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Prismatic F'-crystals and crystalline Galois
representations

BHARGAV BHATT AND PETER SCHOLZE

Let K be a complete discretely valued field of mixed characteristic
(0,p) with perfect residue field. We prove that the category of
prismatic F-crystals on Ok is equivalent to the category of lattices
in crystalline G g-representations.

1. Introduction

Let K be a complete discretely valued field of mixed characteristic (0, p) with
ring of integers Of, perfect residue field k, completed algebraic closure C,
and absolute Galois group G .

1.1. The main theorem

A fundamental discovery of Fontaine [18] in the study of finite dimensional
Q,-representations of Gk is the property of being crystalline; this notion
is an (extremely successful) attempt at capturing the property of “having
good reduction” for such representations, analogous to the property of “be-
ing unramified” in the ¢-adic case'. For instance, to each crystalline G-
representation V', Fontaine has attached an F-isocrystal Deys(V') over k of
the same rank as V, thus providing a notion of “special fibre” for such repre-
sentations, thereby solving Grothendieck’s problem of the mysterious func-
tor. The motivating example here comes from? algebraic geometry: given a

"While the literal definition of unramifiedness certainly makes sense for p-adic
representations of G, it does not capture the desired phenomena, e.g., the p-adic
cyclotomic character and its nonzero powers are all infinitely ramified, whence,
for X/K smooth projective and i > 0, any nonzero H'(X¢,Q,) is also infinitely
ramified.

2The assertions in this example were conjectured by Fontaine in [18] as the
“crystalline comparison conjecture”, and were proven by Tsuji [35]. In fact, his work
built on the work of several other people, and many different proofs of the crystalline
comparison conjecture have been given since then as well; we refer to [8, §1.1] for
more on the history of this conjecture.
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proper smooth algebraic variety X/K with good reduction determined by
a proper smooth scheme X /O extending X/K, each Gg-representation
H{(Xc,Qp) is crystalline and Deys(H (Xc, Qp)) ~ ngyS(Xk)Qp. More-
over, for abelian varieties, one has a converse, giving a p-adic Neron-Ogg-
Shafarevich criterion |13, 32].

In a different direction, to any p-adic formal scheme Y, we functorially
attached in [11] a ringed site (Y),O)) called the (absolute) prismatic site
of Y (Definition 2.3); the sheaf O) comes equipped with a Frobenius lift
¢ as well as an invertible ideal sheaf Z) C O). The original motivation
for the construction of the prismatic site was the resulting prismatic coho-
mology RI'(Y),0)) O ¢, which yields a mechanism to interpolate between
different p-adic cohomology theories attached to Y (such as the p-adic étale
cohomology of the generic fibre or the crystalline cohomology of the special
fibre). Turning attention now towards coefficients, one can study the follow-
ing category of modules (whose definition is inspired by the structures seen
on relative prismatic cohomology via the basic theorems of [11], themselves
inspired by the previous works [8, 9]):

Definition 1.1 (Prismatic F-crystals, Definition 4.1). A prismatic F-crystal
(of vector bundles) on Y consists of a pair (€, pg), where & is a vector
bundle on the ringed site (Y, O)) and @¢ is an isomorphism (¢*&)[1/Z)] ~
E[1/Z)]. We write Vect?(Y),O)) for the category of such F-crystals.

Any prismatic F-crystal (£,pg) has an étale realization T'(€,¢g) €
Locz, (Y;) as a Zp-local system on the generic fibre Y, C Y (Construc-
tion 4.8), as well as a crystalline realization as an F-crystal Derys(E, @g) on
the special fibre Y,—g C Y (Construction 4.12); both realizations have the
same rank as €. The picture here is that the presence of a prismatic F-crystal
on Y lifting a given Z,-local system on Y, can be regarded as a candidate
definition of (and in fact a witness for) “a good reduction” of the local system
on Y;. The key example again comes from geometry (Example 4.6).

Specializing now to Y = Spf(Og), we obtain two candidate notions
of “good reduction” for a local system on Y}, (or equivalently for p-adic G-
representations): one via Fontaine’s theory of crystalline G g-representations,
and the other via the notion of prismatic F-crystals on Spf(Og). The main
theorem of this paper is that these perspectives are equivalent:

Theorem 1.2 (Theorem 5.6). The étale realization functor gives an equiv-
alence

(1) To, : Vect?(Spt(Ok)p, Op) ~ Repz " (G ),
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where the target denotes the category of finite free Zy-modules T equipped with
a continuous G -action such that T[1/p] is a crystalline representation.

There were multiple motivations for pursuing Theorem 1.2. First, the
data of a prismatic F-crystal on Spf(Ok) is a rather elaborate piece of
structure, so Theorem 1.2 can be regarded as an elucidation of some new
properties of crystalline G g-representations. Secondly, the property of being
crystalline for a G i-representation is essentially a rational concept that car-
ries little meaning, e.g., for Z/p"-representations. On the other hand, there
is a perfectly sensible notion of a prismatic F-crystal over Spf(Ok) with
O\ /p"-coefficients; accordingly, we expect Theorem 1.2 to be the first step?
towards a well-behaved theory of torsion crystalline G i-representations.

We prove Theorem 5.6 by quasi-syntomic descent along the map ¥ =
Spf(Oc) — X = Spf(Ok). The essential ingredient (which is the subject of
§6) is the construction of a prismatic F-crystal 9¥(L) over X lifting a given
crystalline Z,-representation L under the functor Tp, . This construction in-
volves two steps. First, we construct M := 9M(L)|y by mimicking arguments
from [26], thus relying crucially on Kedlaya’s slope filtrations theorem [22]
through an observation of Berger [6]. Having constructed I, we construct a
descent isomorphism pi ~ p5M over Y x Y satisfying the cocycle condi-
tion; this descent isomorphism is the primary new structure on crystalline
representations constructed here. Its construction is complicated by the very
inexplicit nature of the ring AOC@oKOC over which the descent isomorphism

occurs. An essential input here is the Beilinson fibre sequence [3]. The ver-
sion of the Beilinson fibre sequence that we use states that for a torsionfree
p-complete ring R, there is a fibre sequence of spectra

TC(R)A[E] = TC(R/p))[L] — HO(R))[L)].

If, for example, R = Oc,, then all three spectra that occur are concentrated
in even degrees; via the comparisons between topological cyclic homology

3 Actually, the notion of prismatic F-crystals over O, while adequate for the
equivalence of Theorem 1.2, is not quite the correct notion in more general settings,
e.g., with Z/p"-coefficients or in the derived category. A basic problem is that a
prismatic F-crystal (€, ¢¢) does not come equipped with bounds on the zeroes/poles
of the isomorphism ¢*£[1/Z)] ~ £[1/Z)] along the locus Z) = 0. Instead, we expect
that the correct objects to consider are perfect (or pseudocoherent) complexes over
Drinfeld’s stack 3" (or, rather, its variant over Og) from [15]. Those complexes,
whose definition draws inspiration from the Fontaine-Jannsen theory of F-gauges
[19], can be roughly regarded as prismatic F-crystals in perfect complexes where
one has bounded the zeroes/poles of the Frobenius by also keeping track of the
Nygaard filtration.
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and p-adic Hodge theory, applying s, then gives a short exact sequence

0= Qy(n) = (BL,)?™"" — Big/Fil" =0,
i.e. the usual fundamental exact sequence of p-adic Hodge theory. Our use of
the Beilinson fibre sequence will be for quasiregular semiperfectoid rings R,
where again the terms can be made explicit in terms of prismatic cohomology.

1.2. Relation to theory of Breuil-Kisin modules

Theorem 1.2 has some antecedents in the literature, most notably in the work
of Kisin [26]. To explain the connection to Kisin’s results, fix a uniformizer
T € Ok, giving rise to a W (k)-algebra surjection & := W (k)[u] 2 Ok with
kernel I = (E(u)) generated by an Eisenstein polynomial E(u); endow &
with the unique Frobenius lift ¢ : & — & determined by ¢(u) = uP. Then
Kisin proved the following:

Theorem 1.3 (Kisin’s [26, Theorem 0.1], Theorem 7.9). There is a fully
faithful embedding

Ds : RepCZrZS(GK) — Vect?(6)

where the target is the category of F-crystals over (S,1), defined as in Def-
ination 1.1 after replacing (Op,,Z)) with (&,¢,1I) and denoted Modg in

/26].

The connection between Theorem 1.3 and Theorem 1.2 is the following:
the pair (&, ), which is an example of a Breuil-Kisin prism, gives an object
of Spf(Ok )y that covers the final object (Example 2.6). Thus, there is a
natural faithful “evaluation” functor

Vect? (Spf(Ox ) p, Op) —=25 Vect#(&).

The functor Dg in Theorem 1.3 is then obtained by composing the inverse
of the equivalence To, in Theorem 1.2 with the evaluation functor ev(g r
above?. Realizing the functor Dg via the equivalence Tp, in this fashion

4In fact, our methods allow us to prove full faithfulness assertion in Theorem 1.3
as well. But this not a completely new proof of the latter as we use some of the same
ideas as [26]. In particular, like [26], we rely on Berger’s observation [6] translating
weak admissibility of filtered ¢-modules to a boundedness condition for an auxiliary
module over an extended Robba ring; unlike [26], we apply this observation directly
over Ajpnr.
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has some concrete consequences. For instance, the target of the functor Dg
depends on the choice of the uniformizer m, while the equivalence T, is
completely canonical; factoring the former over the latter then immediately
yields a certain “independence of the uniformizer” result for the latter that
was shown by Liu [29] (see Remark 7.12). More conceptually, lifting an object
of Vect?(&) to a prismatic F-crystal over Ok has an intrinsic meaning in the
prismatic theory: as (&, 1) covers the final object of Spf(Ox )y, such a lift
determines and is determined by descent data over the self-coproduct &) of
(6, 1) with itself in Spf(Ox),. This interpretation of the essential image of
Dg can be roughly regarded as an integral avatar of Kisin’s result describing
the essential image of D [1/p] in terms of the existence of certain logarithmic
connections on the open unit disc; see §7.3 for more on the relation between
the two notions.

Kisin used Theorem 1.3 to establish the following conjecture of Breuil
[12] on Galois representations.

Theorem 1.4 (Kisin’s |26, Theorem 0.2, Theorem 7.10). Let Ko /K be the
extension of K obtained by adjoining a compatible system of p-power roots
of the uniformizer m inside C. The restriction functor

Repg'”(Gk) — Repq, (Gk..)

18 fully faithful.

We give an alternative proof of this result in this paper. Granting what
was already explained above, the essential remaining point is to show that
the base change functor

Vect? (6) —>_®6 S/,

Vect?(S[1/u]}))
is fully faithful, where the target is the category of finite free 6[1/u]£—
modules M equipped with an isomorphism ¢*M ~ M (where we note that
E(u) is invertible in &[1/u]}). We give a direct argument (Theorem 7.2)
for this full faithfulness by comparing & to Fontaine’s period ring Aj,s; the
main new idea is to observe and exploit a certain orthogonality property of
the Kummer tower K /K with the cyclotomic extension K (pp~)/K that
manifests itself via the behaviour of certain elements of Aj,¢ coming from
each of these towers (Lemmas 7.6 and 7.7).

We expect that Theorem 1.2 should extend to the semistable case, pro-
vided one replaces the prismatic site with the log prismatic site of Koshikawa
[27], and moreover that the resulting theorem ought to be related to [28] in
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the same way Theorem 1.2 was related to [26]. However, we do not pursue
this direction here”.
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2. The absolute prismatic site and the quasi-syntomic site

In this section, we introduce the absolute prismatic site (Definition 2.3), and
explain how to describe vector bundles (with respect to various sheaves of
rings) on this site explicitly in terms of modules over prisms (Proposition 2.7).
For future use, it will also be important to have a description of these bundles
in terms of the quasi-syntomic site (Definition 2.9), so we record such a
description in Proposition 2.14.

Notation 2.1 (Vector bundles and perfect complexes on a ringed topos).
Say (X, 0) is a ringed topos.

A wector bundle on (X,0) is an O-module E such that there exists a
cover {U;} of X and finite projective O(U;)-modules P; such that E|y, ~
P; @0, Ov,. Write Vect(X', O) for the category of all vector bundles. Note

5Since the appearance of the first version of this paper, this goal was realized in
[16], which also gives a new proof of Theorem 1.2.
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that Vect(X, O) can also be defined as the global sections over X of the
sheafification of the presheaf of categories on X given by U — Vect(O(U)).
A perfect complez on (X,0) is an object E € D(X,O) such that there
exists a cover {U;} of X and perfect complexes P; € D(O(U;)) such that
Ely, = P;®@ow,) Ov,- Write Dpert (X, O) C D(X, O) for the full subcategory
of perfect complexes. If X admits a basis of O-acyclic objects (i.e., objects V'
with RI'(V,0) ~ O(V)), then Dpe,¢(X, O) can also be defined as the global
sections over X of the sheafification of the presheaf of co-categories on X
given by U — Dy (O(U)); this will be the case in all our applications.

To understand vector bundles with respect to certain “Banach-style”
sheaves on the prismatic site, it will be quite convenient to use the follow-
ing general descent theorem, generalizing known descent results for coherent
sheaves in rigid geometry.

Theorem 2.2 (Drinfeld-Mathew, [30, Theorem 5.8]). Let R be a connec-
tive Eoo-ring, and let I C mo(R) be a finitely generated ideal. Consider the
following functors defined on the co-category of connective Eo-R-algebras:

1. S+ Dpers(Spec(S7) — V(IS)).
2. S D2, (Spec(Sh) — V(IS)).

coh

3. S+ Vect(Spec(S7) — V(19)).
Each of these functors is a sheaf for the I-completely flat topology.

We remark that the same result also applies to Dper(S7), D, (S7) and
Vect(S7), i.e. without inverting I. In that case, the result is easy, as all co-
categories are equivalent to the limit of the corresponding oco-categories for
quotients of S on which I is nilpotent (where one can apply usual faithfully
flat descent); see [1, Appendix A] for the proof in case of vector bundles.

The main object of study in this article is the following site, introduced
in [11, Remark 4.7].

Definition 2.3 (The absolute prismatic site). Given a p-adic formal scheme
X, we write X, for the opposite of the category of bounded prisms (A, 1)
equipped with a map Spf(A4/I) — X; we endow X, with the topology
induced by the flat topology on prisms and refer to it as the absolute prismatic
site of X. Write O for the structure sheaf, and Z) C O) for the ideal sheaf
of the Hodge-Tate divisor.

