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Prismatic F -crystals and crystalline Galois
representations

Bhargav Bhatt and Peter Scholze

Let K be a complete discretely valued field of mixed characteristic
(0, p) with perfect residue field. We prove that the category of
prismatic F -crystals on OK is equivalent to the category of lattices
in crystalline GK -representations.

1. Introduction

Let K be a complete discretely valued field of mixed characteristic (0, p) with
ring of integers OK , perfect residue field k, completed algebraic closure C,
and absolute Galois group GK .

1.1. The main theorem

A fundamental discovery of Fontaine [18] in the study of finite dimensional
Qp-representations of GK is the property of being crystalline; this notion
is an (extremely successful) attempt at capturing the property of “having
good reduction” for such representations, analogous to the property of “be-
ing unramified” in the ℓ-adic case1. For instance, to each crystalline GK-
representation V , Fontaine has attached an F -isocrystal Dcrys(V ) over k of
the same rank as V , thus providing a notion of “special fibre” for such repre-
sentations, thereby solving Grothendieck’s problem of the mysterious func-
tor. The motivating example here comes from2 algebraic geometry: given a

1While the literal definition of unramifiedness certainly makes sense for p-adic
representations of GK , it does not capture the desired phenomena, e.g., the p-adic
cyclotomic character and its nonzero powers are all infinitely ramified, whence,
for X/K smooth projective and i > 0, any nonzero Hi(XC ,Qp) is also infinitely
ramified.

2The assertions in this example were conjectured by Fontaine in [18] as the
“crystalline comparison conjecture”, and were proven by Tsuji [35]. In fact, his work
built on the work of several other people, and many different proofs of the crystalline
comparison conjecture have been given since then as well; we refer to [8, §1.1] for
more on the history of this conjecture.
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proper smooth algebraic variety X/K with good reduction determined by
a proper smooth scheme X/OK extending X/K, each GK-representation
H i(XC ,Qp) is crystalline and Dcrys(H

i(XC ,Qp)) ≃ H i
crys(Xk)Qp

. More-
over, for abelian varieties, one has a converse, giving a p-adic Neron-Ogg-
Shafarevich criterion [13, 32].

In a different direction, to any p-adic formal scheme Y , we functorially
attached in [11] a ringed site (Y∆,O∆) called the (absolute) prismatic site
of Y (Definition 2.3); the sheaf O∆ comes equipped with a Frobenius lift
ϕ as well as an invertible ideal sheaf I∆ ⊂ O∆. The original motivation
for the construction of the prismatic site was the resulting prismatic coho-
mology RΓ(Y∆,O∆) � ϕ, which yields a mechanism to interpolate between
different p-adic cohomology theories attached to Y (such as the p-adic étale
cohomology of the generic fibre or the crystalline cohomology of the special
fibre). Turning attention now towards coefficients, one can study the follow-
ing category of modules (whose definition is inspired by the structures seen
on relative prismatic cohomology via the basic theorems of [11], themselves
inspired by the previous works [8, 9]):

Definition 1.1 (Prismatic F -crystals, Definition 4.1). A prismatic F -crystal
(of vector bundles) on Y consists of a pair (E , ϕE), where E is a vector
bundle on the ringed site (Y∆,O∆) and ϕE is an isomorphism (ϕ∗E)[1/I∆] ≃
E [1/I∆]. We write Vectϕ(Y∆,O∆) for the category of such F -crystals.

Any prismatic F -crystal (E , ϕE) has an étale realization T (E , ϕE) ∈
LocZp

(Yη) as a Zp-local system on the generic fibre Yη ⊂ Y (Construc-
tion 4.8), as well as a crystalline realization as an F -crystal Dcrys(E , ϕE) on
the special fibre Yp=0 ⊂ Y (Construction 4.12); both realizations have the
same rank as E . The picture here is that the presence of a prismatic F -crystal
on Y lifting a given Zp-local system on Yη can be regarded as a candidate
definition of (and in fact a witness for) “a good reduction” of the local system
on Yη. The key example again comes from geometry (Example 4.6).

Specializing now to Y = Spf(OK), we obtain two candidate notions
of “good reduction” for a local system on Yη (or equivalently for p-adic GK-
representations): one via Fontaine’s theory of crystalline GK-representations,
and the other via the notion of prismatic F -crystals on Spf(OK). The main
theorem of this paper is that these perspectives are equivalent:

Theorem 1.2 (Theorem 5.6). The étale realization functor gives an equiv-
alence

(1) TOK
: Vectϕ(Spf(OK)∆,O∆) ≃ RepcrysZp

(GK),
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where the target denotes the category of finite free Zp-modules T equipped with
a continuous GK-action such that T [1/p] is a crystalline representation.

There were multiple motivations for pursuing Theorem 1.2. First, the
data of a prismatic F -crystal on Spf(OK) is a rather elaborate piece of
structure, so Theorem 1.2 can be regarded as an elucidation of some new
properties of crystalline GK-representations. Secondly, the property of being
crystalline for a GK-representation is essentially a rational concept that car-
ries little meaning, e.g., for Z/pn-representations. On the other hand, there
is a perfectly sensible notion of a prismatic F -crystal over Spf(OK) with
O∆/p

n-coefficients; accordingly, we expect Theorem 1.2 to be the first step3

towards a well-behaved theory of torsion crystalline GK-representations.
We prove Theorem 5.6 by quasi-syntomic descent along the map Y =

Spf(OC) → X = Spf(OK). The essential ingredient (which is the subject of
§6) is the construction of a prismatic F -crystal M(L) over X lifting a given
crystalline Zp-representation L under the functor TOK

. This construction in-
volves two steps. First, we construct N := M(L)|Y by mimicking arguments
from [26], thus relying crucially on Kedlaya’s slope filtrations theorem [22]
through an observation of Berger [6]. Having constructed N, we construct a
descent isomorphism p∗1N ≃ p∗2N over Y × Y satisfying the cocycle condi-
tion; this descent isomorphism is the primary new structure on crystalline
representations constructed here. Its construction is complicated by the very
inexplicit nature of the ring ∆OC⊗̂OK

OC
over which the descent isomorphism

occurs. An essential input here is the Beilinson fibre sequence [3]. The ver-
sion of the Beilinson fibre sequence that we use states that for a torsionfree
p-complete ring R, there is a fibre sequence of spectra

TC(R)∧p [
1
p ] → TC(R/p)∧p [

1
p ] → HC(R)∧p [

1
p ].

If, for example, R = OCp
, then all three spectra that occur are concentrated

in even degrees; via the comparisons between topological cyclic homology

3Actually, the notion of prismatic F -crystals over OK , while adequate for the
equivalence of Theorem 1.2, is not quite the correct notion in more general settings,
e.g., with Z/pn-coefficients or in the derived category. A basic problem is that a
prismatic F -crystal (E , ϕE) does not come equipped with bounds on the zeroes/poles
of the isomorphism ϕ∗E [1/I∆] ≃ E [1/I∆] along the locus I∆ = 0. Instead, we expect
that the correct objects to consider are perfect (or pseudocoherent) complexes over
Drinfeld’s stack Σ′′ (or, rather, its variant over OK) from [15]. Those complexes,
whose definition draws inspiration from the Fontaine-Jannsen theory of F -gauges
[19], can be roughly regarded as prismatic F -crystals in perfect complexes where
one has bounded the zeroes/poles of the Frobenius by also keeping track of the
Nygaard filtration.
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and p-adic Hodge theory, applying π2n then gives a short exact sequence

0 → Qp(n) → (B+
crys)

ϕ=pn → B+
dR/Fil

n → 0,

i.e. the usual fundamental exact sequence of p-adic Hodge theory. Our use of
the Beilinson fibre sequence will be for quasiregular semiperfectoid rings R,
where again the terms can be made explicit in terms of prismatic cohomology.

1.2. Relation to theory of Breuil-Kisin modules

Theorem 1.2 has some antecedents in the literature, most notably in the work
of Kisin [26]. To explain the connection to Kisin’s results, fix a uniformizer
π ∈ OK , giving rise to a W (k)-algebra surjection S := W (k)�u�

ϕ−→ OK with
kernel I = (E(u)) generated by an Eisenstein polynomial E(u); endow S

with the unique Frobenius lift ϕ : S → S determined by ϕ(u) = up. Then
Kisin proved the following:

Theorem 1.3 (Kisin’s [26, Theorem 0.1], Theorem 7.9). There is a fully
faithful embedding

DS : RepcrysZp
(GK) → Vectϕ(S)

where the target is the category of F -crystals over (S, I), defined as in Def-
inition 1.1 after replacing (O∆, ϕ, I∆) with (S, ϕ, I) and denoted Modϕ

S
in

[26].

The connection between Theorem 1.3 and Theorem 1.2 is the following:
the pair (S, I), which is an example of a Breuil-Kisin prism, gives an object
of Spf(OK)∆ that covers the final object (Example 2.6). Thus, there is a
natural faithful “evaluation” functor

Vectϕ(Spf(OK)∆,O∆)
ev(S,I)−−−−→ Vectϕ(S).

The functor DS in Theorem 1.3 is then obtained by composing the inverse
of the equivalence TOK

in Theorem 1.2 with the evaluation functor ev(S,I)

above4. Realizing the functor DS via the equivalence TOK
in this fashion

4In fact, our methods allow us to prove full faithfulness assertion in Theorem 1.3
as well. But this not a completely new proof of the latter as we use some of the same
ideas as [26]. In particular, like [26], we rely on Berger’s observation [6] translating
weak admissibility of filtered ϕ-modules to a boundedness condition for an auxiliary
module over an extended Robba ring; unlike [26], we apply this observation directly
over Ainf .
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has some concrete consequences. For instance, the target of the functor DS

depends on the choice of the uniformizer π, while the equivalence TOK
is

completely canonical; factoring the former over the latter then immediately
yields a certain “independence of the uniformizer” result for the latter that
was shown by Liu [29] (see Remark 7.12). More conceptually, lifting an object
of Vectϕ(S) to a prismatic F -crystal over OK has an intrinsic meaning in the
prismatic theory: as (S, I) covers the final object of Spf(OK)∆, such a lift
determines and is determined by descent data over the self-coproduct S(1) of
(S, I) with itself in Spf(OK)∆. This interpretation of the essential image of
DS can be roughly regarded as an integral avatar of Kisin’s result describing
the essential image of DS[1/p] in terms of the existence of certain logarithmic
connections on the open unit disc; see §7.3 for more on the relation between
the two notions.

Kisin used Theorem 1.3 to establish the following conjecture of Breuil
[12] on Galois representations.

Theorem 1.4 (Kisin’s [26, Theorem 0.2], Theorem 7.10). Let K∞/K be the
extension of K obtained by adjoining a compatible system of p-power roots
of the uniformizer π inside C. The restriction functor

RepcrysQp
(GK) → RepQp

(GK∞
)

is fully faithful.

We give an alternative proof of this result in this paper. Granting what
was already explained above, the essential remaining point is to show that
the base change functor

Vectϕ(S)
−⊗SS[1/u]∧p−−−−−−−−→ Vectϕ(S[1/u]∧p )

is fully faithful, where the target is the category of finite free S[1/u]∧p -
modules M equipped with an isomorphism ϕ∗M ≃ M (where we note that
E(u) is invertible in S[1/u]∧p ). We give a direct argument (Theorem 7.2)
for this full faithfulness by comparing S to Fontaine’s period ring Ainf ; the
main new idea is to observe and exploit a certain orthogonality property of
the Kummer tower K∞/K with the cyclotomic extension K(μp∞)/K that
manifests itself via the behaviour of certain elements of Ainf coming from
each of these towers (Lemmas 7.6 and 7.7).

We expect that Theorem 1.2 should extend to the semistable case, pro-
vided one replaces the prismatic site with the log prismatic site of Koshikawa
[27], and moreover that the resulting theorem ought to be related to [28] in
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the same way Theorem 1.2 was related to [26]. However, we do not pursue
this direction here5.
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2. The absolute prismatic site and the quasi-syntomic site

In this section, we introduce the absolute prismatic site (Definition 2.3), and
explain how to describe vector bundles (with respect to various sheaves of
rings) on this site explicitly in terms of modules over prisms (Proposition 2.7).
For future use, it will also be important to have a description of these bundles
in terms of the quasi-syntomic site (Definition 2.9), so we record such a
description in Proposition 2.14.

Notation 2.1 (Vector bundles and perfect complexes on a ringed topos).
Say (X ,O) is a ringed topos.

A vector bundle on (X ,O) is an O-module E such that there exists a
cover {Ui} of X and finite projective O(Ui)-modules Pi such that E|Ui

≃
Pi ⊗O(Ui) OUi

. Write Vect(X ,O) for the category of all vector bundles. Note

5Since the appearance of the first version of this paper, this goal was realized in
[16], which also gives a new proof of Theorem 1.2.
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that Vect(X ,O) can also be defined as the global sections over X of the
sheafification of the presheaf of categories on X given by U �→ Vect(O(U)).

A perfect complex on (X ,O) is an object E ∈ D(X ,O) such that there
exists a cover {Ui} of X and perfect complexes Pi ∈ D(O(Ui)) such that
E|Ui

≃ Pi⊗O(Ui)OUi
. Write Dperf(X ,O) ⊂ D(X ,O) for the full subcategory

of perfect complexes. If X admits a basis of O-acyclic objects (i.e., objects V
with RΓ(V,O) ≃ O(V )), then Dperf(X ,O) can also be defined as the global
sections over X of the sheafification of the presheaf of ∞-categories on X
given by U �→ Dperf(O(U)); this will be the case in all our applications.

To understand vector bundles with respect to certain “Banach-style”
sheaves on the prismatic site, it will be quite convenient to use the follow-
ing general descent theorem, generalizing known descent results for coherent
sheaves in rigid geometry.

Theorem 2.2 (Drinfeld-Mathew, [30, Theorem 5.8]). Let R be a connec-
tive E∞-ring, and let I ⊂ π0(R) be a finitely generated ideal. Consider the
following functors defined on the ∞-category of connective E∞-R-algebras:

1. S �→ Dperf(Spec(S
∧
I )− V (IS)).

2. S �→ D−
coh(Spec(S

∧
I )− V (IS)).

3. S �→ Vect(Spec(S∧
I )− V (IS)).

Each of these functors is a sheaf for the I-completely flat topology.

We remark that the same result also applies to Dperf(S
∧
I ), D

−
coh(S

∧
I ) and

Vect(S∧
I ), i.e. without inverting I. In that case, the result is easy, as all ∞-

categories are equivalent to the limit of the corresponding ∞-categories for
quotients of S on which I is nilpotent (where one can apply usual faithfully
flat descent); see [1, Appendix A] for the proof in case of vector bundles.

The main object of study in this article is the following site, introduced
in [11, Remark 4.7].

Definition 2.3 (The absolute prismatic site). Given a p-adic formal scheme
X, we write X∆ for the opposite of the category of bounded prisms (A, I)
equipped with a map Spf(A/I) → X; we endow X∆ with the topology
induced by the flat topology on prisms and refer to it as the absolute prismatic
site of X. Write O∆ for the structure sheaf, and I∆ ⊂ O∆ for the ideal sheaf
of the Hodge-Tate divisor.

Remark 2.4. The topos Shv(X∆) is replete in the sense of [10]: this follows
as an inductive limit of faithfully flat maps of prisms is a faithfully flat map
of prisms. In particular, derived inverse limits behave well, so one has O∆ ≃
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R limO∆/(p
n, In

∆
) since we have A ≃ R limA/(pn, In) for any bounded prism

(A, I); similar assertions hold true for the variants O∆[1/p]
∧
I∆

or O∆[1/I∆]
∧
p .

Example 2.5 (The prism of a qrsp ring). If X = Spf(R) for R quasiregular
semiperfectoid as in [9, Definition 4.20], then X∆ has final object given by
the prism ∆R of R by [11, Proposition 7.10].

Example 2.6 (The Breuil-Kisin and Ainf -prisms over OK). Let K/Qp be
a discretely valued extension with perfect residue field k. We shall construct
two examples of objects in Spf(OK)∆; both examples give covers of the final
object of the topos.

