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Abstract

The primary goal of this paper is to identify syntomic complexes with the p-adic étale Tate twists of Geisser—Sato—
Schneider on regular p-torsion-free schemes. Our methods apply naturally to a broader class of schemes that we
call ‘F-smooth’. The F-smoothness of regular schemes leads to new results on the absolute prismatic cohomology
of regular schemes.
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1. Introduction

Let X be a scheme. In [BL.22a, Sec. 8], the first author and Lurie, following the earlier work [BMS19],
define and study certain syntomic complexes Zp,(i)(X) = RTgyn(X,Zp (7)) for i € Z, extending earlier
constructions in the literature [FM87, Kat87]. These syntomic complexes yield a generalization of the
p-adic étale cohomology (with Tate twisted coefficients) for Z[1/p]-schemes to arbitrary schemes,
and exhibit quite different behaviour in positive and mixed characteristic, where they are obtained from
prismatic cohomology. We refer to [CN 17, Sec. 1.1] for a survey of applications of syntomic cohomology.
The purpose of this paper is to identify the syntomic complexes as étale sheaves on X in a class of
examples. In doing so, we generalize a number of existing results in the literature, including those of
[Kur87, Kat87, Tsu99, CN17], and recover the p-adic étale Tate twists of [Sch94, Gei04, Sat07].

1.1. What is syntomic cohomology?

To formulate our results, it is convenient to name the restriction of syntomic cohomology to the small
étale site.

Notation 1.1 (The complexes Z/p"(i)x). For any scheme X and integer i € Z, write Z/p"(i)x €
D(Xet, Z/ p™) for the object of the derived co-category of étale sheaves of Z/p"-modules on X obtained
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by restricting the syntomic complexes' Z/p” (i)(—) of [BL22a, §8] to the small étale site X, of X. Thus,
we have a defining identification RT'(X,Z/p" (i)x) = Z/p" (i)(X).

Let us describe this object in the key examples.

Example 1.2 (Syntomic cohomology in characteristic # p). For any X, the restriction of Z/p"(i)x to
the locus X[1/p] C X is given by ,u;‘ff, = (Z/p™(i)x)|x[1/p)- In particular, if p is invertible on X, then

Z/p" (i)x is simply the usual étale Tate twist z5..

Example 1.3 (Syntomic complexes via logarithmic de Rham—Witt sheaves in characteristic p). When X
is aregular F,-scheme, we have isomorphisms Z/p" (i)x =~ W"Qfog,X [—i] for W"Qfog,X the logarithmic
Hodge—Witt sheaves considered in [Mil76, 11179, Gro85], cf. [BMS19, Sec. 8].

Example 1.4 (Syntomic cohomology of p-adic formal schemes). For any scheme X, the pullback of
Z/p"(i)x to the étale site of the p-adic completion X (or equivalently that of X/p) is constructed as a
filtered Frobenius eigenspace of prismatic cohomology first studied in [BMS19]. That s, if X = Spec(R)
for R a p-Henselian animated ring, then one has an expression

Z,(i)(X) = eq (can, ¢; : NZ' Ay {i} 3 Ax {i}). (D)

Here, Ax {i} denotes the Breuil-Kisin twisted (absolute) prismatic cohomology of X, N'=* denotes the
Nygaard filtration, ¢; denotes the ith divided Frobenius and can denotes the inclusion map. We refer to
[BL22a, Sec. 7] for a detailed treatment of these objects.

Earlier versions of this construction (which agree with the above for i < p — 2 or up to isogeny; cf.
[AMMN?22, Sec. 6] for comparisons) were introduced in [FM87, Kat87] using crystalline cohomology
and the Hodge filtration instead of prismatic cohomology and the Nygaard filtration.

Examples 1.2 and 1.4 essentially suffice to describe syntomic cohomology in general via a gluing

procedure: If R is a commutative ring with p-henselization R?p), one has a fiber square

Z/p" (i)(Spec(R)) ——— RTe(Spec(R[1/p]),

|

Z/p" (i) (Spec(R!. ) —= RTe(Spec(Rl.  [1/p]). u%h).

where the terms on the right are usual étale cohomology (cf. Example 1.2), the term on the bottom left
is computed via prismatic cohomology as in Example 1.4, and the bottom horizontal map is obtained
from the prismatic logarithm and the étale comparison theorem for prismatic cohomology in [BL.22a,
§8.3]. In fact, this approach was used as the definition of the top-left vertex in [BL.22a, §8.4].

For any scheme X, the complex Z/p"(0)x identifies with the constant sheaf Z/p" on X¢. One can
also make the complex explicit in weight 1:

Example 1.5 (Cf. [BL.22a, Prop. 8.4.14]). For any scheme X, one has that Z/p"(1)x is the derived
pushforward of p,» from the fppf site to the étale site (or equivalently the fiber of p" : G,, — G, in
the derived category of étale sheaves).

Finally, for completeness, we recall that syntomic cohomology also has a close connection to p-adic
K-theory, yielding a simple construction of the former which appears in [Niz12]. For this, we recall
([BMS19, Sec. 4] or [BL22a, App. C]) that a ring R is p-quasisyntomic if it has bounded p-power
torsion and Lg/z ®% R/pR € D(R/pR) has Tor-amplitude in [—1, 0]; for instance, any locally complete
intersection (Ici) noetherian ring has this property.

In [BL22a, §8], the object Z, (i) (X) is defined in the p-complete derived co-category; by Z/ p" (i) (X), we mean the reduction
mod p'. Note also that the construction X — Z/p™ (i) (X) on affine schemes carries filtered colimits of rings to filtered colimits
[BL.22a, Cor. 8.4.11].
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Example 1.6 (The Z/p"(i)x via algebraic K-theory). Let X be a p-quasisyntomic scheme. In this
case, one can give a direct construction of the Z/p" (i)x using algebraic K-theory for i > 0. Namely,
Z/p"(i)x € D(Xet, Z/p™) is the derived pushforward of the sheafification of the presheaf K»; (—;Z/p™)
from the syntomic site of X to the étale site of X. This is essentially a consequence of the work [BMS19]
and rigidity [Gab92, Sus83, CMM21] and will be discussed in more detail separately.

The connection to algebraic K-theory does not play a direct role in this article; nonetheless, the
connection to topological Hochschild homology provided by the K-theoretic approach inspired many
of the arguments in this paper.

1.2. Results

Syntomic cohomology is essentially p-adic étale motivic cohomology where the latter is defined, cf.
[Gei04, Niz06, EN19]. For example, syntomic cohomology admits a robust theory of Chern classes.
However, the syntomic complexes are defined for arbitrary schemes through the theory of prismatic
cohomology, without any explicit use of algebraic cycles. We will identify syntomic cohomology for a
class of p-torsion-free ‘F-smooth’ schemes and obtain a formula related to the Beilinson-Lichtenbaum
conjecture in motivic cohomology. To begin, let us formulate the definition of F-smoothness.

Definition 1.7 (F-smoothness, Definition 4.1 below). We say that a p-quasisyntomic ring R is F-smooth
if for each i, the prismatic divided Frobenius ¢; : N?Agr — Ag {i} has fiber in D(R) with p-complete
Tor-amplitude in degrees > i + 2, and if the Nygaard filtration on the (twisted) prismatic cohomology
Mg {i} is complete. This definition globalizes to schemes in a natural way.

The terminology ‘F-smooth’ is meant to evoke both the Frobenius (used in the definition) as well
as the hypothetical ‘field with one element’: For p-complete rings, we view F-smoothness roughly as
an absolute version of the smoothness condition in algebraic geometry. Correspondingly, the class of
F-smooth rings contains smooth algebras over perfectoid rings (Proposition 4.12) and for p-complete
noetherian rings F-smoothness is equivalent to regularity (Theorem 4.15). The verification that regular
rings are F-smooth (and in particular the Nygaard-completeness of the prismatic cohomology) has a
further application: Under excellence assumptions, we verify a cohomological bound on the Hodge—Tate
stack of a regular local ring suggested in [BL.22b, Conj. 10.1]. In equal characteristic p, F-smoothness is
equivalent to the condition of Cartier smoothness identified in [KM21, KST21]. Over a perfectoid base,
this condition has been studied independently in the work of V. Bouis [Bou22]; most of the following
identification (Theorem 1.8) of the Z/p" (i)x in this case has also been proved by Bouis, cf. [Bou22,
Th. 4.14].

Let us now formulate the main comparison. By adjunction and Example 1.2, for any scheme X, we
have a natural map Z/p" (i)x — Rj*(,u;‘f’,’;), for j : X[1/p] € X the open inclusion. For i > 0, results
of [AMMN22] give that Z/p"(i)x € D!%1(Xy, Z/p™), whence we obtain a canonical comparison
Z/p"(i)x — TR j*(,ui’f,). In general, the Kummer map (obtained from Example 1.5 and the cup

product) induces a map (O;})‘X’i — HI(Z/p"(i)x) which one can show to be surjective; see also
[LM21] for more on the target. This determines the image of H'(Z/p"(i)x) — Rij*(ygf,) as the
subsheaf generated by O%-symbols.?

Theorem 1.8. Let X be a p-torsion-free F-smooth scheme (e.g., a regular scheme flat over Z). Fori > 0,
the comparison map 7./ p"(i)x — T<'Rj, (y?h) is an isomorphism on cohomology in degrees < i. On

H!, the comparison map is injective with an image generated by the symbols, using the map of étale
sheaves (O%)® — ’H’(Rj*u;‘f’,ﬂ).

2Note that, by [BK86, Hyo88, SS20], the sheaf R’ j., (,uﬁil) is generated by symbols from O;{[l/pj in a wide variety of settings.
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In particular, Z/p™ (i)x is obtained by modifying the truncated p-adic nearby cycles 7=/ R, ( ,u;‘ff,) in
the top cohomological degree by taking the image of (O§)®i : One has a fiber square

Z/p"(i)x T='Rj (ks

| |

image (((’);})@i - Rij*(,u?.l; ) [-i] — Rij*(uf,’;)[—i]

in D(Xe). On schemes which are smooth or regular with semistable reduction over a discrete valuation
ring (DVR), Theorem 1.8 identifies Z/p" (i)x with the ‘p-adic étale Tate twists’ considered in [Sat07],
and earlier in the smooth case in [Gei04, Sch94]; cf. [Sat05] for a survey.