Remark 2.4. The topos Shv(X) ) is replete in the sense of [10]: this follows
as an inductive limit of faithfully flat maps of prisms is a faithfully flat map
of prisms. In particular, derived inverse limits behave well, so one has O) ~
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Rlim Oy /(p",Z}) since we have A ~ Rlim A/(p", I") for any bounded prism
(A, I); similar assertions hold true for the variants O, [1/ p]%A or Op[1/Z)]7).

Example 2.5 (The prism of a qrsp ring). If X = Spf(R) for R quasiregular
semiperfectoid as in [9, Definition 4.20], then X ) has final object given by
the prism Ag of R by [11, Proposition 7.10].

Example 2.6 (The Breuil-Kisin and Ajn¢-prisms over Ok ). Let K/Q, be
a discretely valued extension with perfect residue field k. We shall construct
two examples of objects in Spf(Ox ) p; both examples give covers of the final
object of the topos.

1. (Breuil-Kisin prisms) Choose a uniformizer m# € O. Writing W =
W (k) and & = W]u], we obtain a surjection & — Ok with kernel
generated by an Eisenstein polynomial F(u). Endowing & with the
d-structure determined by the Witt vector Frobenius on W (k) and
©(u) = uP, the pair (A, I) = (&, (£(u)) gives an object of Spf(Ox ).
Moreover, we claim that (A,I) covers the final object of
Shv(Spf(Ox)p); one can deduce this by mapping (A, 1) to the Ajy¢-
prism and deducing the claim from the analogous property for the Aj,¢-
prism (see part (2) of this example), but we give a direct argument.
Fix an object (B,J) € Spf(Ok)) with structure map Ox — B/J.
We shall construct a faithfully flat map (B,J) — (C, JC) of prisms
such that there exists a map (A4,I) — (C,JC) in Spf(Of),; this will
prove the claim. By standard deformation theory, there is a unique W-
algebra structure on all objects in sight. Pick v € B lifting the image
of m € Ok under the structure map Ox — B/J; note that 7 generates
Ok as a W-algebra. We then define C' as a suitable prismatic envelope:

U— VA U=V,

C = (Aew B{=—1},) = Bl{=——1{.)

By [11, Proposition 3.13|, this gives a (p, J)-completely flat J-B-alge-
bra, so (C,JC) is a flat cover (B,J); we shall check that this does
the job. Since u = v mod JC, we also have E(u) = E(v) mod JC,
whence E(u) € JC since E(v) € JB as E(m) = 0 in Og. By the
irreducibility lemma (|11, Lemma 2.24]) for distinguished elements, it
follows that E(u)C = JC. Thus, the natural map A — C extends
to a map of prisms (A4,I) — (C,JC). Moreover, the two resulting
compositions O ~ A/I — C/JC and O — B/J — C/JC are the
same (they carry the generator m € Ok to the same element u = v €
C/JC), so the map (A,I) — (C,JC) is indeed a map in Spf(Ox)p,
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proving the desired covering property. In fact, one can check that the
object (C, JC') thus constructed is the coproduct of (A, ) and (B, J)
in the category Spf(Ok)y.

2. (The Ajns-prism) Fix a completed algebraic closure C'/K. Then O¢ is
perfectoid, so Ao, determines an object of Spf(Ok)) via restriction
of scalars along O — O¢. Using the fact that O — O¢ is a quasi-
syntomic cover as well as the lifting result in [11, Proposition 7.11], it
follows that Ao, covers the final object of the topos Shv(Spf(Ok),)-
Note that this construction will be used (and in fact generalized and
elucidated) in the proof of Proposition 2.14.

Both the above examples will feature prominently in the rest of the paper.

Proposition 2.7 (Describing vector bundles and perfect complexes on X,
explicitly). Let X be a p-adic formal scheme. There is a natural equivalence

2 li t(A) ~ t(X .
(2) (AJl)rélXAVec( ) >~ Vect(Xp,0p)

A similar assertion holds true with Dpe(—) replacing Vect(—). Moreover,
analogous statements hold true if O is replaced by (9A[1/p]%A or Op[/T)]7.

Proof. The object on the right in (2) can regarded as the global sections of
the stackification of the assignment (A, I) — Vect(A) on (A4,1) € X ). Thus,
we must show this assignment is already a sheaf for the flat topology. This
follows by (p, I)-completely faithfully flat descent for vector bundles, see the
lines following Theorem 2.2. The same argument also applies to Dpers(—)
replacing Vect(—).

Next, let us explain the descent claim for (’)A[l/p]%A; the claim for
Op[1/Zp]y is analogous. For the functor Dpe(—), we may argue by de-
vissage modulo powers of 7, so it suffices to show

Dyt (A/111/8) = Dyers(Xp, O /Ty [1/8)

Arguing as in the previous paragraph, the claim follows from Theorem 2.2
(1). The statement for vector bundles is then deduced by observing that
given a commutative ring R that is derived J-complete with respect to a
finitely generated ideal J, an object E € Dperf(R) lies in Vect(R) if and only
if E®k R/J € Dyere(R/J) lies in Vect(R/J). O

Example 2.8 (Describing vector bundles on Spf(Og), via Breuil-Kisin
prisms). Keep notation as in Example 2.6. Then we have a descent equiva-
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lence

Vect(Spf(Og ) p, Op) =~ lim Vect(A®)
~ lim (Vect(A%) == Vect(A') == Vect(A?))

where (A®, I*) is the cosimplicial object of Spf(Of) ) obtained by taking the
Cech nerve of (A, I) over the initial object. As AY = A, this equivalence shows
that lifting a finite projective A-module M to a crystal of vector bundles on
Spf(Ok ) entails specifying a descent isomorphism piM ~ p5M over Al
satisfying the cocycle condition over A?; see also Construction 7.13 for an
explicit description of A (denoted &) there).

We next relate the prismatic site to the quasi-syntomic one, see also [1].

Definition 2.9 (The quasi-syntomic site). For a quasi-syntomic p-adic for-
mal scheme X, write X, for the opposite of the category of quasi-syntomic
maps 7 : Spf(R) — X, endowed with the quasi-syntomic topology (see |9,
Definition 4.1, Variant 4.35]); we call this the quasi-syntomic site of X. Write
Xgrsp C Xgsyn for the full subcategory spanned by 7 : Spf(R) — X with R
semiperfect modulo p and admitting a map from a perfectoid ring (or equiv-
alently with R qrsp, see [9, Definition 4.20, Variant 4.35]). By [9, Proposition
4.31, Variant 4.35], restricting sheaves induces an equivalence

Shv(Xgsyn) ~ Shv(Xgrep),

which we can use to define sheaves on Xgsy,. In particular, the assignment
carrying (1 : Spf(R) — X)) € Xgrsp to Ag gives a sheaf A, of rings on Xggyn;
write I C A, for the ideal sheaf of the Hodge-Tate divisor.

Remark 2.10. The topos Shv(Xysyn) is replete: this follows as an induc-
tive limit of quasi-syntomic covers is a quasi-syntomic cover. Thus, one has
analogs of the assertions in Remark 2.4 with the triple (X, Op,Z) ) replaced
by (Xgsyns Le, I).

Remark 2.11. If X is a quasi-syntomic p-adic formal scheme and R €
Xgsyn, then R is itself a quasi-syntomic ring. In particular, if R is qrsp, then
AR is a bounded prism.

Example 2.12. If X = Spf(R) for R quasiregular semiperfectoid, then
Xgrsp has a final object given by R itself.

Proposition 2.13 (Describing vector bundles and perfect complexes on
Xgsyn explicitly). Let X be a quasi-syntomic p-adic formal scheme. Then
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there is a natural equivalence

lim  Vect(Ag) =~ Vect(Xysyn, De).

qursp

A similar assertion holds true with Dpe(—) replacing Vect(—). Moreover,
analogous statements hold true if Ao is replaced with Ae[1/p]7 or Ae[1/I]7).

Proof. As Xgsyn and Xy, give the same topos, we may replace Xgg,, with
Xgrsp in all assertions. In this case, the claim follows by similar arguments
to the ones in Proposition 2.7. O

Proposition 2.14 (Relating X, and Xysy,). Let X be a quasi-syntomic
p-adic formal scheme. Then there is a natural equivalence

(3) Vect(X ), 0p) ~ Vect (X gsyn, Do)

A similar assertion holds true with Dpe(—) replacing Vect(—). Moreover,
analogous statements hold true if O is replaced by (’)A[l/p]%/A or Op[1/Tply,

and b is correspondingly replaced with Ae[1/p]7 or A.[l/]]g.

Proof. We give the argument for (3); the rest of the statements follow sim-
ilarly. Using |9, Proposition 4.31, Variant 4.35], it suffices to prove the as-
sertions with Xy, replaced by Xg,s,. By Zariski descent for both sides, we
may assume X = Spf(R) is affine. In the rest of the proof, we use affine
notation, so Rgrsp is a category of R-algebras (rather than its opposite), etc.

There is a natural functor A(—) : Rysp — R) determined by S — Ag.
Using the initiality of Ag € S) for qrsp S, this functor satisfies the following
universal property: for any (A4,I) € Ry, we have

Homp_a14(S, A/T) ~ HomRA(AS, (A, ).

In particular, the functor A(—) commutes with finite non-empty coproducts.
Moreover, it follows from [11, Proposition 7.11| that if S € Ry, is a cover
of R (i.e., p-completely faithfully flat over R), then Ag € R) determines a
cover of the final object of Shv(X)).

We can now prove the proposition. Choose a quasi-syntomic cover R — .S
with S qrsp. Write S*® for the Cech nerve of R — S, so we have

Vect(Rgsyn, AS) ~ lim Vect(Ag.)

by Cech theory in Rgysyn. Moreover, the observations in the preceding para-
graph and Cech theory in Rj) then show that the right side is also
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Vect(R),Op), giving the equivalence in the theorem. To check this equiva-
lence is independent of the choice of S, one can either use that the category
of all R — S as above has finite non-empty coproducts and is thus sifted,
or one can note that the remarks in the previous paragraph show that A(—)
determines a map

v (Shv(X)),0p) — (Shv(Xgsyn), D)
of ringed topoi, with the desired equivalence being induced by v*. ]
3. Local systems on the generic fibre via the prismatic site

The goal of this section is to explain how Z,-local systems on the generic
fibre of a p-adic formal scheme X can be regarded as certain F-crystals
on X, (Corollary 3.8). In fact, this relationship, which ultimately comes
from Artin-Schreier theory, is quite robust and extends to an equivalence of
derived categories (Corollary 3.7).

Notation 3.1. For a bounded p-adic formal scheme X,% we write X, for
the generic fibre of X, regarded as a presheaf on perfectoid spaces over Q,
(that is in fact a locally spatial diamond, see [33, Section 15|). We shall

use Dl(ibgse(Xn, Z,) to denote the full subcategory of D(X,, proet, Zp) spanned
by locally bounded objects which are derived p-complete and whose mod

p reduction has cohomology sheaves that are locally constant with finitely
generated stalks. We will use that the association X +—» Dl(ib s) (X, Z,,) defines
a sheaf of co-categories for the quasisyntomic topology on X, as follows from
the v-descent results in [33| (and the observation that any quasisyntomic

cover of X induces a v-cover of X)).

For the following definition, recall that for a prism (A, I), even while I
is not @-stable, there is still a Frobenius on the p-adic completion A[1/1]} —
for this it suffices that ¢(I) = I? modulo p.

Definition 3.2 (Laurent F-crystals). Fix a bounded p-adic formal scheme
X. We define

Dypert(Xp, Op[L/Tp)0) =" = “ lli)rélXA Dyert (A[L/1]))9=.

SRecall that “bounded” means that it is locally of the form Spf(R) where R
is bounded in the sense that the p-primary torsion R[p>°] has bounded exponent;
cf. [11, Definition 3.2 (2)].
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Thanks to Proposition 2.7, this is the oo-category of pairs (F, pg), where E
is a crystal of perfect complexes on (Xp,Op[1/Z)])) and pp : ¢*E ~ E is
an isomorphism. Similarly, we set

Vect(XA, Oﬁ[l/IA];\)Qp:l = (A lIi)IgXA VeCt(A[l/I];)\)LPZI

to be the category of crystals of vector bundles E on (X, Op[1/Zpl))
equipped with isomorphisms ¢ : p*FE ~ E. We shall informally refer to
these objects as Laurent F-crystals on X); the name F-crystal will be re-
served for a more restrictive notion.

Remark 3.3. If X is a scheme of characteristic p, then any prism (A,I) €
X, must have I = (p), whence A[1/I]} = 0. Thus, Oy[1/Z)]} = 0 and
Dpert(Xp, Oﬂ[l/IA]Q)‘pzl =0 as well.

To study Laurent F-crystals, we use what is often called Artin—Schreier—
Witt theory, in the following form.

Proposition 3.4 (The Riemann-Hilbert correspondence for F-local sys-
tems in characteristic p). Let S be a commutative F,-algebra. Then exten-
sion of scalars along Fp — Ogpec(s),et and taking Frobenius fived points give
mutually inverse equivalences

DZ'SS@(SPGC(S), Fp) = Dperf(S)WZI-

This proposition is well-known, but we do not know a reference written
in the above generality. The special case for vector bundles was proven by
Katz |21, Proposition 4.1.1] (for some reason, he makes the assumption that
the ring is normal, but that is never used).

Proof. For full faithfulness, by finite étale descent for both sides, we reduce to
the checking the statement for endomorphisms of the constant sheaf, which
follows from the Artin-Schreier sequence. To show essential surjectivity, fix
(E,a) € Dpet(S)971, ie., E € Dpes(S) is a perfect S-complex and « :
¢*E ~ E is an isomorphism. We must show that (F,«) lies in the essential
image of the extension of scalars functor considered in the proposition.

We claim that each H!(E) is a vector bundle. By descending induc-
tion, it suffices to show the claim for the highest non-zero cohomology group
H™(E), which is finitely presented as FE is a perfect complex. Now the claim
is |25, Proposition 3.2.13], but for the reader’s convenience we include an
argument. By noetherian approximation, we may assume S is noetherian.
As the property of being a vector bundle can be detected locally, we may
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assume S is a local noetherian ring. The map « induces an isomorphism
©*H"(E) ~ H"(E). But then any Fitting ideal J C S of H"(E) satisfies
J = ¢(J)S, which forces J € {0,S} by Krull’s intersection theorem. It
follows that H™(F) is a vector bundle, as asserted.

