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In rapidly evolving populations, numerous beneficial and deleterious mutations can arise
and segregate within a population at the same time. In this regime, evolutionary dy-
namics cannot be analyzed using traditional population genetic approaches that assume
that sites evolve independently. Instead, the dynamics of many loci must be analyzed
simultaneously. Recent work has made progress by first analyzing the fitness variation
within a population, and then studying how individual lineages interact with this travel-
ing fitness wave. However, these “traveling wave” models have previously been restricted
to extreme cases where selection on individual mutations is either much faster or much
slower than the typical coalescent timescale Tc. In this work, we show how the traveling
wave framework can be extended to intermediate regimes in which the scaled fitness
effects of mutations (Tcs) are neither large nor small compared to one. This enables
us to describe the dynamics of populations subject to a wide range of fitness effects,
and in particular, in cases where it is not immediately clear which mutations are most
important in shaping the dynamics and statistics of genetic diversity. We use this ap-
proach to derive new expressions for the fixation probabilities and site frequency spectra
of mutations as a function of their scaled fitness effects, along with related results for
the coalescent timescale Tc and the rate of adaptation or Muller’s ratchet. We find that
competition between linked mutations can have a dramatic impact on the proportions
of neutral and selected polymorphisms, which is not simply summarized by the scaled
selection coefficient Tcs. We conclude by discussing the implications of these results for
population genetic inferences.

I. INTRODUCTION

Models of evolutionary dynamics and population
genetics aim to predict how observable properties
of the distribution of genotypes within a population
are shaped by evolutionary forces such as mutations,
natural selection, and genetic drift. We focus here on
the simplest possible models of these three core evo-
lutionary forces, which consider a population con-
sisting of N individuals, with each individual sub-
ject to new mutations at rate U per generation, and
with the fitness effect of each mutation drawn from
some distribution ρ(s). More complicated models of
evolutionary dynamics can incorporate the effects of
additional evolutionary forces (e.g., spatial structure
and migration, environmental fluctuations in time
or space, and ecological interactions). However, the
dynamics arising from even the simplest models—
incorporating only the forces of mutation, selection,
genetic drift—are already rather complex.

Within the context of these simple models, we
wish to understand how several types of observables
depend on the key parameters. Specifically, we aim
to predict the probability, pfix(s), that a mutation

with fitness effect s will fix. From this quantity, we
can compute the rate at which mutations will accu-
mulate (i.e. the rate of genotypic divergence from an
ancestor) and the rate, v, at which the mean fitness
of the population changes over time (McCandlish
and Stoltzfus, 2014). In addition to these properties
of long-term divergence, we wish to predict expected
patterns of genetic diversity within the population
at any given time. For example, we aim to compute
the coalescence timescale Tc (the typical time since
individuals are related by common ancestry, which
determines the expected overall level of genetic di-
versity in the population), as well as other readily
observable quantities such as the site frequency spec-
trum (which describes the relative abundances of
polymorphisms at different allele frequencies). Ob-
taining predictions for patterns of genetic diversity
is of particular interest because of the potential to
use these predictions, in combination with measured
levels of contemporary sequence diversity, to infer
the strength of the various evolutionary forces which
have acted on a population.

Much classical work proceeds by assuming the dif-
ferent loci in the genome evolve completely indepen-
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dently of one another (i.e., by ignoring the physical
linkage of mutations within the same genomic seg-
ment). The dynamics are then relatively straightfor-
ward to analyze (Fisher, 1931; Wright, 1931). This
assumption is reasonable in sexually evolving pop-
ulations where recombination is sufficiently rapid
compared to the timescales on which mutation, se-
lection and genetic drift generate correlations be-
tween loci (Falconer and Mackay, 1996). In this case,
a given mutation is shuffled onto a large number of
genetic backgrounds over the course of its evolution-
ary trajectory, and any correlations in the fates of
mutations at different loci become negligible.

In asexual populations, however, mutations are
fully linked and do not evolve independently of one
another. Even in the genomes of obligately sex-
ual organisms, loci that are physically close within
a chromosome will be broken up by recombination
only over very long timescales, and cannot necessar-
ily be treated as independently evolving (Weissman
and Barton, 2012). A useful opposite regime to con-
sider is then the limit of a genomic region that is
small enough that recombination can be entirely ne-
glected. One can imagine that on sufficiently short
genomic distance scales (within so-called “linkage
blocks”), evolution proceeds entirely asexually, while
on larger genomic distance scales evolution acts on
some collection of recombining blocks. It is not en-
tirely clear how this division between asexual linkage
blocks and larger-scale regions consisting of multiple
recombining blocks is best modeled, though some re-
cent work has begun to address this question (Good
et al., 2014; Neher et al., 2013; Weissman and Hal-
latschek, 2014). However, we focus in this paper on
an even simpler question: how to model the evolu-
tion within a single nonrecombining linkage block.
As we will see, even within the context of the simple
models described above, evolutionary dynamics even
within perfectly asexual linkage blocks are surpris-
ingly complex, and remain incompletely understood.

There is a long history of efforts to analyze the
dynamics of purely asexual evolution, and numer-
ous approaches have been proposed to analyze the
dynamics in different limiting regimes of the parame-
ter space. Extensive work has focused on the neutral
limit, in which natural selection can be neglected
entirely (Kimura, 1968). In this case, genealogical
approaches such as coalescent theory can provide
a complete description of the expected rates of di-
vergence and patterns of diversity (Kingman, 1982;
Wakeley, 2005). However, the backwards-time na-
ture of the coalescent approach makes it difficult
to incorporate the effects of selection: genealogies
cannot be considered independently of the selected

mutations which occur on their branches (Kaplan
et al., 1988). Efforts to do so have largely been
limited to simulation-based or essentially numerical
approaches (see e.g., Krone and Neuhauser (1997)),
though analytical progress has been made in certain
cases, particularly in the presence of purifying selec-
tion on deleterious mutations (Charlesworth, 1994;
Hudson and Kaplan, 1995).

To model the effects of selection on beneficial mu-
tations, much work has instead been done using
forward-time approaches. Broadly speaking, these
approaches seek to characterize the trajectories of
mutant lineages in a probabilistic sense. Provided
selection is sufficiently strong and selected mutations
are sufficiently rare (more precisely, if Ns ≫ 1 and
NU logNs < 1), a beneficial mutation typically ei-
ther sweeps to fixation or is purged before another
such mutation arises within the same linkage block
(Desai and Fisher, 2007). Thus, within this strong-
selection weak-mutation (SSWM) regime, multiple
selected mutations are unlikely to segregate simul-
taneously within the block. In this case, the dy-
namics of each selected mutation can be treated in-
dependently of one another (Gillespie, 1983). How-
ever, recent work has shown that in a wide range
of microbial and viral populations, and potentially
in many linked regions of the genomes of obligately
sexual organisms such as humans, multiple beneficial
mutations often segregate simultaneously (Lieber-
man et al., 2014; Miralles et al., 1999; Nourmo-
hammad et al., 2019; Strelkowa and Lässig, 2012).
In these rapidly adapting populations, clonal inter-
ference (i.e. competition between multiple distinct
adaptive lineages) and genetic hitchhiking can be
critical to the dynamics, and analyzing the evolu-
tion of multiple linked loci simultaneously is critical
(Buskirk et al., 2017; Gerrish and Lenski, 1998; Kao
and Sherlock, 2008; Lang et al., 2013).

Over the past two decades, numerous authors have
analyzed the evolutionary dynamics of many linked
loci in rapidly adapting populations (reviewed by
Neher (2013)). Similar ideas have also been used
to analyze the dynamics of populations rapidly de-
clining in fitness due to Muller’s ratchet (Neher and
Shraiman, 2012), as well as those maintained in a dy-
namic steady-state balance between beneficial and
deleterious mutations (Goyal et al., 2012). Collec-
tively, we can think of this body of work as study-
ing the evolutionary dynamics of rapidly evolving
populations—those populations in which there are
typically multiple linked mutations, either beneficial
or deleterious, in the population at once. The central
idea of this work is to first analyze how the collec-
tive effects of many linked mutations generate vari-
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ation in fitness within the population. This leads
to a time-dependent within-population fitness dis-
tribution that can be described as a traveling wave,
and which maintains a constant steady-state shape
f(x) while its mean fitness changes at a constant
rate v (potentially with fluctuations) (Rouzine et al.,
2008, 2003; Tsimring et al., 1996). Extensive work
has characterized how the velocity and steady-state
shape of the wave depends on the key parameters,
which can be used to compute observables related to
long-term divergence such as pfix(s) or the distribu-
tion ρf (s) of fixed fitness effects (Good et al., 2012).
More recent studies have then used this traveling
wave picture as the basis for tracing the genealog-
ical history of individual mutations (Desai et al.,
2013; Neher and Hallatschek, 2013) or tracking their
trajectories forward in time (Kosheleva and Desai,
2013) to calculate diversity statistics such as the co-
alescence timescale or the site frequency spectrum.

While this work has led to substantial progress,
it has been focused primarily on two limiting cases.
One body of work (Cohen et al., 2005; Hallatschek,
2011; Neher and Hallatschek, 2013; Tsimring et al.,
1996) has analyzed the infinitesimal limit, in which
the selective effects of individual mutations are in-
finitesimal, but selected mutations occur extremely
frequently (more precisely, in which s → 0 and
U → ∞ with the product U

〈
s2
〉
held fixed). The

corresponding infinitesimal approximation is often
thought to be valid when s ≪ U , although a more
accurate condition of its validity is that Tcs ≪ 1
(Good and Desai, 2014; Good et al., 2014); in both
conditions, the relevant s can be taken as the root-
mean-squared effect

√
⟨s2⟩. As a result, within the

infinitesimal regime, selection on individual muta-
tions can be neglected: the timescale 1/s on which
selection can substantially alter the fate of a mu-
tation with effect size s is longer than the coales-
cent timescale Tc on which common ancestry is de-
termined (and which we define more precisely in
Section IV). At the same time, the population as
a whole maintains substantial variance in fitness,
σ2, resembling in some ways infinitesimal models
in quantitative genetics (Barton et al., 2017); selec-
tion on haplotypes in the infinitesimal regime can
be strong. This work has led to analytical results
for both divergence-related quantities and, more re-
cently, diversity-related quantities (Neher and Hal-
latschek, 2013), valid for populations subject to ben-
eficial mutations, to deleterious mutations, or to
some combination of the two.

A second body of work has analyzed the oppo-
site limit of strong selection on individual muta-
tions, such that Tcs̃ ≫ 1. Here s̃ denotes the typ-

ical effect size of mutations which fix; s̃ is defined
more precisely in Section IV. A schematic depic-
tion of s̃ is provided in Fig. 1, which illustrates key
qualitative differences between regimes. When se-
lection is strong on deleterious mutations, Muller’s
ratchet clicks slowly and beneficial mutations can
much more easily dominate the dynamics. While
some work has been done on the rate of Muller’s
ratchet when Tcs̃≫ 1 (Neher and Shraiman, 2012),
the majority of this work has focused exclusively on
beneficial mutations (Desai and Fisher, 2007; Desai
et al., 2013; Fisher, 2013; Good et al., 2012; Koshel-
eva and Desai, 2013) or on the case in which dele-
terious mutations can be considered a perturbative
correction (Good and Desai, 2014). This work can
be further divided into two regimes: the “moderate-
speeds” regime, in which v ≪ s̃2, as well as the
“high-speeds” regime, in which v ≫ s̃2 (Fisher,
2013). Qualitatively, the “moderate-speeds” and
“high-speeds” regimes can be distinguished based on
the range of background fitnesses ∆xf which typi-
cally produces an eventual common ancestor of the
population (see Fig. 1 for a depiction of ∆xf ). In the
“moderate-speeds” regime, ∆xf ∼ s̃, while in the
“high-speeds” regimes, ∆xf ≫ s̃. That is, within
the “moderate-speeds” regime, the individual which
will eventually fix is likely within one mutational ef-
fect s̃ of the “nose” (the high-fitness edge) of the
fitness distribution; in the “high-speeds” regime, in-
dividuals can catch up and fix from further behind
by rapidly acquiring multiple mutations. Analytical
results for divergence-related quantities have been
obtained within both the “moderate-speeds” and
“high-speeds” regimes (Fisher, 2013; Good and De-
sai, 2014); diversity-related quantities have also been
studied within the “moderate-speeds” regime (Desai
et al., 2013; Kosheleva and Desai, 2013).

Although the parameters N , U and s are natural
quantities to use in specifying a model of the evo-
lutionary dynamics, in many applied settings the
combined quantities Tcs and TcU can be probed
more directly. While dynamical interpretations of
Tcs and TcU are less immediately clear, these can
be considered independent properties of the evolu-
tion that together can describe many aspects of a
population. Existing methods to infer Tcs from ob-
served levels of polymorphism and divergence among
populations typically make the assumption that dif-
ferent loci evolve independently of one another (Bus-
tamante et al., 2001; Sawyer and Hartl, 1992). For
example, a classic result shows that in a population
with a constant size N , the ratio between selected
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FIG. 1 Schematic depiction of different regimes. (Left) Schematic plots of the mutation fixation probability pfix(s),
an example distribution of fitness effects ρ(s), and its corresponding distribution of fixed fitness effects ρf (s), for
regimes of the parameter space indicated by row labels. In the nearly neutral limit and in the infinitesimal regime,
selection acts weakly on single mutations, and ρf (s) closely matches ρ(s). In the “moderate-speeds” and “high-
speeds” regimes, ρf (s) differs substantially from ρ(s). Note that s̃ in the bottom panel denotes the scale of a typical
fixed mutational effect. (Right) Schematic plots of the haplotype fixation probability w(x), the fitness distribution
f(x) and the distribution of future common ancestor fitnesses Nf(x)w(x). In the infinitesimal regime as well as the
“moderate-speeds” and “high-speeds” regimes, selection acts strongly on haplotypes, and the distribution Nf(x)w(x)
is concentrated within a narrow range of high background fitnesses. The width and average of the distribution
Nf(x)w(x) are indicated by ∆xf and ⟨xf ⟩, respectively. Both the infinitesimal regime and the “high-speeds” regime,
but not the “moderate-speeds” regime, are part of the MSSM regime; ∆xf ≫ s̃ in the infinitesimal regime and
“high-speeds” regime, but ∆xf ∼ s̃ in the “moderate-speeds” regime. In the MSSM regime, ∆xf and ⟨xf ⟩ will be
seen to correspond roughly to the quantities b and c, respectively, defined in Section IV.

and neutral site frequency spectra is given by

hs(ν)

h0(ν)
=

1− e−2Tcs(1−ν)

(1− ν)(1− e−2Tcs)
(1)

≈


e−2Tc|s|ν if s < 0; Tc|s| ≫ 1

1 if Tc|s| ≪ 1
1−e−2Tcs(1−ν)

1−ν if s > 0; Tcs≫ 1

(2)

where Tc = N is the coalescent timescale (Sawyer
and Hartl, 1992). Using this result, the magnitudes

of the scaled selection coefficients (Tcs) can be iden-
tified from the transitions in the site frequency spec-
tra at low frequencies (νc ∼ 1/Tc|s|) for deleterious
mutations, or at high frequencies (1 − νc ∼ 1/Tcs)
for beneficial mutations.

However, previous work has shown that these clas-
sical results can lead to substantial errors in the in-
ferred selection strengths when natural selection is
widespread (Messer and Petrov, 2013). This makes
it difficult to identify the relevant values of Tcs in
rapidly evolving populations. For deleterious muta-
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tions, the intermediate regime where Tcs ∼ 1 is par-
ticularly critical: it is precisely mutations with effect
sizes on the order of 1/Tc which are expected to have
the largest impact on patterns of genetic diversity
within a population (Good et al., 2014). Thus when
there is a relatively broad distribution of effect sizes
of new mutations (including strong, intermediate,
and weak-effect mutations), it may often be the case
that the intermediate-effect mutations with Tcs ∼ 1
have the largest impact on observed patterns of di-
versity. More generally, an understanding of the in-
termediate regime in which Tcs ∼ 1 is critical for un-
derstanding the transition between strong selection
and neutral-like behavior in site frequency spectra.
Our understanding of these effects is limited, how-
ever: except for special cases—such as when a single
strong beneficial fitness effect is available (Koshel-
eva and Desai, 2013)—we lack analytical predictions
for the diversity statistics of selected mutations in
rapidly evolving populations. In particular, we lack
predictions for how mutations with a distribution
of beneficial and/or deleterious selective effects con-
tribute to the site frequency spectrum, which has in
turn limited our ability to apply commonly used in-
ference methods (e.g. of Hartl et al. (1994); Sawyer
and Hartl (1992)) to rapidly evolving populations.

To address this gap, in this work we reexamine the
approach used by Fisher (2013) to study the “high-
speeds” regime. We demonstrate that the key ideas
of that approach can be applied more generally to
the case in which Tcs̃≪ 1 (as well as the intermedi-
ate regime in which Tcs̃ ∼ 1). As a result, we argue
that the infinitesimal regime and the “high-speeds”
regime—previously studied separately—can be uni-
fied into a single moderate selection, strong mutation
(MSSM) regime, which includes populations subject
to a distribution of beneficial mutations, deleterious
mutations, or some combination of the two. The
key requirements for validity of our MSSM approx-
imation are that s̃ ≪ ∆xf (which ensures that se-
lection is moderate, or weak, on single mutations)
and that Tc∆xf ≫ 1 (which ensures that muta-
tion is strong, and that selection on haplotypes is
strong). Dynamically, these conditions imply that
mutational “leapfrogging” is important to the dy-
namics: some individuals routinely catch up to the
high-fitness “nose” despite an initial fitness disad-
vantage, relative to the nose, of several mutations.
These requirements are satisfied in the limit N → ∞
with Uρ(s) held fixed—as long as ρ(s) falls off faster
than exponentially with large positive s—as well as
in other cases we describe. In particular, we show
that this approach can model the dynamics of dele-
terious mutations with Tcs̃ ∼ 1, to which patterns of

diversity and divergence are particularly sensitive.

Using this approach, we compute divergence-
related statistics such as the fixation probabilities
pfix(s) of new mutations and the average rate v of
adaptation, or—if v < 0—of Muller’s ratchet. We
also compute diversity-related statistics such as the
coalescence timescale Tc and the site frequency spec-
trum. We show that at high frequencies, the neutral
site frequency spectrum corresponds to that of the
Bolthausen-Sznitman coalescent (BSC) (Bolthausen
and Sznitman, 1998), which has previously been
found to describe genealogies of populations in the
infinitesimal regime (Neher and Hallatschek, 2013)
and “moderate-speeds” regime (Desai et al., 2013),
as well as in evolving populations modeled as FKPP
waves (Brunet et al., 2007). We identify the fre-
quency scale above which this correspondence holds
and analytically describe departures from the BSC
at lower frequencies. Importantly, we find that
the low-frequency portion of the neutral site fre-
quency spectrum is much more useful for distin-
guishing different parameter combinations than the
high-frequency portion, which depends on the pa-
rameters N , U and ρ(s) via a single overall scale
factor. Over a broad range of intermediate and high
frequencies—extending beyond the frequency range
at which a correspondence with the BSC exists—we
demonstrate that the neutral and selected site fre-
quency spectra are simply proportional to one an-
other, with a constant of proportionality equal to
the ratio of fixation rates of the two types of muta-
tions. This proportionality reflects the fact that, in
the presence of widespread linkage, the fates of even
strongly selected mutations can be considered con-
ditionally neutral at long times t > Tc: at this point,
their initial fitness effects have been “forgotten”, and
their lineage trajectories are indistinguishable from
those of neutral mutations with the same age (and
frequency at age Tc). We discuss implications of our
results for inferring the strength and/or frequency
of selection in natural populations using observed
levels of polymorphism and divergence.

Outline of this Paper: The remainder of this
work is organized as follows. In Section II, we de-
scribe the model of the population dynamics and
briefly summarize our simulation methods. In Sec-
tion III, we review previous approaches to model
evolutionary dynamics using traveling wave theory.
We begin Section IV by presenting our MSSM ap-
proximation, which we use to obtain results for the
steady-state distribution of fitnesses, fixation prob-
abilities, and the rate of adaptation. We then pro-
vide and discuss conditions of validity of the MSSM
approximation, apply the MSSM approximation to
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several specific examples of DFEs, and compare our
analytical results to the results of simulations. In
Section V, we use our MSSM approximation to an-
alyze statistics of genetic diversity, with particular
focus on the site frequency spectra of neutral mu-
tations and of selected (non-neutral) mutations. In
Section VI, we provide heuristic interpretations of
several fitness scales and timescales that emerge in
our analysis, and compare dynamical aspects of pop-
ulations described by the MSSM approximation to
those of populations in other regimes. In the Dis-
cussion, we consider implications of our results for
making inferences from population genetic data.

II. MODEL

We aim to understand the evolutionary dynamics
of an asexual population, given the simplest possible
model incorporating the effects of mutations, natural
selection, and genetic drift. To this end, we consider
a population of a constant number N asexual hap-
loid individuals, within which new mutations arise
at a rate U per genome per generation. We assume
that all mutations have additive effects on (log) fit-
ness, X (i.e., that the log fitness of each individual
is the sum of the fitness effects of all the mutations
it or its ancestors have acquired). An individual’s
offspring number distribution is determined by its
relative fitness x ≡ X − X̄, where by X̄ we de-
note the population-wide mean fitness. We write
down the particular stochastic birth/death process
we carry out in simulations in Subsection II.A; in
our analytical treatment, we assume a slightly dif-
ferent birth/death process, which we write down in
Section III. We assume the fitness effect of each
new mutation is drawn at random from a time-
independent distribution of fitness effects (DFE),
ρ(s). Our model thus assumes that while epista-
sis may exist among individual mutations, there are
no overall differences in the DFE among different
genotypes, so we can treat ρ(s) as a constant that
remains the same as the population evolves. Be-
cause most dependence on the parameters U and
ρ(s) will be mediated by the product µ(s), we define
µ(s) ≡ Uρ(s) as the mutational fitness spectrum.
We assume neutral mutations occur at rate Un (not
included in U).

The actual DFEs relevant to natural populations
may be broad and complex, with mutations confer-
ring a wide range of fitness effects that occur at a
variety of different rates, and these empirical dis-
tributions are difficult to measure precisely (Eyre-
Walker and Keightley, 2007). Much of our analysis

is conducted for an arbitrary DFE (provided it meets
our conditions of validity). For concreteness, we also
focus on a few simplified forms of µ(s) in order to
gain intuition. For example, we consider the cases
in which (i) all mutations are beneficial, (ii) all mu-
tations are deleterious, and (iii) all mutations confer
the same effect size. The analysis of these simplified
forms of µ(s) can provide useful intuition about how
mutations of different types and effect sizes affects
various aspects of the evolutionary dynamics. Fur-
ther, we find that most of our results are sensitive
to the assumed µ(s) only within a limited region of
s. That is, given values of the other parameters,
the evolutionary dynamics are often dominated by
a subset of mutations that have a narrow range of
effect sizes, and hence can be predicted based on
simplified forms of µ(s) (Hegreness et al., 2006).

A. Simulation methods

To test our analytical predictions, we conduct
individual-based Wright-Fisher simulations. These
simulations, which we describe in more detail in Ap-
pendix H, separately track all of the individuals in
the population, as well as the mutations they have
acquired. These simulations make it possible to mea-
sure divergence-related and diversity-related quanti-
ties in the population, including the rate of change
in the mean fitness, the rate of mutation accumula-
tion, the heterozygosity of neutral mutations and of
selected (i.e. non-neutral) mutations, and the site
frequency spectrum.

Simulations consist of a series of two steps re-
peated each generation. First, each individual ac-
quires a Poisson-distributed number of mutations
(with mean number U , and with the fitness effects
of those mutations each drawn from ρ(s)). Muta-
tions increment an individual’s log-fitness X by an
amount s. Second, in the selection/reproduction
step, individuals in the population are resampled
(with replacement) to form the population in the fol-
lowing generation. Each individual is sampled with
with probability proportional to its (exponential) fit-
ness eX .

Each simulated population is initialized clonally.
We record the number of generations until a muta-
tion has fixed within the population, which we define
as the length of an epoch. At the conclusion of each
subsequent epoch, we record the state of the popula-
tion, including its mean fitness, site frequency spec-
trum, and fixed mutations. Simulations are run for
a prespecified number of epochs, with results from
the first 10 epochs discarded.
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Simulated populations are subject to stretched ex-
ponential DFEs of the form

ρ(s) =
1

χΓ(1 + β−1)
e−(s/χ)β , (3)

or to mutations consisting of a single fitness effect
(while our analysis applies for more general ρ(s)).
DFEs of the form in Eq. (3) have been considered
in previous theoretical work (Desai and Fisher, 2007;
Fogle et al., 2008; Good et al., 2012). Note that if
β > 1, ρ(s) in Eq. (3) falls off faster than expo-
nentially with large s, while ρ(s) is an exponential
distribution if β = 1. For β < 1, ρ(s) in Eq. (3)
falls off more slowly than exponentially with large
s (though for reasons we describe below, we do not
consider this case extensively here).

III. THE TRAVELING-WAVE APPROACH

In this Section, we review the basic traveling-wave
approach which underlies our work, and which has
been used to study the dynamics of rapidly evolv-
ing populations in multiple regimes of the param-
eter space. Readers familiar with the traveling-
wave literature may wish to skip directly to the
Analysis section. We emphasize that the de-
tails of the traveling-wave approach have differed
across studies—particularly in the treatment of
fluctuations—and that our review is not entirely
comprehensive. Our presentation, which largely fol-
lows the approach of Good and Desai (2014), ne-
glects some of the fluctuations which are discussed
at length in Fisher (2013), but enables us to stream-
line computations of average quantities such as v,
pfix(s), Tc and the site frequency spectrum.

A key quantity of interest is the distribution of
fitnesses within the population, f(X, t), which gives
the fraction of the population at absolute (log) fit-
ness X. In our model, this fluctuating distribution
evolves in time according to the nonlinear stochastic
differential equation (Good and Desai, 2013),

∂f(X, t)

∂t
=
(
X − X̄(t)

)
f(X, t)

+

∫
µ(s) [f(X − s, t)− f(X, t)] ds

+

∫
dX ′ [δ(X ′ −X)− f(X, t)]

√
f(X ′, t)

N
η(X ′, t),

(4)

where X̄(t) ≡
∫
Xf(X, t)dX, and η(X, t) is a Brow-

nian noise term (Appendix A).

The last term in Eq. (4), which captures
birth/death number fluctuations, is important.
Without this term, even in the simple case of a
single beneficial fitness effect, the solution f(X, t)
would have a rate of fitness increase dX̄/dt that
grows without bound (Tsimring et al., 1996). In
contrast, in stochastic simulations, Tsimring et al.
(1996), Rouzine et al. (2003) and others have found
that after an initial transient period, the distribu-
tion of fitnesses in a population attains a steady
state “traveling wave” profile, f(X−vt) which moves
through fitness space at a roughly constant rate
v = ⟨dX̄/dt⟩; the steady state can be understood
as a type of “mutation-selection balance” in which
fitness variation, purged by selection, is repleted by
new mutations (Desai and Fisher, 2007). In large
populations, this average (or more precisely, typi-
cal) profile f(x) can then be approximated using a
“quasi-deterministic” approach, in which

− v∂xf(x) = xf(x)

+

∫
µ(s) [f(x− s)− f(x)] ds, (5)

for x less than some cutoff xcut, and f(x) = 0 for
x > xcut (Fisher, 2013; Good et al., 2012; Neher
et al., 2010; Rouzine et al., 2008; Rouzine and Coffin,
2005; Rouzine et al., 2003; Tsimring et al., 1996).
This defines a distribution which is normalized such
that ∫

f(x)dx = 1. (6)

The solution to Eq. (5) will depend on the un-
known average rate of mean fitness change v. To
determine this quantity, we can express v in terms
of the stochastic accumulation of new mutations,

v = N

∫
µ(s)spfix(s)ds, (7)

where pfix(s) describes the fixation probability of a
mutation with fitness effect s. In our traveling wave
framework, it is useful to express this fixation prob-
ability as

pfix(s) =

∫
f(x)w(x+ s)dx, (8)

where w(x) denotes the fixation probability of a lin-
eage founded by a single individual with relative fit-
ness x. In this way, Eq. (8) averages over all of the
possible fitness backgrounds on which a mutation
can occur.
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A key simplification is that w(x) can often be ap-
proximated by modeling the population as a collec-
tion of independent branching processes, which com-
pete with each other only through the average rate
of fitness change v (Fisher, 2013; Good and Desai,
2014; Good et al., 2012; Neher et al., 2010). Each of
these lineages founds its own stochastic fitness wave,
g(x, t), whose dynamics are described by a related
differential equation,

−∂tϕ = xϕ− ϕ2 +

∫
µ(s) [ϕ(x+ s)− ϕ(x)] (9)

for the generating functional
⟨e−N

∫
ϕ(x′,0)g(x′,t)dx′⟩ = e−ϕ(x,t) (Appendix A).

The fixation probability w(x) then follows from

v∂xw(x) ≈ xw(x)

+

∫
µ(s) [w(x+ s)− w(x)] ds− w2(x). (10)

Together, Equations (5) and (10) can be solved
given a particular µ(s) and an assumed rate of adap-
tation v. Using these solutions f(x) and w(x), Eq.
(7) can be enforced as a self-consistency relation to
determine v in terms of N and µ(s). In practice,
it will be useful to enforce a related self-consistency
condition,

pfix(0) =

∫
f(x)w(x)dx ≈ 1/N, (11)

which ensures that neutral mutations fix with un-
biased probability 1/N . Approximating the solu-
tions to Eq. (5) and Eq. (10), or similar equations,
given the parameters N and µ(s), has thus been
the subject of extensive theoretical work (Fisher,
2013; Good and Desai, 2014; Good et al., 2012; Hal-
latschek, 2011; Neher et al., 2010).
A central complication is that Eq. (10) is non-

linear. Furthermore, the nonlinear w2 term is the
only term in Eq. (10) which reflects the stochastic-
ity of births and deaths. As a result, dropping the
w2 term in Eq. (10) essentially amounts to a de-
terministic approximation, and leads to fundamen-
tally wrong predictions. However, a dominant bal-
ance approach can be taken to treat this nonlinearity
(Fisher, 2013; Good and Desai, 2014; Good et al.,
2012; Neher et al., 2010). The basic idea is that
because the fixation probability w must be an in-
creasing function of x, at very large relative fitness
(i.e. large x), xw and w2 are the dominant terms
in Eq. (10). Thus at large x we have w(x) ≈ x.
In contrast, for sufficiently small fitness, the nonlin-
ear term must be negligible compared to the other

TABLE I Notation Used

Symbol Quantity

In
p

u
t

P
a
ra

m
et

er
s N Population size

U Mutation rate

ρ(s) Distribution of fitness effects

µ(s) ≡ Uρ(s) Mutational fitness spectrum

T
ra

v
el

in
g

W
av

e
Q

u
a
n
ti

ti
es

x ≡ X − X̄ Relative fitness

f(x) Distribution of relative fitnesses

w(x) Haplotype fixation probability

v ≡ dX̄/dt Rate of change of mean fitness

σ2 Population-wide fitness variance

pfix(s) Mutational fixation probability

ρf (s) Distribution of fixed fitness effects

⟨sf ⟩ Average fixed fitness effect

∆sf Standard deviation in fixed fitness
effects

⟨xf ⟩ Average fixed relative fitness

∆xf Standard deviation in fixed rela-
tive fitnesses

D
iv

er
si

ty
a
n

d
D

iv
er

g
en

ce
S

ta
ti

st
ic

s
F Fixation rate (of non-neutral

mutations)

T2 (Random) time since pairwise
coalescence

πneu Pairwise heterozygosity (of neu-
tral mutations)

πsel Pairwise heterozygosity (of se-
lected mutations)

Hneu(ν) Distribution of allele frequencies
(of neutral mutations)

Hsel(ν) Distribution of allele frequencies
(of selected mutations)

terms. Thus at these small x we can neglect the w2

term in Eq. (10) and solve the linear equation

v∂xw(x) = xw(x)

+

∫
µ(s) [w(x+ s)− w(x)] ds. (12)

An approximation where the large-x and small-x
solutions are simply patched together is then widely
valid (Fisher, 2013; Good and Desai, 2014; Good
et al., 2012). Specifically, a boundary xc is identi-
fied such that the large-x result (w(x) = x) is valid
for x > xc and the small-x result (the solution of
Eq. (12)) is valid for x < xc, without any inter-
vening shoulder region (or more precisely, with a
shoulder region that is narrow on relevant scales).
A schematic of this patched solution w(x) is de-
picted in Fig. 1. The details of how to determine the
boundary xc can still be quite complicated and case-
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dependent (Fisher, 2013); however, in the regime
of interest to us, a simple heuristic—ensuring that
both w(x) and its derivative are continuous at the
boundary xc—is adequate (Good and Desai, 2014).
The boundary xc is often referred to as the interfer-
ence threshold, since individuals with relative fitness
x > xc fix with probabilities largely unaffected by
interference (i.e. with their establishment probabil-
ities ≈ x).

