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Compensatory epistasis maintains ACE2
affinity in SARS-CoV-2 Omicron BA.1

Alief Moulana 1,11, Thomas Dupic 1,11, Angela M. Phillips 1,11 ,
Jeffrey Chang2,11, Serafina Nieves 3, Anne A. Roffler 4,
Allison J. Greaney 5,6,7, Tyler N. Starr 5, Jesse D. Bloom 5,6,8 &
Michael M. Desai 1,2,9,10

The Omicron BA.1 variant emerged in late 2021 and quickly spread across the
world. Compared to the earlier SARS-CoV-2 variants, BA.1 hasmanymutations,
some of which are known to enable antibody escape. Many of these antibody-
escape mutations individually decrease the spike receptor-binding domain
(RBD) affinity for ACE2, but BA.1 still binds ACE2 with high affinity. The fitness
and evolutionof theBA.1 lineage is therefore drivenby the combined effects of
numerous mutations. Here, we systematically map the epistatic interactions
between the 15 mutations in the RBD of BA.1 relative to theWuhan Hu-1 strain.
Specifically, wemeasure the ACE2 affinity of all possible combinations of these
15 mutations (215 = 32,768 genotypes), spanning all possible evolutionary
intermediates from the ancestral Wuhan Hu-1 strain to BA.1. We find that
immune escape mutations in BA.1 individually reduce ACE2 affinity but are
compensated by epistatic interactions with other affinity-enhancing muta-
tions, including Q498R and N501Y. Thus, the ability of BA.1 to evade immunity
whilemaintaining ACE2 affinity is contingent on acquiringmultiple interacting
mutations. Our results implicate compensatory epistasis as a key factor driving
substantial evolutionary change for SARS-CoV-2 and are consistent with
Omicron BA.1 arising from a chronic infection.

The Omicron BA.1 variant of SARS-CoV-2 emerged in November
2021 and spread rapidly throughout the world, driven in part by its
ability to escape existing immunity in vaccinated and previously
infected individuals1,2. Strikingly, Omicron did not emerge as a
descendant of the then-widespread Delta lineage. Instead, it
appeared as a highly diverged strain after accumulating dozens of
mutations within a lineage that was not widely circulating at the

time, including 15 mutations within the spike protein receptor-
binding domain (RBD)1.

Recent work has shown that a number of these 15 RBD mutations
(some of which are seen in other variants) disrupt binding of specific
monoclonal antibodies3–7, potentially contributing to immune escape.
However, most of these mutations have also been shown to reduce
binding affinity to humanACE2when they arisewithin theWuhanHu-1,
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Delta, or several other SARS-CoV-2 lineages8,9, potentially impairing
viral entry into host cells. In contrast, the Omicron RBD tolerates these
escapemutationswhile retaining strong affinity toACE210,11, suggesting
that other mutations in this lineage may help maintain viral entry.

Earlier work has systematically analyzed mutational effects on
antibody binding and ACE2 affinity, for example by using deep muta-
tional scanning (DMS)9,12. However, these approaches focus on the
effects of single mutations on specific genetic backgrounds. They are
therefore useful for understanding the first steps of evolution from
existing variants but cannot explain how multiple mutations interact
over longer evolutionary trajectories. Thus, it remains unclear how
combinationsofmutations, suchas thoseobserved inOmicron, interact
to both evade immunity and retain strong affinity to ACE2. To address
this question, we used a combinatorial assembly approach to construct
a plasmid library containing all possible combinations of the 15 muta-
tions in the Omicron BA.1 RBD (a total of 215 = 32,768 variants). This
library, which represents the largest combinatorically complete library
of a viral protein to date, includes all possible evolutionary inter-
mediates between the Wuhan Hu-1 and Omicron BA.1 RBD. We trans-
formed this plasmid library into a standard yeast display strain, creating
a yeast library in which each cell displays a single monomeric RBD
variant corresponding to theplasmid in that cell.We thenusedTite-Seq,
a high-throughput flow cytometry and sequencing-based method13,14

(see “Methods”; Supplementary Fig. 1A), to measure the binding affi-
nities, KD,app, of all 32,768 RBD variants to human ACE2 in parallel.