As each H'(E) is a vector bundle and we have already shown full faith-
fulness, it suffices to prove the essential surjectivity claim in the proposition
for each cohomology group separately, so we may assume F is itself a vector
bundle, in which case the result follows from (the proof of) [21, Proposition
4.1.1], see also |25, Proposition 3.2.7|. O

Example 3.5 (Laurent F-crystals over a qrsp). Let X = Spf(R) with R a
qrsp ring. Then X has an initial object determined by the prism (Ag,I) of
R. Consequently, we learn that

Dyert (X, Op[1/Zp)0)9™" = Dyt (Ar[1/1])) 7"

If we further assume that R is perfectoid, then we can identify Ag[1/1 ]1/0\ ~

W (R°[1/1]). The Riemann-Hilbert correspondence in Proposition 3.4 as well
as the tilting equivalence imply that the co-category above identifies with
the derived co-category D? (X, Zyp) of lisse Zj,-sheaves on the generic fibre

lisse
X,, = Spa(R[1/p), R).

Proposition 3.6 (Invariance of unit F-crystals under completed perfec-
tions). Let R be a ring of characteristic p containing an element t such that
R is derived t-complete. Let S = (Rpert)y denote the t-completed perfection
of R. The base change functors

Dperf(R[l/tDw:l = Dperf(Rperf[l/t])(p:l g Dperf(s[l/t])w:1

are equivalences.

Proof. The functor a is an equivalence by Proposition 3.4 and the topolog-
ical invariance of the étale site. The full faithfulness of b o a (and thus b)
follows from [11, Lemma 9.2] as perfect complexes over R are automatically
derived t-complete. Using Proposition 3.4 for S and the full faithfulness of
bo a, it suffices to check that every lisse F,-sheaf on Spec(S[1/t]) is pulled
back from Spec(R[1/t]). But this follows form the Elkik(-Gabber-Ramero)
approximation [20, Proposition 5.4.54|, which ensures that the R[1/t] and
S[1/t] have isomorphic fundamental groups. O

Corollary 3.7 (Z,-local systems as Laurent F-crystals). Let X be a bounded
p-adic formal scheme over Zj, with generic fibre X,,. Then extension of scalars
gives an equivalence
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Dypext (X Op[L/Zp) ™" 2 Dypert (X, Op et [1/Zplp) e
Moreover, the target identifies with the locally constant derived category

PO

lisse

(X, Zp)

of the generic fibre X,,.

Proof. For the first part, by the definition of both sides as limits, it suffices
to show the following: for any bounded prism (A, I) with perfection (B, J),
the pullback

Dperf(A[l/I];;\)(p:1 — Dperf(B[l/J];;\)¢:1
is an equivalence. By devissage, it is enough to show the same mod p, where
it follows from Proposition 3.6. The identification with D" (Xy,Z,) then

lisse
follows from Example 3.5 and descent. O

Corollary 3.8 (Q,-local systems as Laurent F-crystals up to isogeny). Let
X be a bounded p-adic formal scheme with generic fibre X,,. Then there is a
natural equivalence

Vect(X ), (’)A[l/IA]Q)‘pzl ~ Locz, (X))
Inverting p gives a natural equivalence
Vect(X ), OA[I/IA]Q)SDZI ®z, Qp ~ Locz, (X)) ®z, Qp.
Proof. The second part follows from the first one by inverting p. The first

part follows by the same argument used in Corollary 3.7. O

Remark 3.9. In the second equivalence of Corollary 3.7, both sides admit
natural enlargements:

1. We have a fully faithful embedding
Vect(Xp, Op[L/IpI0) =" @z, Qp C Vect(X )y, Op[1/Zp]0[1/p)) 7"

If X is an F)-scheme, this embedding is an equivalence as both cate-
gories are trivial. In the mixed characteristic case, however, this em-
bedding is essentially never an equivalence. Indeed, consider X =
Spf(O¢) for C/Q, a complete and algebraically closed extension. In
this case, X has an initial object (A = Aj,;(Oc¢),I) given by the
perfect prism corresponding to O¢. By Corollary 3.7, the category
of Laurent F'-crystals is trivial: taking @-fixed points identifies the
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category Vect(X ), Op[1/Z,]7)#=" with Vect(Z,). Consequently, the
category Vect(Xp, Op[1/Zp]0)?=" ®z, Qp identifies with Vect(Q,).
On the other hand, the category Vect(X ), Op[1/Z)]0[1/p])?=" iden-
tifies with the category Vect(W (C”)[1/p])?=! of F-isocrystals on C”;
the latter is described by the Dieudonné-Manin classification, and is
much larger than Vect(Q,). In fact, the essential image of the latter
inside Vect(W(C”)[1/p])?=" is exactly the full subcategory of “étale”
F-isocrystals, i.e., those F-isocrystals where all the Frobenius eigen-
values have slope 0.

2. We have a fully faithful embedding
LOCZP (Xn) Xz, Qp C LOCQP (Xn)

into the category of (pro-étale) Qp-local systems on the generic fibre
X, If X = Spf(Of) for a complete extension K/Q,, then this embed-
ding is an equivalence as an étale cover of Spa(K, O ) admits sections
over a finite étale cover of K. In general, however, this embedding is
not essentially surjective. For instance, if X is the p-completion of Plzp,
then de Jong has constructed [14, §7| a Qp-local system L on X,, with
monodromy group SL(Qp); no such L can arise by inverting p in a
Z,-local system.

We do not know a natural generalization of Corollary 3.8 that accommodates
the preceding enlargements.

Remark 3.10. For X = Spf(Ok) with K/Q,, a discretely valued extension
with perfect residue field, Corollary 3.8 was proven independently by Zhiyou
Wu [36]. This proof was extended to the case of smooth formal schemes over

Ok by [31].

Remark 3.11 (Local systems on the special fibre). A simpler version of
the reasoning used to establish Corollary 3.7 shows that there is a natural
equivalence

Dperf(XA7 OA)¢:1 = D;)isse(XP:()’ Zp)?
where the scheme X, := X Xg,(z,) Spec(Fp).

4. Prismatic F-crystals

Given a p-adic formal scheme X, following Proposition 2.7, we have the
notion of a vector bundle on (X,,0)):

t(X = i t(A).
Vect(Xp, Op) (AJI)ISXAVGC( )
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In this section, we introduce the notion of a prismatic F-crystal (Defini-
tion 4.1), which is a vector bundle as above equipped with Frobenius struc-
ture that is reminiscent of the notion of a shtuka. We then give some ex-
amples, and construct certain “realization” functors (Constructions 4.8 and
4.12), extracting concrete invariants from the somewhat elaborate structure
of a prismatic F-crystal.

Definition 4.1 (Prismatic F-crystals of vector bundles). For any p-adic
formal scheme X, let Vect?(X),0)) denote the category of prismatic F'-
crystals (of wector bundles) on Xj, i.e., vector bundles £ on (X,,0))
equipped with an identification @g : @*E€[1/Z)] ~ E[1/I)]. If pe carries
©*E into &, then we say that (&, pg) is effective. Taking tensor products
yields a (rigid) symmetric monoidal structure on Vect?(X,,Op).

More generally, we make a similar definition for Vect?(X ), 0’) where O’
is a sheaf of O)-algebras equipped with a compatible Frobenius. Similarly,
if (A, ) is a prism, one has an evident category Vect?(A) of prismatic F-
crystals of vector bundles on A.

Remark 4.2 (Prismatic F-crystals of perfect complexes). For a p-adic for-
mal scheme X, there is an evident notion of a prismatic F-crystal of perfect
complexes on X : it is given by an object £ € Dperf(X ), O)p) equipped with
an identification pg : p*E€[1/I)] ~ E[1/T)]. Any prismatic F-crystal of vec-
tor bundles gives a prismatic F-crystal in perfect complexes; but the derived
notion also accommodates other examples, such as prismatic F-crystals of
vector bundles on (X, 0, /p") when X is p-torsionfree. While this notion
does not play a serious role in this paper, we shall use it to make some
remarks.

Example 4.3 (Breuil-Kisin modules). Let K/Q, be a discretely valued ex-
tension with perfect residue field k. Choose a uniformizer m € Og. As in
Example 2.6 (1), we obtain a Breuil-Kisin prism (4,1) = (6, (E(u))) €
Spf(Ok)p. An object of the category Vect¥(A) is traditionally called a
Breuil-Kisin module, and was studied in depth in [26]. There is an obvi-
ous realization functor from prismatic F-crystals over Ok towards Breuil-
Kisin modules. This functor as well as the relationship of either side with
crystalline Galois representations will be discussed further in §7.

Example 4.4 (Laurent F-crystals as prismatic F-crystals). The category
Vect? (X p, Op[1/Z)]5) coincides with the category Vect(Xp, Op[1/Z)]5)¢="
from Definition 3.2. Indeed, Z) is already inverted in the sheaf of rings
ONL/Zpl)-
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Example 4.5 (Breuil-Kisin twists). In this example, we explain the notion
of a Breuil-Kisin twist, which plays the role of the Tate twist in the world of
prismatic F-crystals. For more details including explicit constructions over
certain perfectoid rings, we refer to [8, Example 4.2, Example 4.24], [15, §4.9],
and |7, §2].

Take X = Spf(Z,), so X is the category of all bounded prisms. There is
a naturally defined prismatic F-crystal (O){1}, ), called the Breuil-Kisin
twist, on X whose underlying Op-module is invertible; by pullback, one
obtains a similar prismatic F-crystal over any bounded p-adic formal scheme.
Informally, the invertible O )-module is given by the following formula:

Oﬁ{l} = IA ® QD*IA ® (902)*IA R .. = ®(gpi)*IA.
i>0

More precisely, to make sense of the infinite tensor product, one observes
that for any bounded prism (A,I), one first checks’ that for n > r, the
invertible A-module (¢™)*I is canonically trivialized (by the generator p)
after base change along A — A/I,, where I, = Hg;ol ©'(I) C A; the in-
finite tensor product then makes sense in view of the natural equivalence
Pic(A) ~ lim, Pic(A/I,) of groupoids (which can be proven as in |7, Propo-
sition 2.2.12]). It follows that there is a natural isomorphism

P Op{1} =T, 10, {1},
which gives the F-crystal structure.

Example 4.6 (Gauss-Manin prismatic F-crystals). Let f : X — Y be a
proper smooth map of p-adic formal schemes. Then £x := Rf.O) is natu-
rally an effective prismatic F-crystal in perfect complexes on Y): the perfect
crystal property follows from the Hodge-Tate comparison [11, Theorem 1.8
(2)] and flat base change for coherent cohomology, while the effective F-
crystal structure comes from the isogeny theorem [11, Theorem 1.15 (4)].
One can then pass to cohomology and obtain prismatic F-crystals in vec-
tor bundles under favorable conditions. For instance, if Y = Spf(O) for
a complete extension K/Q, with residue field k£ and if the special fibre X},
has torsionfree crystalline cohomology, then each cohomology sheaf of £x
gives a prismatic F-crystal in vector bundles by |8, Theorem 14.5]. The F-
crystal from Example 4.5 then admits a simple geometric description: we
have Op{—1} ~ H?(Ep1) via the first Chern class map, see [7].

" Alternately, one can also show that (¢™)*I is canonically trivial modulo "
using Joyal’s operations; see the footnote appearing in the proof of Lemma 7.15.
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Example 4.7 (Prismatic F-crystals on schemes of characteristic p). Let X
be a quasi-syntomic Fp-scheme. Then it is known that the category of crystals
of vector bundles on X, and Xcys are naturally identified in a Frobenius
equivariant fashion: one reduces by descent to the case where X = Spf(R)
for R qrsp, where the claim follows from the crystalline comparison Ap ~
Acrys(R) for prismatic cohomology. Moreover, we have ) = pO) by the
irreducibility lemma on distinguished elements. Consequently, the notion of
a F-crystal on X) coincides with the classical notion of an F-crystal on
Xcrys-

Construction 4.8 (The étale realization). For any p-adic formal scheme X,
the p-completed base change gives a symmetric monoidal functor

T : Vect?(X),0)) — Vect(X), (’)A[l/IA]Z/,\)"”Zl ~ Locz, (X)),

where we use Corollary 3.7 for the last isomorphism. We refer to this functor
as the étale realization functor. For future reference, we remark that this
functor makes sense not only for prismatic F-crystals of vector bundles, but
in fact for prismatic F-crystals of perfect complexes provided we replace the
target with the derived category from Corollary 3.7.

Example 4.9 (Relating Breuil-Kisin and Tate twists). Using the g-loga-
rithm [2] and descent (or directly the prismatic logarithm [7]), one can show
that the étale realization carries the Breuil-Kisin twists from Example 4.5
to usual Tate twists, i.e., that T(Op{i}) = Z,(i) for any i and any bounded
p-adic formal scheme X. More generally, in the context of Example 4.6, the
Artin-Schreier sequence on X, et can be used to show that 7' commutes
with proper smooth pushforwards.

Example 4.10 (F-crystals over a qrsp ring). Let X = Spf(R) for R a qrsp
ring. Then X has an initial object determined by the prism (Ag,I) of R.
Consequently, we can identify the category of F-crystals explicitly:

Vect?(X)p,0)) = Vect?(AR) := {(E, ) | E € Vect(Ag),
o (F*E)[1/1) ~ E[1/1]}.

Combining this with the analogous equivalence for Laurent F-crystals in Ex-
ample 3.5 as well as Lemma 4.11 below, we conclude that the étale realization
functor

T : Vect?(X ), 0p) — Vect(Xp, Op[1/Zp]0)#=" ~ Locz, (Xy)

is faithful if R is p-torsionfree.
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Lemma 4.11. Let R be a p-torsionfree qrsp ring with prism (Ag,I). Then
Agr — Ag[1/I)" is injective, and hence the same holds true on tensoring with
any finite projective Ag-module M.

Proof. By using the derived p-completeness of the cofibre of the map and
derived Nakayama, it is enough to show that

DArfp — Dr/p[1/1]

is injective. This follows from the fact that (Ag,I) is a transversal prism
(i.e., (p,I) form a regular sequence, see [1] for the terminology), which itself
is a consequence of the Hodge-Tate comparison and the p-torsionfreeness
of R. O

Construction 4.12 (The crystalline and de Rham realizations). Let X be
a quasi-syntomic p-adic formal scheme, assumed Z,-flat for simplicity. By
Example 4.7, the category of prismatic F-crystals on X,—g identifies with
the category Vect?(Xp—o crys) of F-crystals on the crystalline site Xp—g crys.
Pullback along X,—g — X thus yields the “crystalline realization” functor

Derys = Vect? (X, 0p) = Vect?(Xp—og,crys)-

Noting that crystals on Xcys and Xp—g crys are identified (as Xp,—9 C X
is a pro-PD thickening), forgetting the Frobenius also yields the “de Rham
realization” functor

Dyr : Vect”(XA, OA) — VeCt(Xcrys)-

If X is formally smooth over some base Y, then we can further pass to
relative crystalline sites to obtain the “relative de Rham realization” functor

Dgpy : Vect?(Xp,0p) — Vect((X/Y )erys) =~ Vect Y (X/Y),

where the target denotes the category of vector bundles on X equipped
with a flat connection relative to Y such that the connection is topologically
quasi-nilpotent.