We note that solving Eq. (5) leads to negative
values for f(x) at sufficiently large x (Fisher, 2013;
Rouzine et al., 2008; Tsimring et al., 1996). This is
an artifact of neglecting the fact that a finite set of
fitnesses are represented in a population at any given
time. To avoid this pathology, a common approach is
to implement a “cutoff” by assuming that f(x) = 0
for x > xcut (Rouzine et al., 2008, 2003; Tsimring
et al., 1996). The value xcut can then be interpreted
as a typical maximum relative fitness of the indi-
viduals in a population, or as the fitness advantage
of the “nose” of the population-wide fitness distribu-
tion. Consistent with Good and Desai (2014), Fisher
(2013), and others, we take xcut = xc throughout.
At a heuristic level, this choice can motivated by the
fact that established lineages cannot typically exist
above the interference threshold (if so, they would
interfere); a more rigorous justification is given by
Fisher (2013). Imposing a cutoff in f(x) can also be
motivated using the tunable constraint framework
introduced in Hallatschek (2011). In that work, the
underlying model is changed in such a way to yield
moment closure of the equations for the stochas-
tic time-dependent fitness distribution; the resulting
analog of f(x) does not display the above-mentioned
pathological behavior, and instead exhibits an expo-
nential decay beyond a fitness scale related to xc
(suggesting that imposing a cutoff at xc is reason-
able). We note further that the “tunable constraint”
imposed by Hallatschek (2011) turns out to be equiv-
alent to the requirement pfix(0) = 1/N that we en-
force to ensure a self-consistent rate of adaptation
v (Good et al., 2012). Ultimately, our results are
relatively insensitive to whether a cutoff is taken in
f(x) or a tunable constraint model is assumed.

Analysis of the linearized equations (5) and (12) is
still not straightforward, however, since both equa-
tions contain mutation terms which are nonlocal.
While exact solutions for suitably defined Laplace
transforms f̃(z) and w̃(z) can be obtained (Fisher,
2013), the subsequent inversion of these transforms
requires approximation. A related strategy has been
to approximate Eq. (5) and Eq. (12) by a set of lo-
cal differential equations, which can then be solved
straightforwardly. For example, in the infinitesimal

regime, the relevant fitness effects s are assumed suf-
ficiently small to approximate

f(x− s) ≈ f(x)− s∂xf(x) +
1

2
s2∂2xf(x), (13)

and

w(x+ s) ≈ w(x) + s∂xw(x) +
1

2
s2∂2xw(x), (14)

in Eq. (5) and Eq. (12), respectively. The resulting
f(x) and w(x) can be obtained using the Airy equa-
tion (Cohen et al., 2005; Hallatschek, 2011; Tsimring
et al., 1996). Rouzine et al. (2003) and Rouzine et al.
(2008) employ a similar approach, instead Taylor ap-
proximating the logarithm of f(x− s).

Our focus in this article is on a related approach
to approximate Eq. (5) and Eq. (12) by a set
of local equations, used by Fisher (2013) to study
the “high-speeds” regime. In Section IV, we begin
by reviewing this approximate calculation of f(x)
and w(x). We proceed to provide novel solutions
to a number of questions within a moderate selec-
tion, strong mutation (MSSM) regime, within which
this approximate calculation is valid, and which in-
cludes both the “high-speeds” regime and the in-
finitesimal regime as special cases. We first solve
for divergence-related quantities including fixation
probabilities pfix(s) and the average rate of fitness
change v, and discuss conditions of validity of our
approach that are obtained by ensuring f(x) and
w(x) are well-approximated in the region of x mak-
ing a dominant contribution to these quantities. We
then consider statistics of genetic diversity within
the MSSM regime, with a focus on the site fre-
quency spectra of selected mutations and of neu-
tral mutations. By calculating the neutral site fre-
quency spectrum, we demonstrate a partial corre-
spondence between genealogies within the MSSM
regime and those of the Bolthausen-Sznitman coa-
lescent (BSC), and analytically describe departures
from the BSC that are apparent in the low-frequency
portion of the site frequency spectrum. Finally, we
conclude Section IV by discussing the various fit-
ness and time scales that emerge in our analysis,
and provide a heuristic description of the dynamics
of lineages within the MSSM regime.

We summarize some of our key notation used
throughout in Table I .

IV. ANALYSIS

As noted above, our approach is based on a key
approximation employed by Fisher (2013) to study
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TABLE II Key Definitions

Quantity Definition Interpretation

Tc v ≡
∫
µ(s)eTcssds Log-slope of f(x) near x = c. Corresponds with sweep

timescale and coalescence timescale ⟨T2⟩ /2.

b 2b3 ≡
∫
µ(s)s2eTcsds Width in distribution of fixed relative fitnesses ∼ ∆xf .

c c ≡
∫
µ(s)

[
Tcse

Tcs + 1 − eTcs
]
ds Average background fitness of fixed individuals ∼ ⟨xf ⟩.

D 2D ≡
∫
µ(s)s2ds Effective diffusion constant in infinitesimal regime.

⟨sf ⟩ ⟨sf ⟩ ≡
∫
ρf (s)sds Average fixed fitness effect.

∆sf (∆sf )2 ≡
∫
ρf (s) (s− ⟨sf ⟩)2 ds Standard deviation in fixed fitness effects.

s̃ s̃ ≡ ⟨sf ⟩ + 2∆sf Maximum typical fixed fitness effect.

s∗ s∗ ≡ argmaxs ρf (s) Most likely fixed fitness effect; “predominant-s”.

ψ(x) f(x) ≡ e−Tcxψ(x) Scaled profile of f(x).

ξ(x) w(x) ≡ eTcxξ(x) Scaled profile of w(x).

the “high-speeds” regime. The key idea is that we
can approximate f(x−s) and w(x+s) in Eq. (5) and
Eq. (10), respectively, by first pulling out rapid ex-
ponential prefactors varying at the appropriate rate,
and then performing Taylor approximations of the
remaining factors. To do so, we define

f(x) ≡ e−Tcxψ(x), (15)

and

w(x) ≡ eTcxξ(x), (16)

with Tc defined by

v ≡
∫
µ(s)seTcsds. (17)

Note that Tc is not a parameter of our model; Eq.
(17) uniquely defines a specific Tc given the model
parameters N and µ(s). If µ(s) falls off slower than
exponentially with s at large positive s, then Tc is
not well-defined and our approach breaks down; in
the marginal case of an exponential DFE of ben-
eficial mutations (with mean effect sb), Eq. (17)
implies that Tcsb < 1. We will later show in Sec-
tion V that, within the MSSM regime, the quantity
Tc as defined in Eq. (17) is approximately equal to
⟨T2⟩ /2—one half the average time since pairwise co-
alescence among individuals in a population—which
motivates our interpretation of Tc as a coalescence
timescale. However, we emphasize that Tc is a de-
rived quantity, defined by Eq. (17), which we will re-
late to the underlying parameters N and µ(s) in Sec-
tion IV.A. [For example, for the case of single ben-
eficial fitness effect, µ(s) = Uδ(s− sb), we will have
Tc ≈ 1

sb
log
(
sb
U logNU

)
provided that Tcsb ≫ 1.]

Plugging Eq. (15) and Eq. (16) into Eq. (5) and
Eq. (10), we find that for x < xc, ψ(x) and ξ(x)

satisfy

− v∂xψ(x) = (x− Tcv)ψ(x)

+

∫
µ(s)

[
eTcsψ(x− s)− ψ(x)

]
ds, (18)

and

v∂xξ(x) = (x− Tcv)ξ(x)

+

∫
µ(s)

[
eTcsξ(x+ s)− ξ(x)

]
ds, (19)

respectively. Taylor expanding ψ(x− s) in Eq. (18)
and keeping the lowest two nonzero orders in s, we
find

− v∂xψ =

[
x− Tcv +

∫
µ(s)(eTcs − 1)ds

]
ψ

−
[∫

µ(s)seTcsds

]
∂xψ+

[
1

2

∫
µ(s)s2eTcsds

]
∂2xψ.

(20)

It will be useful to define the fitness scales b and c
according to

b3 ≡
∫
µ(s)s2eTcs, (21)

and

c ≡ Tcv −
∫
µ(s)ds

[
eTcs − 1

]
, (22)

respectively, which enable us to rewrite Eq. (20) in
the compact form

b3∂2xψ = (c− x)ψ. (23)

In Table II, we list key defined quantities used
throughout, along with definitions and interpreta-
tions of those quantities. [Note that we make
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a distinction between quantities defined purely by
the definitions in Table II (e.g., b and c) and the
phenomenological quantities to which they approx-
imately correspond (∆xf and ⟨xf ⟩, as we later
show).]
Similar manipulations can be carried out to ap-

proximate ξ(x) in Eq. (19), with both equations
solved by

ψ(x) ∝ ξ(x) ∝ Ai

(
c− x

b

)
. (24)

This implies that for x < xc,

f(x) ∝ e−TcxAi

(
c− x

b

)
, (25)

w(x) ∝ eTcxAi

(
c− x

b

)
. (26)

As discussed in Section III, we will take w(x) ≈ x
and f(x) ≈ 0 for x > xc. Provided that Tcb≫ 1, the
transition between these solutions will occur over a
narrow boundary layer, such that xc can be deter-
mined by enforcing continuity of w(x) and w′(x) at
x = xc (as done by Good et al. (2014), for instance).
This calculation is presented in Appendix B, with
the result

xc ≈ c+ |z0|b− 1/Tc, (27)

where z0 ≈ −2.34 is the least negative zero of Ai(z).
We note that xc is obtained by Fisher (2013) in the
“high-speeds” regime using an alternative “solvabil-
ity condition” for w(x) which yields the same result.

Relation to infinitesimal approximation. We
note that in the limit Tcs → 0 for relevant fitness
effects s (with Tcb ≫ 1 fixed), the solutions f(x)
and w(x) in Eq. (25) and Eq. (26), as well as xc
in Eq. (27), reduce to the corresponding quantities
obtained using the infinitesimal approximation. In
this limit,

Tc → σ2/2D

b→ D1/3

c→ σ4/4D,

(28)

where here, σ2 ≡ v −
∫
µ(s)sds corresponds to

the population-wide fitness variance, and D ≡
1
2

∫
µ(s)s2ds corresponds to a mutational diffusion

constant (an interpretation of which we provide in
Subsection VI). The above approximation can be
considered a generalized infinitesimal approxima-
tion; we further discuss the relation between our
approximation detailed above and the infinitesimal
approximation in the following Subsections.

A. The relation between Tc and N

Our derivation above made use of the phenomeno-
logical quantities Tc, b, c and v, which are functions
of the underlying parameters N and µ(s). We now
derive an additional equation relating these quan-
tities, which allows us to solve for Tc (and thus v,
as well as b and c) in terms of N and µ(s). To do
so, we enforce the condition

∫
f(x)w(x)dx = 1/N in

Eq. (11), using the approximate f(x) and w(x) in
Eq. (25) and Eq. (26), respectively. We emphasize
that the expressions in Eq. (25) and Eq. (26) are
only local approximations, valid within some range
of x. In the next Subsection, we will obtain and dis-
cuss conditions which ensure that Eq. (25) and Eq.
(26) are approximately valid within the important
region dominating 1/N =

∫
f(x)w(x)dx. The quan-

tity Nf(x)w(x) can be interpreted as a distribution
of fitnesses of future common ancestors, and given
f(x) and w(x) in Eqs. (25) and (26), evaluates to

Nf(x)w(x) ∝ Ai2
(
c− x

b

)
. (29)

The integral
∫
f(x)w(x)dx thus receives a dominant

contribution from the region |c − x| ∼ O(b). This
motivates us to refer to the region |c − x| ∼ O(b)
probed by our condition of validity as the fixation
class, since collectively, this region of fitness space
produces a future common ancestor of the popu-
lation with probability O(1), despite comprising a
small fraction of the total population.

To evaluate the integral in Eq. (11), we need
the overall constants of proportionality of f(x) and
w(x). Recall that the constant of proportional-
ity for w(x) was fixed by matching to the solution
w(x) ≈ x at x = xc. On the other hand, the overall
constant of proportionality of f(x) must be deter-
mined by the normalization condition

∫
f(x)dx = 1.

However, while our local approximation for f(x) in
Eq. (25) is valid near the nose, it is not necessar-
ily valid throughout the entire normalization inte-
gral

∫
f(x)dx, which is dominated by fitnesses near

the mean. Instead, we show in Appendix C that an
analogous local approximation can be applied to the
Laplace transform of f(x), which allows us to obtain
the relevant normalization,

f(x) ≈ exp

[
vT 2

c

2
−
∫
µ(s)ds

s

(
eTcs − Tcs− 1

)]
× e−Tcx

b
Ai

(
c− x

b

)
. (30)

Using this expression, we can obtain a relation be-
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FIG. 2 Averaged distributions of relative fitnesses, f(x), for simulated populations subject to beneficial mutations
with an exponential DFE, with values of Tcs̃ and s̃/b denoted above. A precise definition of s̃ is given in Subsection
IV.B. Note the logarithmic scale of the vertical axis. Filled circles represent the simulated distribution of relative
fitnesses, f(x), as obtained by averaging over measurements from 490 different epochs. Black ‘x’ markers represent
the simulated distribution of future common ancestor relative fitnesses, Nf(x)w(x). Blue and orange lines denote
theoretical predictions for f(x) obtained with the infinitesimal (IL) and MSSM approximations, respectively; green
lines denote predictions for f(x) obtained using the numerical saddle point approximation detailed in Appendix
C. In all cases f(x) is best-predicted by the numerical saddle point approximation, but the MSSM approximation
adequately predicts the behavior of f(x) within the region of x dominating

∫
f(x)w(x)dx. In panel A the infinitesimal

approximation adequately predicts f(x) for all x, which is expected since Tcs̃ < 1. Panels B and C correspond to
larger values of Tcs̃ for which the infinitesimal approximation begins to break down, particularly in the region of x
dominating

∫
f(x)w(x)dx.

tween Tc and N , µ(s) and xc,

Tc(xc − U)− vT 2
c

2
+

∫
µ(s)ds

s

(
eTcs − 1

)
≈ log [NxcTcb] . (31)

(Appendix B). By combining Eq. (27) and Eq. (31),
along with the definitions for Tc, b and c in Eqs.
(17), (21) and (22) it is possible to solve for Tc in
terms of N and µ(s). We therefore defined a simple
numerical routine to solve Eq. (27) and Eq. (31)
for a given choice of N and µ(s) (Appendix I). Al-
though we discuss analytical approximations to this
solution in Subsection IV.C, we use this numerical
solution for comparison with simulations throughout
the rest of this paper. We note that Eq. (31) can
be rearranged to provide the relationship between
Tc/N and the combinations TcU and the distribu-
tion of scaled effects Tcs. In this way, our approxi-
mation is well suited to describing the dynamics cor-
responding to given values of the quantities TcU and
Tcs, parameter combinations more often inferred in
natural settings (albeit often problematically, as our
analyses show) than NU and Ns.
We illustrate the fact that Eq. (30) is only a lo-

cally valid approximation—and the importance of
normalizing f(x) appropriately—in Fig. 2. There,
we compare our predicted f(x) with the same
quantity observed in simulations, for three exam-
ple parameter choices. In the same Figure, we

also plot histograms of future common ancestors
fitnesses–that is, the empirically measured distribu-
tion Nf(x)w(x)—obtained from simulations. We
can see that the prediction for f(x) in Eq. (30)
matches simulation results well in the region dom-
inating

∫
f(x)w(x)dx. Outside, this region, how-

ever, the prediction in Eq. (30) breaks down, and
would yield an incorrect constant of proportionality
if normalized “directly”—particularly in the region
of the MSSM regime that lies outside the infinites-
imal regime. For comparison, we also plot predic-
tions for f(x) obtained using the infinitesimal ap-
proximation (for details, see Appendix I), as well as
a numerical saddle point approximation we present
in Appendix C. While our numerical saddle point
approximation does yield improved accuracy in pre-
dicting the simulated f(x) throughout its “bulk”, it
has a negligible impact on global quantities of inter-
est such as v and pfix(s), which are dominated by
the behavior of f(x) and w(x) in the fixation class.
We therefore use only our analytical prediction for
f(x) in Eq. (30) throughout the remainder of this
article.
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B. Conditions of validity: a “moderate selection,
strong mutation regime”

The approximate solutions f(x) and w(x) given in
Eq. (25) and Eq. (26) are valid only within a lim-
ited region of fitness space. Our primary motivation
in solving for f(x) and w(x) is that these quantities
can be used to compute other dynamical quantities
such as v and ρf (s). These computations involve in-
tegrals of the form

∫
f(x)w(x+ s)dx (and our com-

putations of genetic diversity statistics in Section V
involve similar integrals as well). We can thus obtain
conditions of validity of our approach by demand-
ing that both f(x) and w(x) are well-approximated
in the region of fitness space dominating these inte-
grals. We will find that these conditions are most
readily expressed in terms of ρ(s) and the derived
quantities Tc and b, although these conditions can
straightforwardly be expressed in terms of the model
parameters N and µ(s) using the relation between
Tc and N given above.

In particular, as noted in the previous Subsection,∫
f(x)w(x)dx is dominated by the region |c − x| ∼

O(b). The same region dominates the integral used
to compute ρf (s),∫

f(x)w(x+ s)dx ∝

eTcs

∫
Ai

(
c− x

b

)
Ai

(
c− x− s

b

)
dx, (32)

as long as s≪ b. For s≪ b,

pfix(s) ≈
eTcs

N
(33)

follows from Eq. (32), and ρf (s) ∝ eTcsρ(s) (Ap-
pendix D). We therefore obtain a condition of va-
lidity of our approximation by ensuring that f(x)
and w(x) are well-approximated within the region
|c−x| ∼ O(b). We will see below that this condition
requires that s ≪ b for typical fixed effects s (i.e.
for the region of s which dominates

∫
s2ρf (s)ds),

so that f(x) and w(x) are also well-approximated
within the region dominating

∫
f(x)w(x + s)dx for

relevant s.

We obtain this condition of validity in Appendix
C. The basic idea is to ensure that the inverse
Laplace transforms of the linearized f(x) and w(x)
reduce to the approximate expressions in Eq. (25)
and Eq. (26). For relevant x, this will be true pro-
vided that a particular term can be neglected. By
ensuring, for |c−x| ∼ O(b), that this additional term
yields small corrections near saddle points of the in-

verse Laplace integral, we obtain the condition

S′
v ≡

∫
µ(s)eTcs

(
es/b − 1− (s/b)− 1

2 (s/b)
2
)
ds∫

µ(s)eTcs (s/b)2

2 ds
≪ 1.

(34)
Note that the condition Tcb ≫ 1 is required to jus-
tify the dominant balance approximation for w(x).
These conditions can be applied to determine the
suitability of the above approximations for popu-
lations subject to beneficial mutations, deleterious
mutations, or some combination of the two.

As anticipated above, under relatively mild as-
sumptions on ρ(s), the condition S′

v ≪ 1 is satisfied
if

s≪ b (35)

for s dominating
∫
ρf (s)s

2ds (i.e. if typical fixed
fitness effects s are much smaller than b in mag-
nitude). For bookkeeping purposes, it is useful
to define a maximum typical fixed fitness effect,
s̃ ≡ ⟨sf ⟩ + 2∆sf , where ⟨sf ⟩ and ∆sf are the av-
erage and standard deviation, respectively, of fixed
mutation effects. From Eq. (29), we also note that
∆xf ∼ b (where ∆x2f denotes the fitness variance of
future common ancestors). Given these definitions,
the conditions S′

v ≪ 1 and Tcb ≫ 1 can then be
written more compactly as

s̃≪ ∆xf , Tc∆xf ≫ 1 (36)

These conditions have dynamical interpretations
which we discuss in Subsection VI. Notably, be-
cause Tcs̃ < 1 is not required by our conditions,
selection on single mutations need not be weak. Be-
cause 1/Tc < s̃ ≪ ∆xf (or s̃ < 1/Tc ≪ ∆xf ) is
permitted, we refer to the regime of validity of our
approximation as a moderate selection, strong mu-
tation (MSSM) regime. [“Moderate selection” refers
to the requirement that s̃ < ∆xf , while “strong mu-
tation” refers to the requirement that clonal inter-
ference is strong.]

C. Specific example DFEs

We can gain more intuition about the MSSM regime
by solving for Tc (and therefore v) for a few concrete
example DFEs. In doing so, we can obtain expres-
sions for the validity of the MSSM approximation in
terms of the more experimentally accessible param-
eters N , U and ρ(s), although in doing so we make
further assumptions on the specific DFE considered.

Single beneficial fitness effect. The simplest
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such scenario is that of a single beneficial fitness ef-
fect sb. We begin by noting that when Tcsb ≪ 1 Eq.
(31) reduces to the well-known results

Tc ≈
1

sb

[
2
(sb
U

)
log
(
N3Us2b

)]1/3
, (37)

and

b ≈
(
Us2b
2

)1/3

(38)

from the infinitesimal limit (Good et al., 2014; Neher
and Hallatschek, 2013). We can see that Eq. (37) is
self-consistently valid (i.e. Tcsb ≪ 1, Tcb ≫ 1 and
sb ≪ b) when

U

sb
≫ log

(
N3Us2b

)
≫ 1. (39)

Note that this condition requires more than just
U ≫ sb; U/sb must also be larger than the large
parameter combination log

(
N3Us2b

)
.

In the opposite regime Tcsb ≫ 1, Eq. (31) reduces
to

Tc ≈
1

sb
log
[sb
U

logNU
]

(40)

and

b ≈ sb

(
logNU

log2
(
sb
U logNU

))1/3

(41)

which coincides with the “high-speeds” regime con-
sidered by Fisher (2013) (Appendix B). This is self-
consistently valid when

logNU ≫ log2
[sb
U

logNU
]
≫ 1. (42)

By combining Eq. (42) and Eq. (40), we can see
that there is a relatively smooth crossover between
the infinitesimal and “high-speeds” regimes when
U/sb ∼ logNU , where Tcsb ∼ O(1). For fixed U
and sb, the infinitesimal limit always breaks down for
sufficiently large N , while the “high-speeds” regime
is eventually valid for any sb and U .

Distributions of beneficial fitness effects.
More generally, as long as the DFE ρ(s) falls off

faster than exponentially with large positive s, con-
vergence to the MSSM regime is obtained in the limit
N → ∞. In this limit, previous work has shown that
the relevant integrals over µ(s)eTcs become increas-
ingly sharply peaked around a characteristic value,
such that ∫

skesTcµ(s)ds ≈ Ues
k
ee

seTc , (43)

where se coincides with the predominant fitness ef-
fect s∗ ≡ argmaxsρf (s) (Fisher, 2013). This shows
that short-tailed DFEs can be approximated by
an effective DFE with µ(s) = Ueδ(s − se) (Desai
and Fisher, 2007; Fisher, 2013; Good et al., 2012;
Hegreness et al., 2006). Moreover, under rather
general conditions, one can show that s∗ becomes
increasingly small compared to b as N (and there-
fore Tc) increases, so that the conditions of validity
of the MSSM approximation will be satisfied (Ap-
pendix G).

On the other hand, if ρ(s) falls off slower than ex-
ponentially with large positive s, the integrals in Eq.
(43) no longer converge, and the MSSM approxima-
tion cannot be applied. The case of an exponential
DFE (with mean effect size ⟨s⟩) is a marginal case,
since convergence will depend on the relative values
of Tc and ⟨s⟩, or equivalently, of Tc and ⟨sf ⟩. When
Tc ⟨sf ⟩ ≪ 1, the MSSM approximation reduces to
the infinitesimal approximation, as in the case of a
single beneficial effect. In the opposite case that
Tc ⟨sf ⟩ ≫ 1, we find that

Tc ⟨sf ⟩ ≈
√

2 ⟨s⟩ logN ⟨s⟩
U

(44)

and

b

⟨sf ⟩
≈
(
U

⟨s⟩

)1/3

. (45)

(Appendix G). The conditions Tc ⟨sf ⟩ ≫ 1, ⟨sf ⟩ ≪
b and Tcb ≫ 1 are then jointly satisfied, and the
MSSM approximation is valid, when

logN ⟨s⟩ ≫ U

⟨s⟩
≫ 1. (46)

Note that since Tc ⟨sf ⟩ ≈ Tc ⟨s⟩ /(1 − Tc ⟨s⟩) for an
exponential DFE, (1−Tc ⟨s⟩) is a small and positive
quantity in this case, such that the relevant integrals
converge. Note that the conditions in Eq. (46) differ
from those for a single beneficial fitness effect in Eq.
(42) in that U ≫ ⟨s⟩ is now explicitly required, no
matter how large the value of N . The opposite case,
in which ⟨s⟩ > U , cannot be described using the
MSSM approximation, and remains only partially
understood; for a discussion of this case, see Fisher
(2013).

Deleterious mutations in adapting popula-
tions.

The previous two examples have mostly recapit-
ulated earlier results for beneficial mutations in the
infinitesimal (Cohen et al., 2005; Hallatschek, 2011;
Neher and Hallatschek, 2013; Tsimring et al., 1996)
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and high-speed regimes (Fisher, 2013). A key ad-
vantage of our MSSM approximation is that it can
also be applied to scenarios with large numbers of
deleterious mutations, where few analytical results
are currently available.
As an example, we first consider a scenario where

beneficial and deleterious mutations have the same
effect size s, and occur at rates Ub and Ud respec-
tively. The infinitesimal approximation will once
again apply in the limit that Tcs ≪ 1, but qualita-
tively new behavior starts to emerge when Tcs≫ 1.
In this case, a useful simplification occurs in Eq.
(31): the contributions to the left-hand side are
exponentially suppressed for deleterious mutations,
with the exception of the Ud/s term. As a result, the
overall solution for Tc reduces to the purely benefi-
cial case in Eq. (40), but with an effective population
size

Ne ≡ Ne−Ud/s. (47)

in place of N .
The right-hand side of Eq. (47) is the classical

prediction for the number of mutation-free individu-
als that would exist at mutation-selection balance
(Haigh, 1978), prominent in discussions of back-
ground selection (Charlesworth et al., 1993). Our
results suggest that this simple approximation con-
tinues to apply in certain non-equilibrium settings
as well, even when the deleterious fitness costs are
small compared to the typical fitness variation in
the population. Although these strongly deleteri-
ous mutations are unable to fix, they can still af-
fect the evolutionary dynamics through the size of
the unloaded class, similar to the “background se-
lection” (Charlesworth, 1994) or “ruby in the rub-
bish” (Peck, 1994) behavior that has been observed
for single beneficial mutations. We emphasize that
this effective population size approximation was a
direct consequence of our mathematical expressions
in Eqs. (21) and (31). This provides a more rigor-
ous justification for previous ad-hoc approaches that
assumed that strongly deleterious mutations can be
treated in this way (Good et al., 2014; Söderberg and
Berg, 2007). We emphasize that the effective popu-
lation size in Eq. (47) does not denote a coalescence
timescale, as is often implied in the literature. In-
deed, the asymptotic expressions in Eqs. (40) and
(37) show that Tc will typically be much less than
Ne in the MSSM regime.
Together with Eq. (47), the conditions of validity

in Eq. (42) imply that the MSSM approximation
will be valid for sufficiently large N for any choice of
Ub, Ud and s. Note that while we have assumed that
sd = sb = s for simplicity above, this same argument

can be generalized to unequal selection strengths as
long as Tcsd ≫ 1. For example, if Tcsb ≪ 1, then
Tc will instead be described by the infinitesimal ap-
proximation in Eq. (37), with Ne = Ne−Ud/sd .

Background selection.
Finally, we can also apply our framework to the

case of purely deleterious mutations (often referred
to as “background selection”). For simplicity, we
will focus on the well-studied case where deleteri-
ous mutations have a single fitness cost sd. As
noted in previous studies (Good et al., 2014; Ne-
her and Hallatschek, 2013; Neher et al., 2013), this
scenario is well-described by the infinitesimal limit
when Tcsd ≪ 1, with sd replacing sb in Eq. (37). In
the opposite case where Tcsd ≫ 1, our MSSM ap-
proximations yield an alternative solution, in which

Tc ≈
1

sd
log

 U/sd

log
(

1
NUe−U/sd

)
 (48)

and

b ≈ sd

[
1

2
log

(
1

NUe−U/sd

)]1/3
. (49)

This solution is self-consistently valid (Tcsd ≫ 1,
sd ≪ b and Tcb≫ 1) when

1 ≪ log

(
1

NUe−U/sd

)
≪ U

sd
. (50)

For fixed values of U and sd, this condition will
always be violated for sufficiently large population
sizes (NUe−U/sd ≳ 1). This breakdown is consis-
tent with previous theory (Charlesworth, 1994; Cvi-
jović et al., 2018; Good et al., 2014) which predicts
that the large-N limit of the background selection
model approaches a nearly neutral regime, with a
coalescent timescale,

Tc = Ne−U/sd . (51)

Interestingly, Eq. (50) shows that the MSSM ap-
proximation can remain valid even for arbitrarily
large values of Tcsd, as long as the corresponding
values of U/sd are also sufficiently large. Thus, even
for purely deleterious mutations, the MSSM approx-
imation does not necessarily require that all muta-
tions have weak effects (i.e. that Tcsd ≪ 1). In
principle, strong clonal interference can occur even
for large scaled fitness effects (Tcsd ≳ 1), but only
in an increasingly narrow region of the underlying
parameter space.

This last point suggests an alternative way of look-
ing at the relation between Tc and N in Eq. (31). In
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FIG. 3 Comparison of theoretical predictions for the rate of change in mean fitness, v, to the corresponding rates
observed in simulations, for populations subject to an exponential DFE of beneficial mutations or deleterious muta-
tions. The color of each point denotes the ratio of simulated to predicted v for a set of parameters (with red and blue
indicating that theory underestimates or overestimates v, respectively, according to the scale at right). In panels A
and B, predictions are obtained using the MSSM approximation, while in panels C and D, predictions are obtained
using the infinitesimal (IL) approximation. The location of a point along the vertical axis denotes the value of Tcb for
its corresponding set of parameters (with Tc and b computed using the MSSM approximation in all panels), and the
horizontal axis denotes the value of s̃/b for that set of parameters (with s̃ ≡ ⟨sf ⟩+ 2∆sf ); curves of constant Tcs̃ are
denoted in gray. Panels A and C involve simulations of populations subject only to beneficial mutations (adapting
populations), and panels B and D involve simulations of populations subject only to deleterious mutations (ratcheting
populations). Simulated parameters are those lying on the constrained grid described below, and depicted in the
space of NU vs. N ⟨s⟩ in Fig. S1. The ‘x’ markers in D denote populations for which the infinitesimal approximation
predicts a rate of fitness change of the incorrect sign.

addition to solving for Tc as a function of the bare
parametersN , U and sd, it is also possible to directly
solve for NU as a function of the phenomenological
variables Tcsd and TcU :

logNU ≈ U

sd

(
1− (Tcsd)

2e−Tcsd

2

)
. (52)

This expression gives the underlying value of NU
that would be required for the MSSM regime to ap-
ply for a given value of Tcsd and TcU . This alterna-
tive view of the parameter space, in which Tcsd and

TcU are the “independent” parameters, is often more
natural in applied settings, where the phenomeno-
logical parameters are usually estimated from con-
temporary patterns of genetic diversity. This per-
spective will be useful for our discussion of nonsyn-
onymous site frequency spectra below.
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D. Simulation results

To complement our analytical predictions, we sim-
ulated populations subject either to only benefi-
cial mutations (adapting populations) or only dele-
terious mutations (ratcheting populations). Simu-
lated parameters N and µ(s) are chosen to corre-
spond with a grid with linearly spaced Tcb values,
and with logarithmically spaced Tc ⟨sf ⟩ values (for
adapting populations) or Tc ⟨s⟩ values (for ratchet-
ing populations), subject to the constraints Tcb > 1,
1 < NU < 105, 1 < N ⟨s⟩ < 103.5 and U/ ⟨s⟩ ≤ 104.
For ratcheting populations we add a further con-
straint that U/ ⟨s⟩ > 1. Simulated populations
have size 103 < N < 1.2 × 105. These constraints
are chosen both to limit attention to the MSSM
regime (and the region of parameter space where
it begins to break down) and to ensure feasibility of
our individual-based simulations. For each point on
these constrained grids, we (separately) simulated
populations subject to an exponential DFE, and to
a stretched-exponential DFE with steepness param-
eter β = 2. Details of the numerical implementation
of these simulations and choice of parameters are
given in Appendix H; in Fig. S1 we plot our con-
strained grid of simulation parameters in the space
of NU vs. N ⟨s⟩, colored by values of Tcb.

