Climate Coach: A Dashboard for Open-Source Maintainers to
Overview Community Dynamics

Huilian Sophie Qiu Anna Lieb Jennifer Chou
sophie.qiu@kellogg.northwestern.edu all117@wellesley.edu jechou@andrew.cmu.edu
Northwestern University; Carnegie Wellesley College Carnegie Mellon University

Mellon University
Evanston, IL, USA

Megan Carneal
megancarneal@gmail.com
The University of Alabama

Tuscaloosa, AL, USA

Bogdan Vasilescu
vasilescu@cmu.edu
Carnegie Mellon University
Pittsburgh, PA, USA

ABSTRACT

Open-source software projects have become an integral part of
our daily life, supporting virtually every software we use today.
Since open-source software forms the digital infrastructure, main-
taining them is of utmost importance. We present Climate Coach,
a dashboard that helps open-source project maintainers monitor
the health of their community in terms of team climate and inclu-
sion. Through a literature review and an exploratory survey (N=18),
we identified important signals that can reflect a project’s health,
and display them on a dashboard. We evaluated and refined our
dashboard through two rounds of think-aloud studies (N=19). We
then conducted a two-week longitudinal diary study (N=10) to test
the usefulness of our dashboard. We found that displaying signals
that are related to a project’s inclusion help improve maintainers’
management strategies.

ACM Reference Format:

Huilian Sophie Qiu, Anna Lieb, Jennifer Chou, Megan Carneal, Jasmine
Mok, Emily Amspoker, Bogdan Vasilescu, and Laura Dabbish. 2023. Climate
Coach: A Dashboard for Open-Source Maintainers to Overview Community
Dynamics. In Proceedings of the 2023 CHI Conference on Human Factors in
Computing Systems (CHI "23), April 23-28, 2023, Hamburg, Germany. ACM,
New York, NY, USA, 18 pages. https://doi.org/10.1145/3544548.3581317

1 INTRODUCTION

While by and large, our society has come to recognize the immense
value and importance of open-source software for our digital econ-
omy [27], maintaining all this digital infrastructure remains chal-
lenging [43]. With much open-source software being developed

This work is licensed under a Creative Commons Attribution-NoDerivs International
4.0 License.

CHI ’23, April 23-28, 2023, Hamburg, Germany
© 2023 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9421-5/23/04.
https://doi.org/10.1145/3544548.3581317

Wellesley, MA, USA

Jasmine Mok
jasminem@andrew.cmu.edu
Carnegie Mellon University
Pittsburgh, PA, USA

Pittsburgh, PA, USA

Emily Amspoker
eamspoke@andrew.cmu.edu
Carnegie Mellon University

Pittsburgh, PA, USA

Laura Dabbish
dabbish@andrew.cmu.edu
Carnegie Mellon University
Pittsburgh, PA, USA

and maintained by volunteers [14, 65, 66], a core issue affecting
the sustainability of the whole ecosystem remains to be attracting
and retaining contributors to different projects. Many important,
heavily downloaded open-source projects are maintained by only
one or two developers [16] and sometimes by no one at all [4].
Turnover rates are generally high in open-source projects [28, 51].
Moreover, there are many documented socio-technical barriers that
newcomers face when trying to join open-source projects [47, 77],
often disproportionally affecting women and members of under-
represented groups [40, 85, 88].

Researchers have made considerable progress in the last decade
towards understanding the factors that affect the health and sus-
tainability of open-source projects, e.g., see Franco-Bedoya et al.
[31], Linaker et al. [43], and Trinkenreich et al. [88] for recent sur-
veys. This knowledge is only beginning to make its way back into
practice. In addition to technical aspects, such as code quality and
development process, and project governance aspects, such as li-
censing, social (community) aspects is an indispensable dimension
of open source health. Nevertheless, there is a surprising scarcity
of evidence-based interventions for improving open-source com-
munity health in terms of team climate and inclusion. Although
some code hosting platforms begin to provide some community-
oriented design elements, such as GiTHUB’s checklists of items
associated with promoting inclusion and community health, e.g.,
contributing guidelines and codes of conduct, only two academic
studies designed and evaluated community health interventions:
Steinmacher et al. [78] designed a portal helping newcomers to
navigate an open source project, and Guizani et al. [35] designed a
dashboard assisting maintainers to overview the joining, activity,
and retention trends of the newcomers to their projects.

In this paper, we take another step in the direction of open-
source community health interventions. Grounded in the literature
and interviews with open-source maintainers, we start by identify-
ing factors and measures indicative of community health that do
not currently have associated signals in the GiTHuB UI or other

https://orcid.org/
https://orcid.org/
https://orcid.org/
https://orcid.org/
https://orcid.org/
https://orcid.org/
https://orcid.org/
https://orcid.org/
https://doi.org/10.1145/3544548.3581317
https://creativecommons.org/licenses/by-nd/4.0/
https://creativecommons.org/licenses/by-nd/4.0/
https://doi.org/10.1145/3544548.3581317
mailto:dabbish@andrew.cmu.edu
mailto:vasilescu@cmu.edu
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3544548.3581317&domain=pdf&date_stamp=2023-04-19

CHI 23, April 23-28, 2023, Hamburg, Germany

dedicated monitoring infrastructure, such as indicators of respon-
siveness to issues [60], pushback in code reviews [26], and toxicity
in pull request and issue discussions [64]. Next, we iteratively de-
sign and evaluate a dashboard, Climate Coach, that tracks these
indicators for a given project over time and in comparison to a
group of ‘peer’ projects. Results from a diary study with project
maintainers show that our dashboard can increase the maintainers’
confidence in supporting community health. Compared to prior
studies [35, 78], our work goes beyond newcomers and is more
broadly focused on project climate, but can be seen as comple-
mentary to those efforts on exploring indicators of open-source
community health [33, 35].

Our work also has several broad contributions to the Human-
Computer Interaction (HCI) community. An intervention that
integrates prior literature: our work builds on a vast body of
literature that studied how to improve a project’s climate and inclu-
sion and implements various methods or actions suggested in those
works. We turned many of the practices or suggestions developed
from empirical studies into a usable intervention. A product ready
to use: our dashboard design has been refined by two rounds of
interviews with active open-source maintainers and a two-week
field study. Our source code is publicly available.! Proof of idea:
the positive feedback we have received from maintainers on the
usefulness of our dashboard shows that the general idea of turning
important yet hidden metrics into plain, observable, and quantifi-
able signals can help users better assess their projects’ status and
make informed decisions. Transferrable results: some of our
findings are not exclusively applicable to the open-source context
and can be adapted to other similar team settings such as remote
collaboration or volunteer communities.

2 RELATED WORK

2.1 Healthy Open-Source Communities

With open-source software becoming ubiquitous and powering
applications in virtually every domain, much of the research atten-
tion has shifted from understanding how and why this mode of
production functions [52] and what motivates people to contribute
to it [39], to understanding what are the risk factors impacting the
health of open source and how to sustain this digital infrastructure
on which so much of our society relies [16, 27, 33, 90]. Many dimen-
sions of project health have been identified as important, ranging
from organizational and legal (e.g., what are appropriate gover-
nance structures [44, 56] and licenses [48, 84]), through technical
(e.g., how to ensure code quality in a rapidly-paced, distributed
software development setting [20, 76]), to social (e.g., how to at-
tract and retain contributors [60, 79] and how to maintain healthy
conversations [49, 64]).

A key challenge related to an open-source project’s social di-
mension is attracting and retaining contributors. Much of open
source is developed and maintained by volunteers [14, 65, 66], who
typically have a choice of where in the ecosystem to spend their
efforts (which projects to join, which tasks to work on, etc.) and
how long to stick around. Coupled with a constant need for work
to maintain and evolve open-source software systems (e.g., fixing

Thttps://doi.org/10.5281/zenodo.7592079

Qiu, et al.

bugs and security vulnerabilities, developing new features, improv-
ing documentation) and generally high rates of turnover among
all contributors to open source [28, 51, 70], the volunteer-based
community makes it hard to sustain a steady stream of contributors
to one’s open-source project.

The literature has identified a wealth of factors that could im-
pact a project’s ability to attract and retain contributors, affecting
all stages of the contribution process, ranging from choosing a
project to join [60] and overcoming initial barriers to entry [82], to
ensuring long-term sustained participation and engagement [61].
Many of these factors are cultural. Whether the project is perceived
as open to new contributors and whether it has enough scaffold-
ing in place to facilitate their onboarding [60], how the project
acknowledges contributions [13, 95], whether the maintainers are
responsive to requests [26, 62] and constructive and reasonable
to other contributors in their feedback [80, 82], whether the tone
of project-related discussions is perceived as polite or, on the con-
trary, toxic [29, 30, 49, 64], and whether a code of conduct is in
place [42, 73, 74] are all seen as contributing to creating an inclusive
environment and a healthy community. In addition, these issues are
known to disproportionately affect women and other groups that
are severely underrepresented in open source [53, 59, 85], which
further reduces the size of a project’s potential contributor pool;
it also has broader negative consequences beyond open source,
as contributing to open source is for many a launching ramp for
professional careers in the technology world [32, 45].

2.2 Transparency and Signaling

Our discussion above leaves implicit the impression formation pro-
cess through which the different perceptions of project climate
attributes are formed. In fact, social coding platforms rely heav-
ily on transparency and signaling to facilitate impression forma-
tion [22, 46, 89]. On GiTHUB, many signals (visible cues) are avail-
able by default as part of the UI for all projects hosted on the plat-
form, e.g., the number of stars a repository has received, the number
of commits recorded in its history, or the number of followers an in-
dividual user has accumulated. Other signals, e.g., repository badges
embedded in a project’s top-level README file [89], still can be
defined and customized by project maintainers to communicate at-
tributes of interest including code quality, adherence to testing and
dependency management best practices. Prior work has shown that
all these various signals play a role in a diversity of decisions users
on the platform make, including which repositories to watch [71],
which to trust [89], which to contribute to [60], which pull request
contributions to accept [46], which developers to follow [7, 41],
and even which developers to recruit for positions in the offline
world [11, 45].

At the same time, not all attributes indicative of a healthy project
climate and community have dedicated signals or monitoring tools.
This leaves maintainers without a direct way to monitor the health
of their open-source communities and, if needed, intervene. How-
ever, as we argue in this paper, there is an opportunity to further
leverage the high level of transparency afforded by the GiTHus plat-
form, which recorded and made public available many dimensions
of activities and communication histories, to design new signals
indicative of open-source community health.

https://doi.org/10.5281/zenodo.7592079

Climate Coach: A Dashboard for Open-Source Maintainers to Overview Community Dynamics

2.3 Measurement and Dashboards

Unsurprisingly, mining data from software repositories to measure
and understand the activity in open source is an idea almost as old
as the domain itself. By now, researchers have proposed a plethora
of measures of project activity, success, or health in terms of project
quality [2, 3, 16, 18, 20, 21, 28, 52, 87, 90, 92], including measures
of code quality, popularity, team size, team productivity, turnover,
contribution inequality, and risk of becoming abandoned, just to
name a few.

Researchers have also proposed tools to extract and visualize
information from open-source repositories, including various dash-
boards designed to help with project management tasks. Typically,
these have focused on technical aspects, e.g., visualizing distribu-
tions and trends in basic activity metrics such as the number of com-
mits and commit authors across projects in an ecosystem [57, 94],
managing package dependencies and possible conflicts arising from
dependency version upgrades [15], and visualizing statistics about
reported issues [37].

There are also a few notable examples of efforts focused on social
aspects such as identifying expertise [1], visualizing the structure of
the various socio-technical networks that form between developers,
communications, and software artifacts [54, 69, 86, 97], visualizing
collaboration patterns [58], visualizing trends in demographic di-
versity attributes such as gender and geographic location [67, 96],
and raising awareness of team members’ current activities when
working on a shared code base [5]. More generally, there are now
multiple mature data analytics toolsets for software repository
data [19, 24, 25, 75], as well as efforts to standardize the relevant
measures indicative of open source health as part of the CHAOSS
project [33, 34].

In contrast, there has been very little work to design dashboards
and monitoring infrastructure explicitly for health in open source
and sustainability indicators, particularly along the project climate
dimension related to attracting and retaining contributors. As ex-
ceptions, we note, first, an earlier work by Steinmacher et al. [78]
of a portal for newcomers that helps demistify the joining process.
Second, Guizani et al. [35] designed a dashboard for maintainers to
monitor statistics about the joining, activity, and retention trends of
the newcomers to their projects. Finally, we note work by Goggins
et al. [33] to “implement CHAOSS metrics and present them in
ways that enable maintainers, contributors, and other stakeholders
to draw inferences about the relative health and sustainability of
their projects.”