1. (Breuil-Kisin prisms) Choose a uniformizer π ∈ OK . Writing W =
W (k) and S = W �u�, we obtain a surjection S → OK with kernel
generated by an Eisenstein polynomial E(u). Endowing S with the
δ-structure determined by the Witt vector Frobenius on W (k) and
ϕ(u) = up, the pair (A, I) = (S, (E(u)) gives an object of Spf(OK)∆.

Moreover, we claim that (A, I) covers the final object of
Shv(Spf(OK)∆); one can deduce this by mapping (A, I) to the Ainf -
prism and deducing the claim from the analogous property for the Ainf -
prism (see part (2) of this example), but we give a direct argument.
Fix an object (B, J) ∈ Spf(OK)∆ with structure map OK → B/J .
We shall construct a faithfully flat map (B, J) → (C, JC) of prisms
such that there exists a map (A, I) → (C, JC) in Spf(OK)∆; this will
prove the claim. By standard deformation theory, there is a unique W -
algebra structure on all objects in sight. Pick v ∈ B lifting the image
of π ∈ OK under the structure map OK → B/J ; note that π generates
OK as a W -algebra. We then define C as a suitable prismatic envelope:

C = (A⊗W B){u− v

J
}∧(p,J) = B[u]{u− v

J
}∧(p,J).

By [11, Proposition 3.13], this gives a (p, J)-completely flat δ-B-alge-
bra, so (C, JC) is a flat cover (B, J); we shall check that this does
the job. Since u ≡ v mod JC, we also have E(u) ≡ E(v) mod JC,
whence E(u) ∈ JC since E(v) ∈ JB as E(π) = 0 in OK . By the
irreducibility lemma ([11, Lemma 2.24]) for distinguished elements, it
follows that E(u)C = JC. Thus, the natural map A → C extends
to a map of prisms (A, I) → (C, JC). Moreover, the two resulting
compositions OK ≃ A/I → C/JC and OK → B/J → C/JC are the
same (they carry the generator π ∈ OK to the same element u = v ∈
C/JC), so the map (A, I) → (C, JC) is indeed a map in Spf(OK)∆,
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proving the desired covering property. In fact, one can check that the
object (C, JC) thus constructed is the coproduct of (A, I) and (B, J)
in the category Spf(OK)∆.

2. (The Ainf -prism) Fix a completed algebraic closure C/K. Then OC is
perfectoid, so ∆OC

determines an object of Spf(OK)∆ via restriction
of scalars along OK → OC . Using the fact that OK → OC is a quasi-
syntomic cover as well as the lifting result in [11, Proposition 7.11], it
follows that ∆OC

covers the final object of the topos Shv(Spf(OK)∆).
Note that this construction will be used (and in fact generalized and
elucidated) in the proof of Proposition 2.14.

Both the above examples will feature prominently in the rest of the paper.

Proposition 2.7 (Describing vector bundles and perfect complexes on X∆

explicitly). Let X be a p-adic formal scheme. There is a natural equivalence

(2) lim
(A,I)∈X∆

Vect(A) ≃ Vect(X∆,O∆).

A similar assertion holds true with Dperf(−) replacing Vect(−). Moreover,
analogous statements hold true if O∆ is replaced by O∆[1/p]

∧
I∆

or O∆[1/I∆]
∧
p .

Proof. The object on the right in (2) can regarded as the global sections of
the stackification of the assignment (A, I) �→ Vect(A) on (A, I) ∈ X∆. Thus,
we must show this assignment is already a sheaf for the flat topology. This
follows by (p, I)-completely faithfully flat descent for vector bundles, see the
lines following Theorem 2.2. The same argument also applies to Dperf(−)
replacing Vect(−).

Next, let us explain the descent claim for O∆[1/p]
∧
I∆

; the claim for

O∆[1/I∆]
∧
p is analogous. For the functor Dperf(−), we may argue by de-

vissage modulo powers of I∆, so it suffices to show

lim
(A,I)∈X∆

Dperf(A/I[1/p]) ≃ Dperf(X∆,O∆/I∆[1/p]).

Arguing as in the previous paragraph, the claim follows from Theorem 2.2
(1). The statement for vector bundles is then deduced by observing that
given a commutative ring R that is derived J-complete with respect to a
finitely generated ideal J , an object E ∈ Dperf(R) lies in Vect(R) if and only
if E ⊗L

R R/J ∈ Dperf(R/J) lies in Vect(R/J).

Example 2.8 (Describing vector bundles on Spf(OK)∆ via Breuil-Kisin
prisms). Keep notation as in Example 2.6. Then we have a descent equiva-
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lence

Vect(Spf(OK)∆,O∆) ≃ limVect(A•)

≃ lim
(
Vect(A0) Vect(A1) Vect(A2)

)

where (A•, I•) is the cosimplicial object of Spf(OK)∆ obtained by taking the
Cech nerve of (A, I) over the initial object. As A0 = A, this equivalence shows
that lifting a finite projective A-module M to a crystal of vector bundles on
Spf(OK)∆ entails specifying a descent isomorphism p∗1M ≃ p∗2M over A1

satisfying the cocycle condition over A2; see also Construction 7.13 for an
explicit description of A1 (denoted S

(1) there).

We next relate the prismatic site to the quasi-syntomic one, see also [1].

Definition 2.9 (The quasi-syntomic site). For a quasi-syntomic p-adic for-
mal scheme X, write Xqsyn for the opposite of the category of quasi-syntomic
maps η : Spf(R) → X, endowed with the quasi-syntomic topology (see [9,
Definition 4.1, Variant 4.35]); we call this the quasi-syntomic site of X. Write
Xqrsp ⊂ Xqsyn for the full subcategory spanned by η : Spf(R) → X with R
semiperfect modulo p and admitting a map from a perfectoid ring (or equiv-
alently with R qrsp, see [9, Definition 4.20, Variant 4.35]). By [9, Proposition
4.31, Variant 4.35], restricting sheaves induces an equivalence

Shv(Xqsyn) ≃ Shv(Xqrsp),

which we can use to define sheaves on Xqsyn. In particular, the assignment
carrying (η : Spf(R) → X) ∈ Xqrsp to ∆R gives a sheaf ∆• of rings on Xqsyn;
write I ⊂ ∆• for the ideal sheaf of the Hodge-Tate divisor.

Remark 2.10. The topos Shv(Xqsyn) is replete: this follows as an induc-
tive limit of quasi-syntomic covers is a quasi-syntomic cover. Thus, one has
analogs of the assertions in Remark 2.4 with the triple (X∆,O∆, I∆) replaced
by (Xqsyn,∆•, I).

Remark 2.11. If X is a quasi-syntomic p-adic formal scheme and R ∈
Xqsyn, then R is itself a quasi-syntomic ring. In particular, if R is qrsp, then
∆R is a bounded prism.

Example 2.12. If X = Spf(R) for R quasiregular semiperfectoid, then
Xqrsp has a final object given by R itself.

Proposition 2.13 (Describing vector bundles and perfect complexes on
Xqsyn explicitly). Let X be a quasi-syntomic p-adic formal scheme. Then
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there is a natural equivalence

lim
R∈Xqrsp

Vect(∆R) ≃ Vect(Xqsyn,∆•).

A similar assertion holds true with Dperf(−) replacing Vect(−). Moreover,
analogous statements hold true if ∆• is replaced with ∆•[1/p]

∧
I or ∆•[1/I]

∧
p .

Proof. As Xqsyn and Xqrsp give the same topos, we may replace Xqsyn with
Xqrsp in all assertions. In this case, the claim follows by similar arguments
to the ones in Proposition 2.7.

Proposition 2.14 (Relating X∆ and Xqsyn). Let X be a quasi-syntomic
p-adic formal scheme. Then there is a natural equivalence

(3) Vect(X∆,O∆) ≃ Vect(Xqsyn,∆•).

A similar assertion holds true with Dperf(−) replacing Vect(−). Moreover,
analogous statements hold true if O∆ is replaced by O∆[1/p]

∧
I∆

or O∆[1/I∆]
∧
p ,

and ∆• is correspondingly replaced with ∆•[1/p]
∧
I or ∆•[1/I]

∧
p .

Proof. We give the argument for (3); the rest of the statements follow sim-
ilarly. Using [9, Proposition 4.31, Variant 4.35], it suffices to prove the as-
sertions with Xqsyn replaced by Xqrsp. By Zariski descent for both sides, we
may assume X = Spf(R) is affine. In the rest of the proof, we use affine
notation, so Rqrsp is a category of R-algebras (rather than its opposite), etc.

There is a natural functor ∆(−) : Rqrsp → R∆ determined by S �→ ∆S .
Using the initiality of ∆S ∈ S∆ for qrsp S, this functor satisfies the following
universal property: for any (A, I) ∈ R∆, we have

HomR−alg(S,A/I) ≃ HomR∆
(∆S , (A, I)).

In particular, the functor ∆(−) commutes with finite non-empty coproducts.
Moreover, it follows from [11, Proposition 7.11] that if S ∈ Rqrsp is a cover
of R (i.e., p-completely faithfully flat over R), then ∆S ∈ R∆ determines a
cover of the final object of Shv(X∆).

We can now prove the proposition. Choose a quasi-syntomic cover R → S
with S qrsp. Write S• for the Cech nerve of R → S, so we have

Vect(Rqsyn,∆•) ≃ limVect(∆S•)

by Cech theory in Rqsyn. Moreover, the observations in the preceding para-
graph and Cech theory in R∆ then show that the right side is also
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Vect(R∆,O∆), giving the equivalence in the theorem. To check this equiva-
lence is independent of the choice of S, one can either use that the category
of all R → S as above has finite non-empty coproducts and is thus sifted,
or one can note that the remarks in the previous paragraph show that ∆(−)
determines a map

ν : (Shv(X∆),O∆) → (Shv(Xqsyn),∆•)

of ringed topoi, with the desired equivalence being induced by ν∗.

3. Local systems on the generic fibre via the prismatic site

The goal of this section is to explain how Zp-local systems on the generic
fibre of a p-adic formal scheme X can be regarded as certain F -crystals
on X∆ (Corollary 3.8). In fact, this relationship, which ultimately comes
from Artin-Schreier theory, is quite robust and extends to an equivalence of
derived categories (Corollary 3.7).

Notation 3.1. For a bounded p-adic formal scheme X,6 we write Xη for
the generic fibre of X, regarded as a presheaf on perfectoid spaces over Qp

(that is in fact a locally spatial diamond, see [33, Section 15]). We shall

use D
(b)
lisse(Xη,Zp) to denote the full subcategory of D(Xη,proet,Zp) spanned

by locally bounded objects which are derived p-complete and whose mod
p reduction has cohomology sheaves that are locally constant with finitely
generated stalks. We will use that the association X �→ D

(b)
lisse(Xη,Zp) defines

a sheaf of ∞-categories for the quasisyntomic topology on X, as follows from
the v-descent results in [33] (and the observation that any quasisyntomic
cover of X induces a v-cover of Xη).

For the following definition, recall that for a prism (A, I), even while I
is not ϕ-stable, there is still a Frobenius on the p-adic completion A[1/I]∧p –
for this it suffices that ϕ(I) ≡ Ip modulo p.

Definition 3.2 (Laurent F -crystals). Fix a bounded p-adic formal scheme
X. We define

Dperf(X∆,O∆[1/I∆]
∧
p )

ϕ=1 = lim
(A,I)∈X∆

Dperf(A[1/I]∧p )
ϕ=1.

6Recall that “bounded” means that it is locally of the form Spf(R) where R
is bounded in the sense that the p-primary torsion R[p∞] has bounded exponent;
cf. [11, Definition 3.2 (2)].
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Thanks to Proposition 2.7, this is the ∞-category of pairs (E,ϕE), where E
is a crystal of perfect complexes on (X∆,O∆[1/I∆]

∧
p ) and ϕE : ϕ∗E ≃ E is

an isomorphism. Similarly, we set

Vect(X∆,O∆[1/I∆]
∧
p )

ϕ=1 = lim
(A,I)∈X∆

Vect(A[1/I]∧p )
ϕ=1

to be the category of crystals of vector bundles E on (X∆,O∆[1/I∆]
∧
p )

equipped with isomorphisms ϕE : ϕ∗E ≃ E. We shall informally refer to
these objects as Laurent F -crystals on X∆; the name F -crystal will be re-
served for a more restrictive notion.

Remark 3.3. If X is a scheme of characteristic p, then any prism (A, I) ∈
X∆ must have I = (p), whence A[1/I]∧p = 0. Thus, O∆[1/I∆]

∧
p = 0 and

Dperf(X∆,O∆[1/I∆]
∧
p )

ϕ=1 = 0 as well.

To study Laurent F -crystals, we use what is often called Artin–Schreier–
Witt theory, in the following form.

Proposition 3.4 (The Riemann-Hilbert correspondence for Fp-local sys-
tems in characteristic p). Let S be a commutative Fp-algebra. Then exten-
sion of scalars along Fp → OSpec(S),et and taking Frobenius fixed points give
mutually inverse equivalences

Db
lisse(Spec(S),Fp) ≃ Dperf(S)

ϕ=1.

This proposition is well-known, but we do not know a reference written
in the above generality. The special case for vector bundles was proven by
Katz [21, Proposition 4.1.1] (for some reason, he makes the assumption that
the ring is normal, but that is never used).

Proof. For full faithfulness, by finite étale descent for both sides, we reduce to
the checking the statement for endomorphisms of the constant sheaf, which
follows from the Artin-Schreier sequence. To show essential surjectivity, fix
(E,α) ∈ Dperf(S)

ϕ=1, i.e., E ∈ Dperf(S) is a perfect S-complex and α :
ϕ∗E ≃ E is an isomorphism. We must show that (E,α) lies in the essential
image of the extension of scalars functor considered in the proposition.

We claim that each H i(E) is a vector bundle. By descending induc-
tion, it suffices to show the claim for the highest non-zero cohomology group
Hn(E), which is finitely presented as E is a perfect complex. Now the claim
is [25, Proposition 3.2.13], but for the reader’s convenience we include an
argument. By noetherian approximation, we may assume S is noetherian.
As the property of being a vector bundle can be detected locally, we may
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assume S is a local noetherian ring. The map α induces an isomorphism
ϕ∗Hn(E) ≃ Hn(E). But then any Fitting ideal J ⊂ S of Hn(E) satisfies
J = ϕ(J)S, which forces J ∈ {0, S} by Krull’s intersection theorem. It
follows that Hn(E) is a vector bundle, as asserted.

As each H i(E) is a vector bundle and we have already shown full faith-
fulness, it suffices to prove the essential surjectivity claim in the proposition
for each cohomology group separately, so we may assume E is itself a vector
bundle, in which case the result follows from (the proof of) [21, Proposition
4.1.1], see also [25, Proposition 3.2.7].

Example 3.5 (Laurent F -crystals over a qrsp). Let X = Spf(R) with R a
qrsp ring. Then X∆ has an initial object determined by the prism (∆R, I) of
R. Consequently, we learn that

Dperf(X∆,O∆[1/I∆]
∧
p )

ϕ=1 = Dperf(∆R[1/I]
∧
p )

ϕ=1.

If we further assume that R is perfectoid, then we can identify ∆R[1/I]
∧
p ≃

W (R♭[1/I]). The Riemann-Hilbert correspondence in Proposition 3.4 as well
as the tilting equivalence imply that the ∞-category above identifies with
the derived ∞-category Db

lisse(Xη,Zp) of lisse Zp-sheaves on the generic fibre
Xη = Spa(R[1/p], R).

Proposition 3.6 (Invariance of unit F -crystals under completed perfec-
tions). Let R be a ring of characteristic p containing an element t such that
R is derived t-complete. Let S = (Rperf)

∧
t denote the t-completed perfection

of R. The base change functors

Dperf(R[1/t])ϕ=1 a−→ Dperf(Rperf [1/t])
ϕ=1 b−→ Dperf(S[1/t])

ϕ=1

are equivalences.

Proof. The functor a is an equivalence by Proposition 3.4 and the topolog-
ical invariance of the étale site. The full faithfulness of b ◦ a (and thus b)
follows from [11, Lemma 9.2] as perfect complexes over R are automatically
derived t-complete. Using Proposition 3.4 for S and the full faithfulness of
b ◦ a, it suffices to check that every lisse Fp-sheaf on Spec(S[1/t]) is pulled
back from Spec(R[1/t]). But this follows form the Elkik(-Gabber-Ramero)
approximation [20, Proposition 5.4.54], which ensures that the R[1/t] and
S[1/t] have isomorphic fundamental groups.

