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ABSTRACT 
Open-source software projects have become an integral part of 
our daily life, supporting virtually every software we use today. 
Since open-source software forms the digital infrastructure, main-

taining them is of utmost importance. We present Climate Coach, 
a dashboard that helps open-source project maintainers monitor 
the health of their community in terms of team climate and inclu-
sion. Through a literature review and an exploratory survey (N=18), 
we identifed important signals that can refect a project’s health, 
and display them on a dashboard. We evaluated and refned our 
dashboard through two rounds of think-aloud studies (N=19). We 
then conducted a two-week longitudinal diary study (N=10) to test 
the usefulness of our dashboard. We found that displaying signals 
that are related to a project’s inclusion help improve maintainers’ 
management strategies. 
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1 INTRODUCTION 
While by and large, our society has come to recognize the immense 
value and importance of open-source software for our digital econ-
omy [27], maintaining all this digital infrastructure remains chal-
lenging [43]. With much open-source software being developed 
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and maintained by volunteers [14, 65, 66], a core issue afecting 
the sustainability of the whole ecosystem remains to be attracting 
and retaining contributors to diferent projects. Many important, 
heavily downloaded open-source projects are maintained by only 
one or two developers [16] and sometimes by no one at all [4]. 
Turnover rates are generally high in open-source projects [28, 51]. 
Moreover, there are many documented socio-technical barriers that 
newcomers face when trying to join open-source projects [47, 77], 
often disproportionally afecting women and members of under-
represented groups [40, 85, 88]. 

Researchers have made considerable progress in the last decade 
towards understanding the factors that afect the health and sus-
tainability of open-source projects, e.g., see Franco-Bedoya et al. 
[31], Linåker et al. [43], and Trinkenreich et al. [88] for recent sur-
veys. This knowledge is only beginning to make its way back into 
practice. In addition to technical aspects, such as code quality and 
development process, and project governance aspects, such as li-
censing, social (community) aspects is an indispensable dimension 
of open source health. Nevertheless, there is a surprising scarcity 
of evidence-based interventions for improving open-source com-

munity health in terms of team climate and inclusion. Although 
some code hosting platforms begin to provide some community-

oriented design elements, such as GitHub’s checklists of items 
associated with promoting inclusion and community health, e.g., 
contributing guidelines and codes of conduct, only two academic 
studies designed and evaluated community health interventions: 
Steinmacher et al. [78] designed a portal helping newcomers to 
navigate an open source project, and Guizani et al. [35] designed a 
dashboard assisting maintainers to overview the joining, activity, 
and retention trends of the newcomers to their projects. 

In this paper, we take another step in the direction of open-
source community health interventions. Grounded in the literature 
and interviews with open-source maintainers, we start by identify-
ing factors and measures indicative of community health that do 
not currently have associated signals in the GitHub UI or other 
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dedicated monitoring infrastructure, such as indicators of respon-
siveness to issues [60], pushback in code reviews [26], and toxicity 
in pull request and issue discussions [64]. Next, we iteratively de-
sign and evaluate a dashboard, Climate Coach, that tracks these 
indicators for a given project over time and in comparison to a 
group of ‘peer’ projects. Results from a diary study with project 
maintainers show that our dashboard can increase the maintainers’ 
confdence in supporting community health. Compared to prior 
studies [35, 78], our work goes beyond newcomers and is more 
broadly focused on project climate, but can be seen as comple-

mentary to those eforts on exploring indicators of open-source 
community health [33, 35]. 

Our work also has several broad contributions to the Human-

Computer Interaction (HCI) community. An intervention that 
integrates prior literature: our work builds on a vast body of 
literature that studied how to improve a project’s climate and inclu-
sion and implements various methods or actions suggested in those 
works. We turned many of the practices or suggestions developed 
from empirical studies into a usable intervention. A product ready 
to use: our dashboard design has been refned by two rounds of 
interviews with active open-source maintainers and a two-week 
feld study. Our source code is publicly available.1 Proof of idea: 
the positive feedback we have received from maintainers on the 
usefulness of our dashboard shows that the general idea of turning 
important yet hidden metrics into plain, observable, and quantif-
able signals can help users better assess their projects’ status and 
make informed decisions. Transferrable results: some of our 
fndings are not exclusively applicable to the open-source context 
and can be adapted to other similar team settings such as remote 
collaboration or volunteer communities. 

2 RELATED WORK 
2.1 Healthy Open-Source Communities 
With open-source software becoming ubiquitous and powering 
applications in virtually every domain, much of the research atten-
tion has shifted from understanding how and why this mode of 
production functions [52] and what motivates people to contribute 
to it [39], to understanding what are the risk factors impacting the 
health of open source and how to sustain this digital infrastructure 
on which so much of our society relies [16, 27, 33, 90]. Many dimen-

sions of project health have been identifed as important, ranging 
from organizational and legal (e.g., what are appropriate gover-
nance structures [44, 56] and licenses [48, 84]), through technical 
(e.g., how to ensure code quality in a rapidly-paced, distributed 
software development setting [20, 76]), to social (e.g., how to at-
tract and retain contributors [60, 79] and how to maintain healthy 
conversations [49, 64]). 

A key challenge related to an open-source project’s social di-
mension is attracting and retaining contributors. Much of open 
source is developed and maintained by volunteers [14, 65, 66], who 
typically have a choice of where in the ecosystem to spend their 
eforts (which projects to join, which tasks to work on, etc.) and 
how long to stick around. Coupled with a constant need for work 
to maintain and evolve open-source software systems (e.g., fxing 

1
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bugs and security vulnerabilities, developing new features, improv-

ing documentation) and generally high rates of turnover among 
all contributors to open source [28, 51, 70], the volunteer-based 
community makes it hard to sustain a steady stream of contributors 
to one’s open-source project. 

The literature has identifed a wealth of factors that could im-

pact a project’s ability to attract and retain contributors, afecting 
all stages of the contribution process, ranging from choosing a 
project to join [60] and overcoming initial barriers to entry [82], to 
ensuring long-term sustained participation and engagement [61]. 
Many of these factors are cultural. Whether the project is perceived 
as open to new contributors and whether it has enough scafold-
ing in place to facilitate their onboarding [60], how the project 
acknowledges contributions [13, 95], whether the maintainers are 
responsive to requests [26, 62] and constructive and reasonable 
to other contributors in their feedback [80, 82], whether the tone 
of project-related discussions is perceived as polite or, on the con-
trary, toxic [29, 30, 49, 64], and whether a code of conduct is in 
place [42, 73, 74] are all seen as contributing to creating an inclusive 
environment and a healthy community. In addition, these issues are 
known to disproportionately afect women and other groups that 
are severely underrepresented in open source [53, 59, 85], which 
further reduces the size of a project’s potential contributor pool; 
it also has broader negative consequences beyond open source, 
as contributing to open source is for many a launching ramp for 
professional careers in the technology world [32, 45]. 

2.2 Transparency and Signaling 
Our discussion above leaves implicit the impression formation pro-
cess through which the diferent perceptions of project climate 
attributes are formed. In fact, social coding platforms rely heav-
ily on transparency and signaling to facilitate impression forma-

tion [22, 46, 89]. On GitHub, many signals (visible cues) are avail-
able by default as part of the UI for all projects hosted on the plat-
form, e.g., the number of stars a repository has received, the number 
of commits recorded in its history, or the number of followers an in-
dividual user has accumulated. Other signals, e.g., repository badges 
embedded in a project’s top-level README fle [89], still can be 
defned and customized by project maintainers to communicate at-
tributes of interest including code quality, adherence to testing and 
dependency management best practices. Prior work has shown that 
all these various signals play a role in a diversity of decisions users 
on the platform make, including which repositories to watch [71], 
which to trust [89], which to contribute to [60], which pull request 
contributions to accept [46], which developers to follow [7, 41], 
and even which developers to recruit for positions in the ofine 
world [11, 45]. 

At the same time, not all attributes indicative of a healthy project 
climate and community have dedicated signals or monitoring tools. 
This leaves maintainers without a direct way to monitor the health 
of their open-source communities and, if needed, intervene. How-
ever, as we argue in this paper, there is an opportunity to further 
leverage the high level of transparency aforded by the GitHub plat-
form, which recorded and made public available many dimensions 
of activities and communication histories, to design new signals 
indicative of open-source community health. 

https://doi.org/10.5281/zenodo.7592079
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2.3 Measurement and Dashboards 
Unsurprisingly, mining data from software repositories to measure 
and understand the activity in open source is an idea almost as old 
as the domain itself. By now, researchers have proposed a plethora 
of measures of project activity, success, or health in terms of project 
quality [2, 3, 16, 18, 20, 21, 28, 52, 87, 90, 92], including measures 
of code quality, popularity, team size, team productivity, turnover, 
contribution inequality, and risk of becoming abandoned, just to 
name a few. 