Many special cases of Theorem 1.8 have previously appeared in the literature. As above, the Z/p™ (i)x
always restrict to the usual Tate twists on X[1/p], so the main task is to identify i*Z/p"(i)x for
i : X/p C X, or equivalently the complexes defined in [BMS19]. In low weights or up to isogeny
(i.e., using the approach of [FM87, Kat87]), comparisons between syntomic cohomology and p-adic
vanishing cycles have been proved in a variety of settings, including smooth and semistable schemes
over a DVR or its absolute integral closure, in [Kur87, Kat87, Tsu99, CN17]. Theorem 1.8 integrally in
all weights for smooth O¢-algebras, for C an algebraically closed complete non-Archimedean field of
mixed characteristic (0, p), is proved in [BMS19, Sec. 10] (see also [CDN21] for a semistable analog).

Theorem 1.8 is also closely related (via [BMS19]) to the calculations of topological cyclic homology
for smooth algebras over the ring of integers in a p-adic field, cf. [HMO03, HM04, GHO6], and the recent
revisiting in [LW?22]. We do not calculate the topological cyclic homology but rather its associated
graded terms, and the methods are at least superficially different; it would be interesting to make a direct
connection.?

Our proof of Theorem 1.8 is based on some calculations in prismatic cohomology. In particular, it
is based on the étale comparison theorem (cf. [BS22, Th. 9.1], [BL22a, Th. 8.5.1] and Theorem 5.1
below), which states that for any scheme X, one can always recover the Tate twists ,u;‘f"' on the generic
fiber by inverting a suitable class vi € H(F,(p — 1)(Z)) in the syntomic cohomology of X. One can
identify the image of the class vy in the prismatic cohomology of Z,,, after which the result follows from
a linear algebraic argument.

Conventions

Throughout, we use the theory of (absolute) prismatic cohomology as developed in
[BL22a, BMS19, Dri20, BS22].

We will simply write R for the p-adic completion if there is no potential for confusion. If R is p-
complete, we write R (t) for the p-completed polynomial ring and R (tl/ pm> for the p-completion of
R[t'/P7].

For an animated ring R, we let D(R) denote the co-category of R-modules (i.e., if R is an ordinary
ring, D(R) is the derived co-category of R).

Given an object M € D(R) and an element x € R, we will write M /x or % for the mapping cone of
X : M — M.In particular, even when M is a discrete R-module, the object M /x need not live in degree 0.

2. Some calculations in prismatic cohomology

In this section, we recall some basic calculations in absolute prismatic cohomology. Our goal is to name
some elements vy, 6, § in the prismatic cohomology of Z,,, which will play a basic role in the sequel.

3The Segal conjecture at the level of topological Hochschild homology, which is closely related to the condition of F-smoothness,
is often used in these calculations.
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2.1. Prismatic sheaves

Let us first recall the construction of the prismatic sheaves, after [BL.22a, BS22]; their Nygaard com-
pletion was first constructed in [BMS19].

Following [BMS19, Sec. 4], we use the quasisyntomic site qSynZP. An object of qSyan is a
p-complete, p-torsion-free ring A such that L4z, ®% (A/p) € D(A/p) has Tor-amplitude in [—1,0].
There is a basis qrsPerdep c qSynZP of p-torsion-free quasiregular semiperfectoid rings, that is, those
objects in qSynZP which admit a surjection from a perfectoid ring.

Construction 2.1 (Prismatic sheaves). Let R € qrsPerdep be a p-torsion-free quasiregular semiperfec-
toid ring. Then we have naturally associated to R the following:

1. A prism (Ag, ¢, 1) together with a map R — Ag/I (which is in fact the initial prism with this
structure). We write Ag = Ag/I and call it the Hodge—Tate cohomology.

2. An invertible Ag-module Ag {1} with a natural ¢-linear map ¢; : Ag {1} — I"'Ag {1} whose
¢-linearization is an isomorphism; the reduction Ag {1} is identified with I/12. We let Ag {n} =
Ag {1}®" and obtain ¢,, : Ag {n} — I""Ag {n}.

3. A descending, multiplicative Nygaard filtration {\>'Ag} on the ring Ag given by NZ'Ag =
¢~ (I AR); we write N Ag = grl (N Z*AR). _

4. A map of graded rings P, N'Ag — B, (1/1*)® = P, Lr {i}, obtained by passing to
associated graded terms of the map of filtered rings ¢ : {N Z*AR} — {I"AR}.

5. The prismatic logarithm log , : T, (R*) — Ag {1}, whose image consists precisely of those elements
y € Ag {1} such that ¢ (y) = y.

All of the above define sheaves of p-torsion-free, p-complete abelian groups with trivial higher
cohomology on qrsPerdep; by descent, one obtains ZS(Z,,)-valued sheaves on qSynZP with the same
notation. Moreover, we will also need to consider the prismatic complexes for arbitrary animated rings;
these can be defined starting from the above using animation (compare [BL.22a, Sec. 4.5]).

Construction 2.2 (Syntomic sheaves). One has also, for each i > 0, the D(Zp)zo-valued sheaf of
abelian groups Z,, (i)(—) on qrsPerdeP which carries R to the fiber of can — ¢; : N = Ag {i} — Ag {i}
for can the inclusion map, as originally introduced in [BMS19]. By [BS22, Th. 14.1], there is a basis
for qrsPerdep on which the Z, (i) (-) are discrete.

By animation, one extends the Z, (i) (—) to all p-complete animated rings. In [BL22a, Sec. 8], the
syntomic sheaves Z, (i)(—) are extended to all animated rings, and by Zariski descent to all schemes,
by gluing the above construction on the p-completion and the usual Tate twists on the generic fiber. On
p-quasisyntomic rings, the Z,, (i)(—) are concentrated in nonnegative degrees.

Example 2.3 (The case (i%zcl ). In the particular case where R = Z‘;,yd def Z;[Zp\oo]7 then we have
an identification Ag = Z, [ql/l’”](p g1 1= [Pl = q;:ll. In this case, the choice of p-power roots

(1,¢p,&p2, - - ) determines an element € € T), (R*) such that log) (€) € Ag {1} is divisible by (g — 1)
and such that % is a generator for the module Ag {1}, cf. [BL22a, Sec. 2.6].

Construction 2.4 (The Hodge—-Tate cohomology of Z,,). Let us recall the calculation of the Hodge—Tate
cohomology of Z,,. In fact, we have an isomorphism of bigraded FF,-algebras,

H (% {+}| = E(2) @ P(6*"),

where |a| = (1, p) and 6 = (0, p) (we write the cohomological grading first and the internal grading
next). In fact, this follows from the treatment in [BL.22a, Sec. 3]. The Hodge-Tate cohomology of Z,

is given by the coherent cohomology of the sheaves Oyc, it {i} on the stack WCart"T ~ BGE,,. As

in loc. cit., p-torsion sheaves on Ban are simply [F,,-vector spaces V equipped with an endomorphism
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6 B. Bhatt and A. Mathew

©® : V — V such that the generalized eigenvalues of © live in F,, C E, and Oyye,,ir {7} corresponds
to the endomorphism i : F,, — [F,,. With this identification in mind, the calculation follows.
Using [BL22a, Prop. 5.7.9], we also find

H* (EB

i>0

Nibg

") ~ E(a) ® P(9)

Nibhg

A
such that the natural map 5 L - P,y % {i} on cohomology carries a +— @, > 6.4

i>0 p
Example 2.5. Let R be a p-torsionfree perfectoid ring. We have R — Ag, so one forms the Breuil-Kisin
twists R {i}. The map P, N Ar — €D, Lr {i} is identified with the inclusion map P, ., R {i} —

@i <7 R {i}. Under these identifications, 6 maps to a generator of N'? %; in fact, this is evident because
6 is a unit in the Hodge—Tate cohomology.

i>0

Proposition 2.6. Let A be any animated ring. Then the map of graded E-rings over Fp,

iba N Bali)
YR

i>0 i€Z
exhibits the target as the localization of the source at the element 6.

Proof. By quasisyntomic descent and left Kan extension, it suffices to treat the case where A is a
smooth algebra over a p-torsion-free perfectoid ring so that one is in the setting of relative prismatic
cohomology [BS22]. In this case, one can trivialize the Breuil-Kisin twists, and one knows that the
map ¢; : Nihy — Ay {i} is the ith stage of the conjugate filtration on the Hodge-Tate cohomology
ZA ~A A {i}, cf. [BS22, Th. 12.2]. Since the conjugate filtration is exhaustive and since # maps to a unit
in the target, the result easily follows from the Hodge—Tate comparison [BS22, Th. 4.11]. O

2.2. The elements v, ]
In this subsection, we construct two further elements in the prismatic cohomology of Z.

Construction 2.7 (The class v{). We define a class v| € HO(]FP (p = 1)(Z)) as follows.
Let R be the ring Z[{,~]. Then by flat descent [BL22a, Prop. 8.4.6], H°(F,(p — 1)(Z)) is the
equalizer of the two maps

HY(F,(p - 1)(R)) 3 H*(F,(p - D(R®R)). 2

The element (1,{p, {2, ...) € Tp(R™) determines a class € € HO(ZP(I)(R)) via the identification of
[BL22a, Prop. 8.4.14]. We claim that the image of e?~! € HO(F,, (p = 1)(R)) belongs to the equalizer
of the two maps (2).

To see this, it suffices to map R ® R to both its p-adic completion and to R ® R[1/p]. The images
of €”~! in the latter are identical, as one sees using the trivialization of the sheaf ,uffp L on Z[1/p]-
algebras. Thus, it suffices to calculate in F, (p — 1)(?@7). Equivalently, we may do this calculation
in Ager/p {p — 1}. By construction, the two images of € yields classes €1, e, € T), ((m)x). The
images under the prismatic logarithm mod p yield elements

logy (€1),logy (€2) € Dror {1} /p.

4Under the motivic filtrations of [BMS19], this calculation is also closely related to Bokstedt’s calculation of THH. (Z).
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As in Example 2.3, Ag is canonically identified with Z,, [q!/P™] . Let q1, g2 € Argr denote the
images of g under the two maps Ar = Argr-

Since the maps are (p, I)-completely flat, the elements (g; — 1), (g2 — 1) € Argr/p are nonzero
divisors, by the conjugate filtration and the Hodge-Tate comparison [BS22, Th. 4.11]. To see
that logA(el)p‘1 = logA(Q)p‘1 € Arer{p—1}/p, we may thus invert (¢; — 1)(¢g» — 1), af-
ter which both log) (e1) and logy (&) become generators of the invertible Argr/ p[m]—
module AR®R{1}/p[m]. But then there exists a unit x € AR®R/p[m] with
xlogy (e1) = logp (e2). Since logy (),i = 1,2 are fixed points of the divided Frobenius ¢, we find
that ¢(x) = x, or xP = x. Since x is a unit, this gives xP~' = 1, so logy ()"~ = log) (&2)?~! in

Arer/p{p -1} [m], as desired.