Corollary 3.7 (Zp-local systems as Laurent F -crystals). Let X be a bounded
p-adic formal scheme over Zp with generic fibre Xη. Then extension of scalars
gives an equivalence
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Dperf(X∆,O∆[1/I∆]
∧
p )

ϕ=1 ≃ Dperf(X∆,O∆,perf [1/I∆]
∧
p )

ϕ=1.

Moreover, the target identifies with the locally constant derived category

D
(b)
lisse(Xη,Zp)

of the generic fibre Xη.

Proof. For the first part, by the definition of both sides as limits, it suffices
to show the following: for any bounded prism (A, I) with perfection (B, J),
the pullback

Dperf(A[1/I]∧p )
ϕ=1 → Dperf(B[1/J ]∧p )

ϕ=1

is an equivalence. By devissage, it is enough to show the same mod p, where
it follows from Proposition 3.6. The identification with D

(b)
lisse(Xη,Zp) then

follows from Example 3.5 and descent.

Corollary 3.8 (Qp-local systems as Laurent F -crystals up to isogeny). Let
X be a bounded p-adic formal scheme with generic fibre Xη. Then there is a
natural equivalence

Vect(X∆,O∆[1/I∆]
∧
p )

ϕ=1 ≃ LocZp
(Xη).

Inverting p gives a natural equivalence

Vect(X∆,O∆[1/I∆]
∧
p )

ϕ=1 ⊗Zp
Qp ≃ LocZp

(Xη)⊗Zp
Qp.

Proof. The second part follows from the first one by inverting p. The first
part follows by the same argument used in Corollary 3.7.

Remark 3.9. In the second equivalence of Corollary 3.7, both sides admit
natural enlargements:

1. We have a fully faithful embedding

Vect(X∆,O∆[1/I∆]
∧
p )

ϕ=1 ⊗Zp
Qp ⊂ Vect(X∆,O∆[1/I∆]

∧
p [1/p])

ϕ=1.

If X is an Fp-scheme, this embedding is an equivalence as both cate-
gories are trivial. In the mixed characteristic case, however, this em-
bedding is essentially never an equivalence. Indeed, consider X =
Spf(OC) for C/Qp a complete and algebraically closed extension. In
this case, X∆ has an initial object (A = Ainf(OC), I) given by the
perfect prism corresponding to OC . By Corollary 3.7, the category
of Laurent F -crystals is trivial: taking ϕ-fixed points identifies the
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category Vect(X∆,O∆[1/I∆]
∧
p )

ϕ=1 with Vect(Zp). Consequently, the
category Vect(X∆,O∆[1/I∆]

∧
p )

ϕ=1 ⊗Zp
Qp identifies with Vect(Qp).

On the other hand, the category Vect(X∆,O∆[1/I∆]
∧
p [1/p])

ϕ=1 iden-

tifies with the category Vect(W (C♭)[1/p])ϕ=1 of F -isocrystals on C♭;
the latter is described by the Dieudonné-Manin classification, and is
much larger than Vect(Qp). In fact, the essential image of the latter
inside Vect(W (C♭)[1/p])ϕ=1 is exactly the full subcategory of “étale”
F -isocrystals, i.e., those F -isocrystals where all the Frobenius eigen-
values have slope 0.

2. We have a fully faithful embedding

LocZp
(Xη)⊗Zp

Qp ⊂ LocQp
(Xη)

into the category of (pro-étale) Qp-local systems on the generic fibre
Xη. If X = Spf(OK) for a complete extension K/Qp, then this embed-
ding is an equivalence as an étale cover of Spa(K,OK) admits sections
over a finite étale cover of K. In general, however, this embedding is
not essentially surjective. For instance, if X is the p-completion of P1

Zp
,

then de Jong has constructed [14, §7] a Qp-local system L on Xη with
monodromy group SL2(Qp); no such L can arise by inverting p in a
Zp-local system.

We do not know a natural generalization of Corollary 3.8 that accommodates
the preceding enlargements.

Remark 3.10. For X = Spf(OK) with K/Qp a discretely valued extension
with perfect residue field, Corollary 3.8 was proven independently by Zhiyou
Wu [36]. This proof was extended to the case of smooth formal schemes over
OK by [31].

Remark 3.11 (Local systems on the special fibre). A simpler version of
the reasoning used to establish Corollary 3.7 shows that there is a natural
equivalence

Dperf(X∆,O∆)
ϕ=1 ≃ Db

lisse(Xp=0,Zp),

where the scheme Xp=0 := X ×Spf(Zp) Spec(Fp).

4. Prismatic F -crystals

Given a p-adic formal scheme X, following Proposition 2.7, we have the
notion of a vector bundle on (X∆,O∆):

Vect(X∆,O∆) := lim
(A,I)∈X∆

Vect(A).
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In this section, we introduce the notion of a prismatic F -crystal (Defini-
tion 4.1), which is a vector bundle as above equipped with Frobenius struc-
ture that is reminiscent of the notion of a shtuka. We then give some ex-
amples, and construct certain “realization” functors (Constructions 4.8 and
4.12), extracting concrete invariants from the somewhat elaborate structure
of a prismatic F -crystal.

Definition 4.1 (Prismatic F -crystals of vector bundles). For any p-adic
formal scheme X, let Vectϕ(X∆,O∆) denote the category of prismatic F -
crystals (of vector bundles) on X∆, i.e., vector bundles E on (X∆,O∆)

equipped with an identification ϕE : ϕ∗E [1/I∆] ≃ E [1/I∆]. If ϕE carries
ϕ∗E into E , then we say that (E , ϕE) is effective. Taking tensor products
yields a (rigid) symmetric monoidal structure on Vectϕ(X∆,O∆).

More generally, we make a similar definition for Vectϕ(X∆,O′) where O′

is a sheaf of O∆-algebras equipped with a compatible Frobenius. Similarly,
if (A, I) is a prism, one has an evident category Vectϕ(A) of prismatic F -
crystals of vector bundles on A.

Remark 4.2 (Prismatic F -crystals of perfect complexes). For a p-adic for-
mal scheme X, there is an evident notion of a prismatic F -crystal of perfect
complexes on X∆: it is given by an object E ∈ Dperf(X∆,O∆) equipped with
an identification ϕE : ϕ∗E [1/I∆] ≃ E [1/I∆]. Any prismatic F -crystal of vec-
tor bundles gives a prismatic F -crystal in perfect complexes; but the derived
notion also accommodates other examples, such as prismatic F -crystals of
vector bundles on (X∆,O∆/p

n) when X is p-torsionfree. While this notion
does not play a serious role in this paper, we shall use it to make some
remarks.

Example 4.3 (Breuil-Kisin modules). Let K/Qp be a discretely valued ex-
tension with perfect residue field k. Choose a uniformizer π ∈ OK . As in
Example 2.6 (1), we obtain a Breuil-Kisin prism (A, I) = (S, (E(u))) ∈
Spf(OK)∆. An object of the category Vectϕ(A) is traditionally called a
Breuil-Kisin module, and was studied in depth in [26]. There is an obvi-
ous realization functor from prismatic F -crystals over OK towards Breuil-
Kisin modules. This functor as well as the relationship of either side with
crystalline Galois representations will be discussed further in §7.

Example 4.4 (Laurent F -crystals as prismatic F -crystals). The category
Vectϕ(X∆,O∆[1/I∆]

∧
p ) coincides with the category Vect(X∆,O∆[1/I∆]

∧
p )

ϕ=1

from Definition 3.2. Indeed, I∆ is already inverted in the sheaf of rings
O∆[1/I∆]

∧
p .
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Example 4.5 (Breuil-Kisin twists). In this example, we explain the notion
of a Breuil–Kisin twist, which plays the role of the Tate twist in the world of
prismatic F -crystals. For more details including explicit constructions over
certain perfectoid rings, we refer to [8, Example 4.2, Example 4.24], [15, §4.9],
and [7, §2].

Take X = Spf(Zp), so X∆ is the category of all bounded prisms. There is
a naturally defined prismatic F -crystal (O∆{1}, ϕ), called the Breuil-Kisin
twist, on X whose underlying O∆-module is invertible; by pullback, one
obtains a similar prismatic F -crystal over any bounded p-adic formal scheme.
Informally, the invertible O∆-module is given by the following formula:

O∆{1} := I∆ ⊗ ϕ∗I∆ ⊗ (ϕ2)∗I∆ ⊗ .... =
⊗

i≥0

(ϕi)∗I∆.

More precisely, to make sense of the infinite tensor product, one observes
that for any bounded prism (A, I), one first checks7 that for n ≥ r, the
invertible A-module (ϕn)∗I is canonically trivialized (by the generator p)
after base change along A → A/Ir, where Ir =

∏r−1
i=0 ϕ

i(I) ⊂ A; the in-
finite tensor product then makes sense in view of the natural equivalence
P ic(A) ≃ limr P ic(A/Ir) of groupoids (which can be proven as in [7, Propo-
sition 2.2.12]). It follows that there is a natural isomorphism

ϕ∗O∆{1} ≃ I−1

∆
O∆{1},

which gives the F -crystal structure.

Example 4.6 (Gauss-Manin prismatic F -crystals). Let f : X → Y be a
proper smooth map of p-adic formal schemes. Then EX := Rf∗O∆ is natu-
rally an effective prismatic F -crystal in perfect complexes on Y∆: the perfect
crystal property follows from the Hodge-Tate comparison [11, Theorem 1.8
(2)] and flat base change for coherent cohomology, while the effective F -
crystal structure comes from the isogeny theorem [11, Theorem 1.15 (4)].
One can then pass to cohomology and obtain prismatic F -crystals in vec-
tor bundles under favorable conditions. For instance, if Y = Spf(OK) for
a complete extension K/Qp with residue field k and if the special fibre Xk

has torsionfree crystalline cohomology, then each cohomology sheaf of EX
gives a prismatic F -crystal in vector bundles by [8, Theorem 14.5]. The F -
crystal from Example 4.5 then admits a simple geometric description: we
have O∆{−1} ≃ H2(EP1) via the first Chern class map, see [7].

7Alternately, one can also show that (ϕn)∗I is canonically trivial modulo Ip
n

using Joyal’s operations; see the footnote appearing in the proof of Lemma 7.15.
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Example 4.7 (Prismatic F -crystals on schemes of characteristic p). Let X
be a quasi-syntomic Fp-scheme. Then it is known that the category of crystals
of vector bundles on X∆ and Xcrys are naturally identified in a Frobenius
equivariant fashion: one reduces by descent to the case where X = Spf(R)
for R qrsp, where the claim follows from the crystalline comparison ∆R ≃
Acrys(R) for prismatic cohomology. Moreover, we have I∆ = pO∆ by the
irreducibility lemma on distinguished elements. Consequently, the notion of
a F -crystal on X∆ coincides with the classical notion of an F -crystal on
Xcrys.

Construction 4.8 (The étale realization). For any p-adic formal scheme X,
the p-completed base change gives a symmetric monoidal functor

T : Vectϕ(X∆,O∆) → Vect(X∆,O∆[1/I∆]
∧
p )

ϕ=1 ≃ LocZp
(Xη),

where we use Corollary 3.7 for the last isomorphism. We refer to this functor
as the étale realization functor. For future reference, we remark that this
functor makes sense not only for prismatic F -crystals of vector bundles, but
in fact for prismatic F -crystals of perfect complexes provided we replace the
target with the derived category from Corollary 3.7.

Example 4.9 (Relating Breuil-Kisin and Tate twists). Using the q-loga-
rithm [2] and descent (or directly the prismatic logarithm [7]), one can show
that the étale realization carries the Breuil-Kisin twists from Example 4.5
to usual Tate twists, i.e., that T (O∆{i}) = Zp(i) for any i and any bounded
p-adic formal scheme X. More generally, in the context of Example 4.6, the
Artin-Schreier sequence on Xη,proet can be used to show that T commutes
with proper smooth pushforwards.

Example 4.10 (F -crystals over a qrsp ring). Let X = Spf(R) for R a qrsp
ring. Then X∆ has an initial object determined by the prism (∆R, I) of R.
Consequently, we can identify the category of F -crystals explicitly:

Vectϕ(X∆,O∆) = Vectϕ(∆R) := {(E,ϕ) | E ∈ Vect(∆R),

ϕ : (F ∗E)[1/I] ≃ E[1/I]}.

Combining this with the analogous equivalence for Laurent F -crystals in Ex-
ample 3.5 as well as Lemma 4.11 below, we conclude that the étale realization
functor

T : Vectϕ(X∆,O∆) → Vect(X∆,O∆[1/I∆]
∧
p )

ϕ=1 ≃ LocZp
(Xη)

is faithful if R is p-torsionfree.
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Lemma 4.11. Let R be a p-torsionfree qrsp ring with prism (∆R, I). Then
∆R → ∆R[1/I]

∧ is injective, and hence the same holds true on tensoring with
any finite projective ∆R-module M .

Proof. By using the derived p-completeness of the cofibre of the map and
derived Nakayama, it is enough to show that

∆R/p → ∆R/p[1/I]

is injective. This follows from the fact that (∆R, I) is a transversal prism
(i.e., (p, I) form a regular sequence, see [1] for the terminology), which itself
is a consequence of the Hodge-Tate comparison and the p-torsionfreeness
of R.

Construction 4.12 (The crystalline and de Rham realizations). Let X be
a quasi-syntomic p-adic formal scheme, assumed Zp-flat for simplicity. By
Example 4.7, the category of prismatic F -crystals on Xp=0 identifies with
the category Vectϕ(Xp=0,crys) of F -crystals on the crystalline site Xp=0,crys.
Pullback along Xp=0 → X thus yields the “crystalline realization” functor

Dcrys : Vect
ϕ(X∆,O∆) → Vectϕ(Xp=0,crys).

Noting that crystals on Xcrys and Xp=0,crys are identified (as Xp=0 ⊂ X
is a pro-PD thickening), forgetting the Frobenius also yields the “de Rham
realization” functor

DdR : Vectϕ(X∆,O∆) → Vect(Xcrys).

If X is formally smooth over some base Y , then we can further pass to
relative crystalline sites to obtain the “relative de Rham realization” functor

DdR,Y : Vectϕ(X∆,O∆) → Vect((X/Y )crys) ≃ Vect∇nil(X/Y ),

where the target denotes the category of vector bundles on X equipped
with a flat connection relative to Y such that the connection is topologically
quasi-nilpotent.

5. Prismatic F -crystals over Spf(OK): formulation of the

main theorem

Fix a complete discretely valued extension K/Qp with perfect residue field
k. In this section, we first explain why prismatic F -crystals over Spf(OK)
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give rise to crystalline Galois representations upon étale realization (Propo-
sition 5.3). Using this, we then formulate our main comparison theorem with
crystalline Galois representations (Theorem 5.6) as an equivalence of cate-
gories; the full faithfulness is proven in this section using the easy direction
of Fargues’ classification of F -crystals over ∆OC

(Theorem 5.2; see also Re-
mark 5.7), while the essential surjectivity is the subject of §6.

Notation 5.1 (The Ainf -prism and associated period rings). Fix a completed
algebraic closure C/K. Using the unique F -equivariant splitting8 k → OK/p
of OK/p → k, we regard OK and OC (as well as all subsequently appearing
rings) as W (k)-algebras. Let X = Spf(OK) and Y = Spf(OC); write Y •/X

denote the Cech nerve of Y → X. Associated to this data, one has some
standard period rings and elements, that we introduce next.

• Write Ainf = Ainf(OC). Choose a compatible system ǫ = (1, ǫp, ǫp2 , ...)
of p-power roots of 1 in C gives rise to the standard elements q = [ǫ],
μ = q− 1, and ξ̃ = [p]q of Ainf . Moreover, we have a natural surjection
θ̃ : Ainf → OC with kernel (ξ̃), that we use to identify (Ainf , (ξ̃)) as
the perfect prism attached to OC , so Ainf = ∆OC

. We shall refer to the

point of Spec(Ainf) determined by Ainf
θ̃−→ OC → C as the Hodge-Tate

point. Note that μ ∈ Ainf maps to the non-zero element ǫp − 1 ∈ C in
the residue field at the Hodge-Tate point.