Researchers have also proposed tools to extract and visualize 
information from open-source repositories, including various dash-
boards designed to help with project management tasks. Typically, 
these have focused on technical aspects, e.g., visualizing distribu-
tions and trends in basic activity metrics such as the number of com-

mits and commit authors across projects in an ecosystem [57, 94], 
managing package dependencies and possible conficts arising from 
dependency version upgrades [15], and visualizing statistics about 
reported issues [37]. 

There are also a few notable examples of eforts focused on social 
aspects such as identifying expertise [1], visualizing the structure of 
the various socio-technical networks that form between developers, 
communications, and software artifacts [54, 69, 86, 97], visualizing 
collaboration patterns [58], visualizing trends in demographic di-
versity attributes such as gender and geographic location [67, 96], 
and raising awareness of team members’ current activities when 
working on a shared code base [5]. More generally, there are now 
multiple mature data analytics toolsets for software repository 
data [19, 24, 25, 75], as well as eforts to standardize the relevant 
measures indicative of open source health as part of the CHAOSS 
project [33, 34]. 

In contrast, there has been very little work to design dashboards 
and monitoring infrastructure explicitly for health in open source 
and sustainability indicators, particularly along the project climate 
dimension related to attracting and retaining contributors. As ex-
ceptions, we note, frst, an earlier work by Steinmacher et al. [78] 
of a portal for newcomers that helps demistify the joining process. 
Second, Guizani et al. [35] designed a dashboard for maintainers to 
monitor statistics about the joining, activity, and retention trends of 
the newcomers to their projects. Finally, we note work by Goggins 
et al. [33] to “implement CHAOSS metrics and present them in 
ways that enable maintainers, contributors, and other stakeholders 
to draw inferences about the relative health and sustainability of 
their projects.” 

Our current work builds most directly on insights from the latter 
two. Similarly to both Guizani et al. [35] and Goggins et al. [33], 
the target audience for our dashboard is project maintainers and 
community managers interested in monitoring open-source com-

munity health. Similarly to Goggins et al. [33], we also include a 
project comparison element in our design, to allow maintainers 
to benchmark their community’s metrics against a subset of their 
peers. However, unlike either of them, we focus our dashboard 
on measures of project climate indicative of a healthy, inclusive 
culture, including subtle indicators of pushback in code reviews and 
toxicity in issue discussions, that currently lack associated signals 
in the GitHub UI or dedicated repository badges (see details below). 
Moreover, we focus this paper on the design of the dashboard and 

explore, using an iterative user-centered design process, diferent 
media through which maintainers can interact with the dashboard, 
diferent sets of metrics to track, and many other design decisions. 
Finally, we report on a diary study to evaluate the dashboard in prac-
tice. Overall, we see our work as complementary to that of Guizani 
et al. [35] (focused on newcomers rather than project climate more 
broadly) and Goggins et al. [33] (focused on standardized metrics 
and measurement infrastructure rather than dashboard design). We 
expect future work in this space to combine elements of all three. 

Beyond open source health monitoring, dashboards have long 
been used for team management in other domains. We highlight in 
particular the work of Samrose et al. [68], which inspired our study 
design. Samrose et al. [68] created MeetingCoach, a wireframe dash-
board to facilitate more inclusive online meetings. The authors frst 
conducted an initial survey, from which they collected feedback 
on what features can help create a more inclusive meeting, such as 
speaking turns. Then they created a wireframe and iterated on the 
design with interviews and think-aloud studies with in-situ meet-

ings. Finally, they showed that the dashboard improves meeting 
attendees’ awareness of meeting dynamics that have implications 
for inclusion. 

3 METHODS 
This section provides an overview of our three-phase study design. 
The process is illustrated in Figure 1. Following the guidance by 
Bjögvinsson et al. [6] on participatory design and the study on 
the MeetingCoach dashboard by Samrose et al. [68], our design 
process is iterative and collaborative. We invite active open-source 
maintainers to participate starting at a very early stage of the design 
process, and we attempt to include a diverse set of maintainers to 
gain diferent perspectives. 

Overall, Phase 1 consists of email interviews with active main-

tainers to collect signals that can help improve an open-source 
project’s climate and inclusion. In Phase 2, we use the signals from 
Phase 1 to design our dashboard and evaluate the usability with 
active open-source maintainers. Phase 3 is a feld study to evalu-
ate the dashboard: we conducted a two-week diary study with 
maintainers to see its efectiveness. 

3.1 Phase 1: Collect Signals - Email Interviews 
During Phase 1, we conducted email interviews with maintainers 
to learn about what signals would help them manage their project’s 
health in terms of welcoming contributors and community inclu-
sion. Our goal was to determine what signals could be included in 
our dashboard to assist maintainers in monitoring their project’s 
health. Because of this, we were interested in what strategies main-

tainers employed to manage newcomers. Onboarding newcomers 
is a signifcant burden on maintainers but also an important source 
of community growth and infuences how inclusive and welcoming 
a project seems to outsiders. The outcome of this phase was a list 
of signals to include in our Climate Coach dashboard (Table 1). 
Given the vast literature on open-source management, maintainers’ 
ongoing experience allowed us to identify and determine the most 
critical signals to include in our dashboard. Below we present the 
method of how we collected signals for our dashboard. 
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Figure 1: Three-phase study process 

Protocol. The email interview was primarily unstructured. It started 
with a single question: what their project thinks about new contrib-
utors. Instead of directly asking what the maintainers have done 
to attract new contributors, we decided to ask this broad question 
to avoid leading the project owners to provide socially desirable 
answers about project diversity and inclusion. In addition to their 
initial responses to our prompt, we engaged in follow-up conversa-
tions with many of the maintainers so that they could fully express 
their thoughts in response to our query. 

Recruitment. We used the GitHub API to identify 100 projects 
that had commits in the past week and owners that displayed their 
emails on their profle pages. Projects with fewer than three peo-
ple were excluded because small projects were more likely to be 
personal or private projects rather than open-sourced ones and 
less likely to have dealt with newcomers or contributions from 
nonmembers. 

We tried to collect a sample that consists of projects of vari-
ous sizes and whether they have at least one woman contributor. 
We consider projects with at least one woman or non-binary con-
tributor as gender-diverse. We had to choose this loose defnition 
of gender-diverse projects lest our pool of potential participants 
would be too small. Because men contributors take up more than 
90% of the open-source population [63], the number of projects 
containing women or non-binary people is already very minimum. 
Our sample was further limited because not all maintainers disclose 
their contact information on GitHub. 

To identify gender-diverse projects, we frst used the computa-

tional tool Namsor [12, 63] to infer contributors’ genders automati-

cally based on their names. This inference served only as a guideline 
to point us to projects that probably have women contributors. We 
then manually verifed if there were indeed women or non-binary 
contributors to the project. When trying to detect whether there are 
women or non-binary contributors, we acknowledge the limitation 
in our method that we mostly used their namesand profle pic-
tures as an approximation. Knowing that it is a relatively unreliable 

method than asking the contributors to self-identify their genders, 
we only consider those with strong signals, e.g., commonly used 
female names or clearly labeled gender pronouns, as contributors 
of a gender other than men. We further discuss the limitation in 
Section 7. 

We sent out emails to 100 project owners and received 18 re-
sponses. Among them, ten projects did not have any women or 
non-binary contributors, and the other 8 had at least one. Unfortu-
nately, there were not enough women or non-binary maintainers 
for us to contact, so the gender distribution of our interviewees was 
heavily skewed toward men. The projects’ sizes we collected ranged 
from 4 to 5000+. We refer to participants in our email interviews as 
R0Px. The breakdown of the projects’ characteristics is shown in 
Table 1 in our supplemental material.

