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Abstract

The primary goal of this paper is to identify syntomic complexes with the p-adic étale Tate twists of Geisser–Sato–
Schneider on regular p-torsion-free schemes. Our methods apply naturally to a broader class of schemes that we
call ‘F-smooth’. The F-smoothness of regular schemes leads to new results on the absolute prismatic cohomology
of regular schemes.
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1. Introduction

Let X be a scheme. In [BL22a, Sec. 8], the first author and Lurie, following the earlier work [BMS19],
define and study certain syntomic complexes Z𝑝 (𝑖) (𝑋) = 𝑅Γsyn(𝑋,Z𝑝 (𝑖)) for 𝑖 ∈ Z, extending earlier
constructions in the literature [FM87, Kat87]. These syntomic complexes yield a generalization of the
p-adic étale cohomology (with Tate twisted coefficients) for Z[1/𝑝]-schemes to arbitrary schemes,
and exhibit quite different behaviour in positive and mixed characteristic, where they are obtained from
prismatic cohomology. We refer to [CN17, Sec. 1.1] for a survey of applications of syntomic cohomology.

The purpose of this paper is to identify the syntomic complexes as étale sheaves on X in a class of
examples. In doing so, we generalize a number of existing results in the literature, including those of
[Kur87, Kat87, Tsu99, CN17], and recover the p-adic étale Tate twists of [Sch94, Gei04, Sat07].

1.1. What is syntomic cohomology?

To formulate our results, it is convenient to name the restriction of syntomic cohomology to the small
étale site.

Notation 1.1 (The complexes Z/𝑝𝑛 (𝑖)𝑋 ). For any scheme X and integer 𝑖 ∈ Z, write Z/𝑝𝑛 (𝑖)𝑋 ∈

D(𝑋et,Z/𝑝
𝑛) for the object of the derived ∞-category of étale sheaves of Z/𝑝𝑛-modules on X obtained
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by restricting the syntomic complexes1 Z/𝑝𝑛 (𝑖) (−) of [BL22a, §8] to the small étale site 𝑋et of X. Thus,
we have a defining identification 𝑅Γ(𝑋,Z/𝑝𝑛 (𝑖)𝑋 ) ≃ Z/𝑝

𝑛 (𝑖) (𝑋).

Let us describe this object in the key examples.

Example 1.2 (Syntomic cohomology in characteristic ≠ 𝑝). For any X, the restriction of Z/𝑝𝑛 (𝑖)𝑋 to
the locus 𝑋 [1/𝑝] ⊂ 𝑋 is given by 𝜇⊗𝑖

𝑝𝑛 ≃ (Z/𝑝𝑛 (𝑖)𝑋 ) |𝑋 [1/𝑝] . In particular, if p is invertible on X, then

Z/𝑝𝑛 (𝑖)𝑋 is simply the usual étale Tate twist 𝜇⊗𝑖
𝑝𝑛 .

Example 1.3 (Syntomic complexes via logarithmic de Rham–Witt sheaves in characteristic p). When X
is a regular F𝑝-scheme, we have isomorphisms Z/𝑝𝑛 (𝑖)𝑋 ≃ 𝑊𝑛Ω

𝑖
log,𝑋 [−𝑖] for𝑊𝑛Ω

𝑖
log,𝑋 the logarithmic

Hodge–Witt sheaves considered in [Mil76, Ill79, Gro85], cf. [BMS19, Sec. 8].

Example 1.4 (Syntomic cohomology of p-adic formal schemes). For any scheme X, the pullback of
Z/𝑝𝑛 (𝑖)𝑋 to the étale site of the p-adic completion 𝑋 (or equivalently that of 𝑋/𝑝) is constructed as a
filtered Frobenius eigenspace of prismatic cohomology first studied in [BMS19]. That is, if 𝑋 = Spec(𝑅)
for R a p-Henselian animated ring, then one has an expression

Z𝑝 (𝑖) (𝑋) = eq
(
can, 𝜙𝑖 : N ≥𝑖

∆𝑋 {𝑖} ⇒ ∆𝑋 {𝑖}
)
. (1)

Here, ∆𝑋 {𝑖} denotes the Breuil–Kisin twisted (absolute) prismatic cohomology of X, N ≥∗ denotes the
Nygaard filtration, 𝜙𝑖 denotes the ith divided Frobenius and can denotes the inclusion map. We refer to
[BL22a, Sec. 7] for a detailed treatment of these objects.

Earlier versions of this construction (which agree with the above for 𝑖 ≤ 𝑝 − 2 or up to isogeny; cf.
[AMMN22, Sec. 6] for comparisons) were introduced in [FM87, Kat87] using crystalline cohomology
and the Hodge filtration instead of prismatic cohomology and the Nygaard filtration.

Examples 1.2 and 1.4 essentially suffice to describe syntomic cohomology in general via a gluing
procedure: If R is a commutative ring with p-henselization 𝑅ℎ

(𝑝)
, one has a fiber square

Z/𝑝𝑛 (𝑖) (Spec(𝑅)) ��

��

𝑅Γet(Spec(𝑅[1/𝑝]), 𝜇⊗𝑖
𝑝𝑛 )

��

Z/𝑝𝑛 (𝑖) (Spec(𝑅ℎ
(𝑝)

)) �� 𝑅Γet(Spec(𝑅ℎ
(𝑝)

[1/𝑝]), 𝜇⊗𝑖
𝑝𝑛 ),

where the terms on the right are usual étale cohomology (cf. Example 1.2), the term on the bottom left
is computed via prismatic cohomology as in Example 1.4, and the bottom horizontal map is obtained
from the prismatic logarithm and the étale comparison theorem for prismatic cohomology in [BL22a,
§8.3]. In fact, this approach was used as the definition of the top-left vertex in [BL22a, §8.4].

For any scheme X, the complex Z/𝑝𝑛 (0)𝑋 identifies with the constant sheaf Z/𝑝𝑛 on 𝑋et. One can
also make the complex explicit in weight 1:

Example 1.5 (Cf. [BL22a, Prop. 8.4.14]). For any scheme X, one has that Z/𝑝𝑛 (1)𝑋 is the derived
pushforward of 𝜇𝑝𝑛 from the fppf site to the étale site (or equivalently the fiber of 𝑝𝑛 : G𝑚 → G𝑚 in
the derived category of étale sheaves).

Finally, for completeness, we recall that syntomic cohomology also has a close connection to p-adic
K-theory, yielding a simple construction of the former which appears in [Niz12]. For this, we recall
([BMS19, Sec. 4] or [BL22a, App. C]) that a ring R is p-quasisyntomic if it has bounded p-power
torsion and 𝐿𝑅/Z ⊗

L
𝑅 𝑅/𝑝𝑅 ∈ D(𝑅/𝑝𝑅) has Tor-amplitude in [−1, 0]; for instance, any locally complete

intersection (lci) noetherian ring has this property.

1In [BL22a, §8], the object Z𝑝 (𝑖) (𝑋 ) is defined in the p-complete derived∞-category; by Z/𝑝𝑛 (𝑖) (𝑋 ) , we mean the reduction
mod 𝑝𝑛. Note also that the construction 𝑋 ↦→ Z/𝑝𝑛 (𝑖) (𝑋 ) on affine schemes carries filtered colimits of rings to filtered colimits
[BL22a, Cor. 8.4.11].
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Example 1.6 (The Z/𝑝𝑛 (𝑖)𝑋 via algebraic K-theory). Let X be a p-quasisyntomic scheme. In this
case, one can give a direct construction of the Z/𝑝𝑛 (𝑖)𝑋 using algebraic K-theory for 𝑖 ≥ 0. Namely,
Z/𝑝𝑛 (𝑖)𝑋 ∈ D(𝑋et,Z/𝑝

𝑛) is the derived pushforward of the sheafification of the presheaf 𝐾2𝑖 (−;Z/𝑝𝑛)
from the syntomic site of X to the étale site of X. This is essentially a consequence of the work [BMS19]
and rigidity [Gab92, Sus83, CMM21] and will be discussed in more detail separately.

The connection to algebraic K-theory does not play a direct role in this article; nonetheless, the
connection to topological Hochschild homology provided by the K-theoretic approach inspired many
of the arguments in this paper.

1.2. Results

Syntomic cohomology is essentially p-adic étale motivic cohomology where the latter is defined, cf.
[Gei04, Niz06, EN19]. For example, syntomic cohomology admits a robust theory of Chern classes.
However, the syntomic complexes are defined for arbitrary schemes through the theory of prismatic
cohomology, without any explicit use of algebraic cycles. We will identify syntomic cohomology for a
class of p-torsion-free ‘F-smooth’ schemes and obtain a formula related to the Beilinson–Lichtenbaum
conjecture in motivic cohomology. To begin, let us formulate the definition of F-smoothness.

Definition 1.7 (F-smoothness, Definition 4.1 below). We say that a p-quasisyntomic ring R is F-smooth
if for each i, the prismatic divided Frobenius 𝜙𝑖 : N 𝑖

∆𝑅 → ∆𝑅 {𝑖} has fiber in D(𝑅) with p-complete
Tor-amplitude in degrees ≥ 𝑖 + 2, and if the Nygaard filtration on the (twisted) prismatic cohomology
∆𝑅 {𝑖} is complete. This definition globalizes to schemes in a natural way.

The terminology ‘F-smooth’ is meant to evoke both the Frobenius (used in the definition) as well
as the hypothetical ‘field with one element’: For p-complete rings, we view F-smoothness roughly as
an absolute version of the smoothness condition in algebraic geometry. Correspondingly, the class of
F-smooth rings contains smooth algebras over perfectoid rings (Proposition 4.12) and for p-complete
noetherian rings F-smoothness is equivalent to regularity (Theorem 4.15). The verification that regular
rings are F-smooth (and in particular the Nygaard-completeness of the prismatic cohomology) has a
further application: Under excellence assumptions, we verify a cohomological bound on the Hodge–Tate
stack of a regular local ring suggested in [BL22b, Conj. 10.1]. In equal characteristic p, F-smoothness is
equivalent to the condition of Cartier smoothness identified in [KM21, KST21]. Over a perfectoid base,
this condition has been studied independently in the work of V. Bouis [Bou22]; most of the following
identification (Theorem 1.8) of the Z/𝑝𝑛 (𝑖)𝑋 in this case has also been proved by Bouis, cf. [Bou22,
Th. 4.14].

Let us now formulate the main comparison. By adjunction and Example 1.2, for any scheme X, we
have a natural map Z/𝑝𝑛 (𝑖)𝑋 → 𝑅 𝑗∗(𝜇

⊗𝑖
𝑝𝑛 ), for 𝑗 : 𝑋 [1/𝑝] ⊂ 𝑋 the open inclusion. For 𝑖 ≥ 0, results

of [AMMN22] give that Z/𝑝𝑛 (𝑖)𝑋 ∈ D [0,𝑖 ] (𝑋et,Z/𝑝
𝑛), whence we obtain a canonical comparison

Z/𝑝𝑛 (𝑖)𝑋 → 𝜏≤𝑖𝑅 𝑗∗(𝜇
⊗𝑖
𝑝𝑛 ). In general, the Kummer map (obtained from Example 1.5 and the cup

product) induces a map (O×
𝑋 )

⊗𝑖 → H𝑖 (Z/𝑝𝑛 (𝑖)𝑋 ) which one can show to be surjective; see also
[LM21] for more on the target. This determines the image of H𝑖 (Z/𝑝𝑛 (𝑖)𝑋 ) → 𝑅𝑖 𝑗∗(𝜇

⊗𝑖
𝑝𝑛 ) as the

subsheaf generated by O×
𝑋 -symbols.2

Theorem 1.8. Let X be a p-torsion-free F-smooth scheme (e.g., a regular scheme flat over Z). For 𝑖 ≥ 0,
the comparison map Z/𝑝𝑛 (𝑖)𝑋 → 𝜏≤𝑖𝑅 𝑗∗(𝜇

⊗𝑖
𝑝𝑛 ) is an isomorphism on cohomology in degrees < 𝑖. On

H𝑖 , the comparison map is injective with an image generated by the symbols, using the map of étale
sheaves (O×

𝑋 )
⊗𝑖 → H𝑖 (𝑅 𝑗∗𝜇

⊗𝑖
𝑝𝑛 ).

2Note that, by [BK86, Hyo88, SS20], the sheaf 𝑅𝑖 𝑗∗ (𝜇
⊗𝑖
𝑝𝑛 ) is generated by symbols from O×

𝑋 [1/𝑝]
in a wide variety of settings.
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In particular, Z/𝑝𝑛 (𝑖)𝑋 is obtained by modifying the truncated p-adic nearby cycles 𝜏≤𝑖𝑅 𝑗∗(𝜇⊗𝑖
𝑝𝑛 ) in

the top cohomological degree by taking the image of (O×
𝑋 )

⊗𝑖: One has a fiber square

Z/𝑝𝑛 (𝑖)𝑋 ��

��

𝜏≤𝑖𝑅 𝑗∗(𝜇
⊗𝑖
𝑝𝑛 )

��

image
(
(O×

𝑋 )
⊗𝑖 → 𝑅𝑖 𝑗∗(𝜇

⊗𝑖
𝑝𝑛 )

)
[−𝑖] �� 𝑅𝑖 𝑗∗(𝜇

⊗𝑖
𝑝𝑛 ) [−𝑖]

in D(𝑋et). On schemes which are smooth or regular with semistable reduction over a discrete valuation
ring (DVR), Theorem 1.8 identifies Z/𝑝𝑛 (𝑖)𝑋 with the ‘p-adic étale Tate twists’ considered in [Sat07],
and earlier in the smooth case in [Gei04, Sch94]; cf. [Sat05] for a survey.

Many special cases of Theorem 1.8 have previously appeared in the literature. As above, theZ/𝑝𝑛 (𝑖)𝑋
always restrict to the usual Tate twists on 𝑋 [1/𝑝], so the main task is to identify 𝑖∗Z/𝑝𝑛 (𝑖)𝑋 for
𝑖 : 𝑋/𝑝 ⊂ 𝑋 , or equivalently the complexes defined in [BMS19]. In low weights or up to isogeny
(i.e., using the approach of [FM87, Kat87]), comparisons between syntomic cohomology and p-adic
vanishing cycles have been proved in a variety of settings, including smooth and semistable schemes
over a DVR or its absolute integral closure, in [Kur87, Kat87, Tsu99, CN17]. Theorem 1.8 integrally in
all weights for smooth O𝐶 -algebras, for C an algebraically closed complete non-Archimedean field of
mixed characteristic (0, 𝑝), is proved in [BMS19, Sec. 10] (see also [CDN21] for a semistable analog).