(p.g-1)

The class vi € H(F,(p — 1)(Z,)) also appears (in a different language) in [Dri20, Prop. 8.11.2].

Although it will not play a role in the sequel, let us remark on the connection to the element v
in stable homotopy theory. Suppose p > 2 for simplicity. The topological class thop € mp-2(S/p) in
the stable stems gives a nonzero class in 3, 2TC(Z,;F,); under the motivic spectral sequence of
[BMS19], this is detected (up to nonzero scalar) by the class denoted v above. In fact, we can check this
after passage from Z, to Oc,,; then, the description ku/p = TC(Oc,,;Fp) (cf. [HN20] for an account)
easily implies the claim.

- Ao (e
Construction 2.8 (The element §). Theelementv, € H(F,,(p—1)(Z)) maps to H° (./\/Z"’_1 #) )

In fact, since N p"AZP = 0 (Construction 2.4), we obtain a unique lift to an element 6 €

Az, {(p-1}
0 >p Lip P

Proposition 2.9. The image of 6 in HO(N'P bz, [ p) is a generator (which, up to normalization, we can
take to be 6).

Proof. Tt suffices to show that the image of 6 is nonzero in H° (NP bz, /p). We may do this calculation

in Z;yd. Let € € Tp((Zj,yCl)X) be the canonical element (1,p,{,2,...). We have v; = logy ()™,

which is (¢ — 1)?~' = (¢"/P = 1)?(P=D (mod p) times a generator of B {p — 1} /p. Noting that the
P

Nygaard filtration is the filtration by powers of [p],1/» = (¢"? = 1)P~! (mod p), we find that v; maps

Amcycl {P 1}
to a nonzero element of N'P T as desired. m]

Remark 2.10 (A direct prismatic construction). Let us now describe another construction of the image
of vi in HO(IF‘,, (p — 1)(Zp)) that does not rely on the explicit use of the ring Z[{,~] or the prismatic
logarithm. Given any p-torsion-free prism (A, I, ¢) such that A/ is also p-torsion-free, we have as in
[BL22a, Sec. 2.2] a natural invertible module A {1} together with a ¢-linearmap ¢ : A {1} — I"'A {1}
which becomes an isomorphism upon ¢-linearization. We also have the tensor powers A {i} and the
maps ¢; : A {i} — I"'A{i}. Specifying an element of HO(FP (p = 1)(Zp)) is equivalent to specifying,
for each such prism (A, ), an element of A/p {p — 1} which is fixed under ¢,_;.

Let us construct an element in IA/p {p — 1} which is a fixed point for ¢, : A/p{p -1} —
1P~V A/p, as follows. Choose a generator y € A/p {1}. By the above, ¢ (y)/y is a generator for the
invertible A/p-module I~'/p, so ‘y/¢1(y)’ is a generator for the ideal I/p c A/p. Now, consider the
element yP~1 € IA/p {p — 1}. Unwinding the definitions, it follows that ¢ p—1 carries this element

op ¢1)(]y)
to anp—l (yer 1) = ¢1( y ® y®P~! that is, we have a fixed point for ¢p-1.Itis easy to check that
this does not depend on the ch01ce of generator y and that it produces a fixed point for ¢,_; (modulo p)
as desired. One can check that this construction reproduces the image of v; in H° (Fp(p = 1)(Zp)) at

least up to scalars by calculating explicitly for the prism corresponding to the perfectoid ring chd
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3. The Nygaard filtration on Hodge-Tate cohomology

In this section, we define the Nygaard filtration on Hodge—Tate cohomology and study some of its basic
properties.

3.1. Definitions

Construction 3.1. Let R € qrsPerfd; . Consider the prism (AR, I) and the Nygaard filtration N 2*Ag.

The image of the Nygaard filtration yields a filtered ring N'>*Ag. The ideal I C Ag maps via the
canonical augmentation Ag — R to the ideal p (e.g., by calculating explicitly for R = Z;,yd). Therefore,
we have a canonical isomorphism of graded rings

gr'br ~ @N’ 3

i>0

Note here the composite of R — Ag — gr% R = R/p is the Frobenius. In particular, if we consider the
filtration (3) as one of R-modules, then gr' Agr = Nihg/pY, with the superscript denoting restriction
along Frobenius. We highlight the special case of an isomorphism of R-algebras,

gr R/p( D, 4

forR € qrsPerdep and then by descent and left Kan extension for all animated rings R. We can also do

the same with the Breuil-Kisin twists Ag {i}, which yield invertible A">*Ag-modules N">*Ag {i}, with
associated gradeds the same as above.

By descent and Kan extension, we construct for any animated ring A the commutative algebra object
N=*]4 of the filtered derived co-category.

In the remainder of the subsection, we detect the element p in the Nygaard filtration on Hodge—Tate
cohomology and obtain a twisted form of the filtration for Hodge—Tate cohomology modulo p which
will sometimes be easier to work with.

Example 3.2 (Detection of the element p). We show that the element p € HO(ZZI,) is detected in
— A
filtration p of the Nygaard filtration on Az, by the class 6 € H ONP %) (up to units).

To see this, we may replace Z,, by the perfectoid ring R = Z,, [pl/ P7], and it suffices to show that
p e NZPhg \N>”+15R Since R is perfectoid, Ag = W(R"). Let p® € R” be given by the system of
elements (p, p'/?, p!/ .) in R. The prismatic ideal I ¢ Ag = W(R")is I = (p [p"]), and the map
R — Ag/Iis an 1somorph1sm whose inverse given by the Fontaine map W(R") — R (whose kernel
is I). Now, N2 Ag = ¢ 1 (I)' = (p — [p”'/P])". The image of this ideal in Ag is p'/?, since [p"!/P]
maps to p'/P. The claim now follows.

Construction 3.3 (The twisted Nygaard filtration on —) Let R be any animated ring. Then there is a

natural decreasing, multiplicative Z2{ -indexed filtration Nz AR on A;

gr——(@N’AR)/G 5)

i>0

with associated graded given as

where 6 lives in grading p. Furthermore, for any i € Z, we can construct a similar filtration Nz @,

which is a module over the filtration on %; the associated graded terms are given individually as

Ar

N
ar/ ——— = {1} ~ cofib (0 NP =
p

SN A—R) , ©)
p
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where N/ be _ 0 for j < 0. In fact, by descent from qrsPerdeP and left Kan extension, these claims
follow from Construction 3.1 combined with the identification of Example 3.2.

Remark 3.4. The twisted Nygaard filtration Nz @ is complete if and only if the Nygaard filtration

NZ*Ig {i} is complete, as follows by p-completeness.

3.2. Relative perfectness

In the sequel, we will study how the above filtration varies as R does. To begin, for future reference we
include here a special case of this result based on the notion of relative perfectness.

Definition 3.5 (Relatively perfect maps). Let A be an animated ring, and let B be an animated A-algebra.
We say that B is relatively perfect over A if the diagram

Alp——=B]/p

ol

A/p—=B/p

is a pushout square of animated rings. This implies that the cotangent complex Lg, 4 vanishes p-adically,
cf. [Bhal2, Cor. 3.8], so L4,z ®4 B — Lp,z is a p-adic equivalence.

Remark 3.6. Suppose A, B are discrete rings and A — B is p-completely flat. Then A — B is relatively
perfect in the above sense if and only if the analogous diagram involving the ordinary quotients of A, B
by (p) is co-Cartesian. In fact, we claim that if R — S is any flat map of animated F,-algebras, then
R — S is relatively perfect in the animated sense if and only if 7o(R) — mo(S) is relatively perfect
in the classical sense. The ‘only if” direction is clear as applying mo(—) preserves pushout squares. For
the reverse implication, observe that R — § is relatively perfect in the animated sense exactly when
the relative Frobenius (S/R)(V := § ®r,o, R — S is an isomorphism of animated R-algebras. Now
base change along R — my(R) is conservative on connective R-modules, so it suffices to check that
(S/R)V ®g mo(R) — S ®g mo(R) is an isomorphism in D (7o(R)). Noting that the formation of the
relative Frobenius commutes with arbitrary base change along maps of animated rings, it remains to
observe that mo(R) — mo(S) identifies with the base change mo(R) — S ®1Le mo(R) of R — S by the
flatness assumption and that the Frobenius twist of a flat o (R)-algebra is automatically discrete.

Proposition3.7. Let A — B be a relatively perfect map of animated rings. Then the natural map induces
an equivalence (after p-completion) of filtered objects NZ*hs {i} ®4 B =~ N=*Ag {i}, and similarly

for the twisted Nygaard filtrations on w Moreover, for each i, we have a p-adic equivalence
NiAA ®ABZJ\/‘iAB.

Proof. We have that Aa{i} ®4 B — hg{i} is an equivalence by the p-complete vanishing of the
cotangent complex, for example, by comparing the absolute conjugate filtrations, [BL22a, Sec. 4.5].
This also yields the claim about the Nygaard pieces N i, using the Nygaard fiber sequence [BL22a,
Rem. 5.5.8]. Finally, the claim about N'=*A now follows from the claims about A and N A; note that
we need relative perfectness and not only p-adic vanishing of the relative cotangent complex because of
the restrictions along Frobenius involved in equation (3). O

3.3. Polynomial rings

The purpose of this subsection is to identify explicitly the Hodge—Tate cohomology of a polynomial
ring, together with its Nygaard filtration (Proposition 3.12). We also treat the easier case of the Nygaard
graded pieces of prismatic cohomology (Proposition 3.11).
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In the sequel, we use the following. Let {AZ*} be a filtered ring. Then the co-category D(A>*) of
A>*-modules in the filtered derived co-category admits a r-structure, where (co)connectivity is checked
levelwise, and such that the heart consists of modules over A>* in the category Fun(Z°P, Ab); we will
sometimes simply refer to these as A=*-modules.

In addition, for future reference, it will be helpful to keep track of the naturally arising internal
gradings, which we first review.

Remark 3.8 (Automatic internal gradings). Let F be a functor from qrsPerdep to p-complete abelian
groups with (for simplicity) bounded p-power torsion. Suppose that, for any R € qrsPerdep, we are
given an R-module structure on F(R) which is natural in R in the evident sense. Suppose further that
for any such R, the natural map F(R) ®g R[t/P"] — F(R (¢'/P")) is a p-adic equivalence.