Results and discussion
Consistent with earlier work by ourselves14 and others9,13,15, we find that
the Tite-Seq measurements are highly reproducible (SEM of 0.2 log
KD,app between triplicate measurements) and consistent with indepen-
dent low-throughput measurements (see “Methods”; Supplementary
Fig. 1b–f). We note that our binding affinity measurements have small

systemic differences from an earlier study9 due to differences in gating
strategies, but relative affinities are consistent between the twodatasets
(Supplementary Fig. 1f). In addition, we find minimal variation in RBD
expression levels and are thus able to infer KD,app for the entire com-
binatorial library (see “Methods”; Supplementary Fig. 3).

We find that all 32,768 RBD intermediates between Wuhan Hu-1
and Omicron BA.1 have detectable affinity to ACE2, with KD,app ran-
gingbetween0.1μMand0.1 nM (Fig. 1a and Supplementary Fig. 1; see
https://desai-lab.github.io/wuhan_to_omicron/ for an interactive
data browser). Consistent with previous studies10, the BA.1 RBD
exhibits a slight (threefold both by Tite-seq and by isogenic mea-
surements) improvement in binding affinity compared toWuhan Hu-
1 (Supplementary Fig. 2). However, most (~60%) of the intermediate
RBD sequences actually show a weaker binding affinity to ACE2 than
the ancestral Wuhan Hu-1 RBD. In fact, there are no paths from
WuhanHu-1 toOmicronBA.1 that do not contain at least one step that
decreases ACE2 affinity. This is mainly because the vast majority of
BA.1 mutations have a neutral or deleterious effect on ACE2 affinity
on most genetic backgrounds (Fig. 1b). This is particularly true for
K417N, G446S, Q493R, G496S, and Y505H, four of which are known
to be involved in escape from various classes of monoclonal
antibodies16–18.

Although many BA.1 mutations reduce ACE2 affinity on average,
the interactions between these mutations result in improvement in
ACE2 affinity for BA.1 relative to the ancestral Wuhan Hu-1 strain. That
is, mutations tend to bemore deleterious for ACE2 affinity if few other
mutations are present but tend to become neutral or even beneficial in
the presence of multiple other mutations (Fig. 1c; Supplementary
Fig. 4). Consistent with this, we find that although most of the 15 RBD
mutations reduce ACE2 affinity in theWuhan Hu-1 background (and in
many cases across most other backgrounds as well), they all become
less deleterious or even beneficial in the most-mutated background

Fig. 1 | Binding affinity landscape. a Distribution of binding affinities to ACE2
across all N=32,768 RBD genotypes tested. Binding affinities are shown as -
logKD,app; vertical blue and red lines indicate the -logKD,app for Wuhan Hu-1 and
Omicron BA.1, respectively. b Distributions of the effect of each mutation on ACE2
affinity (defined as the change in -logKD,app resulting from mutation) across all
possible genetic backgrounds at the other 14 loci. Black line segments indicate 25th
and 75th percentiles of the effect distributions and points represent distribution

means, n=16384 backgrounds. Blue and red points specify effects on Wuhan Hu-1
and most-mutated backgrounds, respectively. c Distribution of binding affinities
grouped by number of Omicron BA.1mutations. Binding affinity of theWuhanHu-1
variant is indicated by horizontal dashed line. The boxes correspond to the range
between 25th and 75th percentiles, and the whiskers extend to the largest/smallest
value no further than 1.5 times the inter-quartile range.
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(Fig. 1b). This pattern explains why the BA.1 RBD has a stronger affinity
for ACE2 despite containing so many mutations that individually
reduce ACE2 affinity: their deleterious effects are mitigated by com-
pensatory epistatic interactions with other mutations.

To systematically analyze mutational effects and interactions, we
fit a standard biochemical model of epistasis19 to our data. This
decomposes our measured -log(KD,app) (which is expected to be pro-
portional to the free energy of binding, ΔG)20,21 into a sum of effects
from single mutations, pairwise epistasis, and higher-order epistatic
interactions among larger sets of mutations (truncated at fifth order;
Supplementary Fig. 5, see “Methods”). Specifically, we write the bind-
ing affinity of a sequence s as

logKD,s =β0 +
XK

i = 1

X

c2Ci

βcxc,s ð1Þ

whereCi contains all
L
i

! "
combinations of imutations and xc,sis equal

to 1 if the sequence scontains all the mutations in c and to 0 otherwise

(see Methods; all coefficients for c with i mutations are referred to as
ith-order coefficients). This model yields coefficients that are compar-
able to alternative models of statistical (Supplementary Fig. 6) and
global22 (Supplementary Fig. 7) epistasis. Generally, we find that the
magnitudes of the first-order effects of individual mutations (Fig. 2a)
correlate with the ACE2 contact surface area of the corresponding
residue (Fig. 2b, c), and neighboring residues are more likely to have
strong pairwise interactions (Fig. 2e), as we might expect from
previous work14,23.