Theorem 1.8 is also closely related (via [BMS19]) to the calculations of topological cyclic homology
for smooth algebras over the ring of integers in a p-adic field, cf. [HM03, HM04, GH06], and the recent
revisiting in [LW22]. We do not calculate the topological cyclic homology but rather its associated
graded terms, and the methods are at least superficially different; it would be interesting to make a direct
connection.3

Our proof of Theorem 1.8 is based on some calculations in prismatic cohomology. In particular, it
is based on the étale comparison theorem (cf. [BS22, Th. 9.1], [BL22a, Th. 8.5.1] and Theorem 5.1
below), which states that for any scheme X, one can always recover the Tate twists 𝜇⊗𝑖

𝑝 on the generic
fiber by inverting a suitable class 𝑣1 ∈ 𝐻0(F𝑝 (𝑝 − 1) (Z)) in the syntomic cohomology of X. One can
identify the image of the class 𝑣1 in the prismatic cohomology of Z𝑝 , after which the result follows from
a linear algebraic argument.

Conventions

Throughout, we use the theory of (absolute) prismatic cohomology as developed in
[BL22a, BMS19, Dri20, BS22].

We will simply write 𝑅̂ for the p-adic completion if there is no potential for confusion. If R is p-
complete, we write 𝑅 〈𝑡〉 for the p-completed polynomial ring and 𝑅

〈
𝑡1/𝑝

∞〉
for the p-completion of

𝑅[𝑡1/𝑝
∞
].

For an animated ring R, we let D(𝑅) denote the ∞-category of R-modules (i.e., if R is an ordinary
ring, D(𝑅) is the derived ∞-category of R).

Given an object 𝑀 ∈ D(𝑅) and an element 𝑥 ∈ 𝑅, we will write 𝑀/𝑥 or 𝑀
𝑥 for the mapping cone of

𝑥 : 𝑀 → 𝑀 . In particular, even when M is a discrete R-module, the object 𝑀/𝑥 need not live in degree 0.

2. Some calculations in prismatic cohomology

In this section, we recall some basic calculations in absolute prismatic cohomology. Our goal is to name
some elements 𝑣1, 𝜃̃, 𝜃 in the prismatic cohomology of Z𝑝 , which will play a basic role in the sequel.

3The Segal conjecture at the level of topological Hochschild homology, which is closely related to the condition of F-smoothness,
is often used in these calculations.
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2.1. Prismatic sheaves

Let us first recall the construction of the prismatic sheaves, after [BL22a, BS22]; their Nygaard com-
pletion was first constructed in [BMS19].

Following [BMS19, Sec. 4], we use the quasisyntomic site qSynZ𝑝 . An object of qSynZ𝑝 is a

p-complete, p-torsion-free ring A such that 𝐿𝐴/Z𝑝 ⊗L
𝐴
(𝐴/𝑝) ∈ D(𝐴/𝑝) has Tor-amplitude in [−1, 0].

There is a basis qrsPerfdZ𝑝 ⊂ qSynZ𝑝 of p-torsion-free quasiregular semiperfectoid rings, that is, those
objects in qSynZ𝑝 which admit a surjection from a perfectoid ring.

Construction 2.1 (Prismatic sheaves). Let 𝑅 ∈ qrsPerfdZ𝑝 be a p-torsion-free quasiregular semiperfec-
toid ring. Then we have naturally associated to R the following:

1. A prism (∆𝑅, 𝜙, 𝐼) together with a map 𝑅 → ∆𝑅/𝐼 (which is in fact the initial prism with this
structure). We write ∆𝑅 = ∆𝑅/𝐼 and call it the Hodge–Tate cohomology.

2. An invertible ∆𝑅-module ∆𝑅 {1} with a natural 𝜙-linear map 𝜙1 : ∆𝑅 {1} → 𝐼−1
∆𝑅 {1} whose

𝜙-linearization is an isomorphism; the reduction ∆𝑅 {1} is identified with 𝐼/𝐼2. We let ∆𝑅 {𝑛} =

∆𝑅 {1}⊗𝑛 and obtain 𝜙𝑛 : ∆𝑅 {𝑛} → 𝐼−𝑛∆𝑅 {𝑛}.
3. A descending, multiplicative Nygaard filtration

{
N ≥𝑖

∆𝑅

}
on the ring ∆𝑅 given by N ≥𝑖

∆𝑅 =

𝜙−1(𝐼 𝑖∆𝑅); we write N 𝑖
∆𝑅 = gr𝑖 (N ≥∗

∆𝑅).
4. A map of graded rings

⊕
𝑖≥0 N

𝑖
∆𝑅 →

⊕
𝑖∈Z(𝐼/𝐼

2)⊗𝑖 =
⊕

𝑖∈Z ∆𝑅 {𝑖}, obtained by passing to
associated graded terms of the map of filtered rings 𝜙 :

{
N ≥∗

∆𝑅

}
→ {𝐼∗∆𝑅}.

5. The prismatic logarithm log∆ : 𝑇𝑝 (𝑅×) → ∆𝑅 {1}, whose image consists precisely of those elements
𝑦 ∈ ∆𝑅 {1} such that 𝜙1(𝑦) = 𝑦.

All of the above define sheaves of p-torsion-free, p-complete abelian groups with trivial higher
cohomology on qrsPerfdZ𝑝 ; by descent, one obtains D̂(Z𝑝)-valued sheaves on qSynZ𝑝 with the same
notation. Moreover, we will also need to consider the prismatic complexes for arbitrary animated rings;
these can be defined starting from the above using animation (compare [BL22a, Sec. 4.5]).

Construction 2.2 (Syntomic sheaves). One has also, for each 𝑖 ≥ 0, the D(Z𝑝)
≥0-valued sheaf of

abelian groups Z𝑝 (𝑖) (−) on qrsPerfdZ𝑝 which carries R to the fiber of can − 𝜙𝑖 : N ≥𝑖
∆𝑅 {𝑖} → ∆𝑅 {𝑖}

for can the inclusion map, as originally introduced in [BMS19]. By [BS22, Th. 14.1], there is a basis
for qrsPerfdZ𝑝 on which the Z𝑝 (𝑖) (−) are discrete.

By animation, one extends the Z𝑝 (𝑖) (−) to all p-complete animated rings. In [BL22a, Sec. 8], the
syntomic sheaves Z𝑝 (𝑖) (−) are extended to all animated rings, and by Zariski descent to all schemes,
by gluing the above construction on the p-completion and the usual Tate twists on the generic fiber. On
p-quasisyntomic rings, the Z𝑝 (𝑖) (−) are concentrated in nonnegative degrees.

Example 2.3 (The case of Zcycl
𝑝 ). In the particular case where 𝑅 = Z

cycl
𝑝

def
= 
Z𝑝 [𝜁𝑝∞], then we have

an identification ∆𝑅 = 
Z𝑝 [𝑞1/𝑝∞] (𝑝,𝑞−1) , 𝐼 = [𝑝]𝑞 := 𝑞𝑝−1
𝑞−1 . In this case, the choice of p-power roots

(1, 𝜁𝑝 , 𝜁𝑝2 , . . . ) determines an element 𝜖 ∈ 𝑇𝑝 (𝑅
×) such that log∆ (𝜖) ∈ ∆𝑅 {1} is divisible by (𝑞 − 1)

and such that
log∆ (𝜖 )

𝑞−1 is a generator for the module ∆𝑅 {1}, cf. [BL22a, Sec. 2.6].

Construction 2.4 (The Hodge–Tate cohomology of Z𝑝). Let us recall the calculation of the Hodge–Tate
cohomology of Z𝑝 . In fact, we have an isomorphism of bigraded F𝑝-algebras,

𝐻∗

(
∆Z𝑝

𝑝
{∗}

)
≃ 𝐸 (𝛼) ⊗ 𝑃(𝜃±1),

where |𝛼 | = (1, 𝑝) and 𝜃 = (0, 𝑝) (we write the cohomological grading first and the internal grading
next). In fact, this follows from the treatment in [BL22a, Sec. 3]. The Hodge–Tate cohomology of Z𝑝
is given by the coherent cohomology of the sheaves OWCartHT {𝑖} on the stack WCartHT ≃ 𝐵G

♯
𝑚. As

in loc. cit., p-torsion sheaves on 𝐵G
♯
𝑚 are simply F𝑝-vector spaces V equipped with an endomorphism

https://doi.org/10.1017/fmp.2022.21 Published online by Cambridge University Press



6 B. Bhatt and A. Mathew

Θ : 𝑉 → 𝑉 such that the generalized eigenvalues of Θ live in F𝑝 ⊂ F𝑝 , and OWCartHT {𝑖} corresponds
to the endomorphism 𝑖 : F𝑝 → F𝑝 . With this identification in mind, the calculation follows.

Using [BL22a, Prop. 5.7.9], we also find

𝐻∗

(⊕

𝑖≥0

N 𝑖
∆Z𝑝

𝑝

)
≃ 𝐸 (𝛼) ⊗ 𝑃(𝜃)

such that the natural map
⊕

𝑖≥0
N 𝑖∆Z𝑝

𝑝 →
⊕

𝑖∈Z

∆Z𝑝
𝑝 {𝑖} on cohomology carries 𝛼 ↦→ 𝛼, 𝜃 ↦→ 𝜃.4

Example 2.5. Let R be a p-torsionfree perfectoid ring. We have 𝑅
∼
−→ ∆𝑅, so one forms the Breuil–Kisin

twists 𝑅 {𝑖}. The map
⊕

𝑖≥0 N
𝑖
∆𝑅 →

⊕
𝑖∈Z ∆𝑅 {𝑖} is identified with the inclusion map

⊕
𝑖≥0 𝑅 {𝑖} →

⊕
𝑖∈Z 𝑅 {𝑖}. Under these identifications, 𝜃 maps to a generator of N 𝑝 ∆𝑅

𝑝 ; in fact, this is evident because
𝜃 is a unit in the Hodge–Tate cohomology.

Proposition 2.6. Let A be any animated ring. Then the map of graded 𝐸∞-rings over F𝑝 ,

⊕

𝑖≥0

N
𝑖 ∆𝐴

𝑝
→

⊕

𝑖∈Z

∆𝐴 {𝑖}

𝑝

exhibits the target as the localization of the source at the element 𝜃.

Proof. By quasisyntomic descent and left Kan extension, it suffices to treat the case where A is a
smooth algebra over a p-torsion-free perfectoid ring so that one is in the setting of relative prismatic
cohomology [BS22]. In this case, one can trivialize the Breuil–Kisin twists, and one knows that the
map 𝜙𝑖 : N 𝑖

∆𝐴 → ∆𝐴 {𝑖} is the ith stage of the conjugate filtration on the Hodge–Tate cohomology
∆𝐴 ≃ ∆𝐴 {𝑖}, cf. [BS22, Th. 12.2]. Since the conjugate filtration is exhaustive and since 𝜃 maps to a unit
in the target, the result easily follows from the Hodge–Tate comparison [BS22, Th. 4.11]. �

2.2. The elements 𝒗1, 𝜽

In this subsection, we construct two further elements in the prismatic cohomology of Z.

Construction 2.7 (The class 𝑣1). We define a class 𝑣1 ∈ 𝐻0 (F𝑝 (𝑝 − 1) (Z)) as follows.
Let R be the ring Z[𝜁𝑝∞ ]. Then by flat descent [BL22a, Prop. 8.4.6], 𝐻0(F𝑝 (𝑝 − 1) (Z)) is the

equalizer of the two maps

𝐻0(F𝑝 (𝑝 − 1) (𝑅)) ⇒ 𝐻0(F𝑝 (𝑝 − 1) (𝑅 ⊗ 𝑅)). (2)

The element (1, 𝜁𝑝 , 𝜁𝑝2 , . . . ) ∈ 𝑇𝑝 (𝑅
×) determines a class 𝜖 ∈ 𝐻0 (Z𝑝 (1) (𝑅)) via the identification of

[BL22a, Prop. 8.4.14]. We claim that the image of 𝜖 𝑝−1 ∈ 𝐻0 (F𝑝 (𝑝 − 1) (𝑅)) belongs to the equalizer
of the two maps (2).

To see this, it suffices to map 𝑅 ⊗ 𝑅 to both its p-adic completion and to 𝑅 ⊗ 𝑅[1/𝑝]. The images
of 𝜖 𝑝−1 in the latter are identical, as one sees using the trivialization of the sheaf 𝜇⊗𝑝−1

𝑝 on Z[1/𝑝]-

algebras. Thus, it suffices to calculate in F𝑝 (𝑝 − 1) (�𝑅 ⊗ 𝑅). Equivalently, we may do this calculation

in ∆𝑅⊗𝑅/𝑝 {𝑝 − 1}. By construction, the two images of 𝜖 yields classes 𝜖1, 𝜖2 ∈ 𝑇𝑝

(
(�𝑅 ⊗ 𝑅)×

)
. The

images under the prismatic logarithm mod p yield elements

log∆ (𝜖1), log∆(𝜖2) ∈ ∆𝑅⊗𝑅 {1} /𝑝.

4Under the motivic filtrations of [BMS19], this calculation is also closely related to Bökstedt’s calculation of THH∗ (Z) .
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As in Example 2.3, ∆𝑅 is canonically identified with 
Z𝑝 [𝑞1/𝑝∞ ] (𝑝,𝑞−1) . Let 𝑞1, 𝑞2 ∈ ∆𝑅⊗𝑅 denote the
images of q under the two maps ∆𝑅 ⇒ ∆𝑅⊗𝑅.

Since the maps are (𝑝, 𝐼)-completely flat, the elements (𝑞1 − 1), (𝑞2 − 1) ∈ ∆𝑅⊗𝑅/𝑝 are nonzero
divisors, by the conjugate filtration and the Hodge–Tate comparison [BS22, Th. 4.11]. To see
that log∆ (𝜖1)

𝑝−1 = log∆ (𝜖2)
𝑝−1 ∈ ∆𝑅⊗𝑅 {𝑝 − 1} /𝑝, we may thus invert (𝑞1 − 1) (𝑞2 − 1), af-

ter which both log∆ (𝜖1) and log∆ (𝜖2) become generators of the invertible ∆𝑅⊗𝑅/𝑝[
1

(𝑞1−1) (𝑞2−1) ]-

module ∆𝑅⊗𝑅 {1} /𝑝[ 1
(𝑞1−1) (𝑞2−1) ]. But then there exists a unit 𝑥 ∈ ∆𝑅⊗𝑅/𝑝[

1
(𝑞1−1) (𝑞2−1) ] with

𝑥 log∆ (𝜖1) = log∆(𝜖2). Since log∆ (𝜖𝑖), 𝑖 = 1, 2 are fixed points of the divided Frobenius 𝜙1, we find
that 𝜙(𝑥) = 𝑥, or 𝑥𝑝 = 𝑥. Since x is a unit, this gives 𝑥𝑝−1 = 1, so log∆ (𝜖1)

𝑝−1 = log∆ (𝜖2)
𝑝−1 in

∆𝑅⊗𝑅/𝑝 {𝑝 − 1} [ 1
(𝑞1−1) (𝑞2−1) ], as desired.