1 

Data analysis. Two of the authors conducted a thematic analysis on 
the responses we received from maintainers [8]. As a validation of 
our literature review, we focused on the themes that were present 
in prior studies while paying attention to new themes. We frst 
identifed instances of diferent themes in the frst ten responses. 
For each response analyzed, we identifed owners’ attitudes towards 
new contributors and actions they described taking to handle new 
contributors. Based on the themes we identifed from our frst 
round of open coding, we developed a set of initial codes and then 
continued open coding the rest of the responses, comparing each 
response with previously examined ones, adding new codes when 
a new theme emerged, and grouping codes to form higher level 
categories. When possible, we assigned codes to categories we 
identifed from the literature. We repeatedly discussed the codes 
and categories in a highly collaborative and iterative process. We 
present the results in Section 4. 

3.2 Phase 2: Design Dashboard - Think-aloud 
Interviews 

The goal of Phase 2 was to use the signals we collected in Phase 
1 to develop our dashboard and conduct usability interviews with 
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maintainers. We calculated and visualized signals collected in the 
previous phase to put on our dashboard. After we fnished our 
initial prototype design (shown in Section 1 in our supplemental 
material),

1 
we started conducting think-aloud interviews with open-

source maintainers to test its usability. The outcome of this phase 
was a refned dashboard that we used for Phase 3, a two-week diary 
study with open-source maintainers to further test the usability 
and its efectiveness in helping maintainers manage their project 
climate. 

We used PyGithub2 
to mine GitHub data for our dashboard. 

Given a project’s slug (owner/repo_name), we wrote a Python pro-
gram that could automatically pull a project’s data for generating 
the dashboard, including issues and PRs, along with all their com-

ments. After removing bots [23] and their posts, we performed data 
aggregation, analysis, and visualization. We present the details of 
our design in Section 4. 

After we produced our initial dashboard prototype, we conducted 
two rounds of detailed semi-structured interviews and think-aloud 
studies with active GitHub maintainers to test the usability of our 
dashboard and guide later stages of development. We conducted 
two rounds of interviews, modifying the prototype design after 
the frst round of interviews and performing more interviews to 
test the updated design. We also used this opportunity to under-
stand better how maintainers assess their community health and 
approach issues related to inclusion. 

Protocol. Our interview protocol consists of two major parts. Dur-
ing the frst part, we asked participants questions regarding their 
project community, their perception of the health of their communi-

ties, and their methods of managing their communities. The second 
part adopted the think-aloud approach to understanding how par-
ticipants used the dashboard. Before each interview, we generated 
an individualized dashboard for the participant based on data from 
their repository. We asked the participants to browse through the 
dashboard. If they had any questions during the think-aloud, we 
answered them after they fnished browsing the dashboard. After 
participants fnished browsing the dashboard, we asked several 
follow-up questions regarding what signals were important, unnec-
essary, or missing. In the end, we ask them several demographic 
questions such as gender, age, and race. Our interview protocol is 
presented in our supplemental material.

1 

Recruitment. To recruit participants, we searched on GitHub for 
a stratifed range of stars, which serves as an approximation of 
a project’s popularity or size. We also fltered projects based on 
whether they had recent activity. 

We identifed GitHub projects with recent activities and con-
tacted the project maintainers, i.e., owner of the project or the top 
two contributors of projects owned by organizations, if they pro-
vided emails or Twitter handles on their GitHub page. Although we 
strived to recruit women or non-binary maintainers, we were not 
very successful due to the low representation of women and non-
binary people among maintainers. After we interviewed ten men 
maintainers, we paused the interview process and made changes 
to the dashboard. Therefore, we call the frst ten interviews as the 
frst round and refer to each of them as R1Px. After we redesigned 

2
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our dashboard, we conducted the second round of interviews and 
made new changes when new feedback emerged so that we could 
test new designs immediately. We talked to a total of 9 maintainers 
(including one woman maintainer). We refer to each of them as 
R2Px. 

Our participants’ projects had from 11 to 20.6K stars. The team 
sizes range from 8 to 100+. Five projects have at least one woman 
or non-binary contributors. The breakdown of the think-aloud 
interview participants is in Table 2 in our supplemental material.

1 

Data analysis. Our coding process aimed to identify two major cat-
egories: maintainers’ perception of community health and feedback 
on our dashboard. We frst performed open coding on interview 
transcripts. Two of the authors frst coded two interviews indepen-
dently. They then met to discuss their codes through a constant 
comparison method: they consolidated codes into a shared set of 
codes by combining overlapping codes or developing new codes. 
The two authors independently coded another four interview tran-
scripts with the preliminary code book before convening again to 
discuss the generated codes. After the two authors coded the rest 
of the interviews, they met again to discuss all the codes and coded 
paragraphs. We continued conducting interviews while coding the 
transcripts and concluded the frst round of interviews when we 
reached theoretical saturation, i.e., no new themes emerged from 
new interviews. Then the two authors conducted axial coding on 
the full set of codes: we considered the relationship among the 
codes and assigned them to one of the two major categories or 
created a new category. We followed the same coding procedure 
for our second round of think-aloud interviews. The codebook is 
available in our supplemental material.

1 

3.3 Phase 3: Evaluate Dashboard - Diary Study 
After incorporating changes to the dashboard based on feedback 
from the think-aloud interviews, we evaluated the fnal dashboard 
design in a two-week diary study [55]. 

Protocol. Our diary study lasted two weeks and followed the struc-
ture described in Figure 2, including an initial survey, onboarding 
session, weekly survey, and exit survey. Participants were compen-

sated $50. Below we describe each of the study components in more 
detail. 

1) Initial Survey + Onboarding Session (30 minutes) 
Initial survey (20 minutes). We provided an initial survey for 

participants to fll out via a Google form to gather background in-
formation about their project and their perceptions of community 
health. We also provided participants with the consent form and 
information about the study structure. In the survey, we asked for 
background information about the maintainer’s identity, habits, 
and project dynamics. More importantly, the survey also asked 
questions about maintainers’ workfow, their perception of their com-
munity’s health, and projects they want to be compared with. 

When asking about maintainers’ workfow, we asked about 
whether they were seeking new contributors, the importance of 
increasing demographic or technical diversity, and how confdent 
they were in managing their community. We also asked them to 
rate the priorities of several management actions, including “fast 
response time to issues,” “fast response time to PR,” “creating a 

https://github.com/PyGithub/PyGithub
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Diary Study Logistics

Week 1 Week 2

A 30 minute survey 
with questions about 
dashboard experience.

Exit Survey

Use dashboard throughout the 
week;

a 15 minute survey on dashboard 
usage sent by email each Friday; 
and

complete the survey within 48 
hours.

Initial survey 
completed 
independently; and

a 10 minute meeting 
to explain dashboard 
basics and answer 
questions.

Initial Survey + 
Onboarding Session

Figure 2: Diary Study Logistics 

welcoming environment,” “attracting new contributors,” and “at-
tracting a diverse group of contributors.” We then asked them how 
often they responded to issues and PRs each week and their goals 
for their project community. 

Then, we asked participants about their understanding of com-

munity health with three open-ended questions: How would you 
describe your project’s community health? How would you defne 
diversity in open-source software? How would you defne inclusion 
in open-source software? 

Our dashboard compares the project with similar projects to 
provide maintainers a context and reference of how well they are 
doing. To make our comparison more relevant to the maintainers, 
we asked participants to enter projects they wanted to compare 
with. At the end of the survey, we asked them to sign up for a time 
slot for a Zoom call for an onboarding session, as well as several 
demographic questions such as gender, age, and race. 

Onboarding session - Zoom call (10 minutes). During the Zoom 
call, we explained the logistics of the study and weekly survey. 
Then we showed them the dashboard and ensured they understood 
the basic setup and answered any questions. 

2) Weekly usage (30 minutes each week × 2 = 1 hour total) 
Participants could freely use the Climate Coach dashboard as 

little or as much as they wanted during the two-week study period. 
Each Friday, we sent an email asking participants to complete a 
brief weekly survey about how they used the dashboard that week. 
The survey itself took about 15 minutes. Participants were asked to 
complete the survey within 48 hours. 

The weekly survey consisted of two parts, maintainers activ-
ity and dashboard engagement. The questions in the maintainers’ 
activity portion included the types of contributions they receive, 
the amount of time they spend on maintaining, and the tone of 
conversations in their community. In the dashboard engagement 
portion, we asked participants questions regarding the usefulness 
of the dashboard, such as how often they checked the dashboard, 
which parts were most useful, which tips were more helpful, and 
how the signals were. 