• Write Acrys = D(ϕ−1([p]q))(Ainf) = Ainf{ [p]q
p } for the PD-envelope of θ =

θ̃ ◦ ϕ, B+
crys = Acrys[1/p], and Bcrys = Acrys[1/μ]

9; in prismatic terms,

the Ainf -algebra Acrys identifies with the ∆OC
-algebra ∆OC

{ [p]q
p } =

∆OC/p, see e.g. [11, Corollary 2.39, Proposition 7.10].

• Write B+
dR for the formal completion of Ainf [1/p] at θ̃; this is a complete

DVR with residue field C, uniformizer [p]q and fraction field BdR =
B+

dR[1/[p]q]. We have a natural Ainf -algebra map ϕ∗B+
crys → B+

dR. This

maps μ ∈ B+
crys to ϕ(μ) ∈ B+

dR; since θ̃(μ) �= 0 ∈ C, the image ϕ(μ) =
[p]qμ has the form [p]qu for a unit u, so we also have an induced Ainf -
algebra map ϕ∗Bcrys → BdR.

8To construct this splitting explicitly, choose n ≫ 0 such that the n-fold Frobe-

nius on OK/p factors as OK/p
can−−→ k

ϕn−−→ OK/p; the splitting is then given by

k
ϕn◦ϕ

−n

−−−−−→ OK/p.
9Observe that Bcrys = B+

crys[1/μ], i.e., p is invertible in Acrys[1/μ]. Indeed, we
have (q−1)p−1 ≡ [p]q mod pAinf , so (q−1)p−1/p ∈ Acrys, whence inverting μ = q−1
also inverts p.
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Our goal is to understand the category Vectϕ(X∆,O∆) of prismatic F -
crystals on X. We shall do so via descent along Y → X. For this reason, we
shall need the easy direction of the following result:

Theorem 5.2 (Fargues). The category Vectϕ(Y∆,O∆) is identified with the
category of pairs (T, F ), where T is a finite free Zp-module and F is a B+

dR-
lattice in T ⊗Zp

BdR.

We content ourselves by explaining the construction of (T, F ) attached to
E ∈ Vectϕ(Y∆,O∆). For an elementary proof of full faithfulness (which is the
only part we use), we refer to [8, Remark 4.29]. For the essential surjectivity,
see [34, Lecture XIV].

Construction of the functor in Fargues’ theorem. Fix E ∈ Vectϕ(Y∆,O∆).
As Y∆ has a final object determined by Ainf = ∆OC

, we can regard E
as a BKF-module (M,ϕM ) over Ainf in the sense of [8, §4.3]. The étale
realization T (E) is the finite free Zp-module T := (M ⊗Ainf

W (C♭))ϕ=1.
By Artin-Schreier theory (see Corollary 3.8), one has a natural isomor-
phism M ⊗Ainf

W (C♭) ≃ T ⊗Zp
W (C♭) extending the identity on T on

(−)ϕ=1. Moreover, one can show ([8, Lemma 4.26]) that this isomorphism
restricts to an isomorphism M [1/μ] ≃ T ⊗Zp

Ainf [1/μ]. As μ is invertible
in the residue field at the Hodge-Tate point, we obtain an isomorphism
M ⊗Ainf

B+
dR ≃ T ⊗Zp

B+
dR. The Frobenius on M then yields the B+

dR-lattice
F := ϕ∗M⊗Ainf

B+
dR in T⊗Zp

BdR. Thus, we obtain the pair (T, F ) mentioned
in the theorem.

We begin our study of prismatic F -crystals by noting that the resulting
Galois representations are crystalline.

Proposition 5.3 (Prismatic F -crystals on OK give crystalline Galois repre-
sentations). Let E ∈ Vectϕ(X∆,O∆). Then T (E)[1/p] is a crystalline Galois
representation.

Proof. Fix a prismatic F -crystal E over X. Pulling back to Y and then
further to Yp=0, we have a natural identification

E(∆OC
)⊗∆OC

∆OC/p ≃ E(∆OC/p).

Identifying ∆OC
= Ainf and ∆OC/p = Acrys, we can write this as

(4) E(∆OC
)⊗Ainf

Acrys ≃ E(∆OC/p).

Inverting μ in the tensor base Ainf gives
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E(∆OC
)[1/μ]⊗Ainf [1/μ] Bcrys ≃ E(∆OC/p)[1/μ].

As explained after Theorem 5.2, by [8, Lemma 4.26], the object E(∆OC
)[1/μ]

identifies with T (E)⊗Zp
Ainf [1/μ], so we can rewrite the above as a natural

isomorphism

T (E)⊗Zp
Bcrys ≃ E(∆OC/p)[1/μ].

The rest follows from Dwork’s Frobenius trick. More precisely, observe that
OK/p → k is an infinitesimal thickening in characteristic p, so the n-fold
Frobenius on OK/p factors over k. It follows that if E ′ is any crystalline
crystal on Spec(OK/p), then (ϕn)∗E ′ identifies with the pulback of E ′|Spec(k)∆
along the map ϕn : k → OK/p induced by ϕn on OK/p for n ≫ 0. Pulling
back further to OC/p and using the F -crystal structure to drop the Frobenius
pullback after inverting p, we learn that the right side in the isomorphism
above can be rewritten as

E(∆OC/p)[1/μ] ≃ E(W (k))⊗W (k) Bcrys.

Putting everything together, we get a canonical isomorphism

T (E)⊗Zp
Bcrys ≃ E(W (k))⊗W (k) Bcrys.

As this isomorphism is GK-equivariant, it follows that T (E)[1/p] is a crys-
talline GK-representation.

Remark 5.4 (A compatibility of lattices). Keep notation as in the proof of
Proposition 5.3. Base changing the final isomorphism along ϕ∗Bcrys → BdR

gives an identification

T (E)⊗Zp
BdR ≃ ϕ∗E(W (k))⊗W (k) BdR.

Thus, F ′ := ϕ∗E(W (k)) ⊗W (k) B
+
dR gives a B+

dR-lattice in T (E) ⊗Zp
BdR.

On the other hand, we also have the lattice F = ϕ∗E(∆OC
) ⊗∆OC

B+
dR, as

explained following Theorem 5.2. It follows from the constructions that these
lattices are identical.

Using Theorem 5.2, we can construct GK-equivariant F -crystals on Y
starting with de Rham Galois representations.

Construction 5.5 (From de Rham Galois representations to F -crystals over
OC). Let T be a Zp-lattice in a de Rham Galois representation V = T [1/p]
of GK . Then we have a natural GK-equivariant filtered isomorphism

V ⊗Qp
BdR ≃ DdR(V )⊗K BdR.
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In particular, DdR(V )⊗KB+
dR is a B+

dR-lattice in V ⊗Qp
BdR. By Theorem 5.2

as well as the compatibility in Remark 5.4, the assignment

T �→ (T,DdR(V )⊗K B+
dR)

gives the middle horizontal arrow in a commutative diagram

Vectϕ(X∆,O∆) Vectϕ(Y∆,O∆)

RepdRZp
(GK)

T 
→(T,DdR(T [1/p])⊗KB+
dR){(T, F ) | T ∈ Vect(Zp), F ⊂ T ⊗Zp

BdR a B+
dR-lattice}

RepZp
(GK) ≃ Vect(X∆,O∆[1/I∆]

∧
p )

ϕ=1 Vect(Y∆,O∆[1/I∆]
∧
p )

ϕ=1

In particular, as the bottom vertical arrow on the left is fully faithful, it
follows that for any pair M,N ∈ Vectϕ(X∆,O∆) and any map g : T (M) →
T (N ) in Vect(X∆,O∆[1/I∆]

∧
p )

ϕ=1, there is a unique map fY : M|Y →
N|Y in Vectϕ(Y∆,O∆) with T (fY ) = g|Y ; note that this assertion only uses
the full faithfulness of Theorem 5.2 (i.e., full faithfulness of the equivalence
appearing as the top right vertical arrow above).

We can now formulate our main theorem:

Theorem 5.6 (The main theorem). The étale realization functor

T : Vectϕ(X∆,O∆) → RepcrysZp
(GK)

coming from Proposition 5.3 is an equivalence of categories.

We prove the full faithfulness here using the preceding discussion on
Galois representations attached to prismatic F -crystals; the essential surjec-
tivity is proven in §6.

Proof of full faithfulness in Theorem 5.6. Faithfulness of T over X reduces
to the analogous assertion over Y , which in turn follows by observing that the
canonical map M → M⊗Ainf

Ainf [1/ ker(θ)]
∧
p = M⊗Ainf

W (C♭) is injective for
any finite projective Ainf -module M by Lemma 4.11. Note that this argument
also proves that the étale realization T is faithful over any term of Y •/X .

For fullness, fix prismatic F -crystals M and N together with a map
g : T (M) → T (N ) of the corresponding objects in Vect(X∆,O∆[1/I∆]

∧
p )

ϕ=1

(or equivalently the corresponding Galois representations). We must find
a map f : M → N such that T (f) = g. First, by the last sentence of
Construction 5.5, the map g|Y extends (necessarily uniquely) to a map
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fY : M|Y → N|Y . The map fY induces two a priori distinct maps a, b :
M|Y×XY → N|Y×XY via pulback along either projection. We must show
that a = b. But the induced maps T (a), T (b) : T (M)|Y×XY → T (N )|Y×XY

are the same as T (fY ) is induced from g via pullback; the desired equality
now follows from faithfulness of T over Y ×X Y .

Remark 5.7 (Full faithfulness via Breuil-Kisin prisms). The proof of full
faithfulness in Theorem 5.6 explained above relied on certain properties of
Galois representations. An alternative purely prismatic argument can be
given using Theorem 7.2, as we now briefly sketch. Let S

(•) denote the
cosimplicial δ-ring obtained by taking the Cech nerve of a Breuil-Kisin prism
(S, E(u)) ∈ X∆; see Notation 7.1 and Construction 7.13. Then we have com-
patible descent equivalences

Vectϕ(X∆,O∆) ≃ limVectϕ(S(•))

and Vectϕ(X∆,O∆[1/I∆]
∧
p ) ≃ limVectϕ(S(•)[1/I]∧p ),

so it suffices to show that the base change functor

Vectϕ(S(•)) → Vectϕ(S(•)[1/I]∧p )

of cosimplicial categories induces a fully faithful in the inverse limit. Theo-
rem 7.2 implies that the above functor is fully faithful in cosimplicial degree
0. Also, the induced functor in each cosimplicial degree is faithful as the
map S

(i) → S
(i)[1/I]∧p is injective. It then follows formally that the limiting

functor is indeed fully faithful.

Remark 5.8 (Full faithfulness fails with mod p coefficients). The analog of
Theorem 5.6 with mod p coefficients is false. In fact, the full faithfulness fails.
The proof given above used crucially (via the full faithfulness in Theorem 5.2)
Kedlaya’s theorem [24] that sections of vector bundles on Spec(Ainf) do not
change if we remove the closed point; this assertion fails for vector bundles on
Spec(Ainf/p), which causes the problem. In the next paragraph, we shall give
an explicit example of an invertible object (E,ϕ) ∈ Picϕ(X∆,O∆/p) such
that the étale realization of E is the trivial local system while the underlying
invertible O∆/p-module E is non-trivial. In particular, full faithfulness of the
étale realization fails.

Take K = Qp. Consider the F -crystal E := O∆{p − 1}/p ∈
Vectϕ(X∆,O∆/p) coming from Example 4.5. The étale realization T is sym-
metric monoidal, so T (E) = Z/p(p− 1) ≃ Z/p as GK-representations. How-
ever, E is not isomorphic to the trivial F -crystal O∆/p. Indeed, we have

O∆{p}/p ≃ ϕ∗O∆{1}/p ≃ I−1

∆
/p⊗O∆{1}/p,



532 Bhargav Bhatt and Peter Scholze

whence E ≃ I−1

∆
/p, so it suffices to show that I∆/p is a non-trivial invert-

ible O∆/p-sheaf. But this is already true after restriction to the Hodge-Tate
locus, i.e., I∆/p ⊗O∆/p

O∆/p and O∆/p are not isomorphic as sheaves of
O∆-modules; indeed, one can show that the Sen operator acts with weight 1
on I∆/p⊗O∆/p

O∆/p and weight 0 on O∆/p (see [7, §3.5]).

6. From crystalline Galois representations to prismatic

F -crystals

The goal of this section is to prove the essential surjectivity assertion in
Theorem 5.6, so we continue with the notation from §5. However, instead
of working with the prismatic site (X∆,O∆), we shall switch to the quasi-
syntomic site (Xqsyn,∆•) (or equivalently the qrsp site (Xqrsp,∆•)) from §2;
accordingly, appropriate period sheaves on the quasi-syntomic site are intro-
duced in §6.1. Next, in §6.2, we explain how a filtered ϕ-module gives rise to
an F -crystal over the “open unit disc” version of ∆•. In the critical §6.3, us-
ing the Beilinson fibre sequence from [3], we explain why this F -crystal over
the “open unit disc” version of ∆• satisfies a boundedness condition at the
boundary in the presence of some auxiliary lifting data that will ultimately
be provided by the weak admissibility of the filtered ϕ-module. Armed with
this boundedness, we can prove the promised theorem in §6.4.

Example 6.1. The OK-algebra OC gives an object of Xqrsp. More generally,
as Xqrsp admits finite non-empty products (computed by p-completed tensor
products of the underlying OK-algebras), the terms of the p-completed Cech
nerve of OK → OC lie in Xqrsp; the rest of this section only uses the first
three terms of this Cech nerve.

6.1. Some period sheaves on the quasi-syntomic site

In this subsection, we introduce certain period sheaves on Xqrsp that shall be
important to our arguments. Roughly, the idea is to view ∆• as a structured
collection of prisms analogous to Ainf .

Construction 6.2 (Period sheaves on the quasi-syntomic site that carry a
Frobenius). On Xqrsp, we shall use the following sheaves:

• The prismatic structure sheaf ∆•: this is given by

R �→ ∆R.

This sheaf carries an ideal sheaf I ⊂ ∆• given by passing to the ideal
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of the prism. Vector bundles over ∆• identify with prismatic crystals
of vector bundles on Spf(OK).

• The crystalline structure sheaf Acrys, corresponding to the special fibre:
this is given by

R �→ Acrys(R) = ∆R{I/p}.
Note that we have ∆R{I/p} = ∆R/p, explaining the name. Vector bun-
dles over Acrys(•) = ∆•{I/p} identify with prismatic crystals of vector
bundles on Spec(OK/p).

• The rational localization ∆•〈I/p〉: this is given by

R �→ ∆R[I/p]
∧
p .

Modules over this will be closely related to filtered F -crystals on X
(Construction 6.5).

• The sheaf ∆•{ϕ(I)/p}: this is given by

R �→ ∆R{ϕ(I)/p},

and can thus be regarded as the ϕ-pullback of the crystalline structure
sheaf over ∆•.

• The étale structure sheaf ∆•[1/I]
∧
p : this is given by

R �→ ∆R[1/I]
∧
p .

Modules over this sheaf will be closely related to Zp-local systems on
R[1/p] (Remark 6.3).

We have natural maps

∆•[1/I]
∧
p ← ∆• → ∆•{ϕ(I)/p} → ∆•〈I/p〉 → Acrys = ∆•{I/p}.

Moreover, the Frobenius ϕ : ∆• → ∆• carries I to ϕ(I), and hence induces a
map

ϕ̃ : Acrys = ∆•{I/p} → ∆•{ϕ(I)/p}
linear over ϕ : ∆• → ∆•. In particular, one obtains an induced Frobenius en-
domorphism10 of all presheaves introduced above, also denoted by ϕ. Mim-
icking Definition 4.1, one then obtains a notion of an F -crystal over any of

10Despite the notation, the endomorphism ϕ of ∆〈I/p〉 defined as above does
not underlie a δ-structure, i.e., we need not have ϕ = Frob mod p∆〈I/p〉; in fact,
formally enlarging ∆•〈I/p〉 by forcing this congruence leads to ∆•{I/p}. This issue
does not arise for the other sheaves.
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these rings. For instance, an F -crystal over ∆• is a vector bundle M over
∆• equipped with an isomorphism ϕM : (ϕ∗M)[1/I] ≃ M [1/I]; we write
Vectϕ(∆•) for the category of such F -crystals, and similarly over the other
rings as well.