The class 𝑣1 ∈ 𝐻0(F𝑝 (𝑝 − 1) (Z𝑝)) also appears (in a different language) in [Dri20, Prop. 8.11.2].
Although it will not play a role in the sequel, let us remark on the connection to the element 𝑣1

in stable homotopy theory. Suppose 𝑝 > 2 for simplicity. The topological class 𝑣top
1 ∈ 𝜋2𝑝−2(S/𝑝) in

the stable stems gives a nonzero class in 𝜋2𝑝−2TC(Z𝑝;F𝑝); under the motivic spectral sequence of
[BMS19], this is detected (up to nonzero scalar) by the class denoted 𝑣1 above. In fact, we can check this
after passage from Z𝑝 to OC𝑝

; then, the description 𝑘𝑢/𝑝 = TC(OC𝑝
;F𝑝) (cf. [HN20] for an account)

easily implies the claim.

Construction 2.8 (The element 𝜃). The element 𝑣1 ∈ 𝐻0(F𝑝 (𝑝−1) (Z)) maps to𝐻0

(
N ≥𝑝−1 ∆Z𝑝 {𝑝−1}

𝑝

)
.

In fact, since N 𝑝−1
∆Z𝑝 = 0 (Construction 2.4), we obtain a unique lift to an element 𝜃̃ ∈

𝐻0

(
N ≥𝑝 ∆Z𝑝 {𝑝−1}

𝑝

)
.

Proposition 2.9. The image of 𝜃̃ in 𝐻0(N 𝑝
∆Z𝑝/𝑝) is a generator (which, up to normalization, we can

take to be 𝜃).

Proof. It suffices to show that the image of 𝜃̃ is nonzero in 𝐻0(N 𝑝
∆Z𝑝/𝑝). We may do this calculation

in Zcycl
𝑝 . Let 𝜖 ∈ 𝑇𝑝 ((Z

cycl
𝑝 )×) be the canonical element (1, 𝜁𝑝 , 𝜁𝑝2 , . . . ). We have 𝑣1 = log∆(𝜖) 𝑝−1,

which is (𝑞 − 1) 𝑝−1 ≡ (𝑞1/𝑝 − 1) 𝑝 (𝑝−1) (mod 𝑝) times a generator of ∆
Z

cycl
𝑝

{𝑝 − 1} /𝑝. Noting that the

Nygaard filtration is the filtration by powers of [𝑝]𝑞1/𝑝 ≡ (𝑞1/𝑝 − 1) 𝑝−1 (mod 𝑝), we find that 𝑣1 maps

to a nonzero element of N 𝑝
∆
Z

cycl
𝑝

{𝑝−1}

𝑝 , as desired. �

Remark 2.10 (A direct prismatic construction). Let us now describe another construction of the image
of 𝑣1 in 𝐻0(F𝑝 (𝑝 − 1) (Z𝑝)) that does not rely on the explicit use of the ring Z[𝜁𝑝∞ ] or the prismatic
logarithm. Given any p-torsion-free prism (𝐴, 𝐼, 𝜙) such that 𝐴/𝐼 is also p-torsion-free, we have as in
[BL22a, Sec. 2.2] a natural invertible module 𝐴 {1} together with a 𝜙-linear map 𝜙1 : 𝐴 {1} → 𝐼−1𝐴 {1}
which becomes an isomorphism upon 𝜙-linearization. We also have the tensor powers 𝐴 {𝑖} and the
maps 𝜙𝑖 : 𝐴 {𝑖} → 𝐼−𝑖𝐴 {𝑖}. Specifying an element of 𝐻0(F𝑝 (𝑝 − 1) (Z𝑝)) is equivalent to specifying,
for each such prism (𝐴, 𝐼), an element of 𝐴/𝑝 {𝑝 − 1} which is fixed under 𝜙𝑝−1.

Let us construct an element in 𝐼 𝐴/𝑝 {𝑝 − 1} which is a fixed point for 𝜙𝑝−1 : 𝐴/𝑝 {𝑝 − 1} →

𝐼−(𝑝−1)𝐴/𝑝, as follows. Choose a generator 𝑦 ∈ 𝐴/𝑝 {1}. By the above, 𝜙1(𝑦)/𝑦 is a generator for the
invertible 𝐴/𝑝-module 𝐼−1/𝑝, so ‘𝑦/𝜙1 (𝑦)’ is a generator for the ideal 𝐼/𝑝 ⊂ 𝐴/𝑝. Now, consider the
element 𝑦

𝜙1 (𝑦)
𝑦𝑝−1 ∈ 𝐼 𝐴/𝑝 {𝑝 − 1}. Unwinding the definitions, it follows that 𝜙𝑝−1 carries this element

to 𝑦⊗𝑝

𝜙1 (𝑦)⊗𝑝 𝜙𝑝−1(𝑦
⊗𝑝−1) =

𝑦
𝜙1 (𝑦)

⊗ 𝑦⊗𝑝−1, that is, we have a fixed point for 𝜙𝑝−1. It is easy to check that
this does not depend on the choice of generator y and that it produces a fixed point for 𝜙𝑝−1 (modulo p)
as desired. One can check that this construction reproduces the image of 𝑣1 in 𝐻0 (F𝑝 (𝑝 − 1) (Z𝑝)) at

least up to scalars by calculating explicitly for the prism corresponding to the perfectoid ring Zcycl
𝑝 .
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3. The Nygaard filtration on Hodge–Tate cohomology

In this section, we define the Nygaard filtration on Hodge–Tate cohomology and study some of its basic
properties.

3.1. Definitions

Construction 3.1. Let 𝑅 ∈ qrsPerfdZ𝑝 . Consider the prism (∆𝑅, 𝐼) and the Nygaard filtration N ≥∗
∆𝑅.

The image of the Nygaard filtration yields a filtered ring N ≥∗
∆𝑅. The ideal 𝐼 ⊂ ∆𝑅 maps via the

canonical augmentation ∆𝑅 → 𝑅 to the ideal p (e.g., by calculating explicitly for 𝑅 = Z
cycl
𝑝 ). Therefore,

we have a canonical isomorphism of graded rings

gr∗∆𝑅 ≃
⊕

𝑖≥0

N
𝑖 ∆𝑅

𝑝
. (3)

Note here the composite of 𝑅 → ∆𝑅 → gr0
∆𝑅 ≃ 𝑅/𝑝 is the Frobenius. In particular, if we consider the

filtration (3) as one of R-modules, then gr𝑖∆𝑅 ≃ N 𝑖
∆𝑅/𝑝

(−1) , with the superscript denoting restriction
along Frobenius. We highlight the special case of an isomorphism of R-algebras,

gr0
∆𝑅 ≃ 𝑅/𝑝 (−1) , (4)

for 𝑅 ∈ qrsPerfdZ𝑝 and then by descent and left Kan extension for all animated rings R. We can also do

the same with the Breuil–Kisin twists ∆𝑅 {𝑖}, which yield invertible N ≥∗
∆𝑅-modules N ≥∗

∆𝑅 {𝑖}, with
associated gradeds the same as above.

By descent and Kan extension, we construct for any animated ring A the commutative algebra object
N ≥∗

∆𝐴 of the filtered derived ∞-category.

In the remainder of the subsection, we detect the element p in the Nygaard filtration on Hodge–Tate
cohomology and obtain a twisted form of the filtration for Hodge–Tate cohomology modulo p which
will sometimes be easier to work with.

Example 3.2 (Detection of the element p). We show that the element 𝑝 ∈ 𝐻0 (∆Z𝑝 ) is detected in

filtration p of the Nygaard filtration on ∆Z𝑝 , by the class 𝜃 ∈ 𝐻0(N 𝑝 ∆Z𝑝
𝑝 ) (up to units).

To see this, we may replace Z𝑝 by the perfectoid ring 𝑅 = 
Z𝑝 [𝑝1/𝑝∞ ], and it suffices to show that
𝑝 ∈ N ≥𝑝

∆𝑅 \N ≥𝑝+1
∆𝑅. Since R is perfectoid, ∆𝑅 = 𝑊 (𝑅♭). Let 𝑝♭ ∈ 𝑅♭ be given by the system of

elements (𝑝, 𝑝1/𝑝 , 𝑝1/𝑝2
, . . . ) in R. The prismatic ideal 𝐼 ⊂ ∆𝑅 = 𝑊 (𝑅♭) is 𝐼 = (𝑝− [𝑝♭]), and the map

𝑅 → ∆𝑅/𝐼 is an isomorphism whose inverse given by the Fontaine map 𝑊 (𝑅♭) → 𝑅 (whose kernel
is I). Now, N ≥𝑖

∆𝑅 = 𝜙−1(𝐼)𝑖 = (𝑝 − [𝑝♭,1/𝑝])𝑖 . The image of this ideal in ∆𝑅 is 𝑝𝑖/𝑝 , since [𝑝♭,1/𝑝]

maps to 𝑝1/𝑝 . The claim now follows.

Construction 3.3 (The twisted Nygaard filtration on ∆𝑅

𝑝 ). Let R be any animated ring. Then there is a

natural decreasing, multiplicativeZ𝑜𝑝
≥0-indexed filtration Ñ ≥∗∆𝑅

𝑝 on ∆𝑅

𝑝 with associated graded given as

gr∗
∆𝑅

𝑝
≃

(⊕

𝑖≥0

N
𝑖 ∆𝑅

𝑝

)
/𝜃, (5)

where 𝜃 lives in grading p. Furthermore, for any 𝑖 ∈ Z, we can construct a similar filtration Ñ ≥∗∆𝑅 {𝑖 }
𝑝 ,

which is a module over the filtration on ∆𝑅

𝑝 ; the associated graded terms are given individually as

gr 𝑗
∆𝑅 {𝑖}

𝑝
≃ cofib

(
𝜃 : N 𝑗−𝑝 ∆𝑅

𝑝
→ N

𝑗 ∆𝑅

𝑝

)
, (6)
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where N 𝑗 ∆𝑅

𝑝 = 0 for 𝑗 < 0. In fact, by descent from qrsPerfdZ𝑝 and left Kan extension, these claims
follow from Construction 3.1 combined with the identification of Example 3.2.

Remark 3.4. The twisted Nygaard filtration Ñ ≥∗∆𝑅 {𝑖 }
𝑝 is complete if and only if the Nygaard filtration

N ≥∗
∆𝑅 {𝑖} is complete, as follows by p-completeness.

3.2. Relative perfectness

In the sequel, we will study how the above filtration varies as R does. To begin, for future reference we
include here a special case of this result based on the notion of relative perfectness.

Definition 3.5 (Relatively perfect maps). Let A be an animated ring, and let B be an animated A-algebra.
We say that B is relatively perfect over A if the diagram

𝐴/𝑝

𝜙

��

�� 𝐵/𝑝

𝜙

��

𝐴/𝑝 �� 𝐵/𝑝

is a pushout square of animated rings. This implies that the cotangent complex 𝐿𝐵/𝐴 vanishes p-adically,
cf. [Bha12, Cor. 3.8], so 𝐿𝐴/Z ⊗𝐴 𝐵 → 𝐿𝐵/Z is a p-adic equivalence.

Remark 3.6. Suppose 𝐴, 𝐵 are discrete rings and 𝐴 → 𝐵 is p-completely flat. Then 𝐴 → 𝐵 is relatively
perfect in the above sense if and only if the analogous diagram involving the ordinary quotients of 𝐴, 𝐵
by (𝑝) is co-Cartesian. In fact, we claim that if 𝑅 → 𝑆 is any flat map of animated F𝑝-algebras, then
𝑅 → 𝑆 is relatively perfect in the animated sense if and only if 𝜋0 (𝑅) → 𝜋0 (𝑆) is relatively perfect
in the classical sense. The ‘only if’ direction is clear as applying 𝜋0 (−) preserves pushout squares. For
the reverse implication, observe that 𝑅 → 𝑆 is relatively perfect in the animated sense exactly when
the relative Frobenius (𝑆/𝑅) (1) := 𝑆 ⊗𝑅,𝜑 𝑅 → 𝑆 is an isomorphism of animated R-algebras. Now
base change along 𝑅 → 𝜋0 (𝑅) is conservative on connective R-modules, so it suffices to check that
(𝑆/𝑅) (1) ⊗𝑅 𝜋0 (𝑅) → 𝑆 ⊗𝑅 𝜋0 (𝑅) is an isomorphism in D(𝜋0 (𝑅)). Noting that the formation of the
relative Frobenius commutes with arbitrary base change along maps of animated rings, it remains to
observe that 𝜋0 (𝑅) → 𝜋0 (𝑆) identifies with the base change 𝜋0 (𝑅) → 𝑆 ⊗𝐿

𝑅 𝜋0 (𝑅) of 𝑅 → 𝑆 by the
flatness assumption and that the Frobenius twist of a flat 𝜋0 (𝑅)-algebra is automatically discrete.

Proposition 3.7. Let 𝐴 → 𝐵 be a relatively perfect map of animated rings. Then the natural map induces
an equivalence (after p-completion) of filtered objects N ≥∗

∆𝐴 {𝑖} ⊗𝐴 𝐵 ≃ N ≥∗
∆𝐵 {𝑖}, and similarly

for the twisted Nygaard filtrations on
∆(−) {𝑖 }

𝑝 . Moreover, for each i, we have a p-adic equivalence

N 𝑖
∆𝐴 ⊗𝐴 𝐵 ≃ N 𝑖

∆𝐵.

Proof. We have that ∆𝐴 {𝑖} ⊗𝐴 𝐵 → ∆𝐵 {𝑖} is an equivalence by the p-complete vanishing of the
cotangent complex, for example, by comparing the absolute conjugate filtrations, [BL22a, Sec. 4.5].
This also yields the claim about the Nygaard pieces N 𝑖

∆, using the Nygaard fiber sequence [BL22a,
Rem. 5.5.8]. Finally, the claim about N ≥∗

∆ now follows from the claims about ∆ and N 𝑖
∆; note that

we need relative perfectness and not only p-adic vanishing of the relative cotangent complex because of
the restrictions along Frobenius involved in equation (3). �

3.3. Polynomial rings

The purpose of this subsection is to identify explicitly the Hodge–Tate cohomology of a polynomial
ring, together with its Nygaard filtration (Proposition 3.12). We also treat the easier case of the Nygaard
graded pieces of prismatic cohomology (Proposition 3.11).
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In the sequel, we use the following. Let
{
𝐴≥∗

}
be a filtered ring. Then the ∞-category D(𝐴≥∗) of

𝐴≥∗-modules in the filtered derived ∞-category admits a t-structure, where (co)connectivity is checked
levelwise, and such that the heart consists of modules over 𝐴≥∗ in the category Fun(Z𝑜𝑝 ,Ab); we will
sometimes simply refer to these as 𝐴≥∗-modules.

In addition, for future reference, it will be helpful to keep track of the naturally arising internal
gradings, which we first review.