In Fig. 3, we plot our constrained grid in the
space of Tcb vs. s̃/b, with the color of each point
denoting the accuracy of either the MSSM approxi-
mation or infinitesimal approximation in predicting
the rate of change v in the mean fitness. For clarity,
we include only populations subject to an exponen-
tial DFE in Fig. 3. Plotting our simulation grid in
the space of Tcb vs. s̃/b enables us to verify that
predictions of the MSSM approximation are accu-
rate when our conditions of validity are met (roughly
speaking, when Tcb ≫ 1 and s̃ ≪ b). From Fig. 3,
we can see that our predictions for v are reasonably
accurate even for s̃/b ∼ O(1), as long as Tcb > 1.
Moreover, we can see that the infinitesimal approx-
imation breaks down even for small s̃/b when Tcs̃ is
large. In Fig. S2, we plot the same grid of simulated
populations in the space of NU vs N ⟨s⟩, colored by
vsim/vtheory.

To visualize the quantitative agreement between
simulations and our predictions more directly, we
plot the ratio vsim/vtheory as a function of the single
quantity s̃/b in Fig. 4, with points colored accord-
ing to their values of Tcb. We include, in Fig. 4,
simulated populations subject to a β = 2 stretched-
exponential DFE, as well as simulated populations
subject to an exponential DFE. In the same Figure,
we compare theoretical predictions of the fixation

rate of new mutations, given by

F = N

∫
µ(s)pfix(s) ≈

∫
µ(s)eTcsds, (53)

as well as the average fixed effect ⟨sf ⟩ and standard
deviation ∆sf in fixed effects, to measurements of
these quantities in simulations. Predictions for the
quantities ⟨sf ⟩ and ∆sf are obtained using the sim-
ulated ρ(s) and pfix(s) in Eq. (33). For each of these
quantities, we observe highly quantitative agreement
between simulations and theory for small and mod-
erate values of s̃/b.

V. STATISTICS OF GENETIC DIVERSITY

We now consider statistics of genetic diversity
within the MSSM regime. Our central quantity of
interest will be the frequency spectrum hs(ν) for a
single site with fitness effect s, which is defined such
that

Hsel(ν)dν ≡
∫
hs(ν)ρ(s)ds · dν (54)

gives the expected number of selected (non-neutral,
including both beneficial and deleterious) mutations
per site with frequencies between ν and ν + dν. We
will also consider an analogous aggregate quantity

Hneu(ν) ≡ h0(ν) (55)

defined for a subset of putatively neutral sites (e.g.
synonymous sites, short introns, etc). These site
frequency spectra are important statistics that are
often used to make inferences regarding the evolu-
tionary forces acting within a population (Nielsen,
2005). Several empirical studies have drawn infer-
ences on the presence and strength of selection act-
ing in a population based on differences in the site
frequency spectrum among synonymous (i.e. mostly
neutral) and nonsynonymous (i.e. more selected)
mutations (Eyre-Walker et al., 2006). The key idea
underlying these approaches is simple: because syn-
onymous and nonsynonymous sites (which are in-
terdigitated throughout the genome) share the same
demographic history, differences in their patterns of
diversity can be attributed to (positive or negative)
selection on nonsynonymous mutations (McDonald
and Kreitman, 1991). The ability to make inferences
using this line of thinking requires predictions for
hs(ν) (Hartl et al., 1994; Sawyer and Hartl, 1992),
which are lacking for rapidly evolving populations.

In the following subsections, we develop analyt-
ical predictions for these neutral and selected site
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FIG. 4 Comparison between simulated and predicted rate v of fitness change (A), rate F of mutation accumulation
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are subject to only beneficial mutations; populations in the right column are subject to only deleterious mutations.
Predictions are obtained using the MSSM approximation; quantitative agreement between simulations and predictions
is obtained as long as s̃/b ≲ O(1). Simulated sets of parameters lie on the same (constrained) grid considered in Fig.
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frequency spectra in the MSSM regime, noting im-
portant departures from the classical intuition in Eq.
(1). We demonstrate that hs(ν) and h0(ν) are sim-
ply related by a constant factor above a character-
istic frequency νc ≪ 1, which is not simply summa-
rized by the scaled selection coefficient Tcs. Building

on previous work (Desai et al., 2013; Fisher, 2013;
Neher and Hallatschek, 2013), we also demonstrate
a partial correspondence between the genealogies in
our model and the Bolthausen-Sznitman coalescent,
and we analytically describe the departures from the
BSC SFS that can be observed at low frequencies.
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Compared to the BSC SFS, we find that the func-
tional form of these departures provides substan-
tially greater power to distinguish different parame-
ter combinations. Finally, we compute the pairwise
heterozygosity for selected and neutral mutations,
and demonstrate a correspondence between the pair-
wise coalescence time ⟨T2⟩ and the quantity Tc de-
fined in Eq. (17). In the Discussion, we consider
implications of our results in the context of the pop-
ulation genetic inference methods described above.

1. The site frequency spectrum: basic formalism

To calculate hs(ν), it will be useful to first consider
the discrete version,

Ps(k|m) ≡
∫ (

m

k

)
νk(1− ν)m−khs(ν)dν, (56)

which gives the normalized probability of observing
a mutation in exactly k individuals in a random sam-
ple of size m. The continuous version can be recov-
ered by taking the limit of large sample sizes:

hs(ν) ≡ lim
m→∞

mPs(νm|m). (57)

One advantage of switching to Ps(k|m) is that it can
be rewritten as an average over lineages defined at
different times in the past:

Ps(k|m) = µ

∫ ∞

0

(
m

k

)
Λs
m,k(t)dt, (58)

where µ is the per-site mutation rate and

Λs
m,k(t) = N

〈(
ns(t)

ns(t) +
∑N−1

i=1 ni(t)

)k

×

( ∑N−1
i=1 ni(t)

ns(t) +
∑N−1

i=1 ni(t)

)m−k〉
. (59)

In this equation, ns(t) denotes the present-day size
of a lineage founded by a mutation with effect
size s that occurred t generations ago, while the
{ni(t)}N−1

i=1 represent the lineages founded by the re-
maining N − 1 individuals that were alive at that
time. Eq. (58) can be interpreted as integrating
over the possible times a mutation last occurred at
a given site. This mutation could have occurred on
any of the N possible genetic backgrounds in the
population. Given that it did occur, it will be ob-
served in k individuals in the present with probabil-
ity
(
m
k

)
Λs
m,k(t)/N .

We note that in the special case of a neutral site
(s = 0), the quantity Λ0

m,k(t) can be interpreted as a

merger probability within a corresponding coalescent
model. That is, Λ0

m,k(t) gives the probability that in
a sample of size m, a particular set of k individuals
share a common ancestor at t generations into the
past, and the remaining m − k individuals do not
trace back to that same ancestor. Related merger
probabilities (defined slightly differently) are consid-
ered by Neher and Hallatschek (2013) to show a cor-
respondence between genealogies in the infinitesimal
regime and those of the Bolthausen-Sznitman coa-
lescent (BSC). Below, we follow a similar approach
to simplify the quantities Λs

m,k(t) used in our cal-
culation of the selected site frequency spectrum. In
Appendix E, we use our calculated Λ0

m,k(t) to explic-
itly demonstrate a (partial) correspondence with the
BSC in the MSSM regime, and highlight key ways
in which our results differ from those of Neher and
Hallatschek (2013).

To simplify Eq. (59), we make the key approxima-
tion that each of ni(t) and ns(t) evolve as a collec-
tion of independent branching processes described
by Eq. (9) (Desai et al., 2013; Fisher, 2013; Ne-
her and Hallatschek, 2013). That is, we assume the
fates of lineages are coupled only through the av-
erage rate of adaptation, which is shaped by inter-
ference as calculated in Section IV. The identity
Γ(m)C−m =

∫∞
0
dzzm−1e−zC then yields

Λ0
m,k(t) ≈ (−1)m

N

Γ(m)

×
∫ ∞

0

dzzm−1∂kz

〈
e−zn(t)

〉
∂m−k
z

〈
e−zn(t)

〉N−1

,

(60)

where, since the {ni(t)}N−1
i=1 are identically dis-

tributed, we have dropped the subscripts i in writing
n(t). As we discuss in Appendix A,〈

e−zn(t)
〉
≈ e−Φ0(z,t), (61)

where Φ0(z, t) ≡
∫
f(x)ϕz(x, t)dx, and where

ϕz(x, t) satisfies

∂tϕz(x, t) = −v∂xϕz(x, t) + xϕz(x, t)

+

∫
µ(s) [ϕz(x+ s, t)− ϕz(x, t)] ds− ϕ2z(x, t),

(62)

with initial condition ϕz(x, 0) = z > 0; more gener-
ally, 〈

e−zns(t)
〉
≈ e−Φs(z,t), (63)

with Φs(z, t) ≡
∫
f(x− s)ϕz(x, t)dx.
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A detailed analysis of Eq. (62) is conducted by
Fisher (2013), which we review and extend in Ap-
pendix A. The key results we use here are that

Φ0(z, t) ∝ ze
1−t/Tc

, (64)

for b(t− Tc) ≫ 1, over the region of z that will turn
out to dominate the integral in Eq. (199), and that
for t < Tc −O(1/b), Φ0(z, t) is approximately linear
in z. In Appendix E, we show, using the properties
of ϕz(x, t) discussed in Appendix A along with our
result for f(x) in Eq. (25), that

Λs
m,k(t)

Λ0
m,k(t)

≈ Φs(z, t)

Φ0(z, t)
≈

est t < Tc

esTc t > Tc

, (65)

provided that |s| ≪ b. The relevant site frequency
spectra then can then be obtained by substituting
these expressions into Eq. (58) and integrating over
time.

2. The ratio between the selected and neutral SFSs

The simple behavior of Eq. (65) suggests that the
ratios of neutral and selected site frequency spectra
may take on a particularly simple form in certain
regimes. For example, if we consider frequencies ν =
k/m that are sufficiently large that the integrals in
Eq. (58) are dominated by times greater than Tc
(we discuss the minimum frequencies required for
this assumption below), then the time-independent
behavior of Eq. (65) immediately implies that

hs(ν)

h0(ν)
= lim

m→∞

Ps(νm|m)

P0(νm|m)
≈ eTcs , (66)

when |s| ≪ b. Since pfix(s) ≈ 1
N e

Tcs, we can also
write this as

hs(ν)

h0(ν)
≈ pfix(s)

pfix(0)
. (67)

In this range of frequencies, Eq. (67) predicts that
neutral and selected site frequency spectra are sim-
ply proportional to one another, and that the con-
stant of proportionality is equal to the ratio of their
fixation probabilities.
By summing over sites, we can obtain an analo-

gous result for the aggregate site frequency spectra,

Hsel(ν)

Hneu(ν)
≈ F

U
, (68)

where F ≡ N
∫
µ(s)pfix(s)ds is the total fixation rate

of the selected mutations defined in Eq. (53). Re-
call that we have defined these aggregate quantities

so that a (rough) analogy can be drawn between
Hneu(ν) and the distribution of synoynmous site fre-
quencies, and between Hsel(ν) and the distribution
of nonsynonymous site frequencies. Under this anal-
ogy, the right-hand side of Eq. (68) corresponds to
dN/dS—the ratio of nonsynonymous to synonymous
divergence rates (adjusted, as usual, for differences
in mutation rates among the two types of mutations)
(Yang and Bielawski, 2000).

In Fig. 5, we plot the ratio between Hsel(ν) and
Hneu(ν) as measured in simulations for a subset of
the populations considered in Fig. S3. In all cases,
the ratioHsel(ν)/Hneu(ν) approaches F/U as ν → 1.
This can be understood as a consequence of the fact
that mutations already present at the very highest
frequencies will drift neutrally to (or away from) fix-
ation. In contrast, as ν → 0, Hsel(ν)/Hneu(ν) → 1
for all cases depicted in Fig. 3 (and thus Eq. (67)
breaks down). This is also to be expected: mu-
tations observed at sufficiently low frequencies will
have occurred at short enough times into the past
that their fates have not yet been substantially im-
pacted by selection.

The behavior we see in these extreme limits is also
observed in the independent sites model in Eq. (1)
(Hartl et al., 1994; Sawyer and Hartl, 1992). How-
ever, these classical results predict that the high
frequency limit only applies for extremely large fre-
quencies (1 − ν ≪ 1/|Tcs| ≪ 1). In contrast, Fig.
5 shows that Hsel(ν)/Hneu(ν) ≈ F/U over a much
broader range of intermediate frequencies in the
MSSM regime. This has important consequences for
the interpretation of population-genetic data, and in
particular for application of the “asymptotic alpha”
approach introduced by Messer and Petrov (2013);
we comment on this further in the Discussion. Sim-
ilarly, the independent sites model in Eq. (1) pre-
dicts that the deleterious site frequency spectrum
will start to differ from its neutral counterpart when
ν ≳ 1/Tc|s|. In contrast, Fig. 5 shows that the fre-
quency scale at which Hsel(ν) and Hneu(ν) start to
differ is not given by 1/Tc|s| in the MSSM regime;
we discuss related implications for estimates of Tcs
in the Discussion.

Importantly, from Fig. 5 it is clear that the shapes
of SFS ratio curves—and in particular, the frequency
scale on which they transition from 1 to F/U—do
not depend simply on Tc ⟨s⟩ (or, equivalently, on
Tc ⟨sf ⟩); a given value of Tc ⟨s⟩ is compatible with
SFS ratio curves which differ substantially, and the
parameter Tcb is equally if not more important in
determining the crossover frequency scale. Empiri-
cally, we can see that variation of SFS ratio curves
(and the crossover frequency scale) is largely medi-
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FIG. 5 Ratio between selected and neutral SFSs, scaled by the ratio between selected and neutral mutation rates,
for adapting populations (A) and ratcheting populations (B) subject to a single-effect DFE with Tcs values denoted
in each panel. Ratio curves are plotted on a log scale, and are scaled such that tick marks correspond to the values
of

√
F/U and F/U averaged over simulation runs, for each curve (with F the fixation rate of selected mutations,

either beneficial or deleterious). Each curve corresponds to a simulated population with parameters lying on the
constrained grid depicted in Fig. S3; for each panel, the represented Tcb values are linearly spaced.

ated by the quantity Nσ, another population-level
quantity; note that σ2 = v − U ⟨s⟩ denotes the
population-wide fitness variance. To see this across
a broad range of parameters, for each observed SFS
ratio curve we identified, using spline interpolation,
the frequency νc at which Hsel(ν)/Hneu(ν) reaches√
F/U (the half-maximum of Hsel(ν)/Hneu(ν) in

log-space). In Fig. 6, we plot these crossover fre-
quencies νc a function of our MSSM approximation
predictions for Nσ, with points colored by Tc ⟨sf ⟩
values (for adapting populations) or Tc ⟨s⟩ values
(for ratcheting populations). We can see a simple
power law dependence of νc on Nσ; parameter com-
binations with similar Nσ values have similar νc val-
ues, even if their values of Tc ⟨s⟩ differ substantially.
This echoes findings of Good et al. (2014) in the in-
finitesimal regime; in that work, a similar collapse
is found for the dependence of the neutral heterozy-
gosity. In Fig. S4, we plot the full SFS ratio curves
for the same set of parameter combinations, colored
by Nσ values; there we can see that variation in full
SFS ratio curves (in addition to the crossover fre-
quency νc) is largely mediated by variation in Nσ.

Together, these results suggest that efforts to in-
fer the distribution of scaled effects Tcs using ex-
isting approaches (e.g Bustamante et al. (2001);
Eyre-Walker et al. (2006)) which “fit” the neutral
and selected SFSs may fail when applied to rapidly
evolving populations such as those considered here.
In particular, these classical results cannot explain
the marked dependence of SFS ratio curves on Tcb
and/or Nσ observed above for fixed values of Tc ⟨s⟩.

3. The neutral and selected site frequency spectra

We now proceed to compute the neutral and se-
lected SFSs directly. In Appendix E, we use the
merger probabilities Λ0

m,k(t) calculated using Eq.
(60) and Eq. (64) to simplify Eq. (58), with the
result

P0(k|m) ≈ Tcµ

(
m

k

)
×
∫ 1

0

sinπy

πy
B (k − y,m− k + y) dy, (69)
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FIG. 6 Dependence of the crossover frequency νc on Nσ. Simulated populations in (A) are subject to an exponential
DFE, while simulated populations in (B) are subject to a single-effect DFE. For adapting populations (left) points
are colored by their values of Tc ⟨sf ⟩, while for ratcheting populations (right) points are colored according to their
values of Tc ⟨s⟩. Values of Nσ are computed using the MSSM approximation with σ2 = v−U ⟨s⟩. For the exponential
DFE case, parameters correspond to those on the constrained grid described above and depicted in Fig. S1. For the
single-effect DFE case, parameters correspond to the points on a similar constrained grid in the space of Tcb vs. Tcs,
depicted in the space of NU vs. Ns in Fig. S3. For clarity, we have displayed only points corresponding to simulated
populations with ⟨sf ⟩ < 3b (such that the MSSM approximation does not break down) and Tc ⟨sf ⟩ > 1/4 (such that
the neutral and selected SFSs differ substantially at high frequencies).

where B(x, y) is the Beta function satisfying
B(x, y) = Γ(x)Γ(y)/Γ(x+ y). Up to an overall scale
factor, P0(k|m) in Eq. (69) matches the SFS cor-
responding to the BSC, recently calculated by Ker-
sting et al. (2019) directly from the BSC partition
structure. Thus, similar to previous work (Desai
et al., 2013; Kosheleva and Desai, 2013; Neher and
Hallatschek, 2013), Eq. (69) implies a correspon-
dence between genealogies in the MSSM regime and
those of the BSC—at least for aspects of genealogies
which determine the average SFS at the moderate
to high frequencies for which Eq. (69) is valid. We
will refer to the large-m limit of mP0(νm|m) with
P0(k|m) given by Eq. (69) as hBSC

neu (ν), and provide
an expression for hBSC

neu (ν) in terms of special func-
tions in Appendix E.

The quantity hBSC
neu (ν) well approximates the ac-

tual SFS Hneu(ν) only for ν such that typical ob-
served mutations have ages t satisfying b(t−Tc) ≫ 1.
The time integral yielding Eq. (69) is dominated by

times b(t − Tc) ≫ 1 only when log(1/ν) ≪ Tcb. At
lower frequencies such that log(1/ν) ≫ Tcb, muta-
tions with ages b(t − Tc) = O(1) make a dominant
contribution to the SFS. Fortunately at these lower
frequencies, fluctuations in the size of a focal lin-
eage make a small contribution to the denominator
of Eq. (59). As a result, the SFS can be calculated
by considering the marginal distribution of a single
lineage, which is encoded by the generating function〈
e−zn(t|x)〉 ≈ e−ϕz(x,t). In Appendix A we carry
out an analysis of ϕz(x, t) on fitness scales O(b) and
time scales O(1/b), extending the previous analysis
of ϕz(x, t) conducted by Fisher (2013). In Appendix
E we show how this generating function can be in-
verted to obtain an approximation for hneu(ν),

hAiry
neu (ν) ≡ − Tcµ

ν2(Tcb)2

× [log Ai]
′′
(
−|z0|+

1

Tcb
log

1

ν

)
. (70)
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In the limit 1
Tcb

log 1
ν ≪ 1,

hAiry
neu (ν) → Tcµ

ν2 log2(1/ν)
, (71)

which is precisely the asymptotic behavior of
hBSC
neu (ν) as ν → 0; thus the two functions
hAiry
neu (ν) and hBSC

neu (ν) have a smooth crossover at
1

Tcb
log(1/ν) ∼ 1. In principle, our predictions

hAiry
neu (ν) and hBSC

neu (ν) could be connected by asymp-
totic matching. Notably, hBSC

neu (ν) depends on the
parameters N and µ(s) only via the overall scale
factor Tcµ, which reflects the overall fixation rate
of neutral mutations over the timescale Tc of coa-
lescence. In contrast, hAiry

neu (ν) depends separately
on the quantities Tcµ (which again sets an overall
scale factor) and Tcb. This suggests that for the
purposes of distinguishing between (and potentially
inferring) evolutionary parameters, an understand-
ing of the low-frequency portion of the SFS is par-
ticularly important.
Both hAiry

neu (ν) and hBSC
neu (ν), however, neglect the

contribution of mutations with ages t such that
b(t−Tc) is large and negative. To capture the contri-
bution of mutations with ages t < Tc, a determinis-
tic approximation is useful. Under such an approx-
imation, the frequency of an observed mutation—
and its age—precisely determine the relative fitness
of the ancestral background on which the mutation
must have arisen. The contribution to the SFS
from ages t < Tc can then be obtained by inte-
grating over the times at which a mutation may
have occurred, weighted by the corresponding prob-
abilities with which the mutation arose on a back-
ground with the respective requisite fitness. A par-
ticularly simple approximation, introduced by Ne-
her and Shraiman (2011), can be made by assuming
that mutations arise within the “bulk” of the fitness
distribution (which is well-described as a Gaussian

f(x) ∝ e−x2/2σ2

, with variance σ2 = v − U ⟨s⟩) and
by approximating n(t|x)—the deterministic lineage
size at time t, given a founding background fitness
x—as n0e

xt−σ2t2/2 (where n0 denotes the size of a
lineage upon establishing, at which point its lineage
begins to grow deterministically, under this approx-
imation). This yields a resulting SFS approximated
by

hGaussian
neu (ν) ≡ µ

σν2
√
2 logNσν

. (72)

In Appendix E, we generalize the above argument
to the regime in which mutations arise outside the
“bulk” of the fitness distribution, or at times such
that the approximation n(t|x) ≈ n0e

xt−σ2t2/2 breaks

down by the time the mutation is observed. A key
simplification arises because of a relation between
the deterministic lineage sizes n(t|x) and the Laplace
transform f̃(z) of f(x). We find that more generally,
the deterministic contribution to the SFS is given by

hDeterministic
neu (ν) ∝ 1

ν2
d log νpeak
dtpeak

∣∣∣∣
νpeak=ν

(73)

where νpeak(tpeak) is the frequency at which a lineage
peaks in size, given its peak size occurs at time tpeak
(which in turn can be expressed as a function of the
lineage’s initial relative fitness x); the derivative in
Eq. (73) is evaluated at tpeak such that νpeak =
ν. The applicability of Eq. (73) reflects the fact
that the contribution of any particular lineage to
the time-averaged SFS is typically dominated by the
time the lineage spends near its peak in size; this
intuition has been used to calculate the SFS in the
presence of purifying selection, for example (Cvijović
et al., 2018). As we show in Appendix E, Eq. (73)
can easily be approximated when stpeak ≪ 1 for
relevant s in µ(s), or when b(tpeak−Tc) ≪ 1, and can
be evaluated more generally by numerically solving
a simple equation for tpeak in terms of νpeak. In the
limit stpeak ≪ 1 (which occurs for sufficiently low
ν), we find that hDeterministic

neu (ν) tends to hGaussian
neu (ν)

given in Eq. (72), as expected.
Finally, at the very lowest (and highest) frequen-

cies, the SFS is dominated by completely neutral ge-
netic drift. A well-known result is that h(ν) = 2Neµ

ν
for a neutrally evolving population with effective
population size Ne (Crow et al., 1970); at sufficiently
low frequencies, mutations contribute in the same
way to the SFS, since selection has not yet had suf-
ficient time to alter their fates substantially (Cvi-
jović et al., 2018). As a rough heuristic, we might
expect this result to hold with Ne/N equated to

1√
2πσ2

∫ 1/(Nν)

−1/(Nν)
e−x2/2σ2

dx = erf
(

1√
2Nσν

)
, the frac-

tion of individuals in the “bulk” of the fitness dis-
tribution which will typically reach a frequency ν
in the population before establishing (i.e., reach a
frequency ν primarily by genetic drift as opposed
to by deterministic forces, contingent on reaching a
frequency ν). We thus define

hDrift
neu (ν) ≡ 2Nµ

ν
erf

(
1√

2Nσν

)
, (74)

which has a relatively smooth crossover to
hGaussian
neu (ν) at ν ≈ 2/(Nσ), roughly the thresh-

old frequency which most mutations founded in the
“bulk” of the fitness distribution will not reach be-
fore establishing. A similar argument suggests that
hneu(ν) → 2Nµ as ν → 1, although we have not
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worked out a heuristic for the dependence on ν in
this limit.
The transitions between these frequency regimes

are smoothly varying crossovers. To obtain concrete
predictions, it is useful to consider a piecewise ap-
proximation,

HPW
neu (ν) ≡



hDrift
neu (ν) ν < 2/(Nσ)

hAiry
neu (ν) + hGaussian

neu (ν) 2/(Nσ) < ν < e−Tcb

hBSC
neu (ν) + hGaussian

neu (ν) e−Tcb < ν < 1/2

min
[
hBSC
neu (ν) + hGaussian

neu (ν), 2Nµ
]

ν > 1/2

, (75)

where hBSC
neu (ν), hAiry

neu (ν), hGaussian
neu (ν), hDrift

neu (ν) are
given above. Note that mutations with ages t < Tc
(accounted for by hGaussian

neu (ν)) and with ages t > Tc
or b(t − Tc) = O(1) (accounted for by hBSC

neu (ν) and
hAiry
neu (ν), respectively) contribute additively to the

SFS, which motivates the inclusion of the sums in
Eq. (75). hGaussian

neu (ν) is important primarily for
ν < e−Tcb—and over a broad range of log ν, both
hGaussian
neu (ν) and hAiry

neu (ν) are important—but is re-
tained for ν > e−Tcb to ensure a smooth piecewise
curve. In Fig. 7, we compare the predicted SFSs
given by Eq. (75) to neutral SFSs observed in sim-
ulations. In the same Figure, we compare simu-
lated selected SFSs to predicted selected SFSs ob-
tained using a piecewise-defined function HPW

sel (ν).
This function is defined completely analogously to
HPW

neu (ν) in Eq. (75), with analogous contributions

hDrift
sel (ν), hGaussian

sel (ν), hAiry
sel (ν), and hBSC

sel (ν) from
selected mutations. The only differences are that µ
is replaced by µF/U in hAiry

sel (ν), hBSC
sel (ν), and in the

upper limit to hPW
sel (ν) imposed by 2Nµ. These re-

placements are justified because the contributions to
hAiry
sel (ν) and hBSC

sel (ν) from a mutation with fitness
effect s both involve overall factors of eTcs (which, in-
tegrated over ρ(s), yield a factor F/U). We provide
further comparison of HPW

neu (ν) and HPW
sel (ν) with

simulated site frequency spectra in Fig. S5, Fig. S6,
Fig. S7 and Fig. S8.

Based on these considerations, νc should lie at a
frequency such that hGaussian

sel (νc) is of comparable

magnitude to hAiry
sel (νc), and should obey the approx-

imate bound

Tcb ≲ log

(
1

νc

)
≲ logNσ. (76)

In Fig. S9 we verify that Eq. (76) is satisfied
for the populations shown in Fig. 6 for large Nσ.
We leave a more complete analytical description of
the crossover frequency νc, as well as the precise

frequency-dependence of hsel(ν)/hneu(ν) at the low-
est frequencies O

(
1

Nσ

)
, for future work.

4. Pairwise heterozygosity and coalescence times

A special case of the neutral site frequency spec-
trum is the pairwise neutral heterozygosity πneu ≡
P0(1|2). More generally, we can consider the pair-
wise heterozygosity Ps(1|2) for a single selected
site as well as the aggregate heterozygosity πsel ≡∫
Ps(1|2)ρ(s)ds. With these definitions, πneu and

πsel can both be computed using Eq. (69) and the
SFS ratio given in Eq. (67). These expressions, how-
ever, are obtained under the assumption that typical
contributing mutations have ages t > Tc. In reality,
πneu (as well as, rather generally, πsel) receives a sub-
stantial contribution both from mutations with ages
t > Tc and from mutations with ages t < Tc. In Ap-
pendix E we show, using the approximate behavior
of Φs(z, t) for t > Tc and for t < Tc, that

Ps(1|2)ds ≈ 2Tcµ

(
eTcs +

eTcs − 1

Tcs

)
, (77)

where the second term in Eq. (77) can be consid-
ered the contribution to Ps(1|2) from mutations with
ages t < Tc. This term, which can alternatively be

written as 2µ
∫ Tc

0
estdt, can be interpreted as follows:

mutations with ages t≪ Tc are present at expected
frequency est/N , with a negligible fraction of muta-
tions shared among sampled individuals. We note
that the s→ 0 case of Eq. (77) reduces to

πneu = 4Tcµ (78)

Since πneu is related to the mean time ⟨T2⟩ to pair-
wise coalescence according to πneu = 2Un ⟨T2⟩, Eq.
(78) then implies that

⟨T2⟩ ≈ 2Tc. (79)
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FIG. 7 Site frequency spectrum of neutral mutations (A and B) and of selected mutations (C and D). Colored lines
denote SFSs observed in simulations, averaged over at least 800 epochs and smoothed using a moving average box
kernel smoother. Solid black lines denote the corresponding theory predictions of the piecewise-defined function in
Eq. (75) or its generalization to the selected SFS; for each theory curve, the ‘x’ marker denotes the point at which
ν = e−Tcb, and the circle marker denotes the point at which ν = 2/(Nσ). Dashed black lines denote the BSC
prediction hBSC(ν) for the parameter combination with the largest value of Tcb in each panel (with BSC predictions
for other parameter combinations simply shifted by a constant factor). All SFSs and theory curves are normalized by
our theoretical prediction for h(1/N), which is 2N2U for selected mutations and 2N2Un for neutral mutations. In all
cases populations are driven by an exponential DFE. Simulated parameters are chosen with Tc ⟨sf ⟩ = 1 for adapting
populations, and with Tc ⟨s⟩ = 1 for ratcheting populations; in both cases Tcb values are linearly spaced and denoted
by the color of each curve. Note that each simulated SFS terminates at the frequencies ν = 1/N and ν = 1− 1/N at
which we denote simulated SFS values by square markers.

That is, the defined quantity Tc corresponds with
(one-half) the average time ⟨T2⟩ to pairwise coales-
cence, motivating our interpretation of Tc as a co-
alescence timescale. In Appendix E, we obtain the
same result by considering the time-dependent pair-
wise merger probability Q2(t) = Λ2,2(t). Our cal-
culation in Appendix E also yields the distribution
of times to pairwise coalescence (and relatedly, the
distribution of the pairwise neutral heterozygosity);
we find the same exponential distribution of pairwise
coalescence times, following an initial delay period

of time Tc during which coalescence events are neg-
ligible, observed by Neher and Hallatschek (2013)
in the infinitesimal regime (with a different overall
timescale).

In Fig. 8, we compare our predictions in Eq. (77)
for πneu and πsel to averages of these quantities mea-
sured in simulations. We find good agreement be-
tween simulations and our prediction, provided the
MSSM approximation conditions of validity are met,
though agreement appears to require larger values of
Tcb than for the quantities considered in Fig. 4. We
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note also that a separate prediction for π can be ob-
tained from the piecewise approximation to the site
frequency spectrum in Eq. (75), using the relation
π = 2

∫
h(ν)ν(1− ν)dν. We compare this prediction

to the observed values of πneu and πsel in Fig. S10;
a similar level of agreement is obtained.

VI. KEY FITNESS SCALES AND TIMESCALES:
SIMPLE HEURISTICS

We now turn to summarize the different interpre-
tations that can be given to the quantities Tc, b and
c defined above, and provide a heuristic description
of the dynamics within the MSSM regime. We be-
gin by noting that the distribution Nf(x)w(x) of
future common ancestors fitnesses is peaked with
width ∆xf ∼ O(b) around x∗f ≈ c+b ∼ c. This is our
motivation for defining the region x = c+O(b) as the
fixation class, since collectively, this region (of width
approximately |z0|b) fixes with probability O(1), de-
spite its small size relative to the total population.
In Appendix C, we show how our approximate solu-
tions f(x) and w(x) in Eq. (25) and Eq. (26) can
be considered local approximations, valid precisely
around x = c; we obtain a condition of validity for
the MSSM regime by ensuring the region of validity
of this local approximation encompasses the entire
fixation class.

1. Competition among the fixation class, and the fates of
“doomed” lineages

Our condition of validity for the MSSM regime,
expressed in Eq. (34), essentially requires that s ≪
∆xf throughout the region dominating

∫
s2ρf (s)ds.

In this sense, mutational effects can be considered
“infinitesimal” in the MSSM regime: the typical
fixed fitness effect s̃ must be much smaller in magni-
tude than the range of fitness space which typically
produces a future common ancestor (i.e., the width
of the fixation class). Dynamically, this means that
individuals routinely fix despite having fitness dis-
advantages, compared to the most-fit individuals in
the population, of several times (up to ∆xf/s̃ times)
the typical fixed fitness effect s̃. These individuals
catch up and fix not by acquiring a single large-effect
beneficial mutation, but rather by rapidly acquiring
several mutations (and/or by avoiding deleterious
mutations) so as to “leapfrog” above their more-fit
competitors. Less-fit individuals are exponentially
less likely to fix—with 1/Tc the fitness scale on which
fixation probabilities vary—but there are also expo-
nentially more of such individuals; over the fitness

scale ∆xf ≈ b, the two exponential factors cancel,
leaving a relatively broad range of background fit-
nesses which routinely supply a future common an-
cestor. Intuitively, it makes sense that this behav-
ior is obtained for high mutation rates (relative to
the size of selective effects), but as we have shown,
this behavior also arises for sufficiently large popu-
lation sizes (as long as ρ(s) falls off faster than ex-
ponentially with large, positive s). The infinitesi-
mal regime constitutes a special case of the MSSM
regime in which mutations are “infinitesimal” in a
more narrow sense: in the infinitesimal regime, se-
lection acts in a negligible way on any individual
mutation.