Then for any R’ € qrsPerdep with a Z[1/p]so-grading (in the p-complete sense), the R’-module
F(R’) also inherits a canonical Z[1/p]so-grading for essentially diagrammatic reasons. We have a map
coact : R” — R’ (t!/P7) carrying a homogeneous element x € R} to x ® t'. An element y € F(R’) is
homogeneous of degree i € Z[1/p]so if and only if it maps under coact to y ® t* € F(R’ <t1/1’m>) o~
F(R") (tl/pm>.

Construction 3.9 (Internal gradings on Hodge-Tate cohomology). Let R be a Z[1/p]so-graded
animated ring. In this case, the (twisted) Hodge—Tate cohomology together with its Nygaard filtra-
tion A"2*Ag {i} naturally inherits the structure of a Z[1/p]so-graded object of m. Explicitly, one
uses quasisyntomic descent, animation, Remark 3.8 and that the natural map

N= By iy @z Z[1' 7] = N= B opme (i)

is an isomorphism p-adically by relative perfectness (Proposition 3.7).> Similarly, in the above setting,
Remark 3.8 yields an additional grading on N?Ag,i > 0. Since there will be multiple gradings at the
same time, we will refer to these internal gradings as weight gradings.

Remark 3.10. Let R be a Z[1/p]so-graded ring. If R is concentrated in degrees Zs, then N Ag and
Ag {i} are concentrated in degrees Z s, as one sees using the conjugate filtration over a perfectoid base.
However, the associated graded terms of the Nygaard filtration are in degrees +Z: This follows from
equation (3) noting that there is a restriction along Frobenius involved, which divides degrees by p.

Proposition 3.11. Let R be a p-torsion-free quasiregular semiperfectoid ring. Then there are natural
isomorphisms of graded A* = @, ., NAr ®r R|[x]-modules

. . A*’ ]=0
H' N'DAgixy) = . @)
@t ={4 50,

With respect to the internal weight grading with |x| = 1 and R in weight zero, then the generator in H°
has weight zero and the generator in H' has weight 1.

Proof. The generator in H® is simply the unit. The generator in H' (N!Ag [x]) comes from the class
dx, via the isomorphism N1Ag =~ i’STZ[—l] for any animated ring S, cf. [BL22a, Prop. 5.5.12].
Having named the classes, it suffices by base-change (since for any perfectoid ring Ry, the functor
R +— @izo Nihg is a symmetric monoidal functor from animated Ro-algebras to p-complete graded
objects) to verify the isomorphism when R is perfectoid, where the result follows from the isomorphisms
with the conjugate filtration: For any R-algebra S (in particular, R[x]), NAs =~ Fil%"Ag by [BS22,
Th. 12.2], and using the Hodge—Tate comparison for the latter [BS22, Th. 4.11]. O

SIn the language of [BL22b], the Hodge—Tate stack associated to the group scheme GEE” = lian G is anerf x WCartHT by

relative perfectness, so if a scheme X is equipped with a Glr’zrf—action, then so is its Hodge—Tate stack WCarth.
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Proposition 3.12. Let R € qrsPerdeP be a p-torsion-free quasiregular semiperfectoid ring. Let A>* be
the p-completion of the filtered ring N'>*Ag ®g R[x]. Then there are isomorphisms of AZ*-modules

— _ r-1
HOWZ D)) = A, H (N Bppa) = A7 (-1} @ (D A=/ (8)
i=1

With respect to the internal weight grading with |x| = 1 and R in degree zero, the generator of H' is in
weight zero, the generator of A=*~1 {<1} is in weight one and the ith copy of A=*~' ] A=* has generator
in weight é.

Proof. Let us first name the generators. The generator of HO is simply 1. The first generator in H !
is the class dx € H'(Agjx) {1}) constructed via the boundary map Agjx] {1} — Ag[x]/I* = AR[x]
as the image of x (note that this boundary map is how one produces the Hodge—Tate comparison,
[BS22, Cons. 4.9]); it lifts uniquely to H'(N>'Ag[,) {1}) and thus produces a map of A>*-modules

A= {1} — H'(N'**Agx). Next, we have the fiber sequence of R[x]-modules
N DRy = Drpxy — R/pTV 2P,

from the description (4) (and quasisyntomic descent) to identify grAg(y] = R/p~" [x!/P]. For each
0 < i < p, the boundary map applied to x*/? gives a class in H' (NleR[x]) of weight i/p; by
construction, this class is annihilated by A=! since R/p~" [x!/P] is by definition, whence we obtain
maps in from AZ*~1/AZ*,

Since we have named the generating classes, to prove the isomorphism, we may assume (by base-
change) that R is a p-torsion-free perfectoid ring.© Moreover, by descent in R, we may assume that R
contains a pth root of p, for example, using André’s lemma in the form of [BS22, Th. 7.14]. We make
this assumption for the rest of the argument. This implies that the Nygaard filtration on R ~ Ag is the
filtration by powers of p'/?, cf. Example 3.2 and equation (4).

In this case, we have isomorphisms (via the Hodge—Tate comparison [BS22, Th. 4.11])

H' (DAgx)) = {R A .
R{-1}{x)dx, i=1,

where the class dx arises from the image of the class x under the connecting map in the cofiber sequence
brix) {1} = brx) /TP = bRix)-

Using the expression (3) for the Nygaard filtration (which is complete in this case since the algebra
is smooth over a perfectoid, so we can check on associated graded terms), we find that multiplication
by p!'/P induces isomorphisms p'/? : N'Z Ag[; = N'Z*1Ag(y) for i > 0, also using the comparison
between the associated graded pieces of the Nygaard filtration and the Hodge-Tate filtration [BS22,
Th. 12.2]. As above, we can identify the map R (x) — ZR [x] = grOZR [x] With the R-linear map
R(x) — R/p'/P (xl/p> = (R/p (x))"Y,x — x (unwinding the restriction along Frobenius as in
equation (4)). This yields

H*(NZIZR[XJ) = 9

pPR(x), =0
R{—l}(x)dx@@izo’th/pl/P~xi/1’, =1,

6Let R be a p-torsion-free perfectoid ring. Then the construction R — N 2* AR, from animated Ry-algebras to p-complete

filtered \V- 2*ZRO—al gebras, preserves colimits and in particular preserves coproducts. In fact, this holds for R — AR itself by the
Hodge—Tate comparison, and on associated graded terms by equation (3) and [BS22, Th. 12.2].
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It follows that, as filtered A>* " A>"Ag ®g R[x]-modules in Fun(Z%?
yield a natural isomorphism

>0° ADb), the classes specified

p-1

H' (W Agpy) = AZ (-1} o D A>1 /A%, (10)
i=1

3.4. The Hodge-Tate cohomology of a quotient

In this subsection, we use the results of the previous subsection on polynomial rings to get an expression
(via a fiber sequence) of the Hodge—Tate cohomology of a quotient (Corollary 3.16) and some control
of the Nygaard filtration too (Corollary 3.15). To begin, we start with the (easier) case of the Nygaard
pieces themselves.

Proposition 3.13. Let R be any animated Z[x]-algebra. Then there exists a natural fiber sequence of
graded @,y N Ag-modules

(@MAR) Jx = PN hrj > PN Agys. (11)

i>0 i>0 i20

Proof. First, let B € qrsPerde We construct a cofiber sequence, naturally in B, of @l>0 NiA B[x]/X-

modules
PN bs[-11 5 PN g /x > PN D, (12)

i>0 i>0 i>0

To construct this, we use Proposition 3.11, which shows that the (bi)graded E-ring @izo N iAB[x] /x
is concentrated in weights 0 and 1, using the weight grading on B[x] with |x| = 1 and B in weight zero.
Now, any weight-graded module over ), o N "Ap(x)/x admits a filtration by the weight grading, which
gives the cofiber sequence (12), using again Proposition 3.11 to identify the weight zero and weight one
components with ), N Ag and @, (N Ap.

By base-change and descent, one now deduces the proposition. In fact, we may assume that R is an
B{x]-algebra for some B € qrsPerfd; , provided everything is done independently of the choice of B.

Then the desired equation (11) follows from equation (12), using that
EB/\PAR OP,o Nibpi) @NLAB - @NIAR/X
i>0 i>0 i>0
is a p-adic equivalence. O

Proposition 3.14. Let B € qrsPerde Then, naturally in B, there is a finite filtration on
Nz *AB 1/x in N= *AB[X]/x -modules whose associated graded terms are NZhg, (p — 1) copies
of(NZ* 1AB/N2*/AB) [=1], and Ny {~1} [-1].

Proof. In fact, this follows from the natural expresswn (3.12), noting the weight grading (with |x| = 1).

In particular, N> *A B[x]/X has weights in 0, F , 1 with the weight zero component being N =* *Ag,
the weight £ ; component for 0 < i < p bem ( %B IN >*AB) [-1] and the weight 1 component
being N'>*"1Ag {~1} [-1]. o

Corollary 3.15. Let A be any animated Z[x]-algebra. Then the filtered object N2y [x {i} admits
a natural finite filtration, whose associated graded terms are N'=*hx {i}, then (p — 1) copies of

(J\/Z*‘IZA/X/NZ*ZA/X) (@} (=11, and N> VB0, (i = 1} [1].
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Proof. It suffices to replace Z[x] by B[x] for B € qrsPerdep and construct the filtration naturally in B
by quasisyntomic descent. But then the claim follows from Proposition 3.14. O

We separately record the resulting fiber sequence for Hodge—Tate cohomology itself (forgetting the
Nygaard filtration in Corollary 3.15). Such a fiber sequence can also be produced using the description
of the Hodge-Tate stack of the affine line, cf. [BL.22b, Ex. 9.1].

Corollary 3.16. Let R be any animated Z[x]-algebra. Then there is a natural fiber sequence

Ar/x{i} = Dgjx {i} = Brjc i =1} . (13)

4. F-smoothness

The goal of this section is to formulate the notion of F-smoothness (Definition 4.1). This is a variant
of (p-adic) smoothness designed to capture smoothness in an absolute sense. For instance, smooth
algebras over any perfectoid ring are F-smooth (Proposition 4.12), as are regular rings (Theorem 4.15);
in fact, the latter is the main result of this section. Our idea is to essentially define F-smoothness by
demanding a strong form of the Ln-isomorphism in relative prismatic cohomology ([BS22, Theorem
15.3], [BMS18]), adapted to the absolute prismatic context using the Beilinson #-structure interpretation
of the Ln functor as in [BMS19, §5.1] (see Remark 4.11). To work effectively with this notion, we
need access to the certain naturally defined elements of the prismatic cohomology (or variants) of Z,
introduced in §2.