Remark 3.8 (Automatic internal gradings). Let F be a functor from qrsPerfdZ𝑝 to p-complete abelian
groups with (for simplicity) bounded p-power torsion. Suppose that, for any 𝑅 ∈ qrsPerfdZ𝑝 , we are
given an R-module structure on F (𝑅) which is natural in R in the evident sense. Suppose further that
for any such R, the natural map F (𝑅) ⊗𝑅 𝑅[𝑡1/𝑝

∞
] → F (𝑅

〈
𝑡1/𝑝

∞〉
) is a p-adic equivalence.

Then for any 𝑅′ ∈ qrsPerfdZ𝑝 with a Z[1/𝑝]≥0-grading (in the p-complete sense), the 𝑅′-module
F (𝑅′) also inherits a canonical Z[1/𝑝]≥0-grading for essentially diagrammatic reasons. We have a map
coact : 𝑅′ → 𝑅′

〈
𝑡1/𝑝

∞〉
carrying a homogeneous element 𝑥 ∈ 𝑅′

𝑖 to 𝑥 ⊗ 𝑡𝑖 . An element 𝑦 ∈ F (𝑅′) is
homogeneous of degree 𝑖 ∈ Z[1/𝑝]≥0 if and only if it maps under coact to 𝑦 ⊗ 𝑡𝑖 ∈ F (𝑅′

〈
𝑡1/𝑝

∞〉
) ≃

F (𝑅′)
〈
𝑡1/𝑝

∞〉
.

Construction 3.9 (Internal gradings on Hodge–Tate cohomology). Let R be a Z[1/𝑝]≥0-graded
animated ring. In this case, the (twisted) Hodge–Tate cohomology together with its Nygaard filtra-
tion N ≥∗

∆𝑅 {𝑖} naturally inherits the structure of a Z[1/𝑝]≥0-graded object of �D(Z𝑝). Explicitly, one
uses quasisyntomic descent, animation, Remark 3.8 and that the natural map

N
≥∗

∆𝑅 {𝑖} ⊗Z Z[𝑡
1/𝑝∞] → N

≥∗
∆𝑅⊗ZZ[𝑡1/𝑝

∞
] {𝑖}

is an isomorphism p-adically by relative perfectness (Proposition 3.7).5 Similarly, in the above setting,
Remark 3.8 yields an additional grading on N 𝑖

∆𝑅, 𝑖 ≥ 0. Since there will be multiple gradings at the
same time, we will refer to these internal gradings as weight gradings.

Remark 3.10. Let R be a Z[1/𝑝]≥0-graded ring. If R is concentrated in degrees Z≥0, then N 𝑖
∆𝑅 and

∆𝑅 {𝑖} are concentrated in degrees Z≥0, as one sees using the conjugate filtration over a perfectoid base.
However, the associated graded terms of the Nygaard filtration are in degrees 1

𝑝Z≥0: This follows from
equation (3) noting that there is a restriction along Frobenius involved, which divides degrees by p.

Proposition 3.11. Let R be a p-torsion-free quasiregular semiperfectoid ring. Then there are natural

isomorphisms of graded 𝐴∗ =
⊕

𝑖≥0

N 𝑖∆𝑅 ⊗𝑅 𝑅[𝑥]-modules

𝐻 𝑗 (
⊕

𝑖≥0

N
𝑖
∆𝑅 [𝑥 ]) ≃

{
𝐴∗, 𝑗 = 0

𝐴∗−1, 𝑗 = 1.
(7)

With respect to the internal weight grading with |𝑥 | = 1 and R in weight zero, then the generator in 𝐻0

has weight zero and the generator in 𝐻1 has weight 1.

Proof. The generator in 𝐻0 is simply the unit. The generator in 𝐻1(N 1
∆𝑅 [𝑥 ]) comes from the class

𝑑𝑥, via the isomorphism N 1
∆𝑆 ≃ �𝐿𝑆/Z [−1] for any animated ring S, cf. [BL22a, Prop. 5.5.12].

Having named the classes, it suffices by base-change (since for any perfectoid ring 𝑅0, the functor
𝑅 ↦→

⊕
𝑖≥0 N

𝑖
∆𝑅 is a symmetric monoidal functor from animated 𝑅0-algebras to p-complete graded

objects) to verify the isomorphism when R is perfectoid, where the result follows from the isomorphisms
with the conjugate filtration: For any R-algebra S (in particular, 𝑅[𝑥]), N 𝑖

∆𝑆 ≃ Filconj
≤𝑖 ∆𝑆 by [BS22,

Th. 12.2], and using the Hodge–Tate comparison for the latter [BS22, Th. 4.11]. �

5In the language of [BL22b], the Hodge–Tate stack associated to the group scheme Gperf
𝑚 = lim

←−−𝑝
G𝑚 is Gperf

𝑚 × WCartHT by

relative perfectness, so if a scheme X is equipped with a Gperf
𝑚 -action, then so is its Hodge–Tate stack WCartHT

𝑋
.
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Proposition 3.12. Let 𝑅 ∈ qrsPerfdZ𝑝 be a p-torsion-free quasiregular semiperfectoid ring. Let 𝐴≥∗ be

the p-completion of the filtered ring N ≥∗
∆𝑅 ⊗𝑅 𝑅[𝑥]. Then there are isomorphisms of 𝐴≥∗-modules

𝐻0(N ≥∗
∆𝑅 [𝑥 ]) ≃ 𝐴≥∗, 𝐻1 (N ≥∗

∆𝑅 [𝑥 ]) ≃ 𝐴≥∗−1 {−1} ⊕
𝑝−1⊕

𝑖=1

𝐴≥∗−1/𝐴≥∗. (8)

With respect to the internal weight grading with |𝑥 | = 1 and R in degree zero, the generator of 𝐻0 is in
weight zero, the generator of 𝐴≥∗−1 {−1} is in weight one and the ith copy of 𝐴≥∗−1/𝐴≥∗ has generator
in weight 𝑖

𝑝 .

Proof. Let us first name the generators. The generator of 𝐻0 is simply 1. The first generator in 𝐻1

is the class 𝑑𝑥 ∈ 𝐻1(∆𝑅 [𝑥 ] {1}) constructed via the boundary map ∆𝑅 [𝑥 ] {1} → ∆𝑅 [𝑥 ]/𝐼
2 → ∆𝑅 [𝑥 ]

as the image of x (note that this boundary map is how one produces the Hodge–Tate comparison,
[BS22, Cons. 4.9]); it lifts uniquely to 𝐻1(N ≥1

∆𝑅 [𝑥 ] {1}) and thus produces a map of 𝐴≥∗-modules

𝐴≥∗−1 {−1} → 𝐻1(N ≥∗
∆𝑅 [𝑥 ]). Next, we have the fiber sequence of 𝑅[𝑥]-modules

N
≥1

∆𝑅 [𝑥 ] → ∆𝑅 [𝑥 ] → 𝑅/𝑝 (−1) [𝑥1/𝑝],

from the description (4) (and quasisyntomic descent) to identify gr0
∆𝑅 [𝑥 ] = 𝑅/𝑝 (−1) [𝑥1/𝑝]. For each

0 < 𝑖 < 𝑝, the boundary map applied to 𝑥𝑖/𝑝 gives a class in 𝐻1(N ≥1
∆𝑅 [𝑥 ]) of weight 𝑖/𝑝; by

construction, this class is annihilated by 𝐴≥1 since 𝑅/𝑝 (−1) [𝑥1/𝑝] is by definition, whence we obtain
maps in from 𝐴≥∗−1/𝐴≥∗.

Since we have named the generating classes, to prove the isomorphism, we may assume (by base-
change) that 𝑅 is a p-torsion-free perfectoid ring.6 Moreover, by descent in R, we may assume that R
contains a pth root of p, for example, using André’s lemma in the form of [BS22, Th. 7.14]. We make
this assumption for the rest of the argument. This implies that the Nygaard filtration on 𝑅 ≃ ∆𝑅 is the
filtration by powers of 𝑝1/𝑝 , cf. Example 3.2 and equation (4).

In this case, we have isomorphisms (via the Hodge–Tate comparison [BS22, Th. 4.11])

𝐻𝑖 (∆𝑅 [𝑥 ]) ≃

{
𝑅 〈𝑥〉 , 𝑖 = 0

𝑅 {−1} 〈𝑥〉 𝑑𝑥, 𝑖 = 1,

where the class 𝑑𝑥 arises from the image of the class x under the connecting map in the cofiber sequence
∆𝑅 [𝑥 ] {1} → ∆𝑅 [𝑥 ]/𝐼

2 → ∆𝑅 [𝑥 ] .
Using the expression (3) for the Nygaard filtration (which is complete in this case since the algebra

is smooth over a perfectoid, so we can check on associated graded terms), we find that multiplication
by 𝑝1/𝑝 induces isomorphisms 𝑝1/𝑝 : N ≥𝑖

∆𝑅 [𝑥 ] ≃ N ≥𝑖+1
∆𝑅 [𝑥 ] for 𝑖 > 0, also using the comparison

between the associated graded pieces of the Nygaard filtration and the Hodge–Tate filtration [BS22,
Th. 12.2]. As above, we can identify the map 𝑅 〈𝑥〉 → ∆𝑅 [𝑥 ] → gr0

∆𝑅 [𝑥 ] with the R-linear map
𝑅 〈𝑥〉 → 𝑅/𝑝1/𝑝

〈
𝑥1/𝑝

〉
= (𝑅/𝑝 〈𝑥〉) (−1) , 𝑥 ↦→ 𝑥 (unwinding the restriction along Frobenius as in

equation (4)). This yields

𝐻∗(N ≥1
∆𝑅 [𝑥 ]) ≃

{
𝑝1/𝑝𝑅 〈𝑥〉 , ∗ = 0

𝑅 {−1} 〈𝑥〉 𝑑𝑥 ⊕
⊕

𝑖≥0, 𝑝∤𝑖𝑅/𝑝
1/𝑝 · 𝑥𝑖/𝑝 , ∗ = 1.

(9)

6Let 𝑅0 be a p-torsion-free perfectoid ring. Then the construction 𝑅 ↦→ N ≥∗
∆𝑅 , from animated 𝑅0-algebras to p-complete

filtered N ≥∗
∆𝑅0 -algebras, preserves colimits and in particular preserves coproducts. In fact, this holds for 𝑅 ↦→ ∆𝑅 itself by the

Hodge–Tate comparison, and on associated graded terms by equation (3) and [BS22, Th. 12.2].
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It follows that, as filtered 𝐴≥∗ def
=



N ≥∗∆𝑅 ⊗𝑅 𝑅[𝑥]-modules in Fun(Z𝑜𝑝

≥0 ,Ab), the classes specified
yield a natural isomorphism

𝐻1 (N ≥∗
∆𝑅 [𝑥 ]) ≃ 𝐴≥∗ {−1} ⊕

𝑝−1⊕

𝑖=1

𝐴≥∗−1/𝐴≥∗. (10)
�

3.4. The Hodge–Tate cohomology of a quotient

In this subsection, we use the results of the previous subsection on polynomial rings to get an expression
(via a fiber sequence) of the Hodge–Tate cohomology of a quotient (Corollary 3.16) and some control
of the Nygaard filtration too (Corollary 3.15). To begin, we start with the (easier) case of the Nygaard
pieces themselves.

Proposition 3.13. Let R be any animated Z[𝑥]-algebra. Then there exists a natural fiber sequence of
graded

⊕
𝑖≥0 N

𝑖
∆𝑅-modules

(⊕

𝑖≥0

N
𝑖
∆𝑅

)
/𝑥 →

⊕

𝑖≥0

N
𝑖
∆𝑅/𝑥 →

⊕

𝑖≥0

N
𝑖−1

∆𝑅/𝑥 . (11)

Proof. First, let 𝐵 ∈ qrsPerfdZ𝑝 . We construct a cofiber sequence, naturally in B, of
⊕

𝑖≥0 N
𝑖
∆𝐵 [𝑥 ]/𝑥-

modules
⊕

𝑖≥0

N
𝑖−1

∆𝐵 [−1] →
⊕

𝑖≥0

N
𝑖
∆𝐵 [𝑥 ]/𝑥 →

⊕

𝑖≥0

N
𝑖
∆𝐵 . (12)

To construct this, we use Proposition 3.11, which shows that the (bi)graded 𝐸∞-ring
⊕

𝑖≥0 N
𝑖
∆𝐵 [𝑥 ]/𝑥

is concentrated in weights 0 and 1, using the weight grading on 𝐵[𝑥] with |𝑥 | = 1 and B in weight zero.
Now, any weight-graded module over

⊕
𝑖≥0 N

𝑖
∆𝐵 [𝑥 ]/𝑥 admits a filtration by the weight grading, which

gives the cofiber sequence (12), using again Proposition 3.11 to identify the weight zero and weight one
components with

⊕
𝑖≥0 N

𝑖
∆𝐵 and

⊕
𝑖≥0 N

𝑖−1
∆𝐵.

By base-change and descent, one now deduces the proposition. In fact, we may assume that R is an
𝐵[𝑥]-algebra for some 𝐵 ∈ qrsPerfdZ𝑝 , provided everything is done independently of the choice of B.
Then the desired equation (11) follows from equation (12), using that

⊕

𝑖≥0

N
𝑖
∆𝑅 ⊗⊕

𝑖≥0 N
𝑖∆𝐵 [𝑥 ]

⊕

𝑖≥0

N
𝑖
∆𝐵 →

⊕

𝑖≥0

N
𝑖
∆𝑅/𝑥

is a p-adic equivalence. �

Proposition 3.14. Let 𝐵 ∈ qrsPerfdZ𝑝 . Then, naturally in B, there is a finite filtration on

N ≥∗
∆𝐵 [𝑥 ]/𝑥 in N ≥∗

∆𝐵 [𝑥 ]/𝑥-modules whose associated graded terms are N ≥∗
∆𝐵, (𝑝 − 1) copies

of
(
N ≥∗−1

∆𝐵/N
≥∗

∆𝐵

)
[−1], and N ≥∗−1

∆𝐵 {−1} [−1].

Proof. In fact, this follows from the natural expression (3.12), noting the weight grading (with |𝑥 | = 1).
In particular, N ≥∗

∆𝐵 [𝑥 ]/𝑥 has weights in 0, 1
𝑝 ,

2
𝑝 , . . . , 1 with the weight zero component being N ≥∗

∆𝐵,

the weight 𝑖
𝑝 component for 0 < 𝑖 < 𝑝 being

(
N ≥∗−1

∆𝐵/N
≥∗

∆𝐵

)
[−1] and the weight 1 component

being N ≥∗−1
∆𝐵 {−1} [−1]. �

Corollary 3.15. Let A be any animated Z[𝑥]-algebra. Then the filtered object N ≥∗
∆𝐴/𝑥 {𝑖} admits

a natural finite filtration, whose associated graded terms are N ≥∗
∆𝐴/𝑥 {𝑖}, then (𝑝 − 1) copies of(

N ≥∗−1
∆𝐴/𝑥/N

≥∗
∆𝐴/𝑥

)
{𝑖} [−1], and N ≥∗−1

∆𝐴/𝑥 {𝑖 − 1} [−1].
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Proof. It suffices to replace Z[𝑥] by 𝐵[𝑥] for 𝐵 ∈ qrsPerfdZ𝑝 and construct the filtration naturally in B
by quasisyntomic descent. But then the claim follows from Proposition 3.14. �

We separately record the resulting fiber sequence for Hodge–Tate cohomology itself (forgetting the
Nygaard filtration in Corollary 3.15). Such a fiber sequence can also be produced using the description
of the Hodge–Tate stack of the affine line, cf. [BL22b, Ex. 9.1].