In contrast, in the “moderate-speeds” regime,
∆xf ∼ s̃: nearly all future common ancestors come
from within one “predominant” effect s̃ of the nose
(Fisher, 2013; Good and Desai, 2014). The lineages
of individuals lying more than one multiple of s̃ be-
low the nose are essentially “doomed” to eventually
go extinct, and the chance with which these individ-
uals leapfrog above their more-fit competitors can
be ignored. As a result, in analyzing the “moderate-
speeds” regime several simplifications can be made.
For instance, in treating a population as a set of
discrete fitness classes (separated by predominant-
effect mutations), mutations are only important only
via their potential to establish a new “lead” fitness
class (Desai and Fisher, 2007), and can thus be ig-
nored in fitness classes below the current lead class.
Once a new lead class is established, the frequencies
of lineages, within the previous lead class, can be
treated as “frozen”. Each prior lead class will grow
in size—while losing relative fitness at rate v—and
will eventually comprise a large fraction of the total
population, and at that point the frequencies of in-
dividual lineages within the class will have changed
negligibly. This approximation has been used to sim-
plify calculations of genetic diversity statistics and
sojourn/fixation times of mutations (Desai et al.,
2013; Kosheleva and Desai, 2013).

In the MSSM regime, it is less useful to model a
population as a set of discrete fitness classes, since
lineage frequencies are at no point “frozen” within
fitness classes. Instead, lineages continue to ac-
quire mutations, and spread out in relative fitness
as they fall behind the nose. To connect the dynam-
ics of the fixation class with the dynamics of the
bulk—which we have done by ensuring f(x) is ap-
propriately normalized, in enforcing the condition
1/N =

∫
f(x)w(x)dx—accounting for this spread

is important. Using a deterministic approximation
(carried out in Appendix F) we can gain further in-
tuition on the dynamics of lineages as they fall be-
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FIG. 8 Comparison between simulated and predicted heterozygosity π of neutral mutations (A and B), and between
simulated and predicted heterozygosity π of selected mutations (C and D), for adapting populations (A and C) and
ratcheting populations (B and D). Parameters are identical to those simulated in Fig. 4.

hind the nose. In the special case of the infinitesimal
regime, we review how lineage-wide relative-fitness
distributions evolve according to a reaction-diffusion
equation with diffusion constant D ≡ 1

2U
〈
s2
〉
, ad-

vection rate −σ2, and local growth rate x. The in-
finitesimal regime has thus long been recognized as
a limit of “mutational diffusion” (Tsimring et al.,
1996); along the line of descent, fitness follows a bi-
ased random walk with diffusion constant D (Ne-
her et al., 2014a). A schematic depiction of how fit
lineages spread out in relative fitness over time is
provided by Neher and Hallatschek (2013). More
generally in the MSSM regime, we can see that a
diffusion approximation may not be adequate in de-
scribing the trajectories of lineages. In particular if
Tcs̃ > 1 then at later times, further mutations ac-
quired by the lineage will have begun to shape its
fitness distribution in a nondiffusive way (i.e. its
fitness variance will grow faster than linearly with
time).

2. Interpretations of the timescale Tc

A key result of the Section V is that Tc ≈ ⟨T2⟩ /2.
This motivates our interpretation of Tc (as defined in
Eq. (17)) as a coalescence timescale. The timescale
Tc can also be interpreted in a few different ways. In
Appendix F, we show that under a deterministic ap-

proximation, the descendants of the fixation class—
initially consisting of N

∫ xc

c
f(x)dx individuals—will

collectively sweep through and comprise an O(1)
fraction of the population at Tc generations. This
motivates us to interpret Tc as a sweep timescale.
In the “high-speeds regime,” a related interpreta-
tion has been given to Tc as the time required for
fluctuations near the high-fitness nose of the fitness
distribution to substantially affect its bulk dynamics
(Fisher, 2013).

Since the (linearized) operators governing the
forward-time and backward-time dynamics are ad-
joints of one another, it is not particularly surpris-
ing that the timescale Tc can also be interpreted as
a delay timescale of coalescence: looking backwards
in time, a given pair of individuals is unlikely to co-
alesce until Tc generations have elapsed. We can un-
derstand this correspondence heuristically by view-
ing the fixation class as an exponentially expanding
subpopulation, among the total population, within
which all coalescence events must occur (since the
fixation class is destined to eventually fix). It is well
known that in rapidly expanding populations, coa-
lescence events occur primarily at the very beginning
of exponential growth (i.e., when the population was
small in size) and that genealogical trees are starlike,
with long terminal branches (Slatkin and Hudson,
1991); thus, looking backward in time, we expect
few coalescence events to occur until near the end of
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the sweep timescale.

We can also gain intuition on the delay timescale
Tc by considering, for a randomly chosen individual,
the distribution A(x, t) of its ancestor’s relative fit-
ness x as the time t recedes into the past. As we
describe in Appendix A,

A(x, t) ∝ f(x)ϕ1/N (x, t), (80)

with limt→∞A(x, t) = Nf(x)w(x) corresponding to
the distribution of fitnesses of eventual common an-
cestors described above. Importantly, we can see
that at Tc generations into the past, the distribu-
tion A(x, Tc) ∼ Ai

(
c−x
b

)
comes to resemble (and,

subsequently, rapidly converges to on a timescale
O(1/b)) the eventual distribution of ancestor fit-
nesses Nf(x)w(x) ∝ Ai2

(
c−x
b

)
. Thus, the ancestors

of typical individuals (which start out near “bulk” of
the fitness distribution) migrate upward in relative
fitness and reach the fixation class on the timescale
Tc. After this point, the ancestors of a typical sam-
ple of individuals begin to coalesce within the fixa-
tion class. This matches the interpretation given by
Neher and Hallatschek (2013) for the delay timescale
in the infinitesimal regime, using a heuristic argu-
ment: in that case, ancestors migrate upwards in fit-
ness at initial rate σ2, slowing down at later times to
reach a fitness σ4/4D at the delay timescale σ2/2D.

It is not entirely clear why the delay timescale
should match the coalescence timescale of the en-
suing BSC process—that is, why coalescence within
the fixation class requires approximately the same
amount of time as that required to reach the fixa-
tion class. The correspondence between these two
timescales appears to be a relatively universal fea-
ture of rapidly evolving populations, observed in the
moderate-speeds regime (Desai et al., 2013; Koshel-
eva and Desai, 2013) and the infinitesimal regime
(Neher and Hallatschek, 2013). However, this is
not generically the case: for instance, in the adapt-
ing populations modeled by Brunet et al. (2007) as
FKPP waves, the delay timescale is much shorter
than the coalescence timescale, even though the ge-
nealogies of those populations are described by the
BSC. The key difference is that in the model con-
sidered by Brunet et al. (2007), the growth rate of a
lineage does not depend linearly on its fitness advan-
tage x. Instead, all individuals lying above minimum
fitness cutoff survive until the next generation, and
individuals therefore have a reduced benefit of being
much fitter than average.

3. Conditional neutrality at long times

The simple exponential dependence pfix(s) ∝ eTcs

suggests that in the MSSM regime, selection acts
in a substantial way to amplify the frequency of a
mutation only over the timescale Tc. This in turn
suggests a picture of conditional neutrality in the
fates of mutations at times t > Tc . This condi-
tional neutrality can also be seen through our result
for the SFS of selected mutations. As we have seen,
the SFS of selected mutations with effects between s
and s+ ds (and ages t > Tc ) is simply scaled by an
overall factor eTcs, relative to the neutral SFS (as
well as a scaling factor reflecting the difference in
the mutation rates). Thus, we can think of selection
acting to amplify the probability with which a muta-
tion is observed only over timescale Tc. At least up
to the information contained in the SFS, frequency
trajectories of selected mutations at times t > Tc
are indistinguishable from those of neutral muta-
tions with the same frequency at time Tc. We note
that a stronger picture of conditional neutrality is
seen in the infinitesimal regime. In the infinitesimal
regime, Tc ≪ 1/s for relevant s, so pfix(s) ≈ eTcs/N
reduces to 1/N (plus small corrections). Even dur-
ing the initial period t < Tc, the fate of a typical
mutation (or even of a typical fixed mutation) is in-
fluenced by its selective effect in a negligible way.
In the MSSM regime, the selective effect of a muta-
tion can influence its fate in a substantial way, but
only during the first Tc generations of the mutation’s
lifetime.

At a heuristic level, it makes sense that Tc is the
relevant timescale on which selection acts. To see
this, we note that looking backward in time, a given
pair of individuals which happen to be sampled from
the fixation class will coalesce at average time Tc
(because they are sampled from the fixation class,
they skip the initial delay period). Looking forward
in time, then, some individual will have grown to
comprise a macroscopic fraction of the fixation class
on the same timescale Tc. Note that individuals do
not fix within the fixation class over the timescale
Tc—fixation requires a time O(log logN) multiples
of Tc, given the distributions of times to coalescence
of a large sample under the BSC (Berestycki, 2009;
Desai et al., 2013). At the timescale Tc, however,
lineages originally founded in the fixation class (or
more precisely, the portions of these lineages still in
the fixation class) have spread out enough in fitness
so that initial fitness differences of size s ≪ b have
been “forgotten”; selection thus no longer acts to
amplify the frequency of a mutation which occurred
in that region. Because the fixation class will even-
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tually take over the population, this implies condi-
tional neutrality in the full population on the same
timescale.

A similar period of conditional neutrality—after
an initial delay—is noted by Kosheleva and Desai
(2013) in the “moderate-speeds” regime. In that
case, Kosheleva and Desai (2013) note that a muta-
tion observed at a macroscopic frequency x0—large
enough to essentially guarantee the mutation oc-
curred in the “nose” class—will go on to fix with the
same probability x0. This is explained by the fact
that lineage frequencies are “frozen” within fitness
classes in that case, so that a mutation currently at
macroscopic frequency x0 in the population was once
present in the “nose” class at the same frequency x0,
a delay time Td ago. The fraction of the nose class
occupied by any given lineage evolves neutrally as
a Markov process (in that the future fraction of the
nose class occupied by any given lineage depends
only on the fraction of the nose class it currently
occupies) and so a period of conditional neutrality
emerges after the delay timescale Td.

In the MSSM regime, the same argument does not
quite apply, even upon replacing the “nose” class
with the fixation class. The key difference is that the
fraction of the fixation class occupied by a given lin-
eage does not evolve as a Markov process: fitness dif-
ferences among individuals in the fixation class are
important in predicting their eventual fates (since
Tcb ≫ 1). However, the same argument does hold

if we instead consider the effective lead frequency νL
of a lineage, defined as

νL(t) ≡ N

∫
g(x, t)w(x)dx, (81)

where g(x, t) is the relative fitness distribution of the
lineage (normalized such that its total size at time
t equals N

∫
g(x, t)dx). The generating function〈

e−θνL(t)
〉
is considered by Fisher (2013)—though in

that work, g(x, t) in Eq. (81) is primarily taken as
a fitness distribution of an entire population whose
total size can fluctuate. In Appendix E, we briefly
review key features of

〈
e−θνL(t)

〉
discussed by Fisher

(2013). An implication of these results is that the
frequency n(t)/N of a lineage in a population closely
mirrors its effective lead frequency νL(t−Tc) a time
Tc into the past (provided the lineage was founded
in the fixation class). Furthermore, the effective lead
frequency νL(t) evolves as a neutral Markov process,
in that

〈
e−θνL(t)

〉
can be obtained from νL at any

earlier time (i.e., the distribution of νL at later times
is mediated by its current value, and does not ex-
plicitly depend on the full lineage-wide distribution
g(x, t)). Together these results give rise to a type of
conditional neutrality at long times similar to that
observed by Kosheleva and Desai (2013).

Using the generating function
〈
e−θνL(t)

〉
, we can

obtain the transition density Gt(νL(t)|νL(0))—the
probability a lineage has effective lead frequency
νL(t) at time t, given its effective lead frequency
νL(0) at time 0—with the result

Gt(νL(t), νL(0)) ≈
sin [πα(t)] νL(0) (1− νL(0))

πνL(t) (1− νL(t))

× 1[
(1− νL(0))

2
(

νL(t)
1−νL(t)

)α(t)
+ νL(0)2

(
1−νL(t)
νL(t)

)α(t)
+ 2νL(0)(1− νL(0)) cos (πα(t))

] , (82)

where α(t) ≡ e−t/Tc . We carry out this calcula-
tion in Appendix E. Up to a change in timescale,
Gt(νL(t), νL(0)) in Eq. (82) is the same as the
transition density for the actual lead frequency
(i.e the frequency in the “nose” class) found in
the “moderate-speeds” regime (Desai et al., 2013;
Kosheleva and Desai, 2013). The distributions of
sojourn times found by Kosheleva and Desai (2013)
using the transition density thus carry over to the
MSSM regime as well, after making an overall
change in the timescale, and replacing the actual

lead frequency with the effective lead frequency. In-
terestingly, the same transition density is obtained
by Hallatschek (2018) in a purely neutral model of
a population with a 1/n2 offspring number distribu-
tion from one generation to the next (and which can
be considered a forward-time dual to the BSC). As
discussed by Hallatschek (2018), this transition den-
sity manifests as an apparent frequency-dependent
selection—a typical bias favoring majority alleles
is balanced by rare compensating jumps of low-
frequency alleles to maintain overall neutrality. We



30

thus expect to see a similar apparent frequency-
dependence among mutational trajectories in the
MSSM regime at long times.

Upon incorporating selection into the model de-
scribed above, Hallatschek (2018) finds the same ex-
ponential dependence pfix(s) ∝ eTcs that we have
shown is obtained in the MSSM regime. In the
model considered by Hallatschek (2018), a muta-
tion with effect s is shown to effectively increment
the logit frequency log [ν/(1− ν)] of a lineage by
an amount s (i.e., a lineage which just acquired a
mutation with effect s behaves identically to a neu-
tral lineage whose logit frequency is larger by an
amount s). In our case, a mutation of effect s in-
crements log νL by an amount Tcs, provided it oc-
curs within the fixation class (and has effect s≪ b).
Thus, the model considered by Hallatschek (2018)
replicates quite well the long-time dynamics of the
MSSM regime, coarse-grained on a timescale of Tc
generations. A key difference, however, is that in our
model, the timescale Tc—the length of an effective
generation—is shaped by selection in a complicated
way; in the model considered by Hallatschek (2018),
Tc is a fixed input parameter, independent of the
action of selection.

The above results emphasize that while the effec-
tive frequency of a mutation in the fixation class
evolves as a neutral Markov process, it does not
evolve as a neutral Wright-Fisher diffusion process.
Thus, even during the conditionally neutral period,
we do not expect mutational trajectories to resemble
those of a purely neutral Wright-Fisher population—
we only expect that lineages have “forgotten” their
initial fitness effect. This can be contrasted with
a type of quasi-neutrality discussed by Cvijović
et al. (2018) in a model of strong purifying selection
(|Tcs| ≫ 1). In that model, the fitness advantage of
individuals in the “lead” class is balanced, on aver-
age, by the rate of mutations out of the “lead” class.
As a result, fluctuations in lineage frequencies within
the “lead” class closely resemble those in a purely
neutral Wright-Fisher population. The same fluc-
tuations, smoothed on a certain timescale, are then
mirrored by the fluctuations in overall mutational
frequencies, after a delay period. Relatedly, the SFS
for this model has a “quasi-neutral” region scaling as
1/ν for moderate frequencies ν, and differs from the
SFS of the BSC in important ways (Cvijović et al.,
2018); in contrast, in the MSSM regime deviations
from the SFS of the BSC are only observed at very
low frequencies with log(1/ν) > Tcb (and to some
extent, at the very highest frequencies). This differ-
ence highlights the fact that the presence of multiple
selected mutations in a population at once—which is

the case for the model considered by Cvijović et al.
(2018)—is not sufficient to give rise to the seem-
ingly universal correspondence to the BSC we have
described above. Rather, the struggle among fit lin-
eages to increase fitness through new mutations, and
the jackpot dynamics this gives rise to, appear to be
important features in giving rise to this correspon-
dence.

VII. DISCUSSION

As we have seen, evolutionary dynamics within
asexual genomes can be complex, even within the
simplest models that include only the effects of mu-
tations, natural selection, and genetic drift. The
central difficulty is that when the mutation rate
is sufficiently high and the population size is suffi-
ciently large, multiple selected mutations often seg-
regate simultaneously and their dynamics are not
independent. We refer to this scenario as rapid evo-
lution, because evolution is not primarily limited by
the waiting time for new mutations to arise. Instead,
numerous mutations arise in a variety of linked com-
binations, and selection can only act on these combi-
nations as a whole. The resulting complex dynamics
of clonal interference and hitchhiking can limit the
efficiency of natural selection, and dramatically alter
evolutionary dynamics and population genetics.

We note that rapid evolution does not necessar-
ily have to involve adaptation. The key compo-
nents of rapid evolution are simply that numerous
selected mutations segregate simultaneously within
a linkage block—such that the population maintains
substantial variation in fitness—and that the popu-
lation moves through fitness space over time as se-
lected mutations arise and fix. It can therefore in-
volve both beneficial and deleterious mutations, and
in particular can result when the accumulation of
beneficial and deleterious mutations balances so that
v = 0, and the population on average neither in-
creases or decreases in fitness (Goyal et al., 2012).
It can even occur in scenarios where only deleteri-
ous mutations are possible (and hence the rate of
change in mean fitness, v, will be negative), as long
as deleterious mutations routinely fix (Neher and
Hallatschek, 2013).

In the past two decades, many authors have ana-
lyzed evolutionary dynamics in rapidly evolving pop-
ulations using traveling wave models. However, pre-
vious work on these models has largely been focused
on two limiting cases: the case in which selection is
strong on single mutations (the “moderate-speeds”
regime and the “high-speeds” regime), and the case
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in which selection is weak on single mutations (the
infinitesimal limit). These two limits correspond to
the cases where Tcs̃ ≫ 1 and Tcs̃ ≪ 1 respectively,
where Tc is the coalescence timescale and s̃ is the
typical fitness effect of a fixed mutation. In other
words, this previous work has assumed a strong sep-
aration of scales between the timescale Tc on which
common ancestry is determined, and the timescale
1/s̃ on which selection can act on a typical fixed
mutational effect s̃.

In reality, however, any population is likely to ex-
perience mutations with a wide range of selective ef-
fects, including many in the intermediate regime be-
tween these two extremes. Our lack of understand-
ing of the dynamics of those mutations for which
Tcs ∼ 1 thus represents an important gap. This is
particularly problematic because it is natural to ex-
pect that “nearly neutral” mutations with effects on
the order of the inverse coalescence timescale (i.e.
for which Tcs ∼ 1) may have the largest impact on
patterns of genetic diversity (they are strong enough
that their effects are felt, but not so strong that they
immediately sweep or are purged) (Akashi et al.,
2012; Ohta, 1973). Furthermore, recent theoretical
work has found, in a model coupling both interfer-
ence and local epistasis, that the prevalence of mu-
tations with Tcs ∼ 1 may be an emergent property
of the evolutionary process (Held et al., 2019).

The expectation that mutations confer selective
effects on a wide range of scales is broadly consis-
tent with numerous empirical studies that have at-
tempted to infer distributions of selection coefficients
in natural populations based on population genetic
data (Eyre-Walker and Keightley, 2007). These
studies typically do not infer selection strengths di-
rectly, but rather the product Tcs (Sawyer and Hartl,
1992; Sawyer et al., 2003) (this is often referred to
as Nes under the assumption that Tc corresponds
to an effective population size, but we have avoided
this terminology since the dynamics differ in many
important ways from those of a neutral population
with an appropriately sized effective population size
(Neher, 2013)). Many of these studies find muta-
tions with Tcs ∼ 1 are quite prevalent and comprise
a large proportion of fixed mutations. This includes
mutations involved in viral and mitochondrial DNA
(Nielsen and Yang, 2003), amino-acid substitutions
in Drosophila (Sawyer et al., 2007), synonymous
mutations affecting codon usage in E. coli (Hartl
et al., 1994) and Drosophila (Akashi, 1995; Machado
et al., 2020; Zeng and Charlesworth, 2009), as well
as among mutations occurring within animal mito-
chondria (Nachman, 1998).

It has remained unclear whether these results ac-

tually imply that typical selective coefficients are of
order 1/Tc, or whether emergent aspects of the evo-
lutionary dynamics tend to generate patterns of vari-
ation that are most sensitive to the subset of muta-
tions in this regime. In addition, because these infer-
ence approaches typically assume free recombination
(Bustamante et al., 2001; Sawyer and Hartl, 1992;
Sawyer et al., 2003), it is unclear whether interfer-
ence may confound these results (see e.g. McVean
and Charlesworth (2000)).

These considerations highlight the importance of
understanding the evolutionary dynamics and pop-
ulation genetics of rapidly evolving populations in
cases where a relatively broad range of selective ef-
fects is relevant, including effects s with Tcs ∼ 1. In
this work, we make progress in this direction by ex-
tending existing methods to apply within a broader
regime of the population-genetic parameter space,
which we refer to as a moderate selection, strong
mutation (MSSM) regime. In the MSSM regime,
no assumption is made about the magnitude of Tcs̃;
instead, we require that Tc∆xf ≫ 1 and s̃ ≪ ∆xf ,
where ∆xf is the standard variation of fitness advan-
tages among individuals which eventually take over
the population. The first of these conditions is also
required within the infinitesimal regime, and implies
that selection is strong among haplotypes competing
for fixation. The second of these conditions differs
from the condition Tcs̃ ≪ 1 required within the in-
finitesimal regime. Instead of requiring that typical
fixed mutational effects are weak (and fix essentially
neutrally), within the MSSM regime we require only
that typical fixed mutational effects are weak com-
pared to the scale of fitness variation among poten-
tial future common ancestors. Qualitative features
of the MSSM and other regimes are summarized in
Table III.

In Fig. 9, we provide a phase diagram depicting
the MSSM and other regimes, where for concrete-
ness we assume the special case of a single beneficial
effect, parameterized by the dimensionless quanti-
ties NUb and Ub/sb. In Table IV, we provide the
(approximate) minimum N required for validity of
the MSSM approximation, for 4 representative sets
of parameters (mutation rate Ub and single benefi-
cial effect sb). This helps illustrate examples of rele-
vant populations for which the MSSM regime may be
of particular importance. For example, while valid-
ity of the MSSM approximation for wild-type yeast
with strong selection may require an unreasonably
large population size, this regime is more plausible
for RNA viruses, mutator bacteria or yeast, or wild-
type yeast with weaker selection. In general, how-
ever, our knowledge of the effect size distributions
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FIG. 9 Phase diagram for the case of a single beneficial effect sb, in the space of dimensionless parameters Ub/sb
and NUb. The blue line illustrates the Nsb = 1 boundary which separates the neutral regime (blue region) from the
strong-selection weak-mutation (SSWM) regime (red region). The red line illustrates the NUb log(Nsb) = 1 boundary
which separates the SSWM regime from the “moderate speeds” regime (green region). The green line illustrates the
other boundary of the “moderate speeds” regime, at which log2(sb/Ub) = log(Nsb) (Fisher, 2013; Good and Desai,
2014). The orange line denotes the boundary of the MSSM regime at which sb = b (the portion of orange line below
the dotted line, where sb < b is the limiting condition of validity of the MSSM regime) or Tcb = 1 (the portion
of orange line above the dotted line, where Tcb > 1 is the limiting condition). The black dotted line shows where
Tcsb = 1, with the infinitesimal regime the region shaded darker orange and the rest of the MSSM regime (including
the “high speeds” regime) the region shaded lighter orange.

in specific empirical systems remains rather limited.
We also note that the quantities Tc, ∆xf and s̃—
which determine validity of the MSSM regime as well
as qualitative aspects of the dynamics—can at least
in principle by probed experimentally. For example,
Tc could be estimated using the typical fixation time
of a new mutation as measured from mutational fre-
quency trajectories, s̃ could be measured by assaying
the fitness effects of fixed mutations, and ∆xf could
obtained by conducting relative fitness assays on the
individuals which eventually fix.

Our results are not a complete solution to the
problem, since our analysis does make other assump-
tions, and in particular it does not apply to popula-
tions in the “moderate-speeds” regime. However, in
combination with earlier work, our analysis helps to

provide a more complete picture of how mutations
with effects on a wide range of scales shape the evo-
lutionary dynamics of rapidly evolving populations.
By explicitly demonstrating an approximate corre-
spondence between genealogies in the MSSM regime
and those of the BSC, our analysis further supports
previous claims that certain aspects of the evolu-
tionary dynamics of rapidly evolving populations are
relatively universal (Neher and Hallatschek, 2013).
Given this apparent universality, we expect that
many of our qualitative conclusions (e.g. for selected
and neutral site frequency spectra) may apply in
rapidly evolving populations more generally. With
this in mind, the MSSM regime is a particularly use-
ful regime of the parameter space to study: as in the
infinitesimal regime, the evolutionary dynamics are
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Moderate-selection
strong-mutation
(MSSM) regime

“Moderate speeds”
regime

Strong-selection
weak-mutation
(SSWM) regime

Nearly neutral limit

Broad steady state
distribution of fit-
nesses (σ ≫ s)

Yes Yes No No; Broad distribu-
tion of mutational
classes possible.

Strong selection on
single mutations
(Tcs≫ 1)

Possible, but not re-
quired. Not possi-
ble in the infinites-
imal regime; re-
quired in the “high
speeds” regime.

Yes Yes No

Strong selection on
haplotypes (Tcσ ≫
1)

Yes Yes N/A; Transient
strong selection
on established
lineages.

No

Substantial muta-
tional leapfrogging
(∆xf ≫ s)

Yes No No No; Leapfrogging
across mutational
classes possible.

TABLE III Qualitative Properties of Different Regimes

TABLE IV Example Parameters

Mutation Rate
Ub (per genome,
per generation)

Fitness Effect sb Minimum N
Required

Possible Representative System

10−3 10−2 106 RNA viruses

10−4 10−3 107 Mutator bacteria or yeast

10−5 10−4 108 Wild-type yeast (weak selection)

10−5 10−3 1015 Wild-type yeast (stronger selection)

relatively tractable, even for a full distribution of
fitness effects, but unlike in the infinitesimal regime,
the dynamics of neutral mutations and of selected
mutations differ in a substantial way.

In particular, in this work we have computed the
selected and neutral site frequency spectra in the
MSSM regime, from which predictions for dN/dS,
πN/πS and related statistics can readily be obtained.
While these quantities are used extensively to in-
fer the strength and presence of selection in natural
populations, our analytical understanding of these
quantities has previously remained limited when
linked selection is widespread. These quantities are
considered by Kosheleva and Desai (2013) in the
“moderate-speeds” regime, although that analysis is
limited to the case in which mutations each confer a
single strongly beneficial effect sb (with Tcsb ≫ 1).
Our present results allow us to calculate these poly-
morphism and divergence statistics for full distribu-
tions of beneficial or deleterious fitness effects, in-
cluding those with mutations near Tcs ∼ O(1). This

revealed that the MSSM regime can produce dra-
matic departures from existing intuition based on
independently evolving sites.

At sufficiently low frequencies, the ratio be-
tween nonsynonymous and synonymous site fre-
quency spectra, hN (ν)/hS(ν), approaches the ratio
of the underlying mutation rates, as expected under
neutrality. For deleterious mutations, the frequency
scale at which the shape of hN (ν) starts to devi-
ate from hS(ν) is often used as a rough estimate
of 1/|Tcs|. Here, we have found that in the MSSM
regime, this transition does not occur for frequen-
cies ν ∼ 1/|Tcs|, but instead depends strongly on
population-level quantities such as Tc∆xf or Nσ.
This suggests that naive estimates of Tcs based on
deviations of synonymous from nonsynonymous site
frequency spectra may severely overestimate the un-
derlying selection strengths.

We have also shown that over a broad range of
higher frequencies, nonsynonymous and synonymous
frequency spectra are again related by a constant
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factor, equal to the ratio of the fixation rates of the
two types of mutations (FN and FS). As a conse-
quence, the frequency-resolved McDonald-Kreitman
statistic,

α(ν) ≡ 1− FS

FN

hN (ν)

hS(ν)
, (83)

approaches 0 for moderate to large frequencies ν,
even for large |Tcs|, and regardless of the rate of
adaptation v. This quantity has previously been
used to estimate the fraction of fixed mutations
which were strongly beneficial, based on the value to
which α(ν) asymptotes at large frequencies (Messer
and Petrov, 2013). Our present results suggest that
in the MSSM regime, this “asymptotic alpha” ap-
proach may severely underestimate the actual frac-
tion of adaptive substitutions, and might even give
the impression that a population is evolving nearly
neutrally.
Throughout our analysis, we have assumed that

the DFE µ(s) does not change as the population
evolves. This will be true provided that there is no
microscopic epistasis between individual mutations,
such that the fitness effect of one mutation depends
on the presence or absence of the other. However,
our analysis can also apply even in the presence of
extensive microscopic epistasis between individual
mutations, provided that the overall DFE µ(s) does
not vary across genotypes — that is, provided there
is no macroscopic epistasis (Good and Desai, 2015).