Our current work builds most directly on insights from the latter
two. Similarly to both Guizani et al. [35] and Goggins et al. [33],
the target audience for our dashboard is project maintainers and
community managers interested in monitoring open-source com-
munity health. Similarly to Goggins et al. [33], we also include a
project comparison element in our design, to allow maintainers
to benchmark their community’s metrics against a subset of their
peers. However, unlike either of them, we focus our dashboard
on measures of project climate indicative of a healthy, inclusive
culture, including subtle indicators of pushback in code reviews and
toxicity in issue discussions, that currently lack associated signals
in the GrTHUB UI or dedicated repository badges (see details below).
Moreover, we focus this paper on the design of the dashboard and

CHI 23, April 23-28, 2023, Hamburg, Germany

explore, using an iterative user-centered design process, different
media through which maintainers can interact with the dashboard,
different sets of metrics to track, and many other design decisions.
Finally, we report on a diary study to evaluate the dashboard in prac-
tice. Overall, we see our work as complementary to that of Guizani
et al. [35] (focused on newcomers rather than project climate more
broadly) and Goggins et al. [33] (focused on standardized metrics
and measurement infrastructure rather than dashboard design). We
expect future work in this space to combine elements of all three.

Beyond open source health monitoring, dashboards have long
been used for team management in other domains. We highlight in
particular the work of Samrose et al. [68], which inspired our study
design. Samrose et al. [68] created MeetingCoach, a wireframe dash-
board to facilitate more inclusive online meetings. The authors first
conducted an initial survey, from which they collected feedback
on what features can help create a more inclusive meeting, such as
speaking turns. Then they created a wireframe and iterated on the
design with interviews and think-aloud studies with in-situ meet-
ings. Finally, they showed that the dashboard improves meeting
attendees’ awareness of meeting dynamics that have implications
for inclusion.

3 METHODS

This section provides an overview of our three-phase study design.
The process is illustrated in Figure 1. Following the guidance by
Bjogvinsson et al. [6] on participatory design and the study on
the MeetingCoach dashboard by Samrose et al. [68], our design
process is iterative and collaborative. We invite active open-source
maintainers to participate starting at a very early stage of the design
process, and we attempt to include a diverse set of maintainers to
gain different perspectives.

Overall, Phase 1 consists of email interviews with active main-
tainers to collect signals that can help improve an open-source
project’s climate and inclusion. In Phase 2, we use the signals from
Phase 1 to design our dashboard and evaluate the usability with
active open-source maintainers. Phase 3 is a field study to evalu-
ate the dashboard: we conducted a two-week diary study with
maintainers to see its effectiveness.

3.1 Phase 1: Collect Signals - Email Interviews

During Phase 1, we conducted email interviews with maintainers
to learn about what signals would help them manage their project’s
health in terms of welcoming contributors and community inclu-
sion. Our goal was to determine what signals could be included in
our dashboard to assist maintainers in monitoring their project’s
health. Because of this, we were interested in what strategies main-
tainers employed to manage newcomers. Onboarding newcomers
is a significant burden on maintainers but also an important source
of community growth and influences how inclusive and welcoming
a project seems to outsiders. The outcome of this phase was a list
of signals to include in our Climate Coach dashboard (Table 1).
Given the vast literature on open-source management, maintainers’
ongoing experience allowed us to identify and determine the most
critical signals to include in our dashboard. Below we present the
method of how we collected signals for our dashboard.

CHI 23, April 23-28, 2023, Hamburg, Germany

Phase 1
CLIMATE SIGNAL
IDENTIFICATION

Qiu, et al.

Phase 2
DASHBOARD
DESIGN

Phase 3
EVALUATION

)

g

Literature
Review Initial Prototype
Open Source GitHub Issue with
Project Health Project Data
Indicators

X

Exploratory

Survey Think-aloud
Ema":]'l‘f;‘"ews Sessions (N=19) and
(N=18) Design Iteration

-

Diary Study
Climate Coach 2-week Trial
Webpage with Project Open-Source Project

Signals Maintainers (N=10)

/

Figure 1: Three-phase study process

Protocol. The email interview was primarily unstructured. It started
with a single question: what their project thinks about new contrib-
utors. Instead of directly asking what the maintainers have done
to attract new contributors, we decided to ask this broad question
to avoid leading the project owners to provide socially desirable
answers about project diversity and inclusion. In addition to their
initial responses to our prompt, we engaged in follow-up conversa-
tions with many of the maintainers so that they could fully express
their thoughts in response to our query.

Recruitment. We used the GiTHuB API to identify 100 projects
that had commits in the past week and owners that displayed their
emails on their profile pages. Projects with fewer than three peo-
ple were excluded because small projects were more likely to be
personal or private projects rather than open-sourced ones and
less likely to have dealt with newcomers or contributions from
nonmembers.

We tried to collect a sample that consists of projects of vari-
ous sizes and whether they have at least one woman contributor.
We consider projects with at least one woman or non-binary con-
tributor as gender-diverse. We had to choose this loose definition
of gender-diverse projects lest our pool of potential participants
would be too small. Because men contributors take up more than
90% of the open-source population [63], the number of projects
containing women or non-binary people is already very minimum.
Our sample was further limited because not all maintainers disclose
their contact information on GiTHUB.

To identify gender-diverse projects, we first used the computa-
tional tool Namsor [12, 63] to infer contributors’ genders automati-
cally based on their names. This inference served only as a guideline
to point us to projects that probably have women contributors. We
then manually verified if there were indeed women or non-binary
contributors to the project. When trying to detect whether there are
women or non-binary contributors, we acknowledge the limitation
in our method that we mostly used their namesand profile pic-
tures as an approximation. Knowing that it is a relatively unreliable

method than asking the contributors to self-identify their genders,
we only consider those with strong signals, e.g., commonly used
female names or clearly labeled gender pronouns, as contributors
of a gender other than men. We further discuss the limitation in
Section 7.

We sent out emails to 100 project owners and received 18 re-
sponses. Among them, ten projects did not have any women or
non-binary contributors, and the other 8 had at least one. Unfortu-
nately, there were not enough women or non-binary maintainers
for us to contact, so the gender distribution of our interviewees was
heavily skewed toward men. The projects’ sizes we collected ranged
from 4 to 5000+. We refer to participants in our email interviews as
ROPx. The breakdown of the projects’ characteristics is shown in
Table 1 in our supplemental material.!

Data analysis. Two of the authors conducted a thematic analysis on
the responses we received from maintainers [8]. As a validation of
our literature review, we focused on the themes that were present
in prior studies while paying attention to new themes. We first
identified instances of different themes in the first ten responses.
For each response analyzed, we identified owners’ attitudes towards
new contributors and actions they described taking to handle new
contributors. Based on the themes we identified from our first
round of open coding, we developed a set of initial codes and then
continued open coding the rest of the responses, comparing each
response with previously examined ones, adding new codes when
a new theme emerged, and grouping codes to form higher level
categories. When possible, we assigned codes to categories we
identified from the literature. We repeatedly discussed the codes
and categories in a highly collaborative and iterative process. We
present the results in Section 4.

3.2 Phase 2: Design Dashboard - Think-aloud
Interviews

The goal of Phase 2 was to use the signals we collected in Phase
1 to develop our dashboard and conduct usability interviews with

Climate Coach: A Dashboard for Open-Source Maintainers to Overview Community Dynamics

maintainers. We calculated and visualized signals collected in the
previous phase to put on our dashboard. After we finished our
initial prototype design (shown in Section 1 in our supplemental
material),! we started conducting think-aloud interviews with open-
source maintainers to test its usability. The outcome of this phase
was a refined dashboard that we used for Phase 3, a two-week diary
study with open-source maintainers to further test the usability
and its effectiveness in helping maintainers manage their project
climate.

We used PyGithub? to mine GrTHUB data for our dashboard.
Given a project’s slug (owner/repo_name), we wrote a Python pro-
gram that could automatically pull a project’s data for generating
the dashboard, including issues and PRs, along with all their com-
ments. After removing bots [23] and their posts, we performed data
aggregation, analysis, and visualization. We present the details of
our design in Section 4.

After we produced our initial dashboard prototype, we conducted
two rounds of detailed semi-structured interviews and think-aloud
studies with active GITHUB maintainers to test the usability of our
dashboard and guide later stages of development. We conducted
two rounds of interviews, modifying the prototype design after
the first round of interviews and performing more interviews to
test the updated design. We also used this opportunity to under-
stand better how maintainers assess their community health and
approach issues related to inclusion.

Protocol. Our interview protocol consists of two major parts. Dur-
ing the first part, we asked participants questions regarding their
project community, their perception of the health of their communi-
ties, and their methods of managing their communities. The second
part adopted the think-aloud approach to understanding how par-
ticipants used the dashboard. Before each interview, we generated
an individualized dashboard for the participant based on data from
their repository. We asked the participants to browse through the
dashboard. If they had any questions during the think-aloud, we
answered them after they finished browsing the dashboard. After
participants finished browsing the dashboard, we asked several
follow-up questions regarding what signals were important, unnec-
essary, or missing. In the end, we ask them several demographic
questions such as gender, age, and race. Our interview protocol is
presented in our supplemental material.!

Recruitment. To recruit participants, we searched on GrTHUB for
a stratified range of stars, which serves as an approximation of
a project’s popularity or size. We also filtered projects based on
whether they had recent activity.

We identified GiTHUB projects with recent activities and con-
tacted the project maintainers, i.e., owner of the project or the top
two contributors of projects owned by organizations, if they pro-
vided emails or Twitter handles on their GiITHUB page. Although we
strived to recruit women or non-binary maintainers, we were not
very successful due to the low representation of women and non-
binary people among maintainers. After we interviewed ten men
maintainers, we paused the interview process and made changes
to the dashboard. Therefore, we call the first ten interviews as the
first round and refer to each of them as R1Px. After we redesigned

Zhttps://github.com/PyGithub/PyGithub

CHI 23, April 23-28, 2023, Hamburg, Germany

our dashboard, we conducted the second round of interviews and
made new changes when new feedback emerged so that we could
test new designs immediately. We talked to a total of 9 maintainers
(including one woman maintainer). We refer to each of them as
R2Px.

Our participants’ projects had from 11 to 20.6K stars. The team
sizes range from 8 to 100+. Five projects have at least one woman
or non-binary contributors. The breakdown of the think-aloud
interview participants is in Table 2 in our supplemental material.!

Data analysis. Our coding process aimed to identify two major cat-
egories: maintainers’ perception of community health and feedback
on our dashboard. We first performed open coding on interview
transcripts. Two of the authors first coded two interviews indepen-
dently. They then met to discuss their codes through a constant
comparison method: they consolidated codes into a shared set of
codes by combining overlapping codes or developing new codes.
The two authors independently coded another four interview tran-
scripts with the preliminary code book before convening again to
discuss the generated codes. After the two authors coded the rest
of the interviews, they met again to discuss all the codes and coded
paragraphs. We continued conducting interviews while coding the
transcripts and concluded the first round of interviews when we
reached theoretical saturation, i.e., no new themes emerged from
new interviews. Then the two authors conducted axial coding on
the full set of codes: we considered the relationship among the
codes and assigned them to one of the two major categories or
created a new category. We followed the same coding procedure
for our second round of think-aloud interviews. The codebook is
available in our supplemental material.!

3.3 Phase 3: Evaluate Dashboard - Diary Study

After incorporating changes to the dashboard based on feedback
from the think-aloud interviews, we evaluated the final dashboard
design in a two-week diary study [55].

Protocol. Our diary study lasted two weeks and followed the struc-
ture described in Figure 2, including an initial survey, onboarding
session, weekly survey, and exit survey. Participants were compen-
sated $50. Below we describe each of the study components in more
detail.

1) Initial Survey + Onboarding Session (30 minutes)

Initial survey (20 minutes). We provided an initial survey for
participants to fill out via a Google form to gather background in-
formation about their project and their perceptions of community
health. We also provided participants with the consent form and
information about the study structure. In the survey, we asked for
background information about the maintainer’s identity, habits,
and project dynamics. More importantly, the survey also asked
questions about maintainers’ workflow, their perception of their com-
munity’s health, and projects they want to be compared with.

When asking about maintainers’ workflow, we asked about
whether they were seeking new contributors, the importance of
increasing demographic or technical diversity, and how confident
they were in managing their community. We also asked them to
rate the priorities of several management actions, including “fast
response time to issues,” “fast response time to PR, “creating a

https://github.com/PyGithub/PyGithub

CHI 23, April 23-28, 202

Initial Survey +

Onboarding Session Week 1

Initial survey
completed
independently; and

week;

a 10 minute meeting
to explain dashboard and
basics and answer

questions.
hours.

Diary Study Logistics

Use dashboard throughout the

a 15 minute survey on dashboard
usage sent by email each Friday;

complete the survey within 48

Qiu, et al.

Week 2 Exit Survey

A 30 minute survey
with questions about
dashboard experience.

Figure 2: Diary Study Logistics

5«

welcoming environment,” “attracting new contributors,” and “at-
tracting a diverse group of contributors.” We then asked them how
often they responded to issues and PRs each week and their goals
for their project community.

Then, we asked participants about their understanding of com-
munity health with three open-ended questions: How would you
describe your project’s community health? How would you define
diversity in open-source software? How would you define inclusion
in open-source software?