Corollary 3.16. Let R be any animated Z[𝑥]-algebra. Then there is a natural fiber sequence

∆𝑅/𝑥 {𝑖} → ∆𝑅/𝑥 {𝑖} → ∆𝑅/𝑥 {𝑖 − 1} . (13)

4. F-smoothness

The goal of this section is to formulate the notion of F-smoothness (Definition 4.1). This is a variant
of (p-adic) smoothness designed to capture smoothness in an absolute sense. For instance, smooth
algebras over any perfectoid ring are F-smooth (Proposition 4.12), as are regular rings (Theorem 4.15);
in fact, the latter is the main result of this section. Our idea is to essentially define F-smoothness by
demanding a strong form of the 𝐿𝜂-isomorphism in relative prismatic cohomology ([BS22, Theorem
15.3], [BMS18]), adapted to the absolute prismatic context using the Beilinson t-structure interpretation
of the 𝐿𝜂 functor as in [BMS19, §5.1] (see Remark 4.11). To work effectively with this notion, we
need access to the certain naturally defined elements of the prismatic cohomology (or variants) of Z𝑝
introduced in §2.

4.1. F-smoothness: definition

Let A be a p-quasisyntomic ring. Recall [BMS19, Def. 4.1] that an object 𝑀 ∈ D(𝐴) has p-complete
Tor-amplitude in degrees ≥ 𝑟 if for every discrete 𝐴/𝑝-module N, we have 𝑀 ⊗𝐿

𝐴 𝑁 ∈ D≥𝑟 (𝐴).

Definition 4.1 (F-smoothness). We say that A is F-smooth if for each 𝑖 ∈ Z≥0, the map in D(𝐴),

𝜙𝑖 : N 𝑖
∆𝐴 → ∆𝐴 {𝑖}

induced by the Frobenius on ∆𝐴 has fiber fib(𝜙𝑖) with p-complete Tor-amplitude in degrees ≥ 𝑖 + 2 and
if the Nygaard filtration on ∆𝐴 {𝑖} (or equivalently ∆𝐴 {𝑖}) is complete. Note that this condition only
depends on the p-completion of A.

We say that a p-quasisyntomic scheme is F-smooth if it is covered by the spectra of rings which are
F-smooth (note that F-smoothness is preserved by Zariski localization by Proposition 4.6 below).

The condition of Nygaard-completeness in the definition of F-smoothness is slightly delicate. In
order to work with it, we will also use the following auxiliary condition.

Definition 4.2 (Weak F-smoothness). We say that a p-quasisyntomic ring A is weakly F-smooth if for
each i, the object

fib

(
𝜃 : N 𝑖 ∆𝐴

𝑝
→ N

𝑖+𝑝 ∆𝐴

𝑝

)
∈ D(𝐴), (14)

has p-complete Tor-amplitude in degrees ≥ 𝑖 + 1. If A is p-torsion-free and weakly F-smooth, then the
above fiber is concentrated in degrees ≥ 𝑖 + 2, as it is p-torsion.

Proposition 4.3 (F-smoothness vs weak F-smoothness). If a p-quasisyntomic ring A is F-smooth, then
A is weakly F-smooth. Conversely, the p-quasisyntomic ring A is F-smooth if and only it is weakly
F-smooth and the natural map of graded 𝐸∞-rings

⊕

𝑖

𝜙𝑖 :
⊕

𝑖≥0

N
𝑖 ∆𝐴

𝑝
→

⊕

𝑖∈Z

∆̂𝐴 {𝑖}

𝑝
(15)
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(where the target denotes the direct sum of the Nygaard-completed Hodge–Tate cohomologies mod p)
exhibits the target as the localization of the source at 𝜃.

Proof. The first claim follows from the commutative diagram

N 𝑖 ∆𝐴

𝑝

𝜙𝑖

��

𝜃
�� N 𝑖+𝑝 ∆𝐴

𝑝

𝜙𝑖+𝑝

��

∆𝐴 {𝑖 }
𝑝

𝜃,≃
�� ∆𝐴 {𝑖+𝑝}

𝑝

obtained from the map of graded 𝐸∞-rings
⊕

𝑖≥0 N
𝑖 ∆𝐴

𝑝 →
⊕

𝑖∈Z
∆𝐴 {𝑖 }

𝑝 . The second claim follows
from the above and Proposition 2.6: The localization of the source in equation (15) is precisely the
mod p Hodge–Tate cohomology. �

Remark 4.4 (Stability of weak F-smoothness under filtered colimits and étale localization). As the
construction 𝐴 ↦→ N 𝑖

∆𝐴 ∈ D(𝐴) commutes with p-completed filtered colimits and étale localization,
it follows that the collection of weakly F-smooth rings is closed under filtered colimits and étale
localizations inside all p-quasisyntomic rings. Moreover, weak F-smoothness can be detected locally
for the étale topology.

Remark 4.5 (Essential constancy of the twisted Nygaard filtration under weak F-smoothness). If A is
weakly F-smooth, then for any fixed integer n, we have

𝐻𝑛

(
fib

(
𝜃 : N 𝑗 ∆𝐴

𝑝
→ N

𝑗+𝑝 ∆𝐴

𝑝

))
= 0 for 𝑗 ≫ 0.

It follows that the twisted Nygaard filtration on ∆𝐴 {𝑖 }
𝑝 (Construction 3.3) is essentially constant in each

cohomological degree; moreover, the implicit constants are independent of A.

Proposition 4.6 (Stability of F-smoothness under filtered colimits and étale localization). The property
of being F-smooth is stable under filtered colimits.

Proof. Given a filtered diagram {𝐴𝑖} of F-smooth rings with colimit A, each 𝐴𝑖 is weakly F-smooth

by Proposition 4.3; it then follows from Remark 4.5 that the p-completion of lim
−−→𝑖

∆̂𝐴𝑖
{ 𝑗} gives ∆̂𝐴{ 𝑗},

which easily shows that A is F-smooth. �

For the next result, cf. also [BLM21, Prop. 9.5.11] for the analog in characteristic p. Unlike in loc.
cit., we make a (p-complete) flatness hypothesis; we expect that this should be unnecessary but were
unable to remove it.

Proposition 4.7. Let A be a p-quasisyntomic ring. Let B be a p-completely flat A-algebra which is
relatively perfect. If A is F-smooth, so is B. Moreover, the converse holds true if B is p-completely
faithfully flat over A. In particular, F-smoothness is étale local and passes to étale algebras.

Proof. We have p-adic equivalences N 𝑖
∆𝐴 ⊗𝐴 𝐵

∼
−→ N 𝑖

∆𝐵 by Proposition 3.7. From this, it follows
that if A is weakly F-smooth, then so is B; the converse holds if B is p-completely faithfully flat over A.

Next, we have that Ñ ≥∗∆𝐴 {𝑖 }
𝑝 ⊗𝐴 𝐵 → Ñ ≥∗∆𝐵 {𝑖 }

𝑝 is an equivalence, again by Proposition 3.7. If

A is F-smooth, then Ñ ≥∗∆𝐴{𝑖 }
𝑝 is prozero in any range of degrees, whence the same holds true for

Ñ ≥∗∆𝐵 {𝑖 }
𝑝 (by p-complete flatness), whence completeness of the Nygaard filtration (Remark 3.4); we

conclude B is then F-smooth. The converse if B is p-completely faithfully flat follows similarly. �

https://doi.org/10.1017/fmp.2022.21 Published online by Cambridge University Press



Forum of Mathematics, Pi 15

Proposition 4.8. If a p-quasisyntomic ring A is F-smooth, then the polynomial ring 𝐴[𝑥] is also
F-smooth.

Proof. Suppose A is F-smooth. The weak F-smoothness of 𝐴[𝑥] follows using the cofiber sequence of⊕
𝑖≥0 N

𝑖
∆𝐴-modules obtained by unfolding Proposition 3.11,

(⊕

𝑖≥0

N
𝑖−1

∆𝐴⊗̂𝐴𝐴[𝑥]

)
[−1] →

⊕

𝑖≥0

N
𝑖
∆𝐴[𝑥 ] →

⊕

𝑖≥0

N
𝑖
∆𝐴⊗̂𝐴𝐴[𝑥] .

By Proposition 3.12, and quasisyntomic descent, we find that there is a finite filtration on N ≥∗
∆𝐴[𝑥 ]

(considered as an object of the filtered derived ∞-category) where the associated graded terms are
given by the p-completions of N ≥∗

∆𝐴 ⊗𝐴 𝐴[𝑥], (𝑝−1) copies of N ≥∗−1
∆𝐴 ⊗𝐴 𝐴[𝑥]/N ≥∗

∆𝐴 ⊗𝐴 𝐴[𝑥]

and N ≥∗−1
∆𝐴 ⊗𝐴 𝐴[𝑥] {−1} [−1]. Thus, it suffices to show that under the F-smoothness hypotheses,

(N ≥∗
∆𝐴 ⊗𝐴 𝐴[𝑥]) {𝑖} is complete mod p for each 𝑖 ∈ Z. For this, it suffices to prove the analogous

completeness with N ≥∗
∆𝐴 {𝑖} replaced in the above tensor product by the twisted Nygaard filtration

on the mod p reduction (Construction 3.3); however, this follows from the essential constancy of the
twisted Nygaard filtration, Remark 4.5. �

Proposition 4.9. Let A be a p-quasisyntomic ring, and let B be a p-completely flat A-algebra such that
𝐴/𝑝 → 𝐵/𝑝 is smooth. If A is F-smooth, so is B.

Proof. Combine Proposition 4.8 and Proposition 4.6. �

Proposition 4.10. Let A be a p-quasisyntomic ring. Then A is F-smooth if and only if all the localizations
𝐴𝔭 for 𝔭 ∈ Spec(𝐴), are F-smooth.

Proof. If A is F-smooth, then all of its localizations are F-smooth by Proposition 4.7. The converse
direction follows similarly as in the proof of Proposition 4.7, noting that p-complete Tor-amplitude can
be checked on localizations. �

Remark 4.11 (F-smoothness and the Beilinson t-structure). Assume A is an F-smooth p-quasisyntomic
ring. Write ∆

[•]

𝐴
for the complete filtered object defined by the prismatic complex ∆𝐴 equipped with the

filtration defined by powers of the Hodge–Tate ideal sheaf, so we have a natural identification

gr∗∆[•]

𝐴 ≃ ∆𝐴{∗}.

By definition of the Nygaard filtration, the Frobenius on ∆𝐴 refines to a map

𝜑𝐴 : N ≥∗
∆𝐴 → ∆

[•]

𝐴

in the filtered derived category. Using the connectivity bound N 𝑖
∆𝐴 ∈ D≤𝑖 (Z𝑝) (cf. [BL22a,

Rem. 5.5.9]), the F-smoothness hypothesis implies in particular that 𝜑𝐴 induces an equivalence

N
𝑖
∆𝐴 ≃ 𝜏≤𝑖gr𝑖∆[•]

𝐴

As both filtrations are complete by assumption, it follows that the map 𝜑𝐴 identifies its source with the
connective cover of its target for the Beilinson t-structure on the filtered derived category (see [BMS19,
Sec. 5.4] for an account).

4.2. F-smoothness over a base

In this subsection, we study the F-smoothness condition over a perfectoid base. We offer the follow-
ing characterization; work of V. Bouis [Bou22] has studied F-smoothness over mixed characteristic
perfectoid base rings in more detail and yielded important examples.
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Proposition 4.12 (Cf. [Bou22, Th. 2.16, 2.18]). Let 𝑅0 be a perfectoid ring, and let A be an 𝑅0-algebra.
Suppose A is quasisyntomic. Then A is F-smooth if and only if:

1. �𝐿𝐴/𝑅0 is a p-completely flat A-module.
2. The p-completed derived de Rham cohomology 𝐿Ω𝐴/𝑅0 (cf. [Bha12]) is Hodge-complete.

Proof. The divided Frobenius 𝜙𝑖 : N 𝑖
∆𝐴 → ∆𝐴 (where we trivialize the Breuil–Kisin twists since we

are over 𝑅0) matches the source with the ith stage of the conjugate filtration (cf. [BS22, Th. 4.11]) on
the Hodge–Tate cohomology, [BS22, Th. 12.2].

Now, the condition (2) that the p-completed derived de Rham cohomology is Hodge-complete is
equivalent to the condition that the derived prismatic cohomology ∆𝐴 (over the perfect prism corre-
sponding to 𝑅0) is Nygaard-complete, thanks to [BMS19, Th. 7.2(5)].

Therefore, once one knows the derived prismatic cohomology is Nygaard-complete, the F-
smoothness condition amounts to the statement that the conjugate filtration map Fil𝑖∆𝐴 → ∆𝐴 has
homotopy fiber (in D(𝐴)) with p-complete Tor-amplitude in degrees ≥ 𝑖 + 2, for each i. Using the asso-

ciated gradeds of the conjugate filtration (given by gr 𝑗 = 
∧ 𝑗𝐿𝐴/𝑅0 [− 𝑗]), one easily sees by considering
𝑖 = 0, 1 that this is equivalent to the condition that �𝐿𝐴/𝑅0 should be p-completely flat over A. �

In the special case of quasisyntomic F𝑝-algebras, the condition of F-smoothness had been previously
studied under the name Cartier smoothness [KM21, KST21] which we review next.7

Definition 4.13 (Cf. [KM21, KST21]). Let A be a quasisyntomic F𝑝-algebra. We say that A is Cartier
smooth if:

1. The cotangent complex 𝐿𝐴/F𝑝 is a flat discrete A-module.
2. The inverse Cartier map 𝐶−1 : Ω𝑖

𝐴/F𝑝
→ 𝐻𝑖 (Ω∗

𝐴/F𝑝
) is an isomorphism for 𝑖 ≥ 0. Here, Ω∗

𝐴/F𝑝

denotes the classical de Rham complex of A over F𝑝 .

Proposition 4.14. Let A be a quasisyntomic F𝑝-algebra. Then A is F-smooth if and only if A is Cartier
smooth.