Our inferred pairwise and higher-order coefficients reveal that
strong compensatory interactions offset the effects of affinity-
reducing mutations (Fig. 2d). The magnitude of these interactions is
comparable to that of the first-order effects, and this epistasis is
overwhelmingly positive, as excluding epistatic terms leads to a con-
sistent underestimate of the predicted affinity (Supplementary Fig. 8).
This strongpositive epistasismeans thatmutationswhich reduceACE2
affinity become less deleterious in backgrounds containing other
mutations. For example, the negative first-order effect of Q498R is
fully reversed by its interaction with nearby mutation N501Y; this

Fig. 2 | Linear and epistatic effects of mutations. a First-order effects in best-
fitting epistatic interaction model (up to fifth order). Error bars represent standard
errors from the model fit, and are centered on the mean, n=16,384. b Co-crystal
structure of Omicron BA.1 RBD and ACE2 receptor (PDB ID 7WPB). Mutated resi-
dues shown as spheres colored as in (a). c First-order effects for each mutation
plotted against contact surface area between corresponding BA.1 RBD residue and
ACE2. Mutations colored as in (a). The Spearman’s rank correlation coefficient (rs)
between first-order effect and contact surface area is indicated in the top-left.

d Second-order epistatic interaction coefficients and higher order interaction
coefficients. For each mutation, higher order interaction coefficient (shown at
bottom of heatmap plot) is calculated by summing over all third- and fourth-order
interaction coefficients involving the mutation. e Pairwise interaction coefficients
plotted against the distances between the respective alpha-carbons. Mutations are
colored by pairwise coefficient as in (d). The Spearman’s rank correlation coeffi-
cient (rs) is indicated in the top-left.
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pairwise interaction has been highlighted in earlier work8,11,24 as an
instance of compensatory epistasis. Moreover, we identify numerous
other interacting mutations, including even stronger positive interac-
tions (along with third and fourth-order effects) between Q498R,
G496S, N501Y, and Y505H (Fig. 2d). In fact, the ACE2 affinity is affected
by many more significant higher-order interactions, most of which
include these four mutations (up to the fifth-order; Supplemen-
tary Data 1).

Our epistasis analyses reveal that such high-order compensa-
tory epistasis eliminates the strongly deleterious effects of muta-
tions involved in antibody escape on ACE2 affinity. This
compensation between specific beneficial mutations (in particular
N501Y) and immune escape mutations has been observed in pre-
vious studies8,25–27. Here, we quantify the extent of this epistasis and
hence its impact in shaping the entire RBD sequence-affinity land-
scape. Specifically, earlier work has shown that five BA.1 mutations
(K417N, G446S, E484A, Q493R, and G496S) have a particularly
strong effect in promoting antibody escape4,17,18. These mutations all
individually reduce affinity to ACE2 both on average and in the
Wuhan Hu-1 background (except E484A; Figs. 1b, 2a, 3a), and the
combination of all five is strongly deleterious (Fig. 3a, b). However,
strong high-order epistasis with the pair of Q498R and N501Y miti-
gates this: either N501Y or Q498R alone reduces the cost of the five
escape mutations, and the combination of both almost fully

compensates for these deleterious effects (Fig. 3b). While these
escape mutations do also benefit from interactions with other
mutations (Supplementary Fig. 9), N501Y andQ498R account for the
majority of the compensatory effect. We note that strong compen-
satory interactions also mitigate the deleterious effect of Y505H
(Fig. 3c). Thismutation has not previously been shown to be strongly
involved in antibody escape, but the pattern of compensation we
observe suggests that it may be functionally relevant in some way.