Remark 6.3. The comparison result in Proposition 2.14 gives equivalences

Vectϕ(X∆,O∆) ≃ Vectϕ(Xqrsp,∆•)

and Vectϕ(X∆,O∆[1/I∆]
∧
p ) ≃ Vectϕ(Xqrsp,∆•[1/I]

∧
p ).

In particular, we have

Vectϕ(Xqrsp,∆•[1/I]
∧
p ) ≃ RepZp

(GK)

by Corollary 3.8. Theorem 5.6 can then be formulated as the assertion that
the base change functor

Vectϕ(Xqrsp,∆•) → Vectϕ(Xqrsp,∆•[1/I]
∧
p ) ≃ RepZp

(GK)

is fully faithful with image given by Zp-lattices in crystalline Qp-represen-
tations of GK . In fact, we have already proven full faithfulness in §5; in the
rest of the section, we shall check the assertion regarding the essential image.

Construction 6.4 (de Rham period sheaves on the prismatic site). We
define de Rham period sheaves on Xqrsp as follows:

B+
dR =

(
∆•[1/p]

)∧
I

and BdR = B+
dR[1/I].

Note that B+
dR(OC) = B+

dR(C) is the usual de Rham period ring attached to
C (and thus a discrete valuation ring). More generally, a similar assertion
holds true for any R ∈ Xqrsp which is perfectoid.

6.2. From filtered ϕ-modules to crystals

In this subsection, we explain how to convert a filtered ϕ-module over K into
a crystal over ∆•〈I/p〉[1/p]. The basic idea is to take the constant crystal over
∆{I/p}[1/p], and then modify its ϕ-pullback to ∆〈I/p〉[1/p] at the Hodge-
Tate divisor using the filtration.

Construction 6.5 (From filtered ϕ-modules over K to crystals over
∆•〈I/p〉[1/p]). Let (D,ϕD,Fil

∗) be a filtered ϕ-module over K, i.e., D is
a finite dimensional K0-vector space equipped with an isomorphism ϕD :
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ϕ∗D ≃ D, and Fil∗ is a (finite, exhaustive, separated) filtration on the K-
vector space DK = D⊗W (k),ϕK; here the extra Frobenius twist is present for
compatibility with the prismatic (as opposed to crystalline) picture. We shall
attach an F -crystal M(D)〈I/p〉 ∈ Vectϕ(Xqrsp,∆•〈I/p〉[1/p]) to the filtered
ϕ-module (D,ϕD,Fil

∗).
First, we attach an F -crystal M1 := M(D,ϕ){I/p} over ∆•{I/p}[1/p]

to the ϕ-module (D,ϕD). Regard (D,ϕD) as an F -crystal of O∆[1/p]-mod-
ules on Spec(k). Using the structure map W (k) → ∆•{I/p}, we can regard
∆•{I/p} as a diagram of prisms over k. Consequently, we obtain an F -crys-
tal M1 := M(D,ϕ){I/p} over ∆•{I/p}[1/p] from (D,ϕD) via base change,
i.e.,

M1 = D ⊗W (k) ∆•{I/p},
with the (unit) F -crystal structure ϕM1

: ϕ∗M1 ≃ M1 induced from
ϕD.

Next, consider the finite projective ∆•〈I/p〉[1/p]-module M2 :=
M1⊗∆•{I/p},ϕ̃

∆•〈I/p〉. The map ϕM1
induces an isomorphism ϕM2

:ϕ∗M2≃
M2, so the pair (M2, ϕM2

) is a unit F -crystal over ∆•〈I/p〉[1/p]. To obtain
the desired F -crystal, we modify M2 along the locus I = 0 using the filtration
on DK to obtain the desired F -crystal M3 = M(D)〈I/p〉 over ∆•〈I/p〉[1/p].
More precisely, we apply Beauville-Laszlo glueing along the Cartier divisor
defined by I to the vector bundles

• M2[1/I] ∈ Vect(Xqrsp,∆•〈I/p〉[1/p, 1/I]).
• Fil0(DK ⊗K BdR) ∈ Vect(Xqrsp,B

+
dR).

along the isomorphism

(5) M2[1/I]⊗∆•〈I/p〉
BdR ≃ D ⊗W (k),ϕ BdR ≃ Fil0(DK ⊗K BdR)[1/I]

in Vect(Xqrsp,BdR); here we implicitly use Lemma 6.7 to identify B+
dR with

∆•〈I/p〉[1/p]∧I. Thus, we obtain a vector bundle M3 ∈Vect(Xqrsp,∆•〈I/p〉[1/p])
equipped with isomorphisms

M3[1/I] ≃ M2[1/I] ∈ Vect(Xqrsp,∆•〈I/p〉[1/p, 1/I])

and

(M3)
∧
I ≃ Fil0(DK ⊗K BdR) ∈ Vect(Xqrsp,B

+
dR)

compatible with (5) over BdR. The map ϕM2
[1/I] then yields an isomorphism

ϕM3
: ϕ∗M3[1/I] ≃ M3[1/I], yielding the desired F -crystal.
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For completeness, we also remark that a partial inverse to the previous
construction is described in the proof of Theorem 7.9. Next, we observe that
the Frobenius pullback trick allows us to extend the preceding construction
to larger loci.

Remark 6.6 (Analytic continuation of F -crystals to the open unit disc). Fix
an F -crystal (M, ϕM) over ∆•〈I/p〉[1/p] on Xqrsp; the main example for us is
the output of Construction 6.5. One can use the contracting property of ϕ to
extend (M, ϕM) uniquely to an F -crystal (N , ϕN ) over ∆•〈ϕn(I)/p〉[1/p] on
Xqrsp for any n ≥ 1. Let us explain how to construct this extension for n = 1;
the extension for larger n is constructed entirely analogously. The underlying
vector bundle N ∈ Vect(Xqrsp,∆•〈ϕ(I)/p〉[1/p]) is defined glueing the vector
bundles

1. ϕ̃∗M|∆•〈ϕ(I)/p〉[1/p,1/I]
∈ Vect(Xqrsp,∆•〈ϕ(I)/p〉[1/p, 1/I]); note that

this bundle extends ϕ∗M (and thus also M, via ϕM) over
∆•〈I/p〉[1/p, 1/I].

2. M∧
I ∈ Vect(Xqrsp,∆•〈ϕ(I)/p〉[1/p]∧I ); here we implicitly use that the

I-adic completion of ∆•[1/p] coincides with that of ∆•〈ϕn(I)/p〉[1/p]
for all n ≥ 0 by Lemma 6.7 below.

along the evident natural isomorphism of their base changes to
∆•〈ϕ(I)/p〉[1/p]∧I [1/I]. It is clear from the above description that N extends
M over ∆R〈I/p〉[1/p], whence ϕ∗N = ϕ̃∗M. The desired F -crystal structure
ϕN : (ϕ∗N )[1/I] ≃ N [1/I] arises by observing that both sides identify with
(ϕ̃∗M)[1/I]: this follows for the target by the definition in (1) and for the
source by the preceding sentence.

The following lemma was used above.

Lemma 6.7. The natural map gives an isomorphism

B+
dR := ∆•[1/p]

∧
I ≃ ∆•〈ϕn(I)/p〉[1/p]∧I

for all n ≥ 0.

Proof. As ∆R is a transversal prism for R ∈ Xqrps, it is enough to show the
following: if (A, I) is a transversal prism, then the natural map

A[1/p]∧I → A〈ϕn(I)/p〉[1/p]∧I
is an isomorphism for all n ≥ 0. Fix some such n ≥ 0. We may assume
I = (d) is principal. Using the presentation

A〈ϕn(d)/p〉 = A[x]/(px− ϕn(d))∧p ,
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it is sufficient to show that the natural map gives an isomorphism

A[1/p]/d → Kos(A[x]; px− ϕn(d), d)∧p [1/p],

where Kos denotes a Koszul complex, i.e. in this case the derived reduction
of A[x] modulo px−ϕn(d) and d. Now ϕn(d) = dp

n

+ ph for some h ∈ A, so
the right side above simplifies to

Kos(A[x]; px− ϕn(d), d)∧p [1/p] ≃ Kos(A[x]; px− ph, d)∧p [1/p].

Relabelling y = x− h this further simplifies to

Kos(A[y]; py, d)∧p [1/p] ≃ Kos(A[y]; y, d)∧p [1/p] ≃ A/d[1/p],

as wanted; here the first isomorphism arises by noting that py is a nonzero-
divisor in A/d[y] by transversality of (A, I) and that the kernel yA[y]/pyA[y]
of A[y]/py → A[y]/y = A is killed by p (and thus disappears on applying
(−)∧p [1/p]).

6.3. Boundedness of descent data at the boundary

Given an F -crystal M′ over ∆OC
with descent data on M′〈I/p〉[1/p], we

shall explain how the descent data automatically extends to M′[1/p] using
crucially results from [3] to establish the following extension result for p-adic
Tate twists.

In the statement and proof of the following proposition, we are taking
fixed points −ϕ=1 in the usual (nonderived) sense.

Proposition 6.8 (Analytic continuation for p-adic Tate twists). Let R be a
qrsp p-torsionfree OC-algebra. The natural map

∆R{n}ϕ=1[1/p] → ∆R〈I/p〉{n}ϕ=1[1/p]

is an isomorphism.

We note that ϕ is not quite a selfmap of ∆R{n} – it only takes values in
∆R{n}[1/I] – but being ϕ-fixed still makes sense.

Proof. Recall that the p-adic Tate twist attached to R is defined as follows:

Qp(n)(R) := fib
(
FilnN∆R{n}

ϕn−1−−−→ ∆R{n}
)
[1/p],
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using the Nygaard filtration Fil•N∆R ⊂ ∆R from [11, Definition 12.1]. Thus,
there is a natural injective map

H0(Qp(n)(R)) → ∆R{n}ϕ=1[1/p].

In fact, we observe that this map is an isomorphism: containment in the
correct level of the Nygaard filtration is automatic for ϕ-fixed elements of
∆R{n} as the Nygaard filtration on ∆R may be defined (using that R is qrsp)
as the ϕ-preimage of the I-adic filtration on ∆R (see [11, §12]).

In particular, it is enough to show that the composition

a : H0(Qp(n)(R)) → ∆R〈I/p〉{n}ϕ=1[1/p]

is an isomorphism. For this, recall that since ∆R/p = ∆R{I/p}, the p-adic
Tate twist attached to R/p may be written as

H0(Qp(n)(R/p)) =
(
∆R{I/p}{n}

)ϕ=1
[1/p],

where we implicitly use that inverting p kills any Nygaard graded quotient
of ∆R/p. (In fact, as R/p is qrsp Fp-algebra, the complex Qp(n)(R/p) is in
fact concentrated in degree 0 by [9, Proposition 8.20]; but we do not need
this.) Moreover, the natural map

H0(Qp(n)(R))
b−→ H0(Qp(n)(R/p))

factors as

b : H0(Qp(n)(R))
a−→ ∆R〈I/p〉{n}ϕ=1[1/p]

c−→ H0(Qp(n)(R/p)).

As the maps a, b and c are all injective, it suffices to show that im(c) maps
to 0 in coker(b). To understand this cokernel, we use the Beilinson fibre
sequence [3, Theorem 6.17]

Qp(n)(R) → Qp(n)(R/p) → (LΩR/Fil
n
HLΩR) {n}[1/p]

[1]−→

which in particular induces an exact sequence

H0(Qp(n)(R))
b−→ H0(Qp(n)(R/p))

d−→ H0((LΩR/Fil
n
HLΩR) {n}[1/p]).

Our task is then to show that d◦c = 0. Using our chosen OC-algebra structure
to trivialize the Breuil-Kisin twists ∆OC

{1} ∼= 1
q−1∆OC

, we can make the map
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c and d explicit. First, c is the natural map

(
1

(q − 1)n
∆R〈I/p〉

)ϕ=1

[1/p] →
(

1

(q − 1)n
∆R{I/p}

)ϕ=1

[1/p].

Moreover, by the arguments of [3, 6.18–6.21], the map d is up to nonzero
scalar compatible with the isomorphism LΩR

∼= Acrys(R/p) = ∆R/p and the
forgetful map Qp(R/p) → ∆R/p[1/p]. Thus, it remains to show that the image
of the natural map

(
1

(q − 1)n
∆R〈I/p〉

)ϕ=1

[1/p]

→ 1

(q − 1)n
∆R{I/p}[1/p] ∼=

1

(q − 1)n
∆R/p[1/p] ∼=

1

(q − 1)n
LΩR[1/p]

is contained in 1
(q−1)nFil

n
HLΩR[1/p]. But the Frobenius on ∆R induces an

injective map

(LΩR/Fil
n
HLΩR)[1/p] →֒ B+

dR(R)/In,

as follows from the discussion of the Nygaard filtration11. Dividing by (q−1)n

and noting that ϕ(q − 1) is a generator of IB+
dR(R), we get an injection

1

(q − 1)n
(LΩR/Fil

n
HLΩR)[1/p] →֒ I−nB+

dR(R)/B+
dR(R)

induced by the Frobenius. The composite map

(
1

(q − 1)n
∆R〈I/p〉

)ϕ=1

[1/p] → I−nB+
dR(R)/B+

dR(R)

is, by the ϕ-invariants on the left, simply induced by the natural map
1

(q−1)n ∆R〈I/p〉[1/p] → I−nB+
dR(R), which actually takes values in B+

dR(R) as

q− 1 is invertible in B+
dR(R), as desired; here we used implicitly Lemma 6.7.

But this implies that the displayed map above is 0, which then implies by

11Indeed, as R is qrsp, the Nygaard filtration Fil•N∆R on ∆R can be defined as
the preimage of the I-adic filtration I•∆R under the Frobenius. Consequently, the
Frobenius on ∆R gives an injective map ∆R/Fil

n
∆R → ∆R/I

n
∆R. Inverting p then

gives an injective map (∆R/Fil
n
N∆R)[1/p] → (∆R/I

n
∆R)[1/p] ≃ B+

dR(R)/InB+
dR(R).

It now remains to observe that (∆R/Fil
n
N∆R)[1/p] ≃ LΩR/Fil

n
HLΩR[1/p] by com-

paring graded pieces in the absolute de Rham comparison.
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the preceding reasoning that the map

(
1

(q − 1)n
∆R〈I/p〉

)ϕ=1

[1/p] → 1

(q − 1)n
(LΩR/Fil

n
HLΩR)[1/p]

is 0, as wanted.

For future use, we collect some properties of the prism of OC⊗̂OK
OC ,

using crucially Proposition 6.8 for the first one.

Lemma 6.9 (Properties of ∆Y×XY ). Let R = OC⊗̂OK
OC . Write q1, q2 ∈ ∆R

for the image of q ∈ ∆OC
along the maps ∆OC

→ ∆R induced by the first and
second structure maps OC → R.

1. The natural map

∆R[1/(p(q1 − 1)(q2 − 1))]ϕ=1 → ∆R〈I/p〉[1/(p(q1 − 1)(q2 − 1))]ϕ=1

is an isomorphism on H0.

2. The element (q1 − 1)(q2 − 1) is invertible in ∆R〈p/(q1 − 1)p〉[1/p].
3. The natural maps give a short exact sequence

0 → ∆R → ∆R〈(q1 − 1)p/p〉 ⊕∆R〈p/(q1 − 1)p〉
→ ∆R〈p/(q1 − 1)p, (q1 − 1)p/p〉 → 0.

Proof. 1. Note that we have a ϕ-equivariant isomorphisms ∆OC
{n} ≃

1
(q−1)n ∆OC

for all n ≥ 0. By base change, we obtain natural isomor-
phisms

∆R{2n} ≃ 1

(q1 − 1)n
∆R{n} ≃ 1

(q1 − 1)n(q2 − 1)n
∆R.

As the direct limit over n of the terms on the right gives ∆R[1/(q1 −
1)(q2 − 1)], it suffices to see that for all n ≥ 0, the natural map

∆R{n}ϕ=1[1/p] → ∆R〈I/p〉{n}ϕ=1[1/p]

is an isomorphism on H0, which follows from Proposition 6.8.