5. Prismatic F-crystals over Spf(Ok): formulation of the
main theorem

Fix a complete discretely valued extension K/Q, with perfect residue field
k. In this section, we first explain why prismatic F-crystals over Spf(Ox)
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give rise to crystalline Galois representations upon étale realization (Propo-
sition 5.3). Using this, we then formulate our main comparison theorem with
crystalline Galois representations (Theorem 5.6) as an equivalence of cate-
gories; the full faithfulness is proven in this section using the easy direction
of Fargues’ classification of F-crystals over Ap. (Theorem 5.2; see also Re-
mark 5.7), while the essential surjectivity is the subject of §6.

Notation 5.1 (The Aj,¢-prism and associated period rings). Fix a completed
algebraic closure C'/K. Using the unique F-equivariant splitting® k& — Ox /p
of Ok /p — k, we regard Ok and O¢ (as well as all subsequently appearing
rings) as W (k)-algebras. Let X = Spf(Ok) and Y = Spf(O¢); write Y'*/X
denote the Cech nerve of ¥ — X. Associated to this data, one has some
standard period rings and elements, that we introduce next.

e Write Ajps = Aing(Oc). Choose a compatible system € = (1, €p, €52, ...)
of p-power roots of 1 in C gives rise to the standard elements ¢ = [e],
w=q—1, and §~ = [plq of Ains. Moreover, we have a natural surjection
0 : Aiys — Oc with kernel (5), that we use to identify (Ajyf, (é)) as
the perfect prism attached to O¢, so Ajnf = Ao, . We shall refer to the

point of Spec(Ajyf) determined by Aj,s 9, Oc¢ — C as the Hodge-Tate
point. Note that ;1 € A maps to the non-zero element ¢, — 1 € C in
the residue field at the Hodge-Tate point.

o Write Acrys = Dp-1([p),)) (Ainf) = Ainf{%} for the PD-envelope of 6 =

6o, Bf = Acrys[1/p], and Berys = Acrys[1/1]?; in prismatic terms,

crys
the Ajne-algebra Agrys identifies with the Ao, -algebra A@C{%} =
Do, jp, see e.g. [11, Corollary 2.39, Proposition 7.10].

o Write BS{R for the formal completion of Ain¢[1/p] at 6; this is a complete
DVR with residue field C, uniformizer [p], and fraction field Bqr =
B [1/[p]4). We have a natural Aj,¢-algebra map ¢* B o — Bj;. This

5 crys
maps 1 € By to o(u) € Bis; since (p) # 0 € C, the image ¢(p) =
[plqp has the form [p],u for a unit u, so we also have an induced Ajp¢-
algebra map ¢*Berys — Bygr.-

8To construct this splitting explicitly, choose n > 0 such that the n-fold Frobe-
nius on Ok /p factors as O /p < k 22 Ok /p; the splitting is then given by
k2225 O /p.

90bserve that Beys = B, [1/p], i.e., p is invertible in Aeys[1/p]. Indeed, we
have (g—1)P~' = [p], mod pAin¢, so (g—1)P~/p € Acrys, whence inverting pn = g—1
also inverts p.
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Our goal is to understand the category Vect?(X),O)) of prismatic F-
crystals on X. We shall do so via descent along Y — X. For this reason, we
shall need the easy direction of the following result:

Theorem 5.2 (Fargues). The category Vect?(Y), Oy ) is identified with the
category of pairs (T, F'), where T' is a finite free Zy-module and F' is a B(J{R-
lattice in T'®z, Bqr-

We content ourselves by explaining the construction of (7', F') attached to
£ € Vect?(Y),0p). For an elementary proof of full faithfulness (which is the
only part we use), we refer to |8, Remark 4.29|. For the essential surjectivity,
see [34, Lecture XIV].

Construction of the functor in Fargues’ theorem. Fix & € Vect?(Y),0p).
As Y) has a final object determined by Ajyy = Ao, we can regard &
as a BKF-module (M, pps) over Ajys in the sense of [8, §4.3]. The étale
realization T(&) is the finite free Zp-module T := (M ®4,, W(C”))#=1.
By Artin-Schreier theory (see Corollary 3.8), one has a natural isomor-
phism M ®4,, W(C®) ~ T ®z, W(C”) extending the identity on T on
(—)#=1. Moreover, one can show ([8, Lemma 4.26]) that this isomorphism
restricts to an isomorphism M[1/pu] ~ T ®z Aine[l/p]. As p is invertible
in the residue field at the Hodge-Tate point, we obtain an isomorphism
M ®a,,, Biz ~ T ®z, Bjy. The Frobenius on M then yields the BJx-lattice
F = ¢*M®a,,Bi; in T®z, Bqr. Thus, we obtain the pair (T, F') mentioned
in the theorem. O

We begin our study of prismatic F-crystals by noting that the resulting
Galois representations are crystalline.

Proposition 5.3 (Prismatic F-crystals on O give crystalline Galois repre-
sentations). Let £ € Vect?(X),0p). Then T(E)[1/p] is a crystalline Galois
representation.

Proof. Fix a prismatic F-crystal £ over X. Pulling back to Y and then
further to Y,—o, we have a natural identification

g(AOc) ®AOC’ AOc/p = E(AOC/I))'
Identifying Ao, = Ainr and Ap, /) = Acrys, we can write this as
(4) E(A@C) @ s Acrys g(AOc/p)‘

Inverting p in the tensor base Ajns gives
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E(Don )1/ 1] @ a1 /) Berys = E(Doy jp)[1/ 1]

As explained after Theorem 5.2, by [8, Lemma 4.26], the object (Ao, )[1/ ]
identifies with T'(€) ®z, Ain¢[1/p], so we can rewrite the above as a natural
isomorphism
T(E) ®z, Berys = E(Lo.sp)[1/1]-

The rest follows from Dwork’s Frobenius trick. More precisely, observe that
Ok /p — k is an infinitesimal thickening in characteristic p, so the n-fold
Frobenius on Ok /p factors over k. It follows that if £ is any crystalline
crystal on Spec(Of/p), then (¢")*&" identifies with the pulback of &'[gpec(r),
along the map ¢, : k — O /p induced by ¢"™ on Ok /p for n > 0. Pulling
back further to O¢/p and using the F-crystal structure to drop the Frobenius
pullback after inverting p, we learn that the right side in the isomorphism
above can be rewritten as

E(Do.)p)[1/u] ~ EW () @) Berys-

Putting everything together, we get a canonical isomorphism
T(€) ®z, Berys =~ E(W (k) ®@w (x) Berys-

As this isomorphism is G g-equivariant, it follows that T'(€)[1/p] is a crys-
talline G g-representation. O]

Remark 5.4 (A compatibility of lattices). Keep notation as in the proof of
Proposition 5.3. Base changing the final isomorphism along ¢*Berys — Bar
gives an identification

T(€) ®z, Bar = ¢"E(W (k) @w 1) Bar-

Thus, F' := ¢*E(W (k) @w) Big sives a Blg-lattice in T(€) ®z, Bqr-
On the other hand, we also have the lattice F' = ¢*E(bo,) ®p Big, as
C

explained following Theorem 5.2. It follows from the constructions that these
lattices are identical.

Using Theorem 5.2, we can construct G g-equivariant F-crystals on Y
starting with de Rham Galois representations.

Construction 5.5 (From de Rham Galois representations to F-crystals over
Oc¢). Let T be a Z,-lattice in a de Rham Galois representation V' = T'[1/p]
of Gi. Then we have a natural G g-equivariant filtered isomorphism

\%4 ®QP BdR >~ DdR(V) K BdR-
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In particular, Dar (V) ®k Bjy is a Biz-lattice in V®q, Bar. By Theorem 5.2
as well as the compatibility in Remark 5.4, the assignment

T (T, Dar(V) @k Bgg)
gives the middle horizontal arrow in a commutative diagram

Vect?(X ), 0p) Vect? (Y, Op)

Repy T,F) | T € Vect(Z,), F C T ®z, Bar a Bjg-lattice}

| l

Repzp (GK) ~ Vect(XA, OA[l/IA]Q)L'Q:l Vect(YA, OA[]./IAM?\)(’Ozl

= (T, Dan(T(1/p) ®x B
e e

In particular, as the bottom vertical arrow on the left is fully faithful, it
follows that for any pair M, N € Vect¥(X),0)) and any map g : T(M) —
T(N) in Vect(Xp, Op[1/Zp]7)#=", there is a unique map fy : M|y —
Nly in Vect?(Y),Op) with T'(fy) = g|y; note that this assertion only uses
the full faithfulness of Theorem 5.2 (i.e., full faithfulness of the equivalence
appearing as the top right vertical arrow above).

We can now formulate our main theorem:

Theorem 5.6 (The main theorem). The étale realization functor
T : Vect?(X),0p) = Repy”*(Gk)

coming from Proposition 5.3 is an equivalence of categories.

We prove the full faithfulness here using the preceding discussion on
Galois representations attached to prismatic F-crystals; the essential surjec-
tivity is proven in §6.

Proof of full faithfulness in Theorem 5.6. Faithfulness of T over X reduces
to the analogous assertion over Y, which in turn follows by observing that the
canonical map M — M®a,,, Ain¢[1/ ker(0)], = M®a,,,W(C) is injective for
any finite projective Aj,-module M by Lemma 4.11. Note that this argument
also proves that the étale realization T is faithful over any term of Y*/X.
For fullness, fix prismatic F-crystals M and N together with a map
g : T(M) — T(N) of the corresponding objects in Vect(Xp, Op[1/Zp]7)¢="
(or equivalently the corresponding Galois representations). We must find
a map f : M — N such that T(f) = g. First, by the last sentence of
Construction 5.5, the map g|y extends (necessarily uniquely) to a map
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fy : M]y — Nly. The map fy induces two a priori distinct maps a,b :
Mlyxy — Nlyx,y via pulback along either projection. We must show
that a = b. But the induced maps T'(a), T(b) : T(M)|yxxy — T(N)|yxxvy
are the same as T'(fy) is induced from ¢ via pullback; the desired equality
now follows from faithfulness of T over ¥ xx Y. O

Remark 5.7 (Full faithfulness via Breuil-Kisin prisms). The proof of full
faithfulness in Theorem 5.6 explained above relied on certain properties of
Galois representations. An alternative purely prismatic argument can be
given using Theorem 7.2, as we now briefly sketch. Let &(*) denote the
cosimplicial §-ring obtained by taking the Cech nerve of a Breuil-Kisin prism
(6, E(u)) € X); see Notation 7.1 and Construction 7.13. Then we have com-
patible descent equivalences

Vect? (X ), 0p) ~ lim Vect? (&(*))
and  Vect? (X, Op[1/Z)p])) ~ limVect‘p(G(')[l/I];\),
so it suffices to show that the base change functor
Vect?(6(*)) — Vect? (&) [1/1]))

of cosimplicial categories induces a fully faithful in the inverse limit. Theo-
rem 7.2 implies that the above functor is fully faithful in cosimplicial degree
0. Also, the induced functor in each cosimplicial degree is faithful as the
map &0 — &0 [1/1 ], is injective. It then follows formally that the limiting
functor is indeed fully faithful.

Remark 5.8 (Full faithfulness fails with mod p coefficients). The analog of
Theorem 5.6 with mod p coeflicients is false. In fact, the full faithfulness fails.
The proof given above used crucially (via the full faithfulness in Theorem 5.2)
Kedlaya’s theorem [24] that sections of vector bundles on Spec(Ajy¢) do not
change if we remove the closed point; this assertion fails for vector bundles on
Spec(Aint/p), which causes the problem. In the next paragraph, we shall give
an explicit example of an invertible object (E,y) € Pic?(X),0)/p) such
that the étale realization of F is the trivial local system while the underlying
invertible O /p-module E is non-trivial. In particular, full faithfulness of the
étale realization fails.

Take K = Q. Consider the F-crystal E := Op{p — 1}/p €
Vect?(X ), 0 /p) coming from Example 4.5. The étale realization 7' is sym-
metric monoidal, so T(E) = Z/p(p — 1) ~ Z/p as Gi-representations. How-
ever, IJ is not isomorphic to the trivial F-crystal O, /p. Indeed, we have

Op{p}/p = o*Op{1}/p =T} [p© Op{1}/p,
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whence E ~ IAl/ p, so it suffices to show that Z) /p is a non-trivial invert-
ible O /p-sheaf. But this is already true after restriction to the Hodge-Tate
locus, i.e., Z)/p ®0,/p Op/p and Oy /p are not isomorphic as sheaves of
O )-modules; indeed, one can show that the Sen operator acts with weight 1
on Ip/p®o,/p, Op/p and weight 0 on Op /p (see [7, §3.5]).

6. From crystalline Galois representations to prismatic
F-crystals

The goal of this section is to prove the essential surjectivity assertion in
Theorem 5.6, so we continue with the notation from §5. However, instead
of working with the prismatic site (Xp,Op), we shall switch to the quasi-
syntomic site (Xgsyn,Ae) (or equivalently the qrsp site (Xgrsp, Ae)) from §2;
accordingly, appropriate period sheaves on the quasi-syntomic site are intro-
duced in §6.1. Next, in §6.2, we explain how a filtered ¢-module gives rise to
an F-crystal over the “open unit disc” version of A,. In the critical §6.3, us-
ing the Beilinson fibre sequence from [3], we explain why this F-crystal over
the “open unit disc” version of A, satisfies a boundedness condition at the
boundary in the presence of some auxiliary lifting data that will ultimately
be provided by the weak admissibility of the filtered p-module. Armed with
this boundedness, we can prove the promised theorem in §6.4.

Example 6.1. The Og-algebra O¢ gives an object of X;,g,. More generally,
as Xgrsp admits finite non-empty products (computed by p-completed tensor
products of the underlying Og-algebras), the terms of the p-completed Cech
nerve of O — Oc¢ lie in X,5p; the rest of this section only uses the first
three terms of this Cech nerve.

6.1. Some period sheaves on the quasi-syntomic site

In this subsection, we introduce certain period sheaves on X4, that shall be
important to our arguments. Roughly, the idea is to view A, as a structured
collection of prisms analogous to Aj,r.

Construction 6.2 (Period sheaves on the quasi-syntomic site that carry a
Frobenius). On Xg,sp, we shall use the following sheaves:

e The prismatic structure sheaf A,: this is given by
R~ A R-

This sheaf carries an ideal sheaf I C A, given by passing to the ideal
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of the prism. Vector bundles over A, identify with prismatic crystals
of vector bundles on Spf(Ok).
e The crystalline structure sheaf A..ys, corresponding to the special fibre:
this is given by
R Acys(R) = Ar{I/p}.