The extensive epistasis we observe means that the individual
effects of each of these 15 mutations, as well as the pairwise interac-
tions between them, are likely different in other viral lineages. How-
ever, earlier work has shown that the antibody escape mutations
described above (K417N, G446S, E484A, Q493R, and G496S) similarly
reduce ACE2 affinity in several other variants (including Alpha, Beta,
Eta, and Delta)8. Consistent with this result, we find that these muta-
tions, along with others that we find have a negative first-order effect
on ACE2 affinity, rarely occur across the SARS-CoV-2 phylogeny
(Fig. 4a). This suggests thatmaintaining affinity to humanACE2 is likely
an important aspect of viral fitness, so these mutations are typically
selected against. Similarly, wefind thatmutations with negative effects
on ACE2 affinity that are compensated by epistatic interactions with
N501Y tend to be enriched across the SARS-CoV-2 phylogeny in strains
that also have N501Y, relative to strains that do not (Fig. 4b; other
pairwise interactions co-occur too rarely to test). This further suggests

Fig. 3 | Epistasis compensates for reductions in ACE2 affinity. a ACE2 binding
affinities for variants containing mutations that have a strong effect on antibody
escape: K417N, G446S, E484A, Q493R, and G496S grouped by the presence of
compensatorymutations (Q498RandN501Y).Dashedblue (resp. red) line indicates
Wuhan Hu-1 (resp. Omicron BA.1) ACE2 binding affinity. Boxes represent the

interquartile range. bThe changes in ACE2 binding affinities for variants containing
any one (or all) of select escape mutations grouped by the presence of compen-
satory mutations (Q498R and N501Y). Dashed line indicates no affinity change.
Boxes represent the interquartile range. c ACE2 binding affinities for variants
containing Y505H and antibody escape mutations presented as in (a).
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that at least some of the pairwise epistatic interactions we observe are
also present in other backgrounds, and that viral evolution has favored
compensation for reduction in ACE2 affinity.

Together, these results suggest that the evolution of antibody
escape in BA.1 was possible without disrupting binding to ACE2
because of the compensatory interactions with numerous other
mutations unique to this lineage. While signatures of these selection
pressures and epistatic interactions are present across the viral
phylogeny28, and antibody escape variants could have been compen-
sated by other combinations of mutations, it is only the BA.1 lineage
which accumulated this particular combination of interacting com-
pensatory mutations.

Our results also provide insight into why the immune escape
phenotype observed in Omicron BA.1 did not arise as the result of
mutations accumulating within the then-widely circulating Delta
variant. Specifically, the combination of multiple mutations required
for both immune escape and maintaining affinity to ACE2 (Fig. 4c) is
unlikely to have accumulated within the context of acute infections,
which involve few mutations between transmission bottlenecks and
presumably strong selection pressures on both functions29. In con-
trast, in chronic infections (e.g. in an immunocompromised host)
large population sizes and relaxed selection pressures may allow for
the accumulation of the many mutations required to both maintain
ACE2 affinity and evade neutralizing antibodies30,31. Alternatively, as
previously speculated32,33, BA.1 may have evolved within an animal
reservoir where selection pressures may also have been relaxed.
Under either scenario, the compensatory mutations may have pre-
ceded the immune escape mutations, minimizing their otherwise
deleterious effects on ACE2 affinity. Alternatively, relaxed selection
for binding ACE2may have created a permissive environment for the

immune escape mutations, followed by compensation that then
allowed the variant to spread to other hosts. Phylogenetic analysis
provides some support for the former possibility, as two immune
escape mutations (G446S and G496S) occur late in BA.1 evolution
(and are not shared with the BA.2 lineage; Supplementary Fig. 10). In
addition, a strong selection model based on ACE2 affinity prefers the
three BA.1-specific mutations to appear late in the evolution, as
observed in the phylogeny (Supplementary Fig. 11). Irrespective of
the exact order of mutations, the large viral population size and
relaxed selection pressure of a chronic infection may have created
conditions conducive to the fixation of the several mutations
required for BA.1 to evade neutralizing antibodies while maintaining
ACE2 affinity.