3) Exit Survey (30 minutes) 
After two weeks, we sent participants an exit survey to get 

feedback on the dashboard and compare responses from the initial 
survey. We repeated questions from maintainers’ workfow and 

perception of their community’s health in the initial survey and added 
questions regarding the usefulness of our dashboard. We asked them 
to rate their level of agreement with a list of statements regarding 
whether the dashboard is useful for them and other maintainers. To 
test if our dashboard had any efect on their management strategies, 
we asked if they made any changes after viewing our dashboard. 
Lastly, we asked them how likely they were to continue to use this 
dashboard after the study ended. The survey concluded with an 
open-ended question for feedback on the dashboard. 

We provided 5-point Likert scales for participants to measure 
their level of agreement with statements regarding their perception 
of their community’s health and the usefulness of our dashboard, 
with 5 being “strongly agree” and 1 being “strongly disagree.” To test 
if they were paying attention to the statement rather than clicking 
“strongly agree” or “agree” for all statements, we reverse-coded 
some of the statements as an attention check. When analyzing 
responses to these statements, we frst reversed the responses, i.e., 
“strongly agree” as “strongly disagree.” 

We include the diary study protocol in our supplemental material.
1 

Recruitment. For the diary study, we explicitly recruited main-

tainers from big and active projects. From the two prior interviews, 
we learned that big projects could beneft more from our dashboard 
(R2P1) because there are a number of things to keep track of that can 
exceed maintainers’ capability. Moreover, since our diary study’s 
survey frequency is weekly, less active projects will not have gener-
ated sufcient activities to appear on the dashboard. Therefore, for 
the diary study, we searched on GitHub for projects with at least 
1K stars, followers, or 100 to 200 forks.3 

From the search results, 
we picked the projects with activities (issues or PRs) within the 
last week and with at least ten contributors. Similar to previous 
interviews, we contacted only the maintainers who left their emails, 
or Twitter handles on their profle pages. 

In the end, we recruited 10 participants for our diary study. 
Two of them reached out to us after seeing our advertisement on 
Twitter. The rest of them accepted our email invitation. We sent 
out 128 emails, and 8 of them were accepted. The summary of all 
the participants’ projects is shown in Table 3 in our supplemental 
material.

1 
We refer to each of the participants as R3Px. 

3
https://docs.github.com/en/search-github/searching-on-github/searching-for-

repositories 

https://docs.github.com/en/search-github/searching-on-github/searching-for-repositories
https://docs.github.com/en/search-github/searching-on-github/searching-for-repositories
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Data Analysis. We analyzed the responses to the 2 weekly surveys 
and the exit survey, using participants as the unit of analysis. One 
of the researchers performed open coding on open-ended questions 
in the surveys. We used afnity diagrammed codes generated from 
the open-ended responses to identify themes in participants’ uses 
of and reactions to the dashboard. 

4 DESIGN 
This section presents the result from Phase 1, how they informed 
our design, and the think-aloud interview results from Phase 2. 

4.1 Signals Extracted From Phase 1 
From the email interview with maintainers, we compiled a set 
of strategies they have used when managing their projects. The 
overview of the strategies and how they link to the literature is 
provided in Table 1. Below we describe how these signals were 
grounded in email interviews and literature. 

Team growth. Overall, the projects in our sample welcomed 
new contributors. For example, R0P5 expressed that “one of [their] 
objectives is to convert more users to contributors to make the project 
more open and sustainable.” However, at the same time, they ad-
mitted that new contributors imposed a cost in terms of the efort 
required to manage contributions and socialize them. As one owner 
concluded, “I welcome newcomers but fear them,” because while they 
make contributions, more often than not, they also “break the archi-
tectural vision or have bad coding practices” (R0P1). Some projects 
noted that they did not actively search for new contributors, but 
some “still arrive spontaneously” (R0P12). Our dashboard uses the 
number of active and new contributors to refect the growth 
of the projects. 

In addition to growing a team, retaining current contributors is 
equally important to a project’s sustainability. Some maintainers 
publicly recognize newcomers’ eforts. For example, some main-

tainers put newcomers’ names on a contributor list in the README 
(R0P1). Some invite contributors to become maintainers of the 
project and recognize their contributions (R0P5). We display on our 
dashboard the list of active and new contributors to the 
project to help maintainers recognize their eforts. 

Social capital. Social capital is a concept in Sociology that mea-

sures the benefts one can gain from their social networks [10], 
either through strong connections, e.g., long-time collaborators, or 
through connections to diverse groups. Previously, Qiu et al. [61] 
studied contributors’ sustained participation on GitHub and found 
that high social capital is associated with contributors’ prolonged 
engagement [61]. Therefore, we include measurements that can 
approximate a project’s social capital: the number of recurring 
contributors and the average months of contributors’ 
tenure for the strength of connections among contributors , and 
the number of new contributors to approximate connections 
to new groups. 

Responsiveness. Our email interviews confrmed the impor-

tance of being responsive to contributors. Some maintainers pointed 
out that fast reply is a vital signal because ignoring contributions 
(even bad ones) may create ill will (R0P1), and contributors may 
“feel spurned” (R0P2). This observation echoes what Egelman et al. 
[26] described as “pushback”: a delay in a code review that can 

cause negative feelings among contributors. We use the average 
close time as the signal on our dashboard to refect fast replies. 
The dashboard also points maintainers to the conversations 
(issues or PRs) that have been opened for the longest 
time. 

Some owners told us they tried to signal their accessibility and try 
to resolve issues or PRs within a specifc period of time (R0P1, R0P2, 
R0P11). R0P2 told us he changed his profle status to be “Merging 
your PR” (R0P2). Our dashboard uses the number of issues or 
PRs closed and the number of issues or PRs still open to 
refect how quickly maintainers conclude issue discussions or code 
reviews in PRs. 

Some maintainers noted that they “respect new contributors’ band-
width and often help them to refne contributions collaboratively” 
(R0P4) by commenting back and forth on a design in a GitHub issue 
(R0P1), which is refected by the signal the number of comments 
and the number of conversations (issues or PRs) closed 
with 0 comments in our dashboard. 

However, too many comments can give contributors a feeling 
that maintainers are too picky or even unwilling to merge their 
contributions [26]. We try to help maintainers eliminate providing 
contributors such impressions by listing open issues and PRs with 
the most comments. 

Conversation tone. Some maintainers mentioned that they 
try to show friendliness to newcomers, encourage contributions 
(R0P15), and signal inclusiveness (R0P4). They hope that the users of 
their libraries will feel welcome to contribute to them (R0P10). Some 
maintainers keep a Code of Conduct so that “potential contributors 
have the feeling of a safety net” (R0P10). We use Google’s Perspec-
tive API4 

to measure comments’ toxicity score and identity 
attack score (both in the range of [0,1]) to refect a project’s 
language inclusiveness. In addition, we provide links to the conver-
sations with scores higher than a threshold (we set it to 0.7). 

Onboarding material. Another way that maintainers welcome 
newcomers is to provide a beginner’s guide or relevant documenta-

tion. Some of the actions they took to welcome newcomers include 
providing onboarding materials “to show them the entire journey” 
(R0P6). Some mentioned using a contributing guideline and is-
sue tags (R0P1). Nevertheless, they also mentioned that using the 
“newcomer-friendly” tag was not practical because many of the 
issues were not newcomer-friendly (R0P1). Some maintainers rec-
ognized the importance of documentation but also admitted that 
their testing process was not well documented, which may scare 
away potential newcomers (R0P10). However, we did not include 
these in our dashboard because GitHub’s Insight page consists of 
a checklist of all these recommended documentation. 

Contribution process management. Maintainers varied in 
their internal coordination processes or methods to manage teams, 
and these activities infuenced how they, in turn, tried to help 
newcomers. Some tried to use continuous integration (CI) tools 
to automate the process and save maintainers’ time (R0P1 and 
R0P11). They tried to speed up the process by having bots check if 
the submission had passed CI before notifying owners to review. 
However, at the same time, they also admitted that using an “CI can 
introduce too many rules and conventions newcomers need to learn, 

4
https://perspectiveapi.com 

https://perspectiveapi.com
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Table 1: Phase 1 results: signals and their references. 