Recent experimental work suggests that both mi-
croscopic and macroscopic epistasis are widespread,
at least in the evolution of laboratory microbial pop-
ulations (Jerison and Desai, 2015). For example,
several recent studies have found general patterns of
diminishing returns epistasis, where fitness effects of
beneficial mutations systematically decline in more-
fit genetic backgrounds (Kryazhimskiy et al., 2014).
Recent work has also shown an analogous pattern
where the fitness costs of deleterious mutations be-
come more severe in more-fit genetic backgrounds
(Johnson et al., 2019). These patterns of macro-
scopic epistasis suggest that µ(s)—and particularly
ρ(s)—may change substantially and systematically
as a population evolves.
Our analysis, like most previous work on travel-

ing wave models, does not directly address these ef-
fects of changing µ(s). However, provided that µ(s)
changes slowly compared to timescale Tc on which
mutations sweep through the population, we expect
our analysis to provide an accurate description of the
evolutionary dynamics at any given moment (given
the appropriate µ(s) at that moment). Thus we can
potentially model the effects of diminishing returns

and increasing cost epistasis (or any other systematic
variation in µ(s)), provided only that these changes
in µ(s) are sufficiently slow. Analogously, our ap-
proach does not explicitly consider situations where
changes in environmental condition lead to temporal
fluctuations in the DFE (e.g., a time-varying fitness
seascape (Agarwala and Fisher, 2019; Schiffels et al.,
2011)). However, provided that these temporal fluc-
tuations in µ(s) are sufficiently slow, our approach
will appropriately describe the evolutionary dynam-
ics at any given moment. Of course, if µ(s) changes
rapidly, either due to dramatic epistatic effects or
environmental shifts, a transient period may occur
where the traveling wave has not reached its steady-
state shape. These transient dynamics are under-
stood only coarsely at a theoretical level (Fisher,
2013), and we have not analyzed their effects here.
If these shifts are sufficiently common that the tran-
sients play a significant role in the overall evolu-
tionary dynamics, the traveling-wave approach will
break down.
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Appendix A CHARACTERISTIC EQUATION FOR ϕ(x, τ)

In this Appendix, we review much of the key formalism used by Good and Desai (2014), Neher and
Hallatschek (2013) and Fisher (2013) to analyze traveling wave models of asexual evolution. In particular,
we derive equations for the density f(x) of individuals with relative fitness x and the fixation probability
w(x) of an individual with relative fitness x. We then compute the generating function

〈
e−zn(t|x)〉 for the

stochastic size n(t|x) of a lineage t generations after its foundation, given the relative fitness x at which it
was founded. In Appendix E, we use properties of

〈
e−zn(t|x)〉—as well as

〈
e−zn(t)

〉
, where n(t) does not

condition on the relative fitness x at which a lineage is founded—discussed here to compute statistics of
genetic diversity such as the distribution of times to pairwise coalescence and the site frequency spectrum.
To begin, following the approach taken by Good and Desai (2014), we consider a lineage with initial

absolute fitness distribution g(X, 0) at time t = 0. Both the size and fitness distribution of the lineage
may vary with time; we denote by g(X, t) the time-dependent absolute fitness distribution of the lineage,
normalized such that the lineage consists of n(t) ≡ N

∫
g(X, t)dX individuals at time t. The time-dependent

trajectory of the lineage is coupled to the trajectory of the rest of the population, whose time-dependent
absolute fitness distribution we denote by f(X, t). These two quantities obey the following equations:

∂f(X, t)

∂t
=
[
X − X̄(t)

]
f(X, t) +

∫
µ(s)ds [f(X − s, t)− f(X, t)] +

√
f(X, t)

N
ηf (X)

− f(X, t)

∫ (√
f(X ′, t)

N
ηf (X

′) +

√
g(X ′, t)

N
ηg(X

′)

)
dX ′, (84)

∂g(X, t)

∂t
=
[
X − X̄(t)

]
g(X, t) +

∫
µ(s)ds [g(X − s, t)− g(X, t)] +

√
g(X, t)

N
ηg(X)

− g(X, t)

∫ (√
f(X ′, t)

N
ηf (X

′) +

√
g(X ′, t)

N
ηg(X

′)

)
dX ′, (85)

with the stochastic nature of births and deaths captured by the last two terms in Eq. (84) and
Eq. (85). Here ηg denotes a Gaussian random variable satisfying ⟨ηg(X)⟩ = 0 and ⟨ηg(X)ηg(X

′)⟩ =
2δ(X − X ′) (and likewise for ηf ) (Gardiner et al., 1985). By construction, these noise terms ensure
that

∫
[f(X, t) + g(X, t)] dX is time-independent, such that a constant population size is maintained. The

quantity X̄(t) =
∫
[f(X, t) + g(X, t)]XdX denotes the mean absolute fitness of the population at time t,

such that
[
X − X̄(t)

]
f(X, t) denotes the rate at which f(X, t) changes due to selection alone. Similarly,∫

µ(s)ds [f(X − s, t)− f(X, t)] denotes the rate at which f(X, t) changes due to mutation alone. We note
that in Eq. (84) and Eq. (85), f(X, t) and g(X, t) are treated on a completely equal footing (in the sense
that no assumption is made that

∫
f(X, t)dX ≫

∫
g(X, t)dX or vice versa). In what follows, however, we

focus on the case
∫
g(X, t)dX ≪ 1 (and thus

∫
f(X, t)dX ≈ 1), motivated by our key assumption that the

fates of relevant lineages are determined while rare.
Throughout, we follow previous authors in making a “mean-field” approximation to Eq. (84) (Fisher,

2013; Good and Desai, 2014; Good et al., 2012; Neher et al., 2010). That is, we assume that at steady state,
fluctuations shape the distribution f(X, t) only via their effects on the mean fitness X̄(t) of the population,
which can be approximated as increasing at a constant rate v. The population-wide fitness distribution
f(X, t) can then be described as a fixed-profile traveling wave, with f(X, t) = f(X − vt, 0) ≡ f(x). The
quantity f(x) can be interpreted as the distribution of relative fitnesses x in the population, with x ≡ X−vt.
Without loss of generality, we take X̄(0) = 0; we further assume that f(X, t) has already attained a steady-
state traveling wave profile at t = 0, potentially following an initial transient period. Given the rate v, f(x)
obeys

−v∂xf(x) = xf(x) +

∫
µ(s)ds [f(x− s)− f(x)] . (86)

As discussed in the main text, the solution to Eq. (86) attains negative values at large x (Fisher, 2013).
To alleviate this pathological behavior, we follow previous authors in implementing a cutoff in f(x), taking
f(x) ≈ 0 for x > xc.
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The rate of change of mean fitness, v, can be obtained by considering the probabilities with which new
mutations eventually fix. This in turn can be done using a stochastic treatment of newly seeded lineages,
which are described by Eq. (85). We make the key assumption that the fates of relevant lineages are
determined while rare, so that in treating Eq. (85), we can focus on the case

∫
g(X, t)dX ≪ 1. Following

the approach taken in Good and Desai (2014), this implies that the last term in Eq. (85) can be neglected,
so that g(X, t) approximately satisfies

∂g(X, t)

∂t
= (X − vt) g(X, t) +

∫
µ(s)ds [g(X − s, t)− g(X, t)] +

√
g(X, t)

N
ηg(X). (87)

The relative fitness distribution g(x, t) of a lineage approximately then satisfies

∂g(x, t)

∂t
= v∂xg(x, t) + xg(x, t) +

∫
µ(s)ds [g(x− s, t)− g(x, t)] +

√
g(x, t)

N
ηg(x). (88)

Here, by Ng(x, t) we denote the number density at time t of individuals in the lineage with relative fitness
x (or, equivalently, with absolute fitness vt + x). Given Eq. (87) or Eq. (88), fluctuations in lineage-wide
fitness distributions can be examined, under the assumption that the background population advances in
fitness at a constant rate v. In reality, fluctuations in lineage sizes are coupled to fluctuations in the rate of
adaptation; this is particularly important at later times, when a lineage may comprise a macroscopic fraction
of the total population with substantial probability. In assuming a constant rate v at which the population
adapts, we neglect this coupling between the rate of adaptation and lineage sizes. Importantly, however,
we do ensure that on average, fluctuations in lineage sizes (either to fixation or to extinction) give rise to a
self-consistent rate of adaptation v.
To examine fluctuations in g(x, t), we consider the generating functional H [ϕ(x), t], defined as

H [ϕ(x), t] ≡
〈
exp

[
−
∫
Nϕ(x)g(x, t)dx

]〉
. (89)

As discussed by Good and Desai (2013), we interpret (88) in the Itô sense, such that

H [ϕ(x), t+ dt] =
〈
exp

(
−
∫
Nϕ(x)

×

[
g(x, t) +

(
v∂xg(x, t) + xg(x, t) +

∫
µ(s)ds [g(x− s, t)− g(x, t)]

)
dt+

√
g(x, t)dt

N
ηg(x)

]
dx
)〉
. (90)

Retaining only terms O(dt) and larger, Eq. (90) simplifies to

H [ϕ(x), t+ dt] =

〈
exp

[
−
∫
Nϕ(x)g(x, t)dx

]
×
[
1− dt

∫
Nϕ(x)

(
v∂xg(x, t) + xg(x, t) +

∫
µ(s)ds [g(x− s, t)− g(x, t)]

)
dx

]

×

1−√
dt

∫
Nϕ(x)

√
g(x, t)

N
ηg(x)dx+

dt

2

(∫
Nϕ(x)

√
g(x, t)

N
ηg(x)dx

)2
〉 . (91)

Eq. (91) can be expressed as a differential equation for H, which, exploiting the independence of g and ηg,
takes on the form

∂H

∂t
=

〈
exp

[
−
∫
Nϕ(x)g(x, t)dx

]〈
×
[
−
∫
Nϕ(x)

(
v∂xg(x, t) + xg(X, t) +

∫
µ(s)ds [g(x− s, t)− g(x, t)]

)
dx+

∫
N2ϕ2(x)

g(x, t)

N
dx

]〉
=

∫ [
−v∂xϕ(x) + xϕ(x)− ϕ2(x)

] ∂H

∂ϕ(x)
dx+

∫
µ(s)ds

∫
dxϕ(x)

[
∂H

∂ϕ(x− s)
− ∂H

∂ϕ(x)

]
=

∫ [
−v∂xϕ(x) + xϕ(x) +

∫
µ(s)ds [ϕ(x+ s)− ϕ(x)]− ϕ2(x)

]
∂H

∂ϕ(x)
dx, (92)
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where the second equality is obtained using integration by parts, along with the fact that ∂H
∂ϕ(X) =〈

exp
[
−
∫
Nϕ(X)g(X, t)dX

]
(−Ng(X, t))

〉
.

This enables us to identify characteristic curves ϕ(x, τ) satisfying

∂ϕ(x, τ)

∂τ
= −v∂xϕ(x, τ) + xϕ(x, τ ) +

∫
µ(s)ds [ϕ(x+ s, τ)− ϕ(x, τ)]− ϕ2(x, τ), (93)

with the property that H [ϕ(x), t] = H [ϕ(x, τ ), t− τ ] for any τ > 0. In particular,

H [ϕ(x), t] = H [ϕ(x, t), 0] =
〈
e−

∫
Nϕ(x,t)g(x,0)dx

〉
, (94)

where the averaging in Eq. (94) is only over possible initial conditions—that is, possible instantiations of
g(x, 0)—and not over the stochasticity of the evolutionary process. The problem of calculating H [ϕ(x), t] is
therefore reduced to solving Eq. (93) for ϕ(x, τ) given the initial condition ϕ(x, 0) = ϕ(x).

A.1 Interpretation of ϕz(x, t)

In the remaining analysis, we will denote by ϕz(x, t) the solution ϕ(x, t) to Eq. (93) that follows from the
initial condition ϕ(x, 0) = z. Then

e−ϕz(x,t) =
〈
e−zn(t|x)

〉
, (95)

where n(t|x) is the (stochastic) size of a lineage founded at initial relative fitness x, after t generations (i.e.,
we can obtain a generating function for n(t|x) by solving for ϕz(x, t)). We note that in general, the initial
condition ϕ(x, 0) need not be independent of x. In Appendix E, we will briefly discuss and apply results of
Fisher (2013) for the case ϕ(x, 0) = θw(x), which yields a generating function for a lineage’s effective lead
frequency νL(t) =

∫
g(x, t)w(x)dx.

A solution for the long-time limit of ϕz(x, t) is particularly useful, since for z > 0, limt→∞ ϕz(x, t) converges
to w(x) (Fisher, 2013; Good and Desai, 2014). To see this, we note that the above analysis of H (and thus of
ϕz(x, t)) is done under the branching process approximation, which assumes that lineages are small enough
such that population-size constraints are unimportant. Consequently, fixation corresponds to the case in
which n(t|x) tends to infinity (rather than the total population size N). At sufficiently long times, e−zn(t|x)

can only approach 1 (provided that the lineage goes extinct) or 0 (provided that the lineage fixes). That is,

lim
t→∞

〈
e−zn(t|x)

〉
= 1− w(x), (96)

where w(x) is defined as the fixation probability of an individual with relative fitness x. Given a solution
ϕz(x, t) to Equation (93), it follows from (94) that

w(x) = 1− lim
t→∞

e−ϕz(x,t) ≈ lim
t→∞

ϕz(x, t), (97)

where the last approximation is employed under the assumption that w(x) ≪ 1 (which holds for x ≪ 1, as
has been previously assumed in our analysis). Note, then, that w(x) is the unique long-time limit of ϕz(x, t);
at sufficiently long times, ϕz(x, t) does not depend on the initial condition ϕ(x, 0) = z, as long as z > 0. The
fixation probability w(x) is therefore the solution ϕ(x, t) to Eq. (93) with the time-derivative term neglected,
and satisfies

v∂xw(x) = xw(x) +

∫
µ(s) [w(x+ s)− w(x)]− w2(x). (98)

This equation can also be obtained using standard branching process techniques (see e.g. Good et al. (2012);
Neher et al. (2010)). In the main text, we discuss approximate solutions to Eq. (98) and Eq. (86) within
the MSSM regime.
As discussed by Neher et al. (2014a) in the infinitesimal regime, ϕz(x, t) can additionally be interpreted

as a lineage sampling probability. In particular, upon sampling Nz individuals at time t, ϕz(x, t) gives the
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probability at least one of the sampled individuals is a descendant of a certain individual with relative fitness
x at time 0. To see this, note that

ϕz(x, t) ≈ 1− e−ϕz(x,t) ≈ 1−

〈(
1− Nz

N

)n(t|x)
〉

(99)

where the right-hand side is precisely the above-described lineage sampling probability (with the expectation
value on the right-hand side taken over n(t|x)). The quantity ϕz(x, t) with z = 1/N is particularly useful
to consider, since this gives the probability that a single sampled individual is the descendant of a given
individual with relative fitness x a time t into the past. From a simple application of Bayes’ theorem, we
can obtain the probability distribution A(x, t) for the relative fitness x of the ancestor of a randomly chosen
individual (at t generations into the past):

A(x, t) ≈
f(x)ϕ1/N (x, t)∫
f(x)ϕ1/N (x, t)dx

, (100)

where f(x) can be interpreted as a prior probability distribution for the ancestor’s relative fitness. Note that

lim
t→∞

A(x, t) = Nf(x)w(x), (101)

so that, as recognized by Hallatschek (2011), Nf(x)w(x) can be considered a distribution of relative fitnesses
of future common ancestors of the population. In the main text, we discuss how Eq. (100), together with
our solutions for f(x) and ϕz(x, t) in the MSSM regime, can be used to address the timescale on which
individuals in the “bulk” of the fitness distribution descend from its high-fitness “nose”.
We will also consider the quantity Φ0(z, t) ≡

∫
f(x)ϕz(x, t)dx. By calculating Φ0(z, t), we can obtain the

generating function for the size n(t) of a lineage founded by a randomly chosen individual in the population,
after t generations. That is, 〈

e−zn(t)
〉
=

∫
f(x)e−ϕz(x,t)dx ≈ e−Φ0(z,t), (102)

where in the second equality, we used the fact that ϕz(x, t) ≪ 1.

A.2 Review of properties of ϕz(x, t)

We now review some key properties of the family of time-dependent solutions ϕz(x, t). These properties
are discussed by Fisher (2013) in the context of populations subject only to beneficial mutations, in either
the moderate-speeds (v ≪ s̃2) or high-speeds (v ≫ s̃2) regimes, although the key ideas hold more generally,
including throughout the MSSM regime. In the following Subsection, we further analyze ϕz(x, t), explicitly
demonstrating that these properties hold within the MSSM regime and extending the analysis conducted
by Fisher (2013) to intermediate times that are particularly relevant to our calculation of the site frequency
spectrum.
For short times (t < Tc ), a dominant balance approach is useful (Fisher, 2013). For sufficiently large x, the

xϕz and ϕ2z terms balance, and ϕz(x, t) ≈ ϕsz(x, t) ≡ x. The superscript denotes that ϕsz is the approximate
solution taken within the saturation regime, in which ∂xϕz(x, t) saturates approximately to 1. For smaller
x, the nonlinear term ϕ2 is subdominant. We denote by ϕlz(x, t) the solution to the linearized equation

∂ϕlz(x, t)

∂t
= −v∂xϕlz(x, t) + xϕlz(x, t) +

∫
µ(s)ds

[
ϕlz(x+ s, t)− ϕlz(x, t)

]
, (103)

which is solved exactly by

ϕlz(x, t) = z exp

[
xt− 1

2
vt2 +

∫
µ(s)ds

s
(est − 1− st)

]
, (104)
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given the initial condition ϕz(x, 0) = z. This suggests the approximate solution

ϕz(x, t) ≈

z exp
[
xt− 1

2vt
2 +

∫ µ(s)ds
s (est − 1− st)

]
x < P l

z(t)

x x > P l
z(t),

(105)

where P l
z(t) is defined such that ϕlz(P

l
z(t), t) ≡ P l

z(t). The quantity P l
z(t) can be interpreted as the location

of the time-dependent shoulder of the solution given in Eq. (105).
For t > Tc−O

(
1
b

)
, a dominant balance approach is not suitable, and Eq. (105) is not a good approximation.

Even if the nonlinear term is subdominant—that is, even if x ≪ P l
z(t), and ϕlz(x, t) ≪ x—the linearized

solution ϕlz(x, t) may be a very poor approximation to the actual solution ϕz(x, t). The reason is that in
obtaining Eq. (104) from Eq. (103), ϕlz(x + s, t) is also assumed to satisfy the same (linearized) equation.
For x > Pz(t) − s, the actual ϕz(x + s, t) may be better approximated by ϕsz(x + s, t) = x + s as opposed
to ϕlz(x+ s, t). This discrepancy results in a time-derivative ∂tϕ

l(x, t) which differs from that given by Eq.
(103). Over time, this discrepancy propagates down to lower x, and for t > Tc, the actual solution ϕz(x, t)
will differ qualitatively from the linearized solution ϕlz(x, t) even for x well below P l

z(t).
This issue is considered at length by Fisher (2013), in which the following properties of the solution ϕz(x, t)

are identified for t > Tc:

1. Shortly after t ≈ Tc, on a timescale O(1/b), ϕz(x, t) converges to ϕPz(t)(x), with ϕPz(t)(x) closely
resembling the long-time fixed-point w(x) ≡ limt→∞ ϕPz(t)(x), but with a shoulder at Pz(t) rather
than at xc = limt→∞ Pz(t).

2. The location Pz(t) of the time-dependent shoulder converges to its fixed-point value xc with rate 1/Tc:

dPz

dt
=

1

Tc
(xc − Pz(t)) . (106)

3. At long times, the solution ϕz(x, t) depends on z only via the initial condition Pz(Tc) to Eq. (106).
This can be approximated by taking Pz(Tc) ≈ P l

z(Tc), with

P l
z(Tc)

xc
= 1 +

1

Tcxc
log

(
z̃P l

z(Tc)

zxc
,

)
, (107)

where z̃ is defined such that P l
z̃(Tc) = xc. Pz(Tc) can be further approximated by

Pz(Tc) ≈ xc +
1

Tc
log

(
z̃

z

)
. (108)

4. The integral Φ0(z, t) ≡
∫
f(x)ϕz(x, t)dx can be approximated as

Φ0(z, t) ≈ eTc(xc−Pz(t))

∫
f(x)w(x)dx =

eTc(xc−Pz(t))

N
. (109)

We note that Fisher (2013) considers a model in which the population size is not fixed, and the analog
of
∫
f(x)w(x)dx in Eq. (109) can fluctuate; here, we assume

∫
f(x)w(x)dx = 1/N throughout, since

the population size is assumed constant in our model.

These properties imply that for b(t− Tc) ≫ 1,

Φ0(z, t) ≈
1

N

(z
z̃

)e1−t/Tc

(110)

which is a key result we will use in computing statistics of genetic diversity in the MSSM regime (in particular,
in computing the site frequency spectrum at moderate and high frequencies). Most of our results follow

from the fact Φ0(z, t) is a simple monomial of z with power e1−t/Tc (i.e., that Φ0(z, t) ≈ C(t)ze
1−t/Tc

, with
C(t) independent of z). The full expression in Eq. (110) is useful for ensuring that this simple monomial
dependence is valid over the appropriate region. We will see that our calculations of genetic diversity statistics
in Appendix E involve integrals over u ≡ NΦ0(z, t) which are dominated by the region u ∼ O(1). For use in
this application, it will therefore be sufficient that Eq. (109) holds for the range |Pz(t) − xc| ≲ O(b) (over
which u varies from e−Tcb to eTcb).
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A.3 Analysis of ϕz(x, t)

Here, we provide a detailed analysis of ϕz(x, t), explicitly demonstrating that the above properties hold
for b(t − Tc) ≫ 1, and extending this analysis to the case b(t − Tc) = O(1). In both cases, we can analyze
ϕz(x, t) in a way similar to our analysis of f(x) and w(x) by defining

ϕz(x, t) ≡
xce

Tc(x−xc)

Ai
(
c−xc

b

) r(x, t), (111)

and approximating the resulting differential equation for r(x, t). Note that the constant factors in our
definition of r(x, t) are chosen such that limt→∞ r(x, t) = Ai

(
c−x
b

)
; for simplicity in notation, we have

suppressed the dependence of r(x, t) on z. Making the approximation r(x + s, t) ≈ r(x) + s∂xr(x, t) +
1
2s

2∂2xr(x, t) (which can be justified by noting that the resulting solution varies on the scale O(b) for relevant
fitnesses x) and neglecting the nonlinear term ϕ2z(x, t), we have

∂tr(x, t) = b3∂2xr(x, t)− (c− x)r(x, t). (112)

Our solution incorporates the nonlinearity in the equation for ϕz(x, t) through the boundary conditions

r(Pz(t) + 1/Tc, t) = 0, (113)

and

∂xr (Pz(t) + 1/Tc, t) = −TcPze
−Tc(Pz−xc)

xc
Ai

(
c− xc
b

)
. (114)

These boundary conditions ensure that ϕz(Pz(t), t) ≈ Pz(t), and that rapid variation in eTcx is approximately
canceled by variation in r(x, t) at x = Pz(t), such that ϕz(Pz(t), t) is approximately linear at x = Pz(t).
An approximate solution to Eq. (112) can be written as

r(x, t) ≈
∞∑
j=0

yj exp [h(t) + b(t− Tc)(zj − z0)− a(Pz(t)− xc)] Ai

(
Pz(t)− x

b
+ zj +

1

Tcb

)
, (115)

where h(t) satisfies

Tc
dPz

dt
= xc − Pz(t) +

dh

dt
, (116)

and the yj are arbitrary coefficients. Here, by zj we denote the (all negative) zeros of the Airy function satisfy-
ing Ai(zj) = 0, in order of increasing magnitude with j. To be more precise, Eq. (115) with h(t) satisfying Eq.

(116) approximately solves Eq. (112), provided that Ai′
(

Pz(t)−x
b + zj +

1
Tcb

)
≪ abAi

(
Pz(t)−x

b + zj +
1

Tcb

)
,

which is satisfied in the region of interest. The boundary condition r(Pz + 1/Tc, t) = 0 is automatically
satisfied, while the boundary condition in Eq. (114) implies that

e−h(t) ≈ xc
Pz(t)

∞∑
j=0

yj
Ai′(zj)

Ai′(z0)
eb(t−Tc)(zj−z0), (117)

which, under the assumption Pz(t)− xc ≪ xc, can be differentiated to yield

dh

dt
≈ −

∑∞
j=0 b(zj − z0)yjAi′(zj)e

zjb(t−Tc)∑∞
j=0 yjAi′(zj)ezjb(t−Tc)

. (118)

Long times: b(t− Tc) ≫ 1

The analysis simplifies considerably at long times such that b(t−Tc) ≫ 1. The sums in Eq. (115) and Eq.
(117) are dominated by j = 0 terms, with remaining terms exponentially suppressed. We therefore have

Tc
dPz

dt
≈ xc − Pz, (119)
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which is solved by

Pz(t)− xc ≈ [Pz(Tc)− xc] e
1−t/Tc , (120)

and the quantity r(x, t) simplifies to

r(x, t) ≈ Pz(t)

xc
e−Tc(Pz(t)−xc)Ai

(
c− x

b
+
Pz(t)− xc

b

)
. (121)

From Eq. (121) it follows that ϕz(x, t) ≈ Pz(t)
xc

w (x+ xc − Pz(t)); the quantity Φ0(z, t) ≡
∫
f(x)ϕz(x, t)dx

can therefore easily be evaluated using the same calculation carried out in Appendix D to obtain pfix(s),
with the result

Φ0(z, t) ≈
eTc(xc−Pz(t))

N
, (122)

provided that |Pz(t)− xc| ≪ b. Using the Pz(Tc) in Eq. (108), Eq. (122) further simplifies to

Φ0(z, t) ≈
1

N

(z
z̃

)e1−t/Tc

. (123)

Intermediate times b(t− Tc) ≲ O(1)

At intermediate times such that b(t−Tc) ≲ O(1), multiple terms contribute substantially to the sums in Eq.
(115) and Eq. (117). As a result, we need to determine the appropriate coefficients yj in these sums, which
can be done by matching our solution in Eq. (115) onto the solution for t < Tc given in Eq. (105). To do so,

we will integrate Ai
(

Pz−x
b + zi +

1
Tcb

)
r(x, t) over the x-interval (−∞, Pz(t)+1/Tc), using r(x, t) from both

of these solutions, and exploit the orthogonality and completeness of appropriately shifted Airy functions.
We will equate the two resulting integrals evaluated at a time t = t0 satisfying 1 ≪ (Tc − t0)b ≪ Tcb, and
see that our final result will not depend on the precise choice of t0.
In particular, from the Airy equation it follows (using integration by parts) that∫ ∞

x3

Ai(x+ x1)Ai(x+ x2)dx =
1

x2 − x1

[
Ai (x3 + x2)Ai′ (x3 + x1)−Ai (x3 + x1)Ai′ (x3 + x2)

]
(124)

for arbitrary x1, x2 and x3. A further consequence is that
∫∞
zi

Ai2(x)dx =
[
Ai′(zi)

]2
, and also that∫ ∞

0

Ai (x+ zi)Ai (x+ zj) = δij
[
Ai′(zi)

]2
, (125)

which establishes the orthogonality of the set of functions Ai(x + zj) on the interval (0,∞). Using these
properties, we can carry out the above-described matching, with the result

yi
[
Ai′(zi)

]2
eh(t0) ≈ Pz(t0)e

−(xc−c)(t0−Tc)

xc
Ai

(
c− xc
b

)∫ ∞

zi

Ai(u)eb(Tc−t0)udu, (126)

where, in obtaining the right-hand side, we made use of the relations Pz(t) = zePz(t)t− 1
2 vt

2+
∫ µ(s)ds

s (est−st−1)

and xc ≈ c− bz0 − 1/Tc. For sufficiently large b(t0 −Tc), the integral on the right-hand side is dominated by
u > z0, so that we can extend its lower limit of integration to −∞; the integral thus evaluates approximately
to e[b(Tc−t0)]

3/3. We can therefore take

yi =
1[

Ai′(zi)
]2 , (127)

with

eh(t0) ≈ Pz(t0)e
−(xc−c)(t0−Tc)

xc
Ai

(
c− xc
b

)
e[b(Tc−t0)]

3/3. (128)
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To simplify Eq. (128), we use the relation between Tc, N and xc given in Eq. (31). This yields

eh(t0) ≈
[
Ai′(z0)

]2
Nze(Pz(t0)−xc)t0+c(t0−Tc)+[b(Tc−t0)]

3/3+J(Tc)−J(t0), (129)

where J(t) ≡ vt2/2−
∫ µ(s)

s (est−st−1)ds. Expanding J(t0)−J(Tc) ≈ J ′(Tc)(t0−Tc)+ 1
2J

′′(Tc)(t0−Tc)2+
1
6J

(3)(Tc)(t0 − Tc)
3, we then have

eh(t0) ≈
[
Ai′(z0)

]2
Nze(Pz(t0)−xc)t0 , (130)

for −1 ≲ b(t0 − Tc) < 0.
Eq. (127) can be substituted into Eq. (118) to yield

dh

dt
≈ −b

∑∞
j=0(zj − z0)

[
1/Ai′(zj)

]
ezjb(t−Tc)∑∞

j=0

[
1/Ai′(zj)

]
ezjb(t−Tc)

(131)

which is valid for intermediate times 0 < b(t−Tc) ≲ O(1) and long times b(t−Tc) ≫ 1, and which determines
the time-dependence of Pz(t) through Eq. (116). Importantly, from Eq. (131) it follows that dh/dt ∼ O(b)
for b(t− Tc) ≲ O(1); from Eq. (116), it then follows that

Pz(t)− xc
b

≈ Pz(Tc)− xc
b

≈ 1

Tcb
log

(
z̃

z

)
, (132)

for times b(t− Tc) ≲ O(1). Eq. (116) can thus be integrated to yield, for times b(t− Tc) ≲ O(1),

eh(t) ≈
[
Ai′(z0)

]2
Nze(Pz(Tc)−xc)t, (133)

which does not depend on the choice t0. Substituting Eq. (133) and Eq. (127) into Eq. (115), we thus have

r(x, t) = zN
∞∑
j=0

(
Ai′(z0)

Ai′(zj)

)2

eb(t−Tc)[zj−z0+(Pz(Tc)−xc)/b]Ai

(
c− x

b
+
Pz(Tc)− xc

b
+ (zj − z0)

)
, (134)

for b(t − Tc) ≲ O(1). We can further simplify Eq. (134) by replacing (Pz(Tc) − xc)/b with 1
Tcb

log z̃
z . In

particular, evaluating ϕz(x, t) at z = ζ/N , we have

ϕζ/N (x, t)

ζ
≈

(
xce

Tc(x−xc)

Ai
(
c−xc

b

) )

×
∞∑
j=0

(
Ai′(z0)

Ai′(zj)

)2

eb(t−Tc)[zj−z0− 1
Tcb

log ζ]Ai

(
c− x

b
+ (zj − z0)−

1

Tcb
log ζ

)
, (135)

since (as discussed below) Nz̃ ≈ 1 to logarithmic accuracy.

A.4 Average rate of adaptation

Finally, we conclude this Appendix by briefly reviewing the procedure for computing v in terms of N
introduced by Fisher (2013). While some of that work considers a model in rate of adaptation v is fixed and
the population size can vary, Fisher (2013) notes that for a fixed population size N ,

N = 1/z̃, (136)

where z̃ depends implicitly on v, and can be defined such that given the initial condition ϕ(x, 0) = z̃,
ϕ(x, t) converges to the eventual fixed-point w(x) with zero amplitude of the slowest eigenvector. Given the
properties of the solutions ϕz(x, t) discussed in the previous Subsection, it follows from this definition that
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P l
z̃(Tc) = xc, where P

l
z(t) is the location of the time-dependent shoulder obtained by matching the linearized

and saturated solutions in Eq. (105). That is,

z̃eTcxc− 1
2 vT

2
c +

∫ µ(s)ds
s (eTcs−1−Tcs) = xc, (137)

which yields

Nxc = eTcxc− 1
2 vT

2
c +

∫ µ(s)ds
s (eTcs−1−Tcs). (138)

Apart from a factor of TcbAi
′(z0) multiplying N , Eq. (138) precisely matches our result obtained for the

MSSM regime. Because of the logarithmic dependence of most quantities of interest on N , this is a relatively
minor difference (even though Tcb ≫ 1). As in our case, to solve for v using Eq. (138) requires another
relation between xc and Tc (as well as µ(s)). Within the “high-speeds” regime, Fisher (2013) obtains the
same relation xc ≈ c + b|z0| − 1/Tc that we obtain within the MSSM regime, using a solvability condition
for w(x) which is exact asymptotically up to ambiguities of order 1/Tc due to fluctuations.

Appendix B DETERMINATION OF v AND xc

In this Appendix, we enforce the relevant self-consistency conditions to solve for v and xc, given the
approximate solutions f(x) and w(x) obtained in Appendix C. Our presentation largely parallels the analysis
presented by Tsimring et al. (1996) for the determination of v within the infinitesimal regime. We reproduce
this derivation in detail because with a slight modification, this computation can be directly applied to yield
v and xc within the MSSM regime.

In particular, we make use the following properties of f(x) identified within both limits: (i) w(x) ≈ x
for x > xc, and (ii) within the region dominating

∫ xc

−∞ f(x)w(x)dx, f(x) ≈ B1e
−TcxAi

(
c−x
b

)
and

w(x) ≈ C1e
TcxAi

(
c−x
b

)
, with constant factors B1 and C1 independent of x. In describing the infinitesi-

mal approximation, (ii) is to be interpreted along with the substitutions Tc → σ2

2D , b → D1/3, and c → σ4

4D ;
in describing the MSSM regime, (ii) is to be interpreted with the definitions for Tc, b, and c used throughout
the main text. These substitutions allow for an analysis of the two limits in parallel. In both cases, we
assume Tcb ≫ 1. In the MSSM approximation, Tcb ≫ 1 is explicitly assumed, while in the infinitesimal
approximation, Tcb ≫ 1 follows from the additional assumption ND1/3 ≫ 1. The majority of work on the
infinitesimal regime has focused on the case ND1/3 ≫ 1; we thus focus on this case in our consideration of
the infinitesimal regime. An analysis of the ND1/3 → 0 limit, as well as a numerical consideration of the
arbitrary ND1/3 case, is conducted by Good and Desai (2013) and Good et al. (2014). Finally, we make use
of the normalization constants B1 obtained in Appendix C. With the substitutions assumed here,

B1 =
e

2
3 (Tcb)

3

b
(139)

within the infinitesimal approximation, and

B1 =
e

vT2
c

2 −
∫ µ(s)

s (eTcs−Tcs−1)ds

b
(140)

within the MSSM approximation.
The constant C1 and the interference threshold xc can be determined (in terms of Tc, b and c) by enforcing

the continuity of w(x) and w′(x) at x = xc (Good and Desai, 2014). Continuity of w(x) at xc requires that

C1 =
xce

−Tcxc

Ai
(
c−xc

b

) , (141)

and continuity of w′(x) at x = xc requires that

1 = Tcxc

[
1− 1

Tcb

Ai′
(
c−xc

b

)
Ai
(
c−xc

b

) ] . (142)
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Given Tc and µ(s), xc can be obtained as a numerical solution to Eq. (142). An explicit expression for xc
in terms of Tc and µ(s) can be obtained by making an ansatz that Tcxc ≫ 1, such that

Ai′
(
c−xc

b

)
Ai
(
c−xc

b

) ≈ Tcb. (143)

We will assume that xc < c + b|z0|, where z0 ≈ −2.34 is the least negative zero of Ai(z); this ensures that
the patched w(x), as well as the cutoff f(x), are both nonnegative for all x. For y > z0, Ai′(y)/Ai(y) is only
large and positive for y close to z0, motivating an expansion of Ai

(
c−xc

b

)
around c−xc

b = z0. Retaining only
the lowest-order term of this expansion yields

xc ≈ c+ b|z0| −
1

Tc
. (144)

Eq. (144) is consistent with our ansatz Tcxc ≫ 1, given our additional assumption that Tcb≫ 1 (along with
the positivity of c implied by its definition), and is therefore justified.
The consistency condition 1

N =
∫
f(x)w(x)dx, which enforces that a neutral mutation fixes with an

unbiased probability 1/N , can be used to relate the quantities Tc, b and c—and thus v—to N and µ(s). This
consistency condition can be expressed as

1

N
=
B1xce

−Tcxc

Ai
(
c−xc

b

) ∫ xc

−∞
Ai2

(
c− x

b

)
dx, (145)

which evaluates to

1

N
=
B1bxce

−Tcxc

Ai
(
c−xc

b

) [
Ai′
(
c− xc
b

)2

−
(
c− xc
b

)
Ai2

(
c− xc
b

)]
, (146)

or, approximately, to

1

N
≈ B1bxce

−Tcxc(Tcb)Ai′(z0) (147)

given the location of xc identified in Eq. (27). Substituting in the appropriate normalization constant B1

for the infinitesimal approximation, Eq. (147) simplifies to

Nxc =
e(Tcb)

3/3+|z0|Tcb−1

TcbAi′(z0)
, (148)

while for the MSSM approximation, Eq. (147) reduces to

Nxc =
eTcxc−

vT2
c

2 +M−1(Tc)

TcbAi′(z0)
. (149)

These are the key equations, in combination with Eq. (142), which relate Tc (and thus v) to N and µ(s) in
the two approaches. We discuss the numerical solution of these equations in Appendix I.

