structure on both sides of the constriction. 
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Figure 4. Electrostatics and MFP. (A) Donor dopant (ND) profile used in the finite-element 

simulation; scale bar, 40 nm. (B) Finite-element simulation results at Vapp = 1 V showing the 

electric field |E| with normalized field lines (top), space charge density ρ (middle), and carrier 

density n (bottom); scale bar, 40 nm. (C) Plot of MFP at room T as a function of axial position 

through the transmission and rejection tapers of the structure based on the dopant profile in panel 

A, with a dashed line denoting the position of the constriction. 

 

We first consider the effect of MFP and transmission taper length on the apparent DC 

asymmetry, δ. As illustrated in Figure 5A, all geometric parameters are held constant except for 
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the transmission taper length L, which is varied from 2 to 200 nm. For shorter L, carriers are 

injected into the simulation domain very close to the constriction, within the region that should 

behave quasi-ballistically. As L increases, carriers are injected farther from the constriction and 

eventually transition out of the region that should behave quasi-ballistically, increasing the 

likelihood of scattering events that direct carriers away from the constriction. Thus, as L 

increases, transport should transition from ballistic to quasi-ballistic to diffusive. On the rejection 

taper side, the geometry is held constant with the rejection terminal at a fixed distance l = 10 nm 

from the constriction.  

  

 

Figure 5. Effects of MFP and transmission taper length. (A) Schematic of a NW GD with 

varying L (denoted schematically as L1, L2, and L3) for fixed D = 100 nm, d = 10 nm, l = 10 nm, 

θ = 13°, and φ = 77°; scale bar, 40 nm. (B, C) Plots of δ as function of L without an electric field 

and with MFPs of 10 nm (orange), 20 nm (yellow), 35 nm (cyan), and 60 nm (purple) produced 

at constant T = 100 K and ND = 1017 cm-3, 1016 cm-3, 1015 cm-3, and 1013 cm-3 respectively (panel 

B), or produced at constant ND = 1013 cm-3 and T = 450 K, 300 K, 200 K, and 100 K, respectively 
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(panel C). Insets: plots of Pt (dashed line) and Pr (solid line) for MFPs of 10 nm (orange) and 60 

nm (purple). Black dashed lines represent the ratios of the transmission terminal t areas to the 

rejection terminal r areas. (D) Plot of δ as function of L with an electric field (E = 104 V/cm) and 

MFP of 20 nm (blue curve), without an electric field (E = 0 V/cm) and MFP of 20 nm (cyan 

curve), and without an electric field (E = 0 V/cm) and without scattering (dashed cyan curve) to 

reflect pure ballistic transport. 

 

Figures 5B and 5C display δ as a function of L for electrons without an electric field and 

with different MFPs as determined by changing ND at constant T or changing T at constant ND, 

respectively. MFPs were varied from ~10 to ~60 nm, and both data sets show similar trends with 

MFP and L, with δ approaching 1 (i.e. no difference in transmission probabilities from either 

side) at longer values of L. Interestingly, the impact of MFP on δ is less pronounced than might 

initially be expected, with even a short MFP of ~10 nm able to produce a δ above 20 for shorter 

L values. The origin of this relatively weak MFP dependence can be understood by examining 

the individual transmission probabilities Pt and Pr from the transmission and rejection tapers of 

the nanostructure, respectively, as shown in in the insets of Figure 5B,C. As apparent from these 

plots, the rejection taper has a uniformly low Pr, implying that the rejection taper effectively 

prevents electrons from passing through the constriction under all conditions. The transmission 

taper has a much higher Pt that relatively slowly decays as L increases. Thus, the relatively weak 

dependence of δ on MFP for shorter L can be interpreted to result from the good rejection 

characteristics on one side but also from the relatively good transmission on the other. Plots of Pt 

and Pr at all values of MFP are shown in Figure S1. MFP does begin to strongly effect the GD 

performance at intermediate values of L, where higher MFP values enable substantially larger 



16 
 

values of δ, driven by higher Pt values while Pr remains approximately constant. The results also 

highlight the importance of correctly identifying the quasi-ballistic region of Si NW GDs (i.e. 

choosing physical reasonable values of L) when modeling data for comparison to experimental 

measurements. 