Category Strategy Reference 

Team growth 
Recognize contribution Team management Email

Bonding social capital 
Bridging social capital Social capital [61]

Fast response 
Provide help 

[26], Email 
[36, 80, 82], Email Responsiveness 

Conversation tone Toxic conversation [29, 50, 62, 64, 83], Email 
Gamifcation Compare with peers [33] 

Avoid pushback 
Avoid toxic language Contributors’ negative feelings [26, 62] 

which can be discouraging” (R0P11). Our dashboard did not include 
any signals to refect the use of CI or similar tools either because it 
is currently difcult to automatically detect using the GitHub API. 

4.2 Creating the Dashboard 
Next, we present how we design and create the dashboard.5 

Since 
GitHub maintainers have been heavily involved throughout the 
study and we refne our design iteratively based on their feedback, 
we present the entire design of our fnal, complete dashboard and 
note the parts informed by think-aloud fndings. This paper in-
cludes screenshots of our fnal design. Our supplemental material

1 

contains our frst design. 

4.2.1 Types of Signals. 
Summarized signals: Repository’s basic statistics in the re-

cent past. The section, Basic Stats, displays signals from the 
Community and Responsiveness categories shown in Table 1 as 
numeric values. It includes the number of new contributors 
and the number of active contributors in the past month. 
For responsiveness, the dashboard reports the number of issues 
and PRs closed in the past month and the average close time 
of issues and PRs, as well as the number of open issues and 
PRs and the average time they have been open. 

Temporal signals: Trends in the past period of time. This dash-
board provides line charts of the trends of signals shown in the 
Basic Stats section as a context of how their projects have devel-
oped, for example, in the past month or the past half a year. 

Indicative signals: Conversation tone analysis. Inspired by a 
study by Raman et al. [64] and Qiu et al. [62], we added a signal for 
conversation tone, including the number of potentially problematic 
conversations and their links, identifed using the Perspective API 
developed by Google. Before the 2nd round of interviews, we also 
added signals that can help identify contributors’ negative feelings: 
excessive rounds of reviews and long shepherding time, i.e., the time 
that “the author spent actively viewing, responding to reviewer 
comments, or working on the selected CR, between requesting the 
code review and merging the change into the code base” [26]. 

Comparative signals: Comparison with other projects. We 
compare the project with similar projects on the signals shown in 

the Basic Stats section. We identify comparable projects by the 
range of stars and topics set by projects. 

We map our signals and their types in Table 2. 

4.2.2 Computing Signals. To construct the dashboard, we used 
PyGithub to pull projects’ data in a certain past period. In our 
experiment setting, the period is four weeks. We used data from the 
most recent week for basic stats, indicative signals, and comparative 
signals, and data from all four weeks for temporal signals. We 
wrote a Python program that automatically pulls data for the last 
four weeks of a project, computes the signals, and generates a 
dashboard. The code is available in our supplemental material.

1 

Here we describe how we defned and computed our signals. 
Team management We considered all users who posted an is-

sue or a PR as an active contributor. For each active contributor, 
we queried all their issues and pull requests posted to this project. 
A contributor’s experience in contributing issues/PRs was 
calculated by the number of months since they posted the frst 
issue/PR. Note that we considered issues and PRs as two diferent 
types of contribution: PRs are usually more involved because one 
needs to submit code or document with them. If it was the frst 
time a contributor submitted an issue or a PR, we considered them 
a new contributor. 

Social capital. We took the average month of experience of 
active contributors and the number of recurring contributors, 
i.e., those who were not new contributors, to approximate bonding 
social capital, the beneft one could gain from a tightly connected 
social network [17]. We used the number of new contributors 
to approximate bridging social capital, a beneft one could gain 
from information diversity [10]. 

Responsiveness. Close time is defned as the time diference 
between the created_at timestamp and the closed_at timestamp 
we retrieve using the GitHub API. The number of comments 
includes only comments from human (non-bot) users. 

When counting the number of issues/PRs that are closed or 
still open, due to the API rate limit,

6 
for medium to large size 

projects, we could only retrieve issues and PRs created in the past 
four weeks and check each one for its closed_at timestamp. 

Contributors’ negative feelings. This information can help 
maintainers identify issues or PRs that may cause negative feelings 

5
See an example of our dashboard here: https://www.sophiehsqq.com/climate_coach/ 6

https://docs.github.com/en/rest/overview/resources-in-the-rest-api?apiVersion= 
index_id.html 2022-11-28#rate-limiting 

https://www.sophiehsqq.com/climate_coach/index_id.html
https://www.sophiehsqq.com/climate_coach/index_id.html
https://docs.github.com/en/rest/overview/resources-in-the-rest-api?apiVersion=2022-11-28#rate-limiting
https://docs.github.com/en/rest/overview/resources-in-the-rest-api?apiVersion=2022-11-28#rate-limiting
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Table 2: Dashboard signals and their mappings to management categories (Phase 1 results) 

Category Signals Types 

Number of new contributors 
Number of active contributors 
List of active and new contributors 

Summarized, Temporal 

Indicative 
Team management 

Number of recurring contributors 
Average months of experience in the project 
Number of new contributors 

Summarized 

Summarized, Temporal 
Social capital 

Average close time 
Average num comments for closed conversations 
Number of issues or PRs closed 
Number of issues or PRs still open 
Num conversations closed with 0 comments 

Responsiveness Summarized, Temporal 

Perspective API 
Problematic conversations 

Temporal 
Indicative Conversation tone 

Gamifcation Comparison to Similar Repositories Comparative 
Open conversations with the most comments
Conversations opened for the longest time Contributors’ negative feelings Indicative 

Contribution management Labels of conversations and distribution Indicative 

among contributors. We reported the top 5 open issues or PRs with 
the most comments, i.e., potentially excessive rounds of reviews, 
and the top 5 issues or PRS that were opened for the longest 
time, i.e., potentially long shepherding time [26]. 

Conversation tone. We fed all comments to Perspective API for 
toxicity and identity attack scores (both with range [0,1]). If one of 
the scores was higher than the threshold (we used 0.7), we reported 
it as a potentially problematic conversation on the dashboard. 

Gamifcation. We identifed projects similar to the focal project 
based on the number of stars, functionalities, or the number of con-
tributors. When deploying the dashboard, we asked the maintainers 
to identify projects they considered similar to their project. For each 
project, we pulled their data using GitHub API for the past week 
and computed the following signals: Number of Active Users, 
Number of Issues Closed, Number of PRs Closed, Average 
Time to Close Issues, and Average Time to Close PRs. 

Contribution management. We parsed the labels acquired 
from GitHub API and counted the number of issues, or PRs tagged 
with each label. We sorted the labels by the number of issues or 
PRs and plotted them as a bar chart. 

4.2.3 Format and Layout. We frst designed our dashboard as 
a GitHub issue. Our Python program output a markdown as a 
GitHub issue. The screenshots are shown in our supplemental 
material.

1 
This initial design contains a subset of our signals. 

After completing the frst round of think-aloud studies with 10 
participants, we rewrote our dashboard using JavaScript and turned 
it into an interactive webpage. We used Bootstrap to organize 
the layout and the Chart.js library to plot the charts. Using the 
format of a webpage instead of a GitHub issue can avoid “of-
putting” maintainers (R1P9) because a GitHub issue “doesn’t mean 
good things for them” (R1P9), “needs to be closed” (R1P4), and has a 
“goal of reading it” (R1P4). Moreover, using a JavaScript library can 
address participants’ requests for high-resolution and interactive 

graphs (R1P2). This complete version of the webpage dashboard 
contains all features we present in Table 2. 

Overall, we grouped our signals based on their types. Within each 
type, we put similar signals together, e.g., number of comments and 
average close time were both under How was the response head-
ing. After an overview of the dashboard (Figure 3), it frst displays 
summarized signals that are numeric values (Figure 4). Then the 
dashboard displays indicative signals that point maintainers to con-
versations that might cause negative feelings among contributors 
(Figure 4). This is followed by temporal signals, showing several 
line charts of various signals’ trends (Figure 5). These temporal 
signals are divided into two headings: How big is your community 
and How was the response. Beneath is the conversation tone analysis 
(Figure 6), a combination of temporal trends and indicative links. 
We put conversation tone signals close to the bottom of the dash-
board because we did not want to show the negative signals too 
upfront. Following the conversation tone signals are the bar charts 
showing the usage of labels (Figure 7) and the comparison with 
similar projects (Figure 8). Lastly, the dashboard presents the com-

parative signals and concludes our dashboard with a summarization 
of methods and a list of references (Figure 9). 

As R1P3 suggested, the default setting consists of line charts for 
a subset of the signals and we added drop-down buttons on the 
sides to allow users to select other signals to display, such as the 
median instead of the average. 