B.1 An asymptotic approximation in the N → ∞ limit

Finally, we conclude this Appendix by analyzing Eq. (149) to obtain an asymptotic expression for Tc in
the limit N → ∞. We focus on the case in which the DFE consists of a single beneficial effect—that is, we
assume µ(s) = Uδ(s− sb). In the limit N → ∞, Tcxc → Tcv and we have

logNU ∼ T 2
c Usbe

Tcsb

2
, (150)
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which has the solution

Tcsb ∼ 2W

(√
sb logNU

2U

)
(151)

where W is the Lambert-W function satisfying W (z)eW (z) = z. Using the asymptotic approximation
W (z) ∼ log z − log log z for large z, we have

Tc ∼
1

sb
log
(sb
U

logNU
)

(152)

v ∼ 2s2b logNU

log2
(
sb
U logNU

) , (153)

b ∼ sb log
1/3NU

log2/3
(
sb
U logNU

) , (154)

and

c ∼ 2sb logNU

log
(
sb
U logNU

) . (155)

Note that in the limit N → ∞, the conditions of validity sb ≪ b and Tcb ≫ 1 of the MSSM approximation
are in fact satisfied.

Appendix C APPROXIMATION OF f(x) AND w(x) USING TRANSFORM METHODS

In this Appendix, we use transform methods to approximate f(x) and w(x) within both the infinitesimal
and MSSM regimes. To do so, we begin by reviewing the solutions, provided by Fisher (2013), for the
Laplace transforms f̃(z) =

∫∞
−∞ e−zxf(x)dx and w̃(z) =

∫∞
−∞ e−zxw(x)dx. We then demonstrate that the

infinitesimal approximation solutions f(x) and w(x) can be obtained from inverse Laplace transforms of f̃(z)
and w̃(z), respectively, by approximation of the relevant contour integrals. Using a different approximation
of these contour integrals, we reproduce the MSSM approximate solutions f(x) and w(x) found in the main
text. In doing so, our main purpose is to obtain precise conditions of validity for both the infinitesimal and
MSSM approximations, expressed as integrals involving µ(s).
Note that in the definitions we take of f̃(z) and w̃(z), f(x) and w(x) are assumed to satisfy

−v∂xf(x) = xf(x) +

∫
µ(s)ds [f(x− s)− f(x)] (156)

and

v∂xw(x) = xw(x) +

∫
µ(s)ds [w(x+ s)− w(x)] (157)

respectively. Here f(x) and w(x) denote the formal solutions to Eq. (156) and Eq. (157), respectively. That
is, within the definition of f̃(z), f(x) does not possess a “cutoff” at xc; similarly, within the definition of
w̃(z), w(x) does not tend to x for x ≫ xc (which is the case for the solution to Eq. (10)). The transform
methods used here are employed only to obtain approximate solutions Eq. (156) and Eq. (157). These
approximate solutions can then be patched with the appropriate behavior for x > xc to obtain the full
approximate solutions f(x) and w(x) which are used to compute quantities of interest.
The transforms f̃(z) and w̃(z) satisfy

−vzf̃(z) = −∂z f̃(z) +
[∫

µ(s)(e−zs − 1)ds

]
f̃(z) (158)



49

and

vzw̃(z) = −∂zw̃(z) +
[∫

µ(s)(ezs − 1)ds

]
w̃(z). (159)

In obtaining Eq. (158) from Eq. (5) we assume that e−zxf(x) → 0 as x → ∞ and as x → −∞. Likewise,
in obtaining Eq. (159) from Eq. (10) we assume that e−zxw(x) → 0 as x → ∞ and as x → −∞. Together,
these conditions restrict the range of z for which Eq. (158) and Eq. (159), and thus our solutions f̃(z)
and w̃(z), are valid. However, if f(x) and w(x) are reasonably well-behaved, these conditions are satisfied
when f̃(z) and w̃(z) (which are defined by integrals over e−zxf(x) and e−zxw(x), respectively) take on finite
values; this is in fact satisfied by our solutions f̃(z) and w̃(z), within the region of z of interest to us.
Eq. (158) and Eq. (159) can each be integrated to yield

f̃(z) = exp

[
vz2

2
−
∫
µ(s)ds

s

(
e−zs + zs− 1

)]
(160)

and

w̃(z) = C1 exp

[
−vz

2

2
+

∫
µ(s)ds

s
(ezs − zs− 1)

]
(161)

(Fisher, 2013), where the constant of integration for f̃(z) is set by the requirement that
∫
f(x)dx = 1. The

constant of integration for w̃(z) will be determined along with the location xc of the interference threshold
by enforcing that w(x) and w′(x) are continuous at xc.
To enforce this condition—as well as to determine v and other dynamical quantities of interest—the func-

tional forms of f(x) and w(x) are needed (as opposed to their transforms f̃(z) and w̃(z)). The distribution
f(x) follows from f̃(z), using the standard formula for an inverse Laplace transform, as

f(x) =
1

2πi

∫ i∞

−i∞
exp

[
xz +

vz2

2
−M−1(−z)

]
dz (162)

and

w(x) ∝ 1

2πi

∫ i∞

−i∞
exp

[
xz − vz2

2
+M−1(z)

]
dz, (163)

where, as defined by Fisher (2013), M−1(z) ≡
∫ µ(s)

s (ezs − zs− 1) ds. We will also define

Mp(z) ≡
dp+1M−1(z)

d(z)p+1
(164)

for p ≥ 0, so that M0(z) ≡
∫
µ(s) (ezs − 1) ds and Mp(z) =

∫
µ(s)spezsds for p ≥ 1.

C.1 Approximation of f(x) and w(x) within the Infinitesimal Approximation

We now turn to approximate Eq. (162) and Eq. (163) within the infinitesimal regime. Eq. (162) can be
rewritten as

f(x) =
1

2πi

∫ i∞

−i∞
exp

[
xz +

σ2z2

2
+
Dz3

3
−

∞∑
k=4

(−1)kzk

k!
Mk−1(0)

]
dz (165)

by expanding the exponential e−zs within the integral over s, and defining D ≡ 1
2

∫
µ(s)s2ds, and σ2 ≡

v−U ⟨s⟩. As in the rest of this article, we limit our attention to the case of the infinitesimal regime in which
ND1/3 ≫ 1, or equivalently, in which σ ≫ D1/3 (for a brief discussion of the case in which ND1/3 is not
large, see Appendix B). By making the substitution u = − 2Dz

σ2 , (165) can be alternatively expressed as

f(x) =
σ2/2D

2πi

∫ i∞

−i∞
exp

[
− σ6

8D2

(
xu

σ4/4D
− u2 +

u3

3

)
− Iv(u)

]
du, (166)
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where we have defined

Iv(u) ≡
[(

σ2

2D

)
D1/3

]3 ∫ µ(s) 2D
σ2s

[
e

σ2su
2D − 1− σ2su

2D − 1
2

(
σ2su
2D

)2
− 1

6

(
σ2su
2D

)3]
ds

1
2

∫
µ(s)(σ

2s
2D )2ds

. (167)

To approximate f(x) within the infinitesimal approximation, we neglect the contribution of Iv(u) to the
exponent of Eq. (166); the remaining integral can be evaluated, yielding

f(x) ≈ e
σ6

12D2

D1/3
exp

[
−σ

2x

2D

]
Ai

(
σ4/4D − x

D1/3

)
. (168)

This can be justified by ensuring that Iv(u) ≪ 1 throughout the region around saddle points dominating the
integral in Eq. (166). To see this, note that the integration contour can be deformed to pass through one or
more saddle points along a path of steepest descent, with the integral then dominated by a relatively narrow
region around those saddle points. In general the suitability of this approximation may depend sensitively

on x; below we focus on the region − σ4

4D < x < σ4

4D + O(D1/3), which will comprise the “bulk” of f(x) as
well as the “fixation class” (the region dominating

∫
f(x)w(x)dx).

The relevant saddle points are located at u∗ which satisfy

σ6

8D2

(
x

σ4/4D
− 2u∗ + (u∗)2

)
+ I ′v(u

∗) = 0, (169)

and which can be approximated as

u∗± ≈ 1± 1(
σ2

2D

)
D1/3

√
σ4/4D − x

D1/3
(170)

after further assuming that |I ′v(1)| ≪ σ6

8D2 (or more precisely, that |I ′v(u)| ≪ σ6

8D2 for |u| ≲ O(1), along with

the assumption
(

σ2

2D

)
D1/3 ≫ 1, which turns out to be equivalent to the assumption ND1/3 ≫ 1). Upon

making the appropriate deformation of the integration contour, the integral in Eq. (166) is dominated by

a region of width ∆ around u∗− (for x < σ4

4D ) or a region of width ∆ around both u∗− and u∗+ (for x > σ4

4D ),
where

∆ ∼ 1(
σ2

2D

)
D1/3

min

[(
σ4/4D − x

D1/3

)−1/4

, 1

]
. (171)

It follows that the region |u| ≲ O(1) dominates the integral in Eq. (166), throughout the region of x

considered here. The conditions |Iv(u)| ≪ 1 and |I ′v(u)| ≪ σ6

8D2 for u ≲ O(1) then justify the approximations
yielding Eq. (168); these conditions are closely approximated by the conditions |Iv(1)| ≪ 1 and |I ′v(1)| ≪
σ6

8D2 .
A similar approximation can be made to obtain w(x); Eq. (163) can be rewritten as

w(x) ∝ σ2/2D

2πi

∫ i∞

−i∞
exp

[
σ6

8D2

(
xu

σ4/4D
− u2 +

u3

3

)
+ Iv(u)

]
du (172)

with Iv(u) again defined by Eq. (167), which simplifies to

w(x) ∝ exp

[
σ2x

2D

]
Ai

(
σ4/4D − x

D1/3

)
(173)

provided, again, that Iv(u) is negligible within the region that dominates the integral in Eq. (172). For a
particular x, this region may differ from the region of u dominating the integral in Eq. (166): for x > σ4/4D,
these regions are similar, while for x < σ4/4D, the integral is dominated by the region around u∗+ (as opposed

to the region around u∗−, for f(x)). However, throughout the region −σ4/4D < x < σ4/4D +O(D1/3) of x
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considered, the same conditions |Iv(1)| ≪ 1 and |I ′v(1)| ≪ σ6

8D2 justify the neglect of Iv(u) within the region
dominating Eq. (172).

Note that the condition |I ′v(1)| ≪ σ6

8D2 can be written

I ′v(1)/

(
σ6

8D2

)
=

∫
µ(s)ds

[
e

σ2s
2D − 1− σ2s

2D − 1
2

(
σ2s
2D

)2]
1
2

∫
µ(s)ds

(
σ2s
2D

)2 ≪ 1 (174)

which is, roughly speaking, satisfied if σ2s/2D ≪ 1 throughout the region dominating
∫
µ(s)s2ds. Because,

in the infinitesimal regime, Tc ≈ σ2/2D (Neher and Hallatschek, 2013), Eq. (174) essentially requires that
Tcs ≪ 1 for a substantial majority of available fitness effects s, as stated in the main text. The other
condition |Iv(1)| ≪ 1 has a similar interpretation.

C.2 Approximation of f(x) and w(x) within the MSSM regime

As in the previous Subsection, here we approximate the integrals in Eq. (162) and Eq. (163) by first
approximating the integrand in the vicinity of its saddle points, and then employing an integral representation
of the Airy function. The integrand in Eq. (162) possesses saddle points whose locations zs(x) satisfy

x+ vzs(x) +M0 [−zs(x)] = 0. (175)

Validity of the infinitesimal approximation requires that the relevant saddle points zs are small enough in
magnitude to justify a Taylor approximation of Eq. (175) to second-order in zs. Within the MSSM regime,
this Taylor approximation is not necessarily justified. Instead, in the next Subsection we make a local
approximation to Eq. (175), valid for x within O(b) of c, and obtain approximate expressions for f(x) and
w(x) within this fixation class. Using a similar approach, we then turn to obtain approximate solutions for
f(x) for x within the “bulk” of the fitness distribution.

Solution within the Fixation Class: |c− x| ≲ O(b)

To approximate Eq. (162) for x within the fixation class, we shift our integration contour to the line from
−Tc − i∞ to −Tc + i∞, and expand the exponent of our integrand around its value at z = −Tc, the relevant
(and only) saddle point of the integrand for x = c. That is,

f(x) =
1

2πi

∫ −Tc+i∞

−Tc−i∞
exp

[
xz +

vz2

2
−M−1(−z)

]
dz, (176)

which can be rewritten as

f(x) =
e−Tcx+

vT2
c

2 −M−1(Tc)

2πib

∫ i∞

−i∞
exp

[(
c− x

b

)
u− u3/3− Sv(u)

]
du, (177)

with

Sv(u) ≡

∫
µ(s)eTcs b

s

[
eus/b − 1− us

b − 1
2

(
us
b

)2 − 1
6

(
us
b

)3]
ds∫

µ(s)eTcs
[
1
2

(
s
b

)2]
ds

. (178)

Note that Eq. (177) is obtained using the expansion M−1(−z) =
∑∞

k=0
(−1)k

k! Mk−1(Tc)(z + Tc)
k and the

substitution u ≡ −b(z + Tc). An integral representation of the Airy function, Ai(x) = 1
2πi

∫ i∞
−i∞ ext−t3/3dt,

can then be applied to yield

f(x) =
e

vT2
c

2 −M−1(Tc)

b
e−TcxAi

(
c− x

b

)
, (179)
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provided that Sv(u) can be neglected throughout the region (within the vicinity of saddle points) that
dominates the integral in Eq. (177). Saddle points are located at u∗ which satisfy

(u∗)
2
+ S′

v(u
∗) =

c− x

b
(180)

with

S′
v (u) =

∫
µ(s)eTcs

[
eus/b − 1− us

b − 1
2 (

us
b )2
]
ds∫

µ(s)eTcs 1
2 (

s
b )

2ds
. (181)

We approximate Eq. (180) by

u∗± ≈ ±
√
c− x

b
(182)

which, provided that |S′
v(u)| ≪ 1 for |u| ≲ O(1), holds self-consistently throughout the region |c−x| ≲ O(b)

of x considered. The region of u within ∆ ∼ min
[
1,
(
c−x
b

)−1
]
of u∗ dominates the integral in Eq. (177); the

approximation yielding Eq. (179) is then justified throughout the region of x considered if |Sv(1)| ≪ 1 and
|S′

v(1)| ≪ 1. A similar calculation yields

w(x) ∝ eTcx−
vT2

c
2 +M−1(Tc)

2πib

∫ i∞

−i∞
exp

[(
c− x

b

)
u− u3/3 + Sv(−u)

]
du, (183)

which we approximate by w(x) ∝ eTcxAi
(
c−x
b

)
when Sv(−u) can be neglected. The same conditions

|Sv(1)| ≪ 1 and |S′
v(1)| ≪ 1 identified above can be shown to ensure that Sv(−u) is negligible in the

relevant regions.

Solution within the Bulk Class: c− x ≳ O(b)

Here, we obtain an approximate solution for f(x) for x below the fixation class. Similar manipulations can
be carried out to yield an approximate solution for w(x) within this region. Within this region, approximating
the locations of saddle points—solutions zs(x) to Eq. (175)—as in Eq. (180) is not justified. Instead we
obtain approximations to the integrals in Eq. (162) and Eq. (163) in terms of zs(x), which must be obtained
numerically. Note that for each x < c there are two real solutions zs(x) to Eq. (175): one in which
zs(x) < −Tc and another in which zs(x) > −Tc. Throughout the rest of this section, we denote by zs the
solution zs(x) to Eq. (175) such that zs(x) > −Tc, which will be the relevant saddle point through which it
is useful to deform the integration contour.
After shifting the integration contour to the line from zs − i∞ to zs + i∞ and making the substitution

iu ≡
(

M2(−zs)
2

)1/3
(z − zs), Eq. (162) can be rewritten

f(x) =
ezsx+

vz2s
2 −M−1(−zs)

2π
(

M2(−zs)
2

)1/3 ∫ ∞

−∞
exp

[
−

(
v −M1(−zs)
21/3M

2/3
2 (−zs)

)
u2 − iu3

3
− T (u)

]
du, (184)

where T (u) ≡
∑∞

k=4
Mk−1(−zs)

k!

(
− 21/3iu

M
1/3
2 (−zs)

)k

. We wish to approximate f(x) by neglecting T (u). The in-

tegral representation 1
2π

∫∞
−∞ e−ru2−iu3/3du = e2r

3/3Ai(r2)—which assumes Re(r) ≥ 0—can then be applied
to yield

f(x) ≈
(

2

M2(−zs)

)1/3

exp

(
zsx+

vz2s
2

−M−1(−zs) +
[v −M1(−zs))]3

3M2
2 (−zs)

)
Ai

[ v −M1(−zs)
21/3M

2/3
2 (−zs)

]2 .

(185)
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When v−M1(−zs) ≫M
2/3
2 (−zs), an asymptotic approximation of the Airy function can be applied to yield

f(x) ≈ 1√
2π [v −M1(−zs)]

exp

(
zsx+

vz2s
2

−M−1(−zs)
)
. (186)

For x sufficiently close to 0, Eq. (186) reduces to the expression for f(x) obtained within the infinitesimal
approximation—that is, Eq. (168). In particular, for sufficiently small x,

f(x) ≈ 1√
2πσ2

e−x2/2σ2

. (187)

Note that Eq. (187) requires an approximation for σ2. Taking σ2 = v − U ⟨s⟩, with v computed using the
MSSM approximation as described in the main text, should yield a good approximation to f(x) within its
bulk (provided the conditions of validity of the MSSM approximation are satisfied).

Appendix D MUTATIONAL FIXATION PROBABILITIES

In this Appendix, we evaluate

Npfix(s) =

∫
f(x)w(x+ s)dx∫
f(x)w(x)dx

(188)

using the approximate expressions for f(x) and w(x) identified within the MSSM regime. In particular,
we make use of our result that f(x) ∝ e−TcxAi

(
c−x
b

)
, and w(x) ∝ eTcxAi

(
c−x
b

)
, within the region of x

dominating
∫
f(x)w(x)dx (in which |c− x| ≲ O(b)). We focus throughout on the case |s| ≪ b; as discussed

in the main text, validity of the MSSM approximation requires that |s| ≪ b for a substantial majority of
fixed mutations. Given the assumption |s| ≪ b, the region dominating

∫
f(x)w(x + s)dx is approximately

the same as the region dominating
∫
f(x)w(x)dx, justifying the use of our approximate results for f(x) and

w(x).
We first consider the case in which s < 0, so that
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where in the last equality we used our approximate result for xc in Eq. (27). Expanding Ai(u− s
b ) to second

order in s
b ,
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which simplifies to
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. (191)

The s > 0 case is a bit more complicated, since
∫
f(x)w(x+ s)dx receives a contribution from the region

of x in which x+ s > xc. In this case,

Npfix(s) =
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with xc = C1e
TcxcAi

(
c−xc

b

)
. The first term above can be easily evaluated using our s < 0 result. The second

term can be approximated by noting that the integrand Ai(u)eTcbu peaks at u = u∗ ≈ (Tcb)
2 ≫ z0+

1
Tcb

+ s
b .

An application of Watson’s Lemma then yields

Npfix(s) ≈ eTcs
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In both the s > 0 and s < 0 cases, then,

pfix(s) ≈
eTcs

N
(195)

given the assumption Tcb≫ 1 made throughout (as well as the assumption s≪ b made here).
We note that we have defined Tc according to N

∫
µ(s)seTcsds ≡ v = N

∫
µ(s)spfix(s)ds. Unless µ(s)

consists of only a single effect size, this definition does not necessarily imply that Npfix(s) = eTcs. We
have shown above that Npfix(s) ≈ eTcs in fact holds for s ≪ b; together with the fact that

∫
µ(s)pfix(s)ds

is dominated by the region of s ≪ b, this implies that approximate self-consistency of N
∫
µ(s)seTcsds ≡

v = N
∫
µ(s)spfix(s)ds is achieved. Our analysis only explicitly enforced that pfix(0) = 1/N , and yet a

consequence of this requirement is that a self-consistent rate v is obtained. The equivalence of the self-
consistency conditions pfix(0) = 1/N and v = N

∫
µ(s)spfix(s)ds has been identified by Good et al. (2012) to

hold exactly in the “tunable constraint” models introduced in Hallatschek (2011), provided that an analog of∫
f(x)w(x)dx = 1/N is taken as the “tuned constraint”; here these conditions are approximately equivalent.

Appendix E STATISTICS OF GENETIC DIVERSITY

In this Appendix, we provide derivations of the merger probabilities Λ0
m,k(t) that follow from our evolu-

tionary model. We use these results to conclude that, after an initial delay period during which negligible
coalescence events occur, genealogies are well-described by the Bolthausen-Sznitman coalescent (Bolthausen
and Sznitman, 1998). In a similar calculation, we demonstrate a more direct correspondence with the BSC
through the partition structure (which we define below) following from our evolutionary model. We then
provide an explicit calculation of the neutral and selected site frequency spectra (SFS), separately obtaining
the contribution to the SFS from mutations with ages t such that b(t − Tc) ≫ 1, and from mutations with
ages t such that b(t− Tc) ≲ O(1). Finally, we conclude by briefly discussing how results from Fisher (2013)
can be applied to obtain a transition density of the effective lead frequency νL(t) defined in the main text.

E.1 Merger Probabilities

The BSC is a type of Λ-coalescent, which in turn is a coalescent process that can be defined based on the
merger rates λm,k at which any given k-tuple of m blocks coalesce (Berestycki, 2009). In the BSC,

λBSC
m,k ≡ (k − 2)!(m− k)!

(m− 1)!
, (196)

which can be contrasted to the Kingman coalescent, in which λm,k = δk,2 (i.e. only pairwise merger events are
allowed) (Berestycki, 2009). Following an approach similar to that taken by Neher and Hallatschek (2013),
we can obtain the merger rates λm,k for our evolutionary model by first calculating the merger probabilities
Λ0
m,k(t). By Λ0

m,k(t), we denote the probability that of a sample of size m, a particular set of k individuals
shares a common ancestor at t generations into the past, and the remaining m− k individuals do not trace
back to that same ancestor. These can be computed as

Λ0
m,k(t) = N

〈(
n0(t)

n0(t) +
∑N−1

i=1 ni(t)

)k( ∑N−1
i=1 ni(t)

n0(t) +
∑N−1

i=1 ni(t)

)m−k〉
, (197)

where the factor of N accounts for the N possible common ancestors of the k individuals which were alive
at time t before the present generation. Here, the {ni(t)}N−1

i=0 are the (stochastic) lineage sizes of the N
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individuals after a time t, which are identically distributed. Note also that our definition of Λ0
m,k(t) differs

from the definition of Λ0
m,k(t) taken by Neher and Hallatschek (2013). In that work, Λ0

m,k(t) is defined as the
probability that of a sample of m individuals, a given subset k of those individuals share a common ancestor,
and that the remaining m− k individuals trace back to m− k distinct ancestors, at t generations. We take
our definition because it enables us to obtain the same correspondence with the BSC observed by Neher and
Hallatschek (2013), and because defined as such, the probabilities Λ0

m,k(t) can be used to compute the site
frequency spectrum.
To simplify Eq. (197), we employ the identity Γ(m)C−m =

∫∞
0
dzzm−1e−zC with C = n0(t)+

∑N−1
i=1 ni(t),

which yields
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. (198)

Assuming n0(t) and
∑N

i=1 ni(t) are independent of one another,

Λ0
m,k(t) ≈ (−1)m

N

Γ(m)
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dzzm−1∂kz
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e−Φ0(z,t)

)
∂m−k
z

(
e−(N−1)Φ0(z,t)

)
. (199)

since, as we discuss in Appendix A, e−Φ0(z,t) ≈
〈
e−zn(t)

〉
(note that Φ0(z, t) ≡

∫
f(x)ϕz(x, t)dx). We

discuss the behavior of Φ0(z, t) in Appendix A. The key results we use here are that, for t < Tc, Φ0(z, t) is
approximately linear in z, and for t > Tc,

Φ0(z, t) ≈
1

N

(z
z̃

)e1−t/Tc

(200)

within the relevant region of z (note that for t > Tc, our results primarily require only that Φ0(z, t) ≈
A(t)ze

1−t/Tc
for some z-independent function A(t)).

Linearity of Φ0(z, t) in z implies that Λ0
m,k(t) ≈ δk,1 and thus that merger events are negligible for t < Tc.

For t > Tc, Eq. (199) can be simplified by noting that Φ0(z, t) ≪ 1 in the relevant region of z, so that

Λ0
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Γ(m)

∫ ∞
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)
. (201)

Substituting Eq. (200), and integrating by parts b− k times, yields

Λ0
m,k(t) ≈

(−1)1−k

Γ(m)
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i=0

(
e1−t/Tc − i

)m−k∏
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(
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)∫ ∞

0
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z
NΦ0(z, t)e

−(N−1)Φ0(z,t). (202)

Using the substitution u ≡ NΦ0(z, t), the z-integral in Eq. (202) can be evaluated to give

Λ0
m,k(t) ≈

Γ(k − e1−t/Tc)Γ(m− k + e1−t/Tc)

Γ(m)Γ(1− e1−t/Tc)Γ(e1−t/Tc)
, (203)

which, using the Euler reflection formula for Γ(z), can be further simplified to

Λ0
m,k(t) ≈

Γ(k − e1−t/Tc)Γ(m− k + e1−t/Tc)

πΓ(m)
sin
(
πe1−t/Tc

)
. (204)

From Eq. (204) the merger rates λm,k ≡ dΛ0
m,k/dt at t = Tc (just after merger events occur at a non-

negligible rate) follow as

λm,k(Tc) ≈
(k − 2)!(b− k)!

a(b− 1)!
. (205)

These are the BSC merger rates λBSC
m,k , scaled by the overall timescale Tc. The same correspondence is noted

by Neher and Hallatschek (2013) to argue that genealogies within the infinitesimal regime resemble those
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of the BSC (although in that case, the overall timescale identified is σ2/2D, to which Tc reduces in the
infinitesimal regime), after an initial delay period during which few coalescence events occur. The initial
delay period can be interpreted, looking backward in time, as the time required for the ancestors of typical
individuals—those sampled from the “bulk” of the fitness distribution—to reach the high-fitness edge of the
fitness distribution; once this occurs, coalescence proceeds as described by the BSC.
The probability Qk(t) ≡ Λk,k(t) gives the probability with which k randomly chosen individuals share a

common ancestor within t generations, and simplifies to

Qk(t) ≈
Γ(k − e1−t/Tc)

Γ(k)Γ(1− e1−t/Tc)
, (206)

for t > Tc. Apart from the replacement of t by (t−Tc)/Tc, these are precisely the full time-dependent Qk(t)
which are obtained in the BSC (Mohle and Pitters, 2014; Pitman, 1999). Thus the correspondence with the
BSC in our model extends beyond the correspondence of the instantaneous merger rates at Tc generations.
Note that qk(Tk) ≡ dQk/dt can be interpreted a probability distribution for the coalescence times Tk of a
sample of k individuals. In particular,

q2(T2) =

0 T2 < Tc

T−1
c e1−T2/Tc T2 ≥ Tc

, (207)

and therefore

Tc ≡ ⟨T2⟩ /2 ≈ Tc. (208)

That is, the timescale Tc of coalescence is the same as the delay timescale—the initial time during which
negligible coalescence events occur. In the infinitesimal regime, the same correspondence (as well as the
exponential distribution of pairwise coalescence times found in Eq. (207)) is inferred based on the instan-
taneous merger rates calculated at Tc generations, and observed in simulations, by Neher and Hallatschek
(2013).
We note that although our overall conclusions are quite similar to those of Neher and Hallatschek (2013),

our calculation differs in an important way. In obtaining Φ0(z, t), Neher and Hallatschek (2013) approximate
the solution ϕz(x, t) to Eq. (62) using a dominant balance argument—in particular, by taking

ϕz(x, t) ≈

ϕlz(x, t) x < Pz(t)

x x > Pz(t)
, (209)

where ϕlz(x, t) is the solution to Eq. (62) with the ϕ2z(x, t) term neglected, and ϕlz(Pz(t)) ≡ Pz(t) (so that
the two solutions match up at x = Pz(t)). Fisher (2013) argues that Eq. (209) is valid only for t < Tc, and
describes the t > Tc behavior in detail (which we review in Appendix A). Neher and Hallatschek (2013)
analytically demonstrate a correspondence with the BSC by calculating the instantaneous merger rates at
t = Tc (more precisely, at t = σ2/2D ≈ Tc since they work within the infinitesimal regime), so that Eq.
(209) may still be valid; however, extending their calculation to later times yields various pathological results
(e.g diverging expectation values for coalescence times including ⟨T2⟩). Our calculation, which makes use of
behavior of ϕz(x, t) described by Fisher (2013), yields well-behaved predictions for the full time-dependence
of the quantities Qk(t) and Λ0

m,k(t), and therefore the site frequency spectrum. As a result, we are able to
analytically demonstrate aspects of the correspondence with the BSC which are observed in simulations, and
justified using heuristic arguments, by Neher and Hallatschek (2013).
We emphasize that in our demonstration of a correspondence with the BSC, a key step is noting that Eq.

(200) holds over the region of z which dominates the relevant integrals. That is, we take〈
e−zn(t)

〉
≈ exp

[
− 1

N

(z
z̃

)α(t)]
, (210)

with α(t) = e1−t/Tc . The same generating function is used by Fisher (2013) to describe fluctuations in the
total size N(t) of a population, assuming its mean fitness increases at a fixed rate v (which can then be
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used to describe fluctuations in the rate of adaptation at fixed population size). As noted by Fisher (2013)
for the case of a fluctuating population size, from Eq. (210) it follows that n(t) is drawn from a one-sided
Lévy stable distribution with parameter α(t); the offspring number distribution—the pdf of n(t)—then falls
off as p(n) ∼ 1/n1+α(t) (Nolan, 2018). In particular, at Tc generations the offspring distribution falls off
as 1/n2. This offspring number distribution—which is the same as that obtained for the Luria-Delbrück
process (Yule, 1925)—is observed (on different timescales) for rapidly adapting populations lying in several
regimes of the parameter space (Desai and Fisher, 2007; Kosheleva and Desai, 2013), and has been explained
as arising from the exponential amplification of fit lineages (Neher and Hallatschek, 2013).
It is well-understood that the offspring number distribution p(n) ∼ 1/n2 is related to the BSC (Schweins-

berg, 2003); Hallatschek (2018) recently described a precise (neutral) stochastic process, involving an off-
spring number distribution of p(n) ∼ 1/n2, which can be considered a forward-time dual of the BSC (much
like Wright-Fisher diffusion can be considered a forward-time dual of the Kingman coalescent). This duality
has been used to argue that, after coarse graining to the timescale on which p(n) ∼ 1/n2, the genealogies of
rapidly adapting populations can be described by the BSC. Interestingly, we have found above that Eq. (210)
implies a correspondence with the BSC that goes beyond a correspondence on a coarse-grained timescale:
after making reasonable approximations, the full time-dependence of the BSC partition structure follows
from our evolutionary model. We provide further discussion of the relation between the dynamics under
our model in the MSSM regime, and the dynamics under the model considered by Hallatschek (2018), in
Subsection VI..3.
We note that the total population size N is fixed within our model, and therefore a 1/n2 offspring number

distribution cannot strictly speaking apply. At minimum, the true offspring number distribution must have
a cutoff at the total population size N . However, because only the relative fractions of the population
comprised by any given lineage enter into our calculation of diversity statistics, we expect that Eq. (210)
is still appropriate. We note also that Eq. (210) is only valid within a limited range of z; for instance, Eq.
(210) yields pathological results both in the limit z → ∞ (which gives extinction probabilities) and in the
limit z → 0 (which gives moments of n(t)). As we discuss in Appendix A, however, Eq. (210) is valid in the
region of z which dominates integrals used to compute statistics of genetic diversity—roughly speaking, for z
corresponding to n(Tc) in the range e−Tcb ≪ n(Tc)/N ≪ eTcb. Lineages of this size—while atypically large,
relative to the expected value ⟨n(Tc)⟩ = 1—make the dominant contribution to coalescence probabilities.