Figure 5D compares δ as a function of L for MC simulations without an electric field and 

with a uniform electric field (E = 104 V/cm) directed along the NW axis, a value motivated by 

the finite-element results in Figure 3B. The axial momentum distribution is not biased when the 

electric field is non-zero, as the explicit electric field instead serves to bias the momentum. For 

simulations with zero electric field in Figure 5D, the MFP is either 20 nm (solid cyan curve) or 

infinite (dashed cyan curve), with the latter reflecting pure ballistic transport without scattering 

inside the structure. For the non-zero electric field simulation (blue curve, Figure 5D), the MFP 

is also 20 nm. However, regardless of MFP or electric field, the value of δ initially decreases 

with increasing L. However, with an electric field, δ begins increasing for L greater than the 

MFP. This effect results from the electric field redirecting electrons toward the constriction 

(effectively serving to inject them into the quasi-ballistic region closer to the constriction) to 

facilitate transmission. The electric field can compensate for short MFPs and for non-

transmissive initial trajectories by mitigating the rejection of carriers on the transmission side, 

resulting in greater δ values than both the short MFP and purely ballistic, infinite MFP 

simulations at longer L. For carriers with the same MFP, the similarity of the curves with and 

without an electric field for small values of L, combined with the prediction of δ values at longer 

L with an electric field that are similar to the ones at shorter L, together provide further 

motivation to perform MC models of the NW GDs with relatively small values of L, a biased 
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axial momentum distribution (Figure S2), and no electric field, as done in the remainder of this 

work. 

The MC simulation makes possible a systematic examination of the relationship between 

individual geometric parameters and δ. Toward this end, we focus first on the geometry of the 

transmission taper (Figure 6) and then the rejection taper (Figure 7) to identify the most 

influential geometric trends. Figure 5A displays a heat map of δ as a function of the geometric 

parameters d and θ with D, l, and MFP fixed at 100 nm, 10 nm, and 12 nm, respectively, while L 

and φ change accordingly with θ and d. Figures 6B,C also display heat maps of Pt and Pr, where 

the ratio of the data in Figure 6B and 6C produces the δ values shown in Figure 6A. Sweeping 

over values for d and θ reveals the interdependence of the parameters to determine the 

performance of the GD devices, as exemplified by the four geometries (Figure 6D) 

corresponding to the points labeled I-IV in Figures 6A-C. 
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Figure 6. Transmission taper geometric effects. Heat maps of (A) δ, (B) Pt, (C) Pr for a GD 

structure with varying d and θ for fixed D = 100 nm, l = 10 nm, and MFP = 12 nm. (D) 

Schematics of GD geometry corresponding to the four points labeled I-IV in panels A-C; scale 

bar, 20 nm. 

 

For smaller θ angles of ~15°, the impact of the constriction diameter d is evident as δ 

increases as d decreases (e.g. moving from point I to point II). The plots of Pt and Pr reveal that 

as d decreases the rejection taper becomes more effective at blocking carriers, while electron 

transmission from the transmission taper is approximately constant because the small θ angle is 

highly favorable to transmission. On the rejection taper, the angle φ increases significantly as d 

decreases, causing significant back scattering of the electron and reducing Pr. This result 

highlights the important role of the rejection taper and high φ angles in improving the GD 

performance. 

For smaller d values of ~15 nm, the impact of the transmission angle θ is evident as δ 

decreases from a maximum to a value of ~1 as θ increases (e.g. moving from point II to point 

III). As apparent from the plots of Pt and Pr, δ decreases because Pt decreases as the transmission 

taper shifts from tending to direct electrons through the constriction to tending to direct them 

back toward the transmission terminal. On the rejection taper, the value of Pr is approximately 

constant. As apparent from geometries II and III in Figure 6D, the transmission taper transitions 

from a highly asymmetric structure at small θ to a largely symmetric bowtie structure at large θ, 

where the symmetric structure has lost the GD behavior as manifested by δ ~ 1.  