4.2.4 Reinforce Inclusion Goals. After the frst round of interviews, 
the dashboard only contained the open-source project’s signals. 
However, Goggins et al. [33] described the importance of trans-
parency and context with analytical signals. Therefore, we added 
tips throughout our dashboard to help maintainers improve their 
management strategies. These tips display results from prior studies 
on OSS management strategies, such as avoiding pushback [26, 62] 
in code review and adding a Code of Conduct [42]. The full list of 
tips is shown in Table 4 in our supplemental material.

1 

https://Chart.js
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Moreover, we added sections Methods and References (Figure 9) 
for transparency, so our users could see our sources and the way we 
created the dashboard. We also added Prior Research Results 
section (Figure 9), which included Features Affecting Project 
Attractiveness to provide maintainers actionable suggestions in 
addition to presenting numerical signals. 

4.3 Interview Results 
4.3.1 Perceptions of Community Health. When asked about the 
criteria of community health, we found two major points of view. 
Similar to our fndings in prior studies [20, 21], many maintainers 
thought of technical aspects. For example, R1P3 mentioned contin-
uous integration (ci) as an indicator of community health, including 
“how often is it being overwritten” and “build times” (R1P3). Usage is 
also mentioned as a health indicator by several maintainers, includ-
ing their dependencies and customers (R1P2), applications (R1P9), 
and the number of downloads (R1P6 and R1P10). 

Another commonly mentioned perception concerns the social 
aspects. One of them is the community’s sustained participation 
(R1P2, R1P3, R1P4, R1P5, R1P6, and R1P9). P4 pointed out that the 
number of new contributors indicates that their community 
is growing, which is a good sign. R1P2 also mentioned that the 
way they build their community is “by engaging with groups of 
students who are going to implement new standalone tools that might 
be published as separate packages.” P9 commented on the same point, 
“one big thing in terms of the developer community is like, [...] how do 
we fgure out things that make people want to contribute and want to 
keep working on the project.” 

Another health indicator concerning social aspects is the help 
maintainers can provide to the community, i.e., responsiveness. 
Help includes maintainers’ response to issues or pull requests (R1P2 
and R1P9), documentation (R1P1, R1P4, and R1P9), and ofce hours 
(R1P1, R1P5, and R1P9). P2 acknowledged that “a really bad way 
to ruin a community is by ignoring pull requests.” He further com-

mented that the number of pull requests that are still 
open “should probably be zero.” R1P1 even set a strict timeline of 
getting a response within one or two days. When looking at the 
summary of the number of comments, R1P4 pointed out that hav-
ing good commentary indicates good health. R1P1, R1P5, and R1P9 
all mentioned that a healthy community should have “scheduled of-
fce hours that happen on a regular basis” (R1P1) so that contributors 
“can get help” (R1P9). These points of view echoed the fndings by 
Steinmacher et al. [81] that barriers newcomers face include the lack 
of responses from maintainers. The type of project health we focus 
on in this study aligns well with maintainers’ concern for a project’s 
social aspects – their community growth and sustainability. 

4.3.2 Atitudes Towards Diversity and Inclusion. When asked about 
diversity, some commented that it was hard for them to know the 
level of diversity in their community (R1P6 and R1P10) because 
“generally the only thing I see is their GitHub username” (R1P6). 

Although some maintainers admitted that they cared about di-
versity and even desired more diversity (R1P1, R1P2, R1P4, R1P5, 
and R1P6), they were limited by their environment. For example, 
P1 told us that “in <country> there’s not a lot of diversity [in terms of 
race and ethnicity],” especially since they mostly hire locals “in a 
small town that’s 70,000 people.” Hence, most of their members are 

white males. This idea is shared by R1P10, who listed several coun-
tries he interacted with and felt the ratio of women was lower in 
some of the countries. This observation aligns with some research 
results [59, 67]. On the contrary, being in a university, R1P2 experi-
enced several occasions “where all the students who were working 
on the project in our group were0 women.” When there was a lack 
of demographic diversity, maintainers considered diversity as a 
diversity of thoughts (R1P1). 

Maintainers have generally taken action to improve the diversity 
of their community (R1P3, R1P4, R1P6, and R1P8). For example, with 
about 20,000 followers on Twitter, P6 tried to advocate diversity on 
social media. Some tried to “sourcing people from diferent paths to 
provide programs to help educate people into the space better” (R1P4). 
Several participants told us they try to improve diversity by being 
welcoming (R1P3, R1P4, R1P6, and R1P8). 

4.3.3 Signals’ Usefulness. 
Conversation analysis. Three maintainers considered the conver-

sation analysis to be the most important and useful feature of our 
dashboard (R2P5, R2P6, and R2P9). They found the tone analysis 
to be the “the big selling point” (R2P6) that could “be highlighted 
much earlier in your reporting” (R2P5). As R2P6 summarized, links 
to potentially problematic conversations were actionable items, 

“[...] with these actionable things, you know, you can go 
actually take some sort of action to address concerns and 
anything that has a negative sentiment. Try to squash 
right away and make it more straightforward” (R2P6). 

Potential pushback conversations. Links to conversations with 
long open time or many comments were considered to be useful 
by many maintainers (R2P4, R2P5, R2P6, R2P7, R2P8, and R2P9). 
Although some maintainers told us that some conversations were 
left open on purpose (R2P8), others told us that those conversations 
were the “things [they] can look at and take action on” (R2P6) and 
would even like to “go and actually address these right now” (R2P7). 
R2P5 echoed the fndings of pushback in code reviews [26, 62] and 
pointed out that these conversations “can almost directly correlate 
potentially to anything that’s, you know, negative” (R2P5). During 
our interview, the links even helped R2P8 identify a thread that 
waits for his reply while he thought he “was waiting for her reply 
there” (R2P8). As R2P6 nicely summarized, the links are 

“sort of a daily dashboard where I can say, Oh, you know, 
here’s my in-tray for the week, here’s stuf that needs 
attention, here’s stuf that may have fallen through the 
cracks, is something I need to pay attention to” (R2P6). 

This feature is more benefcial for big communities. R2P9, the 
maintainer of a project with more than 100 contributors, told us 
that our links helped them identify conversations that needed im-

mediate attention because “there are probably 50 parallel semi-active 
conversations going at any time, and we certainly can’t track that” 
(R2P9). 

The number of closed issues and PRs. R2P4 told us that the num-

ber of closed issues and PRs is handy because they are a research 
institute, and they can put the data in their grant report: 

“Knowing the pull request stats is very valuable, too, 
like the new authors. That one probably would be the 
most useful for us as far as reporting to our granting 
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Figure 3: Version 2: Overview. The top of the dashboard shows an overview of our study and the goals we aim to achieve. 

Figure 4: Version 2: Basic Stats. The dashboard shows some basic statistics regarding the activity level of the project. 

Figure 5: Version 2: Trends. This section of the dashboard displays trends of some useful metrics in the past four weeks to 
provide maintainers some context of how the project has been doing. This section also displays the logins of new contributors 
and active contributors with links to their profle pages. 
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Figure 6: Version 2: Conversation Tone Analysis. This section shows the trends of the number of issues or pull requests that are 
labeled by the Perspective API as potentially problematic and provides the link to the posts. At the bottom, we explained how 
the scores were calculated and tips. 

Figure 7: Version 2: Labels Used by Issues and PRs. This section shows the labels the project used in the past week and the 
number of issues or pull requests with that label. 

agencies and yearly reports where you just say like, Oh, Average response time. R2P7 told us that the average response 
this last year we closed like 300 tickets, and we opened time is useful, especially since he oversees many GitHub reposito-
like 6,000 or something” (R2P4). ries. He said it could make him aware that “sometimes, [in] some 

repos, [...] people see [there is] an issue, and no one even responds to 
it” (R2P7). 

Labels. R2P6 and R2P7 mentioned that the numbers of issues or 
4.3.4 Dashboard Design Feedback and Changes. 

PRs under diferent labels are useful. R2P6 told us that they used 
“labels to categorize pull requests for the change log” so “these labels Goals. There was some uncertainty about the title of our dash-
actually matter to us” (R2P6). board (R2P5) and the dashboard’s purpose. Several interviewees 
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Figure 8: Version 2: Comparison. This section compares the project with peer projects on several metrics, such as the number of 
active users. The information serves as context for maintainers to interpret if their projects’ metrics are relatively good or bad. 