4.1. F-smoothness: definition

Let A be a p-quasisyntomic ring. Recall [BMS19, Def. 4.1] that an object M € D(A) has p-complete
Tor-amplitude in degrees > r if for every discrete A/p-module N, we have M ®j N € D" (A).

Definition 4.1 (F-smoothness). We say that A is F-smooth if for each i € Z ¢, the map in D(A),
¢i . NiAA i AA {l}

induced by the Frobenius on A4 has fiber fib(¢;) with p-complete Tor-amplitude in degrees > i +2 and
if the Nygaard filtration on Ay {i} (or equivalently A, {i}) is complete. Note that this condition only
depends on the p-completion of A.

We say that a p-quasisyntomic scheme is F-smooth if it is covered by the spectra of rings which are
F-smooth (note that F-smoothness is preserved by Zariski localization by Proposition 4.6 below).

The condition of Nygaard-completeness in the definition of F-smoothness is slightly delicate. In
order to work with it, we will also use the following auxiliary condition.

Definition 4.2 (Weak F-smoothness). We say that a p-quasisyntomic ring A is weakly F-smooth if for
each i, the object

A A
fib[0: NT=2 5 NP ZA) e D(A), (14)
p p

has p-complete Tor-amplitude in degrees > i + 1. If A is p-torsion-free and weakly F-smooth, then the
above fiber is concentrated in degrees > i + 2, as it is p-torsion.

Proposition 4.3 (F-smoothness vs weak F-smoothness). If a p-quasisyntomic ring A is F-smooth, then
A is weakly F-smooth. Conversely, the p-quasisyntomic ring A is F-smooth if and only it is weakly
F-smooth and the natural map of graded E-rings

) Ba (i}
@¢il@/\[f—>@ Apl (15)

i>0 i€Z
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(where the target denotes the direct sum of the Nygaard-completed Hodge—Tate cohomologies mod p)
exhibits the target as the localization of the source at 6.

Proof. The first claim follows from the commutative diagram

iba 0 privpDa
NP N p

\L i J/ PDivp

Dafiy 0= Dafi+p)
4 P

obtained from the map of graded E-rings @izo N "% — @i <z AA{”’. The second claim follows

from the above and Proposition 2.6: The localization of the source in equation (15) is precisely the
mod p Hodge-Tate cohomology. O

Remark 4.4 (Stability of weak F-smoothness under filtered colimits and étale localization). As the
construction A — NiA4 € D(A) commutes with p-completed filtered colimits and étale localization,
it follows that the collection of weakly F-smooth rings is closed under filtered colimits and étale
localizations inside all p-quasisyntomic rings. Moreover, weak F-smoothness can be detected locally
for the étale topology.

Remark 4.5 (Essential constancy of the twisted Nygaard filtration under weak F-smoothness). If A is
weakly F-smooth, then for any fixed integer n, we have

/N A
H" (ﬁb (H:N"—A —>N’+”—A)) =0 for j>0.
p p

It follows that the twisted Nygaard filtration on bati) (Construction 3.3) is essentially constant in each
cohomological degree; moreover, the implicit constants are independent of A.

Proposition 4.6 (Stability of F-smoothness under filtered colimits and étale localization). The property
of being F-smooth is stable under filtered colimits.

Proof. Given a filtered diagram {A;} of F-smooth rings with colimit A, each A; is weakly F-smooth

by Proposition 4.3; it then follows from Remark 4.5 that the p-completion of h_r)n ZAI, {j} gives Aad Jh
12

which easily shows that A is F-smooth. O

For the next result, cf. also [BLM21, Prop. 9.5.11] for the analog in characteristic p. Unlike in loc.
cit., we make a (p-complete) flatness hypothesis; we expect that this should be unnecessary but were
unable to remove it.

Proposition 4.7. Let A be a p-quasisyntomic ring. Let B be a p-completely flat A-algebra which is
relatively perfect. If A is F-smooth, so is B. Moreover, the converse holds true if B is p-completely
faithfully flat over A. In particular, F-smoothness is étale local and passes to étale algebras.

Proof. We have p-adic equivalences N'Ay ®4 B — N'Ag by Proposition 3.7. From this, it follows
that if A is weakly F-smooth, then so is B; the converse holds if B is p-completely faithfully flat over A.

Next, we have that A/ 2*% ®1B > N Z*% is an equivalence, again by Proposition 3.7. If
A is F-smooth, then A 2*% is prozero in any range of degrees, whence the same holds true for
Nz % (by p-complete flatness), whence completeness of the Nygaard filtration (Remark 3.4); we

conclude B is then F-smooth. The converse if B is p-completely faithfully flat follows similarly. O
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Proposition 4.8. If a p-quasisyntomic ring A is F-smooth, then the polynomial ring Alx] is also
F-smooth.

Proof. Suppose A is F-smooth. The weak F-smoothness of A[x] follows using the cofiber sequence of
@izo N A s-modules obtained by unfolding Proposition 3.11,

i>0 i>0 i>0

By Proposition 3.12, and quasisyntomic descent, we find that there is a finite filtration on N S [x]
(considered as an object of the filtered derived oco-category) where the associated graded terms are
given by the p-completions of N'2*A4 ®4 A[x], (p—1) copies of N=* 1A, @4 A[x] /N2 Ay ®4 Alx]
and N'2*" 1A, ®4 A[x] {~1} [-1]. Thus, it suffices to show that under the F-smoothness hypotheses,
(NZ*hs ®4 Alx]) {i} is complete mod p for each i € Z. For this, it suffices to prove the analogous
completeness with A'2*A,4 {i} replaced in the above tensor product by the twisted Nygaard filtration
on the mod p reduction (Construction 3.3); however, this follows from the essential constancy of the
twisted Nygaard filtration, Remark 4.5. o

Proposition 4.9. Let A be a p-quasisyntomic ring, and let B be a p-completely flat A-algebra such that
A/p — B/p is smooth. If A is F-smooth, so is B.

Proof. Combine Proposition 4.8 and Proposition 4.6. m

Proposition 4.10. Let A be a p-quasisyntomic ring. Then A is F-smooth if and only if all the localizations
A, for p € Spec(A), are F-smooth.

Proof. If A is F-smooth, then all of its localizations are F-smooth by Proposition 4.7. The converse
direction follows similarly as in the proof of Proposition 4.7, noting that p-complete Tor-amplitude can
be checked on localizations. O

Remark 4.11 (F-smoothness and the Beilinson #-structure). Assume A is an F-smooth p-quasisyntomic

ring. Write AE\'] for the complete filtered object defined by the prismatic complex A4 equipped with the

filtration defined by powers of the Hodge—Tate ideal sheaf, so we have a natural identification
gr*AE‘:] ~ Ap{).
By definition of the Nygaard filtration, the Frobenius on A4 refines to a map
oA NZFhy — AE]

in the filtered derived category. Using the connectivity bound NiA, € DSi(Zp) (cf. [BL22a,
Rem. 5.5.9]), the F-smoothness hypothesis implies in particular that ¢ 4 induces an equivalence

Nibhg =~ TSigriAH]

As both filtrations are complete by assumption, it follows that the map ¢ 4 identifies its source with the
connective cover of its target for the Beilinson #-structure on the filtered derived category (see [BMS19,
Sec. 5.4] for an account).

4.2. F-smoothness over a base

In this subsection, we study the F-smoothness condition over a perfectoid base. We offer the follow-
ing characterization; work of V. Bouis [Bou22] has studied F-smoothness over mixed characteristic
perfectoid base rings in more detail and yielded important examples.

https://doi.org/10.1017/fmp.2022.21 Published online by Cambridge University Press



16 B. Bhatt and A. Mathew

Proposition 4.12 (Cf. [Bou22, Th. 2.16, 2.18]). Let Ry be a perfectoid ring, and let A be an Ry-algebra.
Suppose A is quasisyntomic. Then A is F-smooth if and only if:

1. Layr, is a p-completely flat A-module.
2. The p-completed derived de Rham cohomology LR, (cf. [Bhal2]) is Hodge-complete.

Proof. The divided Frobenius ¢; : N/ ihg — ZA (where we trivialize the Breuil-Kisin twists since we
are over Ry) matches the source with the ith stage of the conjugate filtration (cf. [BS22, Th. 4.11]) on
the Hodge—Tate cohomology, [BS22, Th. 12.2].

Now, the condition (2) that the p-completed derived de Rham cohomology is Hodge-complete is
equivalent to the condition that the derived prismatic cohomology A4 (over the perfect prism corre-
sponding to Ry) is Nygaard-complete, thanks to [BMS19, Th. 7.2(5)].

Therefore, once one knows the derived prismatic cohomology is Nygaard-complete, the F-
smoothness condition amounts to the statement that the conjugate filtration map Fil; A4 — A4 has
homotopy fiber (in D(A)) with p-complete Tor-amplitude in degrees > i + 2, for each i. Using the asso-
ciated gradeds of the conjugate filtration (given by gr/ = AJL 4/, [—j]), one easily sees by considering
i =0, 1 that this is equivalent to the condition that f;/;o should be p-completely flat over A. O

In the special case of quasisyntomic FF,-algebras, the condition of F-smoothness had been previously
studied under the name Cartier smoothness [KM21, KST21] which we review next.”

Definition 4.13 (Cf. [KM21, KST21]). Let A be a quasisyntomic F,-algebra. We say that A is Cartier
smooth if:

1. The cotangent complex L /g, is a flat discrete A-module.

2. The inverse Cartier map C~! : Qf‘\ B, Hi(Q*A /P ) is an isomorphism for i > 0. Here, Q
P 4

denotes the classical de Rham complex of A over F),.

*
A[F,

Proposition 4.14. Let A be a quasisyntomic Fp-algebra. Then A is F-smooth if and only if A is Cartier
smooth.

Proof. Suppose Lag, is a flat A-module. Then the derived de Rham cohomology L£24/r, maps to its
Hodge completion, which is just the usual algebraic de Rham complex Q% IR, Using the conjugate fil-

P
tration on the former [Bhal2, Prop. 3.5], we see that the condition that this map should be an equivalence

is precisely the Cartier isomorphism condition. Therefore, the result follows from Proposition 4.12. O

4.3. F-smoothness of regular rings
In this subsection, we prove the following theorem.

Theorem 4.15. Let A be a regular (noetherian) ring. Then A is F-smooth. Conversely, if A is a p-
complete noetherian ring which is F-smooth, then A is regular.