For larger θ angles of ~75°, δ is ~1 for all values of d (e.g. moving from point III to point 

IV) because the transmission taper rejects carriers by directing them away from the constriction, 
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just as the rejection taper does. This results in nearly identical values for Pt and Pr, indicating 

symmetric transport of charge carriers and absence of diode behavior. While small d (point III) 

results in smaller Pt and Pr values than large d (point IV), the change in both with d is 

approximately the same, leading to a static value of δ ~ 1. Finally, for large values of d ~ 95 nm, 

the NW structure is almost geometrically uniform, causing δ ~ 1 and causing all transmission 

probabilities to be high even for a substantial change in θ (e.g. moving from point IV to point I). 

Overall, the heatmaps in Figure 6A-C highlight the importance of a small constriction d, small 

transmission taper angle θ, and large rejection taper angle φ to achieve asymmetric charge carrier 

transport, expressed quantitatively as a large δ value. 

 

 

Figure 7. Rejection taper geometric effects. Heat maps of (A) δ, (B) Pt, and (C) Pr for a GD 

structure with varying d and φ for fixed D = 100 nm, L = 20 nm, and MFP = 12 nm. (D) 
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Schematics of GD geometry corresponding to the four points labeled I-IV in panels A-C; scale 

bar, 20 nm. 

 

Analogous to Figure 6, Figure 7 displays GD MC data as a function of the parameters d 

and φ with D, L, and MFP fixed at 100 nm, 200 nm, and 12 nm, respectively, while l and θ 

change accordingly with φ and d. Figure 7A displays a heat map of δ while Figures 7B,C display 

heat maps of Pt and Pr. Four exemplary geometries, denoted I-IV, are shown in Figure 7D. For 

smaller φ angles of ~15°, δ is ~1 for all values of d (e.g. from point I to point II) because, just 

like the transmission taper, the rejection taper transmits carriers by directing them toward the 

constriction, as indicated by the nearly identical values of Pt and Pr. The larger d geometries (e.g. 

point I) result in slightly larger Pt and Pr values than smaller d (e.g. point II) because the majority 

of carriers pass through the large constriction without reflecting off the structure, making them 

more likely to successfully transmit without back scattering. 

For smaller d values of ~15 nm, δ increases from ~1 to the maximum value as φ increases 

(e.g. from points II to III) because the transmission taper transitions from directing carriers 

toward the constriction to reflecting them away, leading to a decreasing Pr while Pt stays 

approximately constant. The geometries corresponding to points II and III (Figure 7D) highlight 

how the transmission taper remains unchanged while the rejection taper transitions from an 

approximately symmetric bowtie structure to an asymmetric structure that is able to effectively 

direct carriers away from the constriction.  

For larger φ angles of ~75°, δ decreases as d increases (e.g. moving from points III to 

IV), changing from the maximum value to ~1. The expanding constriction d becomes less 

effective at blocking carriers on the rejection side, leading to an increasing Pr while Pt remains 
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approximately constant. Finally, for large values of d ~ 95 nm, the NW structure is almost 

geometrically uniform, causing δ ~ 1 and causing all transmission probabilities to be high even 

for a substantial change in φ (e.g. moving from point IV to point I). In general, these heatmaps 

highlight the importance of a small constriction d and large rejection taper angle φ to achieve a 

large δ. 

 

 

Figure 8. Comparison of Simulation and Experiment. (A) Plot of the experimental values of 

DC asymmetry at |Vapp| = 1 V collected from 81 single-NW devices plotted as a function of the 

rejection taper angle φ for different ratios, d/DNW, of constriction diameters, d, to NW outer 

diameter, DNW. Data was replotted from reference 34. (B) Plot of δ from MC simulations as a 

function of φ for different ratios of constriction diameters to NW diameters (d/DNW = 0.2, 0.3, 

0.4, 0.5, 0.6, and 0.7 for purple through red curves, respectively) with fixed D = 100 nm, L = 20 

nm, and MFP = 12 nm. 
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As observed in experimental measurements (Figure 2) and predicted by MC simulations 

(Figures 6,7), the φ angle of the rejection taper and the constriction diameter have significant 

impacts on δ. As φ increases, δ increases, and this trend is accentuated for structures with small d 

values. Notably, the experimental results in Figure 2C show an increase in asymmetry and 

decrease in current for GD structures with increased φ and decreased d values. Qualitatively, we 

observe these same trends in δ and Pt in Figures 6A,B in δ and Pr in Figures 7A,C. To further 

verify these ballistic trends, we compare simulation results to experimental measurements on Si 

NW GDs.34 Devices presented here (Figure 2) and from past experimental measurements34 are 

identical in fabrication and measurement procedures. Replotting the experimental data reported 

in reference 34, Figure 8A correlates Si NW GD φ angles with experimentally measured DC 

asymmetry δ values measured at |Vapp| = 1 V, showing more than an order of magnitude increase 

as φ increases. The data are color-coded by the ratio of constriction diameter to NW diameter, 

d/DNW. For a majority of the measured structures, DC asymmetry increases as d/DNW decreases. 