2. Since (q1−1)p | p in ∆R〈p/(q1−1)p〉, it is clear that (q1−1) is invertible
in ∆R〈p/(q1 − 1)p〉[1/p]. To show (q2 − 1) is invertible, we shall check
the stronger statement that

A := ∆R〈p/(q1 − 1)p〉/(q2 − 1)
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is an Fp-algebra. We first observe that [p]q1 = [p]q2 ·u for a unit u ∈ ∆R:
this follows from the realization of ∆R as a suitable prismatic envelope
of ∆OC

⊗ ∆OC
. As [p]q1 = (q1 − 1)p−1 mod p∆R and similarly for [p]q2 ,

we obtain an equation of the form

(q1 − 1)p−1 = (q2 − 1)p−1 · u+ pv ∈ ∆R

for u, v ∈ ∆R. This allows us to write

(6) (q1 − 1)p = p(q1 − 1)x mod (q2 − 1)∆R.

Our task is to show that

A = ∆R〈p/(q1−1)p〉/(q2−1) =
(
∆R[z]/(z(q1 − 1)p − p)

)∧
(q1−1)

/(q2−1)

is an Fp-algebra. Thanks to (6), we have

A =
((

∆R/(q2 − 1)
)
[z]/(zp(q1 − 1)x− p)

)∧
(q1−1)

=
((

∆R/(q2 − 1)
)
[z]/(pǫ− p)

)∧
(q1−1)

,

where ǫ = z(q1 − 1)x. But q1 − 1 is topologically nilpotent (due to the
completion operation), so the same holds for ǫ, whence ǫ− 1 is a unit.
The above presentation simplifies to

A =
((

∆R/(q2 − 1)
)
[z]/p

)∧
(q1−1)

,

which is clearly an Fp-algebra.

3. First, consider the regular ring A := Zp[u]. Since blowing up at a regu-
lar ideal does not change O-cohomology, the Mayer-Vietoris sequence
for the standard charts of the blowup X of Spec(A) at the ideal (p, u)
gives an exact sequence

0 → A ≃ RΓ(X,OX) → A[u/p]⊕A[p/u] → A[p/u, u/p] → 0

of A-modules. Moreover, each of the 4 terms that appears is a noethe-
rian A-algebra, and the maps in the sequence arises as linear combina-

tions of A-algebra maps. Now consider the composition A → ∆OC

i1−→
∆R given by sending u to (q1 − 1)p. Each map in this composition
is (p, u)-completely flat, and hence so is the composition. The (p, u)-
completed base change of the above sequence along A → ∆R then gives
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an exact triangle

∆R → ∆R〈(q1−1)p/p〉⊕∆R〈p/(q1−1)p〉 → ∆R〈p/(q1−1)p, (q1−1)p/p〉

in the derived category. Since A → ∆R is (p, u)-completely flat, each
term of the above triangle is (p, u)-completely flat over a noetherian
ring, and is thus concentrated in degree 0. Thus, the above triangle is
in fact an exact sequence, as wanted.

The main result of this subsection is the following:

Proposition 6.10 (Boundedness of descent data at the boundary of the
open unit disc). Let M ∈ Vectϕ(∆OC

) be an F -crystal over ∆OC
. Assume

that the base change M〈I/p〉[1/p] ∈ Vectϕ(∆OC
〈I/p〉[1/p]) is provided with

descent data with respect to Y → X (i.e., we are given a lift to
Vectϕ(Xqrsp,∆•〈I/p〉[1/p]). Then this descent data extends uniquely to
M[1/p] ∈ Vectϕ(∆OC

[1/p]).

Proof. Write R = OC⊗̂OK
OC , so p∗1M[1/p] and p∗2M[1/p] are vector bundles

over ∆R[1/p]. By the assumption on M, we have an isomorphism

α〈I/p〉 : p
∗
1M〈I/p〉[1/p] ≃ p∗2M〈I/p〉[1/p]

in Vectϕ(∆R〈I/p〉[1/p]) satisfying the cocycle condition. Our task is to extend
this to an isomorphism

α : p∗1M[1/p] ≃ p∗2M[1/p]

in Vect(∆R[1/p]); the cocycle condition as well as the ϕ-equivariance will then
be automatic from that for α〈I/p〉 as ∆•[1/p] → ∆•〈I/p〉[1/p] is injective on
Xqrsp. In fact, it suffices to check that α〈I/p〉 carries p∗1M[1/p] into p∗2M[1/p];
applying the same reasoning to the inverse will prove the claim.

First, we observe that Remark 6.6 gives descent data over ∆R〈ϕ(I)/p〉[1/p].
In particular, since ϕ(I) ⊂ p∆R〈(q1− 1)p/p〉, there is a unique ϕ-equivariant
map

α〈(q1−1)p/p〉 : p
∗
1M〈(q1 − 1)p/p〉[1/p] → p∗2M〈(q1 − 1)p/p〉

of finite projective modules over ∆R〈(q1 − 1)p/p〉[1/p] extending α〈I/p〉 over
∆R〈I/p〉[1/p].

Next, we extend to ∆R〈p/(q1 − 1)p〉[1/p]. For this, let T = T (M) be
the finite free Zp-module obtained from the étale realization of M. By [8,
Lemma 4.26], there is a ϕ-equivariant identification

M′[
1

q − 1
] ≃ T ⊗Zp

∆OC
[

1

q − 1
]
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of vector bundles over ∆OC
[ 1
q−1 ] (where T has the trivial ϕ-action). Choosing

a basis for T , the isomorphism α〈I/p〉 gives a matrix with coefficients in H0

of

∆R〈I/p〉[1/(p(q1 − 1)(q2 − 1))]ϕ=1.

Lemma 6.9 (1) shows that the coefficients in fact lie in H0 of

∆R[1/(p(q1 − 1)(q2 − 1))]ϕ=1.

By Lemma 6.9 (2), the coefficients then also lie in

∆R〈p/(q1 − 1)p〉[1/p].

These coefficients define a map

α〈p/(q1−1)p〉 : p
∗
1M〈p/(q1 − 1)p〉[1/p] → p∗2M〈p/(q1 − 1)p〉[1/p]

of finite projective modules over ∆R〈p/(q1−1)p〉[1/p] that is compatible with
the map α〈(q1−1)p/p〉 after base change to ∆R〈p/(q1 − 1)p, (q1 − 1)p/p〉[1/p].

Inverting p in the exact sequence appearing in Lemma 6.9 (3) and tensor-
ing with the finite projective ∆R[1/p]-module Hom∆R[1/p](p

∗
1M[1/p],

p∗2M[1/p]), we can patch together the maps α〈(q1−1)p/p〉 and α〈p/(q1−1)p〉 con-
structed above to obtain a map α : p∗1M[1/p] → p∗2M[1/p] of finite projective
∆R[1/p]-modules extending α〈I/p〉, as wanted.

6.4. Proof of essential surjectivity

We can now prove the promised theorem:

Proof of essential surjectivity in Theorem 5.6. Fix L ∈ RepcrysZp
(GK). Con-

sider the weakly admissible filtered ϕ-module (D,ϕD,Fil
∗) attached to the

GK-representation L[1/p]. We shall attach a prismatic F -crystal M(D)int
over ∆• to (D,ϕD,Fil

∗) on Xqrsp with étale realization given by L[1/p] after
inverting p; we then check that M(D)int can be constructed to have étale
realization L on the nose.

First, we attach an F -crystal M(D)bdd over ∆•[1/p] on Xqrsp to
(D,ϕD,Fil

∗), and also construct an extension of the value M(D)bdd(Y ) to
an F -crystal M′ over ∆OC

. Consider the compatible system of F -crystals

M(D) := {M(D)〈ϕn(I)/p〉 ∈ Vect(Xqrsp,∆•〈ϕn(I)/p〉[1/p])}n≥1

coming from Remark 6.6. The value M(D)(Y ) can be regarded as an F -
crystal on Spa(∆OC

) − {p = 0}. To construct the objects mentioned in the
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first sentence of this paragraph, by Proposition 6.10, it suffices to explain
why the F -crystal M(D)(Y ) over Spa(∆OC

) − {p = 0} extends to an F -
crystal M′ over ∆OC

. For this12, by gluing on the adic space and using [34,
Theorem 14.2.1] to handle the difference between F -crystals on Spec(∆OC

)
and Spa(∆OC

) − {xk}, it suffices to show that the base changed ϕ-module
M(D)(Y )R over the Robba ring R for ∆OC

13 extends (as a ϕ-module) to
the integral Robba ring Rint (called R̃int in [34, Definition 12.3.1]). It suffices
to show that M(D)(Y )R is trivial as a ϕ-module over R. Now ϕ-modules
over R can be identified with vector bundles on the Fargues–Fontaine curve
XFF by [17, Corollary 11.2.22]. By the weak admissibility of (D,ϕD,Fil

∗)
and [17, Proposition 10.5.6] and matching constructions, the vector bun-
dle on XFF attached to M(D)(Y )R is semistable of slope 0. As all such
vector bundles are trivial by [17, Theorem 8.2.10 (1)], the desired claim fol-
lows.

Next, we explain why the descent data on M′[1/p] can be used to
construct a GK-equivariant structure on M′. Note that M′[1/I]∧p ∈
Vectϕ(∆OC

[1/I]∧p ) has the form T ⊗Zp
∆OC

[1/I]∧p for a finite free Zp-module
T with trivial ϕ-action (Corollary 3.8). Inverting p shows that

M(D)bdd(Y )⊗∆OC
[1/p] ∆OC

[1/I]∧p [1/p] = M′[1/I]∧p [1/p]

= T [1/p]⊗Qp
∆OC

[1/I]∧p [1/p].

As the left side is the value of Y of an F -crystal on X, it carries a natural GK-
equivariant structure. Consequently, the right side T [1/p] ⊗Qp

∆OC
[1/I]∧p ∈

Vectϕ(∆OC
[1/I]∧p [1/p]) is naturally a GK-equivariant object of

Vect(Zp)⊗Zp
Qp

(−)ϕ=1

≃ Vectϕ(∆OC
[1/I]∧p )⊗Zp

Qp ⊂ Vectϕ(∆OC
[1/I]∧p [1/p]).

It follows that T [1/p] is naturally a finite dimensional Qp-representation of
GK . By picking a GK-stable Zp-lattice L′ in this representation and ad-
justing our choice of M′ along the divisor {p = 0} ⊂ Spec(∆OC

) − {xk} by
Beauville-Laszlo glueing (and using Kedlaya’s theorem [24] or [8, Lemma 4.6]
that vector bundles on Spec(∆OC

)−{xk} extend uniquely to Spec(∆OC
)), we

12The argument we give is an Ainf -variant of the analogous result in Kisin’s [26].
It relies ultimately on Berger’s observation (see [5, §IV.2] and [26, Theorem 1.3.8])
translating weak admissibility of D into a property of M(D)(Y ) via Kedlaya’s slope
filtration results [22].

13We refer to [17, Definition 1.8.1] for the definition. This ring is sometimes also

called the extended Robba ring R̃, e.g., as in [34, Definition 13.4.3].
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can then arrange that T = L′ itself is a finite free Zp-module equipped with
a GK-action, or equivalently that M′ ∈ Vectϕ(∆OC

) comes equipped with
a GK-equivariant structure extending the one on M(D)bdd(Y ) = M′[1/p]
coming from the descent data.

We now claim that the descent data on M′[1/p] = M(D)bdd restricts to
descent data on M′. In other words, letting R = OC⊗̂OK

OC , the isomor-
phism

α : p∗1M′[1/p] ≃ p∗2M′[1/p]

in Vectϕ(∆R[1/p]) carries p∗1M′ isomorphically onto p∗2M′. In fact, by con-
templating the inverse, it suffices to show that α carries p∗1M′ into p∗2M′.
Now (p, I) ⊂ ∆R is an ideal generated by a regular sequence of length 2 as
∆R is (p, I)-completely flat over ∆OC

via either structure map. As sections
of vector bundles are insensitive to removing closed sets defined by such ide-
als, it suffices to check our claim on Spec(∆R) − V (p, I). Since everything
is clear after inverting p, we may further use Beauville-Laszlo glueing to re-
duce to checking the statement after p-completing, i.e. we must check that
the natural isomorphism

α⊗∆R[1/p] ∆R[1/I]
∧
p [1/p] : p

∗
1M′[1/I]∧p [1/p] ≃ p∗2M′[1/I]∧p [1/p]

carries p∗1M′[1/I]∧p into p∗1M′[1/I]∧p . Now the base change map

Vectϕ(∆R[1/I]
∧
p ) → Vectϕ(∆R,perf [1/I]

∧
p )

is fully faithful (and in fact an equivalence) by the étale comparison theorem
(see Proposition 3.6), and therefore also after inverting p on both sides.
Thus, it suffices to check our desired containment after pullback to ∆R,perf .

But we know that ∆R,perf
a≃ RΓ(Spf(R)η, Ainf(O+))

a≃ Cont(GK ,∆OC
). As

inverting I and p-completing turns almost isomorphisms to isomorphisms,
the desired claim follows from GK-equivariance of the lattice M′[1/I]∧p ⊂
M′[1/I]∧p [1/p].

The previous paragraphs lift M′ ∈ Vectϕ(∆OC
) to an object

M(D)int ∈ Vectϕ(Xqrsp,∆•); the construction depended on the choice of the
GK-stable lattice T = L′ in T [1/p] and has the feature that T (M(D)int) =
L′. To finish the proof, observe that the argument in Theorem 5.3 and
the fact that M(D)int recovers M(D)〈I/p〉 over ∆•〈I/p〉[1/p] shows that
T (M(D)int)[1/p] ≃ L[1/p]. Running the modification argument two para-
graphs above with L′ = L then shows that we can also arrange that
T (M(D)int) = L′, finishing the proof.
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7. Crystalline Galois representations and Breuil-Kisin

modules

The goal of this section is to relate lattices in crystalline Galois representa-
tions to Breuil-Kisin modules over a Breuil-Kisin prism S attached to OK ,
as in [26]. More precisely, in §7.1, we give a direct proof that the étale real-
ization functor for F -crystals on S is fully faithful. Using this result as well
as our Theorem 5.6, we recover the main full faithfulness results from [26] in
§7.2. Finally, in §7.3, we explain why the F -crystals over S arising from pris-
matic F -crystals over OK (or equivalently crystalline Galois representations
by Theorem 5.6) admit a natural logarithmic connection over the local ring
at the Hodge-Tate point of S in characteristic 0; the argument there shows
that the logarithmic connection has a natural integral avatar (in the form
of a descent isomorphism over the ring S

(1), see Construction 7.13), which
we hope shall shed some light on the integrality properties of the connection
N∇ from [26, Corollary 1.3.15].

Notation 7.1 (A Breuil-Kisin prism over OK). Let (S, E(u)) =
(W �u�, (E(u)) be a Breuil-Kisin prism in X∆ attached to the choice of a uni-
formizer π ∈ OK , as in Example 2.6. Choose a compatible system of p-power
roots π ∈ limx 
→xp OC of π in OC . This choice yields a unique δ-W -algebra

map S → Ainf sending u to [π] with the composition S → Ainf
θ̃−→ OC

being identified with S → S/E(u) ≃ OK ⊂ OC ; thus, we get a map
(S, E(u)) → (Ainf , ker(θ̃)) in X∆.

7.1. Full faithfulness of the étale realization over S

The goal of this subsection is to prove the following theorem:

Theorem 7.2 (Kisin [26, Proposition 2.1.12]). The étale realization functor

T : Vectϕ(S) → Vectϕ(S[1/E(u)]∧p )

is fully faithful.

The faithfulness is clear. For full faithfulness, we first argue that mor-
phisms on right are meromorphic over Spa(S) and in fact entire away from
a finite set of pre-determined points depending only on K; we then use the
Frobenius structure to get the extension at the missing points. To get the
meromorphy in the first step, we use the adic spaces attached to S and
Ainf as well as the relation between them; the key meromorphy criterion is
recorded in Lemma 7.7.
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Let us begin by recalling the following (standard) coarse classification of
points of Spa(Ainf).

Lemma 7.3 (Points of Spa(Ainf)). Fix a point y ∈ Spa(Ainf) and write
V = k(y)+. Then we must have one of the following possibilities:

1. The non-analytic point yk: The elements p as well as q1/p
n−1 for n ≥ 0

map to 0 in V . In this case, (k(y), k(y)+) = (k, k).