Our dashboard compares the project with similar projects to
provide maintainers a context and reference of how well they are
doing. To make our comparison more relevant to the maintainers,
we asked participants to enter projects they wanted to compare
with. At the end of the survey, we asked them to sign up for a time
slot for a Zoom call for an onboarding session, as well as several
demographic questions such as gender, age, and race.

Onboarding session - Zoom call (10 minutes). During the Zoom
call, we explained the logistics of the study and weekly survey.
Then we showed them the dashboard and ensured they understood
the basic setup and answered any questions.

2) Weekly usage (30 minutes each week X 2 = 1 hour total)

Participants could freely use the Climate Coach dashboard as
little or as much as they wanted during the two-week study period.
Each Friday, we sent an email asking participants to complete a
brief weekly survey about how they used the dashboard that week.
The survey itself took about 15 minutes. Participants were asked to
complete the survey within 48 hours.

The weekly survey consisted of two parts, maintainers activ-
ity and dashboard engagement. The questions in the maintainers’
activity portion included the types of contributions they receive,
the amount of time they spend on maintaining, and the tone of
conversations in their community. In the dashboard engagement
portion, we asked participants questions regarding the usefulness
of the dashboard, such as how often they checked the dashboard,
which parts were most useful, which tips were more helpful, and
how the signals were.

3) Exit Survey (30 minutes)

After two weeks, we sent participants an exit survey to get
feedback on the dashboard and compare responses from the initial
survey. We repeated questions from maintainers’ workflow and

perception of their community’s health in the initial survey and added
questions regarding the usefulness of our dashboard. We asked them
to rate their level of agreement with a list of statements regarding
whether the dashboard is useful for them and other maintainers. To
test if our dashboard had any effect on their management strategies,
we asked if they made any changes after viewing our dashboard.
Lastly, we asked them how likely they were to continue to use this
dashboard after the study ended. The survey concluded with an
open-ended question for feedback on the dashboard.

We provided 5-point Likert scales for participants to measure
their level of agreement with statements regarding their perception
of their community’s health and the usefulness of our dashboard,
with 5 being “strongly agree” and 1 being “strongly disagree.” To test
if they were paying attention to the statement rather than clicking
“strongly agree” or “agree” for all statements, we reverse-coded
some of the statements as an attention check. When analyzing
responses to these statements, we first reversed the responses, i.e.,
“strongly agree” as “strongly disagree”

We include the diary study protocol in our supplemental material.!

Recruitment. For the diary study, we explicitly recruited main-
tainers from big and active projects. From the two prior interviews,
we learned that big projects could benefit more from our dashboard
(R2P1) because there are a number of things to keep track of that can
exceed maintainers’ capability. Moreover, since our diary study’s
survey frequency is weekly, less active projects will not have gener-
ated sufficient activities to appear on the dashboard. Therefore, for
the diary study, we searched on GITHUB for projects with at least
1K stars, followers, or 100 to 200 forks.3 From the search results,
we picked the projects with activities (issues or PRs) within the
last week and with at least ten contributors. Similar to previous
interviews, we contacted only the maintainers who left their emails,
or Twitter handles on their profile pages.

In the end, we recruited 10 participants for our diary study.
Two of them reached out to us after seeing our advertisement on
Twitter. The rest of them accepted our email invitation. We sent
out 128 emails, and 8 of them were accepted. The summary of all
the participants’ projects is shown in Table 3 in our supplemental
material.! We refer to each of the participants as R3Px.

3https://docs.github.com/en/search- github/searching- on- github/searching-for-
repositories

https://docs.github.com/en/search-github/searching-on-github/searching-for-repositories
https://docs.github.com/en/search-github/searching-on-github/searching-for-repositories

Climate Coach: A Dashboard for Open-Source Maintainers to Overview Community Dynamics

Data Analysis. We analyzed the responses to the 2 weekly surveys
and the exit survey, using participants as the unit of analysis. One
of the researchers performed open coding on open-ended questions
in the surveys. We used affinity diagrammed codes generated from
the open-ended responses to identify themes in participants’ uses
of and reactions to the dashboard.

4 DESIGN

This section presents the result from Phase 1, how they informed
our design, and the think-aloud interview results from Phase 2.

4.1 Signals Extracted From Phase 1

From the email interview with maintainers, we compiled a set
of strategies they have used when managing their projects. The
overview of the strategies and how they link to the literature is
provided in Table 1. Below we describe how these signals were
grounded in email interviews and literature.

Team growth. Overall, the projects in our sample welcomed
new contributors. For example, ROP5 expressed that “one of [their]
objectives is to convert more users to contributors to make the project
more open and sustainable.” However, at the same time, they ad-
mitted that new contributors imposed a cost in terms of the effort
required to manage contributions and socialize them. As one owner
concluded, ‘T welcome newcomers but fear them,” because while they
make contributions, more often than not, they also “break the archi-
tectural vision or have bad coding practices” (ROP1). Some projects
noted that they did not actively search for new contributors, but
some “still arrive spontaneously” (ROP12). Our dashboard uses the
number of active and new contributors to reflect the growth
of the projects.

In addition to growing a team, retaining current contributors is
equally important to a project’s sustainability. Some maintainers
publicly recognize newcomers’ efforts. For example, some main-
tainers put newcomers’ names on a contributor list in the README
(ROP1). Some invite contributors to become maintainers of the
project and recognize their contributions (ROP5). We display on our
dashboard the list of active and new contributors to the
project to help maintainers recognize their efforts.

Social capital. Social capital is a concept in Sociology that mea-
sures the benefits one can gain from their social networks [10],
either through strong connections, e.g., long-time collaborators, or
through connections to diverse groups. Previously, Qiu et al. [61]
studied contributors’ sustained participation on GITHUB and found
that high social capital is associated with contributors’ prolonged
engagement [61]. Therefore, we include measurements that can
approximate a project’s social capital: the number of recurring
contributors and the average months of contributors’
tenure for the strength of connections among contributors , and
the number of new contributors to approximate connections
to new groups.

Responsiveness. Our email interviews confirmed the impor-
tance of being responsive to contributors. Some maintainers pointed
out that fast reply is a vital signal because ignoring contributions
(even bad ones) may create ill will (ROP1), and contributors may
“feel spurned” (ROP2). This observation echoes what Egelman et al.
[26] described as “pushback”: a delay in a code review that can

CHI 23, April 23-28, 2023, Hamburg, Germany

cause negative feelings among contributors. We use the average
close time as the signal on our dashboard to reflect fast replies.
The dashboard also points maintainers to the conversations
(issues or PRs) that have been opened for the longest
time.

Some owners told us they tried to signal their accessibility and try
to resolve issues or PRs within a specific period of time (ROP1, ROP2,
ROP11). ROP2 told us he changed his profile status to be “Merging
your PR” (ROP2). Our dashboard uses the number of issues or
PRs closed and the number of issues or PRs still opento
reflect how quickly maintainers conclude issue discussions or code
reviews in PRs.

Some maintainers noted that they “respect new contributors’ band-
width and often help them to refine contributions collaboratively”
(ROP4) by commenting back and forth on a design in a GITHUB issue
(ROP1), which is reflected by the signal the number of comments
and the number of conversations (issues or PRs) closed
with @ comments in our dashboard.

However, too many comments can give contributors a feeling
that maintainers are too picky or even unwilling to merge their
contributions [26]. We try to help maintainers eliminate providing
contributors such impressions by listing open issues and PRs with
the most comments.

Conversation tone. Some maintainers mentioned that they
try to show friendliness to newcomers, encourage contributions
(ROP15), and signal inclusiveness (ROP4). They hope that the users of
their libraries will feel welcome to contribute to them (ROP10). Some
maintainers keep a Code of Conduct so that “potential contributors
have the feeling of a safety net” (ROP10). We use Google’s Perspec-
tive API* to measure comments’ toxicity score and identity
attack score (both in the range of [0,1]) to reflect a project’s
language inclusiveness. In addition, we provide links to the conver-
sations with scores higher than a threshold (we set it to 0.7).

Onboarding material. Another way that maintainers welcome
newcomers is to provide a beginner’s guide or relevant documenta-
tion. Some of the actions they took to welcome newcomers include
providing onboarding materials “to show them the entire journey”
(ROP6). Some mentioned using a contributing guideline and is-
sue tags (ROP1). Nevertheless, they also mentioned that using the
“newcomer-friendly” tag was not practical because many of the
issues were not newcomer-friendly (ROP1). Some maintainers rec-
ognized the importance of documentation but also admitted that
their testing process was not well documented, which may scare
away potential newcomers (ROP10). However, we did not include
these in our dashboard because GITHUB’s Insight page consists of
a checklist of all these recommended documentation.

Contribution process management. Maintainers varied in
their internal coordination processes or methods to manage teams,
and these activities influenced how they, in turn, tried to help
newcomers. Some tried to use continuous integration (CI) tools
to automate the process and save maintainers’ time (ROP1 and
ROP11). They tried to speed up the process by having bots check if
the submission had passed CI before notifying owners to review.
However, at the same time, they also admitted that using an “CI can
introduce too many rules and conventions newcomers need to learn,

“https://perspectiveapi.com

https://perspectiveapi.com

CHI 23, April 23-28, 2023, Hamburg, Germany

Qiu, et al.

Table 1: Phase 1 results: signals and their references.

Category Strategy

Reference

Team growth

Email

Team management

Recognize contribution

Bonding social capital

Social capital

Bridging social capital

61]

. Fast response
Responsiveness

1
26], Email

Provide help

36, 80, 82], Email

Conversation tone

Toxic conversation

Gamification

Compare with peers

33]

Avoid pushback

Contributors’ negative feelings

Avoid toxic language

[
[
[
[29, 50, 62, 64, 83], Email
[
[

26, 62]

which can be discouraging” (ROP11). Our dashboard did not include
any signals to reflect the use of CI or similar tools either because it
is currently difficult to automatically detect using the GiTHus APL

4.2 Creating the Dashboard

Next, we present how we design and create the dashboard.’ Since
GrTHuB maintainers have been heavily involved throughout the
study and we refine our design iteratively based on their feedback,
we present the entire design of our final, complete dashboard and
note the parts informed by think-aloud findings. This paper in-
cludes screenshots of our final design. Our supplemental material’
contains our first design.

4.2.1 Types of Signals.

Summarized signals: Repository’s basic statistics in the re-
cent past. The section, Basic Stats, displays signals from the
Community and Responsiveness categories shown in Table 1 as
numeric values. It includes the number of new contributors
and the number of active contributors in the past month.
For responsiveness, the dashboard reports the number of issues
and PRs closed in the past month and the average close time
of issues and PRs, as well as the number of open issues and
PRs and the average time they have been open.

Temporal signals: Trends in the past period of time. This dash-
board provides line charts of the trends of signals shown in the
Basic Stats section as a context of how their projects have devel-
oped, for example, in the past month or the past half a year.

Indicative signals: Conversation tone analysis. Inspired by a
study by Raman et al. [64] and Qiu et al. [62], we added a signal for
conversation tone, including the number of potentially problematic
conversations and their links, identified using the Perspective API
developed by Google. Before the 2nd round of interviews, we also
added signals that can help identify contributors’ negative feelings:
excessive rounds of reviews and long shepherding time, i.e., the time
that “the author spent actively viewing, responding to reviewer
comments, or working on the selected CR, between requesting the
code review and merging the change into the code base” [26].

Comparative signals: Comparison with other projects. We
compare the project with similar projects on the signals shown in

5See an example of our dashboard here: https://www.sophiehsqq.com/climate_coach/
index_id.html

the Basic Stats section. We identify comparable projects by the
range of stars and topics set by projects.
We map our signals and their types in Table 2.

4.2.2 Computing Signals. To construct the dashboard, we used
PyGithub to pull projects’ data in a certain past period. In our
experiment setting, the period is four weeks. We used data from the
most recent week for basic stats, indicative signals, and comparative
signals, and data from all four weeks for temporal signals. We
wrote a Python program that automatically pulls data for the last
four weeks of a project, computes the signals, and generates a
dashboard. The code is available in our supplemental material.!
Here we describe how we defined and computed our signals.

Team management We considered all users who posted an is-
sue or a PR asan active contributor. For each active contributor,
we queried all their issues and pull requests posted to this project.
A contributor’s experience in contributing issues/PRs was
calculated by the number of months since they posted the first
issue/PR. Note that we considered issues and PRs as two different
types of contribution: PRs are usually more involved because one
needs to submit code or document with them. If it was the first
time a contributor submitted an issue or a PR, we considered them
anew contributor.

Social capital. We took the average month of experience of
active contributors and the number of recurring contributors,
i.e., those who were not new contributors, to approximate bonding
social capital, the benefit one could gain from a tightly connected
social network [17]. We used the number of new contributors
to approximate bridging social capital, a benefit one could gain
from information diversity [10].

Responsiveness. Close time is defined as the time difference
between the created_at timestamp and the closed_at timestamp
we retrieve using the GiTHuB APIL The number of comments
includes only comments from human (non-bot) users.