Figure 8B plots analogous data from MC simulations for δ as a function of φ for several values 

of d/DNW. Similar to the experimental data, the trend of increasing δ with increasing φ is present 

for all d/DNW ratios, and it plays a more significant role as d/DNW decreases because both the 

transmission and rejection tapers are better able to direct carrier transport to yield diode 

behavior. The good qualitative agreement between the experimental data in Figure 8A and MC 

simulations in Figure 8B support the quasi-ballistic characteristics of the experimental Si NW 

GDs and demonstrate that the MC methods and design principles described herein reproduce key 

aspects of the GD performance. 

 

CONCLUSION 
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In this work, we develop a MC simulation of quasi-ballistic Si NW GDs to clarify the 

experimentally observed relationship between NW GD geometry and device performance. 

Through this model, we establish design principles that relate the physical geometry, temperature 

(T), and dopant concentration (ND) to δ. Modeling charge carrier paths through the GD structure 

revealed the importance of carrier MFP (determined by T and ND), specular reflection at 

surfaces, and geometry to quasi-ballistic transport under various conditions. Geometry is the 

most influential factor, with the angles of the transmission and rejection tapers determining the 

nanostructure’s effectiveness in directing and blocking charge carriers. The constriction size 

strongly modulates the angles and affects carrier interactions with the boundaries of the GD. 

Under ideal geometric conditions, the structure has a small θ angle, large φ angle, and small 

d/DNW ratio, and the blocking effect is at least as important as the directing effect in achieving 

asymmetric carrier transport. The importance of this blocking effect and the relative short 

associated length scales leads to relative weak dependence of GD performance on charge carrier 

MFP. These MC simulation results enable prediction and interpretation of experimental trends 

and can be used to direct NW GD design and fabrication. They clarify the mechanism of quasi-

ballistic transport in NW GDs and can enable progress toward achieving THz rectification with 

these structures. 

 

METHODS   

Nanowire Synthesis and Etching. Si NWs were synthesized from Au nanoparticle 

catalysts by a vapor-liquid-solid (VLS) mechanism in a home-built, hot-wall chemical vapor 

deposition (CVD) system.36 Silane (SiH4; Voltaix) was used as the source of Si and phosphine 

(PH3; 1000 ppm PH3 in H2; Voltaix) as the source of P for n-type doping, with hydrogen (H2; 
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Matheson TriGas 5 N semiconductor grade) as the carrier gas. Growth substrates, 1 x 2 cm Si 

wafers (NOVA Electronic Materials, (100) p-type Si with 600 nm thermal oxide), were 

functionalized with poly-L-lysine (Sigma-Aldrich) and citrate-stabilized 100 nm diameter Au 

catalysts (Ted Pella) and then inserted into the center a single-zone 1-inch tube furnace 

(Lindberg BlueM). NWs were nucleated for 15 minutes at 440-450 °C with 200 standard cubic 

centimeter per minute (sccm) H2 and 2.00 sccm SiH4 at 40 torr total reactor pressure. After 

nucleation, the temperature was ramped to 420 °C over 15 minutes, the PH3 flow was set to 20 

sccm, the total reactor pressure was ramped to 20 torr, and the H2 flow was ramped to 100 sccm 

over 1 minute. The first degenerately doped n-type section was grown by maintaining the PH3 

flow of 20 sccm for 60 minutes. The sawtooth geometry was encoded in the NW by controllably 

ramping the PH3 flow from 20 to 0 sccm in steps with a duration of 3 seconds or more each and 

then the flow rate was held at 0 sccm for 15 seconds to create the transmission taper of the 

ratchet, and then abruptly returned to 20 sccm to create the rejection taper. Following the 