2. The crystalline point ycrys: The elements q1/p
n − 1 map to 0 in V

for all n ≥ 0 while p gives a pseudo-uniformizer of V . In this case,
(k(y), k(y)+) = (W (k)[1/p],W (k)).

3. The étale point yet: The element p maps to 0 in V while the elements
q1/p

n − 1 give pseudouniformizers in V for all n ≥ 0. In this case,
(k(y), k(y)+) = (C♭,OC♭).

4. The remaining points: Both p as well as q1/p
n − 1 for n ≫ 0 give

pseudouniformizers in V . In this case, we have p/(q1/p
n − 1) ∈ V for

n ≫ 0.

In particular, we have

(7) Spa(Ainf)
an − {ycrys} =

⋃

n

Spa(Ainf)

(
p

q1/pn − 1

)
.

Proof. The last assertion in the lemma follows by observing that the points
appearing in (2), (3) or (4) lie in the right side of (7). For the rest, it is
enough to show that any analytic point y ∈ Spa(Ainf)

an falls into one of the
three possibilities described in (2), (3) and (4). Fix one such y for the rest
of the proof.

By continuity, each element of the set S = {p, {q1/pn−1}n≥0} is topologi-
cally nilpotent in V . Moreover, not all of these elements can be 0 as the kernel
of the valuation of defined by y is not open since y is analytic. Thus, at least
one element of S must be a pseudouniformizer in V . It is then easy to see
that if we are not in case (2) or (3), then both p as well as q1/p

n −1 for n ≫ 0
give pseudouniformizers in V : for m ≥ n, we have (q1/p

m − 1) | (q1/pn − 1),
so if the latter is nonzero the same holds true for the former. In this case,
it remains to check the last property in (4), i.e., that p/(q1/p

n − 1) ∈ V for
n ≫ 0. Assume this is false. Then we must have q1/p

n − 1 ∈ pV for all n ≥ 0
as V is a valuation ring. Choose some N ≫ 0 such that q1/p

N − 1 �= 0 in V .
Now the ring V is p-adically separated as p is a pseudouniformizer in V , so
we can choose some k ≥ 0 such that q1/p

N − 1 /∈ pk+1V . But we know that
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q1/p
N+k ≡ 1 mod pV ; raising to the pk-th power then shows that q1/p

N ≡ 1
mod pk+1V , which is a contradiction.

Notation 7.4 (The adic spaces X and Y). Consider the adic space Y =
Spa(Ainf)

an−{ycrys}, where ycrys is as in Lemma 7.3. Write y0 = yC ∈ Y for
the Hodge-Tate point, and let yn = ϕn(y0) for all n ∈ Z.

Let xcrys ∈ Spa(S)an be point defined by u = 0; this is also the im-
age of ycrys under the natural map Spa(Ainf) → Spa(S), and moreover
the inverse image of {xcrys} ⊂ Spa(S) is exactly {ycrys} ⊂ Spa(Ainf). Let
X = Spa(S)an − {xcrys}, so we have an induced map π : Y → X of adic
spaces. Write xet = π(yet) ∈ X , so xet is defined S → S/p[1/u]. Finally,
write xn = π(yn) for n ∈ Z; explicitly, these can be described as follows:

• If n ≥ 0, then xn is defined by S
ϕn

−−→ S → S/E(u) ≃ OK ⊂ K
• If n < 0, then xn is defined by S → S/ϕnE(u)[1/p] =: Kn.

Finally, write B = {xn}n≥1 ⊂ X for the displayed set of positive ϕ-translates
of the Hodge-Tate point.

Lemma 7.5 (Some fibres of Y → X ). Consider the subset B := {xm}m≥1 ⊂
X from Notation 7.4. Then the subset B′ ⊂ B consisting all xm ∈ B with
#π−1(xm) = 1 is finite.

The proof below shows that B′ = ∅ if K is unramified or more generally
if the absolute ramification index e(K/K0) of K is < p. On the other hand,
if K = K0(p

1/p), then B′ �= ∅ (see Example 7.8).

Proof. For each n ≥ 1, one has a factorization

Y ϕ−n◦π−−−−→ X ϕn

−−→ X

of π with both maps being surjective. It is thus enough to show that
(ϕn)−1(xn) ⊂ X is a singleton for finitely many integers n ≥ 1. As xn =
ϕn(x0), it is equivalent to show that there exist only finitely many integers
n ≥ 1 such that (ϕn)−1(xn) = {x0}. The point xn is exactly the vanishing

locus of the ideal In := ker(S
ϕn

−−→ S → S/E(u) = OK), so (ϕn)−1(xn) is
the vanishing locus of ϕn(In)S. Thus, our task is to show that there exist
only finitely many n ≥ 1 such that ϕn(In) = (E(u)) as ideals of S[1/p]. But

for any such n, the map L := S[1/p]/In
ϕn

−−→ S[1/p]/E(u) = K is a finite
flat degree pn extension of rings (by base change from the same property for
ϕn : S → S) that lives over the map ϕn : K0 → K0; this forces K/L to
be a totally ramified degree pn extension of discretely valued fields, which is
clearly only possible for finitely many values of n, proving the lemma.
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Lemma 7.6 (Analytic criteria for membership in Ainf ⊂ Ainf [1/(q−1)]). Let
h ∈ Ainf [1/(q − 1)]. Assume h defines an entire function in a neighbourhood
of each yn ∈ Y for n ≥ 1. Then h ∈ Ainf .

In particular, this lemma implies that 1/u /∈ Ainf [1/(q − 1)], whence
(q − 1)n /∈ uAinf for any n ≥ 0, and thus that (q − 1) /∈ √

uAinf ; as a
contrast, note that the (p, I)-adic completion of

√
uAinf ⊂ Ainf coincides

with ker(Ainf → W (k)), which certainly contains q − 1.

Proof. Write h = g
(q−1)m for g ∈ Ainf . We must show that (q − 1)m | g. If

m = 0, there is nothing to show, so we may assume m ≥ 1. For each n ≥ 1,
the image of g = (q − 1)mh ∈ Ainf under the natural map Ainf → OY,yn

lies
in the maximal ideal of the target dvr: indeed, h is entire at yn, so the claim
follows as (q − 1)m vanishes at yn. Thus, g maps to 0 under the map

Ainf →
∏

n≥1

k(yn).

But this map is identified with the natural map

Ainf ≃ lim
F

W (OC)
pr−→ W (OC)

a 
→(ϕn(a))n≥0−−−−−−−−−→
∏

n≥0

OC ⊂
∏

n≥0

C

defined by Witt vector functoriality. The composite Ainf → W (OC) appear-
ing above has kernel exactly (q−1) by [8, Lemma 3.23], while the rest of the
maps are injective, so it follows that (q − 1) | g. We may then replace the
expression h = g

(q−1)m with h = g/(q−1)
(q−1)m−1 and continue inductively to prove

the lemma.

Lemma 7.7 (Detecting meromorphy over S). Fix f ∈ S[ 1u ]
∧ ∩ Ainf [

1
q−1 ]

(where the intersection is as subrings of W (C♭)). Then f is meromorphic
over S, with poles contained in the set B′ from Lemma 7.5.

Proof. Fix some c ≥ 0 such that (q − 1)c · f ∈ Ainf .
First, we prove that f is meromorphic on X with poles contained in B.

For this, we may work with each affinoid open neighbourhood U of xet ∈ X
separately. For any such U , the intersection B ∩ U is finite, so our task is
to show that f becomes entire on U after multiplication by an element of S
with zeroes only at B ∩U . But π−1(U ∩B)∩ V (q− 1) ⊂ Y is a finite subset
of {yn}n≥1. For any y ∈ π−1(U ∩ B), the extension OX ,π(y) → OY,y is an
extension of discrete valuation rings with finite ramification index. We may
thus choose g ∈ S whose valuation in OY,y exceeds that of (q − 1)c for each
y ∈ π−1(U ∩ B). By our choice of c, it follows that gf ∈ S[1/u]∧p defines
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an entire function on π−1(U) ⊂ Y . By [23, Definition 2.2.13, Lemma 2.3.5,
Remark 2.3.8], it follows that gf is analytic on U . As this holds true for all
U , we conclude that f is meromorphic on X with poles in B.

Next, we observe that f only has poles in B′ ⊂ B. Indeed, for any
xn ∈ B, the preimage π−1(xn) intersects V (q−1) in the singelton {ϕn(yC)}.
If xn ∈ B −B′, the π−1(xn) must have at least one point y′ ∈ Y − V (q − 1)
by definition of B′. But f is entire on Y − V (q− 1), so f is entire at y′, and
thus also at xn = π(y′) (e.g., by comparing the map on local rings).

Combining the previous two paragraphs, we can find some g ∈ S with
zeroes only at points of the finite set B′ such that gf is entire on X . It
remains to check that gf is entire at xcrys as well, i.e., lies in S. For this,
we first observe that gf ∈ Ainf by Lemma 7.6. It then suffices to show that
S = S[1/u]∧p ∩Ainf as subrings of W (C♭), i.e., that the map

S → S[1/u]∧p ×h
W (C♭) Ainf

induces an isomorphism on H0. As W (C♭)/S[1/u]∧p is p-torsionfree, one can
check the above statement after reducing modulo p, where it reduces to
showing the bijectivity of

k�u� → k((u)) ∩ OC♭ ,

which is clear for valuative reasons.

The following example shows that the functions f appearing in Lem-
ma 7.7 may indeed have some poles.

Example 7.8. Let K = Qp(p
1/p) and π = p1/p, so E(u) = up − p. By

construction, the embedding S → Ainf carries E(u) to a generator of ker(θ̃),
i.e., to a unit multiple of [p]q. Twisting by Frobenius, this map sends u − p
to a unit multiple of [p]q1/p . In particular, we have (u − p) | (q − 1) ∈ Ainf ,
whence f := 1

u−p ∈ Ainf [
1

q−1 ]. We also have f ∈ S〈p/u2〉[1/u] as we can
write

1

u− p
=

1

u
· 1

1− (p/u2)u
=

1

u
·
∑

n≥0

un(p/u2)n.

In particular, this function f ∈ S[ 1
u−p ] lies in S〈p/u2〉[1/u] ∩ Ainf [

1
q−1 ] and

has a pole of order 1 at x1.

We can now prove the desired full faithfulness theorem for the étale
realization over S:

Proof of Theorem 7.2. By passing to a suitable internal Hom, it suffices to
show the following: for any M ∈ Vectϕ(S), the natural map
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Mϕ=1 →
(
M [1/E(u)]∧p

)ϕ=1

is bijective. Injectivity is clear as M is finite free over S. For surjectivity, fix
some α ∈

(
M [1/E(u)]∧p

)ϕ=1
. By [8, Lemma 4.26], we know that the image of

α in (M⊗SAinf)[1/E(u)]∧p ≃ M⊗SW (C♭) lies inside M⊗SAinf [
1

q−1 ]. Using
Lemma 7.7 as well as the fact that S is a UFD, we can then write α = β/g
with β ∈ M and g ∈ S having zeroes only at points of B = {xn}n≥1 (and in
fact at points of finite set B′ ⊂ B, but this will not simplify the argument).
We shall check that α ∈ M . Since g only has zeroes in B, it suffices to show
that α ∈ M∧

xm
for all m ≥ 1.

Regard ϕM as an isomorphism ϕM : (ϕ∗M)[1/I] ≃ M [1/I]. Iterating r
times for r ≥ 1, this gives isomorphisms

ϕr
M : M ⊗S,ϕr S[1/Ir] =: (ϕr,∗M)[1/Ir] ≃ M [1/Ir],

where Ir = Iϕ(I)...ϕr−1(I). The defining property ϕM (α ⊗ 1) = α iterated
r times then gives the equality

ϕr
M (β ⊗ 1) =

ϕr(g)

g
β ∈ M [1/Ir] ∀r ≥ 0.

As the ideals Ir for all r ≥ 1 are invertible at the points xm for all m ≥ 1, it
follows that

ϕr(g)

g
β ∈ M∧

xm

for all r ≥ 1 and m ≥ 1. But ϕr(g) is invertible at xm for r ≫ 0 (depending
on m): the function g has only finitely many poles, and applying ϕ(−) moves
a pole at xk to a pole at xk−1 for all k ∈ Z. It follows from the above that
α = β

g ∈ M∧
xm

for all m ≥ 1, as wanted.

7.2. Kisin’s full faithfulness results

In this section, we prove two full faithfulness results originally shown in [26].
First, we relate crystalline GK-representations of F -crystals over S using
Theorem 5.6:

Theorem 7.9 (Kisin [26, Corollary 1.3.15]). Consider the functor

DS : RepcrysZp
(GK) → Vectϕ(S)

obtained by postcomposing the inverse to the equivalence in Theorem 5.6 with
evaluation on the Breuil-Kisin prism (S, E(u)) ∈ X∆. This functor is fully
faithful.
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The proof below relies on certain simple lemmas from Kisin’s work.
Namely, we rely on the arguments in [26, §1.2.4 - §1.2.8] that use Dwork’s
trick to enlarge the radius of convergence of an isomorphism of ϕ-modules
on a disc. We do not use the connection N∇ from [26].

Proof. As (S, E(u)) ∈ X∆ covers the final object, the functor DS is faithful.
For fullness, we first prove the statement with Qp-coefficients by working near
the Hodge-Tate point, and then pass to integral coefficients by working at
the étale point.

First, we construct a natural functor

D : Vectϕ(S〈I/p〉[1/p]) → MFϕ(K),

by undoing Construction 6.5. Given (M, ϕM) ∈ Vectϕ(S〈I/p〉[1/p]), we set
D(M) = M⊗S〈I/p〉[1/p]K0 ∈ Vect(K0), where the map S〈I/p〉[1/p] → K0 is
induced from S[1/p]/uS[1/p] ≃ K0[1/p]. As this map is ϕ-equivariant, the
Frobenius ϕM naturally gives an isomorphism ϕD(M) : ϕ

∗
K0

D(M) ≃ D(M),
endowing D(M) with an F -isocrystal structure. Moreover, since ϕ∗M is a
unit ϕ-module over S〈I/p〉[1/p], the standard Frobenius trick shows that
there is a unique ϕ-equivariant isomorphism

ϕ∗D(M)⊗K0
S〈I/p〉[1/p] ≃ (ϕ∗

M)〈I/p〉[1/p] ∈ Vectϕ(S〈I/p〉[1/p])

lifting the identity after base change to K0 (see [26, Lemma 1.2.6]). Base
changing now to S[1/p]∧I , the Frobenius ϕM gives an isomorphism

ϕ∗D(M)⊗K0
S[1/p]∧I [1/I] ≃ M⊗S〈I/p〉[1/p] S[1/p]∧I [1/I]

∈ Vect(S[1/p]∧I [1/I]).

Transporting the I-adic filtration on M ⊗S〈I/p〉[1/p] S[1/p]∧I along this iso-
morphism and taking its image down along

ϕ∗D(M)⊗K0
S[1/p]∧I

I=0−−→ ϕ∗D(M)⊗K0
K =: D(M)⊗K0,ϕ K

then gives a natural filtration Fil∗ on D(M) ⊗K0,ϕ K. The triple (D(M),
ϕD(M),Fil

∗) then defines an object of MFϕ(K), yielding the promised functor
D. Note that since D(M) naturally recovers ϕ∗

M, the functor D is faithful.
Moreover, it is easy to see (see [26, Proposition 1.2.8]) that the functor D(−)
provides a left-inverse to the composition of the functor D �→ M(D)〈I/p〉
from Construction 6.5 with evaluation over S.
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Now consider the composition

RepcrysZp
(GK)[1/p]

DS[1/p]−−−−−→ Vectϕ(S)[1/p]

−⊗SS〈I/p〉[1/p]−−−−−−−−−−→ Vectϕ(S〈I/p〉[1/p]) D−→ MFϕ(K).

Unwinding definitions and using the last sentence in the previous paragraph,
this composition coincides with Fontaine’s functor Dcrys and is thus fully
faithful. On the other hand, each functor in the above composition is faithful:
this was shown in the first paragraph for DS[1/p], in the last paragraph for
D, and is clear for the base change functor by injectivity of S → S〈I/p〉[1/p].
This shows that DS[1/p] must be fully faithful, proving the theorem up to
inverting p.