Proof. Suppose 𝐿𝐴/F𝑝 is a flat A-module. Then the derived de Rham cohomology 𝐿Ω𝐴/F𝑝 maps to its
Hodge completion, which is just the usual algebraic de Rham complex Ω•

𝐴/F𝑝
. Using the conjugate fil-

tration on the former [Bha12, Prop. 3.5], we see that the condition that this map should be an equivalence
is precisely the Cartier isomorphism condition. Therefore, the result follows from Proposition 4.12. �

4.3. F-smoothness of regular rings

In this subsection, we prove the following theorem.

Theorem 4.15. Let A be a regular (noetherian) ring. Then A is F-smooth. Conversely, if A is a p-
complete noetherian ring which is F-smooth, then A is regular.

We first prove the forward direction. When A is an F𝑝-algebra, F-smoothness is equivalently to
Cartier smoothness (Proposition 4.14) and thus follows at once from regularity via Néron–Popescu
desingularization, which implies that A is a filtered colimit of smooth F𝑝-algebras. One can also prove
the result directly [BLM21, Sec. 9.5]. In the case of an unramified regular ring, most of the result also
appears in [BL22a, Prop. 5.7.9, 5.8.2].

Proposition 4.16. Let A be a p-quasisyntomic ring, and let 𝑥 ∈ 𝐴 be a nonzero divisor. Suppose 𝐴/𝑥

and 𝐴[1/𝑥] are F-smooth. Then A is F-smooth.

7The second author had previously asked in [Mat22, Question 4.21] whether there could be a notion of Cartier smoothness in
mixed characteristic; we are also grateful to Matthew Morrow for discussions on this point.
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Proof. First, we show that A is weakly F-smooth. Write F 𝑖
𝐴
= fib(𝜃 : N 𝑖 ∆𝐴

𝑝 → N 𝑖+𝑝 ∆𝐴

𝑝 ). Using the

cofiber sequence of Proposition 3.13, we find that there is a cofiber sequence (F 𝑖
𝐴
)/𝑥 → F 𝑖

𝐴/𝑥
→ F 𝑖−1

𝐴/𝑥
.

Moreover, F 𝑖
𝐴[1/𝑥 ] = (F 𝑖

𝐴
) [1/𝑥]. Note that an object 𝑁 ∈ D(𝐴) has p-complete Tor-amplitude in

degrees ≥ 𝑗 if and only if 𝑁 [1/𝑥] ∈ D(𝐴), 𝑁/𝑥 ∈ D(𝐴/𝑥) have p-complete Tor-amplitude in degrees
≥ 𝑗 . From these observations, it follows easily that A is weakly F-smooth.

Now, we show that A is F-smooth. For this, it suffices to show that the map

∆𝐴 {𝑖} → ∆̂𝐴 {𝑖} (16)

is an equivalence for each i; here, the latter denotes the Nygaard-completed Hodge–Tate cohomology.

By weak F-smoothness of A, the natural map ∆̂𝐴 {𝑖} [1/𝑥] → ∆̂𝐴[1/𝑥 ] {𝑖} is an equivalence, thanks to
Remark 4.5. Therefore, by our assumptions, the comparison map (16) becomes an isomorphism after
p-completely inverting x, so its fiber mod p is x-power torsion. It thus suffices to show that equation (16)
induces an isomorphism after base-change along 𝐴 → 𝐴/𝑥. But by Corollary 3.15 and our assumption
of F-smoothness of 𝐴/𝑥, the filtered object N ≥∗

∆𝐴/𝑥 is complete. �

Corollary 4.17. Let A be a p-quasisyntomic ring such that A is p-torsion-free and such that the F𝑝-
algebra 𝐴/𝑝 is Cartier smooth. Then A is F-smooth.

Proof. Apply Proposition 4.16 with 𝑥 = 𝑝. �

Proof that regular rings are F-smooth. Suppose A is regular. Since A is lci, A is p-quasisyntomic. By
Proposition 4.10, the ring A is F-smooth if and only if all of its localizations are F-smooth. Consequently,
we may assume that A is local with maximal ideal 𝔪 ⊂ 𝐴 and in particular of finite Krull dimension.
By induction on the Krull dimension, we may assume that any regular ring of smaller Krull dimension
(e.g., any further localization of A) is F-smooth. If A is zero-dimensional and hence a field, then we
already know that A is F-smooth: More generally, any regular ring in characteristic p is Cartier smooth
and hence F-smooth. So suppose dim(𝐴) > 0. Choose 𝑥 ∈ 𝔪 \𝔪2; then 𝐴[1/𝑥] and 𝐴/𝑥 are F-smooth
by induction on the dimension. By Proposition 4.16, it follows that A is F-smooth. �

For the proof that F-smoothness implies regularity, we will actually need much less than F-
smoothness itself. We expect that the result is related to recent works relating regularity to p-derivations
[HJ21, Sai22].

Lemma 4.18. Let (𝐴,𝔪, 𝑘) be a complete intersection local ring. Then A is regular if and only if the
map of k-vector spaces 𝐻−1(𝐿𝐴/Z ⊗𝐴 𝑘) → 𝐻−1(𝐿𝑘/Z) is injective.

Proof. We have a transitivity triangle (for Z → 𝐴 → 𝑘), 𝐿𝐴/Z ⊗𝐴 𝑘 → 𝐿𝑘/Z → 𝐿𝑘/𝐴 and 𝐿𝑘/Z
is concentrated in degrees [−1, 0]. Thus, the injectivity condition of the lemma is equivalent to the
statement that 𝐻−2(𝐿𝑘/𝐴) = 0, whence the result by [Iye07, Prop. 8.12]. �

Proposition 4.19. Let A be a complete intersection local noetherian ring with residue field k of charac-
teristic p. Then the following are equivalent:

1. A is regular.
2. cofib(𝜃 : 𝐴/𝑝 → N 𝑝

∆𝐴/𝑝) ⊗
L
𝐴/𝑝

𝑘 ∈ D≥1(𝑘) (e.g., this holds if A is F-smooth by Proposition 4.3
and its proof).

We remind the reader that reduction mod p is interpreted in the derived sense in this article, including
in the statement above and the proof below.

Proof. We have already shown above that regular rings are F-smooth, whence (1) implies (2), so we
show the converse. For any animated ring B, the Nygaard fiber sequence of [BL22a, Rem. 5.5.8] and
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the conjugate filtration on diffracted Hodge cohomology [BL22a, Cons. 4.7.1] yields a fiber sequence
in D(𝐵/𝑝),

cofib(𝜃 : 𝐵/𝑝 → N
𝑝
∆𝐵/𝑝) →

𝑝∧
𝐿𝐵/𝑝/F𝑝 [−𝑝] → 𝐵/𝑝. (17)

In more detail, if B is a polynomial Z-algebra, then the Nygaard fiber sequence of loc. cit. gives a fiber
sequence

N
𝑝
∆𝐵 → Filconj

𝑝 Ω̂
/𝐷
𝐵

Θ+𝑝
−−−→ Fil𝑝−1Ω̂

/𝐷
𝐵 .

Using the eigenvalues of the action of the Sen operator Θ on the associated graded terms of Ω̂ /𝐷
𝐵 (note

that the conjugate filtration is just the Postnikov filtration in this case) as in [BL22a, Notation 4.7.2], we
find that

𝐻∗(N 𝑝
∆𝐵) ≃

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

𝐵/𝑝 ∗ = 1

Ω̂
𝑝

𝐵/Z
∗ = 𝑝

0 otherwise

.

Moreover, the map 𝜃 : 𝐵/𝑝 → N 𝑝
∆𝐵/𝑝 is an isomorphism in 𝐻0 by comparison with the case 𝐵 = Z

(Construction 2.4); this (together with left Kan extension) easily gives the fiber sequence (17).
Taking 𝐵 = 𝐴 and base-changing to 𝐴/𝑝 → 𝑘 , we obtain a fiber sequence

cofib(𝜃 : 𝐴/𝑝 → N
𝑝
∆𝐴/𝑝) ⊗𝐴/𝑝 𝑘 →

𝑝∧
𝐿𝐴/Z [−𝑝] ⊗𝐴 𝑘 → 𝑘 (18)

By the lci hypotheses, 𝐿 (𝐴/𝑝)/F𝑝 ∈ D(𝐴/𝑝) has Tor-amplitude in [−1, 0]. The condition (2) is equivalent
to the injectivity of the map (obtained by applying 𝐻0 to the second map in equation (18), using décalage
[Ill71, §4.3.2])

Γ𝑝𝐻−1(𝐿𝐴/Z ⊗𝐴 𝑘) = 𝐻−𝑝 (

𝑝∧
𝐿𝐴/Z ⊗𝐴 𝑘) → 𝑘. (19)

We have constructed the map (19) naturally in the lci ring (𝐴,𝔪) with residue field k. Moreover, it is
injective if 𝐴 = 𝑘 since we have seen that regular rings are F-smooth and hence satisfy (2). Conversely,
suppose A satisfies (2). It follows by naturality of equation (19) that 𝐻−1(𝐿𝐴/Z ⊗𝐴 𝑘) → 𝐻−1(𝐿𝑘/Z) is
injective, whence regularity of A by Lemma 4.18. �

Proof that F-smoothness implies regularity under p-completeness. Let A be a p-complete noetherian
ring which is F-smooth. We argue that A is regular. It suffices to check that the localization of A at any
maximal ideal is regular since a noetherian ring is regular if and only if its localizations at maximal ideals
are regular. Since p belongs to any maximal ideal, we reduce to the case where A is a p-complete local
ring which is F-smooth. Our p-quasisyntomicity assumption implies that 𝐿𝐴/Z ⊗𝐴 𝑘 ∈ D [−1,0] (𝑘); by
[Avr99, Prop. 1.8], this implies that A is a complete intersection. Then we can appeal to Proposition 4.19
to conclude that A is regular, as desired. �

4.4. Dimension bounds

As an application, we can obtain some dimension bounds on the Hodge–Tate cohomology of regular rings
and verify [BL22b, Conj. 10.1] with an additional assumption of F-finiteness. Let us recall the setup. For
a quasisyntomic ring R, we consider the Hodge–Tate stack WCartHT

Spf (𝑅) defined in [BL22b, Cons. 3.7];

recall that this stack comes with a map WCartHT
Spf (𝑅) → Spf (𝑅) and line bundles OWCartHT

Spf (𝑅)
{𝑖} whose

cohomology yields ∆𝑅 {𝑖}.
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Before formulating the result, let us also recall some facts about F-finiteness. A noetherian F𝑝-algebra
S is said to be F-finite if it is finitely generated over its pth powers. If S is a noetherian local F𝑝-algebra,
F-finiteness is equivalent to the assumption that the residue field of S is F-finite and S is excellent, cf.
[Kun76, Cor. 2.6]. Moreover, S is F-finite if and only if the cotangent complex 𝐿𝑆/F𝑝 ∈ D(𝑆) is almost
perfect, cf. [DM17, Th. 3.6] and [Lur18, Th. 3.5.1].

Corollary 4.20. Let R be a p-complete regular local ring with residue field k. Suppose that 𝑅/𝑝𝑅 is
F-finite. Let 𝑑 = dim 𝑅 + log𝑝 [𝑘 : 𝑘 𝑝]. Then the Hodge–Tate stack WCartHT

Spf (𝑅) has cohomological

dimension ≤ 𝑑. In particular, ∆𝑅 {𝑖} ∈ D≤𝑑 (Z𝑝) for each i.

Proof. Let us first reduce to the case where R is complete. The map 𝑅̂𝔪 ⊗Z 𝐿𝑅/Z → 𝐿 𝑅̂𝔪/Z
is an

isomorphism after p-completion: In fact, both sides are almost perfect mod p by F-finiteness (as
recalled above) and the map is an isomorphism after base-change to the residue field, whence the claim
by Nakayama. It follows by [BL22b, Rem. 3.9] (and its proof) that the diagram

WCartHT
Spf (𝑅̂𝔪)

��

�� WCartHT
Spf (𝑅)

��

Spf (𝑅̂𝔪) �� Spf (𝑅)

is Cartesian. Therefore, since 𝑅 → 𝑅𝔪 is faithfully flat, it suffices to replace everywhere R by 𝑅̂𝔪, so
we may assume that R itself is complete.

Let us now verify the dimension bound on the Hodge–Tate complexes ∆𝑅 {𝑖},that is, that ∆𝑅 {𝑖} ∈

D≤𝑑 (Z𝑝) for each i. The associated graded terms of the Nygaard filtration on ∆𝑅 {𝑖} (i.e., N 𝑗
∆𝑅/𝑝

(−1) )
are almost perfect R-modules, whence 𝔪-adically complete, in light of the Nygaard fiber sequences
[BL22a, Rem. 5.5.8] and the almost perfectness mod p of 𝐿𝑅/Z recalled above. Using the completeness

of the Nygaard filtration (Theorem 4.15), we find that ∆𝑅 {𝑖} is 𝔪-adically complete. If R is zero-
dimensional and hence 𝑅 = 𝑘 , the result follows from the comparison [BL22a, Th. 5.4.2] between
Hodge–Tate and de Rham cohomology of F𝑝-algebras since dimΩ1

𝑘/F𝑝
= log𝑝 [𝑘 : 𝑘 𝑝], cf. [Sta19, Tag

07P2]. Otherwise, choose 𝑥 ∈ 𝔪 \ 𝔪2. The ring 𝑅/𝑥 is also regular local with the same residue field
and of dimension one less. To see that ∆𝑅 {𝑖} ∈ D≤𝑑 (𝑅), it suffices (by x-adic completeness proved
above) to show that ∆𝑅 {𝑖} /𝑥 ∈ D≤𝑑 (𝑅). However, we have a fiber sequence from Corollary 3.16 which,
together with induction on the dimension, implies the claim.

Now, we prove the cohomological dimension bound on WCartHT
Spf (𝑅) . First, we prove that the coho-

mological dimension is at most 𝑑 + 1. Let W be a Cohen ring for k. By the Cohen structure theorem, we
have a surjection

𝐴 = 𝑊 [[𝑡1, . . . , 𝑡𝑟 ]] → 𝑅

for 𝑟 = dim(𝑅), whose kernel is generated by a nonzero divisor. By choosing a p-basis for k, we see
that the ring A is formally étale over a polynomial ring in d variables over Z𝑝 , and consequently that
WCartHT

Spf (𝐴) = WCartHT
Spf (Z𝑝 〈𝑥1 ,...,𝑥𝑑 〉)

×Spf (Z𝑝 〈𝑥1 ,...,𝑥𝑑 〉) Spf (𝐴). Using the expression for the Hodge–

Tate stack of the polynomial Z𝑝-algebra in [BL22b, Ex. 9.1] as the classifying stack of (G
♯𝑑
𝑎 ⋊ G

♯
𝑚),

and the explicit description of representations of G♯𝑎,G
♯
𝑚 in [BL22a, Sec. 3.5] and [BL22b, Lem. 6.7],

one finds that cd(WCartHT
Spf (𝐴) ) ≤ 𝑑 + 1. By affineness of WCartHT

Spf (𝑅) → WCartHT
Spf (𝐴) (Lemma 4.21

below), we obtain cd(WCartHT
Spf (𝑅) ) ≤ 𝑑 + 1. It remains to show that 𝐻𝑑+1 of any quasicoherent sheaf

on WCartHT
Spf (𝑅) (which we may assume to be p-torsion) vanishes.