sawtooth, second degenerately doped n-type section was encoded by again maintaining the PH3 

flow at 20 sccm for 60 minutes. Based on dopant flow profile, the minimum doping level in the 

ratchet section, near the constriction, is likely below 1018 cm-3 due to suppression of the reservoir 

effect.41-43 To achieve the desired physical geometry, NWs were mechanically dry transferred to 

device substrates, etched in buffered hydrofluoric acid (BHF, ~5% by volume) for ~10 seconds 

to remove the surface oxide, and dopant-selectively etched with room-temperature aqueous KOH 

solution (20% by weight) for 120-240 seconds. 

Device Fabrication. Marker patterns were fabricated on device substrates, (100) p-type 

Si wafers with 100 nm of thermal oxide and 200 nm Si3N4, by etching into the wafer with a spun 

photo-resist stack (3 layers of MMA; MicroChem (8.5) EL9, 1 layer of (PMMA; MicroChem 
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950PMMA.A7) with electron-beam lithography (EBL) using an FEI Helios 600 Nanolab Dual 

Beam System with Nanometer Pattern Generation System (NPGS) and deep reactive ion etching 

(DRIE; Alcatel AMS 100). Contacts to the NW were defined by spinning a photo-resist stack (2 

layers of MMA; MicroChem (8.5) EL9, 1 layer of (PMMA; MicroChem 950PMMA.A2) onto 

device substrates with etched NWs and using EBL with NPGS. Device substrates were then 

developed, etched in BHF for 10 seconds, and metal contacts were fabricated by electron-beam 

evaporation (Kurt Lesker PRO Line PVD75) of 3 nm of Ti and 150-200 nm of Pd.  

Device Measurements. Single-NW device measurements were performed at room 

temperature and in the dark, using a probe station (Lakeshore TTPX Cryogenic Probe Station), 

under vacuum (<5 mTorr) and a source measure unit (SMU, Keithley 2636B) with triax cable 

connections (Belden 9222 50 Ω).  

Electron Microscopy. SEM was performed with an FEI Helios 600 Nanolab Dual Beam 

System with an imaging resolution of less than 5 nm.  

Finite-element modeling. Finite-element simulations using COMSOL Multiphysics have 

been previously employed to study the electrostatic nature of NW GDs.34 The finite-element 

model employed here includes Poisson’s equation, explicit dopant profiles, drift-diffusion with 

density-dependent electrical mobilities and diffusion constants, bandgap renormalization, and 

Shockley-Read-Hall, Auger, and surface recombination, as described previously.36 

MC model. Our MC model follows a standard model for Si and an algorithm outlined by 

Lundstrom, further details are in the Supporting Information.39 It considers four types of energy-

dependent electron scattering processes, including acoustic deformation potential scattering, 

equivalent intervalley scattering by phonon absorption and emission, and ionized impurity 

scattering.  
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Considering the T-dependent electrical mobility of Si, we note that mobility is 

proportional to T3/2 at low temperatures (T < 350 K), where impurity scattering mechanisms are 

dominant, and proportional to T3/2 at high temperatures (T > 350 K), where lattice scattering 

mechanisms are dominant.44 Because the scattering rate is well characterized at T = 300 K, we 

scaled the ionized impurity scattering rate by a factor of (T/300 K)3/2 and the scattering rates due 

to lattice mechanisms by (T/300 K)3/2. This successfully reproduced the general trend in 

experimental results for the T-dependent electrical mobility of Si,40 as shown in Figure S3, where 

electrical mobility was calculated from simulated carrier MFPs at different values of T and ND.  

To simulate a NW GD device, we introduce boundaries that represent the NW physical 

geometry as two 3D cartesian (x, y, z) cones with offset vertices, where each cone can be 

expressed as:  

 𝑦ଶ ൅ 𝑧ଶ ൌ 𝑎ଶሺ𝑥 െ 𝑥௩ሻଶ,                    ሺ3ሻ 

with the x-axis as the central axis, the vertex at position (xv, 0, 0), and a, the slope of the cone. 

The vertex positions xv and slopes a of two cones are varied to represent distinct GD geometries. 

We consider the boundaries to be idealized surfaces that are atomically smooth and defect free. 