We emphasize that our work is confined to 15 mutations within
a specific region of one protein, and hence neglects potential
interactions with the many other mutations outside of the RBD that
are present in the Omicron BA.1 lineage. However, we find that
interactions among RBD mutations alone are sufficient to explain
how ACE2 affinity is maintained, which is not obvious just from
single mutant data. Moreover, we also note that the positive inter-
actions on ACE2 affinity might translate negatively to other phe-
notypes. For instance, these interactions might inhibit immune
escape, and thus, it is necessary to also map the resulting effects of
these interactions on immune evasion. In addition, it is likely that
spike protein expression and stability also play key roles in viral
evolution. We find some hints of this trend in our data. For example,
we identify a significant synergistic interaction between S371L,
S373P, and S375F that improves RBD expression in yeast, consistent
with earlier work showing that this set of mutations is associated
with stabilization of a more tightly packed down-conformation of

Fig. 4 | Trajectory of Omicron BA.1 evolution. a Frequency of occurrences for
each mutation across SARS-CoV-2 sequences available on GISAID (see “Meth-
ods”) as a function of their average effect on ACE2 affinity in our data. Error bars
indicate standard deviation of effect sizes and are centered on the mean
(n=16384 backgrounds). The Spearman’s rank correlation coefficient (rs) is
indicated in the top-left. (b) Normalized frequency of mutations co-occurring
with N501Y across SARS-CoV-2 sequences available on GISAID (calculated based
on the frequency at which each mutation occurs on the same branch as N501Y,
normalized by their overall frequency; see “Methods”) as a function of the

difference in their effect on ACE2 affinity in the presence of N501Y. Error bars
indicate standard deviation of effects and are centered on the mean (n=8096
backgrounds). The Spearman’s rank correlation coefficient (rs) is indicated in the
top-left. c ACE2 affinity trajectories for 100 randomly selected pathways
(involving all 15mutations), shown as a function of the number ofmutations with
strong effect on antibody escape (K417N, G446S, E484A, Q493R, andG496S) and
the presence or absence of compensatory mutations Q498R and N501Y (shown
with colors). Each trajectory represents a possiblemutation order, starting at the
Wuhan Hu-1 genotype and ending at Omicron BA.1.
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the RBD34 (Supplementary Fig. 4). Beyond this, numerous other
phenotypes are also likely to be relevant.

Despite these caveats, our results demonstrate that key events in
viral evolution can depend on high-order patterns of epistasis. We find
that these epistatic interactions are nearly entirely synergistic, or
compensatory, a pattern that could be a general emerging feature of
viruses evolving in immune-constrained landscape. This may be
especially important for complex adaptive events involving numerous
mutations, such as immune escape and host-switching. Thus, to pre-
dict the future of viral evolution we must move beyond high-
throughput screens of single mutations, and more comprehensively
analyze combinatorial sequence space. A key challenge is the vastness
of this sequence space, which makes exhaustive exploration intract-
able. However, generating specific combinatorial landscapes like those
presented heremay help reveal general patterns of epistasis that shape
viral evolution in complex environments.

Methods
Yeast display plasmid & strains
To generate clonal yeast strains for the Wuhan Hu-1 and Omicron BA.1
variants, we cloned the corresponding RBD gblock (IDT, Supplemen-
tary Data 2) into pETcon yeast surface-display vector (plasmid 2649;
Addgene, Watertown, MA, #166782) via Gibson Assembly. The
sequenceof the gblockwas codon-optimized for yeast (using theTwist
Bioscience algorithm); we found that the codon optimization had a
significant impact on display efficiency. Additionally, for the library
construction (described below), we deleted two existing Bsa-I sites
from the plasmid by site-directed mutagenesis (Agilent, Santa Clara,
CA, #200521). In the clonal strain production, Gibson Assembly pro-
ductswere transformed intoNEB 10-beta electrocompetent E. coli cells
(NEB, Ipswich, MA, #C3020K), following the manufacturer protocol.
After overnight incubation at 37 °C, the cells were harvested, and the
resulting plasmids were purified and Sanger sequenced. We trans-
formed plasmids containing the correct sequences into the AWY101
yeast strain (kind gift fromDr. Eric Shusta)35 as described by Gietz and
Schiestl36. Transformants were plated on SDCAA-agar (1.71 g/L YNB
without amino acids and ammonium sulfate [Sigma-Aldrich #Y1251],
5 g/L ammonium sulfate [Sigma-Aldrich #A4418], 2% dextrose [VWR
#90000–904], 5 g/L Bacto casamino acids [VWR #223050], 100 g/L
ampicillin [VWR #V0339], 2% Difco Noble Agar [VWR #90000–774])
and incubated at 30 °C for 48 hr. Several colonies were restreaked on
SDCAA-agar and again incubated at 30 °C for 48 hr. Clonal yeast strains
were picked, inoculated, grown to saturation in liquid SDCAA (6.7 g/L
YNB without amino acid VWR #90004-150), 5 g/L ammonium sulfate
(Sigma-Aldrich #A4418), 2% dextrose (VWR #90000–904), 5 g/L Bacto
casamino acids (VWR #223050), 1.065 g/L MES buffer (Cayman Che-
mical, Ann Arbor, MI, #70310), 100 g/L ampicillin (VWR # V0339)) at
30 °C, and mixed with 5% glycerol for storage at −80 °C.