Consider the category of p-torsion sheaves on WCartHT
Spf (𝑅) (we recall that WCartHT

Spf (𝑅) is defined
as a functor on p-nilpotent rings, so this case will suffice). We claim that for any p-torsion sheaf
F on WCartHT

Spf (𝑅) , we have 𝐻0(WCartHT
Spf (𝑅) ,F {−𝑛}) ≠ 0 for some n. In fact, using the affine map
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WCartHT
Spf (𝑅) → WCartHT

Spf (𝐴) , this claim reduces to the analogous claim for Spf (𝐴); but this in turn
follows from the explicit description of the Hodge–Tate stack for Spf (𝐴). It follows that the category
of p-torsion sheaves on WCartHT

Spf (𝑅) is generated under colimits and extensions by the quotients of the

O {𝑛} /𝑝. Since𝐻𝑑+1 is a right exact functor for quasicoherent sheaves on WCartHT
Spf (𝑅) (as proved above),

and since we have the cohomological dimension bound on the O {𝑛}, we now conclude as desired. �

Lemma 4.21. Let R be a quasisyntomic ring and let 𝑡 ∈ 𝑅 be a nonzero divisor. The map
WCartHT

Spf (𝑅/𝑡) → Spf (𝑅/𝑡) ×Spf (𝑅) WCartHT
Spf (𝑅) is affine.

Proof. We reduce to the case where 𝑅 is the p-completion of Z𝑝 [𝑡]. In this case, by [BL22b, Ex. 9.1],

the above map is identified with 𝐵G
♯
𝑚 → 𝐵(G

♯
𝑎 ⋊ G

♯
𝑚); in particular, it is affine. �

5. Comparison with p-adic étale Tate twists

In this section, we prove Theorem 1.8 from the introduction. That is, on a F-smooth p-torsion-free
scheme, we show that the complex Z/𝑝𝑛 (𝑖)𝑋 can be obtained via a generalization of the construction
of p-adic étale Tate twists [Gei04, Sch94, Sat07], that is, by modifying the truncated p-adic vanishing
cycles 𝜏≤𝑖𝑅 𝑗∗(𝜇⊗𝑖

𝑝𝑛 ) by taking the subsheaf in degree i generated by symbols from X.
Our strategy is as follows. Since we already know the F𝑝 (𝑖) for Z[1/𝑝]-schemes are the usual

Tate twists, it suffices to treat the p-Henselian case. One needs to show that the map F𝑝 (𝑖) (𝑋) →

F𝑝 (𝑖) (𝑋 [1/𝑝]) is highly coconnected. The étale comparison theorem (Theorem 5.1 below) implies
that one may obtain the F𝑝 (𝑖) (𝑋 [1/𝑝]) by inverting the operator 𝑣1 on the F𝑝 (𝑖) (𝑋). Thus, we reduce
to showing that the map 𝑣1 : F𝑝 (𝑖) (𝑋) → F𝑝 (𝑖 + 𝑝 − 1) (𝑋) is highly coconnected. Here, we use an
explicit argument (which was inspired by [HW22]) with the expression of [BMS19] to check the claim.
To determine the top-degree cohomology, we use also the classical results of Bloch–Kato [BK86] on
p-adic vanishing cycles.

In [KM21, KST21], it is shown that the description of the Z/𝑝𝑛 (𝑖)𝑋 for regular F𝑝-schemes via
logarithmic Hodge–Witt forms (cf. [BMS19, Sec. 8] and [GH99]) also holds for the Cartier smooth
case. Our Theorem 1.8 may be seen as a mixed characteristic analog of this result.

5.1. The étale comparison

Let X be a qcqs derived scheme. As in [BL22a, Sec. 8], one associates the graded 𝐸∞-algebra⊕
𝑖∈Z F𝑝 (𝑖) (𝑋), the mod p syntomic cohomology of X. When X is the spectrum of a p-complete

animated ring, this can be obtained (via descent and left Kan extension) from the Frobenius fixed points
of prismatic cohomology as in [BL22a, Sec. 7] and [BMS19]. However, when 𝑋 is a Z[1/𝑝]-scheme,
it is the usual Tate twisted étale cohomology

⊕
𝑖∈Z 𝑅Γet(𝑋, 𝜇

⊗𝑖
𝑝 ).

For any X, the class 𝑣1 ∈ 𝐻0(F𝑝 (𝑝 − 1) (Z)) constructed in Construction 2.7 yields a class in
𝐻0

(⊕
𝑖 F𝑝 (𝑖) (𝑋)

)
which maps to a unit after passage to 𝑋 [1/𝑝].

Theorem 5.1 (The étale comparison, [BL22a, Th. 8.5.1]). Let X be any qcqs derived scheme. The
natural map of graded 𝐸∞-algebras over F𝑝 ,

⊕

𝑖∈Z

F𝑝 (𝑖) (𝑋) →
⊕

𝑖∈Z

F𝑝 (𝑖) (𝑋 [1/𝑝]), (20)

exhibits the target as the localization of the source at 𝑣1. In particular, for any i, the filtered colimit

F𝑝 (𝑖) (𝑋)
𝑣1
→ F𝑝 (𝑖 + 𝑝 − 1) (𝑋)

𝑣1
→ F𝑝 (𝑖 + 2(𝑝 − 1)) (𝑋) → . . .

is canonically identified with F𝑝 (𝑖) (𝑋 [1/𝑝]) = 𝑅Γet(𝑋 [1/𝑝];F𝑝 (𝑖)).

Proof. When X is a scheme over Z[𝜁𝑝∞ ], the result is proved in [BL22a, Th. 8.5.1]: In that case, one
obtains a similar statement for the p-complete 𝐸∞-algebras

⊕
𝑖∈Z Z𝑝 (𝑖) (𝑋),

⊕
𝑖∈Z Z𝑝 (𝑖) (𝑋 [1/𝑝]),
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when one inverts the class 𝜖 ∈ 𝐻0(Z𝑝 (1) (Z[𝜁𝑝∞ ])) arising from the given system of p-power roots of
unity. Let us explain how one can deduce the current form of the result.

First, if X is p-quasisyntomic (which is the only case that will be used below), then we observe that
both sides of equation (20) are coconnective. Using the sheaf property, one may reduce to the case
where X lives over Z[𝜁𝑝∞ ], which is proved in loc. cit.

To prove the result more generally, it suffices to show that the construction which carries an animated
ring R to 𝑅Γet(Spec(𝑅[1/𝑝]), 𝜇⊗𝑖

𝑝 ) (i.e., the right-hand side of equation (20)) is left Kan extended from
smooth Z-algebras. In fact, the left-hand side is left Kan extended from smooth Z-algebras [BL22a,
Prop. 8.4.10], as is its localization after inverting 𝑣1, and for smooth (in particular p-quasisyntomic)
algebras we have already seen the result.

Now, we claim that the construction which carries an animated ring R to
⊕

𝑖∈Z 𝑅Γet(Spec(𝑅 ⊗

Z[𝜁𝑝∞ ] [1/𝑝]), 𝜇⊗𝑖
𝑝 ) is left Kan extended from smooth Z-algebras. In fact, by [BL22a, Th. 8.5.1], this

construction is the localization of 𝑅 ↦→
⊕

𝑖∈Z F𝑝 (𝑖) (Spec(𝑅 ⊗Z Z[𝜁𝑝∞ ])) at 𝑣1. This construction in
turn fits into a fiber sequence [BL22a, Rem. 8.4.8] involving terms that are either rigid for Henselian
pairs or which commute with sifted colimits, cf. the proof of [BL22a, Prop. 8.4.10]. As in loc. cit., this
implies that

⊕
𝑖∈Z 𝑅Γet(Spec(𝑅 ⊗ Z[𝜁𝑝∞ ] [1/𝑝]), 𝜇⊗𝑖

𝑝 ) is left Kan extended from smooth Z-algebras.
Taking Z×𝑝-Galois invariants, we conclude that

⊕
𝑖∈Z 𝑅Γet(Spec(𝑅[1/𝑝]), 𝜇⊗𝑖

𝑝 ) has the desired left Kan
extension property. �

5.2. Comparison with the generic fiber

In this subsection, we prove the following basic comparison result; over a perfectoid, this has also been
proved by Bouis, cf. [Bou22, Th. 4.14].

Proposition 5.2. Let A be a p-torsion-free p-quasisyntomic ring which is F-smooth. Then for each i, the
canonical map F𝑝 (𝑖) (𝐴) → F𝑝 (𝑖) (𝐴[1/𝑝]) = 𝑅Γet(Spec(𝐴[1/𝑝]);F𝑝 (𝑖)) has fiber in D≥𝑖+1(F𝑝).

Without loss of generality, we may assume A is p-Henselian. To prove this result, we use Theorem 5.1.
Using this, we are reduced to understanding the effect of multiplying with the class 𝑣1 on the syntomic
cohomology of A. Recall that the latter is defined as an equalizer:

F𝑝 (𝑖) (𝐴) = eq

(
N

≥𝑝−1 ∆𝐴{𝑝 − 1}
𝑝

⇒
∆𝐴{𝑝 − 1}

𝑝

)

of the Frobenius and canonical maps. To analyze the behaviour of cupping with 𝑣1 with respect to the
fiber of the canonical map above, we shall use the relation of 𝑣1 with 𝜃 and the following result.

Lemma 5.3. Let A be a p-torsion-free p-quasisyntomic ring which is F-smooth. Then for each 𝑖, 𝑗 , the
fiber of the multiplication map

𝜃 : N ≥ 𝑗 ∆𝐴{𝑖}

𝑝
→ N

≥ 𝑗+𝑝 ∆𝐴{𝑖 + 𝑝 − 1}
𝑝

(21)

belongs to D≥ 𝑗+2(F𝑝).

Proof. The F-smoothness assumption shows that, for each 𝑗 ′, the fiber of 𝜃 : N 𝑗′ ∆𝐴

𝑝 → N 𝑗′+𝑝 ∆𝐴

𝑝

belongs to D≥ 𝑗′+2(F𝑝). By filtering both sides (by the Nygaard filtration, which is complete by F-
smoothness) of equation (21), the conclusion of the lemma follows, in light of Proposition 2.9. �

Proposition 5.4. Suppose A is a p-torsion-free p-quasisyntomic ring which is F-smooth. For each 𝑖 ∈ Z,
the Frobenius map

𝜙𝑖 : N ≥𝑖 ∆𝐴{𝑖}

𝑝
→

∆𝐴{𝑖}

𝑝
(22)

has fiber in D≥𝑖+2(F𝑝).

https://doi.org/10.1017/fmp.2022.21 Published online by Cambridge University Press



22 B. Bhatt and A. Mathew

Proof. In fact, this follows because the map (22) admits a complete descending filtration, indexed over

𝑗 ≥ 𝑖, with gr 𝑗 given by 𝜙 𝑗 : N 𝑗 ∆𝐴

𝑝 →
∆𝐴 { 𝑗 }

𝑝 ; this is clear from the definition of the Nygaard filtration
via descent from quasiregular semiperfectoid rings; now, F-smoothness gives the cohomological bound
on the fiber of the map on associated graded terms. �

Proof of Proposition 5.2. We will show that the map

𝑣1 : F𝑝 (𝑖) (𝐴) → F𝑝 (𝑖 + 𝑝 − 1) (𝐴) (23)

has fiber in D≥𝑖+1(F𝑝); this will suffice thanks to the étale comparison (Theorem 5.1). Without loss of
generality, we can assume A is p-Henselian. By construction, the fiber of equation (23) is the equalizer
of the two maps (arising from the canonical map and divided Frobenius map)

fib

(
N

≥𝑖 ∆𝐴{𝑖}

𝑝

𝑣1
−→ N

≥𝑖+𝑝−1 ∆𝐴{𝑖 + 𝑝 − 1}
𝑝

)
⇒ fib

(
∆𝐴{𝑖}

𝑝

𝑣1
−→

∆𝐴{𝑖 + 𝑝 − 1}
𝑝

)
. (24)

By assumption, since A is F-smooth, the Frobenius maps

𝜙𝑖 : N ≥𝑖 ∆𝐴{𝑖}

𝑝
→

∆𝐴{𝑖}

𝑝
, 𝜙𝑖+𝑝−1 : N ≥𝑖+𝑝−1 ∆𝐴{𝑖 + 𝑝 − 1}

𝑝
→

∆𝐴{𝑖 + 𝑝 − 1}
𝑝

have fibers in D≥𝑖+2(F𝑝). Therefore, by taking fibers of multiplication by 𝑣1, we find that the fiber of
the Frobenius maps in equation (24) belong to D≥𝑖+2(F𝑝).

Now, consider the canonical map in equation (24); we claim that it induces the zero map in cohomo-
logical degrees ≤ 𝑖. To see this, we observe that the canonical map factors through the map

fib

(
N

≥𝑖 ∆𝐴{𝑖}

𝑝

𝑣1
−→ N

≥𝑖+𝑝−1 ∆𝐴{𝑖 + 𝑝 − 1}
𝑝

)
→ fib

(
N

≥𝑖−1 ∆𝐴{𝑖}

𝑝

𝜃
−→ N

≥𝑖+𝑝−1 ∆𝐴{𝑖 + 𝑝 − 1}
𝑝

)
(25)

as 𝑣1 ∈ N ≥𝑝−1 ∆Z𝑝 {𝑝−1}
𝑝 lifts to 𝜃 ∈ N ≥𝑝 ∆Z𝑝 {𝑝−1}

𝑝 . However, we have seen that the right-hand side of

the above belongs to D≥𝑖+1(F𝑝) thanks to Lemma 5.3. This implies that the canonical map vanishes in
degrees ≤ 𝑖.

Thus, we find that the desired fiber of the map (23) is the equalizer of two maps (24), one of which
has fiber in D≥𝑖+2(F𝑝), and one of which is zero in degrees ≤ 𝑖. This implies the result. �

5.3. Generation by symbols

In this section, we complete the proof of Theorem 1.8 from the introduction. First, we prove the following
basic symbolic generation result. For more refined results about the connection of the {𝐻𝑖 (Z/𝑝𝑛 (𝑖) (𝑅))}

to p-adic Milnor K-theory, cf. [LM21]. In the following, we use that, for any ring R, we have a
natural Kummer map 𝑅× → 𝐻1(Z𝑝 (1) (𝑅)), cf. Example 1.5. Iterating, we obtain a ‘symbol’ map
(𝑅×)⊗𝑖 → 𝐻𝑖 (Z𝑝 (𝑖) (𝑅)).