We first prove the forward direction. When A is an F-algebra, F-smoothness is equivalently to
Cartier smoothness (Proposition 4.14) and thus follows at once from regularity via Néron—-Popescu
desingularization, which implies that A is a filtered colimit of smooth [F,,-algebras. One can also prove
the result directly [BLM?21, Sec. 9.5]. In the case of an unramified regular ring, most of the result also
appears in [BL.22a, Prop. 5.7.9, 5.8.2].

Proposition 4.16. Let A be a p-quasisyntomic ring, and let x € A be a nonzero divisor. Suppose A[x
and A[1/x] are F-smooth. Then A is F-smooth.

7The second author had previously asked in [Mat22, Question 4.21] whether there could be a notion of Cartier smoothness in
mixed characteristic; we are also grateful to Matthew Morrow for discussions on this point.
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Proof. First, we show that A is weakly F-smooth. Write F' 1’;‘ = fib(6 : N/ iAp—A — NP %). Using the
cofiber sequence of Proposition 3.13, we find that there is a cofiber sequence (.7:2) /x — ]-'1’;\ x Fi-l

) i Alx’
Moreover, ]-"1’4[1 x] = (F)[1/x]. Note that an object N € D(A) has p-complete Tor-amplitude in
degrees > j if and only if N[1/x] € D(A), N/x € D(A/x) have p-complete Tor-amplitude in degrees
> j. From these observations, it follows easily that A is weakly F-smooth.

Now, we show that A is F-smooth. For this, it suffices to show that the map

B (i} — Ba (i) (16)

is an equivalence for each 7; here, the latter denotes the Nygaard-completed Hodge—Tate cohomology.

By weak F-smoothness of A, the natural map Aa {i} [1/x] — ZA[I/X] {i} is an equivalence, thanks to
Remark 4.5. Therefore, by our assumptions, the comparison map (16) becomes an isomorphism after
p-completely inverting x, so its fiber mod p is x-power torsion. It thus suffices to show that equation (16)
induces an isomorphism after base-change along A — A/x. But by Corollary 3.15 and our assumption
of F-smoothness of A/x, the filtered object N'Z*A 4 /x is complete. o

Corollary 4.17. Let A be a p-quasisyntomic ring such that A is p-torsion-free and such that the F,-
algebra A/ p is Cartier smooth. Then A is F-smooth.

Proof. Apply Proposition 4.16 with x = p. m]

Proof that regular rings are F-smooth. Suppose A is regular. Since A is Ici, A is p-quasisyntomic. By
Proposition 4.10, the ring A is F-smooth if and only if all of its localizations are F-smooth. Consequently,
we may assume that A is local with maximal ideal m C A and in particular of finite Krull dimension.
By induction on the Krull dimension, we may assume that any regular ring of smaller Krull dimension
(e.g., any further localization of A) is F-smooth. If A is zero-dimensional and hence a field, then we
already know that A is F-smooth: More generally, any regular ring in characteristic p is Cartier smooth
and hence F-smooth. So suppose dim(A) > 0. Choose x € m \ m?; then A[1/x] and A/x are F-smooth
by induction on the dimension. By Proposition 4.16, it follows that A is F-smooth. O

For the proof that F-smoothness implies regularity, we will actually need much less than F-
smoothness itself. We expect that the result is related to recent works relating regularity to p-derivations
[HJ21, Sai22].

Lemma 4.18. Let (A, m, k) be a complete intersection local ring. Then A is regular if and only if the

map of k-vector spaces H™! (Lajz ®a k) — H™! (Lkjz) is injective.

Proof. We have a transitivity triangle (for Z — A — k), Lajz ®4 k — Lyjz — Lg/a and Lz
is concentrated in degrees [—1,0]. Thus, the injectivity condition of the lemma is equivalent to the
statement that H~2(Ly /4) = 0, whence the result by [Iye07, Prop. 8.12]. O

Proposition 4.19. Let A be a complete intersection local noetherian ring with residue field k of charac-
teristic p. Then the following are equivalent:

1. Ais regular.
2. cofib(8 : A/p — NPAs/p) ®%/p k € D= (k) (e.g., this holds if A is F-smooth by Proposition 4.3
and its proof).

We remind the reader that reduction mod p is interpreted in the derived sense in this article, including
in the statement above and the proof below.

Proof. We have already shown above that regular rings are F-smooth, whence (1) implies (2), so we
show the converse. For any animated ring B, the Nygaard fiber sequence of [BL.22a, Rem. 5.5.8] and
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the conjugate filtration on diffracted Hodge cohomology [BL22a, Cons. 4.7.1] yields a fiber sequence
inD(B/p),

p
cofib(8 : B/p — N?bg/p) = \ Lgjpse,[-p] = B/p. (17)

In more detail, if B is a polynomial Z-algebra, then the Nygaard fiber sequence of loc. cit. gives a fiber
sequence

AN (€] A
NP Ay — FIEMNOP 2, Fil, OGP

Using the eigenvalues of the action of the Sen operator ® on the associated graded terms of Qg (note
that the conjugate filtration is just the Postnikov filtration in this case) as in [BL.22a, Notation 4.7.2], we

find that
B/p =1
H (NPbg) =108 . x=p
0 otherwise

Moreover, the map 6 : B/p — NP Ag/p is an isomorphism in H® by comparison with the case B = Z
(Construction 2.4); this (together with left Kan extension) easily gives the fiber sequence (17).
Taking B = A and base-changing to A/p — k, we obtain a fiber sequence

p
cofib(8: A/p — NPDa/p) ®ajp k — /\LA/Z[—p] ®ak >k (18)

By the Ici hypotheses, La/p)/r, € D(A/p) has Tor-amplitude in [—1, 0]. The condition (2) is equivalent
to the injectivity of the map (obtained by applying H to the second map in equation (18), using décalage
[1171, §4.3.2])

p
TPH ™ (Lajz ®a k) = HP(/\ Lajz ®a k) — k. (19)

We have constructed the map (19) naturally in the Ici ring (A, m) with residue field k. Moreover, it is
injective if A = k since we have seen that regular rings are F-smooth and hence satisfy (2). Conversely,
suppose A satisfies (2). It follows by naturality of equation (19) that H~' (L4 /z®a k) — H WLy /z) is
injective, whence regularity of A by Lemma 4.18. O

Proof that F-smoothness implies regularity under p-completeness. Let A be a p-complete noetherian
ring which is F-smooth. We argue that A is regular. It suffices to check that the localization of A at any
maximal ideal is regular since a noetherian ring is regular if and only if its localizations at maximal ideals
are regular. Since p belongs to any maximal ideal, we reduce to the case where A is a p-complete local
ring which is F-smooth. Our p-quasisyntomicity assumption implies that L4,z ®4 k € DL (k) by
[Avr99, Prop. 1.8], this implies that A is a complete intersection. Then we can appeal to Proposition 4.19
to conclude that A is regular, as desired. O

4.4. Dimension bounds

As an application, we can obtain some dimension bounds on the Hodge—Tate cohomology of regular rings
and verify [BL22b, Conj. 10.1] with an additional assumption of F-finiteness. Let us recall the setup. For

a quasisyntomic ring R, we consider the Hodge—Tate stack WCart?gf( R) defined in [BL.22b, Cons. 3.7];

recall that this stack comes with a map WCartI;pr (®R) Spf(R) and line bundles OWCartngf(R) {i} whose
Spt

cohomology yields Ag {i}.
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Before formulating the result, let us also recall some facts about F-finiteness. A noetherian F,-algebra
S is said to be F-finite if it is finitely generated over its pth powers. If S is a noetherian local F,-algebra,
F-finiteness is equivalent to the assumption that the residue field of S is F-finite and S is excellent, cf.
[Kun76, Cor. 2.6]. Moreover, S is F-finite if and only if the cotangent complex Lg/z, € D(S) is almost
perfect, cf. [DM 17, Th. 3.6] and [Lurl8, Th. 3.5.1].

Corollary 4.20. Let R be a p-complete regular local ring with residue field k. Suppose that R/pR is
F-finite. Let d = dim R +log,, [k : kP]. Then the Hodge-Tate stack WCartI;r,Tf( R) has cohomological

dimension < d. In particular, hg {i} € ng(Zp)for each i.

Proof. Let us first reduce to the case where R is complete. The map ﬁm ®z Lgrjz — L Ru/Z is an
isomorphism after p-completion: In fact, both sides are almost perfect mod p by F-finiteness (as
recalled above) and the map is an isomorphism after base-change to the residue field, whence the claim
by Nakayama. It follows by [BL.22b, Rem. 3.9] (and its proof) that the diagram

HT
WCartS o (Rer) — WCartSpf(R)

l |

Spf(Rin) ——— Spf(R)

is Cartesian. Therefore, since R — Ry, is faithfully flat, it suffices to replace everywhere R by Ry, so
we may assume that R itself is complete.

Let us now verify the dimension bound on the Hodge-Tate complexes AR {i}.that is, that Ag {i} €
D=4(Z,) for each i. The associated graded terms of the Nygaard filtration on Ag {i} (i.e., N/ Ag/p~")
are almost perfect R-modules, whence m-adically complete, in light of the Nygaard fiber sequences
[BL22a, Rem. 5.5.8] and the almost perfectness mod p of L,z recalled above. Using the completeness
of the Nygaard filtration (Theorem 4.15), we find that Ag {i} is m-adically complete. If R is zero-
dimensional and hence R = k, the result follows from the comparison [BL.22a, Th. 5.4.2] between
Hodge—Tate and de Rham cohomology of F,-algebras since dim Q}c = log,, [k : kP], cf. [Stal9, Tag

07P2]. Otherwise, choose x € m \ m?. The ring R/x is also regular local with the same residue field
and of dimension one less. To see that Ag {i} € D<¢(R), it suffices (by x-adic completeness proved
above) to show that Ag {i} /x € D<¢(R). However, we have a fiber sequence from Corollary 3.16 which,
together with induction on the dimension, implies the claim.