When counting the number of issues/PRs that are closed or
still open, due to the API rate limit,® for medium to large size
projects, we could only retrieve issues and PRs created in the past
four weeks and check each one for its closed_at timestamp.

Contributors’ negative feelings. This information can help
maintainers identify issues or PRs that may cause negative feelings

®https://docs.github.com/en/rest/overview/resources-in-the-rest-api?apiVersion=
2022-11-28#rate-limiting

https://www.sophiehsqq.com/climate_coach/index_id.html
https://www.sophiehsqq.com/climate_coach/index_id.html
https://docs.github.com/en/rest/overview/resources-in-the-rest-api?apiVersion=2022-11-28#rate-limiting
https://docs.github.com/en/rest/overview/resources-in-the-rest-api?apiVersion=2022-11-28#rate-limiting

Climate Coach: A Dashboard for Open-Source Maintainers to Overview Community Dynamics CHI 23, April 23-28, 2023, Hamburg, Germany

Table 2: Dashboard signals and their mappings to management categories (Phase 1 results)

Category Signals Types

Number of new contributors

Number of active contributors

List of active and new contributors

Number of recurring contributors

Average months of experience in the project
Number of new contributors

Average close time

Average num comments for closed conversations
Number of issues or PRs closed

Number of issues or PRs still open

Num conversations closed with @ comments

Summarized, Temporal
Team management

Indicative

Summarized

Social capital

Summarized, Temporal

Responsiveness Summarized, Temporal

Conversation fone Perspective API Temporal
Problematic conversations Indicative
Gamification Comparison to Similar Repositories Comparative
. s . . Open conversations with the most comments ..
Contributors’ negative feelings . - Indicative
Conversations opened for the longest time
Contribution management Labels of conversations and distribution Indicative

among contributors. We reported the top 5 open issues or PRs with
the most comments, ie., potentially excessive rounds of reviews,
and the top 5 issues or PRS that were opened for the longest
time, i.e., potentially long shepherding time [26].

Conversation tone. We fed all comments to Perspective API for
toxicity and identity attack scores (both with range [0,1]). If one of
the scores was higher than the threshold (we used 0.7), we reported
it as a potentially problematic conversation on the dashboard.

Gamification. We identified projects similar to the focal project
based on the number of stars, functionalities, or the number of con-
tributors. When deploying the dashboard, we asked the maintainers
to identify projects they considered similar to their project. For each
project, we pulled their data using GiTHUB API for the past week
and computed the following signals: Number of Active Users,
Number of Issues Closed, Number of PRs Closed, Average
Time to Close Issues, and Average Time to Close PRs.

Contribution management. We parsed the labels acquired
from GrTHuB API and counted the number of issues, or PRs tagged
with each label. We sorted the labels by the number of issues or
PRs and plotted them as a bar chart.

4.2.3 Format and Layout. We first designed our dashboard as
a GITHUB issue. Our Python program output a markdown as a
GiTHuUB issue. The screenshots are shown in our supplemental
material.! This initial design contains a subset of our signals.
After completing the first round of think-aloud studies with 10
participants, we rewrote our dashboard using JavaScript and turned
it into an interactive webpage. We used Bootstrap to organize
the layout and the Chart. js library to plot the charts. Using the
format of a webpage instead of a GITHUB issue can avoid “off-
putting” maintainers (R1P9) because a GITHUB issue “doesn’t mean
good things for them” (R1P9), “needs to be closed” (R1P4), and has a
“goal of reading it” (R1P4). Moreover, using a JavaScript library can
address participants’ requests for high-resolution and interactive

graphs (R1P2). This complete version of the webpage dashboard
contains all features we present in Table 2.

Overall, we grouped our signals based on their types. Within each
type, we put similar signals together, e.g., number of comments and
average close time were both under How was the response head-
ing. After an overview of the dashboard (Figure 3), it first displays
summarized signals that are numeric values (Figure 4). Then the
dashboard displays indicative signals that point maintainers to con-
versations that might cause negative feelings among contributors
(Figure 4). This is followed by temporal signals, showing several
line charts of various signals’ trends (Figure 5). These temporal
signals are divided into two headings: How big is your community
and How was the response. Beneath is the conversation tone analysis
(Figure 6), a combination of temporal trends and indicative links.
We put conversation tone signals close to the bottom of the dash-
board because we did not want to show the negative signals too
upfront. Following the conversation tone signals are the bar charts
showing the usage of labels (Figure 7) and the comparison with
similar projects (Figure 8). Lastly, the dashboard presents the com-
parative signals and concludes our dashboard with a summarization
of methods and a list of references (Figure 9).

As R1P3 suggested, the default setting consists of line charts for
a subset of the signals and we added drop-down buttons on the
sides to allow users to select other signals to display, such as the
median instead of the average.

4.2.4 Reinforce Inclusion Goals. After the first round of interviews,
the dashboard only contained the open-source project’s signals.
However, Goggins et al. [33] described the importance of trans-
parency and context with analytical signals. Therefore, we added
tips throughout our dashboard to help maintainers improve their
management strategies. These tips display results from prior studies
on OSS management strategies, such as avoiding pushback [26, 62]
in code review and adding a Code of Conduct [42]. The full list of
tips is shown in Table 4 in our supplemental material.!

https://Chart.js

CHI 23, April 23-28, 2023, Hamburg, Germany

Moreover, we added sections Methods and References (Figure 9)
for transparency, so our users could see our sources and the way we
created the dashboard. We also added Prior Research Results
section (Figure 9), which included Features Affecting Project
Attractiveness to provide maintainers actionable suggestions in
addition to presenting numerical signals.

4.3 Interview Results

4.3.1 Perceptions of Community Health. When asked about the
criteria of community health, we found two major points of view.
Similar to our findings in prior studies [20, 21], many maintainers
thought of technical aspects. For example, R1P3 mentioned contin-
uous integration (ci) as an indicator of community health, including
“how often is it being overwritten” and “build times” (R1P3). Usage is
also mentioned as a health indicator by several maintainers, includ-
ing their dependencies and customers (R1P2), applications (R1P9),
and the number of downloads (R1P6 and R1P10).

Another commonly mentioned perception concerns the social
aspects. One of them is the community’s sustained participation
(R1P2, R1P3, R1P4, R1P5, R1P6, and R1P9). P4 pointed out that the
number of new contributors indicates that their community
is growing, which is a good sign. R1P2 also mentioned that the
way they build their community is “by engaging with groups of
students who are going to implement new standalone tools that might
be published as separate packages.” P9 commented on the same point,
“one big thing in terms of the developer community is like, [...] how do
we figure out things that make people want to contribute and want to
keep working on the project.”

Another health indicator concerning social aspects is the help
maintainers can provide to the community, i.e., responsiveness.
Help includes maintainers’ response to issues or pull requests (R1P2
and R1P9), documentation (R1P1, R1P4, and R1P9), and office hours
(R1P1, R1P5, and R1P9). P2 acknowledged that “a really bad way
to ruin a community is by ignoring pull requests.” He further com-
mented that the number of pull requests that are still
open “should probably be zero.” R1P1 even set a strict timeline of
getting a response within one or two days. When looking at the
summary of the number of comments, R1P4 pointed out that hav-
ing good commentary indicates good health. R1P1, R1P5, and R1P9
all mentioned that a healthy community should have “scheduled of-
fice hours that happen on a regular basis” (R1P1) so that contributors
“can get help” (R1P9). These points of view echoed the findings by
Steinmacher et al. [81] that barriers newcomers face include the lack
of responses from maintainers. The type of project health we focus
on in this study aligns well with maintainers’ concern for a project’s
social aspects — their community growth and sustainability.

4.3.2 Attitudes Towards Diversity and Inclusion. When asked about
diversity, some commented that it was hard for them to know the
level of diversity in their community (R1P6 and R1P10) because
“generally the only thing I see is their GiITHUB username” (R1P6).
Although some maintainers admitted that they cared about di-
versity and even desired more diversity (R1P1, R1P2, R1P4, R1P5,
and R1P6), they were limited by their environment. For example,
P1 told us that “in <country> there’s not a lot of diversity [in terms of
race and ethnicity],” especially since they mostly hire locals “in a
small town that’s 70,000 people” Hence, most of their members are

Qiu, et al.

white males. This idea is shared by R1P10, who listed several coun-
tries he interacted with and felt the ratio of women was lower in
some of the countries. This observation aligns with some research
results [59, 67]. On the contrary, being in a university, R1P2 experi-
enced several occasions “where all the students who were working
on the project in our group were0 women.” When there was a lack
of demographic diversity, maintainers considered diversity as a
diversity of thoughts (R1P1).

Maintainers have generally taken action to improve the diversity
of their community (R1P3, R1P4, R1P6, and R1P8). For example, with
about 20,000 followers on Twitter, P6 tried to advocate diversity on
social media. Some tried to “sourcing people from different paths to
provide programs to help educate people into the space better” (R1P4).
Several participants told us they try to improve diversity by being
welcoming (R1P3, R1P4, R1P6, and R1P8).

4.3.3 Signals’ Usefulness.

Conversation analysis. Three maintainers considered the conver-
sation analysis to be the most important and useful feature of our
dashboard (R2P5, R2P6, and R2P9). They found the tone analysis
to be the “the big selling point” (R2P6) that could “be highlighted
much earlier in your reporting” (R2P5). As R2P6 summarized, links
to potentially problematic conversations were actionable items,

“[...] with these actionable things, you know, you can go
actually take some sort of action to address concerns and
anything that has a negative sentiment. Try to squash
right away and make it more straightforward” (R2P6).

Potential pushback conversations. Links to conversations with
long open time or many comments were considered to be useful
by many maintainers (R2P4, R2P5, R2P6, R2P7, R2P8, and R2P9).
Although some maintainers told us that some conversations were
left open on purpose (R2P8), others told us that those conversations
were the “things [they] can look at and take action on” (R2P6) and
would even like to “go and actually address these right now” (R2P7).
R2P5 echoed the findings of pushback in code reviews [26, 62] and
pointed out that these conversations “can almost directly correlate
potentially to anything that’s, you know, negative” (R2P5). During
our interview, the links even helped R2P8 identify a thread that
waits for his reply while he thought he “was waiting for her reply
there” (R2P8). As R2P6 nicely summarized, the links are

“sort of a daily dashboard where I can say, Oh, you know,
here’s my in-tray for the week, here’s stuff that needs
attention, here’s stuff that may have fallen through the
cracks, is something I need to pay attention to” (R2P6).

This feature is more beneficial for big communities. R2P9, the
maintainer of a project with more than 100 contributors, told us
that our links helped them identify conversations that needed im-
mediate attention because “there are probably 50 parallel semi-active
conversations going at any time, and we certainly can’t track that”
(R2P9).

The number of closed issues and PRs. R2P4 told us that the num-
ber of closed issues and PRs is handy because they are a research
institute, and they can put the data in their grant report:

“Knowing the pull request stats is very valuable, too,
like the new authors. That one probably would be the
most useful for us as far as reporting to our granting

Climate Coach: A Dashboard for Open-Source Maintainers to Overview Community Dynamics

Climate Report for Your Project

< project slug >

A dashboard for open-source maintainers to monitor project team dynamics and improve community health.

Overview

Health in Open Source Software Communities

By taking steps to reduce barriers to new contributors [Steinmacher et al., 2015],
maintainers can create a welcoming culture that attracts more newcomers [Guizani
et al 2022] and increases project diversity.

This dashboard was built with open source community health as a top priority to
serve the following goals:

« Help open source project maintainers monitor project team dynamics and take
steps to improve community health

CHI 23, April 23-28, 2023, Hamburg, Germany

* Encourage behaviors that foster inclusivity & diversity in open-source project
Increasing diversity and inclusion can benefit the health of open-source projects communities.
because prior studies show that projects with more gender and tenure diversityare ~ * Increase awareness of existing research on open source communities.
associated with higher productivity [Vasilescu et al.,, 2015; Catolino et al., 2019]. * Present metrics that expand on GitHub's built-in insights page and implement
existing standards for measuring open-source health.

Figure 3: Version 2: Overview. The top of the dashboard shows an overview of our study and the goals we aim to achieve.

Basic stats of team activities in the past week:

NEW ISSUE AUTHORS (Y) AVG MONTHS EXPERIENCE AVG COMMENTS TO ISSUES. AVG DAYS TO CLOSE ISSUES

=
148 :::]

11 Team is growing! 59 An experienced team 3.7 Vivid discussion

NEW PR AUTHORS . o
2 Team is growing!

RECURRING CONTRIBUTORS
26 Friends around :-D

AVG COMMENTS TO PRS
13

AVG DAYS TO CLOSE PRS.
0.7

S o

Conversations that Need Your Attention Issues/PRs ¥

Issues that have been opened for the longest time:
Get rid of boilerplate/trivial BUILD files

Use immutable_inputs for ‘PEX's

Open issues with the most comments:
lisort" may require transitive sources

Add duration and cache source to fmt/lint/check output. Pex binary errors when depending on a distribution

Tip: Researchers have found that excessive review delays, nitpicking, and long wait for review are predictors of negative experiences in the code review process. Blocking
a change request can cause unnecessary interpersonal conflict and negative feelings among contributors [Egelman et al., 2020].