Selected Merger Probabilities

Using this framework, we can also compute the probability Λs
m,k(t)/N that, of a sample of m individuals, a

given set of k individuals trace back to a specific common ancestor at t generations (and that the remaining
m − k individuals do not trace back to that ancestor), conditioned on that common ancestor of the k
individuals having acquired a mutation of effect size s at time t in the past. As noted in the main text, the
probability Λs

m,k(t)/N can be directly applied to compute the selected site frequency spectrum. For t > Tc,
we have that

Λs
m,k(t)

N
≈ (−1)m

1

Γ(m)

∫ ∞

0

dzzm−1∂kz

(
e−Φs(z,t)

)
∂m−k
z

(
e−(N−1)Φ0(z,t)

)
, (211)

where Eq. (211) differs from Eq. (199) only by the replacement of ∂kz
(
e−Φ0(z,t)

)
by ∂kz

(
e−Φs(z,t)

)
. Here

Φs(z, t) ≡
∫
f(x− s)ϕz(x, t)dx, (212)

such that e−Φs(z,t) ≈
〈
e−zns(t)

〉
; that is e−Φs(z,t) is the generating function for the (stochastic) size of a

lineage seeded by a mutation effect s, after t generations. The properties of ϕz(x, t) and Φ(z, t) discussed
in Appendix A imply that Φs(z, t) ≈ eTcsΦ0(z, t) for s ≪ b. Note that even with an additional factor
of eTcs (compared to Φ0(z, t)) we still have that Φs(z, t) ≪ 1 in the relevant region of z, and thus that
Λs
m,k(t) ≈ eTcsΛ0

m,k(t).
The t < Tc and k = 1 case is also relevant for computing the heterozygosity. To simplify Λs

b,1(t) for t < Tc,

we note that ϕz(x, t) has x-dependence ϕz(x, t) ∝ ext for the region of x and z of interest (at least until just
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before t = Tc). As a result, we can make the approximation Φs(z, t) ∝ estΦ0(z, t), which yields Λs
b,1(t) ≈ est.

That is, an individual descends from an ancestor at time t (which acquired a mutation of effect s at that
same time) with probability Λs

b,1(t)/N ≈ est/N .

E.2 Partition Structure

We can see a more direct correspondence with the BSC by considering the partition structure implied
by our model. In doing so, we will define the partition Π(t) of a sample of m individuals, at a time t
into the past, as follows. The partition Π(0) consists of m blocks of size 1 (with each block corresponding
to a different individual). As the time t recedes into the past, blocks of Π(t) merge together once their
corresponding individuals share a common ancestor, with their sizes summing up (so that at time t, each
block of Π(t) consists of a group of individuals related by common ancestry at t generations). Thus once
the entire sample shares a common ancestor, Π(t) will consist of a single block of size m. For a sample of
size m, the partition structure is then given by the probability p(l1, l2, ..., lm; t) that the partition Π(t) of the
sample consists of l1 blocks of size 1, l2 blocks of size 2, and so on.

To compute the partition structure p(l1, l2, ..., lm; t), we first compute the coalescence configuration prob-
abilities

E({hj}kj=1) =
N !

(N − k)!

〈
k∏

j=1

(
nj∑N
i=1 ni

)hj
〉
. (213)

The quantity E({hj}kj=1) gives the probability that at time t, the sample traces back to a total of k distinct
ancestors, and further, that a particular set of h1 individuals trace back to one of those ancestors, a particular
set of h2 individuals trace back to another, and so on (with

∑k
j=1 hj = m). These can be calculated using

manipulations similar to those used to calculate Λ0
m,k(t); note that a similar calculation is also performed by

Desai et al. (2013), though that work is primarily focused on tracing the ancestors of a sample of individuals
as they move from one discrete fitness class to another by acquiring a single beneficial mutation.
The probability E is given by

E({hj}kj=1, t) =
N !

(N − k)!

〈
k∏

j=1

(
nj∑N
i=1 ni

)hj
〉

(214)

Note that the combinatorial factor N !/(N −k)! is included because we do not specify the common ancestors
of the k “families” which share common ancestry. Using the identity Γ(m)C−m =

∫∞
0
zm−1e−zCdz with

C =
∑N

i=1 ni, and assuming the ni are independent of one another, yields

E({hj}kj=1, t) ≈
N !

(N − k)!(m− 1)!

∫ ∞

0

dzzm−1
〈
e−zn1

〉N−k
k∏

j=1

〈
n
hj

j e
−znj

〉
, (215)

which can be expressed as

E({hj}kj=1, t) ≈
(−1)m+kN !

(N − k)!(m− 1)!

∫ ∞

0

dzzm−1e−NΦ0

k∏
j=1

∂hj
z Φ0(z, t). (216)

As in our computation of Λ0
m,k(t), we use the properties of Φ0(z, t) discussed by Fisher (2013). For t < Tc,

linearity of Φ0(z, t) in z implies that E is negligible unless hj = 1 for all j (which describes the case in which
each individual in the sample traces back to a distinct common ancestor). For t > Tc, Eq. (200) can be
simplified to

E({hj}kj=1, t) ≈
N !(e1−t/Tc)k−1

Nk(N − k)!(m− 1)!

k∏
j=1

(
Γ(hj − e1−t/Tc)

Γ(1− e1−t/Tc)

)∫ ∞

0

due−uuk−1. (217)
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by using the Φ0(z, t) in Eq. (200) and making the substitution u ≡ NΦ0. The integral in Eq. (217) evaluates
to Γ(k); using Stirling’s approximation to approximate N !/(N − k)! ≈ Nk then yields

E({hj}kj=1, t) ≈
(k − 1)!(e1−t/Tc)k−1

(m− 1)!

k∏
j=1

Γ(hj − e1−t/Tc)

Γ(1− e1−t/Tc)
. (218)

Note that E depends only on the block counts li, where li counts the number of blocks of size i (so that
k =

∑m
i=1 li and m =

∑m
i=1 ili). We can thus rewrite E as

E({hj}kj=1, t) ≈
(k − 1)!(e1−t/Tc)k−1

(m− 1)!

m∏
j=1

[
Γ(j − e1−t/Tc)

Γ(1− e1−t/Tc)

]lj
. (219)

The quantity E gives the probability of a particular partition with block counts {li}mi=1. The total number
of partitions with l1 blocks of size 1, l2 blocks of size 2, and so on, is m!/

∏
j

[
(j!)lj lj !

]
(note that by definition

a partition is an unordered collection of blocks). The probability p(l1, l2, ..., lm; t) then follows as

p(l1, l2, ..., lm; t) ≈ m(k − 1)!(e1−t/Tc)k−1
m∏
j=1

1

lj !

[
Γ(j − e1−t/Tc)

Γ(j + 1)Γ(1− e1−t/Tc)

]lj
. (220)

The partition structure p(l1, l2, ..., ln; t) in Eq. (220) is precisely that of a partition drawn from a two
parameter Poisson-Dirichlet distribution PD(α, θ) with α = e1−t/Tc and θ = 0 (Pitman, 1995; Pitman
and Yor, 1997). Importantly, the partition structure of the BSC is also described by a Poisson-Dirichlet
distribution PD(α, 0) with α = e−t (Berestycki, 2009). Thus, given the approximations made above, for
t > Tc the partition structure under our evolutionary model corresponds precisely to that under the BSC
(up to the replacement of t by (t− Tc)/Tc, which reflects the delay period and coalescence timescale arising
within our model).
The correspondence of the partition structure for our evolutionary model with that of the BSC does not

imply that genealogies within our model are perfectly described by the BSC. For example, a further assump-
tion of the BSC is that successive merger events are independent of one another; in our evolutionary model,
heritable fitness variation among individuals may result in non-independence among merger events (though
Neher and Hallatschek (2013) suggest, by a heuristic argument, that lineages within the appropriate region
of fitness space equilibrate on a timescale much faster than the timescale of coalescence, such that successive
merger events are largely independent of one another). However, the partition structure contains much more
information than simply the instantaneous merger rates Λ0

m,k(Tc) or the time-dependent probabilities Qk(t),
and its correspondence implies a relatively strong resemblance between genealogies of our model and those
of the BSC.

E.3 The Site Frequency Spectrum

As discussed in the main text, the selected site frequency spectrum Ps(k|m) can be computed as

Ps(k|m) = µ

∫ ∞

0

(
m

k

)
Λs
m,k(t)dt. (221)

Substituting into Eq. (221) the Λs
m,k(t) found above, we have

Ps(k|m) ≈ Tcµ

(
m

k

)[
δk,1

(
eTcs − 1

Tcs

)
+ eTcs

∫ 1

0

dy
sinπy

πy
B(k − y,m− k + y)

]
(222)

where we made the substitution y ≡ e1−t/Tc in the integral; note that B(x1, x2) denotes the Beta function
which satisfies B(x1, x2) = Γ(x1)Γ(x2)/Γ(x1 + x2). The first term in Eq. (222) denotes a contribution
from observed mutations with ages t < Tc; consistent with our approximate result that coalescence events
do not occur until Tc generations into the past have elapsed, this term is only present (up to the level of
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our approximation) for the case k = 1, corresponding to singletons. Apart from an overall scale factor,
the contribution from t > Tc (the second term in Eq. (222)) exactly matches the SFS of the true BSC, as
calculated by Kersting et al. (2019). Kersting et al. (2019) computes the SFS of the true BSC directly from
its known partition structure; a similar calculation is carried out by Neher and Hallatschek (2013) for the
common-allele portion of the BSC SFS. For completeness, here we simplify Eq. (222) for the case s = 0
(which gives the neutral site frequency spectrum); results for the selected site frequency spectrum follow
immediately.
First, we note that P0(1|m) simplifies to

P0(1|m) ≈ Tcµm

[
1 +

∫ 1

0

dy
sinπy

πy
B(1− y,m− 1 + y)

]
(223)

while P0(1|2), the pairwise heterozygosity, further simplifies to

P0(1|2) ≈ 4Tcµ ≈ 2 ⟨T2⟩µ. (224)

That is, we recover the well-known “molecular clock” result for P0(1|2): the average number of (neutral)
pairwise differences among individuals is given by the average time since they share a common ancestor,
times the per-locus mutation rate µ. Note that the contribution of Λ2,1(t) with t < Tc is important for
computing P0(1|2) (otherwise, our calculation would disagree with the “molecular clock” result by a factor
of 2). For large m and k = 1, the contribution from t < Tc dominates and P0(1|m) ∼ Tcµm; this is precisely
the contribution of mutations which occur on the m terminal branches of the sample, none of which merge
until Tc generations into the past have elapsed.

The BSC SFS in the large sample size limit

To analyze the more general case with k > 1, it is useful to consider the large m limit, such that the allele
frequency ν ≡ k/m can be treated as a continuous variable. The contribution from t < Tc vanishes for large
N , and the distribution of neutral site frequencies h0(ν) follows as

h0(ν) = lim
m→∞

mP0(mν|m) ≈ lim
m→∞

Tcµ

ν(1− ν)

∫ 1

0

dy
sinπy

πy

B(mν − y,m(1− ν) + y)

B(mν,m(1− ν))
. (225)

The integral on the right-hand side of Eq. (225) has been analyzed by Kersting et al. (2019); we briefly
reproduce this analysis here. The right-hand side of Eq. (225) can be further simplified using Stirling’s
approximation, which yields

hneu(ν) ≈
TcUn

ν(1− ν)

∫ 1

0

dy
sinπy

πy

(
1− ν

ν

)y

. (226)

The integral in Eq. (226) can be evaluated exactly in terms of functions arctan and the exponential integral
Ei, yielding

h0(ν) ≈
Tcµ

ν(1− ν)

(
i

2π

[
Ei

(
−iπ + log

1− ν

ν

)
− Ei

(
iπ + log

1− ν

ν

)]
− 1

π
arctan

[
π

log 1−ν
ν

])
(227)

where in Eq. (227), the range of arctan must be taken as (0, π) instead of the usual (−π/2, π/2). For rare
alleles (log 1−ν

ν → ∞) Eq. (227) simplifies to

h0(ν) ≈
Tcµ

ν(1− ν)

( (
1−ν
ν

)
log2 1−ν

ν

− 1

log 1−ν
ν

)
≈ Tcµ

ν2 log2(1/ν)
, (228)

while for common alleles (log 1−ν
ν → −∞),

hneu(ν) ≈
Tcµ

(1− ν) log
(

1
1−ν

) . (229)
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Note that the integral in Eq. (226)—and in particular, the region of y which dominates that integral—can
be examined to identify the typical allelic ages of mutations observed at a given frequency. For example, if
ν > 1/2, the integrand peaks at y = 0 and the integral is dominated by the region of width 1/| log 1−ν

ν | above
0. As a result, alleles at a frequency 1 − ν ≪ 1 have typical ages t ≳ Tc

(
1 + log log 1

1−ν

)
. Alternatively, if

ν < 1/2, the integrand peaks at an intermediate y∗ between 0 and 1 which satisfies 1/y∗−π cotπy∗ = log 1−ν
ν .

In the limit ν → 0, 1− y∗ → 1/ log(1/ν) so that t∗ → Tc(1+1/ log(1/ν)). In particular, b(t∗ −Tc) > 1 when
log(1/ν) < Tcb, or equivalently, when ν > e−Tcb.

Deviations from the BSC SFS at lower frequencies

For lower frequencies such that log(1/ν) > Tcb, the time integral yielding the SFS receives a substantial

contribution from times t such that b(t− Tc) ≲ O(1). At these times the approximation Φ0(z, t) ∝ ze
1−t/Tc

used to obtain Λ0
m,k(t), and thus the SFS, begins to break down. In Appendix A, we analyze the behavior

of ϕz(x, t) at intermediate times such that b(t − Tc) ≲ O(1), extending the analysis of ϕz(x, t) carried out
by Fisher (2013) at long times such that b(t− Tc) ≫ 1. Because the corresponding Φ0(z, t) does not have a
simple power law dependence on z, the manipulations carried out above to obtain the merger rates Λ0

m,k(t),
and in turn the contribution to the SFS, are difficult to extend to these times. To obtain the contribution
to the SFS of these mutations, we will instead directly extract p(ν; t, x), the probability that a lineage has
frequency ν at time t, given it was seeded at time 0 with relative fitness x, from

〈
e−ζν(x,t)

〉
, the generating

function for the frequency ν(x, t) of the lineage. The generating function
〈
e−ζν(x,t)

〉
can in turn be obtained

from the quantity ϕz(x, t) computed in Appendix A, according to

1−
〈
e−ζν(x,t)

〉
= 1−

〈
e−(ζ/N)n(t|x)

〉
≈ ϕζ/N (x, t). (230)

We will then compute the contribution of these mutations to the SFS by integrating p(ν; t, x) over both
times t and initial fitnesses x.
We will define the function E[R; t, x] according to

E [log(1/ν)/(Tcb); t, x] ≡ ν2p(ν; t, x), (231)

with the scaling variable R ≡ log(1/ν)/(Tcb), so that

1−
〈
e−ζν(x,t)

〉
=

∫ 1

0

(
1− e−ζν′

) E [log(1/ν′)/(Tcb); t, x]

(ν′)2
dν′, (232)

which can be written as

1−
〈
e−ζν(x,t)

〉
ζ

=

∫ ∞

0

(
1− e−ζν′

ζν′

)
E [log(1/ν′)/(Tcb); t;x] d log(1/ν

′), (233)

by making a change of variables. For log(1/ν) ≪ log ζ, the factor (1−e−ζν)/(ζν) is exponentially suppressed,
while for log(1/ν) ≫ log ζ, (1 − e−ζν)/(ζν) ≈ 1. Upon making the ansatz that E[R; t, x] varies on R scales
of O(1) (which can later be checked to be self-consistent), we then have

1−
〈
e−ζν(x,t)

〉
ζ

≈
∫ ∞

log ζ

E [log(1/ν′)/(Tcb); t;x] d log(1/ν
′), (234)

and thus

E [log(1/ν)/(Tcb); t;x] ≈ − ∂

∂ log ζ

(
1−

〈
e−ζν(x,t)

〉
ζ

)∣∣∣∣∣
log ζ=log 1/ν

. (235)

Using our result from Appendix A for ϕζ/N (x, t) when b(t − Tc) ≲ O(1), given in Eq. (135), we can
evaluate the derivative on the right-hand side of Eq. (235) as a contour integral. We then have

E [R; t, x] ≈ xce
Tc(x−xc)Ai′(z0)

(
1

2πi

∫
C
eb(t−Tc)z

Ai
(
c−x
b + z

)
Ai2 (z + z0 +R)

dz

)
, (236)
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where the contour C runs from e−2πi/3∞ through 0 to e2πi/3∞. To see this, note that the integral in Eq.
(236) has second order poles at z = zj − (z0 +R) with corresponding residues

1

Ai′(zj)2
∂

∂z

[
eb(t−Tc)zAi

(
c− x

b
+ z

)]∣∣∣∣
z=zj−(z0+R)

, (237)

so that Eq. (236) follows from Eq. (135) and an application of the residue theorem. Integrating over times
from b(t− Tc) = −∞ to b(t− Tc) = ∞, we have∫

E(R; t, x)dt ≈ xce
Tc(x−xc)Ai′(z0)

b

Ai
(
c−x
b

)
Ai2 (z0 +R)

, (238)

which can then be integrated against the fitness distribution to yield

ν2hs(ν)

Nµ
=

∫ min[xc−bR,xc+s]

f(x− s)

(∫
E(R; t, x)dt

)
dx, (239)

the SFS of mutations with fitness effect s. We can consider the cases s > −bR and s < −bR separately, in
each case using the expression for f(x) given in Eq. (30). If s > −bR,

ν2hs(ν)

Nµ
≈ eTcs

NTcb2Ai2(z0 +R)

∫ ∞

z0+
1

Tcb
+R

Ai(u)Ai(u+ s/b)du, (240)

which evaluates to

ν2hs(ν)

Tcµ
≈ eTcs

(Tcb)2

×

[
Ai(z0 +

1
Tcb

+R+ s/b)Ai′(z0 +
1

Tcb
+R)−Ai(z0 +

1
Tcb

+R)Ai′(z0 +
1

Tcb
+R+ s/b)

(s/b)Ai2(z0 +R)

]
, (241)

and, in the limit s/b→ 0, to

ν2hs(ν)

Tcµ
≈ eTcs

(Tcb)2


Ai′

(
z0 +

1
Tcb

+R(ν)
)

Ai
(
z0 +

1
Tcb

+R(ν)
)
2

−
(
z0 +

1

Tcb
+R(ν)

) . (242)

For small R (and large Tcb), Eq. (242) simplifies to

ν2hs(ν)

Tcµ
≈ eTcs

(Tcb)2R2
, (243)

and thus

hs(ν) ∼
Tcµe

Tcs

ν2 log2(1/ν)
, (244)

which is precisely the asymptotic behavior of the BSC SFS at low frequencies. In the limit of large R + z0,
Eq. (242) simplifies to

ν2hs(ν)

Tcµ
≈ eTcs

2(Tcb)2

√
1

z0 +R
, (245)

and thus

hs(ν) ∼
Tcµe

Tcs

2(Tcb)3/2ν2
√
Tcbz0 + log(1/ν)

. (246)
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Note, however, that when z0 + R ≫ 1, the contribution to the SFS is dominated by lineages with initial
fitnesses (c−x)/b ∼ z0+R≫ 1; this can be seen from the integral in Eq. (240), which is boundary-dominated
in this case. These fitnesses lie well below the fixation class, where the approximation f(x) ∝ e−TcxAi

(
c−x
b

)
,

used to obtain Eq. (240), begins to break down.
If s < −bR (which requires that the mutation is deleterious) we have

hs(ν) ∼
Tcµe

Tcs

ν2 log2(1/ν)
, (247)

for small R, which again matches the low-frequency behavior of the BSC SFS.

The contribution to the SFS from deterministic lineage trajectories

To obtain the contribution to the SFS from mutations with ages t < Tc (which will be important for low
frequencies) we will treat the growth of lineages deterministically. For simplicity, we focus our attention on
the neutral SFS h0(ν), which can be computed as

h0(ν) = Nµ

∫ ∞

0

dt

∫
f(x)pest(x)δ

(
ν − n(t|x)

N

)
dx, (248)

where pest(x) denotes the establishment probability of a lineage founded at relative fitness x, and n(t|x)
denotes the size of a deterministically growing lineage at time t, given it was established at time 0 with relative
fitness x. A solution for n(t|x) is reviewed, and the dynamics of deterministically growing lineage trajectories
are discussed, in Appendix F (see Eq. (275)). Here we will use the result that n(t|x) = n0(x)e

xt−J(t), where

J(t) ≡ vt2/2−
∫ µ(s)

s (est − st− 1) ds; n0(x) = 1/pest(x) is an additional factor we include here which denotes
the size of an established lineage—the size of a lineage at the point such that its future growth is largely
described by the deterministic forces of mutation and selection, as opposed to genetic drift.
The time integral in Eq. (248) can easily be carried out, yielding

h0(ν) = Nµ

∫
dxf(x)pest(x)/

∣∣∣∣ ∂∂t n(t|x)N

∣∣∣∣
n(t|x)/N=ν

, (249)

where the time derivative in Eq. (249) is evaluated at t such that n(t|x)/N = ν, for a given x and ν. To
simplify Eq. (249), we note that the quantity n(t|x) peaks at time tx solving

dJ

dt

∣∣∣∣
t=tx

= x, (250)

with peak size npeak(x) given by

npeak(x)

n0(x)
= extx−J(tx) = etxJ

′(tx)−J(tx). (251)

For t near the peak—which will turn out to often dominate the contribution of a lineage to the SFS—we
have

n(t|x)
npeak(x)

≈ e−
1
2J

′′(tx)(t−tx)
2

, (252)

from which it follows that ∣∣∣∣ ∂∂t n(t|x)N

∣∣∣∣
n(t|x)/N=ν

≈ ν

√
2J ′′(tx) log

(
npeak(x)

Nν

)
. (253)

Assuming the contribution of lineages near their peak dominates the SFS, we then have

h0(ν) ≈
Nµ

ν

∫
f(x)pest(x)dx√

2J ′′(tx) log(npeak(x)/Nν)
, (254)
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where the lower limit of integration in Eq. (254) is such that npeak(x) > Nν. A simplification occurs in that

f(x) ≈ e−xtx+J(tx)√
2πJ ′′(tx)

=
n0(x)

npeak(x)
√
2πJ ′′(tx)

, (255)

(see Eq. (186) in Appendix C) so that

h0(ν) ≈
Nµ

2ν
√
π

∫
n0(x)pest(x)

npeak(x)J ′′(tx)
√

log(npeak(x)/(Nν))
dx. (256)

The factors n0(x) and pest(x) cancel one another in the numerator of Eq. (256), and thus contribute only
logarithmic corrections to our final result. For simplicity, we therefore neglect the x-dependence of n0(x)
throughout the rest of this calculation; at the end of our calculation we replace n0 with the appropriate value
based on the dominant range of x contributing to the SFS at a given frequency. Noting that d log npeak(x) =
txdx, Eq. (256) can be rewritten as

h0(ν) ≈
Nµ

2ν
√
π

∫ ∞

Nν

dnpeak

n2peak
√
log(npeak/(Nν))

1

L(npeak)
, (257)

with

L(npeak) ≡ txJ
′′(tx) =

d log npeak(x)

dtx
. (258)

Note that in Eq. (257), and in our definition of L(npeak), we have replaced the dependence of npeak on x with
its dependence on tx. The quantity L(npeak) can be simplified to tx

[
v −

∫
µ(s)dssestx

]
, where tx is the time

a lineage size peaks, given it peaks at a size npeak. Changing the variable of integration to u ≡ npeak/(Nν),
we have

h0(ν) ≈
Nµ

2Nν2
√
π

∫ ∞

1

du

u2
√
log u

1

L(Nνu)
(259)

The integral over u is dominated by u close to 1 on the logarithmic scale over which L varies; we thus have

h0(ν) ∝
Nµ

2Nν2L(Nν)
√
π

∫ ∞

1

du

u2
√
log u

=
Un

2ν2L(Nν)
. (260)

For concreteness, we now consider two special cases. First, provided that stx ≪ 1 for relevant s, L(npeak) ≈
σ2tx and npeak ≈ n0e

σ2t2x/2, so L(npeak) ≈ σ
√

2 log(npeak/n0). Mutations observed at these frequencies

occurred in the “bulk” of the fitness distribution, with relative fitness xf ∼ σ
√

2 log (Nν/n0); we can thus
take n0 ∼ 1/σ, to logarithmic accuracy. We thus have

h(ν) ∝ 1

ν2
√
logNσν

(261)

if ν ≪ 1
N e

σ2/(2s2) for relevant s. .
Alternatively, if b(Tc − tx) ≪ 1, then L(npeak(x)) ≈ 2Tcb

3(Tc − tx) and b
2(tx − Tc)

2 ≈ (c− x)/b. We then
have that

log(npeak(x)/n0) ≈ logNxc − Tcb
3(tx − Tc)

2 + Tcbz0 + 1, (262)

with n0 ∼ 1/xc, and thus

L(Nν) ≈ 2Tcb
2

√
z0 +

1

Tcb
log

1

ν
. (263)

It follows that

h(ν) ∼ 1

ν2
√
Tcbz0 + log 1

ν

, (264)



65

and that the dominant relative fitness xf at which observed mutations occurred is given by (c − xf )/b ∼
z0 +

1
Tcb

log(1/ν). Note also that this approach breaks down if log(1/ν) < Tcb|z0|. Mutations observed at
frequencies such that log(1/ν) < Tcb|z0| are likely to have originated at relative fitnesses xf > c, for which
trajectories monotonically increase with time, under a deterministic approximation.
We note that the above approach resembles an approach taken by Neher and Shraiman (2011) to compute

the rare-allele portion of the SFS. In that work, lineages contributing to the SFS are assumed to be founded
by individuals within the Gaussian portion of the fitness distribution f(x) ∼ e−x2/2σ2

, with sizes growing

deterministically according to n(t|x) ∝ ext−σ2t2/2. We can carry out a similar calculation to obtain the SFS
at very low frequencies (such that the SFS is not necessarily dominated by mutations at the peaks of their
deterministic trajectories). Given these assumptions, in contrast to the previous case we can more easily
carry out the x integral in Eq. (248) before the t integral, which yields

h0(ν) ≈
Nµ

ν
√
2πσ2Nν

∫ ∞

0

dt

t
pest

√
n0e

−σ2t2

8 −
log2(Nν

n0
)

2σ2t2 . (265)

As in the above case, both pest and n0 depend on t (via the x that yields a lineage of size Nν at time t); we
will neglect this dependence and see that, under this assumption, the factor pest in the numerator cancels
with a factor 1/n0, leaving only a logarithmic dependence on n0. We can then evaluate the integral in Eq.
(265) exactly, yielding

h0(ν) ≈
Nµpest

ν3/2
√
2πσ2N/n0

K0

(
log Nν

n0

2

)
, (266)

where K0 is the modified Bessel function of the second kind. Using the asymptotic expansion K0(x) ∼√
π
2xe

−x for large x then gives

h0(ν) ∼
µ

ν2
√
2σ2 log Nν

n0

≈ µ

ν2
√
2σ2 logNσν

, (267)

if Nσν ≫ 1. Note that in the final equality above we replaced n0 by 1/σ, since the SFS is dominated by
mutations which arose at relative fitness O(σ) (i.e., in the “bulk” of the fitness distribution).

E.4 Transition Density of the Effective Lead Frequency

To obtain the transition density, we first consider the generating function

H[θw(x), t] =
〈
e−Nθ

∫
w(x)g(x,t)dx

〉
=
〈
e−θνL(t)

〉
(268)

for the effective lead frequency νL(t) ≡ N
∫
g(x, t)w(x)dx. Note that the effective lead frequency νL can

also be interpreted as the fixation probability of a lineage. Using the method of Appendix A, this can be
done by solving Eq. (93) with the initial condition ϕ(x, 0) = θw(x). Fisher (2013) considers essentially the
same quantity as in Eq. (268), with the only difference being that in that work, g(x, t) is replaced by the
population-wide fitness distribution, which can fluctuate. In our case, g(x, t) is the fitness distribution of a
lineage (which can fluctuate), evolving in competition with a population whose mean fitness changes at rate
v. We can thus directly apply the following result from Eq. (68) of Fisher (2013):〈

e−θνL(t)
〉
≈
〈
e−θα(τ)νL(t−τ)

〉
, (269)

with α(t) = e−t/Tc (in our notation). As discussed by Fisher (2013), Eq. (269) implies that νL(t) is

drawn from a (one-sided) Lévy stable distribution with a tail falling off as 1/ν
1+α(τ)
L . Eq. (269) is valid

for τ > log(1/θ)/xc and θ ≲ O(1). As a result, Eq. (269) does not adequately describe the probability
distribution of νL for νL ≪ 1; our results below thus only apply to lineages with “macroscopic” effective lead
frequency νL (i.e., with a significant probability of taking over the population).
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The result for
〈
e−θνL(t)

〉
in Eq. (269) is essentially the same as the result for a similar quantity obtained

by Kosheleva and Desai (2013) (though that case involves transitions in frequencies among discrete fitness
classes at discrete points in times; the analog of α(τ) also differs slightly). The derivation in Kosheleva and
Desai (2013) can be carried over to our case, yielding, in our notation,

Gt(νL(t), νL(0)) =

sin [πα(t)] νL(0) (1− νL(0))

νL(t) (1− νL(t))π

[
(1− νL(0))

2
(

νL(t)
1−νL(t)

)α(t)
+ νL(0)2

(
1−νL(t)
νL(t)

)α(t)
+ 2νL(0)(1− νL(0)) cos (πα(t))

] .
(270)

We note that a key aspect of the derivation of Eq. (270) is essential in allowing its application to our case.
In particular, the calculation of Kosheleva and Desai (2013) computes Eq. (270) essentially by integrating
over the transitions of νL,1(t) (given a starting value νL(0)) as well as νL,2(t) (given a starting value, 1−νL(0),
equal to the complement of νL(0)), with νL(t) then equal to νL,1/ (νL,1(t) + νL,2(t)). This can be thought
of as a way to explicitly enforce that the νL(t) of the different lineages in a population sum up to 1, as
they should in our model, and resembles the way in which our calculation of genetic diversity statistics
only involves relative sizes of lineages. In both cases, the generating functions used correspond to Lévy
distributions with diverging mean and variance, and so care must be taken to deal only with “relative”
quantities in considering a population of fixed size.

Appendix F DETERMINISTIC LINEAGE TRAJECTORIES

In this Appendix, we review the dynamics of a lineage whose fitness distribution evolves deterministically
and in competition with a population steadily increasing in fitness at rate v. More precisely, we consider the
size trajectory nl(x0, t) of a lineage founded at relative fitness x0 as well as its time-dependent distribution
g(X, t) of fitnesses. For clarity, we proceed by writing down and directly analyzing an equation for g(X, t)
with number fluctuations neglected; alternatively, the same results can be obtained using a solution for
the generating function

〈
e−zn(t|x0)

〉
from Appendix A, which treats n(t|x0) as a random variable. These

results facilitate a comparison of the behavior obtained within the infinitesimal and MSSM approximations
(which are stochastic treatments) and the behavior obtained within a purely deterministic treatment, which
is provided in the Discussion. These results are also useful in motivating an interpretation of the timescales
Tc and σ

2/2D as sweep timescales with the infinitesimal and MSSM regimes, respectively; interpretations of
σ4/4D and c are also possible.

In treating the deterministic behavior of a lineage, apart from neglecting any stochasticity in births or
deaths, we assume that the deterministic growth of the lineage does not perturb the steady advance of
the mean fitness of the population from its expected value vt. Without loss of generality, we assume a
population-wide mean fitness of 0 when t = 0. Our focus is on the quantity g(X, t), with g(X, t)dX denoting
the number of individuals within the lineage whose absolute fitness lies between X and X + dX, at a time t
since the foundation of the lineage. The equation for g(X, t) is then given by Eq. (87) with the noise term
ηg(X) further neglected:

∂g(X, t)

∂t
= (X − vt)g(X, t) +

∫
µ(s) [g(X − s, t)− g(X, t)] ds. (271)

Our approach to analyzing Eq. (271) is similar to the approach carried out in Fisher (2013) to analyze
the population-wide fitness distribution, assuming it evolves deterministically at fixed rate v (with the
total population size allowed to vary in that model). We solve for the the Laplace transform g̃(z, t) ≡∫
g(X, t)e−zXdX, which evolves according to

∂g̃(z, t)

∂t
= −∂g̃(z, t)

∂z
+

[∫
µ(s)(e−zs − 1)ds− vt

]
g̃(z, t), (272)

subject to the initial condition

g̃(z, 0) =
e−zx0

N
, (273)
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assuming the lineage is founded by a single individual with relative fitness x0. Eq. (272) can be solved using
the method of characteristics, yielding

g̃(z, t) =
1

N
exp

[
(t− z)x0 +

∫
µ(s)ds

s

(
e(t−z)s − e−zs − st

)
− vt2

2

]
. (274)

At time t, the total lineage size nl(x0, t) = Ng̃(0, t) is

nl(x0, t) = exp

[
x0t+

∫
µ(s)ds

s
(est − 1− st)− vt2

2

]
. (275)

The same result for nl(x0, t) could be obtained using the formalism of Appendix A by substituting into〈
e−zn(t|x)〉 = e−ϕz(x,t) the approximate solution for ϕz(x, t) obtained in Appendix E, and then evaluating

∂z
〈
e−zn(t|x)〉∣∣

z=0
.