Now, we prove the cohomological dimension bound on WCartS Df(R)" First, we prove that the coho-
mological dimension is at most d + 1. Let W be a Cohen ring for k. By the Cohen structure theorem, we
have a surjection

A=W|[[t,...,t;]] @ R

for r = dim(R), whose kernel is generated by a nonzero divisor. By choosing a p-basis for k, we see
that the ring Ais formally étale over a polynomial ring in d variables over Z,, and consequently that
WCartSpf( A = WCartSpf(Zp Ceroxa)) XSPE(Zp (X11eeixa)) Spf(A). Using the expression for the Hodge—
Tate stack of the polynomial Z,-algebra in [BL22b, Ex. 9.1] as the classifying stack of (Gﬁad > G,ﬁn),
and the explicit description of representations of Gﬁa, ng in [BL22¢1 Sec. 3.5] and [BL22b, Lem. 6.7],
one finds that cd(WCartS of A)) < d + 1. By affineness of WCartSpf(R) - WCartSpt A) (Lemma 4.21
below), we obtain cd(WCartS of ( R)) < d + 1. It remains to show that H4*! of any quasicoherent sheaf
on WCartS of(R) (which we may assume to be p-torsion) vanishes.

Consider the category of p-torsion sheaves on WCartS of(R) (we recall that WCartS Df(R) is defined

as a functor on p-nilpotent rings, so this case will sufﬁce) We claim that for any p- torsion sheaf

F on WCartHT we have HO(WCarti™  F{-n}) # 0 for some n. In fact, using the affine map

Spf(R)’ Spf(R)’
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WCarty; )
follows from the explicit description of the Hodge-Tate stack for Spf(A). It follows that the category

of p-torsion sheaves on WCart?pr( R) i generated under colimits and extensions by the quotients of the

O {n} /p.Since H¥*! is aright exact functor for quasicoherent sheaves on WCartI;pTf (R) (as proved above),
and since we have the cohomological dimension bound on the O {n}, we now conclude as desired. O

- WCaItIS{pr( A this claim reduces to the analogous claim for Spf(A); but this in turn

Lemma 4.21. Let R be a quasisyntomic ring and let t € R be a nonzero divisor. The map

WCartI;pr(R/t) — Spf(R/t) Xspt(R) WCartIngTf(R) is affine.

Proof. We reduce to the case where R is the p-completion of Z, [¢]. In this case, by [BL22b, Ex. 9.1],
the above map is identified with BGEH - B(Gi > GE,,); in particular, it is affine. O

5. Comparison with p-adic étale Tate twists

In this section, we prove Theorem 1.8 from the introduction. That is, on a F-smooth p-torsion-free
scheme, we show that the complex Z/p" (i)x can be obtained via a generalization of the construction
of p-adic étale Tate twists [Gei04, Sch94, Sat07], that is, by modifying the truncated p-adic vanishing
cycles 7R j.( ugi) by taking the subsheaf in degree i generated by symbols from X.

Our strategy is as follows. Since we already know the F, (i) for Z[1/p]-schemes are the usual
Tate twists, it suffices to treat the p-Henselian case. One needs to show that the map F, (i)(X) —
F,(i)(X[1/p]) is highly coconnected. The étale comparison theorem (Theorem 5.1 below) implies
that one may obtain the F,, (i) (X[1/p]) by inverting the operator v{ on the IF, (i) (X). Thus, we reduce
to showing that the map vy : F,(i)(X) — F,(i + p — 1)(X) is highly coconnected. Here, we use an
explicit argument (which was inspired by [HW22]) with the expression of [BMS19] to check the claim.
To determine the top-degree cohomology, we use also the classical results of Bloch—Kato [BK86] on
p-adic vanishing cycles.

In [KM21, KST21], it is shown that the description of the Z/p" (i)x for regular F,-schemes via
logarithmic Hodge—Witt forms (cf. [BMS19, Sec. 8] and [GH99]) also holds for the Cartier smooth
case. Our Theorem 1.8 may be seen as a mixed characteristic analog of this result.

5.1. The étale comparison

Let X be a qcqgs derived scheme. As in [BL22a, Sec. 8], one associates the graded E..-algebra
P,z Fp(i)(X), the mod p syntomic cohomology of X. When X is the spectrum of a p-complete
animated ring, this can be obtained (via descent and left Kan extension) from the Frobenius fixed points
of prismatic cohomology as in [BL.22a, Sec. 7] and [BMS19]. However, when X is a Z[1/p]-scheme,
it is the usual Tate twisted étale cohomology €P), ., RTei(X, ,u;?i ).

For any X, the class v; € HO(IFp(p — 1)(Z)) constructed in Construction 2.7 yields a class in
H° (B, F,, (i) (X)) which maps to a unit after passage to X[1/p].

Theorem 5.1 (The étale comparison, [BL22a, Th. 8.5.1]). Let X be any qcqs derived scheme. The
natural map of graded E-algebras over IFp,,

Pr, i) x) - P FOx11/p), (20)

iez i€z
exhibits the target as the localization of the source at vy. In particular, for any i, the filtered colimit
Fpo(i)(X) D F,(i+p—1)(X) S E,(i+2(p—1))(X) > ...
is canonically identified with F, (i) (X[1/p]) = RTe(X[1/p]; Fp(i)).

Proof. When X is a scheme over Z[{~], the result is proved in [BL22a, Th. 8.5.1]: In that case, one
obtains a similar statement for the p-complete E-algebras €, , Z,(i))(X), P, Z, () (X[1/p]),
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when one inverts the class € € H(Z »(1)(Z[p~])) arising from the given system of p-power roots of
unity. Let us explain how one can deduce the current form of the result.

First, if X is p-quasisyntomic (which is the only case that will be used below), then we observe that
both sides of equation (20) are coconnective. Using the sheaf property, one may reduce to the case
where X lives over Z[{ ], which is proved in loc. cit.

To prove the result more generally, it suffices to show that the construction which carries an animated
ring R to Rl (Spec(R[1/p]), ,uffi ) (i.e., the right-hand side of equation (20)) is left Kan extended from
smooth Z-algebras. In fact, the left-hand side is left Kan extended from smooth Z-algebras [BL.22a,
Prop. 8.4.10], as is its localization after inverting v, and for smooth (in particular p-quasisyntomic)
algebras we have already seen the result.

Now, we claim that the construction which carries an animated ring R to P, _, RIe(Spec(R ®
Z[Zp=111/P)), y;‘f’i) is left Kan extended from smooth Z-algebras. In fact, by [BL.22a, Th. 8.5.1], this
construction is the localization of R — P, ., F,(i)(Spec(R ®z Z[{,~])) at vi. This construction in
turn fits into a fiber sequence [BL.22a, Rem. 8.4.8] involving terms that are either rigid for Henselian
pairs or which commute with sifted colimits, cf. the proof of [BL22a, Prop. 8.4.10]. As in loc. cit., this
implies that @B, ., RTe(Spec(R ® Z[{p=]1[1/p]), ,u;?i ) is left Kan extended from smooth Z-algebras.
Taking Z7-Galois invariants, we conclude that P, cz RTe(Spec(R[1/p]), y%’i ) has the desired left Kan
extension property. O

5.2. Comparison with the generic fiber

In this subsection, we prove the following basic comparison result; over a perfectoid, this has also been
proved by Bouis, cf. [Bou22, Th. 4.14].

Proposition 5.2. Let A be a p-torsion-free p-quasisyntomic ring which is F-smooth. Then for each i, the
canonical map Fp,(i)(A) — F,(i)(A[1/p]) = RUe(Spec(A[1/p]); F, (i) has fiber in D=+l (Fp).

Without loss of generality, we may assume A is p-Henselian. To prove this result, we use Theorem 5.1.
Using this, we are reduced to understanding the effect of multiplying with the class v on the syntomic
cohomology of A. Recall that the latter is defined as an equalizer:

By ()(4) =eq (2t 240220 o 2alP =)

of the Frobenius and canonical maps. To analyze the behaviour of cupping with v; with respect to the
fiber of the canonical map above, we shall use the relation of v with § and the following result.

Lemma 5.3. Let A be a p-torsion-free p-quasisyntomic ring which is F-smooth. Then for each i, j, the
fiber of the multiplication map

gonzi Al e Ratirp 1) e
p p
belongs to D>I*(F,,).

Proof. The F-smoothness assumption shows that, for each j’, the fiber of 8 : N j'% — NP %
belongs to DZj'”(}Fp). By filtering both sides (by the Nygaard filtration, which is complete by F-
smoothness) of equation (21), the conclusion of the lemma follows, in light of Proposition 2.9. O

Proposition 5.4. Suppose A is a p-torsion-free p-quasisyntomic ring which is F-smooth. For eachi € Z,
the Frobenius map

(22)
has fiber in D>*2(F ).

https://doi.org/10.1017/fmp.2022.21 Published online by Cambridge University Press



22 B. Bhatt and A. Mathew

Proof. In fact, this follows because the map (22) admits a complete descending filtration, indexed over

Jj =i, with g/ given by ¢; : NV % - %; this is clear from the definition of the Nygaard filtration
via descent from quasiregular semiperfectoid rings; now, F-smoothness gives the cohomological bound
on the fiber of the map on associated graded terms. O

Proof of Proposition 5.2. We will show that the map
vi:Fp(i)(A) = Fp(i+p—-1)(A) (23)

has fiber in D=+ (Fp); this will suffice thanks to the étale comparison (Theorem 5.1). Without loss of
generality, we can assume A is p-Henselian. By construction, the fiber of equation (23) is the equalizer
of the two maps (arising from the canonical map and divided Frobenius map)

fib NZi AA{I} i) N2i+pfl AA{l'i-p B 1}) = fib (AA{Z} l} AA{I +p - 1} (24)
p p p p
By assumption, since A is F-smooth, the Frobenius maps
& :NZiAA{l} . AA{Z}’ Gispot :N2i+p—1AA{l tp-1}  bafi+p-1)
P p p P

have fibers in D=*2(F p). Therefore, by taking fibers of multiplication by v, we find that the fiber of
the Frobenius maps in equation (24) belong to D>*? (Fp).

Now, consider the canonical map in equation (24); we claim that it induces the zero map in cohomo-
logical degrees < i. To see this, we observe that the canonical map factors through the map

fib NZi AA’}l} —v|_> NZH'P_IAA{l +pp - 1}) = fib (N>i_1 AAp{l} i N2i+p—1 AA{l +pp - 1} (25)

Az, {p-1 ~ Ay, {p-1
asvy € NzP~1 % lifts to 8 € N'=P #. However, we have seen that the right-hand side of

the above belongs to D=*! (Fp,) thanks to Lemma 5.3. This implies that the canonical map vanishes in

degrees < i.
Thus, we find that the desired fiber of the map (23) is the equalizer of two maps (24), one of which
has fiber in D=*2 (Fp,), and one of which is zero in degrees < i. This implies the result. O

5.3. Generation by symbols

In this section, we complete the proof of Theorem 1.8 from the introduction. First, we prove the following
basic symbolic generation result. For more refined results about the connection of the { H (Z/p" (i)(R))}
to p-adic Milnor K-theory, cf. [LM21]. In the following, we use that, for any ring R, we have a
natural Kummer map R — H' (Zp(1)(R)), cf. Example 1.5. Iterating, we obtain a ‘symbol’ map
(R)® — H'(Zp(i)(R)).