At surface boundaries, we assume elastic scattering can be described as specular reflection at the 

point of intersection between the charge carrier and surface; thus, the momentum vector after 

reflection, pref, is calculated as:  

 pref = p – 2projሺp,Nሻ,                    ሺ4ሻ 

where N is the normal vector to the surface at the point of reflection and proj(p,N) is the vector 

projection of p onto N. We assume a surface boundary reflection is probabilistically independent 

from a scattering event in the bulk, so the charge carriers continue their trajectories after 

reflection until the next scattering event predicted by the model. 
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The model requires identification of the points of intersection of a carrier trajectory with 

the physical boundary. As shown in the Supporting Information, combining the equation of 

motion of the charge carrier with the expressions (eq. 3) for the surface boundary leads to a 

quartic expression for the time points at which an intersection will occur. Solving for the 

resulting roots of the expression yields solutions that are then filtered to identify the first non-

imaginary, physically reasonable intersection (i.e. ones that represent the temporally first 

intersection with a physically valid portion of a cone at a time point less than the free flight time 

of the trajectory).  

To start a trajectory, a charge carrier is injected into the quasi-ballistic region from either 

termination plane by randomly selecting the start position from a uniform positional distribution 

across the circular cross section. The starting momentum of the carrier is determined by selecting 

non-axial momentum components from a Gaussian with mean 𝜇 ൌ 0 and standard deviation 𝜎 ൌ

ඥ𝑚∗𝑘஻𝑇, where the axial component 𝑝௔௫௜௔௟ ൌ ඥെ2𝑚∗𝑘஻𝑇 lnሺ𝑟௔௫௜௔௟ሻ is specified by selecting a 

random number 𝑟௔௫௜௔௟ from a uniform distribution from 0 to 1.39 The axial momentum 

distribution is biased by an applied voltage, Vapp, of 1 V by adding ඥ2𝑚∗𝑒𝑉௔௣௣ to the axial 

momentum, resulting in a shift of the probability density (P(vaxial)) for the initial carrier axial 

velocity (vaxial), as shown in Figure S2. To end a trajectory, a charge carrier within the radial 

bounds of the geometry must intersect either termination plane. For simplicity, the MC 

simulation domain is assumed to have a uniform dopant concentration. The quasi-ballistic region 

therefore has a constant MFP and is constructed by placing the transmission and rejection 

terminals within approximately one MFP of the constriction. We assume there is negligible flux 

against the potential gradient. 
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I. Supporting Text 

The scattering mechanisms and their associated scattering rate equation are:  

1. acoustic deformation potential (ADP):  

 1
𝜏ଵ
ൌ ሺ2 ൈ 10ଵଷሻඨ

𝐸ሺ𝒑ሻ

𝑞
 (S1) 

2. equivalent intervalley scattering by phonon absorption:  

 1
𝜏ଶ
ൌ ሺ1.5 ൈ 10ଵଷሻඨ

𝐸ሺ𝒑ሻ

𝑞
൅ .050 (S2) 

3. equivalent intervalley scattering by phonon emission:  

 1
𝜏ଷ
ൌ ሺ1 ൈ 10ଵସሻඨ

𝐸ሺ𝒑ሻ
𝑞

െ .050 (S3) 

4. ionized impurity scattering: 

 
1

τ4
=൫1×1013൯ ൬

NI

1016൰

1
3

 ඨ
Eሺpሻ

q
 , (S4) 

where 𝜏 is the free-flight time associated with each scattering event, p, E, and q, respectively, are 

the momentum, energy, and charge of the carrier, and NI is the total concentration of ionized 

impurities per cubic centimeter. 