Figure 4: Version 2: Basic Stats. The dashboard shows some basic statistics regarding the activity level of the project.

Trends in the past 4 weeks:
How big is your community of developers?

Issue Author Stats New/Active ¥ Pull Request Author Stats New/Active ¥ New Issue Authors New PR Authors
" New Issue Authors . New PR Authors hooksiel ilatomic
o martin-css wfscheper
14 ° satwell naveensrinivasan
2 .——”"/\’ . davidreuss
10 5 cognifloyd
8 dimitar-petrov
:i 2 Z
2 ! qaishk
o o THuppke
week-3 week-2 week-1 this week week-3 week-2 week-1 this week ptrhck

Tip: New contributors may need some additional support from the project community. In order for an open source project to be sustainable, it's important to not only attract new
contributors, but also retain them.

How was the response?

Issue P /Median ¥ PR Avg/Median ¥ Issue Comments Avg/Median/Zero ¥ PR Comments Avg/Median/Zero ¥

Avg Close Time for Issues (Days) Avg Close Time for Pull Requests (Days) Avg Comments for Issues Closed in Each Week Avg Comments for Pull Requests Closed in Each Week

4
2 3 /\‘\ \//
20 3 !
2
15
2
10 .
1
s
0 o o
weekd week? week-l thisweek weskd week? weekl thisweek weskd week2 weekl thisweek weskd week2

week-1 this week

Tip: If a pull request is coming from an external contributor, try to comment on the PR before closing it. This can be helpful for the author and acknowledges their contribution.

Figure 5: Version 2: Trends. This section of the dashboard displays trends of some useful metrics in the past four weeks to
provide maintainers some context of how the project has been doing. This section also displays the logins of new contributors
and active contributors with links to their profile pages.

CHI 23, April 23-28, 2023, Hamburg, Germany Qiu, et al.

How friendly are the conversations?

Conversation Tone Analysis

Issue conversations

Number of Potentially Problematic Issues [week -3 | week-2 | week-1]

The highest toxicity score* of comments: 0.422
The highest identity attack score* of comments: 0.744

Links to highest potentially problematic comments (threshold: 0.7):
1. overrides" field does not work properly. with tag exclusion

week-3 week-2 week-1 this week

Pull request conversations

Number of Potentially Problematic PRs [week -3 week -1 | this week]

The highest toxicity score* of comments: 0.391
The highest identity attack score* of comments: 0.734

Links to highest potentially problematic comments (threshold: 0.7):
1.:speak_no_evil: black and mypy need to shush

week-3 week-2 week-1 this week

Note: This analysis flags potentially problematic conversations, but it isn't perfect! These conversations may need further review from maintainers to ensure that they have a
friendly tone and follow the code of conduct.
Tip: If you do not already have one, consider creating a code of conduct for your community to promote respectful, productive discussions! Here is a template to get you

started: https://www.contributor-covenant.org

* The toxicity score and identity attack score (both with range [0,1]) are calculated by Google's Perspective API
These attributes can help detect interpersonal conflict ([Egelman et al.. 2020], [Raman et al. 2020], and [Qiu et al.. 2022])
Toxicity: A rude, disrespectful, or unreasonable comment that is likely to make people leave a discussion.

Identity Attack: Negative or hateful comments targeting someone because of their identity.

Figure 6: Version 2: Conversation Tone Analysis. This section shows the trends of the number of issues or pull requests that are
labeled by the Perspective API as potentially problematic and provides the link to the posts. At the bottom, we explained how
the scores were calculated and tips.

Labels used in the past month:

Conversations by Label

Issues by Label in the Past Week Pull Requests by Label in the Past Week

10 25
9

8 20
7

6 15
5

4 10
3

2

: L
[o

label1 label2 label3 labeld label1 label2 label3 labeld labels label6

Tip: Consider adding issue labels that explicitly highlight starter tasks for new contributors. Labels like “newcomer friendly”, “good first issue”, and "help wanted" can help
attract and retain new contributors [Guizani et al., 2022]. These labels will appear in GitHub repository search results.

Figure 7: Version 2: Labels Used by Issues and PRs. This section shows the labels the project used in the past week and the
number of issues or pull requests with that label.

agencies and yearly reports where you just say like, Oh,
this last year we closed like 300 tickets, and we opened
like 6,000 or something” (R2P4).

Labels. R2P6 and R2P7 mentioned that the numbers of issues or
PRs under different labels are useful. R2P6 told us that they used
“labels to categorize pull requests for the change log” so “these labels
actually matter to us” (R2P6).

Average response time. R2P7 told us that the average response
time is useful, especially since he oversees many GITHUB reposito-
ries. He said it could make him aware that “sometimes, [in] some
repos, [...] people see [there is] an issue, and no one even responds to
it” (R2P7).

4.3.4 Dashboard Design Feedback and Changes.

Goals. There was some uncertainty about the title of our dash-
board (R2P5) and the dashboard’s purpose. Several interviewees

Climate Coach: A Dashboard for Open-Source Maintainers to Overview Community Dynamics

Comparison to Similar Repositories in the past month:

Comparison metrics More metrics ¥ Projects Notes

proj1: projl Comparison between similar projects can put your

Active Authors (Issues and Pull Requests)

CHI 23, April 23-28, 2023, Hamburg, Germany

8 proj2: proj2 project activity in context by helping you understand
;g proj3: proj3 your project's metrics relative to your peers.
50 proj4: proj4
;g proj5: projs Situating a project within its particular ecosystem can
20 help open-source maintainers understand project
0 - | health and sustainability [Goggins et al., 2021].

You projt proj2 proj3 projé projs

Figure 8: Version 2: Comparison. This section compares the project with peer projects on several metrics, such as the number of
active users. The information serves as context for maintainers to interpret if their projects’ metrics are relatively good or bad.

Prior Research Results:

Features that Affect Project Attractiveness

Project attractiveness affects which open-source projects developers choose to contribute to. Some features that

developers consider may include [Qiu et al., 2019]:
Features Explanation

Activity level Recent commits signal that the project is still active

Scaffolding Project infrastructure such as labels and templates for issues and pull requests can help
contributors navigate the project.
README file A comprehensive README should be organized into clear sections and include a project

description, goals, contributing guidelines, and community contact information.

Inclusive Language Language used in the docs, code of conduct, and conversations for issues and pull

requests can impact contributors’ impressions of the project.

References

Methods

This dashboard was created by members of the
STRUDEL and CoEx labs at the Carnegie Mellon
University School of Computer Science. It uses
publicly accessible data retrieved from the GitHub
REST AP, including data on activity, contributions,
and authors relevant to the project.

We use Google's Perspective AP to identify
potentially abusive or “toxic” comments with
machine learning models, along with SentiCR, a
sentiment analysis tool for code review comments.

[1] Egelman, C. D., Murphy-Hill, E., Kammer, E., Hodges, M. M., Green, C., Jaspan, C., & Lin, J. (2020, October). Predicting developers' negative feelings about code review. In
2020 IEEE/ACM 42nd International Conference on Software Engineering (ICSE) (pp. 174-185). EEE. [Link]

[2] Goggins, S., Lumbard, K., & Germonprez, M. (2021, May). Open source community health: Analytical metrics and their corresponding narratives. In 2021 [EEE/ACM 4th
International Workshop on Software Health in Projects, Ecosystems and Communities (SoHeal) (pp. 25-33). IEEE. [Link]

[3] Guizani, M., Zimmermann, T., Sarma, A., & Ford, D. (2022). Attracting and Retaining OSS Contributors with a Maintainer Dashboard. arXiv preprint arXiv:2202.07740.

[Link]

[4] Miller, C., Cohen, S., Klug, D., Vasilescu, B., & Kastner, C. (2022). “Did You Miss My Comment or What?” Understanding Toxicity in Open Source Discussions. 44th

International Conference on Software Engineering (ICSE'22). [Link]

[5] Qiu, H. S, Li, Y. L, Padala, S, Sarma, A., & Vasilescu, B. (2019). The signals that potential contributors look for when choosing open-source projects. Proceedings of the

ACM on Human-Computer Interaction, 3(CSCW), 1-29. [Link]

[6] Qiu, H. S., Nolte, A, Brown, A., Serebrenik, A., & Vasilescu, B. (2019b). Going Farther Together: The Impact of Social Capital on Sustained Participation in Open Source.
IEEE/ACM 41st International Conference on Software Engineering (ICSE), 2019, pp. 688-699, doi: 10.1109/ICSE.2019.00078. [Link]

[7] Qiu, H. S., Vasilescu, B, Kastner, C., Egelman, C., Jaspan, C., & Murphy-Hill, E. (2022). Detecting Interpersonal Conflict in Issues and Code Review: Cross Pollinating Open-
and Closed-Source Approaches. 2022 IEEE/ACM 44th International Conference on Software Engineering: Software Engineering in Society (ICSE-SEIS) (pp. 41-56). IEEE

Link]

[8] Raman, N., Cao, M., Tsvetkov, Y., Kistner, C., & Vasilescu, B. (2020). Stress and burnout in open source: Toward finding, understanding, and mitigating unhealthy
interactions. Proceedings of the ACM/IEEE 42nd International Conference on Software Engineering: New Ideas and Emerging Results (pp. 57-60). [Link]

[9] Steinmacher, |., Conte, T., Gerosa, M. A, & Redmiles, D. (2015). Social barriers faced by newcomers placing their first contribution in open source software projects
Proceedings of the 18th ACM conference on Computer supported cooperative work & social computing (pp. 1379-1392). [Link]

Figure 9: Version 2: Methods and References. At the bottom of our dashboard, we explain our methods and list the references.

mentioned they felt that this could be created by GitHus (R2P1,
R2P6, and R2P7).

This feedback pointed out that our dashboard did not clearly
convey its objective to maintainers. Due to this, our final design
included an Overview (Figure 3) section that contained the back-
ground and goals for the dashboard.

Formatting and Design Decisions. We received feedback on the
formatting and some design decisions, such as the use of colors and
some features were missing. We made adjustments when two or
more participants pointed out the same problem.

Feature Suggestions. Participants had a couple of suggestions of
interesting features they would like to have in a dashboard: From a

front-end functionality perspective, a few participants mentioned
that they wanted a more interactive dashboard. One participant
wanted to be able to drag the different dashboard sections around
to customize it to their preference (R2P9). We could not address this
feedback at the moment, but we did take note of which sections
most maintainers felt were more important and should have been
highlighted at the top of the dashboard. Additionally, participants
wanted to be able to change the date ranges for the data (R2P1 and
R2P4) to have a better idea of how their project developed over time.
Unfortunately, we are not able to add this feature at the moment.

CHI 23, April 23-28, 2023, Hamburg, Germany

5 EVALUATION

After we finalized our design, we recruited a new group of 10
active GITHUB maintainers to participate in a two-week diary study
(Phase 3) so that we could further test the dashboard’s usability
and potential effectiveness. This section presents the findings from
our two-week diary study.

5.1 Participant Information

We recruited a diverse group of participants. Four out of ten par-
ticipants were women. Five of them have at least one woman or
non-binary contributor. The years of experience ranged from less
than a year to 10+ years (see Figure 1 in our supplemental material.!
Most of them were involved in more than one OSS project (M = 5.9,
SD = 5.22). The projects also varied in terms of popularity (23 to
18.7K stars) and team size (7 to 100+) (see Table 3 in our supplemen-
tal material).! Three of the participants were the sole maintainer of
their project; the rest were either one of the maintainers or a lead
maintainer with other specialized sub-maintainers.

5.2 Findings

5.2.1 Dashboard Effect. Overall, most participants agreed that the
dashboard was useful to them (M = 3.75, SD = 1.16). Except for 2
participants, the rest expressed that they would continue to use this
dashboard after the study. Most of them agreed that the dashboard
would be helpful to most maintainers (M = 4.33, SD = 1.21).

Comparing participants’ responses to the initial and exit surveys,
we found that participants became more confident in supporting
and encouraging a healthy community after using the dashboard.
Overall, participants showed higher agreement with the statement
‘T feel confident in supporting the community of contributors in my
project” (initial: M = 4.44, SD = 0.53; exit: M = 4.63, SD = 0.52).
Three participants provided higher ratings in the exit survey than
in the initial one. The other participants provided the same rating
in both surveys. The exit survey also showed an improvement in
the agreement with the statement T am sure about how to encourage
a healthy project community” (initial: M = 3.33, SD = 1; exit: M =
3.88, SD = 0.64).

While most participants acknowledged the usefulness of the
dashboard, R3P7, the maintainer of a relatively small project, com-
mented that, because his project is not very active, the dashboard
would be more useful if the signals were aggregated by months
rather than weeks.

5.2.2 Maintainer workflow. In both the initial and exit surveys, we
asked maintainers to rate the importance of five goals, including
fast response and recruiting new contributors. Participants were
asked to give a rating between 1 (lowest priority) and 5 (highest
priority) for each of the five goals. We ranked the average ranking of
all participants and found that the priority order of the five factors
did not change between the initial and exit surveys. We suspect
that the diary study duration was too short for the maintainers’
priority to change.