It now remains to prove that DS is itself fully faithful. Fix L,L′ ∈
RepcrysZp

(GK) and a map α : DS(L) → DS(L′). By the rational version of
the theorem, there exists some n ≥ 0 such that pnα = DS(a) for a unique
map a : L → L′ of GK-representations. We must show that a is divisible
by pn as a map of GK-representations. In fact, it suffices to show divisibility
merely as a map of Zp-modules: the resulting map a/pn is then automatically
GK-equivariant as a is so. But the forgetful functor RepcrysZp

(GK) → Vect(Zp)
factors over DS: indeed, postcomposing DS with the étale realization

Vectϕ(S) → Vectϕ(S[1/E(u)]∧p ) ≃ RepZp
(GK∞

)

gives the obvious restriction map

RepcrysZp
(GK) → RepZp

(GK∞
),

which certainly factors the forgetful functor for the left side. It is then clear
that a is divisible by pn as a map of Zp-modules, as wanted.

Using the above as well as Theorem 7.2, we deduce the following full
faithfulness result for Galois representations that was conjectured by Breuil
and proven by Kisin:

Corollary 7.10 (Kisin [26, Corollary 2.1.14]). The restriction functor

RepcrysZp
(GK) → RepZp

(GK∞
)

is fully faithful.

An alternative direct proof of this result was also given in [4].
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Proof. We can factor the restriction functor factors as a composition

RepcrysZp
(GK)

DS−−→ Vectϕ(S)
−⊗SS[1/E(u)]∧−−−−−−−−−−→ Vectϕ(S[1/E(u)]∧)

≃−→ RepZp
(GK∞

),

where DS is the fully faithful functor from Theorem 7.9, the base change
functor (− ⊗S S[1/E(u)]∧) is fully faithful by Theorem 7.2, and the last
equivalence is from Corollary 3.8. As each constituent functor is fully faithful,
so is the composition.

Remark 7.11 (Compatibility with Kisin’s work). Strictly speaking, we
haven’t yet shown that the functor in Theorem 7.9 coincides with the one
from [26]. To check this, call the latter D′

S
. Thanks to Corollary 7.10, to

show DS ≃ D′
S

, it suffices to show that the two functors

RepcrysZp
(GK)

DS−−→ Vectϕ(S)
−⊗SS[1/E(u)]∧−−−−−−−−−−→ Vectϕ(S[1/E(u)]∧)

≃−→ RepZp
(GK∞

),

and

RepcrysZp
(GK)

D′
S−−→ Vectϕ(S)

−⊗SS[1/E(u)]∧−−−−−−−−−−→ Vectϕ(S[1/E(u)]∧)

≃−→ RepZp
(GK∞

)

are naturally isomorphic. But these are both identified with restriction along
GK ⊂ GK∞

by unwinding definitions, so the compatibility follows.

Remark 7.12 (Liu’s compatibility for different uniformizer choices). Liu’s
paper [29] studies the dependence of the functor DS from Theorem 7.9 on the
choice of the uniformizer π. To formulate his theorem, fix two uniformizers
π and π′ equipped with a compatible system of p-power roots π, π′ ∈ O♭

C ;
write (Sπ, (E)) and (Sπ′ , (E′)) for the corresponding Breuil-Kisin prisms.
The choices of π, π′ determine unique δ-W -algebra maps Sπ → Ainf and
Sπ′ → Ainf . Liu shows the following: for any L ∈ RepcrysZp

(GK), the modules
DSπ

(L)⊗Sπ
Ainf and Dπ′(L)⊗Sπ′ Ainf are identified in a (ϕ,GK)-equivariant

manner; here the implicit GK-action on the base change is not automatic
from [26], and in fact is the main result of [28] (but it is already uniquely
determined by the given GK-action on the étale realization). Such results are
now automatic from the prismatic perspective: they follow from the crystal
property of evaluations of prismatic F -crystals applied to the maps

(Sπ, (E)) → (Ainf , ker(θ̃)) ← (Sπ′ , (E′))
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in Spf(OK)∆ together with the observation that (Ainf , ker(θ̃)) is a GK-
equivariant object of Spf(OK)∆.

7.3. The logarithmic connection

In this section, we explain (Corollary 7.17) why the S-module attached to
any crystal of vector bundles on X∆ (without any Frobenius data) car-
ries a natural logarithmic connection after base change to the local ring
S := S[1/p]∧(E(u)) at the Hodge-Tate point. In fact, the connection is di-
rectly obtained from the descent data underlying the crystal: our strategy is
to understand the descent data on the S-module attached to such a crystal
to good enough accuracy for obtaining the logarithmic connection.14 To do
so, we first make the relevant rings more explicit:

Construction 7.13 (The prismatic Cech nerve of S). Let S
(•) denote the

cosimplicial ring obtained by taking the Cech nerve of (S, E(u)) in X∆. The
multiplication map on S induces a surjection

μ∆ : S(•) → S

of cosimplicial δ-rings (where the target is a constant diagram); write J
(•)

∆
⊂

S
(•) for the kernel of this map. By construction, there is a natural map

S
⊗[•] → S

(•) of cosimplicial rings, where S
⊗[i] is the i-fold tensor product

of S over W . Each term S
(i) is a transversal prism over X, i.e. {p,E(u)} gives

a regular sequence of length 2 on each S
(i). (See [1] for the term “transversal

prism”.)
For future use, let us describe the first two terms explicitly. Clearly

S
(0) = S. In degree 1, we have

S
(1) = W �u, v�{u− v

E(u)
}∧(p,E(u)).

Note that since u= v mod E(u)S(1), we also have E(v)= 0 mod E(u)S(1),
whence E(v)/E(u) ∈ S

(1) is a unit by the irreducibility lemma on distin-
guished elements, so the right side above can also be described by replacing
E(u) with E(v). By construction, we have

14One could also construct this log-connection on a larger region stable under
the Frobenius map. For prismatic F -crystals, the resulting log-connection will then
automatically (by functoriality of the construction) commute with the Frobenius.
Kisin [26] shows the uniqueness of such a log-connection, so it agrees with his
construction.



556 Bhargav Bhatt and Peter Scholze

δn
(
u− v

E(u)

)
∈ J

(1)

∆
∀n ≥ 0.

It will also be convenient to give a name to the following non-completed
version:

S
(1),nc := W �u, v�{u− v

E(u)
}.

The surjection μ restricts to a surjection S
(1),nc → S with kernel J (1),nc

∆
;

moreover, S(1) (resp. J∆) can be recovered by (p,E(u))-completion of S(1),nc

(resp. J (1),nc

∆
).

Construction 7.14 (The logarithmic Cech nerve on the generic fibre). Re-
gard the discrete valuation ring S := S[1/p]∧E(u) as an adic ring with the

E(u)-adic topology; endow it with the prelog structure defined by E(u)N.
Write S(•) for its Cech nerve in the log infinitesimal site of S. There is a
surjective multiplication map

μlog : S(•) → S

with kernel J
(•)
log ; note that S(•) is J

(•)
log -adically complete, and hence (by

the E(u)-adic completeness of S(•)/J
(•)
log ≃ S) also E(u)-adically complete.

By construction, there is a natural map S
⊗[•] → S(•) of cosimplicial rings.

Moreover, general nonsense on log infinitesimal cohomology shows that for
each n ≥ 0, each term of the cosimplicial S-module (J

(•)
log )

n/(J
(•)
log )

n+1 is free

over S(•)
log/J

(•)
log ≃ S.

For future use, we make the objects explicit in low degrees. Clearly S(0) =

S. In degree 1, we can identify S(1) as the completion of W �u, v�[1/p,
(E(u)
E(v)

)±1
]

along the kernel of the multiplication map to S.

The crucial result in this section is the following relation:

Lemma 7.15 (Relating the prismatic and logarithmic Cech nerves). There
is a natural map

S
(•)〈I/p〉[1/p] → S(•)

log/(J
(•)
log )

2

of cosimplicial rings, extending the natural map S → S in degree 0.

Proof. As p is invertible on the target, it suffices to construct a map out
of S

(•)〈I/p〉 as in the lemma. For notational ease, we shall construct the

extension in degree 1, i.e., we extend the canonical map S⊗[1] → S(1)/(J
(1)
log )

2

naturally across S⊗[1] → S
(1) → S

(1)〈I/p〉; a similar argument applies to the
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higher degree terms as well. We shall construct this extension by extending
successively along each map in the composition S

⊗[1] → S
(1),nc → S

(1) →
S

(1)〈I/p〉.
To extend to S

(1),nc, we first observe that u = v mod E(u)S(1): indeed,
since (E(u)/E(v))±1 exists in S(1), both u and v are roots of the separable
polynomial E(T ) ∈ K0[T ] in the ring S(1)/E(u) and give same element in
the quotient S/E(u) under the multiplication map, so the equality follows by
Hensel’s lemma as S(1)/E(u) is complete along the kernel of the multiplica-
tion map to K = S/E(u). Since E(u) is a nonzerodivisor on S(1), it follows
that u−v

E(u) ∈ S(1). Moreover, ϕnE(u) gives a unit in K for n ≥ 1, and hence is

also a unit in the pro-infinitesimal thickening S(1) → S → K. Consequently,

we have {ϕn
(

u−v
E(u)

)
}n≥0 ∈ S(1). As p is invertible in S(1), it follows that we

also have {δn
(

u−v
E(u)

)
}n≥0 ∈ S(1). As S(1),nc is generated over S⊗[1] by these

elements subject to the “obvious” relations, we obtain an induced map

S
(1),nc → S(1)

factoring the canonical map S
⊗[1] → S(1)

log .

Next, we extend to S
(1). For this, observe that the compatibility with the

multiplication map shows that extension constructed in the previous para-
graph carries J

(1),nc

∆
into J

(1)
log . Now S

(1),nc/J
(1),nc

∆
≃ S, so S

(1) is obtained

from S(1),nc by pushing out along the map from J
(1),nc

∆
to its (p,E(u))-

completion. So it suffices to show that the map

J
(1),nc

∆
→ J

(1)
log/(J

(1)
log )

2

factors over the (p,E(u))-completion of the source. Note that the target
above is a free S-module and hence E(u)-complete. Fixing some k ≥ 1, it
suffices to show that the resulting map

J
(1),nc

∆
→

(
J
(1)
log/(J

(1)
log )

2
)
/E(u)k =: Qk

factors over the p-completion of the source. We may regard this as a map from
non-unital S⊗[1]-algebras, where the target Qk has a square-zero multiplica-
tion. Moreover, Qk is naturally a p-adic Banach vector space over K0, while

the source is generated by {δn
(

u−v
E(u)

)
}n≥0 as a non-unital S⊗[1]-algebra. As

the multiplication on Qk is square-zero, it suffices to show that the image of

the set {δn
(

u−v
E(u)

)
}n≥0 in the p-adic Banach space Qk is bounded. In fact, to



558 Bhargav Bhatt and Peter Scholze

prove boundedness, we may ignore finitely many terms, so it suffices to prove

that {δn
(

u−v
E(u)

)
}n≥c maps to a bounded set in Qk for some c = c(k). Observe

that δn
(

u−v
E(u)

)
and 1

pnϕn
(

u−v
E(u)

)
have the same image in Qk for all n ≥ 0:

this follows by induction on n, using the formula δ(x) = ϕ(x)/p−xp/p as well

as the observation that any element of (J (1)
log )

p maps to 0 in Qk since p ≥ 2.

It is therefore sufficient to check that { 1
pnϕn

(
u−v
E(u)

)
}n≥c gives a bounded set

in Qk for some c ≥ 0. We then simplify

1

pn
ϕn

(
u− v

E(u)

)
=

up
n − vp

n

pnϕn(E(u))
=

(u− v) · (∑pn−1
i=0 uivp

n−i)

pnϕn(E(u))
.

Now
(
S(1)/(J

(1)
log )

2
)
/E(u)k is a square-zero extension of S/E(u)k by Qk

and u − v ∈ Qk ⊂ S(1)/E(u)k, so multiplication by u − v gives a map

S/E(u)k → S(1)/((J
(1)
log )

2, E(u)k); one checks that this map is bounded. Our

problem then translates to check that {
∑pn−1

i=0 uivpn−i

pnϕnE(u) }n≥c has bounded image

in S/E(u)k. But this image is given by setting u = v, so we are reduced

to checking that { pnupn

pnϕnE(u)}n≥c = { upn

ϕnE(u)}n≥c is bounded in the Banach

algebra S/E(u)k for some c ≥ 0. As u is power bounded, it is enough to
show that { 1

ϕnE(u)}n≥c is bounded for some c ≥ 0. But for any distinguished

element d in a p-local δ-ring A, we have15

ϕn(d) = pu mod dcA

for a unit u and c ≤ pn; applying this observation to A = S and d = E(u)
then shows that all elements of { 1

ϕnE(u)}n≥logp(k)
have the same absolute

value in S/E(u)k, which trivially gives boundedness. Thus, we have con-

structed the map S
(1) → S(1)/(J

(1)
log )

2 extending the natural map S
⊗[1] →

S(1) → S(1)/(J
(1)
log )

2.

15This follows from the properties of Joyal’s operations {δn : A → A}n≥1 on A
extending δ = δ1 (see [11, Remarks 2.13, 2.14]). Indeed, these operations satisfy the
following: for any f ∈ A and n ≥ 1, one has

ϕn(f) = fpn

+ pδ1(f)
pn−1

+ p2δ2(f)
pn−2

+ ...+ pnδn(f).

Now if δ1(f) = δ(f) is a unit and A is p-local, it follows that ϕn(f) = pu mod fpn

A
for a unit u ∈ A.
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Finally, it remains to extend across S(1)→S
(1)〈E(u)/p〉. As S(1)〈E(u)/p〉

is the p-adic completion of S(1)[E(u)/p] and p is invertible on S(1)/(J
(1)
log )

2,
we may follow the reasoning used in the previous paragraph to reduce to
checking that the set {E(u)n

pn }n≥1 is bounded in the p-adic Banach algebra(
S(1)/(J

(1)
log )

2
)
/E(u)k for each k ≥ 1. But this is obvious as E(u)n

pn = 0 in

this algebra for n ≥ k.

Construction 7.16 (Log connections on S). Write Vect∇,log(S) for the
category of vector bundles M on S equipped with a (continuous) logarithmic
connection ∇ : M → M ⊗S Ω1

S,log. As Ω1
S,log is a free S-module of rank 1

with generator du
E(u) , specifying the connection ∇ is equivalent to specifying

an operator N∇ = E(u) d
du : M → M satisfying

N∇(f(u)m) = E(u)f ′(u)m+ f(u)N∇(m)

for all f(u) ∈ S and m ∈ M .

Corollary 7.17 (From prismatic crystals to log connections). Base changing
along S〈I/p〉[1/p] → S = S[1/p]∧I lifts to a functor

D∇ : Vect(X∆,O∆〈I∆/p〉[1/p]) → Vect∇,log(S).

Proof. Mimicking the argument in Proposition 2.7, one first checks that
O∆〈I∆/p〉[1/p]-vector bundles can be described explicitly: the natural map
gives an equivalence

limVect(S(•)〈I/p〉[1/p]) ≃ Vect(X∆,O∆〈I∆/p〉[1/p]).

Indeed, this reduces to the following observation: if A → B is a (p, I)-
completely faithfully flat map of prisms with (p, I)-completed Cech nerve
B•, then B•〈I/p〉 is the p-completed Cech nerve of the p-completely flat
ring map A〈I/p〉 → B〈I/p〉, and thus we have the descent equivalence

Vect(A〈I/p〉[1/p]) ≃ limVect(B•〈I/p〉[1/p])

by Theorem 2.2.
Fix a crystal E ∈ Vect(X∆,O∆〈I∆/p〉). By the previous paragraph, this

crystal has a value M = E(S) ∈ Vect(S〈I/p〉[1/p]). We claim that MS :=
M⊗SS ∈ Vect(S) naturally carries a log connection. By general nonsense on
log infinitesimal cohomology, the data of a log connection on MS ∈ Vect(S)
is exactly a lift of this object to limVect(S(•)

log/(J
(•)
log )

2); but such a lift is
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provided by base changing E(S(•)) ∈ limVect(S(•)〈I/p〉[1/p]) along the map
from Lemma 7.15, so the claim follows.
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