The sum of the rates due to these mutually independent processes is the total scattering 

rate, Γሺ𝒑ሻ, where 

 
Γሺ𝒑ሻ ൌ෍

1
𝜏௜

ସ

௜ୀଵ

  , (S5) 

which, after repeatedly sampling from possible carrier trajectories, determines the average free-

flight duration of a carrier between scattering events. Due to its dependence on carrier energy, 
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which varies over time, the total scattering rate, Γሺ𝒑ሻ, is actually a function of time, Γሺ𝒑ሺ𝑡ሻሻ, 

which is approximated as a(n) (arbitrary, user-defined) constant, Γ଴, in order to simplify 

derivations and reduce computational expenses. In order to yield a result that can be used to 

model real semiconductors, in addition to the k real scattering types, a fictitious self-scattering 

type is considered, where 

 1
τ୩ାଵ

ൌ Γୱୣ୪୤ሺ𝒑ሻ ൌ Γ଴ െ Γሺ𝒑ሻ ൐ 0. (S6) 

A single free flight and scattering event is simulated by generating four random numbers: 

r1, r2, r3, r4, where each number is selected from a uniform distribution from 0 to 1. r1 is used in 

conjunction with Γ଴ to determine the free-flight time until the next scattering event (real or self-

scattering): 

 
𝑡௖ ൌ െ

1
Γ଴

lnሺ𝑟ଵሻ, (S7) 

where tc is the free-flight time between scattering events. The flight time is used to determine the 

position and momentum of the carrier just before the next scattering event, in accordance with 

Newton’s law, 

 𝑑ଶ𝒓
𝑑𝑡ଶ

ൌ
𝑞
𝑚∗ 𝓔, (S8) 

where r is position, m* is effective mass (0.26me), and 𝓔 is the electric field. 

The scattering type is identified by comparing r2 to the partial sums of the fractional 

contributions of all k+1 scattering mechanisms to the total scattering rate, and selecting 

mechanism j if: 

 ∑ Γ௜
௝ିଵ
௜ୀଵ

Γ଴
൑ 𝑟ଶ ൏

∑ Γ௜
௝
௜ୀଵ

Γ଴
, 𝑗 ൌ 1, 2, … ,𝑘 ൅ 1, (S9) 
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where Γ௜ is the i-th scattering mechanism. If the scattering type is self-scattering, the simulation 

determines a new free-flight time and the carrier continues on its current trajectory without 

interruption. 

When a real scattering mechanism is selected, the final momentum state after scattering 

may change in magnitude, which is determined by the energy change Δ𝐸 associated with the 

scattering mechanism, and orientation, which is determined by r3 and r4. Assuming a spherical 

parabolic energy band, the magnitude of the momentum immediately after scattering is: 

 𝑝ሺ𝑡௖ାሻ ൌ 𝑝ᇱ ൌ ඥ2𝑚∗ሾ𝐸ሺ𝑡௖ିሻ ൅ Δ𝐸ሿ , (S10) 

where tc
+ is the time at the instant after a scattering event and tc

- is the time at the instant before a 

scattering event. In order to determine the new orientation, we can simplify our calculations by 

considering a rotated coordinate system where the primary axis is now directed along the initial 

momentum, the azimuthal angle 𝛽 and the polar angle 𝛼 (with respect to the primary axis which 

is not necessarily the z-axis are determined by: 

 𝛽 ൌ 2𝜋𝑟ଷ (S11) 

and 

 cosሺ𝛼ሻ ൌ 1 െ 2𝑟ସ. (S12) 

In the rotated coordinate system where the x-axis is pointing along the initial momentum, the 

momentum vector is: 

 
𝒑௥ᇱ ൌ 𝑝ᇱ ቌ

cosሺ𝛼ሻ
sinሺ𝛼ሻ cosሺ𝛽ሻ
sinሺ𝛼ሻ sinሺ𝛽ሻ

ቍ. (S13) 

Simply apply the inverse of the coordinate system rotation transformation operator to the 

rotated final momentum vector in order to return to the original coordinate system. This process 
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is repeated until an arbitrary simulation condition is satisfied (i.e. a number of real scattering 

events or a maximum carrier flight time). 

As a carrier trajectory is entirely deterministic between scattering events, it is simple to 

identify the point of intersection of a carrier trajectory with a boundary if the surface is well-

defined and locally continuous (smooth) in the region. Solving Equation 8 yields an equation for 

the trajectory of a carrier between scattering events: 

 
𝒓ሺ0 ൑ 𝑡 ൏ 𝑡௖ሻ ൌ 𝒓଴ ൅

𝒑଴
𝑚∗ 𝑡 ൅

𝑞𝓔
2𝑚∗ 𝑡

ଶ,  (S14) 

where r0 and p0 are the initial position and momentum, respectively, of the carrier immediately 

after the last scattering event and 
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⎜
⎜
⎛
𝑥଴ ൅
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𝑚∗ 𝑡 ൅