Figure 9: Version 2: Methods and References. At the bottom of our dashboard, we explain our methods and list the references. 

mentioned they felt that this could be created by GitHub (R2P1, 
R2P6, and R2P7). 

This feedback pointed out that our dashboard did not clearly 
convey its objective to maintainers. Due to this, our fnal design 
included an Overview (Figure 3) section that contained the back-
ground and goals for the dashboard. 

Formatting and Design Decisions. We received feedback on the 
formatting and some design decisions, such as the use of colors and 
some features were missing. We made adjustments when two or 
more participants pointed out the same problem. 

Feature Suggestions. Participants had a couple of suggestions of 
interesting features they would like to have in a dashboard: From a 

front-end functionality perspective, a few participants mentioned 
that they wanted a more interactive dashboard. One participant 
wanted to be able to drag the diferent dashboard sections around 
to customize it to their preference (R2P9). We could not address this 
feedback at the moment, but we did take note of which sections 
most maintainers felt were more important and should have been 
highlighted at the top of the dashboard. Additionally, participants 
wanted to be able to change the date ranges for the data (R2P1 and 
R2P4) to have a better idea of how their project developed over time. 
Unfortunately, we are not able to add this feature at the moment. 
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5 EVALUATION 
After we fnalized our design, we recruited a new group of 10 
active GitHub maintainers to participate in a two-week diary study 
(Phase 3) so that we could further test the dashboard’s usability 
and potential efectiveness. This section presents the fndings from 
our two-week diary study. 

5.1 Participant Information 
We recruited a diverse group of participants. Four out of ten par-
ticipants were women. Five of them have at least one woman or 
non-binary contributor. The years of experience ranged from less 
than a year to 10+ years (see Figure 1 in our supplemental material.

1 

Most of them were involved in more than one OSS project (M = 5.9, 
SD = 5.22). The projects also varied in terms of popularity (23 to 
18.7K stars) and team size (7 to 100+) (see Table 3 in our supplemen-

tal material).
1 
Three of the participants were the sole maintainer of 

their project; the rest were either one of the maintainers or a lead 
maintainer with other specialized sub-maintainers. 

5.2 Findings 
5.2.1 Dashboard Efect. Overall, most participants agreed that the 
dashboard was useful to them (M = 3.75, SD = 1.16). Except for 2 
participants, the rest expressed that they would continue to use this 
dashboard after the study. Most of them agreed that the dashboard 
would be helpful to most maintainers (M = 4.33, SD = 1.21). 

Comparing participants’ responses to the initial and exit surveys, 
we found that participants became more confdent in supporting 
and encouraging a healthy community after using the dashboard. 
Overall, participants showed higher agreement with the statement 
“I feel confdent in supporting the community of contributors in my 
project” (initial: M = 4.44, SD = 0.53; exit: M = 4.63, SD = 0.52). 
Three participants provided higher ratings in the exit survey than 
in the initial one. The other participants provided the same rating 
in both surveys. The exit survey also showed an improvement in 
the agreement with the statement “I am sure about how to encourage 
a healthy project community” (initial: M = 3.33, SD = 1; exit: M = 
3.88, SD = 0.64). 

While most participants acknowledged the usefulness of the 
dashboard, R3P7, the maintainer of a relatively small project, com-

mented that, because his project is not very active, the dashboard 
would be more useful if the signals were aggregated by months 
rather than weeks. 

5.2.2 Maintainer workflow. In both the initial and exit surveys, we 
asked maintainers to rate the importance of fve goals, including 
fast response and recruiting new contributors. Participants were 
asked to give a rating between 1 (lowest priority) and 5 (highest 
priority) for each of the fve goals. We ranked the average ranking of 
all participants and found that the priority order of the fve factors 
did not change between the initial and exit surveys. We suspect 
that the diary study duration was too short for the maintainers’ 
priority to change. 

In both the initial and exit survey, most of the participants placed 
“attracting new contributors” as a lower priority (initial: M = 3, 
SD = 1.22; exit: M = 3, SD = 1.26). “Attracting a diverse group of 
contributors” has an even lower priority (initial: M = 2.44, SD = 

1.42; exit: M = 2.17, SD = 1.47). Tasks with the highest priority are 
“fast response time to issues” (initial: M = 3.78, SD = 1.20; exit: M = 
4.33, SD = 0.52) and to “PRs” (initial: M = 4; SD = 1; exit: M = 4, SD 
= 1.10). They are followed by “creating a welcoming environment” 
(initial: M = 3.78, SD = 1.09; exit: M = 3.5, SD = 1.22). 

In the open-ended questions, maintainers added various goals 
they would like to achieve. These goals can be categorized into three 
groups: expanding the community (R3P2 and R3P7), accelerating 
response (R3P1, R3P3, and R3P7), and improving communication 
(R3P5 and R3P7). 

Participants had extreme diversity in their frequency of respond-
ing to issues and PRs each week. Almost half of them indicated 
that they responded to issues and PRs 1-3 times per week, whereas 
some other participants indicated that they responded 10+ times 
per week. We have yet to discover a clear diference between the 
initial and exit survey in terms of the frequency of responding to 
issues and PRs. 

5.2.3 Dashboard Feedback. 
Useful signals. In each weekly survey, we asked participants to 

list out dashboard signals that they viewed more often than others. 
We found that participants paid attention to various signals. R3P1 
and R3P9 paid more attention to the Basic Stats section at the top 
of the dashboard as they provide an overview of the project’s status. 
R3P2 cared more about the time to respond to issues and 
PRs as he considered “fast response” to issues and PRs much more 
important than the other three goals. R3P4 and R3P7 mentioned 
that the trends are useful. The signal that is mentioned the most 
is Conversations that Need Your Attention (R3P4, R3P5, and 
R3P7) because it provides maintainers actionable items. 

Although in the previous two rounds of interviews, we found that 
few R1s and R2s participants approved of the comparison section, 
it was considered valuable by some diary study participants (R3P2, 
R3P3, and R3P5). The comparison signals became helpful probably 
because they were being compared with projects they chose to 
be peers or competitors (by reporting them in the initial survey). 
However, R3P11 pointed out that comparison was difcult among 
projects because some projects have full-time contributors, whereas 
others do not. 

Confusing signals. While participants agreed that most of the 
signals are “self-explanatory” (R3P2), some of them pointed out 
that the Conversation Tone Analysis part was confusing (R3P1, 
R3P2, and R3P5). R3P1 reported to us that he “wanted to learn more 
about what the numeric score was. First, it would make more sense if 
it were just a percent (0%-100%), [but] it’s currently a unitless number.” 
On top of the confusion on the measurement, we suspect the lack 
of toxic conversations made the Conversation Tone Analysis 
section empty and thus useless. None of our diary study participants 
had any conversations fagged by the Perspective API. However, 
we report the highest toxicity and identity attack scores regardless 
of the presence of any potentially toxic conversations, i.e., toxicity 
or identity attack scores > 0.7. Future researchers can explore other 
ways of reporting toxicity or other tools for detection. 

Helpful tips. The majority of the participants considered the 
tips in Conversations that Need Your Attention to be useful 
(R3P2, R3P3, R3P4, R3P5, R3P7, R3P9, and R3P11). Some participants 
also pointed out some tips that helped them improve specifc parts 
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of their projects. R3P7 told us that after viewing our tips on adding 
a Code of Conduct, he planned to add one soon. Several other 
participants mentioned tips of Features that Affect Project 
Attractiveness to be useful (R3P1, R3P2, R3P4, R3P5, and R3P11). 
R3P4 and R3P12 thought the tip in the section Conversations 
by Label was helpful. Unfortunately, although those maintainers 
considered some of the tips applicable, except for R3P7, who would 
add a code of conduct, none of them made adjustments by the time 
they completed the exit survey. Our diary study may need to be 
longer for maintainers to take concrete actions. 

In summary, many of our diary study participants found this 
dashboard useful for themselves or other maintainers, and their 
level of confdence in supporting community health increased. How-
ever, our dashboard has yet to afect the maintainers’ actual work-
fow. 

6 DISCUSSION 
Our study takes the frst step towards visualizing signals related 
to the climate and the inclusion of open-source software projects 
but are hard to observe on current social coding platforms. From 
the user studies, we received positive feedback on our dashboard’s 
usefulness. This section discusses some implications of our study 
and ideas for future research. 