Note that we have Ag{I/p} = Ag/,, explaining the name. Vector bun-
dles over Acys(e) = Ag{I/p} identify with prismatic crystals of vector
bundles on Spec(Ox /p).

e The rational localization Ae(I/p): this is given by

R DglI/pl).

Modules over this will be closely related to filtered F-crystals on X
(Construction 6.5).
e The sheaf Ao{p(I)/p}: this is given by

R — Dr{p(1)/p},

and can thus be regarded as the p-pullback of the crystalline structure
sheaf over A,.
e The étale structure sheaf Aq[1/1]): this is given by

R Dg[1/1]).

Modules over this sheaf will be closely related to Z,-local systems on
R[1/p] (Remark 6.3).

We have natural maps
DJ1/1 = Be — Do{o(I)/p} = Lo(I/p) = Acrys = Lo{I/p}.

Moreover, the Frobenius ¢ : Ay — A, carries I to ¢(I), and hence induces a
map

p: Acrys = A.{I/p} - A.{(p([)/p}

linear over ¢ : Ay — A,. In particular, one obtains an induced Frobenius en-
domorphism'? of all presheaves introduced above, also denoted by ¢. Mim-
icking Definition 4.1, one then obtains a notion of an F-crystal over any of

0Despite the notation, the endomorphism ¢ of A(I/p) defined as above does
not underlie a d-structure, i.e., we need not have ¢ = Frob mod pA(I/p); in fact,
formally enlarging A4(I/p) by forcing this congruence leads to As{I/p}. This issue
does not arise for the other sheaves.
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these rings. For instance, an F-crystal over A, is a vector bundle M over
Ao equipped with an isomorphism @ : (@*M)[1/I] ~ MI[1/I]; we write
Vect¥(A,) for the category of such F-crystals, and similarly over the other
rings as well.

Remark 6.3. The comparison result in Proposition 2.14 gives equivalences

Vect? (X, Op) >~ Vect?(Xgrsp, A,)
and  Vect? (X, Op[1/Z)p])) ~ Vect?(Xgrsp, A.[l/[];}).

In particular, we have
Vect? (Xgrsp, A.[l/]];\) ~ Repg, (Gk)

by Corollary 3.8. Theorem 5.6 can then be formulated as the assertion that
the base change functor

Vect“”(ersp,A.) — Vect“”(XqTSp,A.[l/I];\) ~ RepZP(GK)

is fully faithful with image given by Z,-lattices in crystalline Q,-represen-
tations of G . In fact, we have already proven full faithfulness in §5; in the
rest of the section, we shall check the assertion regarding the essential image.

Construction 6.4 (de Rham period sheaves on the prismatic site). We
define de Rham period sheaves on X, as follows:

Bl = (La[L/p]); and Bar = Bfp[1/1].

Note that B}z (Oc) = BJz (C) is the usual de Rham period ring attached to
C' (and thus a discrete valuation ring). More generally, a similar assertion
holds true for any R € X5, which is perfectoid.

6.2. From filtered ¢-modules to crystals

In this subsection, we explain how to convert a filtered w-module over K into
a crystal over Aq(I/p)[1/p]. The basic idea is to take the constant crystal over
A{I/p}[1/p], and then modify its p-pullback to A(I/p)[1/p] at the Hodge-
Tate divisor using the filtration.

Construction 6.5 (From filtered ¢-modules over K to crystals over
Ae(I/p)[1/p]). Let (D, pp,Fil*) be a filtered p-module over K, i.e., D is
a finite dimensional Ky-vector space equipped with an isomorphism ¢p :
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©*D ~ D, and Fil* is a (finite, exhaustive, separated) filtration on the K-
vector space Dx = D @y (1), K; here the extra Frobenius twist is present for
compatibility with the prismatic (as opposed to crystalline) picture. We shall
attach an F-crystal M(D) 1/, € Vect?(Xyrsp, he(I/p)[1/p]) to the filtered
p-module (D, ¢p, Fil*).

First, we attach an F-crystal My := M(D,¢)r/py over Ao{l/p}[1/p]
to the p-module (D, ¢p). Regard (D, ¢p) as an F-crystal of O [1/p]-mod-
ules on Spec(k). Using the structure map W (k) — A«{I/p}, we can regard
Ae{I/p} as a diagram of prisms over k. Consequently, we obtain an F-crys-
tal My := M(D,¢)(1/py over he{l/p}[1/p] from (D, pp) via base change,
ie.,

My =D @) A1 /p},

with the (unit) F-crystal structure pa, : ¢*Mip ~ M; induced from
¥D-

Next, consider the finite projective A¢(I/p)[l/p]-module My :=
M1®A.{I/p}7¢ﬁ.<l/p>. The map ¢4, induces an isomorphism g, : * Mo~
Mo, so the pair (Ma, pr,) is a unit F-crystal over Aq(I/p)[1/p]. To obtain
the desired F-crystal, we modify My along the locus I = 0 using the filtration
on Dy to obtain the desired F-crystal Mz = M(D) ;) over Ae(I/p)[1/p].
More precisely, we apply Beauville-Laszlo glueing along the Cartier divisor
defined by I to the vector bundles

o Mu[1/I] € Vect(Xyrsp, be(I/p)[1/p, 1/1]).
. FilO(DK ®K Bar) € VeCt(ersp,Bji_R).

along the isomorphism
(5) Mo[1/1] ®A.<I/p> Bar >~ D QW (k)¢ Bar ~ FilO(DK QK Bar)[1/1]

in Vect(Xgrsp, Bar); here we implicitly use Lemma 6.7 to identify IB%?{R with
Ao(I/p)[1/p]}. Thus, we obtain a vector bundle M3 € Vect(Xyrsp, Lo(I/p)[1/p])
equipped with isomorphisms

M[1/1] = Ma[1/1] € Vect(Xgrsp, De(I/p)[1/p, 1/1))
and

(M3)7 ~ Fil’(Di @k Bar) € Vect(Xgrsp, Big)

compatible with (5) over Bgr. The map paq,[1/1] then yields an isomorphism
oM, T " Ms[1/I] ~ M3[1/1], yielding the desired F-crystal.
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For completeness, we also remark that a partial inverse to the previous
construction is described in the proof of Theorem 7.9. Next, we observe that
the Frobenius pullback trick allows us to extend the preceding construction
to larger loci.

Remark 6.6 (Analytic continuation of F-crystals to the open unit disc). Fix
an F-crystal (M, paq) over Ae(I/p)[1/p] on Xgrgp; the main example for us is
the output of Construction 6.5. One can use the contracting property of ¢ to
extend (M, @) uniquely to an F-crystal (N, oar) over Aq(p™(I)/p)[1/p] on
Xgrsp for any n > 1. Let us explain how to construct this extension for n = 1;
the extension for larger n is constructed entirely analogously. The underlying
vector bundle N € Vect(Xgrsp, Lo (@(I)/p)[1/p]) is defined glueing the vector
bundles

L G Ml iy € Veet(Xorap 8alo(1)/p)[1/p, 1/1); note that
this bundle extends @*M (and thus also M, via @pq) over
Bo(I/p)[1/p; 1/1].

2. M} € Vect(Xyrsp, Le(p(I)/p)[1/p]7); here we implicitly use that the
I-adic completion of A[1/p] coincides with that of Ae(™(I)/p)[1/p]
for all n > 0 by Lemma 6.7 below.

along the evident natural isomorphism of their base changes to

De{p(I)/p)[1/p]7[1/1]. Tt is clear from the above description that A extends

M over Ar(I/p)[1/p], whence o*N = ¢* M. The desired F-crystal structure

W (@*N)[1/1] ~ N[1/I] arises by observing that both sides identify with

( */\/l)[l/l] this follows for the target by the definition in (1) and for the
source by the preceding sentence.

The following lemma was used above.

Lemma 6.7. The natural map gives an isomorphism

Big = Da[1/p]] = Dale™(1)/p)[1/P)]
for alln > 0.

Proof. As Mg is a transversal prism for R € X5, it is enough to show the
following: if (A, I) is a transversal prism, then the natural map

AlL/pl7 — Ale™(I)/p)[1/Pl7

is an isomorphism for all n > 0. Fix some such n > 0. We may assume
I = (d) is principal. Using the presentation

A(e"(d)/p) = Alz]/(px — ¢"(d))y,
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it is sufficient to show that the natural map gives an isomorphism

A[1/p]/d — Kos(Alz]; pz — " (d), d),[1/p,

where Kos denotes a Koszul complex, i.e. in this case the derived reduction
of A[z] modulo pz — ¢"(d) and d. Now ¢"(d) = dP" + ph for some h € A, so
the right side above simplifies to

Kos(Alz]; pr — ¢"(d), ), [1/p] =~ Kos(A[z]; px — ph, d);[1/p].
Relabelling y = 2 — h this further simplifies to

Kos(Alyl: py, d)[1/p] = Kos(Alyl; y, d)[1/p] = A/d[1/p],

as wanted; here the first isomorphism arises by noting that py is a nonzero-
divisor in A/d[y| by transversality of (A, I') and that the kernel yAly]/pyA[y]
of Aly]/py — Aly]/y = A is killed by p (and thus disappears on applying

(=) [1/p])- O
6.3. Boundedness of descent data at the boundary

Given an F-crystal M’ over Ap, with descent data on M'(I/p)[1/p], we
shall explain how the descent data automatically extends to M’[1/p] using
crucially results from [3] to establish the following extension result for p-adic
Tate twists.

In the statement and proof of the following proposition, we are taking
fixed points —#=! in the usual (nonderived) sense.

Proposition 6.8 (Analytic continuation for p-adic Tate twists). Let R be a
grsp p-torsionfree Oc-algebra. The natural map

Ar{n}y?='1/p] = Dr(1/p){n}*="[1/p]
18 an isomorphism.

We note that ¢ is not quite a selfmap of Ar{n} — it only takes values in
Ar{n}[1/I] — but being p-fixed still makes sense.

Proof. Recall that the p-adic Tate twist attached to R is defined as follows:

Qy(n)(R) = b (FiljeAr{n} 2= Brfn}) [1/p),
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using the Nygaard filtration Filj;Ar C Ag from [11, Definition 12.1]. Thus,
there is a natural injective map

H°(Qp(n)(R)) — Br{n}*='[1/p].

In fact, we observe that this map is an isomorphism: containment in the
correct level of the Nygaard filtration is automatic for @-fixed elements of
Agr{n} as the Nygaard filtration on Ar may be defined (using that R is qrsp)
as the p-preimage of the I-adic filtration on Ag (see [11, §12]).

In particular, it is enough to show that the composition

a: H(Qp(n)(R)) — Dr(I/p){n}*~[1/p]

is an isomorphism. For this, recall that since Ar/, = Ar{I/p}, the p-adic
Tate twist attached to R/p may be written as

HO(Qy(n)(R/p)) = (Dr{I/p}{n})?~" [1/p],

where we implicitly use that inverting p kills any Nygaard graded quotient
of Ag/p. (In fact, as R/p is qrsp F)-algebra, the complex Q,(n)(R/p) is in
fact concentrated in degree 0 by [9, Proposition 8.20]; but we do not need
this.) Moreover, the natural map

H(Qy(n)(R)) & HO(Qy(n)(R/p))
factors as
b: HO(Qp(n)(R)) & DpiI/p){n}*='[1/p] S HO(Qy(n)(R/p)).

As the maps a, b and ¢ are all injective, it suffices to show that im(c) maps
to 0 in coker(b). To understand this cokernel, we use the Beilinson fibre
sequence [3, Theorem 6.17]

Qp(n)(R) = Qu(n)(R/p) — (LO/Filly L) {n}[1/p]

which in particular induces an exact sequence
H(Qy(n)(R)) = H(Qy(n)(R/p)) % H(LQR/Fily LOR) {n}[1/p]).

Our task is then to show that doc = 0. Using our chosen O¢-algebra structure
to trivialize the Breuil-Kisin twists Ap, {1} = q%lﬁoc, we can make the map
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c and d explicit. First, c is the natural map

1 A p=1 1 A p=1
—aBr{U /P 1p—><731p> 1/p].
(eben) Wil (Zpebeti/n)) 1

Moreover, by the arguments of [3, 6.18-6.21], the map d is up to nonzero
scalar compatible with the isomorphism LQg = Acys(R/p) = Mgy, and the
forgetful map Qp(R/p) — Agy,[1/p]. Thus, it remains to show that the image
of the natural map

(bntirm) )

q—1)
= BRI 2 Byl S L[
— pH1/p & — P —— p
(¢—1" (q— 1 (-1
is contained in ﬁFﬂ?{LQR[l/p]. But the Frobenius on Ag induces an

injective map
(LQR/Fill LOR)[1/p] <= Bl (R)/I",

as follows from the discussion of the Nygaard filtration!'!. Dividing by (g—1)"
and noting that (g — 1) is a generator of IB,(R), we get an injection

_ 1
(g—1)"

induced by the Frobenius. The composite map

(LQp/Fily LOR)[1/p] = I "B (R)/Big (R)

1 p=1
(o gebelt/n) /0] = B () /B (R)

is, by the ¢-invariants on the left, simply induced by the natural map
ﬁAR(I/le/p] — I""B: (R), which actually takes values in B, (R) as
q — 1 is invertible in IB%IR(R), as desired; here we used implicitly Lemma 6.7.
But this implies that the displayed map above is 0, which then implies by

HTndeed, as R is qrsp, the Nygaard filtration Filj;Ar on Ar can be defined as
the preimage of the I-adic filtration I*Ag under the Frobenius. Consequently, the
Frobenius on Ag gives an injective map Agr/Fil"Ar — Ar/I"Ag. Inverting p then
gives an injective map (Ar/FilNAR)[1/p] = (Ar/I"bR)[1/p) =~ Biz (R)/I"Bl; (R).
It now remains to observe that (Agr/FilyAR)[1/p] =~ LQg/Fily LQR[1/p] by com-
paring graded pieces in the absolute de Rham comparison.
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the preceding reasoning that the map

N p=1 o
(Sienttfn)) 140l = L/ L)

1
(¢—1)
is 0, as wanted. O

For future use, we collect some properties of the prism of OO®OK Oc¢,
using crucially Proposition 6.8 for the first one.

Lemma 6.9 (Properties of Ay ,y). Let R = OC®0K Oc. Write q1,qs € A
for the image of q € bo,, along the maps Ao, — AR induced by the first and
second structure maps Oc — R.