𝑞ℰ௫
2𝑚∗ 𝑡

ଶ

𝑦଴ ൅
𝑝଴௬
𝑚∗ 𝑡 ൅

𝑞ℰ௬
2𝑚∗ 𝑡

ଶ

𝑧଴ ൅
𝑝଴௭
𝑚∗ 𝑡 ൅

𝑞ℰ௭
2𝑚∗ 𝑡

ଶ
⎠

⎟
⎟
⎞

 , (S15) 

which, between any two consecutive scattering events, is just a parabola when the applied 

electric field is constant in magnitude and direction or a straight line in a field with a magnitude 

of zero. Combining Equation 15 and the equation for the conical boundary yields a quartic 

equation of the form: 

 𝑐ସ𝑡ସ ൅ 𝑐ଷ𝑡ଷ ൅ 𝑐ଶ𝑡ଶ ൅ 𝑐ଵ𝑡 ൅ 𝑐଴ ൌ 0 (S17) 

for the time solution of the intersection, where 

𝑐ସ ൌ ቀ
𝑞

2𝑚∗ቁ
ଶ
𝑆𝐷𝑃ሺ𝓔,𝓔,𝑎ሻ 

𝑐ଷ ൌ
𝑞
𝑚∗ଶ 𝑆𝐷𝑃ሺ𝒑଴,𝓔,𝑎ሻ 

  (S18) 
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𝑐ଶ ൌ
1
𝑚∗ଶ 𝑆𝐷𝑃ሺ𝒑଴,𝒑଴,𝑎ሻ ൅

𝑞
𝑚∗ 𝑆𝐷𝑃ሺ𝑲,𝓔,𝑎ሻ 

𝑐ଵ ൌ
2
𝑚∗ 𝑆𝐷𝑃ሺ𝑲,𝒑଴,𝑎ሻ 

𝑐଴ ൌ 𝑆𝐷𝑃ሺ𝑲,𝑲,𝑎ሻ , 

where  

 𝑲 ൌ 𝒓଴ െ 𝒗. (S19) 

and SDP is a Special Dot Product function such that 

 𝑆𝐷𝑃ሺ𝑨,𝑩, 𝑐ሻ ൌ  െ𝑐ଶ𝐴௫𝐵௫ ൅ 𝐴௬𝐵௬ ൅ 𝐴௭𝐵௭ , (S20) 

where A and B are 3D vectors and c is a constant. 

A typical root finding method can be used here to determine the time solutions of 

Equation 17.  
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II. Supporting Figures 

 

 

Figure S1. Probabilities of transmission for ballistic simulations with various carrier MFPs. 

Plots of (A) δ, (B) Pt, and (C) Pr at fixed temperature (T = 100 K) and variable ND with MFPs of 

10 nm (orange), 20 nm (yellow), 35 nm (cyan), and 60 nm (purple) at ND = 1017 cm-3, 1016 cm-3, 

1015 cm-3, and 1013 cm-3, respectively. Plots of (D) δ, (E) Pt, and (F) Pr at fixed carrier density 

(ND = 1013 cm-3) and variable T with MFPs of 10 nm (orange), 20 nm (yellow), 35 nm (cyan), 

and 60 nm (purple) at T = 450 K, 300 K, 200 K, and 100 K, respectively. Black dashed lines 

represent the ratio of the areas of terminal t to terminal r (panels A, D), the ratio of the areas of 

terminal t to the constriction (panels B, E), and the ratio of the areas of terminal r to the 

constriction (panels C, F). 
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Figure S2. Initial electron axial velocity. Probability density, P(vaxial), for the initial charge 

carrier axial velocity component, vaxial, with (teal) and without (pink) additional kinetic energy 

imparted by an applied bias. 

 

 

 

 

 

 

 

 

 

 

 

 



S9 
 

 

Figure S3. Simulated electron mobility. Plot of electron mobility at T = 100 K to 800 K for ND 

= 1019 cm-3 (blue), 1018 cm-3 (green), 1017 cm-3 (purple), 1016 cm-3 (cyan), 1015 cm-3 (yellow), 

1014 cm-3 (red). 
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