6.1 Contributions to Open-Source Software and 
HCI Communities 

Our work directly contributes to improving open-source commu-

nities’ community health and contributes to the broad HCI com-

munity in several ways. Firstly, our dashboard is one of the few 
eforts to provide an intervention to improve community health in 
open-source and is based on scientifcally validated evidence. Our 
work builds on a wide variety of prior studies related to community 
health. We took inspiration from literature such as signals that 
newcomers use to select a project [60], barriers new contributors 
face [78, 80, 82], contributors’ negative feelings [26, 50, 62], and 
contributors’ sustained participation [61]. The literature provides 
strong support for the efectiveness of this intervention. 

Our dashboard difers from the two prior works that built inter-
vention tools, i.e., Steinmacher et al. [78]’s portal for newcomers 
and Guizani et al. [35]’s dashboard for attracting and retaining 
newcomers. In addition to the fact that our design has all groups of 
contributors in mind, our dashboard also emphasizes the coaching 
aspect. The tips we provide in our dashboard are intended to help 
maintainers improve their management skills and increase their 
confdence in building a healthier community. 

Secondly, our dashboard is mature after several rounds of design 
iterations and has proven to have efects on maintainers’ confdence 
in improving project health. We disclose our code on GitHub so 
everyone can download and use it locally or share it with team 
members. We hope to see social coding platforms incorporating 
some of our signals to reach a broader audience. Researchers can 
thus collect more data to test their usability and efectiveness. 

Thirdly, our fndings from our diary study show that visualizing 
hard-to-observe signals is a promising strategy to increase main-

tainers’ awareness of the status of their projects and improve their 
management strategies. Future studies can build on this idea and 

expand the set of signals to capture more nuanced project charac-
teristics, making the management process more transparent and 
straightforward. For example, although some maintainers pointed 
out the usefulness of CIs and bots, we could not compute a signal 
based on the current trace data provided by GitHub. A collabora-
tion with the social coding platforms would provide opportunities 
for further exploration. 

However, we also like to highlight the fip side of being highly 
transparent. Constantly monitoring the signals can create extra 
stress on maintainers. Downward slopes in temporal signals can 
make maintainers worry about their performance. At the same time, 
if we make the dashboard publicly available, current and potential 
contributors can use the data to evaluate and judge maintainers’ 
productivity and efciency. Nevertheless, by knowing the signals’ 
mechanism, maintainers can game the system to make the data 
look attractive. 

Lastly, our more general contribution to the HCI community 
is that our design process and the fndings can be widely trans-
ferred to other domains. Although the multi-phase iterative design 
process we adopted from Samrose et al. [68] was long and labori-
ous, the outcome was efective and promising. More importantly, 
some of our signals are transferrable to other contexts that have 
similar settings and processes. Proprietary software development 
or remote collaboration can beneft from our results as well. For 
example, measures for pushback and toxicity in code review and 
other communications are equally important [62] for corporate 
software development. Pointers to conversations that might need 
further investigation can help managers distribute their attention 
and energy more wisely. Being able to provide timely responses 
also accelerates the project’s progress. 

6.2 Implications for design and future research 
6.2.1 Provide actionable feedback. Future work can explore the 
balance between simply displaying information that refects the 
project’s status and providing specifc tips or instructions for main-

tainers to follow or implement. During our interviews, some partic-
ipants appreciated that, in the GitHub issue version, we only pro-
vided maintainers with information and did not ask them to perform 
specifc actions. However, some other maintainers reported that 
many of the tips in the web page version and the links to the 
conversations that might need more attention were use-
ful. We argue that displaying only information limits the efective-
ness of our dashboard if we do not also provide possible interven-
tions backed by rigorous empirical studies. The number of tips we 
should provide can be very nuanced and needs further investiga-
tion. 

6.2.2 More signals. Future studies can also explore ways to incor-
porate more signals. When designing the dashboard, we ensured 
that our features were not redundant with the ones GitHub is 
providing. For example, GitHub already checks (on each project’s 
Insights -> Community Standards) if a project has a README, 
among other forms of documentation, such as contributing guide-
lines and codes of conduct — all of which have been found to asso-
ciate with higher project attractiveness to new contributors [60]. 
However, there are still a tremendous number of potential signals 
that we did not explore. For example, from our interviews, we also 



CHI ’23, April 23–28, 2023, Hamburg, Germany Qiu, et al. 

collected many signals that maintainers consider important but 
were hard for us to measure, such as the status of continuous inte-
gration (CI) builds. There are, however, many standard badges to 
refect CI status [89], and these could be further integrated into a 
dashboard like ours. 

Given the prevalence of bots [23, 93], interactions between hu-
mans and bots are also essential to consider in a maintainer dash-
board. Our dashboard excluded bots’ activities. Future studies can 
treat them as a separate group diferent than human contributors 
and analyze their behavior. A dashboard like Climate Coach could 
help maintainers assess where and how to utilize bots to support 
contributors. It could be helpful for project owners to understand 
how the use of various bots is associated with other participation 
signals, e.g., contributors could be deterred by interaction with 
certain bots. 

6.2.3 Long-term evaluation. Although our diary study shows promis-

ing results that maintainers consider themselves more confdent 
in building a healthier community after two weeks of usage, we 
need more time to observe any substantial changes maintainers 
make in reaction to our dashboard. Long-term evaluation has been 
used in HCI [38, 91], especially some visualization projects [72]. 
Researchers can observe the changes in team size or the overall cli-
mate of a project in the long term and collect data on which signals 
are more valuable. For example, do temporal signals provide main-

tainers enough intuition on how their projects have been evolving? 
Researchers can also track changes that maintainers make and 
study if any of those changes are inspired by our dashboard, thus 
quantifying this intervention’s efectiveness. 

6.2.4 Incorporate our signals to the social coding platforms. Our 
work would be much more impactful if social coding platforms 
incorporate some of our signals into their design. Such integration 
can avoid context switching. Platforms also have the resource to 
conduct a larger-scale and longer-term user study, even an A/B test 
to compare the diferences between the group of projects that adopt 
our dashboard and the group that do not. These data are valuable 
for improving the design and making the dashboard more helpful 
for maintainers. 

7 LIMITATIONS 
As with many studies, our paper has several limitations we would 
like to discuss here. 

The diversity of our participants was limited by the low gen-
der diversity in our participant pool. Although we managed to 
recruit four women maintainers for our diary study, we only had 
one woman maintainer in our Phase 2 interviews, which were es-
sential to our dashboard design, and no non-binary participants 
throughout the entire study. Therefore, it is possible that we failed 
to incorporate some concerns that are unique to these marginalized 
groups. Future studies can recruit a more diverse user group to make 
the dashboard more inclusive. Another possible future work is to 
adopt the GenderMag approach [9], a cognitive walkthrough that 
helps software developers discover features that unintentionally 
exclude certain user groups. 

Another limitation, as we admitted when describing our meth-

ods, is the gender inference process when recruiting participants. 

We acknowledge that there are more reliable methods than this one. 
However, since we had to review many projects to achieve a bal-
anced sample in terms of gender diversity, we had to rely on certain 
heuristics to speed up the process. During the entire process, we did 
not use our assumed gender to address any individual contributors. 
We only relied on signals such as commonly used women’s names, 
profle pictures, or self-reported pronouns. To lower the errors, 
we had more than one researcher browse the contributor list. If 
during our email interviews, a maintainer informed us that their 
project lacked gender diversity or had women or non-binary con-
tributors, we corrected our record. For Phases 2 and 3, we reported 
participants’ self-reported genders. 

Lastly, the efectiveness of our dashboard on maintainers’ actions 
could have been improved if the duration of our diary study were 
longer. Ideally, we would have liked to conduct a longer-term diary 
study to examine whether and how maintainers could integrate our 
dashboard into their process. As discussed above, we encourage 
future works to explore this possibility. 

8 CONCLUSION 
This paper presents Climate Coach, a dashboard we designed to 
improve the health of open-source communities. We frst identifed 
signals refecting team inclusion by email interviews with maintain-

ers. Based on the signals we identifed, we designed a dashboard 
prototype and iteratively improved it with maintainers through 
think-aloud interviews. We tested the efectiveness of our refned 
dashboard through a two-week diary study with maintainers. Our 
results show that displaying signals that refect various dimensions 
of teams’ social aspects can increase maintainers’ awareness of 
their community health and help them improve their management 
strategies. 
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