In both the initial and exit survey, most of the participants placed
“attracting new contributors” as a lower priority (initial: M = 3,
SD = 1.22; exit: M = 3, SD = 1.26). “Attracting a diverse group of
contributors” has an even lower priority (initial: M = 2.44, SD =

Qiu, et al.

1.42; exit: M = 2.17, SD = 1.47). Tasks with the highest priority are
“fast response time to issues” (initial: M = 3.78, SD = 1.20; exit: M =
4.33,SD = 0.52) and to “PRs” (initial: M = 4; SD = 1; exit: M = 4, SD
= 1.10). They are followed by “creating a welcoming environment”
(initial: M = 3.78, SD = 1.09; exit: M = 3.5, SD = 1.22).

In the open-ended questions, maintainers added various goals
they would like to achieve. These goals can be categorized into three
groups: expanding the community (R3P2 and R3P7), accelerating
response (R3P1, R3P3, and R3P7), and improving communication
(R3P5 and R3P7).

Participants had extreme diversity in their frequency of respond-
ing to issues and PRs each week. Almost half of them indicated
that they responded to issues and PRs 1-3 times per week, whereas
some other participants indicated that they responded 10+ times
per week. We have yet to discover a clear difference between the
initial and exit survey in terms of the frequency of responding to
issues and PRs.

5.2.3 Dashboard Feedback.

Useful signals. In each weekly survey, we asked participants to
list out dashboard signals that they viewed more often than others.
We found that participants paid attention to various signals. R3P1
and R3P9 paid more attention to the Basic Stats section at the top
of the dashboard as they provide an overview of the project’s status.
R3P2 cared more about the time to respond to issues and
PRs as he considered “fast response” to issues and PRs much more
important than the other three goals. R3P4 and R3P7 mentioned
that the trends are useful. The signal that is mentioned the most
is Conversations that Need Your Attention (R3P4, R3P5, and
R3P7) because it provides maintainers actionable items.

Although in the previous two rounds of interviews, we found that
few R1s and R2s participants approved of the comparison section,
it was considered valuable by some diary study participants (R3P2,
R3P3, and R3P5). The comparison signals became helpful probably
because they were being compared with projects they chose to
be peers or competitors (by reporting them in the initial survey).
However, R3P11 pointed out that comparison was difficult among
projects because some projects have full-time contributors, whereas
others do not.

Confusing signals. While participants agreed that most of the
signals are “self-explanatory” (R3P2), some of them pointed out
that the Conversation Tone Analysis part was confusing (R3P1,
R3P2, and R3P5). R3P1 reported to us that he “wanted to learn more
about what the numeric score was. First, it would make more sense if
it were just a percent (0%-100%), [but] it’s currently a unitless number.”
On top of the confusion on the measurement, we suspect the lack
of toxic conversations made the Conversation Tone Analysis
section empty and thus useless. None of our diary study participants
had any conversations flagged by the Perspective API. However,
we report the highest toxicity and identity attack scores regardless
of the presence of any potentially toxic conversations, i.e., toxicity
or identity attack scores > 0.7. Future researchers can explore other
ways of reporting toxicity or other tools for detection.

Helpful tips. The majority of the participants considered the
tips in Conversations that Need Your Attention to be useful
(R3P2, R3P3, R3P4, R3P5, R3P7, R3P9, and R3P11). Some participants
also pointed out some tips that helped them improve specific parts

Climate Coach: A Dashboard for Open-Source Maintainers to Overview Community Dynamics

of their projects. R3P7 told us that after viewing our tips on adding
a Code of Conduct, he planned to add one soon. Several other
participants mentioned tips of Features that Affect Project
Attractiveness to be useful (R3P1, R3P2, R3P4, R3P5, and R3P11).
R3P4 and R3P12 thought the tip in the section Conversations
by Label was helpful. Unfortunately, although those maintainers
considered some of the tips applicable, except for R3P7, who would
add a code of conduct, none of them made adjustments by the time
they completed the exit survey. Our diary study may need to be
longer for maintainers to take concrete actions.

In summary, many of our diary study participants found this
dashboard useful for themselves or other maintainers, and their
level of confidence in supporting community health increased. How-
ever, our dashboard has yet to affect the maintainers’ actual work-
flow.

6 DISCUSSION

Our study takes the first step towards visualizing signals related
to the climate and the inclusion of open-source software projects
but are hard to observe on current social coding platforms. From
the user studies, we received positive feedback on our dashboard’s
usefulness. This section discusses some implications of our study
and ideas for future research.

6.1 Contributions to Open-Source Software and
HCI Communities

Our work directly contributes to improving open-source commu-
nities’ community health and contributes to the broad HCI com-
munity in several ways. Firstly, our dashboard is one of the few
efforts to provide an intervention to improve community health in
open-source and is based on scientifically validated evidence. Our
work builds on a wide variety of prior studies related to community
health. We took inspiration from literature such as signals that
newcomers use to select a project [60], barriers new contributors
face [78, 80, 82], contributors’ negative feelings [26, 50, 62], and
contributors’ sustained participation [61]. The literature provides
strong support for the effectiveness of this intervention.

Our dashboard differs from the two prior works that built inter-
vention tools, i.e., Steinmacher et al. [78]’s portal for newcomers
and Guizani et al. [35]’s dashboard for attracting and retaining
newcomers. In addition to the fact that our design has all groups of
contributors in mind, our dashboard also emphasizes the coaching
aspect. The tips we provide in our dashboard are intended to help
maintainers improve their management skills and increase their
confidence in building a healthier community.

Secondly, our dashboard is mature after several rounds of design
iterations and has proven to have effects on maintainers’ confidence
in improving project health. We disclose our code on GiTHUB so
everyone can download and use it locally or share it with team
members. We hope to see social coding platforms incorporating
some of our signals to reach a broader audience. Researchers can
thus collect more data to test their usability and effectiveness.

Thirdly, our findings from our diary study show that visualizing
hard-to-observe signals is a promising strategy to increase main-
tainers’ awareness of the status of their projects and improve their
management strategies. Future studies can build on this idea and

CHI 23, April 23-28, 2023, Hamburg, Germany

expand the set of signals to capture more nuanced project charac-
teristics, making the management process more transparent and
straightforward. For example, although some maintainers pointed
out the usefulness of CIs and bots, we could not compute a signal
based on the current trace data provided by GiTHUB. A collabora-
tion with the social coding platforms would provide opportunities
for further exploration.

However, we also like to highlight the flip side of being highly
transparent. Constantly monitoring the signals can create extra
stress on maintainers. Downward slopes in temporal signals can
make maintainers worry about their performance. At the same time,
if we make the dashboard publicly available, current and potential
contributors can use the data to evaluate and judge maintainers’
productivity and efficiency. Nevertheless, by knowing the signals’
mechanism, maintainers can game the system to make the data
look attractive.

Lastly, our more general contribution to the HCI community
is that our design process and the findings can be widely trans-
ferred to other domains. Although the multi-phase iterative design
process we adopted from Samrose et al. [68] was long and labori-
ous, the outcome was effective and promising. More importantly,
some of our signals are transferrable to other contexts that have
similar settings and processes. Proprietary software development
or remote collaboration can benefit from our results as well. For
example, measures for pushback and toxicity in code review and
other communications are equally important [62] for corporate
software development. Pointers to conversations that might need
further investigation can help managers distribute their attention
and energy more wisely. Being able to provide timely responses
also accelerates the project’s progress.

6.2 Implications for design and future research

6.2.1 Provide actionable feedback. Future work can explore the
balance between simply displaying information that reflects the
project’s status and providing specific tips or instructions for main-
tainers to follow or implement. During our interviews, some partic-
ipants appreciated that, in the GITHUB issue version, we only pro-
vided maintainers with information and did not ask them to perform
specific actions. However, some other maintainers reported that
many of the tips in the web page version and the links to the
conversations that might need more attention were use-
ful. We argue that displaying only information limits the effective-
ness of our dashboard if we do not also provide possible interven-
tions backed by rigorous empirical studies. The number of tips we
should provide can be very nuanced and needs further investiga-
tion.

6.2.2 More signals. Future studies can also explore ways to incor-
porate more signals. When designing the dashboard, we ensured
that our features were not redundant with the ones GiITHUB is
providing. For example, GITHUB already checks (on each project’s
Insights -> Community Standards) if a project has a README,
among other forms of documentation, such as contributing guide-
lines and codes of conduct — all of which have been found to asso-
ciate with higher project attractiveness to new contributors [60].
However, there are still a tremendous number of potential signals
that we did not explore. For example, from our interviews, we also

CHI 23, April 23-28, 2023, Hamburg, Germany

collected many signals that maintainers consider important but
were hard for us to measure, such as the status of continuous inte-
gration (CI) builds. There are, however, many standard badges to
reflect CI status [89], and these could be further integrated into a
dashboard like ours.

Given the prevalence of bots [23, 93], interactions between hu-
mans and bots are also essential to consider in a maintainer dash-
board. Our dashboard excluded bots’ activities. Future studies can
treat them as a separate group different than human contributors
and analyze their behavior. A dashboard like Climate Coach could
help maintainers assess where and how to utilize bots to support
contributors. It could be helpful for project owners to understand
how the use of various bots is associated with other participation
signals, e.g., contributors could be deterred by interaction with
certain bots.

6.2.3 Long-term evaluation. Although our diary study shows promis-
ing results that maintainers consider themselves more confident
in building a healthier community after two weeks of usage, we
need more time to observe any substantial changes maintainers
make in reaction to our dashboard. Long-term evaluation has been
used in HCI [38, 91], especially some visualization projects [72].
Researchers can observe the changes in team size or the overall cli-
mate of a project in the long term and collect data on which signals
are more valuable. For example, do temporal signals provide main-
tainers enough intuition on how their projects have been evolving?
Researchers can also track changes that maintainers make and
study if any of those changes are inspired by our dashboard, thus
quantifying this intervention’s effectiveness.

6.2.4 Incorporate our signals to the social coding platforms. Our
work would be much more impactful if social coding platforms
incorporate some of our signals into their design. Such integration
can avoid context switching. Platforms also have the resource to
conduct a larger-scale and longer-term user study, even an A/B test
to compare the differences between the group of projects that adopt
our dashboard and the group that do not. These data are valuable
for improving the design and making the dashboard more helpful
for maintainers.

7 LIMITATIONS

As with many studies, our paper has several limitations we would
like to discuss here.

The diversity of our participants was limited by the low gen-
der diversity in our participant pool. Although we managed to
recruit four women maintainers for our diary study, we only had
one woman maintainer in our Phase 2 interviews, which were es-
sential to our dashboard design, and no non-binary participants
throughout the entire study. Therefore, it is possible that we failed
to incorporate some concerns that are unique to these marginalized
groups. Future studies can recruit a more diverse user group to make
the dashboard more inclusive. Another possible future work is to
adopt the GenderMag approach [9], a cognitive walkthrough that
helps software developers discover features that unintentionally
exclude certain user groups.

Another limitation, as we admitted when describing our meth-
ods, is the gender inference process when recruiting participants.

Qiu, et al.

We acknowledge that there are more reliable methods than this one.
However, since we had to review many projects to achieve a bal-
anced sample in terms of gender diversity, we had to rely on certain
heuristics to speed up the process. During the entire process, we did
not use our assumed gender to address any individual contributors.
We only relied on signals such as commonly used women’s names,
profile pictures, or self-reported pronouns. To lower the errors,
we had more than one researcher browse the contributor list. If
during our email interviews, a maintainer informed us that their
project lacked gender diversity or had women or non-binary con-
tributors, we corrected our record. For Phases 2 and 3, we reported
participants’ self-reported genders.

Lastly, the effectiveness of our dashboard on maintainers’ actions
could have been improved if the duration of our diary study were
longer. Ideally, we would have liked to conduct a longer-term diary
study to examine whether and how maintainers could integrate our
dashboard into their process. As discussed above, we encourage
future works to explore this possibility.

8 CONCLUSION

This paper presents Climate Coach, a dashboard we designed to
improve the health of open-source communities. We first identified
signals reflecting team inclusion by email interviews with maintain-
ers. Based on the signals we identified, we designed a dashboard
prototype and iteratively improved it with maintainers through
think-aloud interviews. We tested the effectiveness of our refined
dashboard through a two-week diary study with maintainers. Our
results show that displaying signals that reflect various dimensions
of teams’ social aspects can increase maintainers’ awareness of
their community health and help them improve their management
strategies.

REFERENCES

[1] Omar Alonso, Premkumar T Devanbu, and Michael Gertz. 2008. Expertise identifi-
cation and visualization from CVS. In International Conference on Mining Software
Repositories (MSR). 125-128.