1. The natural map

DAr[1/(p(ar = 1)(g2 = 1))]7=" = Ar(I/p)[1/(p(g1 — 1)(g2 — 1))~
is an isomorphism on HO.
2. The element (q1 — 1)(q2 — 1) is invertible in Ar(p/(q1 — 1)P)[1/p].
3. The natural maps give a short exact sequence
0= Ar — Ar((gr — 17 /p) @ Drlp/ (¢ — 1))
= Dr(p/(q1 = 1), (q1 = 1) /p) = 0.

Proof. 1. Note that we have a p-equivariant isomorphisms Ap, {n} =~
ﬁﬁ@c for all n > 0. By base change, we obtain natural isomor-
phisms

Ap{2n} ~ #AR{n} o~ ! Ar.
(=1 (o — D2 —1)"

As the direct limit over n of the terms on the right gives Ar[1/(q1 —
1)(g2 — 1)], it suffices to see that for all n > 0, the natural map

Dr{ny*='11/p] = Dr(I/p){n}*~ [1/p]

is an isomorphism on HY, which follows from Proposition 6.8.

2. Since (g1 —1)? | pin Ar(p/(q1 —1)P), it is clear that (g1 —1) is invertible
in Ar(p/(q1 — 1)P)[1/p]. To show (g2 — 1) is invertible, we shall check
the stronger statement that

A= Dr(p/(q1 — 1)P) /(g2 — 1)
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is an Fp-algebra. We first observe that [p|,, = [pq, -u for a unit u € Ag:
this follows from the realization of Agr as a suitable prismatic envelope
of Ao, ® Lo As [plg, = (1 — 1)P~! mod pAg and similarly for [p],,,
we obtain an equation of the form

(@ —1P = (2= 1P -u+pvelpg
for u,v € Ag. This allows us to write

(6) (1 — 1)’ =p(ga — 1z mod (g2 — 1)Ag.

Our task is to show that
A= Br(p/(@1—1")/(@-1) = (Brl)/(z(a1 = 1" = p)) [y, _yy /2 —1)

is an F,-algebra. Thanks to (6), we have

A= ((Br/(2 = 1) [2)/ (zplas = Dz = D)),y
= ((Br/(a2 = D)) [/ (e = D))y, 1)

where € = z(¢1 — 1)x. But ¢; — 1 is topologically nilpotent (due to the
completion operation), so the same holds for €, whence € — 1 is a unit.
The above presentation simplifies to

A

A= ((AR/(QQ - 1)) [z]/p) (—1)"

which is clearly an F,-algebra.

. First, consider the regular ring A := Z,[u]. Since blowing up at a regu-
lar ideal does not change O-cohomology, the Mayer-Vietoris sequence
for the standard charts of the blowup X of Spec(A) at the ideal (p,u)
gives an exact sequence

0 — A~ RI'(X,0x) — Alu/p] ® Alp/u] — Alp/u,u/p] — 0

of A-modules. Moreover, each of the 4 terms that appears is a noethe-
rian A-algebra, and the maps in the sequence arises as linear combina-
tions of A-algebra maps. Now consider the composition A — Ao, LN
AR given by sending u to (¢ — 1)P. Each map in this composition
is (p, u)-completely flat, and hence so is the composition. The (p,u)-

completed base change of the above sequence along A — Ap then gives
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an exact triangle

Ar — Dr((qi—1)? /) br{p/ (@1 —1)") = Drp/(@1—1)7, (@1 —1)"/p)

in the derived category. Since A — Ag is (p,u)-completely flat, each
term of the above triangle is (p,u)-completely flat over a noetherian
ring, and is thus concentrated in degree 0. Thus, the above triangle is
in fact an exact sequence, as wanted. O

The main result of this subsection is the following:

Proposition 6.10 (Boundedness of descent data at the boundary of the
open unit disc). Let M € Vect?(Ao.) be an F-crystal over Ao,. Assume
that the base change M(I/p)[1/p] € Vect? (Ao (I/p)[1/p]) is provided with
descent data with respect to Y — X (i.e., we are given a lift to
Vect?(Xgrsp, De(I/p)[1/p]). Then this descent data extends uniquely to
M([1/p] € Vect?(bo.[1/p]).

Proof. Write R = Oc®0, Oc, so piM[1/p] and p5M[1/p] are vector bundles
over Ag[1/p]. By the assumption on M, we have an isomorphism

a/py - P1MI/p)[1/p] ~ p3M(I/p)[1/D]

in Vect¥(Ar(I/p)[1/p]) satistying the cocycle condition. Our task is to extend
this to an isomorphism

o piM[1/p] =~ psM[1/p]

in Vect(Ag[1/p]); the cocycle condition as well as the p-equivariance will then
be automatic from that for a7,y as Ae[1/p] — be(I/p)[1/p] is injective on
Xgrsp- In fact, it suffices to check that o/, carries pfM[1/p] into p3 M[1/p];
applying the same reasoning to the inverse will prove the claim.

First, we observe that Remark 6.6 gives descent data over Ar{p(I)/p)[1/p].
In particular, since ¢(I) C pAr{(q1 — 1)?/p), there is a unique p-equivariant
map

q-1yr/p) : PEM{(@1 = 1)7/p)[1/p] = poM{(@1 = 1)7/p)
of finite projective modules over Ag((q1 — 1)?/p)[1/p] extending a ;) over
Ar(I/p)[1/p]-

Next, we extend to Ag(p/(q1 — 1)P)[1/p]. For this, let T = T(M) be
the finite free Z,-module obtained from the étale realization of M. By |8,
Lemma 4.26], there is a y-equivariant identification

1 1

M/[q_—l] ~T &7z, Aoc[ﬁ]
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of vector bundles over Ap,, [q_%] (where T has the trivial p-action). Choosing

a basis for 7', the isomorphism a7/, gives a matrix with coefficients in H 0

of
Dr(I/p)[1/(p(gr — 1)(a2 — 1))~
Lemma 6.9 (1) shows that the coefficients in fact lie in H° of

AR[1/(p(qr — 1) (g2 — 1))]7=".

By Lemma 6.9 (2), the coefficients then also lie in

Ar(p/(q1 — 1)P)[1/p].

These coefficients define a map

Up/(gu—-1)r) : PIMP/ (@1 — D)P)[1/p] = p3M(p/(q1 — 1)P)[1/p]

of finite projective modules over Ag(p/(q1 —1)P)[1/p] that is compatible with
the map av(g,—1)r/p) after base change to Agr(p/(q1 — 1)?, (1 — 1)?/p)[1/p].
Inverting p in the exact sequence appearing in Lemma 6.9 (3) and tensor-
ing with the finite projective Apg[l/p]-module Homy 1, /) (piM[1/p],
p3M([1/p]), we can patch together the maps a (4, —1yr/p) and a (g, —1)») con-
structed above to obtain a map « : pjM|[1/p] — p3M|[1/p] of finite projective
Ag[1/pl-modules extending a;/py, as wanted. O

6.4. Proof of essential surjectivity

We can now prove the promised theorem:

crys

Proof of essential surjectivity in Theorem 5.6. Fix L € Repg’ (Gk). Con-
sider the weakly admissible filtered p-module (D, ¢p, Fil*) attached to the
G g-representation L[1/p]. We shall attach a prismatic F-crystal M(D);n
over A, to (D, p, Fil*) on Xg.sp with étale realization given by L[1/p] after
inverting p; we then check that M(D);,; can be constructed to have étale
realization L on the nose.

First, we attach an F-crystal M(D)psq over Aq[l/p] on Xgnsp to
(D, pp, Fil*), and also construct an extension of the value M(D)pqq(Y) to
an F-crystal M’ over Ap,.. Consider the compatible system of F-crystals

M(D) = {M(D) (gn(1yp) € Vect(Xgrsp, Do (™ (1) /p)[1/p]) 21

coming from Remark 6.6. The value M(D)(Y) can be regarded as an F-
crystal on Spa(Ap.) — {p = 0}. To construct the objects mentioned in the
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first sentence of this paragraph, by Proposition 6.10, it suffices to explain
why the F-crystal M(D)(Y) over Spa(Ap.) — {p = 0} extends to an F-
crystal M’ over Ag,,. For this'?, by gluing on the adic space and using [34,
Theorem 14.2.1] to handle the difference between F-crystals on Spec(Ap,,)
and Spa(Ap,) — {zk}, it suffices to show that the base changed ¢-module
M(D)(Y )z over the Robba ring Z for Ao extends (as a @-module) to
the integral Robba ring 2™ (called R™ in [34, Definition 12.3.1]). It suffices
to show that M(D)(Y )4 is trivial as a ¢-module over Z. Now ¢p-modules
over # can be identified with vector bundles on the Fargues—Fontaine curve
Xpp by [17, Corollary 11.2.22]. By the weak admissibility of (D, ¢p, Fil*)
and [17, Proposition 10.5.6] and matching constructions, the vector bun-
dle on Xpp attached to M(D)(Y)4 is semistable of slope 0. As all such
vector bundles are trivial by [17, Theorem 8.2.10 (1)], the desired claim fol-
lows.

Next, we explain why the descent data on M'[1/p] can be used to
construct a Gg-equivariant structure on M’. Note that M'[1/ I];)\ €
Vect? (Ao, [1/1])) has the form T ®z, Ao,.[1/1];) for a finite free Z,-module
T with trivial p-action (Corollary 3.8). Inverting p shows that

M(D)saa(Y) @p 1) Boc 1/ 11511 /p] = M [L/TI[L/p)
=T[1/p] ®q, Do.[1/1])[1/p].

As the left side is the value of Y of an F-crystal on X it carries a natural G k-
equivariant structure. Consequently, the right side T'[1/p] ®q, do.[1/1], €
Vect? (Ao [1/1];)[1/p]) is naturally a Gk-equivariant object of

=}

Vect(Zy) 0z, Qy & Veet? (Do [1/110) 07, Qp C Vect?(ho, [1/1])[1/p]).

It follows that T'[1/p] is naturally a finite dimensional Q,-representation of
Gk . By picking a Gg-stable Z,-lattice L’ in this representation and ad-
justing our choice of M’ along the divisor {p = 0} C Spec(Ap,) — {xr} by
Beauville-Laszlo glueing (and using Kedlaya’s theorem [24] or [8, Lemma 4.6]
that vector bundles on Spec(Ap, ) —{zk} extend uniquely to Spec(Ap,.)), we

12The argument we give is an Aj,s-variant of the analogous result in Kisin’s [26].
It relies ultimately on Berger’s observation (see [5, §IV.2] and [26, Theorem 1.3.8])
translating weak admissibility of D into a property of M(D)(Y) via Kedlaya’s slope
filtration results [22].

13We refer to [17, Definition 1.8.1] for the definition. This ring is sometimes also
called the extended Robba ring R, e.g., as in [34, Definition 13.4.3].
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can then arrange that 7' = L’ itself is a finite free Z,-module equipped with
a Gr-action, or equivalently that M’ € Vect?(Ap,) comes equipped with
a Gg-equivariant structure extending the one on M(D)pa(Y) = M'[1/p]
coming from the descent data.

We now claim that the descent data on M'[1/p] = M(D)pqq restricts to
descent data on M’. In other words, letting R = OC®OKOC, the isomor-
phism

o pi M1 /p] ~ psM'[1/p]

in Vect?(Agr[1/p]) carries p; M’ isomorphically onto pSM’. In fact, by con-
templating the inverse, it suffices to show that « carries pf M’ into psM’.
Now (p,I) C Ag is an ideal generated by a regular sequence of length 2 as
AR is (p,I)-completely flat over Ap, via either structure map. As sections
of vector bundles are insensitive to removing closed sets defined by such ide-
als, it suffices to check our claim on Spec(Agr) — V(p,I). Since everything
is clear after inverting p, we may further use Beauville-Laszlo glueing to re-
duce to checking the statement after p-completing, i.e. we must check that
the natural isomorphism

a@p, sy DrIL/IL/P) : pIMIL/I (L)) =~ psMI[L/T))(1/p)
carries pf M'[1/I]} into pj M'[1/I];}. Now the base change map
Vect (Brl1/11)) — Vet (Br pa(1/1]))

is fully faithful (and in fact an equivalence) by the étale comparison theorem
(see Proposition 3.6), and therefore also after inverting p on both sides.
Thus, it suffices to check our desired containment after pullback to Ag pert-
But we know that Apg perf < RT'(Spf(R)y, Aint(OT)) ~ Cont(Gg, ho,,). As
inverting I and p-completing turns almost isomorphisms to isomorphisms,
the desired claim follows from Gg-equivariance of the lattice M’[1/1 ];,\ -
ML)

The previous paragraphs lift M’ € Vect?(Ap.) to an object
M(D)int € Vect?(Xgrsp, Ao ); the construction depended on the choice of the
G g-stable lattice T'= L’ in T[1/p] and has the feature that T(M(D);n:) =
L'. To finish the proof, observe that the argument in Theorem 5.3 and
the fact that M(D)in recovers M(D) /) over Ae(I/p)[1/p] shows that
T(M(D)int)[1/p] ~ L[1/p]. Running the modification argument two para-
graphs above with L' = L then shows that we can also arrange that
T(M(D)nt) = L', finishing the proof. O
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7. Crystalline Galois representations and Breuil-Kisin
modules

The goal of this section is to relate lattices in crystalline Galois representa-
tions to Breuil-Kisin modules over a Breuil-Kisin prism & attached to Ok,
as in [26]. More precisely, in §7.1, we give a direct proof that the étale real-
ization functor for F-crystals on & is fully faithful. Using this result as well
as our Theorem 5.6, we recover the main full faithfulness results from [26] in
§7.2. Finally, in §7.3, we explain why the F-crystals over & arising from pris-
matic F-crystals over O (or equivalently crystalline Galois representations
by Theorem 5.6) admit a natural logarithmic connection over the local ring
at the Hodge-Tate point of & in characteristic 0; the argument there shows
that the logarithmic connection has a natural integral avatar (in the form
of a descent isomorphism over the ring &), see Construction 7.13), which
we hope shall shed some light on the integrality properties of the connection
Ny from [26, Corollary 1.3.15].

Notation 7.1 (A Breuil-Kisin prism over Og). Let (&,E(u)) =
(W[u], (E(u)) be a Breuil-Kisin prism in X attached to the choice of a uni-
formizer m € O, as in Example 2.6. Choose a compatible system of p-power
roots w € limg, .0 O¢ of m in O¢. This choice yields a unique §-W-algebra

map & — Ajyr sending u to [r] with the composition & — Aj¢ 4, Oc
being identified with & — &/E(u) ~ Og C Oc¢; thus, we get a map

(S, E(u)) — (Ajnf, ker(0)) in X\
7.1. Full faithfulness of the étale realization over &

The goal of this subsection is to prove the following theorem:

Theorem 7.2 (Kisin [26, Proposition 2.1.12|). The étale realization functor
T : Vect?(6) — Vect?(S[1/E(u)]))

1s fully faithful.