Proposition 5.5. For any strictly Henselian local ring 𝑅, the symbol map (𝑅×)⊗𝑖 → 𝐻𝑖 (Z/𝑝𝑛 (𝑖) (𝑅))

is surjective.

To prove Proposition 5.5, it clearly suffices to assume that R is p-Henselian and that 𝑛 = 1, using the
connectivity bound Z/𝑝𝑛 (𝑖) (𝑅) ∈ D≤𝑖 (Z/𝑝𝑛), cf. [AMMN22, Cor. 5.43]. By the left Kan extension
property of the F𝑝 (𝑖) (−) for p-Henselian rings ([AMMN22, Th. 5.1] or [BL22a, Prop. 7.4.8]), we may
assume that R is the strict henselization at a characteristic p point of a smooth Z-scheme. In this case,
we know by Proposition 5.2 and Theorem 4.15 that the natural map induces an injection

𝐻𝑖 (F𝑝 (𝑖) (𝑅)) ⊂ 𝐻𝑖 (Spec(𝑅[1/𝑝]), 𝜇⊗𝑖
𝑝 ) = 𝐻𝑖 (F𝑝 (𝑖) (𝑅[1/𝑝])), (26)

and we will identify the left-hand side as the subgroup of the right-hand side generated by symbols.
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We now recall some of the work of Bloch–Kato [BK86], which describes the right-hand side of
equation (26); it will be convenient to formulate the assertion sheaf-theoretically.

Let 𝑋 be a smooth Z-scheme; let 𝑗 : 𝑋 [1/𝑝] ⊂ 𝑋, 𝑖 : 𝑌
def
= 𝑋 ×Spec(Z) Spec(F𝑝) ⊂ 𝑋 be the

respective open and closed immersions corresponding to the ideal (𝑝). The work [BK86] describes the
étale sheaves of F𝑝-modules on Y,

𝑀 𝑖 def
= 𝑖∗𝑅𝑖 𝑗∗(𝜇

⊗𝑖
𝑝 ). (27)

In particular, using the map 𝑖∗ 𝑗∗O
×
𝑋 → 𝑀1 arising from the Kummer sequence and the graded ring

structure on the
{
𝑀 𝑖

}
, one has a symbol map

𝑖∗ 𝑗∗(O
×
𝑋 [1/𝑝])

⊗𝑖 → 𝑀 𝑖 . (28)

By [BK86, Th. 14.1], the symbol map is surjective. Moreover, by [BK86, 6.6], one has a surjective
residue map of F𝑝-sheaves

res : 𝑀 𝑖
։ Ω𝑖−1

𝑌 ,log. (29)

Proposition 5.6. If R is a strictly Henselian local ring which is ind-smooth over Z, then the ker-
nel of the surjective residue map (29) 𝐻𝑖 (Spec(𝑅[1/𝑝]), 𝜇⊗𝑖

𝑝 ) → Ω𝑖−1
𝑅/𝑝,log is the subgroup of

𝐻𝑖 (Spec(𝑅[1/𝑝]), 𝜇⊗𝑖
𝑝 ) generated by symbols from R, that is, by the image of 𝑅× ⊗ · · · ⊗ 𝑅× under the

symbol map 𝑅[1/𝑝]× ⊗ . . . 𝑅[1/𝑝]× ։ 𝐻𝑖 (Spec(𝑅[1/𝑝]), 𝜇⊗𝑖
𝑝 ), as in equation (28).

Proof. Let 𝐵 ⊂ 𝐻𝑖 (Spec(𝑅[1/𝑝]), 𝜇⊗𝑖
𝑝 ) be the subgroup generated by the symbols from R. The Bloch–

Kato filtration [BK86, Cor. 1.4.1] gives a short exact sequence

0 → Ω𝑖−1
𝑅/𝑝 → 𝐻𝑖 (Spec(𝑅[1/𝑝]), 𝜇⊗𝑖

𝑝 ) → Ω𝑖
𝑅/𝑝,log ⊕ Ω𝑖−1

𝑅/𝑝,log → 0,

where the second map 𝐻𝑖 (Spec(𝑅[1/𝑝]), 𝜇⊗𝑖
𝑝 ) → Ω𝑖−1

𝑅/𝑝,log is the residue (29). By construction of the

filtration and the first map [BK86, 4.3], one sees that B contains the subgroup Ω𝑖−1
𝑅/𝑝

. As in [BK86,

6.6], the map 𝐻𝑖 (Spec(𝑅[1/𝑝]), 𝜇⊗𝑖
𝑝 ) → Ω𝑖

𝑅/𝑝,log ⊕ Ω𝑖−1
𝑅/𝑝,log carries the symbol 𝑟1 ⊗ · · · ⊗ 𝑟𝑖 for

𝑟1, . . . , 𝑟𝑖 ∈ 𝑅× to ( 𝑑𝑟1
𝑟1

∧ · · · ∧ 𝑑𝑟𝑖
𝑟𝑖
, 0) and the symbol 𝑟1 ⊗ · · · ⊗ 𝑟𝑖−1 ⊗ 𝑝 to (0, 𝑑𝑟1

𝑟1
∧ · · · ∧ 𝑑𝑟𝑖−1

𝑟𝑖−1
). From

this, one sees that 𝐻𝑖 (Spec(𝑅[1/𝑝]), 𝜇⊗𝑖
𝑝 )/𝐵

∼
−→ Ω𝑖−1

𝑅/𝑝,log via the residue, as claimed. �

Now, we return to the proof of Proposition 5.5, and identify the image of equation (26). The D(F𝑝)-
valued sheaf F𝑝 (𝑖) (−) restricts to an object (with the same notation) on the category of ind-smooth,
p-Henselian Z-algebras R. For any such R, we have natural maps from equations (26) and (29),

F𝑝 (𝑖) (𝑅) → F𝑝 (𝑖) (𝑅[1/𝑝])
res
−−→ 𝑅Γet(Spec(𝑅/𝑝),Ω𝑖−1

·,log) [−𝑖] = F𝑝 (𝑖 − 1) (𝑅/𝑝) [−1],

where the last identification is [BMS19, Sec. 8] (and reviewed in Example 1.3). We claim that the
composite vanishes. In fact, this is true for any such map.

Proposition 5.7. Any natural map F𝑝 (𝑖) (𝑅) → F𝑝 (𝑖 − 1) (𝑅/𝑝) [−1], defined on p-Henselian ind-
smooth Z-algebras R, vanishes.

Proof. By left Kan extension, we can define a natural map on all quasisyntomic Z𝑝-algebras R,
F𝑝 (𝑖) (𝑅) → F𝑝 (𝑖 − 1) (𝑅/𝑝) [−1]. Both sides define D(F𝑝)-valued sheaves for the quasisyntomic
topology. The source is discrete as a sheaf (by the odd vanishing theorem, [BS22, Th. 4.1]) and the
target is concentrated in cohomological degree 1, whence the map must vanish. �

Proof of Proposition 5.5. As before, we may assume that R is ind-smooth over Z and that 𝑛 = 1. We
have seen that the map 𝐻𝑖 (F𝑝 (𝑖) (𝑅)) → 𝐻𝑖 (F𝑝 (𝑖) (𝑅[1/𝑝])) is injective, and its image must contain
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the image of (𝑅×)⊗𝑖 . The image of 𝐻𝑖 (F𝑝 (𝑖) (𝑅)) is contained in the kernel of the residue map thanks
to Proposition 5.7. But by Proposition 5.6, the kernel of the residue maps on 𝐻𝑖 (F𝑝 (𝑖) (𝑅[1/𝑝])) is
precisely the image of (𝑅×)⊗𝑖 . The result follows. �

Proof of Theorem 1.8. Let X be a p-torsion-free scheme which is F-smooth. Thanks to Proposition 5.2,
the map Z/𝑝𝑛 (𝑖)𝑋 → 𝑅 𝑗∗(𝜇

⊗𝑖
𝑝𝑛 ) has homotopy fiber in degrees ≥ 𝑖 + 1. Since Z/𝑝𝑛 (𝑖)𝑋 is concentrated

in degrees [0, 𝑖] by [AMMN22, Cor. 5.43], it suffices to identify the image of the (injective) map
H𝑖 (Z/𝑝𝑛 (𝑖)𝑋 ) → 𝑅𝑖 𝑗∗(𝜇

⊗𝑖
𝑝𝑛 ). The claim is that it is exactly the subsheaf generated by symbols on X.

This follows thanks to the symbolic generation of the source (Proposition 5.5). �

5.4. Comparison with Geisser–Sato–Schneider

In this section, we use the above results to compare the Z/𝑝𝑛 (𝑖)𝑋 with the complexes defined by Sato
[Sat07] for semistable schemes, cf. also the earlier work of Schneider [Sch94] and Geisser [Gei04] for
the smooth case; such a comparison was predicted in [BMS19, Rem. 1.16].

Let X be a regular scheme of finite type over a Dedekind domain A such that every characteristic
p residue field of A is perfect. Suppose that X is semistable over characteristic p points of Spec(𝐴).
For 𝑛, 𝑖 ≥ 0, Sato [Sat07] constructs objects ℑ𝑛 (𝑖)𝑋 ∈ D [0,𝑖 ] (𝑋et,Z/𝑝

𝑛Z) and conjectures [Sat07,
Conjecture 1.4.1] that they can be identified with the étale sheafification of the motivic (cycle) complexes
mod 𝑝𝑛; in the smooth case, this follows from [Gei04]. Here, we compare the ℑ𝑛 (𝑖)𝑋 to the Z/𝑝𝑛 (𝑖)𝑋 .

Theorem 5.8. There is a canonical, multiplicative equivalence ℑ𝑛 (𝑖)𝑋 ≃ Z/𝑝𝑛 (𝑖)𝑋 of objects in
D𝑏 (𝑋et,Z/𝑝

𝑛).

Proof. As in [Sat07, §4.2], the complex ℑ𝑛 (𝑖)𝑋 is built as the mapping fiber of a map from 𝜏≤𝑖𝑅 𝑗∗(𝜇
⊗𝑖
𝑝𝑛 )

to the (−𝑖)-suspension of a discrete sheaf. Therefore, in order to verify the comparison, it suffices (by
combining Proposition 5.2, Theorem 4.15 and Proposition 5.5) to show that the étale sheaf H𝑖 (ℑ𝑛 (𝑖)𝑋 )

is generated by symbols. We may assume 𝑛 = 1 for this and work stalkwise.
Let R denote the strict henselization of a characteristic p point 𝑥 ∈ 𝑋 . We can replace A by its strict

henselization, which is a mixed characteristic DVR; let 𝜋 ∈ 𝐴 denote the uniformizer. Consider the F𝑝-
vector space 𝐻𝑖 (Spec(𝑅[1/𝑝]), 𝜇⊗𝑖

𝑝 ). We have a symbol map (𝑅[1/𝑝]×)⊗𝑖 → 𝐻𝑖 (Spec(𝑅[1/𝑝]), 𝜇⊗𝑖
𝑝 ).

Let 𝐹 ⊂ 𝐻𝑖 (Spec(𝑅[1/𝑝]), 𝜇⊗𝑖
𝑝 ) be the subgroup generated by the images of (𝑅×)⊗𝑖 and (1 + 𝜋𝑅)× ⊗

(𝑅[1/𝑝]×)⊗𝑖−1 under the symbol map, cf. [Sat07, §3.4]. As in [Sat07, Def. 4.2.4], the image of the
injective map H𝑖 (ℑ1(𝑖)𝑋 )𝑥 → 𝐻𝑖 (Spec(𝑅[1/𝑝]), 𝜇⊗𝑖

𝑝 ) is exactly the subgroup F.
Our observation is that the image of (1 + 𝜋𝑅)× ⊗ (𝑅[1/𝑝]×)⊗𝑖−1 under the symbol map is actually

contained in the image of (𝑅×)⊗𝑖 . Since R is a UFD (as a regular local ring), we have 𝑅[1/𝑝]× = 𝜋Z⊕𝑅×.
Consider a symbol (1+𝜋𝑎) ⊗𝑏1⊗· · ·⊗𝑏𝑖−1 for 𝑏1, . . . , 𝑏𝑖−1 ∈ 𝑅[1/𝑝]×. Using the unique factorization,
as well as the fact that 𝜋 ⊗ (−𝜋) maps to zero in 𝐻2 (Spec(𝑅[1/𝑝]), 𝜇⊗2

𝑝 ), we reduce to the case 𝑖 = 2.
Therefore, it suffices to show that, for 𝑎 ∈ 𝑅, the image of (1 + 𝜋𝑎) ⊗ 𝜋 in 𝐻2(Spec(𝑅[1/𝑝]), 𝜇⊗2

𝑝 )

belongs to the image of 𝑅× ⊗ 𝑅×. By bilinearity, we may assume that 𝑎 ∈ 𝑅 is a unit (e.g., if a is
not a unit, we write (1 + 𝜋𝑎) = 1+𝜋𝑎

1+𝜋 (𝑎+1) (1 + 𝜋(𝑎 + 1))). In this case, (1 + 𝜋𝑎) ⊗ (−𝜋𝑎) maps to
zero (cf. [Tat76, Th. 3.1]). Using bilinearity again, it follows that (1 + 𝜋𝑎) ⊗ 𝜋 maps to an element of
𝐻2 (Spec(𝑅[1/𝑝], 𝜇⊗2

𝑝 ) in the image of 𝑅× ⊗ 𝑅×.
Consequently, it follows that the ring

⊕
𝑖≥0 H

𝑖 (ℑ1 (𝑖)𝑋 )𝑥 is generated by symbols, whence we
conclude. �

Example 5.9. Let K be a discretely valued field of mixed characteristic, and let O𝐾 ⊂ 𝐾 be the ring
of integers; let k be the residue field. Let X be a smooth scheme over O𝐾 with special fiber k. Then
the above results (together with the description of p-adic nearby cycles in [BK86], cf. Proposition 5.6)
show that we have a natural cofiber sequence in D(𝑋et,Z/𝑝

𝑛),

Z/𝑝𝑛 (𝑖)𝑋 → 𝜏≤𝑖𝑅 𝑗∗(𝜇
⊗𝑖
𝑝𝑛 ) → 𝑊𝑛Ω

𝑖−1
𝑋𝑘 ,log [−𝑖], (30)

where the second map is the residue map from [BK86].
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Such results have appeared in the literature before, but usually only in low weights or with some
denominators, using the approach to syntomic cohomology of [FM87, Kat87], cf. [AMMN22, Sec. 6]
for a comparison. In particular, [Kur87] constructs the above cofiber sequence in low weights. The
comparison for semistable schemes and more generally with a log structure after allowing denominators
(in all weights) is [CN17]. Integral comparisons for algebras over O𝐶 appear in the smooth case in
[BMS19, Th. 10.1] and in the semistable case (allowing log structures) in [CDN21]; up to isogeny or in
low weights, this was previously treated in [Kat87, Tsu99].
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