Proposition 5.5. For any strictly Henselian local ring R, the symbol map (R*)® — H(Z/p"™(i)(R))
is surjective.

To prove Proposition 5.5, it clearly suffices to assume that R is p-Henselian and that n = 1, using the
connectivity bound Z/p™(i)(R) € D= (Z/p"), cf. [AMMN22, Cor. 5.43]. By the left Kan extension
property of the F, (i) (—) for p-Henselian rings ((AMMN22, Th. 5.1] or [BL22a, Prop. 7.4.8]), we may
assume that R is the strict henselization at a characteristic p point of a smooth Z-scheme. In this case,
we know by Proposition 5.2 and Theorem 4.15 that the natural map induces an injection

H'(F,(i)(R)) € H'(Spec(R[1/p]), u5") = H' (F, (i) (R[1/p])), (26)

and we will identify the left-hand side as the subgroup of the right-hand side generated by symbols.
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We now recall some of the work of Bloch—Kato [BK86], which describes the right-hand side of
equation (26); it will be convenient to formulate the assertion sheaf-theoretically.

Let X be a smooth Z-scheme; let j : X[1/p] € X,i : Y e x Xspec(z) Spec(Fp) C X be the
respective open and closed immersions corresponding to the ideal (p). The work [BK86] describes the
étale sheaves of Fj,-modules on ¥,

M E R (. 7)
In particular, using the map i*j. (’)}X( — M! arising from the Kummer sequence and the graded ring
structure on the {M'}, one has a symbol map

i*j*(o§[1/p])®i — M. (28)

By [BKS86, Th. 14.1], the symbol map is surjective. Moreover, by [BK86, 6.6], one has a surjective
residue map of F,,-sheaves

res : M’ —» Q;llog. (29)
Proposition 5.6. If R is a strictly Henselian local ring which is ind-smooth over Z, then the ker-
nel of the surjective residue map (29) Hi(Spec(R[l/p]),ﬂgi) - Qj;/lp log is the subgroup of
Hi(Spec(R[1/p]), p?i) generated by symbols from R, that is, by the image of R* ® - - - ® R* under the
symbol map R[1/p]* ® ...R[1/p]* - Hi(Spec(R[l/p]),u?i), as in equation (28).

Proof. Let B c H!(Spec(R[1/p]). ,uf’;i) be the subgroup generated by the symbols from R. The Bloch—
Kato filtration [BK86, Cor. 1.4.1] gives a short exact sequence

0— Q! — H'(Spec(R[1/p]), 1p") = Q% 1 10g ® L 1oz = O

where the second map H'(Spec(R[1/p]), p?i) — Q;; /lp log is the residue (29). By construction of the

filtration and the first map [BK86, 4.3], one sees that B contains the subgroup QfR’ /lp. As in [BKS6,
6.6], the map Hi(Spec(R[l/p]),y;‘fi) — Q;Q/p,log ® Q;/lp’log
ri,...,r; € R to(dr—:l/\-~~/\dr—:",0) and the symbolr; ® -+ - ®r;_1 ® p to (O,dr—f1 /\--o/\%).From

carries the symbol r| ® --- @ r; for

this, one sees that H*(Spec(R[1/p]), u5')/B S QZ/'P log Via the residue, as claimed. ]

Now, we return to the proof of Proposition 5.5, and identify the image of equation (26). The D(F),)-
valued sheaf F, (i)(—) restricts to an object (with the same notation) on the category of ind-smooth,
p-Henselian Z-algebras R. For any such R, we have natural maps from equations (26) and (29),

res -1

Fp(D)(R) = Fp, (i) (R[1/p]) — RTet(Spec(R/p), Q75 [=il = F, (i = 1)(R/p)[-1],

where the last identification is [BMS19, Sec. 8] (and reviewed in Example 1.3). We claim that the
composite vanishes. In fact, this is true for any such map.

Proposition 5.7. Any natural map F,({i)(R) — F,(i — 1)(R/p)[—1], defined on p-Henselian ind-
smooth Z-algebras R, vanishes.

Proof. By left Kan extension, we can define a natural map on all quasisyntomic Z,-algebras R,
F,(H)(R) — F,( - 1)(R/p)[-1]. Both sides define D(F,)-valued sheaves for the quasisyntomic
topology. The source is discrete as a sheaf (by the odd vanishing theorem, [BS22, Th. 4.1]) and the
target is concentrated in cohomological degree 1, whence the map must vanish. O

Proof of Proposition 5.5. As before, we may assume that R is ind-smooth over Z and that n = 1. We
have seen that the map Hi(Fp (H)(R)) — Hi(IFp (i)(R[1/p])) is injective, and its image must contain
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the image of (R*)®'. The image of H'(F, (i)(R)) is contained in the kernel of the residue map thanks
to Proposition 5.7. But by Proposition 5.6, the kernel of the residue maps on H'(F,(i)(R[1/p])) is
precisely the image of (R*)®!. The result follows. m]

Proof of Theorem 1.8. Let X be a p-torsion-free scheme which is F-smooth. Thanks to Proposition 5.2,
the map Z/p" (i)x — Rj.(u®") has homotopy fiber in degrees > i + 1. Since Z/p" (i)x is concentrated
in degrees [0,7] by [AMMN?22, Cor. 5.43], it suffices to identify the image of the (injective) map
HU(Z/p"()x) — R'j, (u;‘f’,’;). The claim is that it is exactly the subsheaf generated by symbols on X.
This follows thanks to the symbolic generation of the source (Proposition 5.5). O

5.4. Comparison with Geisser-Sato—Schneider

In this section, we use the above results to compare the Z/p" (i)x with the complexes defined by Sato
[Sat07] for semistable schemes, cf. also the earlier work of Schneider [Sch94] and Geisser [Gei04] for
the smooth case; such a comparison was predicted in [BMS19, Rem. 1.16].

Let X be a regular scheme of finite type over a Dedekind domain A such that every characteristic
p residue field of A is perfect. Suppose that X is semistable over characteristic p points of Spec(A).
For n,i > 0, Sato [Sat07] constructs objects J,(i)x € DOl (x,,, Z/p"Z) and conjectures [Sat07,
Conjecture 1.4.1] that they can be identified with the étale sheafification of the motivic (cycle) complexes
mod p"; in the smooth case, this follows from [Gei04]. Here, we compare the J,,(i)x to the Z/p" (i)x .

Theorem 5.8. There is a canonical, multiplicative equivalence 3,(i)x =~ Z/p"(i)x of objects in
D’ (Xer, Z/ p").
®i

Proof. Asin [Sat07, §4.2], the complex 3, (i)x is built as the mapping fiber of a map from 7=/ R j, (u o
to the (—i)-suspension of a discrete sheaf. Therefore, in order to verify the comparison, it suffices (by
combining Proposition 5.2, Theorem 4.15 and Proposition 5.5) to show that the étale sheaf H' (S, (i)x)
is generated by symbols. We may assume n = 1 for this and work stalkwise.

Let R denote the strict henselization of a characteristic p point x € X. We can replace A by its strict
henselization, which is a mixed characteristic DVR; let 7 € A denote the uniformizer. Consider the F,-
vector space H' (Spec(R[1/p]), ,uff’). We have a symbol map (R[1/p]H)® — Hi(Spec(R[1/p]). y;‘?i).
Let F C H'(Spec(R[1/p]), u3") be the subgroup generated by the images of (R*)® and (1 + 7R)* ®
(R[1/p1*)®~" under the symbol map, cf. [Sat07, §3.4]. As in [Sat07, Def. 4.2.4], the image of the
injective map H' (31 (i)x)x — H'(Spec(R[1/p]), u$") is exactly the subgroup F.

Our observation is that the image of (1 + 7R)* ® (R[1/p]*)®~! under the symbol map is actually
contained in the image of (R*)®". Since R is a UFD (as a regular local ring), we have R[1/p]* = n*®R*.
Considera symbol (1 +7a)®b; ®---®b;_ forby,...,b;_1 € R[1/p]*. Using the unique factorization,
as well as the fact that 7 ® (=) maps to zero in H>(Spec(R[1/p]), u;‘?z), we reduce to the case i = 2.

Therefore, it suffices to show that, for a € R, the image of (1 + 7a) ® « in H>(Spec(R[1/p]), uffz)
belongs to the image of R* ® R*. By bilinearity, we may assume that a € R is a unit (e.g., if a is
not a unit, we write (1 + 7a) = 1+1;(’;‘il) (1 + m(a + 1))). In this case, (1 + ma) ® (—ra) maps to
zero (cf. [Tat76, Th. 3.1]). Using bilinearity again, it follows that (1 + 7a) ® 7 maps to an element of
H?(Spec(R[1/p], ;1?2) in the image of R* ® R*.

Consequently, it follows that the ring &B,., HI(J1(i)x)x is generated by symbols, whence we
conclude. O

Example 5.9. Let K be a discretely valued field of mixed characteristic, and let Og C K be the ring
of integers; let k be the residue field. Let X be a smooth scheme over Og with special fiber k. Then
the above results (together with the description of p-adic nearby cycles in [BK86], cf. Proposition 5.6)
show that we have a natural cofiber sequence in D(Xe, Z/p"),

Z/p"(x — TR (uph) = WaQ0! [l (30)

where the second map is the residue map from [BK86].
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Such results have appeared in the literature before, but usually only in low weights or with some
denominators, using the approach to syntomic cohomology of [FM87, Kat87], cf. [AMMN?22, Sec. 6]
for a comparison. In particular, [Kur87] constructs the above cofiber sequence in low weights. The
comparison for semistable schemes and more generally with a log structure after allowing denominators
(in all weights) is [CN17]. Integral comparisons for algebras over O¢ appear in the smooth case in
[BMS19, Th. 10.1] and in the semistable case (allowing log structures) in [CDN21]; up to isogeny or in
low weights, this was previously treated in [Kat87, Tsu99].
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