The faithfulness is clear. For full faithfulness, we first argue that mor-
phisms on right are meromorphic over Spa(&) and in fact entire away from
a finite set of pre-determined points depending only on K; we then use the
Frobenius structure to get the extension at the missing points. To get the
meromorphy in the first step, we use the adic spaces attached to & and
Ainr as well as the relation between them; the key meromorphy criterion is
recorded in Lemma 7.7.
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Let us begin by recalling the following (standard) coarse classification of
points of Spa(Ajyt).

Lemma 7.3 (Points of Spa(Aiuf)). Fiz a point y € Spa(Ai,s) and write
V =k(y)*. Then we must have one of the following possibilities:

1. The non-analytic point yi,: The elements p as well as ¢*/P" —1 forn > 0
map to 0 in V. In this case, (k(y),k(y)") = (k, k).

2. The crystalline point yerys: The elements ¢'/?" — 1 map to 0 in V
for all n > 0 while p gives a pseudo-uniformizer of V. In this case,
(k(y), k(y)™) = (W(k)[1/p], W (k).

3. The étale point y.t: The element p maps to 0 in V' while the elements
¢/P" — 1 give pseudouniformizers in 'V for all n > 0. In this case,
(k(y)vk<y)+) - (Cb700>)'

4. The remaining points: Both p as well as ¢ -1 for n > 0 give
pseudouniformizers in V. In this case, we have p/(¢"/?" —1) € V for
n > 0.

In particular, we have
an _ b
7) Spa(A)™ = (el = U Spatidn) (22— ).

Proof. The last assertion in the lemma follows by observing that the points
appearing in (2), (3) or (4) lie in the right side of (7). For the rest, it is
enough to show that any analytic point y € Spa(Aj,s)®" falls into one of the
three possibilities described in (2), (3) and (4). Fix one such y for the rest
of the proof.

By continuity, each element of the set S = {p, {¢"/?" — 1}n>0} is topologi-
cally nilpotent in V. Moreover, not all of these elements can be 0 as the kernel
of the valuation of defined by y is not open since y is analytic. Thus, at least
one element of S must be a pseudouniformizer in V. It is then easy to see
that if we are not in case (2) or (3), then both p as well as ¢'/?" —1 for n. > 0
give pseudouniformizers in V: for m > n, we have (¢*/?" — 1) | (¢"/?" — 1),
so if the latter is nonzero the same holds true for the former. In this case,
it remains to check the last property in (4), i.e., that p/(¢"/?" —1) € V for
n > 0. Assume this is false. Then we must have ¢'/?" —1 € pV for all n > 0
as V is a valuation ring. Choose some N >> 0 such that ¢'/?" —1#0in V.
Now the ring V is p-adically separated as p is a pseudouniformizer in V', so
we can choose some k > 0 such that ql/pN —1¢ PtV . But we know that



548 Bhargav Bhatt and Peter Scholze

/™" =1 mod pV; raising to the pF-th power then shows that ql/pN =

1
mod p**t1V | which is a contradiction. O

Notation 7.4 (The adic spaces X and )). Consider the adic space Y =
Spa(Aint)™ — {Yerys }, where yerys is as in Lemma 7.3. Write yg = yo € Y for
the Hodge-Tate point, and let v, = ¢"(yp) for all n € Z.

Let Zerys € Spa(6)*" be point defined by u = 0; this is also the im-
age of Yoys under the natural map Spa(Ains) — Spa(&), and moreover
the inverse image of {Zoys} C Spa(6) is exactly {yerys} C Spa(Ains). Let
X = Spa(6)* — {Zerys}, so we have an induced map 7 : Y — X of adic
spaces. Write ze = m(yet) € X, 50 x¢ is defined & — &/p[l/u]. Finally,
write x,, = m(yy,,) for n € Z; explicitly, these can be described as follows:

o If n >0, then x,, is defined by & LN S/E(u)~0g C K
o If n <0, then z, is defined by & — &/p"E(u)[1/p] =: K,.

Finally, write B = {zp }n>1 C X for the displayed set of positive ¢-translates
of the Hodge-Tate point.

Lemma 7.5 (Some fibres of Y — X). Consider the subset B := {&p }m>1 C
X from Notation 7.4. Then the subset B' C B consisting all x,, € B with

#r YN x) =1 is finite.

The proof below shows that B’ = () if K is unramified or more generally
if the absolute ramification index e(K/Kj) of K is < p. On the other hand,
if K = Ko(p'/?), then B’ # () (see Example 7.8).

Proof. For each n > 1, one has a factorization

907"071'

NN L AN

of m with both maps being surjective. It is thus enough to show that
(™)~ Yzn) C X is a singleton for finitely many integers n > 1. As x, =
©"(xp), it is equivalent to show that there exist only finitely many integers
n > 1 such that (p")~!(z,) = {xo}. The point z,, is exactly the vanishing
locus of the ideal I, = ker(6& £ & — &/E(u) = Ok), so (¢") (zy) is
the vanishing locus of ¢"(I,,)&. Thus, our task is to show that there exist
only finitely many n > 1 such that ¢"(I,,) = (E(u)) as ideals of &[1/p]. But
for any such n, the map L := S[1/p]/I, N S[1/p]/E(u) = K is a finite
flat degree p™ extension of rings (by base change from the same property for
©" 1 & — 6) that lives over the map ¢" : Ky — Kp; this forces K/L to
be a totally ramified degree p™ extension of discretely valued fields, which is
clearly only possible for finitely many values of n, proving the lemma. O
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Lemma 7.6 (Analytic criteria for membership in Aj,s C Aine[1/(¢—1)]). Let

h € Aine[1/(qg —1)]. Assume h defines an entire function in a neighbourhood
of each y, € Y forn > 1. Then h € Ajs.

In particular, this lemma implies that 1/u ¢ Aj[1/(¢ — 1)], whence
(g — 1)™ ¢ uAjys for any n > 0, and thus that (¢ — 1) ¢ Vudiy; as a
contrast, note that the (p,I)-adic completion of JuAij,s C Ajs coincides
with ker(Aj,s — W (k)), which certainly contains g — 1.

Proof. Write h = ﬁ)m for g € Ajpr. We must show that (¢ — 1) | g. If
m = 0, there is nothing to show, so we may assume m > 1. For each n > 1,
the image of g = (¢ — 1)™h € Ajn¢ under the natural map Aj,s — Oy, lies
in the maximal ideal of the target dvr: indeed, A is entire at y,, so the claim

follows as (¢ — 1)™ vanishes at y,,. Thus, ¢ maps to 0 under the map

Ainf — H k(yn)

n>1
But this map is identified with the natural map
a—(

Agys = lim W (Oc) 5 W (Oc) Dz, T o € [[ ©
n>0 n>0

defined by Witt vector functoriality. The composite A — W(O¢) appear-
ing above has kernel exactly (¢ —1) by [8, Lemma 3.23|, while the rest of the
maps are injective, so it follows that (¢ — 1) | g. We may then replace the

expression h = W with h = % and continue inductively to prove

the lemma. O
Lemma 7.7 (Detecting meromorphy over &). Fiz f € &[1]"n Ainf[q%l]

(where the intersection is as subrings of W(C®)). Then f is meromorphic
over &, with poles contained in the set B’ from Lemma 7.5.

Proof. Fix some ¢ > 0 such that (¢ — 1)¢- f € Ajps.

First, we prove that f is meromorphic on X with poles contained in B.
For this, we may work with each affinoid open neighbourhood U of z. € X
separately. For any such U, the intersection B N U is finite, so our task is
to show that f becomes entire on U after multiplication by an element of &
with zeroes only at BNU. But 75 (UNB)NV(q—1) C Y is a finite subset
of {yn}tn>1. For any y € 7~1(U N B), the extension Oy r(,) — Oy, is an
extension of discrete valuation rings with finite ramification index. We may
thus choose g € & whose valuation in Oy, exceeds that of (¢ — 1)¢ for each
y € 7 (U N B). By our choice of ¢, it follows that gf € &[1/u])) defines
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an entire function on 7~1(U) C Y. By [23, Definition 2.2.13, Lemma 2.3.5,
Remark 2.3.8|, it follows that ¢f is analytic on U. As this holds true for all
U, we conclude that f is meromorphic on X with poles in B.

Next, we observe that f only has poles in B’ C B. Indeed, for any
T, € B, the preimage 7! (x,) intersects V(g — 1) in the singelton {¢"(yc)}.
If 2, € B— B’, the 7~ !(z,,) must have at least one point 3/ € Y — V(g — 1)
by definition of B’. But f is entire on Y — V(¢ — 1), so f is entire at ¢, and
thus also at 2, = w(y) (e.g., by comparing the map on local rings).

Combining the previous two paragraphs, we can find some g € & with
zeroes only at points of the finite set B’ such that gf is entire on X. It
remains to check that gf is entire at z¢.ys as well, i.e., lies in &. For this,
we first observe that gf € Aj,r by Lemma 7.6. It then suffices to show that
S = &[1/u]y N Ajnr as subrings of W (C"), i.e., that the map

6 — 6[1/U] XW(C") Ainf

induces an isomorphism on H°. As W (C?)/&[1/ ul is p-torsionfree, one can
check the above statement after reducing modulo p, where it reduces to
showing the bijectivity of

k[u] = k((u)) N Ocs,

which is clear for valuative reasons. O

The following example shows that the functions f appearing in Lem-
ma 7.7 may indeed have some poles.

Example 7.8. Let K = Q,(p'/?) and 7 = p'/?, so E(u) = u? — p. By
construction, the embedding & — Aj,s carries E(u) to a generator of ker(6),
i.e., to a unit multiple of [p],. Twisting by Frobenius, this map sends u — p
to a unit multiple of [p],i/». In particular, we have (u — p) | (g —1) € Ains,

whence f := %p € Amf[ 7). We also have f € &(p/u?)[1/u] as we can
write
1 1
u—p u (p/u2 7;) (/e
In particular, this function f € &[-1 5| lies in S&{p/u)[1/u] N Amf[%] and

has a pole of order 1 at ;.

We can now prove the desired full faithfulness theorem for the étale
realization over G:

Proof of Theorem 7.2. By passing to a suitable internal Hom, it suffices to
show the following: for any M € Vect¥ (&), the natural map
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MP= s (M[L/E@)) 7

is bijective. Injectivity is clear as M is finite free over &. For surjectivity, fix
some o € (M[I/E(u)]ﬁ)w_l. By [8, Lemma 4.26], we know that the image of

ain (M®e Aint)[1/E(u))y = M@eW/(C”) lies inside M @g Ajnt[ 7] Using
Lemma 7.7 as well as the fact that G is a UFD, we can then write o = 3/g
with 8 € M and g € & having zeroes only at points of B = {z,,}n>1 (and in
fact at points of finite set B’ C B, but this will not simplify the argument).
We shall check that o € M. Since g only has zeroes in B, it suffices to show
that o € M7} for all m > 1.

Regard ¢ps as an isomorphism ¢ps @ (@*M)[1/I] ~ M[1/I]. Iterating r
times for r > 1, this gives isomorphisms

Py M ®e,or S[1/1r] = (" M)[1/1;] ~ M[1/1,],

where I, = Ip(I)...¢"*(I). The defining property ¢a(a ® 1) = a iterated
r times then gives the equality

Pu(Bel) = %@5 € M[1/I,] ¥r>0.

As the ideals I, for all r > 1 are invertible at the points xz,,, for all m > 1, it
follows that

,

05 e n,

g
for all » > 1 and m > 1. But ¢"(g) is invertible at x,, for r > 0 (depending
on m): the function g has only finitely many poles, and applying ¢(—) moves
a pole at z to a pole at xp_ for all k € Z. It follows from the above that
o= g € M} for all m > 1, as wanted. O

7.2. Kisin’s full faithfulness results

In this section, we prove two full faithfulness results originally shown in [26].
First, we relate crystalline G -representations of F-crystals over & using
Theorem 5.6:

Theorem 7.9 (Kisin [26, Corollary 1.3.15]). Consider the functor
Dg : Rep;ZS(GK) — Vect?(6)

obtained by postcomposing the inverse to the equivalence in Theorem 5.6 with
evaluation on the Breuil-Kisin prism (&, E(u)) € X). This functor is fully
faithful.
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The proof below relies on certain simple lemmas from Kisin’s work.
Namely, we rely on the arguments in |26, §1.2.4 - §1.2.8] that use Dwork’s
trick to enlarge the radius of convergence of an isomorphism of ¢-modules
on a disc. We do not use the connection Ny from [26].

Proof. As (6, E(u)) € X) covers the final object, the functor Dg is faithful.
For fullness, we first prove the statement with Q,-coefficients by working near
the Hodge-Tate point, and then pass to integral coefficients by working at
the étale point.

First, we construct a natural functor

D : Vect? (&(1/p)[1/p]) — MF? (),

by undoing Construction 6.5. Given (9, pon) € Vect?(&(I/p)[1/p]), we set
D) = Mg (1/p)[1/p) Ko € Vect(Kp), where the map &(I/p)[1/p] — Ko is
induced from &[1/p]/uS[1/p] ~ Ko[1/p]. As this map is p-equivariant, the
Frobenius ¢gn naturally gives an isomorphism ¢p ) : ¢, D(9N) ~ D(9M),
endowing D () with an F-isocrystal structure. Moreover, since ¢*IM is a
unit p-module over &(I/p)[1/p], the standard Frobenius trick shows that
there is a unique w-equivariant isomorphism

¢ D) @k, SI/p)[1/p] = (" M)(I/p)[1/p] € Vect”(&(I/p)[1/p])

lifting the identity after base change to Ky (see |26, Lemma 1.2.6]). Base
changing now to &[1/pl]}, the Frobenius gy gives an isomorphism

" D) @10, S[1/pI} [1/T] = M s 11151 SL/p[1/1]
€ Veet(S[1/pl}[1/1)).

Transporting the I-adic filtration on 9 @& 1 /p)p1/p S[1/p]7 along this iso-
morphism and taking its image down along

©* D) @k, S[1/p]} =% o*D(M) @k, K =: D(M) @k, » K

then gives a natural filtration Fil* on D(IM) ®,,, K. The triple (D(M),
©p(om), Fil*) then defines an object of MF¥ (K ), yielding the promised functor
D. Note that since D(9) naturally recovers ¢*9, the functor D is faithful.
Moreover, it is easy to see (see |26, Proposition 1.2.8|) that the functor D(—)
provides a left-inverse to the composition of the functor D +— M(D)/p)
from Construction 6.5 with evaluation over &.
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Now consider the composition

Rep*(G)[1/p) 225 Veet#(&)[1/p

—Ee S U, Neet? (&(1/p)(1/p]) B> MF#(K).