Hirohisa Aman, Aji Ery Burhandenny, Sousuke Amasaki, Tomoyuki Yokogawa,

and Minoru Kawahara. 2017. A Health Index of Open Source Projects Focusing

on Pareto Distribution of Developer’s Contribution. In 2017 8th International

Workshop on Empirical Software Engineering in Practice IWESEP). 29-34. https:

//doi.org/10.1109/IWESEP.2017.14

[3] Joop Aué, Michiel Haisma, Kristin Fjéla Tomasdottir, and Alberto Bacchelli. 2016.
Social Diversity and Growth Levels of Open Source Software Projects on GitHub.
In International Symposium on Empirical Software Engineering and Measurement
(ESEM). ACM, 1-6.

[4] Guilherme Avelino, Eleni Constantinou, Marco Tulio Valente, and Alexander
Serebrenik. 2019. On the abandonment and survival of open source projects:
An empirical investigation. In International Symposium on Empirical Software
Engineering and Measurement (ESEM). IEEE, 1-12.

[5] Jacob T Biehl, Mary Czerwinski, Greg Smith, and George G Robertson. 2007.
FASTDash: a visual dashboard for fostering awareness in software teams. In
SIGCHI Conference on Human Factors in Computing Systems (CHI). 1313-1322.

[6] Erling Bjogvinsson, Pelle Ehn, and Per-Anders Hillgren. 2012. Design things and
design thinking: Contemporary participatory design challenges. Design issues
28,3 (2012), 101-116.

[7] Kelly Blincoe, Jyoti Sheoran, Sean Goggins, Eva Petakovic, and Daniela Damian.
2016. Understanding the popular users: Following, affiliation influence and
leadership on GitHub. Information and Software Technology 70 (2016), 30-39.

[8] Virginia Braun and Victoria Clarke. 2006. Using thematic analysis in psychology.
Qualitative research in psychology 3, 2 (2006), 77-101.

[9] Margaret Burnett, Anicia Peters, Charles Hill, and Noha Elarief. 2016. Finding
gender-inclusiveness software issues with GenderMag: a field investigation. In
Proceedings of SIGCHI Conference on Human Factors in Computing Systems (CHI).
ACM, 2586-2598.

[2

https://doi.org/10.1109/IWESEP.2017.14
https://doi.org/10.1109/IWESEP.2017.14

Climate Coach: A Dashboard for Open-Source Maintainers to Overview Community Dynamics

[10]
[11]
[12]

[13]

[14]

[15

[16]

[17]
[18]

[19

[20]

[21]

[22

[23]

[24]

[25

[26

[27

[28

[29

[30]

[31]

[32]
[33

[34]

[35

[36]

Ronald Burt. 1992. Structural Holes: The Social Structure of Competition. Harvard
University Press.

Andrea Capiluppi, Alexander Serebrenik, and Leif Singer. 2013. Assessing tech-
nical candidates on the social web. IEEE Software 30, 1 (2013), 45-51.

Elian Carsenat. 2019. Inferring gender from names in any region, language, or
alphabet. Unpublished 10 (2019).

Amanda Casari, Katie McLaughlin, Milo Z Trujillo, Jean-Gabriel Young, James P
Bagrow, and Laurent Hébert-Dufresne. 2021. Open source ecosystems need
equitable credit across contributions. Nature Computational Science 1, 1 (2021),
2-2.

Maélick Claes, Mika Mantyla, Miikka Kuutila, and Umar Farooq. 2018. Towards
automatically identifying paid open source developers. In International Conference
on Mining Software Repositories (MSR). 437-441.

Maélick Claes, Tom Mens, and Philippe Grosjean. 2014. maintaineR: A web-based
dashboard for maintainers of CRAN packages. In International Conference on
Software Maintenance and Evolution (ICSME). IEEE, 597-600.

Jailton Coelho and Marco Tulio Valente. 2017. Why modern open source projects
fail. In Joint Meeting on the Foundations of Software Engineering (ESEC/FSE). 186—
196.

James S Coleman. 1990. Foundations of social theory. Belknap.

Valerio Cosentino, Javier Luis Canovas Izquierdo, and Jordi Cabot. 2015. Assessing
the bus factor of Git repositories. In 2015 IEEE 22nd International Conference
on Software Analysis, Evolution, and Reengineering (SANER). 499-503. https:
//doi.org/10.1109/SANER.2015.7081864

Valerio Cosentino, Javier Luis Canovas Izquierdo, and Jordi Cabot. 2018. Gitana:
A software project inspector. Science of Computer Programming 153 (2018), 30-33.
Kevin Crowston. 2003. Defining Open Source Software Project Success. In
International Conference on Information Systems (ICIS).

Kevin Crowston, James Howison, and Hala Annabi. 2006. Information systems
success in free and open source software development: theory and measures.
Software Process: Improvement and Practice 11, 2 (2006), 123-148.

Laura Dabbish, Colleen Stuart, Jason Tsay, and Jim Herbsleb. 2012. Social coding
in GitHub: transparency and collaboration in an open software repository. In
Proceedings of the ACM Conference on Computer Supported Cooperative Work
(CSCW). ACM, 1277-1286.

Tapajit Dey, Sara Mousavi, Eduardo Ponce, Tanner Fry, Bogdan Vasilescu, Anna
Filippova, and Audris Mockus. 2020. Detecting and Characterizing Bots That
Commit Code. ACM, New York, NY, USA, 209-219. https://doi.org/10.1145/
3379597.3387478

Santiago Duerias, Valerio Cosentino, Jesus M Gonzalez-Barahona, Alvaro
del Castillo San Felix, Daniel Izquierdo-Cortazar, Luis Cafias-Diaz, and Al-
berto Pérez Garcia-Plaza. 2021. GrimoireLab: A toolset for software development
analytics. Peer] Computer Science 7 (2021), e601.

Santiago Dueiias, Valerio Cosentino, Gregorio Robles, and Jesus M Gonzalez-
Barahona. 2018. Perceval: software project data at your will. In International
Conference on Software Engineering: Companion Proceeedings. 1-4.

Carolyn D Egelman, Emerson Murphy-Hill, Elizabeth Kammer, Margaret Morrow
Hodges, Collin Green, Ciera Jaspan, and James Lin. 2020. Predicting develop-
ers’ negative feelings about code review. In 2020 IEEE/ACM 42nd International
Conference on Software Engineering (ICSE). IEEE, 174-185.

Nadia Eghbal. 2016. Roads and Bridges: The Unseen Labor Behind Our Digital
Infrastructure. Ford Foundation.

Fabio Ferreira, Luciana Lourdes Silva, and Marco Tulio Valente. 2020. Turnover
in Open-Source Projects: The Case of Core Developers. In Brazilian Symposium
on Software Engineering (SBES). 447-456.

Isabella Ferreira, Jinghui Cheng, and Bram Adams. 2021. The “Shut the f** k up”
Phenomenon: Characterizing Incivility in Open Source Code Review Discussions.
Proceedings of the ACM on Human-Computer Interaction 5, CSCW2 (2021), 1-35.
Anna Filippova and Hichang Cho. 2015. Mudslinging and manners: Unpacking
conflict in free and open source software. In Proceedings of the 18th ACM Confer-
ence on Computer Supported Cooperative Work & Social Computing. 1393-1403.
Oscar Franco-Bedoya, David Ameller, Dolors Costal, and Xavier Franch. 2017.
Open source software ecosystems: A Systematic mapping. Information and
Software Technology 91 (2017), 160-185.

GitHub. 2017. Open Source Survey. http://opensourcesurvey.org/2017/.

Sean Goggins, Kevin Lumbard, and Matt Germonprez. 2021. Open source commu-
nity health: Analytical metrics and their corresponding narratives. In International
Workshop on Software Health in Projects, Ecosystems and Communities (SoHeal).
IEEE.

Sean P Goggins, Matt Germonprez, and Kevin Lumbard. 2021. Making open
source project health transparent. Computer 54, 08 (2021), 104-111.

Mariam Guizani, Tom Zimmermann, Anita Sarma, and Denae Ford Robinson.
2022. Attracting and Retaining OSS contributors with a Maintainer Dashboard. In
International Conference on Software Engineering, Software Engineering in Society
Track (ICSE SEIS 2022). ACM.

Jack Jamieson, Eureka Foong, and Naomi. Yamashita. 2022. Maintaining Values:
Navigating Diverse Perspectives in Value-Charged Discussions in Open Source
Development. In Proceedings of the ACM on Human-Computer Interaction (CSCW).

(37]

[38]

[39

[40

N
=

[42

[43]

[44]

S
&

[46

[47

(48

N
)

[50

[51

[52

[54

[55

[56

(57]

o
&,

(59

[60

CHI 23, April 23-28, 2023, Hamburg, Germany

Joselito Mota Jr, Railana Santana, and Ivan Machado. 2021. GrumPy: an automated
approach to simplify issue data analysis for newcomers. In Brazilian Symposium
on Software Engineering (SBES). 33-38.

Helena Karasti, Karen S Baker, and Florence Millerand. 2010. Infrastructure
time: Long-term matters in collaborative development. Computer Supported
Cooperative Work (CSCW) 19, 3 (2010), 377-415.

Karim R Lakhani and Robert G Wolf. 2003. Why hackers do what they do:
Understanding motivation and effort in free/open source software projects. https:
//ssrn.com/abstract=443040.

Amanda Lee and Jeffrey C Carver. 2019. FLOSS participants’ perceptions about
gender and inclusiveness: a survey. In International Conference on Software Engi-
neering (ICSE). IEEE, 677-687.

Michael J Lee, Bruce Ferwerda, Junghong Choi, Jungpil Hahn, Jae Yun Moon,
and Jinwoo Kim. 2013. GitHub developers use rockstars to overcome overflow of
news. In Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems (CHI). ACM, 133-138.

Renee Li, Pavitthra Pandurangan, Hana Frluckaj, and Laura Dabbish. 2021. Code
of conduct conversations in open source software projects on Github. Proceedings
of the ACM on Human-computer Interaction 5, CSCW1 (2021), 1-31.

Johan Linaker, Efi Papatheocharous, and Thomas Olsson. 2022. How to char-
acterize the health of an Open Source Software project? A snowball literature
review of an emerging practice. In International Symposium on Open Collaboration
(OpenSym). 1-12.

M Lynne Markus. 2007. The governance of free/open source software projects:
monolithic, multidimensional, or configurational? Journal of Management &
Governance 11, 2 (2007), 151-163.

Jennifer Marlow and Laura Dabbish. 2013. Activity traces and signals in software
developer recruitment and hiring. In ACM Conference on Computer Supported
Cooperative Work (CSCW). ACM, 145-156.

Jennifer Marlow, Laura Dabbish, and Jim Herbsleb. 2013. Impression formation in
online peer production: activity traces and personal profiles in GitHub. In ACM
Conference on Computer Supported Cooperative Work (CSCW). ACM, 117-128.
Christopher Mendez, Hema Susmita Padala, Zoe Steine-Hanson, Claudia Hilder-
brand, Amber Horvath, Charles Hill, Logan Simpson, Nupoor Patil, Anita Sarma,
and Margaret Burnett. 2018. Open source barriers to entry, revisited: A sociotech-
nical perspective. In International Conference on Software Engineering (ICSE).
1004-1015.

Vishal Midha and Prashant Palvia. 2012. Factors affecting the success of Open
Source Software. Journal of Systems and Software 85, 4 (2012), 895-905.
Courtney Miller, Sophie Cohen, Daniel Klug, Bogdan Vasilescu, and Christian
Kistner. 2022. “Did You Miss My Comment or What?” Understanding Toxicity
in Open Source Discussions. In International Conference on Software Engineering
(ICSE).

Courtney Miller, Sophie Cohen, Daniel Klug, Bodgan Vasilescu, and Christian
Kastner. 2022. “Did You Miss My Comment or What?” Understanding Toxicity
in Open Source Discussions. In International Conference on Software Engineering
(ICSE). ACM.

Courtney Miller, David Gray Widder, Christian Késtner, and Bogdan Vasilescu.
2019. Why do people give up flossing? a study of contributor disengagement in
open source. In International Conference on Open Source Systems (OSS). Springer,
116-129.

Audris Mockus, Roy T Fielding, and James D Herbsleb. 2002. Two case studies of
open source software development: Apache and Mozilla. ACM Transactions on
Software Engineering and Methodology (TOSEM) 11, 3 (2002), 309-346.

Dawn Nafus. 2012. ‘Patches don’t have gender’: What is not open in open source
software. New Media & Society 14, 4 (2012), 669-683.

Michael Ogawa, Kwan-Liu Ma, Christian Bird, Premkumar Devanbu, and Alex
Gourley. 2007. Visualizing social interaction in open source software projects. In
International Asia-Pacific Symposium on Visualization. IEEE, 25-32.

Sandra Ohly, Sabine Sonnentag, Cornelia Niessen, and Dieter Zapf. 2010. Diary
studies in organizational research: An introduction and some practical recom-
mendations. First publ. in: Journal of Personnel Psychology 9 (2010), 2, pp. 79-93 9
(01 2010).

Siobhan O’Mahony. 2007. The governance of open source initiatives: what does
it mean to be community managed? Journal of Management & Governance 11, 2
(2007), 139-150.