The mean relative fitness x̄l(x0, t) of the lineage, along with the lineage-wide fitness variance σ2
l (x0, t),

can be similarly extracted by taking z-derivatives of g̃(z, t):

x̄l(x0, t) = x0 − vt+

∫
µ(s)(est − 1)ds, (276)

σ2
l (t) =

∫
µ(s)s

(
est − 1

)
ds, (277)

and for p ≥ 2,

∂p

∂(−z)p
log g̃(z, t) =

∫
µ(s)sp−1(est − 1)e−zsds. (278)

Of course, a consequence of Eq. (271) is that the lineage size n(t|x0) grows as dn(t|x0)
dt = n(t|x0)x̄(x0, t).

That is, the instantaneous growth rate of the lineage is equal to its mean relative fitness. Similarly, the
rate of change of the mean relative fitness of the lineages matches what would be expected from Fisher’s
fundamental theorem: d

dt x̄(x0, t) = σ2
l (t)+

∫
µ(s)sds. Of note is that the scale c, as defined in the main text,

demarcates the region x0 > c for which lineage sizes increase in size indefinitely from the region x0 < c within
which they do not. Lineages founded at 0 < x0 < c will increase initially in size but attain a maximum size
at some point t∗, with t∗ < Tc (and with Tc as defined in the main text by Eq. (17)). For x0 sufficiently

close to c, this local maximum will be attained at t∗ ≈ Tc

[
1− (1/Tcb)

√
c−x0

b

]
. Lineages founded at x0 < 0

decrease in size indefinitely. We note also that σ2
l (t) is independent of x0, and increases from 0 to match σ2,

the population-wide fitness variance, over the course of precisely Tc generations. For t > Tc, σ
2
l (t) exceeds

σ2, suggesting that the approximations made above break down.
The above expressions for nl(x0, t), x̄l(x0, t) and σ

2
l (t) involve integrals over ρ(s). In the next subsection,

we restrict our attention to the infinitesimal regime, in which the above expressions can be simplified in
terms of σ2 and D. We then turn to the MSSM regime, in which simplifications can be made in terms of
the scales Tc, b and c.

F.1 Lineage Trajectories in the Infinitesimal Regime

Assuming validity of the infinitesimal approximation, for t ≲ σ2

2D , Taylor approximations can be made
within Eq. (275), Eq. (276) and Eq. (277), yielding

log nl(x0, t) ≈ x0t−
σ2t2

2
+
Dt3

3
(279)

with the quantities σ2 and D as defined in the main text (Neher et al., 2014b). The mean and variance in
fitness of the lineage-wide fitness distribution can be computed in a similar way, yielding

x̄l(x0, t) ≈ x0 − σ2t+Dt2, (280)
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and

σ2
l (t) ≈ 2Dt. (281)

Under the additional assumption 1
U ≪ t ≪ σ2

2D , the (relative) fitness density g(x, t) of the lineage can be
approximated as

g(x, t) ≈ nl,inf (x0, t)√
2πσ2

l,inf (t)
exp

[
− (x− x̄l,inf (x0, t))

2

2σ2
l,inf (t)

]
. (282)

for |x − x̄l,inf (x0, t)| ≲ σl,inf (x0, t). This can be done by writing down g(X, t) as the inverse Laplace
transform of Eq. (274), identifying the regions dominating the integral (saddle points, which are located
at z ≈ x−x̄l,inf

σ2
l,inf (t)

), and arguing that the relevant terms can be neglected within those regions, provided that

Ut≫ 1. Alternatively, we can note that Eq. (282) solves

∂g(X, t)

∂t
= (X − vt)g(X, t) +D

∂2g(X, t)

∂X2
− U ⟨s⟩ ∂g(X, t)

∂X
, (283)

which can be obtained from (271) by a Taylor approximation of g(X − s, t) to second order in s (similar to
the expansion of f(x − s) in the usual presentation of the infinitesimal approximation). Within the region
|x− x̄l,inf (x0, t)| ≲ σl,inf (x0, t) of interest, g(X, t) varies on a scale of σl(t), suggesting validity of this Taylor
approximation when s ≪ σl(t) throughout the support of ρ(s), or equivalently, when Ut ≫ 1. Eq. (283)
motivates the following description of the deterministic dynamics of lineages within the infinitesimal regime:
lineages grow in size at at a rate given by their overall mean (relative) fitness advantage, advect upwards in
absolute fitness at rate U ⟨s⟩, and diffuse outward in fitness with diffusion constant D.

The above analysis considers the behavior of a single lineage evolving deterministically, given its initial
fitness x0. We can easily extend our analysis to consider how, under the deterministic approximation, the
collective set of descendants of a class of individuals evolves. In particular, given the results from the
main text for the steady-state relative fitness distribution f(x), we can compute the number n(t;x1, x2) of
descendants of the class of individuals with fitnesses between x1 and x2, after t generations. At the particular
time t = σ2/2D, n(t;x1, x2) simplifies to

n(σ2/2D;x1, x2) ≡ N

∫ x2

x1

f(x)n(x, σ2/2D)dx ≈ N

∫ σ4/4D−x1

D1/3

σ4/4D−x2

D1/3

Ai(u)du. (284)

As we discuss in the main text, within the infinitesimal regime, the region σ4/4D < x < xc contributes a
future common ancestor of the population with probability O(1) (which motivates us to refer to this region
as the fixation class). Under the deterministic approximation, after σ2/2D generations, the lineage seeded
collectively by the fixation class has reached a size of

n

(
σ2

2D
;
σ4

4D
,xc

)
= 0.94×N. (285)

individuals. This in turn motivates our interpretation of σ2/2D as a sweep timescale: over the course of
σ2/2D generations, the fixation class collectively sweeps through to comprise a macroscopic fraction of the
population, under the deterministic approximation. A timescale σ2/2D has also been interpreted as a sweep
timescale by
As discussed in the main text, D1/3 corresponds to the width of the fixation class. The above results results

further suggest an interpretation of D1/3 as a diffusion scale. To see this, we consider the ratio of lineage sizes
seeded simultaneously with initial fitnesses x0 and x1 > x0, which evaluates to n(t|x1)/n(t|x0) = e(x1−x0)t.
The lineage seeded at initial fitness x1 is favored by selection on the timescale τsel = 1/(x1 − x0). Over this
same timescale, both lineages acquire fitness variance of the amount σ2

l (τsel) = 2D/(x1 − x0). The lineage-

wide fitness distributions overlap substantially at times before t = τsel only if
√
2D/(x1 − x0) ≫ (x1 − x0),

or equivalently, only if (x1 − x0) ≪ D1/3. The fitness scale D1/3 then corresponds roughly to the maximum
fitness difference of two lineages such that their fitness distributions overlap substantially before selection
acts to amplify the frequency of the more-fit lineage. The overlap of the fitness distributions can be thought
of as resulting from diffusion of the lineages through fitness space; this diffusion is particularly important
on fitness scales smaller than D1/3.
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F.2 Lineage Trajectories in the MSSM regime

Within the MSSM regime, analogous approximations can be made for log n(t|x0) and its derivatives. Here,
however, a Taylor approximation of est for t < Tc is not necessarily justified, since Tcs is not necessarily small
throughout the bulk of µ(s). In fact, even the smaller quantity s/b need not be small throughout the bulk of
µ(s); s/b is only required to be small within the region dominating

∫
µ(s)eTcsds. For deleterious mutations,

the condition that s/b≪ 1 for s dominating
∫
µ(s)eTcsds is strictly weaker than the condition that s/b≪ 1

for s dominating
∫
µ(s)ds.) Instead, given that s ≪ b for s dominating

∫
µ(s)eTcsds, an approximation of

Eq. (275) can be made for |t− Tc| ≲ O(1/b), yielding

log nl(x0, t) ≈ log n(x0, Tc) + (x0 − c) (t− Tc) +
b3(t− Tc)

3

3
, (286)

x̄l(x0, t) ≈ x0 − c+ b3(t− Tc)
2, (287)

and

σ2
l (t) ≈ σ2 + 2b3(t− Tc), (288)

with

log nl(x0, Tc) = Tc(x0 − xc) + log TcbAi′(z0)Nxc, (289)

where the last equality makes use of Eq. (31) from the main text.
As in the previous subsection, the quantity n(Tc;x1, x2) can be evaluated, in this case by making use of

Eq. (275) along with Eq. (179) for f(x) obtained within the MSSM regime. Since Eq. (179) is accurate only
for x within O(b) of c, x1 and x2 must also be within O(b) of c to yield reasonable accuracy in n(Tc;x1, x2).
Provided this condition is met,

n(Tc;x1, x2) = N

∫ c−x1
b

c−x2
b

Ai(u)du, (290)

and in particular,

n(Tc; c, xc) ≈ 0.94×N, (291)

such that Tc can be interpreted as a sweep timescale, in the sense that the fixation class collectively sweeps to
comprise a macroscopic fraction of the population over Tc generations. The timescale 1/b can be interpreted
as the rate at which n(Tc; c, xc) approaches N ; to see this, we note that for c < x0 < xc and |t− Tc| ≲ O(b),
the quantity nl(x0, t) varies on the timescale 1/b. The fitness scale b also corresponds to the width of the
fixation clas; however, the interpretation given in the previous subsection to D1/3 as a diffusion fitness scale
does not extend to this case.

Appendix G PARTICULAR DISTRIBUTIONS OF FITNESS EFFECTS

In this Appendix, we consider two classes of DFEs: stretched-exponential distributions, of the form

ρ(s) =
1

χ

e−(s/χ)β

Γ(1 + β−1)
(292)

considered by Desai and Fisher (2007), Good et al. (2012) and others, as well as (more briefly) gamma
distributions, of the form

ρ(s) =
α

⟨s⟩Γ(α)

(
αs

⟨s⟩

)α−1

e−
αs
⟨s⟩ . (293)
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For these classes of DFEs, we simplify many of the expressions provided in the main text, focusing particular
attention on the scale s̃ and its magnitude relative to the scales T−1

c and b. In doing so, our primary goal
is to evaluate the suitability of the infinitesimal and MSSM approximationes, particularly in the N → ∞
limit. We limit our attention here to DFEs consisting only of beneficial mutations, although our analysis
can easily be extended to consider DFEs consisting of deleterious mutations or a combination of the two.
We begin by considering the case of an exponential DFE. Attention on the case of a beneficial exponential

DFE can be motivated by arguments from extreme value theory (Gillespie, 1984; Orr, 2003). We then briefly
consider more general gamma distributions, and conclude by considering the case of a stretched-exponential
DFE with β > 1. The requirement that β > 1 is a key requirement for validity of our approach; otherwise,
the integrals Mp(Tc), which we consider throughout, do not converge.

G.1 Beneficial Exponential DFE

The special case in which mutations are beneficial and exponentially-distributed yields particularly simple
analytical results. We assume in this Subsection that µ(s) = U

⟨s⟩e
−s/⟨s⟩. We will compute quantities of

interest by first computing the moments Mp(Tc), defined as Mp(Tc) ≡
∫
µ(s)eTcsspds for p ≥ 1, M0(Tc) ≡∫

µ(s)
(
eTcs − 1

)
ds, and M−1(Tc) ≡

∫ µ(s)
s

(
eTcs − Tcs− 1

)
. These evaluate to

Mp(Tc) =


U
⟨s⟩

[
log
(

1
1−Tc⟨s⟩

)
− Tc ⟨s⟩

]
p = −1

U Tc⟨s⟩
1−Tc⟨s⟩ p = 0

p! U⟨s⟩p
(1−Tc⟨s⟩)p+1 p ≥ 1.

(294)

In particular,

v ≡M1(Tc) =
U ⟨s⟩

(1− Tc ⟨s⟩)2
. (295)

Consequently, Tc ⟨s⟩ approaches 1 from below as N → ∞ (note this follows from the fact that v increases
monotonically, without bound, with N). The fact that Tc ⟨s⟩ < 1 ensures convergence of the Mp(Tc) for all
p, and implies that ρf (s) ∝ e−(1−Tc⟨s⟩)s/⟨s⟩ is a strictly decreasing function of s on the interval (0,∞). The
average effect size ⟨sf ⟩ of a fixed mutation simplifies to

⟨sf ⟩ =
⟨s⟩

1− Tc ⟨s⟩
, (296)

such that

⟨sf ⟩
b

=

(
⟨s⟩
U

)1/3

(297)

is independent of N . Since ρf (s) is an exponential distribution, the standard deviation ∆sf of fixed fitness
effects equates to ⟨sf ⟩, and thus s̃ = 3 ⟨sf ⟩ given the definition of s̃ in Section II. Additionally,

Tcb =

(
U

⟨s⟩

)1/3
Tc ⟨s⟩

1− Tc ⟨s⟩
, (298)

so that the conditions s̃ ≪ b and Tcb ≫ 1 are both met (implying suitability of our MSSM approximation)
in the N → ∞ limit, as long as ⟨s⟩ ≪ U .

Conditions of validity can be considered more precisely by considering the quantities Sv(1) and S′
v(1)

discussed in Appendix C. These quantities evaluate to

Sv =
U

⟨s⟩

(
− log

[
1−

(
⟨s⟩
U

)1/3
]
−

[(
⟨s⟩
U

)1/3

+
1

2

(
⟨s⟩
U

)2/3

+
1

3

(
⟨s⟩
U

)])
(299)
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and

S′
v =

(⟨s⟩ /U)1/3

1− (⟨s⟩ /U)1/3
, (300)

with both Sv and S′
v tending to 0 as ⟨s⟩ /U → 0, and diverging for ⟨s⟩ ≥ U . We note that in the limit

s̃/b → 0, S′
v → s̃

3b (which is the same result for S′
v obtained when ρ(s) is not an exponential distribution,

but ρf (s) is sufficiently sharply peaked—as in the case ρ(s) = δ(s − sb), for instance). This can be seen
as a motivation for taking the particular definition s̃ ≡ ⟨sf ⟩ + 2∆sf ; with this definition, the (arguably)
simpler and more interpretable quantity s̃/b can be used instead of S′

v in determining the suitability of the
MSSM approximation. The quantity s̃/b behaves the same way as S′

v in the opposing limiting cases that
ρf (s) is very sharply peaked, and that ρf (s) is an exponential distribution. The same holds for the quantity
Sv; Sv → s̃/12b in the limit s̃/b → 0, both when ρf (s) is sharply peaked and when ρf (s) is an exponential
distribution.

An asymptotic approximation for the N → ∞ limit

We can obtain asymptotic results in the limit N → ∞ at fixed ⟨s⟩ /U ≪ 1. As noted above, in this limit
Tc ⟨s⟩ → 1, so this limit can alternatively be thought of as the limit Tcb→ ∞ at fixed ⟨s⟩ /U ≪ 1. We wish
to obtain the leading behavior of Tcb in terms of N by analyzing Eq. (31) in this limit. In doing so, it is
useful to simplify Eq. (31) in terms of the large parameter y ≡ (U/ ⟨s⟩)1/3Tcb. Using the integrals evaluated
in Eq. (294), we have, in the limit Tc ⟨s⟩ → 1,(

U

⟨s⟩

)1/3

log

[
N ⟨s⟩

(
⟨s⟩
U

)1/3

y2Tcb

]
≈ y2

2
+ |z0|y (301)

which can be further approximated as

y2 ≈ 2

(
U

⟨s⟩

)1/3

logN ⟨s⟩ . (302)

if y ≫ 1. This yields

1− Tc ⟨s⟩ ∼

√
U

2 ⟨s⟩ logN ⟨s⟩
(303)

and therefore

v ∼ 2 ⟨s⟩2 logN ⟨s⟩ (304)

which is approximately valid if logN ⟨s⟩ ≫ U/ ⟨s⟩. Note that for U/ ⟨s⟩ ≫ 1, an unreasonably large popula-
tion size N may be required for this asymptotic approximation to be useful (and at the same time, U/ ⟨s⟩ ≫ 1
is required for validity of the MSSM approximation). In particular, caution must be taken in interpreting Eq.
(303) or Eq. (304) as a function of U or ⟨s⟩, since changes in either quantity can cause the asymptotic approx-

imation to break down. In practice, the asymptotic approximation v ∼ 2(U ⟨s⟩2)1/3 ⟨s⟩ logN ⟨s⟩ generally
provides better accuracy throughout the parameter regime we have considered in simulations. Additionally,
in this limit

⟨sf ⟩
sb

∼
√

2 ⟨s⟩ logN ⟨s⟩
U

, (305)

b

⟨s⟩
∼
(
⟨s⟩
U

)1/6√
2 logN ⟨s⟩, (306)

and
c

⟨s⟩
∼ 2 logN ⟨s⟩ . (307)
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Single-s equivalence

Finally, we note that in the limit N → ∞ the dynamics can be captured an effective mutational fitness
spectrum µeff (s) = Ueffδ(s− seff ), with

seff ≡ 2 ⟨s⟩
1− Tc ⟨s⟩

= 2 ⟨sf ⟩ (308)

and

Ueff ≡ U

2(1− Tc ⟨s⟩)
e−2Tc⟨s⟩/(1−Tc⟨s⟩) (309)

With these definitions of Ueff and seff , v =M1(Tc) = Ueffseffe
Tcseff and 2b3 =M2(Tc) = Ueffs

2
effe

Tcseff ,
matching the corresponding quantities that are obtained for µ(s) = Ueffδ(s−seff ). In the limit N → ∞, the
quantities Tc and v depend on µ(s) only through M1(Tc) and M2(Tc); the dynamics can thus be described
by the effective mutation rate Ueff and effective DFE δ(s− seff ).

G.2 Beneficial Gamma DFE

Much of the above analysis can be straightforwardly generalized to the case of gamma-distributed beneficial
fitness effects, with

µ(s) =
αµ

⟨s⟩Γ(α)

(
αs

⟨s⟩

)α−1

exp

(
−αs

⟨s⟩

)
. (310)

Here ⟨s⟩ denotes the mean effect size and α > 0 denotes the shape parameter of the gamma distribution

(such that the variance in effect sizes is ⟨s⟩2 /α).
The moments Mp(Tc) evaluate to

Mp(Tc) =


U
⟨s⟩

[
α

α−1

((
α

α−Tc⟨s⟩

)α−1

− 1

)
− Tc ⟨s⟩

]
p = −1

U
[(

αb

αb−Tc⟨s⟩

)αb

− 1
]

p = 0

Γ(α+p)
αpΓ(α)

U⟨s⟩p

(1−Tc⟨s⟩/α)α+p p ≥ 1

(311)

with v = M1(Tc) → ∞ as Tc ⟨s⟩ → α; consequently, Tc ⟨s⟩ approaches α from below as N → ∞. (The
expression for M−1(Tc) assumes α ̸= 1.)
The distribution of fixed effects in the MSSM regime is just ρf (s) ∝ ρ(s)eTcs, which is a gamma distribution

with shape parameter α and mean effect ⟨sf ⟩ = ⟨s⟩ /(1− Tc ⟨s⟩ /α); the variance in fixed effects is given by

∆s2f = ⟨sf ⟩2 /α. The ratio ⟨sf ⟩ /b simplifies to

⟨sf ⟩
b

=

(
2

1 + 1/α

)1/3( ⟨s⟩
U

)1/3(
1− Tc ⟨s⟩

α

)(α−1)/3

, (312)

and so as long as α > 1,
⟨sf ⟩
b → 0 (and thus s̃/b → 0) in the N → ∞ limit. Further, Tcb → ∞ as N → ∞,

suggesting that the MSSM regime is approached in the N → ∞ limit as long as α > 1. In the opposite
case α < 1, the MSSM approximation is expected to break down as N → ∞ since ⟨sf ⟩ /b → ∞. Note
that this can be confirmed by simplifying the more precise conditions of validity S′

v(1) ≪ 1 and Sv(1) ≪ 1.
Additionally, as might be expected, the infinitesimal approximation breaks down in the limit N → ∞.

G.3 Beneficial Stretched-Exponential DFE

Here we consider beneficial stretched-exponential DFEs of the form

ρ(s) =
1

χΓ(1 + β−1)
e−(s/χ)β (313)



73

for s > 0, with β > 1. To do so involves evaluating integrals of the form
∫∞
0
speg(s)ds, with g(s) ≡ Tcs−

(
s
χ

)β
.

In contrast to the β = 1 case, simple closed-form expressions for these integrals are not available when β > 1.
In the limit that Tcχ→ 0, these integrals can be approximated as

∫ ∞

0

ρ(s)speTcsds ≈
∫ ∞

0

ρ(s)spds =
Γ
(

1+p
β

)
Γ(1/β)

χp. (314)

We focus here instead on the case in which Tcχ≫ 1—which is obtained in the limit N → ∞—in which these
integrals and related expressions can be approximated using Laplace’s method.
The quantity g(s) peaks at s∗ satisfying

s∗ =

(
Tcχ

β

) 1
β−1

χ, (315)

with

g(s∗) = Tcs
∗(1− 1/β), (316)

and

g(k)(s∗) = − Γ(1 + β)

χkΓ(1 + β − k)

(
Tcs

∗

β

)1−k/β

, (317)

for k = 2. The width ∆ ≡
∣∣g(2)(s∗)∣∣−1/2

of eg(s) scales, relative to s∗, as

∆

s∗
∼ 1√

β(β − 1)

(
Tcχ

β

)− β
2(β−1)

=
1√

(β − 1)as∗
, (318)

and ∣∣∣∣∣
[
g(2)(s∗)

]−1/2[
g(k)(s∗)

]−1/k

∣∣∣∣∣
2k

=

(
Tcs

∗

β

)2−k
1

βk−2(β − 1)k−2

(
Γ(β − 1)

Γ(β + 1− k)

)2

, (319)

motivating the use of Laplace’s method when Tcs
∗ ≫ β and β − 1 ≫ 1. Laplace’s method yields

∫ ∞

0

ρ(s)eTcsds ≈
√
2π∆2ρ(s∗)eTcs

∗
=
e(β−1)(Tcχ

β )
β

β−1

Γ(1 + β−1)

√√√√ 2π

β(β − 1)

(
Tcχ

β

) 2−β
β−1

, (320)

and more generally, ∫ ∞

0

ρ(s)speTcsds ≈
√
2π∆2ρ(s∗)(s∗)peTcs

∗
. (321)

Under this application of Laplace’s method, ⟨sf ⟩ is approximated to precisely s∗. Further, this application
of Laplace’s method essentially implies a single-s equivalence of the type discussed in Good et al. (2012),
whereby the dynamics arising from the full µ(s) can be approximated by the dynamics arising within a
population subject to mutations which confer only a single effect seff = s∗, occurring at rate Ueff =√
2πUρ(s∗)∆.
The magnitude of s∗ can be compared to b, with the result(

s∗

b

)3

≈
√
β(β − 1)

2π

1

Γ(1 + β−1)

χ

U

(
aχ

β

) β
2(β−1)

e−(β−1)(Tcχ
β )

β
β−1

(322)

From Eq. (322) it follows that s∗/b decreases with Tc (and therefore with N) at large Tc (and therefore at
large N). Together with the fact that Tcb increases monotonically with N without bound, this suggests that
the MSSM regime is approached in the N → ∞ limit. In contrast with the case of exponentially-distributed
beneficial fitness effects (β = 1), no requirement needs to be made that ⟨s⟩ ≪ U .
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Appendix H SIMULATION METHODS

In this Subsection, we provide details on the implementation of our Wright-Fisher simulations. In con-
ducting individual-based simulations, we track the absolute fitness of, as well as the mutations carried by,
each individual over the duration of the simulation. The population is initialized as a clonal population
with initial absolute fitness 0. Each generation consists of a mutation step and and a stochastic birth/death
step. In the mutation step, each individual acquires a Poisson-distributed number of mutations (with mean
U), with the effect sizes of those mutations drawn from ρ(s) and incrementing the log-fitness of an indi-
vidual by s. Individuals are also subject to completely neutral mutations at rate Un = 0.1 (per-individual,
per-generation). In the stochastic birth/death step, N individuals are sampled with replacement from the
population, with an individual’s sampling probability proportional to its absolute exponential (as opposed
to log) fitness.

Our simulations implement an “infinite-sites” model of mutation, in which each new mutation is assigned
a unique identity upon its occurrence. Each time a mutation occurs, we record its fitness effect. When a
mutation is shared by all individuals in the population, we mark the mutation as fixed. This enables us
to empirically measure the distribution of fixed fitness effects, which can be compared to our theoretical
predictions ρf (s). Additionally, we measure the time elapsed before the first fixation of a neutral mutation,
which we take as the length Teq of an epoch. From that point on, we record the state of the population each
epoch until the conclusion of the simulation. In particular, at each epoch, we record the mean fitness of the
population (and in some cases a histogram of relative fitnesses present in the population), the mutations
which have fixed (and their fitness effects), as well as a measurement of the population’s site frequency
spectra, both of neutral mutations and of selected mutations. From measured site frequency spectra we
obtain measurements of the pairwise heterozygosity, both of neutral mutations and of selected mutations.
We discard the first 10 recorded states of the population, which may still reflect the transient behavior of the
population after its initialization as a clonal population. The code implementing our simulations is available
at https://github.com/mjmel/mssm-sim.

Appendix I NUMERICAL METHODS

To obtain theoretical predictions for comparison with simulation results, we numerically solve the system

1− Tcxc

[
1− 1

Tcb

Ai′
(
c−xc

b

)
Ai
(
c−xc

b

) ] = 0 (323)[(
Ai′
(
c−xc

b

))2 − ( c−xc

b

)
Ai2

(
c−xc

b

)
Ai
(
c−xc

b

) ]
Nxc − e(Tcb)

3/3+|z0|Tcb−1 = 0 (324)

within the infinitesimal approximation; in the MSSM approximation, we solve Eq. (323) along with[(
Ai′
(
c−xc

b

))2 − ( c−xc

b

)
Ai2

(
c−xc

b

)
Ai
(
c−xc

b

) ]
Nxc − eTcxc−

vT2
c

2 +
∫ µ(s)ds

s (eTcs−Tcs−1) = 0. (325)

In doing so, the definitions for Tc, b and c differ between the two approaches; in the infinitesimal approxi-
mation,

Tc ≡
σ2

2D
(326)

b ≡ D1/3 (327)

c ≡ σ4

4D
, (328)
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with σ2 and D1/3 defined by v ≡ σ2 + U ⟨s⟩ and 2D ≡ U
〈
s2
〉
, respectively. In contrast, within the MSSM

approximation,

v ≡
∫
µ(s)seTcsds (329)

2b3 ≡
∫
µ(s)s2eTcsds (330)

c ≡
∫
µ(s)

(
Tcse

Tcs + 1− eTcs
)
ds. (331)

The parameters N and µ(s) can be thought to be the “known” inputs to a system of two equations with the
two unknowns Tc and xc.

Numerical solution is made more straightforward by enforcing upon the solution that Tc > 0 (to ensure
that v >

∫
µ(s)sds) and Tc < N (given the interpretation of Tc as a coalescence timescale, necessarily

shorter than the timescale N of neutral pairwise coalescence). Additionally, we enforce that xc > 0 (since
otherwise, our approach would neglect the fitness density of all individuals with greater than average fitness)
and xc < c−bz0 (since otherwise, our approach would predict negative values of fitness density for individuals
with relative fitness exceeding c− bz0).

To solve the relevant systems, an array of test Tc values, logarithmically spaced between 1 and N , are
considered. For each Tc value, the corresponding xc solving Eq. (323) is identified. This is done by evaluating
the left-hand side of Eq. (323) for linearly spaced xc between 0 and c − bz0, identifying zero crossings and
employing the scipy function brentq. In cases where multiple solutions xc might be obtained, the solution
closest to c − bz0 is taken. This permits evaluation of the left-hand side of Eq. (324) or Eq. (325) for a
particular Tc. Once this is done for the entire array of test Tc values, zero crossings are identified and the
scipy function brentq is employed. In cases where no zero crossings are identified, the scipy function fsolve is
employed. The initial guess is taken as the test Tc value which minimizes the absolute value of the left-hand
side of Eq. (324) or Eq. (325). In cases where multiple zero crossings are identified, the scipy function brentq
is employed for each zero crossing, and the solution with the largest value Tcb is taken.
In practice, our simulations are carried out for parameter combinations lying on a grid with specified Tcb

and Tc ⟨s⟩ (or, equivalently, Tc ⟨sf ⟩) values. We thus invert the above equations to solve for a corresponding
N and µ(s), given Tcb and Tc ⟨s⟩. A given combination of Tcb and Tc ⟨s⟩ values is compatible with a range
of N values (with N , Tcb and Tc ⟨s⟩ fully determining µ(s); note that properly scaled dynamical quantities
depend on N , U and ⟨s⟩ only via the scaled quantities NU and N ⟨s⟩.) We thus choose a value of N that
ensures feasibility of our individual-based simulations.
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FIG. S1 Simulated parameter combinations with an exponential or β = 2 stretched exponential DFE, plotted as
a function of NU and N ⟨s⟩, and colored by values of Tcb. Dashed lines represent constraints imposed on a grid
of parameter combinations with linearly spaced Tcb values, and logarithmically spaced Tc ⟨sf ⟩ values (for adapting
populations) or Tc ⟨s⟩ values (for ratcheting populations). These constraints are chosen to limit attention to the
MSSM regime (and the region of parameter space just beyond its regime of validity) and to ensure feasibility of
individual-based simulations.
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FIG. S2 Simulated parameter combinations with an exponential DFE, plotted as a function of NU and N ⟨s⟩, and
colored by values of vsim/vtheory. Dashed lines represent constraints imposed on a grid of parameter combinations
with linearly spaced Tcb values, and logarithmically spaced Tc ⟨sf ⟩ values (for adapting populations) or Tc ⟨s⟩ values
(for ratcheting populations).
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FIG. S3 Simulated parameter combinations with a single-effect DFE, plotted as a function of NU and Ns, and
colored by values of Tcb. As in Fig. S1, dashed lines represent additional constraints imposed on the grid of
parameter combinations.
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FIG. S5 Comparison between predicted and simulated neutral SFSs, for populations subject to an exponential DFE.
Solid black lines denote theory predictions; dashed black lines denote predictions of the BSC SFS for one parameter
combination in each panel. The left side corresponds to adapting populations, while the right column corresponds to
ratcheting populations. The Tcs values denoted on the left-hand side are the values of Tc ⟨sf ⟩ for adapting populations,
and the values of Tc ⟨s⟩ for ratcheting populations. For computational reasons, SFSs are observed with a sample size
of 1000 individuals, in some cases smaller than the population size N . The expected SFS depends on sample size (in
addition to the frequency ν); theory curves are appropriately downsampled versions of the piecewise-defined function
given in Eq. (75). Parameter combinations lie on the same grid used for comparison between simulation and theory
in the main text.
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FIG. S6 Comparison between predicted and simulated selected SFSs, for populations subject to an exponential DFE.
Solid black lines denote theory predictions; dashed black lines denote predictions of the BSC SFS for one parameter
combination in each panel. As in Fig. S5, the Tcs values denoted on the left-hand side are the values of Tc ⟨sf ⟩ for
adapting populations, and the values of Tc ⟨s⟩ for ratcheting populations.
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FIG. S7 Comparison between predicted and simulated neutral SFSs, for populations subject to an single-effect DFE.
Solid black lines denote theory predictions; dashed black lines denote predictions of the BSC SFS for one parameter
combination in each panel. As in Fig. S5, the Tcs values denoted on the left-hand side are the values of Tc ⟨sf ⟩ for
adapting populations, and the values of Tc ⟨s⟩ for ratcheting populations.
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FIG. S8 Comparison between predicted and simulated selected SFSs, for populations subject to an single-effect DFE.
Solid black lines denote theory predictions; dashed black lines denote predictions of the BSC SFS for one parameter
combination in each panel. Theory predictions break down for ν < 2/(Nσ) when s > b; for clarity, we have omitted
these predictions. As in Fig. S5, the Tcs values denoted on the left-hand side are the values of Tc ⟨sf ⟩ for adapting
populations, and the values of Tc ⟨s⟩ for ratcheting populations.
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FIG. S9 Bounds on the crossover frequency νc. The location of a point along the vertical axis denotes the crossover
frequency νc of that simulated population, extracted from its SFS ratio curve using spline interpolation. The vertical
axis is on a logarithmic scale, scaled such that dashed lines correspond to νc = 1/(Nσ) and νc = e−Tcb. Note
that Tcb differs even among simulated populations with the same value of Nσ. For large Nσ, we can see that
1/(Nσ) < νc < eTcb. Points are colored according to their values of Tc ⟨sf ⟩ (for adapting populations, in A) or Tc ⟨s⟩
(for ratcheting populations, in B). Simulated populations are identical to those considered in Fig. 6.
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FIG. S10 Comparison between simulated and predicted heterozygosity π of neutral mutations (A and B), and between
simulated and predicted heterozygosity π of selected mutations (C and D), for adapting populations (A and C) and
ratcheting populations (B and D). Parameters are identical to those simulated in Fig. 4. Predictions are obtained by
integrating over the piecewise-defined approximation to the SFS given in the main text.