Unwinding definitions and using the last sentence in the previous paragraph,
this composition coincides with Fontaine’s functor Dy and is thus fully
faithful. On the other hand, each functor in the above composition is faithful:
this was shown in the first paragraph for Dg|[1/p], in the last paragraph for
D, and is clear for the base change functor by injectivity of & — &(I/p)[1/p].
This shows that Dg[1/p] must be fully faithful, proving the theorem up to
inverting p.

It now remains to prove that Dg is itself fully faithful. Fix L,L' €
Rep%rpys(GK) and a map « : Dg(L) — Dg(L'). By the rational version of
the theorem, there exists some n > 0 such that p"a = Dg(a) for a unique
map a : L — L' of Gg-representations. We must show that a is divisible
by p™ as a map of Gg-representations. In fact, it suffices to show divisibility
merely as a map of Z,-modules: the resulting map a/p™ is then automatically
G k-equivariant as a is so. But the forgetful functor Repy,”*(Gk) — Vect(Z,)
factors over Dg: indeed, postcomposing Dg with the étale realization

Vect?(S) — Vect‘p(G[l/E(u)];\) ~ RepZP(GKOC)
gives the obvious restriction map
Repz’"(Gk) — Repg, (Gk..),

which certainly factors the forgetful functor for the left side. It is then clear
that a is divisible by p™ as a map of Z,-modules, as wanted. O

Using the above as well as Theorem 7.2, we deduce the following full
faithfulness result for Galois representations that was conjectured by Breuil
and proven by Kisin:

Corollary 7.10 (Kisin [26, Corollary 2.1.14]). The restriction functor
Repz”*(Gk) — Repz, (Gk..)

1s fully faithful.

An alternative direct proof of this result was also given in [4].
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Proof. We can factor the restriction functor factors as a composition

—®eS[1/E(u)]”

Repy*(G) = Vect?(6) Vect? (S[1/E(u)]")

i> Repr (GKOC )7

where Dg is the fully faithful functor from Theorem 7.9, the base change
functor (— ®g S[1/E(u)]") is fully faithful by Theorem 7.2, and the last
equivalence is from Corollary 3.8. As each constituent functor is fully faithful,
so is the composition. O

Remark 7.11 (Compatibility with Kisin’s work). Strictly speaking, we
haven’t yet shown that the functor in Theorem 7.9 coincides with the one
from [26]. To check this, call the latter Di5. Thanks to Corollary 7.10, to
show Dg ~ Dy, it suffices to show that the two functors

—®e [/ E(w)]"

RepCZrZS(GK) De, Vect?(S) Vect?(S[1/E(u)]")

~

— Repr (GK )7

and

—®eS[1/E(u)]"

Repy?* () -2 Vect?(6) Vect?(&[1/E(u)]")

=, Repz, (Gk..)

are naturally isomorphic. But these are both identified with restriction along
Gk C Gk_ by unwinding definitions, so the compatibility follows.

Remark 7.12 (Liu’s compatibility for different uniformizer choices). Liu’s
paper [29] studies the dependence of the functor Dg from Theorem 7.9 on the
choice of the uniformizer 7. To formulate his theorem, fix two uniformizers
7 and 7' equipped with a compatible system of p-power roots m, 7’ € O%;
write (&4, (E)) and (S, (E')) for the corresponding Breuil-Kisin prisms.
The choices of m, 7’ determine unique §-W-algebra maps &, — A, and
&, — Ajpe. Liu shows the following: for any L € Repgpys(G k), the modules
Dg_(L)®s, Ainf and Dy (L)®e_, Ainf are identified in a (¢, Gk )-equivariant
manner; here the implicit Gx-action on the base change is not automatic
from [26], and in fact is the main result of [28] (but it is already uniquely
determined by the given G i-action on the étale realization). Such results are
now automatic from the prismatic perspective: they follow from the crystal
property of evaluations of prismatic F'-crystals applied to the maps

(S, (E)) = (Aing, ker(0)) < (S, (E))
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in Spf(Ok)p together with the observation that (A, ker(f)) is a G-
equivariant object of Spf(Ox ).

7.3. The logarithmic connection

In this section, we explain (Corollary 7.17) why the &-module attached to
any crystal of vector bundles on X, (without any Frobenius data) car-
ries a natural logarithmic connection after base change to the local ring
S = 6[1/p]£\E(u)) at the Hodge-Tate point. In fact, the connection is di-
rectly obtained from the descent data underlying the crystal: our strategy is
to understand the descent data on the G-module attached to such a crystal
to good enough accuracy for obtaining the logarithmic connection.' To do
so, we first make the relevant rings more explicit:

Construction 7.13 (The prismatic Cech nerve of &). Let &(*) denote the
cosimplicial ring obtained by taking the Cech nerve of (&, E(u)) in X . The
multiplication map on & induces a surjection

py 6% -6

of cosimplicial d-rings (where the target is a constant diagram); write J (*)

S&(®) for the kernel of this map. By construction, there is a natural map
S®l 5 &(®) of cosimplicial rings, where &%l is the i-fold tensor product
of & over W. Each term &) is a transversal prism over X, i.e. {p, E(u)} gives
a regular sequence of length 2 on each &®. (See [1] for the term “transversal
prism”.)

For future use, let us describe the first two terms explicitly. Clearly
S = &. In degree 1, we have

uU—v

6(1) = W[[U, Uﬂ{m}aﬁE(u))

Note that since u=v mod F(u)&W), we also have E(v) =0 mod E(u)&W),
whence E(v)/F(u) € &1 is a unit by the irreducibility lemma on distin-

guished elements, so the right side above can also be described by replacing
E(u) with E(v). By construction, we have

40ne could also construct this log-connection on a larger region stable under
the Frobenius map. For prismatic F-crystals, the resulting log-connection will then
automatically (by functoriality of the construction) commute with the Frobenius.
Kisin [26] shows the uniqueness of such a log-connection, so it agrees with his
construction.
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nfUW—V 1) >
(E(u)) GJA Vn > 0.

It will also be convenient to give a name to the following non-completed
version:
sWne . LAY
oo )
The surjection p restricts to a surjection &) — & with kernel JX)’nC
moreover, &) (resp. J)) can be recovered by (p, E(u))-completion of Gne
1),
(resp. Jz)m).
Construction 7.14 (The logarithmic Cech nerve on the generic fibre). Re-
gard the discrete valuation ring S := 6[1/;0]%@) as an adic ring with the

E(u)-adic topology; endow it with the prelog structure defined by E(u)N
Write S(® for its Cech nerve in the log infinitesimal site of S. There is a
surjective multiplication map

Hlog - S(.) -8

with kernel J(.); note that S is J(.) adically complete, and hence (by
the F(u)-adic completeness of S(*)/ J ~ §) also E(u)-adically complete.

By construction, there is a natural map SOl — S(®) of cosimplicial rings.
Moreover, general nonsense on log infinitesimal cohomology shows that for

each n > 0, each term of the cosimplicial S-module (J(°))”/(J(°))”+1 is free

log log
over S’log/Jl(O.g ~S.
For future use, we make the objects explicit in low degrees. Clearly S(© =

S. In degree 1, we can identify S™) as the completion of W [u, v][1/p,( Ez))ﬂ]

along the kernel of the multiplication map to S.
The crucial result in this section is the following relation:

Lemma 7.15 (Relating the prismatic and logarithmic Cech nerves). There
s a natural map

/)L = St /()
of cosimplicial rings, extendzng the natural map & — S in degree 0.

Proof As p is invertible on the target, it suffices to construct a map out

of &(*)(I/p) as in the lemma. For notational ease, we shall construct the
extension in degree 1, i.e., we extend the canonical map &®1) — §U )/(Jl(olg)2

naturally across G — &1 — & (I /p); a similar argument applies to the
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higher degree terms as well. We shall construct this extension by extending
successively along each map in the composition 8l — gMne 5 (1)
&M (1/p).

To extend to &€ we first observe that u = v mod E(u)S™: indeed,
since (E(u)/E(v))™" exists in SO, both u and v are roots of the separable
polynomial E(T) € Ky[T] in the rlng SW/E(u) and give same element in
the quotient §/F(u) under the multiplication map, so the equality follows by
Hensel’s lemma as SY)/E(u) is complete along the kernel of the multiplica-
tion map to K = S/E(u). Since E(u) is a nonzerodivisor on S, it follows
( ) e SM. Moreover, " E(u) gives a unit in K for n > 1, and hence is

also a unit in the pro-infinitesimal thickening S — & — K. Consequently,
we have {¢" < )}n>0 e SMW. As p is invertible in SW, it follows that we

also have {§" <%> Fnso € SW. As ()¢ is generated over G2 by these
elements subject to the “obvious” relations, we obtain an induced map

sWme _y g(1)

factoring the canonical map &% — Sl(cg.

Next, we extend to &), For this, observe that the compatibility with the
multiplication map shows that extension constructed in the previous para-
graph carries JEAl)’nC into Jl(olg). Now 6(1)’”C/JE)’”C ~ &, so 6 is obtained
from &(1"¢ by pushing out along the map from JX)’M to its (p, E(u))-
completion. So it suffices to show that the map

1),nc
Jé 10g/< log)

factors over the (p, E(u))-completion of the source. Note that the target
above is a free S-module and hence E(u)-complete. Fixing some k > 1, it
suffices to show that the resulting map

ng)’nc = (Jl(olg)/< log) ) /E< ) = Qk

factors over the p-completion of the source. We may regard this as a map from
non-unital 6®[1]—algebras, where the target (Q; has a square-zero multiplica-

tion. Moreover, Qi is naturally a p-adic Banach vector space over Ky, while

the source is generated by {0" ( £75

)}n>0 as a non-unital G®-algebra. As
the multiplication on @y is square zero, it suffices to show that the image of

the set {§" <“ )}n>0 in the p-adic Banach space Q; is bounded. In fact, to
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prove boundedness, we may ignore finitely many terms, so it suffices to prove
that {0" ( Lt ) }n>c maps to a bounded set in @y, for some ¢ = ¢(k). Observe

that o" (ga’)) and ng” (g(u)> have the same image in Q) for all n > 0:

this follows by induction on n, using the formula §(z) = ¢(x)/p—xP /p as well

as the observation that any element of (Jl(olg? )P maps to 0 in Qf since p > 2.

It is therefore sufficient to check that {#g@” (g&ﬁ)}nkc gives a bounded set
in @ for some ¢ > 0. We then simplify

1n<u_v> u? — o (=) (O i )

Y \Ew )~ prer(Ew) P (E(u))

Now (8(1)/( log) )/E( )¢ is a square-zero extension of S/E(u)* by Qg
and u —v € Qp ¢ SW/E(u)*, so multiplication by u — v gives a map

S/E(u)k — st )/((Jl(olg))2, E(u)*); one checks that this map is bounded. Our

problem then translates to check that {Z"W—E(u

in S/E(u)*. But this 1mage is given by setting u = v, so we are reduced

}n>c has bounded image
to checking that {W}nzc = {W%T(Lu)}nzc is bounded in the Banach

algebra S/FE(u)¥ for some ¢ > 0. As u is power bounded, it is enough to
show that {ﬁ(u)}”zc is bounded for some ¢ > 0. But for any distinguished

element d in a p-local 6-ring A, we have'®
©"(d) =pu mod d°A

for a unit u and ¢ < p™; applying this observation to A = & and d = E(u)
then shows that all elements of {ﬁ(u)}nzbgp(k) have the same absolute

value in S/F(u)¥, which trivially gives boundedness. Thus, we have con-

structed the map &) — ‘S’(l)/(t]l(olg))2 extending the natural map &®[1 —
(1)

S — W/

15This follows from the properties of Joyal’s operations {6, : A — A},>1 on A
extending 6 = d; (see [11, Remarks 2.13, 2.14]). Indeed, these operations satisfy the
following: for any f € A and n > 1, one has

() = 7 A s (F)P 20N 4 D6 (f).

Now if 61 (f) = 6(f) is a unit and A is p-local, it follows that ¢"(f) = pu mod fP" A
for a unit u € A.
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Finally, it remains to extend across (1) — W (E(u) /p). As SD(E(u)/p)

is the p-adic completion of G [E(u)/p] and p is invertible on SU )/(Jl(olg))z,

we may follow the reasomng used in the prev1ous paragraph to reduce to
checking that the set

(S(l)/( lOE.;) )/E( )k for each k > 1. But this is obvious as %ﬁ)" =0in
this algebra for n > k. O

adic Banach algebra

Construction 7.16 (Log connections on S). Write VectY"!°8(S) for the
category of vector bundles M on S equipped with a (continuous) logarithmic
connection V : M — M ®g Q}S log* As Q}S log is a free S-module of rank 1

with generator %, specifying the connection V is equivalent to specifying

an operator Ny = E(u)% : M — M satisfying

Ny (f(uym) = E(u) f'(u)ym + f(u)Ny(m)
for all f(u) € S and m € M.

Corollary 7.17 (From prismatic crystals to log connections). Base changing
along S{I/p)[1/p] = S = &[1/p]} lifts to a functor

Dy : Vect(X )y, Op(Zp/p)[1/p]) — VectV8(S).

Proof. Mimicking the argument in Proposition 2.7, one first checks that
Op(Zp/p)[1/p]-vector bundles can be described explicitly: the natural map
gives an equivalence

lim Vect(&®(1/p)[1/p]) = Vect(Xy, Op(Zp/p)[1/p])-

Indeed, this reduces to the following observation: if A — B is a (p,I)-
completely faithfully flat map of prisms with (p, I)-completed Cech nerve
B*®, then B®*(I/p) is the p-completed Cech nerve of the p-completely flat
ring map A(I/p) — B(I/p), and thus we have the descent equivalence

Vect(A(I/p)[1/p]) =~ lim Vect(B*(I /p)[1/p])

by Theorem 2.2.

Fix a crystal £ € Vect(X),O)(Z)/p)). By the previous paragraph, this
crystal has a value MM = £(6) € Vect(S(I/p)[1/p]). We claim that Mg :=
MRaS € Vect(S) naturally carries a log connection. By general nonsense on
log infinitesimal cohomology, the data of a log connection on Mg € Vect(S)

is exactly a lift of this object to limVect(Sl(O'g) /( 1Og) ); but such a lift is
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provided by base changing £(&(®)) € lim Vect(&(®) (I /p)[1/p]) along the map
from Lemma 7.15, so the claim follows. O
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