Javier Pérez, Romuald Deshayes, Mathieu Goeminne, and Tom Mens. 2012. Sec-
onda: Software ecosystem analysis dashboard. In European Conference on Software
Maintenance and Reengineering (CSMR). IEEE, 527-530.

Jessica Perrie, Jing Xie, Maleknaz Nayebi, Marios Fokaefs, Kelly Lyons, and
Eleni Stroulia. 2019. City on the river: visualizing temporal collaboration. In
International Conference on Computer Science and Software Engineering. 82-91.
Gede Artha Azriadi Prana, Denae Ford, Ayushi Rastogi, David Lo, Rahul Pu-
randare, and Nachiappan Nagappan. 2021. Including everyone, everywhere:
Understanding opportunities and challenges of geographic gender-inclusion in
OSS. IEEE Transactions on Software Engineering (2021).

Huilian Sophie Qiu, Yucen Lily Li, Susmita Padala, Anita Sarma, and Bogdan
Vasilescu. 2019. The signals that potential contributors look for when choosing

https://doi.org/10.1109/SANER.2015.7081864
https://doi.org/10.1109/SANER.2015.7081864
https://doi.org/10.1145/3379597.3387478
https://doi.org/10.1145/3379597.3387478
http://opensourcesurvey.org/2017/
https://ssrn.com/abstract=443040
https://ssrn.com/abstract=443040

CHI 23, April 23-28, 2023, Hamburg, Germany

open-source projects. Proceedings of the ACM on Human-Computer Interaction 3,
CSCW (2019), 1-29.

Huilian Sophie Qiu, Alexander Nolte, Anita Brown, Alexander Serebrenik, and
Bogdan Vasilescu. 2019. Going Farther Together: The Impact of Social Capital on
Sustained Participation in Open Source. In International Conference on Software
Engineering (ICSE). IEEE, 688-699. https://doi.org/10.1109/ICSE.2019.00078
Huilian Sophie Qiu, Bogdan Vasilescu, Christian Kastner, Carolyn Egelman, Ciera
Jaspan, and Emerson Murphy-Hill. 2022. Detecting Interpersonal Conflict in
Issues and Code Review: Cross Pollinating Open-and Closed-Source Approaches.
In International Conference on Software Engineering, Software Engineering in
Society (ICSE-SEIS). IEEE, 41-55.

Huilian Sophie* Qiu, Zihe H* Zhao, Tielin Katy Yu, Justin Wang, Alexander Ma,
Hongbo Fang, Laura Dabbish, and Bogdan Vasilescu. 2023. Gender Represen-
tation Among Contributors to Open-Source Infrastructure - An Analysis of 20
Package Manager Ecosystems. In International Conference on Software Engineering
- Software Engineering in Society (ICSE SEIS). ACM.

Naveen Raman, Minxuan Cao, Yulia Tsvetkov, Christian Késtner, and Bogdan
Vasilescu. 2020. Stress and Burnout in Open Source: Toward Finding, Under-
standing, and Mitigating Unhealthy Interactions. In International Conference on
Software Engineering, New Ideas and Emerging Results (ICSE). ACM, 57-60.

Dirk Riehle, Philipp Riemer, Carsten Kolassa, and Michael Schmidt. 2014. Paid
vs. volunteer work in open source. In Hawaii International Conference on System
Sciences (HICSS). IEEE, 3286-3295.

Gregorio Robles, Jesus M Gonzalez-Barahona, and Martin Michlmayr. 2005. Evo-
lution of volunteer participation in libre software projects: evidence from Debian.
In International Conference on Open Source Systems (OSS). 100-107.

Davide Rossi and Stefano Zacchiroli. 2022. Worldwide gender differences in public
code contributions: and how they have been affected by the COVID-19 pandemic.
In International Conference on Software Engineering, Software Engineering in
Society (ICSE-SEIS). 172-183.

Samiha Samrose, Daniel McDuff, Robert Sim, Jina Suh, Kael Rowan, Javier Her-
nandez, Sean Rintel, Kevin Moynihan, and Mary Czerwinski. 2021. Meetingcoach:
An intelligent dashboard for supporting effective & inclusive meetings. In Pro-
ceedings of the 2021 CHI Conference on Human Factors in Computing Systems.
1-13.

Anita Sarma, Larry Maccherone, Patrick Wagstrom, and James Herbsleb. 2009.
Tesseract: Interactive visual exploration of socio-technical relationships in soft-
ware development. In International Conference on Software Engineering (ICSE).
IEEE, 23-33.

Pratyush N Sharma, John Hulland, and Sherae Daniel. 2012. Examining turnover
in open source software projects using logistic hierarchical linear modeling
approach. In IFIP International Conference on Open Source Systems (OSS). Springer,
331-337.

Jyoti Sheoran, Kelly Blincoe, Eirini Kalliamvakou, Daniela Damian, and Jordan
Ell. 2014. Understanding watchers on GitHub. In Proceedings of the International
Conference on Mining Software Repositories (MSR). ACM, 336-339.

Ben Shneiderman and Catherine Plaisant. 2006. Strategies for evaluating infor-
mation visualization tools: multi-dimensional in-depth long-term case studies. In
Proceedings of the 2006 AVI workshop on BEyond time and errors: novel evaluation
methods for information visualization. 1-7.

Dan Sholler, Igor Steinmacher, Denae Ford, Mara Averick, Mike Hoye, and Greg
Wilson. 2019. Ten simple rules for helping newcomers become contributors to
open projects. PLoS Computational Biology 15, 9 (2019), €1007296.

Vandana Singh, Brice Bongiovanni, and William Brandon. 2022. Codes of conduct
in Open Source Software—for warm and fuzzy feelings or equality in community?
Software Quality Journal 30, 2 (2022), 581-620.

Davide Spadini, Mauricio Aniche, and Alberto Bacchelli. 2018. Pydriller: Python
framework for mining software repositories. In Joint Meeting on the Foundations
of Software Engineering (ESEC/FSE). 908-911.

Stefan Stanciulescu, Likang Yin, and Vladimir Filkov. 2022. Code, quality, and
process metrics in graduated and retired ASFI projects. In Joint Meeting on the
Foundations of Software Engineering (ESEC/FSE). 495-506.

Igor Steinmacher, Tayana Conte, Marco Aurélio Gerosa, and David Redmiles.
2015. Social barriers faced by newcomers placing their first contribution in open
source software projects. In ACM Conference on Computer-Supported Cooperative
Work & Social Computing (CSCW). 1379-1392.

Igor Steinmacher, Tayana Uchoa Conte, Christoph Treude, and Marco Aurélio
Gerosa. 2016. Overcoming open source project entry barriers with a portal for
newcomers. In International Conference on Software Engineering (ICSE). 273-284.
Igor Steinmacher, Marco Aurélio Gerosa, and David Redmiles. 2014. Attracting,
onboarding, and retaining newcomer developers in open source software projects.
In Workshop on Global Software Development in a CSCW Perspective.

Igor Steinmacher, Gustavo Pinto, Igor Scaliante Wiese, and Marco Aurélio Gerosa.
2018. Almost there: A study on quasi-contributors in open-source software
projects. In 2018 IEEE/ACM 40th International Conference on Software Engineering
(ICSE). IEEE, 256-266.

Igor Steinmacher, Marco Aurelio Graciotto Silva, Marco Aurelio Gerosa, and
David F Redmiles. 2015. A systematic literature review on the barriers faced by

Qiu, et al.

newcomers to open source software projects. Information and Software Technology
59 (2015), 67-85.

Igor Steinmacher, Igor Wiese, Ana Paula Chaves, and Marco Aurélio Gerosa.
2013. Why do newcomers abandon open source software projects?. In 2013 6th
International Workshop on Cooperative and Human Aspects of Software Engineering
(CHASE). IEEE, 25-32.

Igor Steinmacher, Igor Scaliante Wiese, Tayana Conte, Marco Aurélio Gerosa, and
David Redmiles. 2014. The hard life of open source software project newcomers.
In Proceedings of the 7th international workshop on cooperative and human aspects
of software engineering. 72-78.

Chandrasekar Subramaniam, Ravi Sen, and Matthew L Nelson. 2009. Determi-
nants of open source software project success: A longitudinal study. Decision
Support Systems 46, 2 (2009), 576-585.

Josh Terrell, Andrew Kofink, Justin Middleton, Clarissa Rainear, Emerson Murphy-
Hill, Chris Parnin, and Jon Stallings. 2017. Gender differences and bias in open
source: Pull request acceptance of women versus men. Peer] Comp Sci 3 (2017),
elll.

Ferdian Thung, Tegawende F Bissyande, David Lo, and Lingxiao Jiang. 2013.
Network structure of social coding in GitHub. In European Conference on Software
Maintenance and Reengineering (CSMR). IEEE, 323-326.

Marco Torchiano, Filippo Ricca, and Alessandro Marchetto. 2011. Is My Project’s
Truck Factor Low? Theoretical and Empirical Considerations about the Truck
Factor Threshold. In Proceedings of the 2nd International Workshop on Emerg-
ing Trends in Software Metrics (Waikiki, Honolulu, HI, USA) (WETSoM ’11).
Association for Computing Machinery, New York, NY, USA, 12-18. https:
//doi.org/10.1145/1985374.1985379

Bianca Trinkenreich, Igor Wiese, Anita Sarma, Marco Gerosa, and Igor Stein-
macher. 2022. Women’s participation in open source software: A survey of the
literature. ACM Transactions on Software Engineering and Methodology (TOSEM)
31, 4 (2022), 1-37.

Asher Trockman, Shurui Zhou, Christian Késtner, and Bogdan Vasilescu. 2018.
Adding Sparkle to Social Coding: An Empirical Study of Repository Badges in
the npm Ecosystem. In Proceedings of the International Conference on Software
Engineering (ICSE). ACM, 511-522.

Marat Valiev, Bogdan Vasilescu, and James Herbsleb. 2018. Ecosystem-level
determinants of sustained activity in open-source projects: A case study of the
PyPI ecosystem. In Joint Meeting on the Foundations of Software Engineering
(ESEC/FSE). 644-655.

Jari Varsaluoma and Farrukh Sahar. 2014. Usefulness of long-term user experience
evaluation to product development: Practitioners’ views from three case studies.
In Proceedings of the 8th Nordic conference on human-Computer interaction: Fun,
Fast, Foundational. 79-88.

Bogdan Vasilescu, Daryl Posnett, Baishakhi Ray, Mark G.J. van den Brand, Alexan-
der Serebrenik, Premkumar Devanbu, and Vladimir Filkov. 2015. Gender and
Tenure Diversity in GitHub Teams. In Proceedings of the 33rd Annual ACM Con-
ference on Human Factors in Computing Systems (Seoul, Republic of Korea) (CHI
’15). Association for Computing Machinery, New York, NY, USA, 3789-3798.
https://doi.org/10.1145/2702123.2702549

Mairieli Wessel, Bruno Mendes De Souza, Igor Steinmacher, Igor S Wiese, Ivanil-
ton Polato, Ana Paula Chaves, and Marco A Gerosa. 2018. The power of bots:
Characterizing and understanding bots in oss projects. Proceedings of the ACM
on Human-Computer Interaction 2, CSCW (2018), 1-19.

Diego Winter, Guilherme Avelino, and Charles Miranda. 2022. HealthyEnv: a tool
to assist in health assessment of software repositories. In Brazilian Symposium
on Software Engineering (SBES). 382-387.

Jean-Gabriel Young, Amanda Casari, Katie McLaughlin, Milo Z Trujillo, Laurent
Hébert-Dufresne, and James P Bagrow. 2021. Which contributions count? Analy-
sis of attribution in open source. In International Conference on Mining Software
Repositories (MSR). IEEE, 242-253.

Stefano Zacchiroli. 2020. Gender differences in public code contributions: a
50-year perspective. IEEE Software 38, 2 (2020), 45-50.

[97] Jierui Zhang, Liang Wang, Zhiwen Zheng, and Xianping Tao. 2022. Social Com-

munity Evolution Analysis and Visualization in Open Source Software Projects.
In International Conference on Web Information Systems Engineering. Springer,
38-45.

https://doi.org/10.1109/ICSE.2019.00078
https://doi.org/10.1145/1985374.1985379
https://doi.org/10.1145/1985374.1985379
https://doi.org/10.1145/2702123.2702549

	Abstract
	1 Introduction
	2 Related Work
	2.1 Healthy Open-Source Communities
	2.2 Transparency and Signaling
	2.3 Measurement and Dashboards

	3 Methods
	3.1 Phase 1: Collect Signals - Email Interviews
	3.2 Phase 2: Design Dashboard - Think-aloud Interviews
	3.3 Phase 3: Evaluate Dashboard - Diary Study

	4 Design
	4.1 Signals Extracted From Phase 1
	4.2 Creating the Dashboard
	4.3 Interview Results

	5 Evaluation
	5.1 Participant Information
	5.2 Findings

	6 Discussion
	6.1 Contributions to Open-Source Software and HCI Communities
	6.2 Implications for design and future research

	7 Limitations
	8 Conclusion
	References