Yeast display library production
We generated the RBD variant library with a Golden Gate combi-
natorial assembly strategy. First, we divided the RBD sequence into
five fragments of about equal length, ranging from 90 to 131 bp and
each containing between 1 and 4 mutations. We introduced BsaI
sites and overhangs to both ends of each fragment sequence. These
overhangs contained BsaI cut sites that would allow the five frag-
ments to assemble uniquely in their proper order within the plasmid
backbone. For each fragment with n mutations, we generated 2n

fragment versions by either producing the fragments via PCR
(Fragments 1-4) or purchasing individual DNA duplexes (Fragment
5) from IDT. These permutations ensured the inclusion of all pos-
sible mutation combinations in the library. In Fragment 2, we also
included a synonymous substitution on the K378 residue that cor-
responds to the K417N mutation. This substitution allows for the
amplicon library to be sequenced on the Illumina Novaseq SP

(2x250bp). For dsDNA production by PCR, we designed the frag-
ments such that the mutations they contain are close to the 3′ or 5′
ends. This design enabled the primers to simultaneously include
and introduce the mutations, BsaI sites, and unique overhangs
chosen during the PCR.We produced each version of each fragment
individually (28 PCR reactions in total; Supplementary Data 3) and
pooled the products of each fragment in equimolar ratios. Addi-
tionally, we also pooled all 16 purchased DNA duplexes encoding
the fifth fragment in equimolar ratios. We then created a final
fragment mix by pooling the five fragment pools together. In the
Golden Gate reaction, the versions of each fragment would be
ligated together in random combinations, producing all of the
sequences present at approximately equal frequencies.

In addition to the fragment mix, we prepared four versions of
the plasmid backbone for the Golden Gate reaction. Each version
contains a combination of the mutations N501Y and Y505H. Prior to
the assembly, we introduced the counter-selection marker ccdB, in
place of the fragment insert region, with flanking BsaI sites (Sup-
plementary Data 3). We performed Golden Gate cloning using
Golden Gate Assembly Mix (NEB, Ipswich, MA, #E1601L), following
the manufacturer recommended protocol, with a 7:1 molar ratio of
the fragment insert pool to plasmid backbone. We transformed the
assembly products into NEB 10-beta electrocompetent E. coli cells
in 6 ×25 μL cell aliquots. We then transferred each of the recovered
cell culture to 100mL of molten LB (1% tryptone, 0.5% yeast extract,
1% NaCl) containing 0.3% SeaPrep agarose (VWR, Radnor, PA
#12001– 922) spread into a thin layer in a 1 L baffled flask (about 1 cm
deep). The mixture was placed at 4 °C for three hours, after which it
was incubated for 18 hr at 37 °C. We observed a total of 3 million
transformants across aliquots. To isolate the plasmid library, we
mixed the flasks by shaking for 1 hr and pelleted the cells for stan-
dard plasmid maxiprep (Zymo Research, Irvine, CA, D4201), from
which we obtained >90 μg of purified plasmid.

We then transformed the purified plasmid library into
AWY101 cells as described above. We recovered transformants in a
molten SDCAA agarose gel (1.71 g/L YNB without amino acids and
ammonium sulfate (Sigma-Aldrich #Y1251), 5 g/L ammonium sulfate
(Sigma-Aldrich, St. Louis, MO, #A4418), 2% dextrose (VWR
#90000–904), 5 g/L Bacto casamino acids (VWR #223050), 100 g/L
ampicillin (VWR # V0339)) containing 0.35% SeaPrep agarose (VWR
#12001–922) spread into a thin layer (about 1 cm deep). The mixture
wasplaced at 4 °C for three hours, afterwhich itwas incubated at 30 °C
for 48 h. From five aliquots, we obtained ∼1.2 million colonies. After
mixing the flasks by shaking for 1 hr, we grew cells in 5mL tubes of
liquid SDCAA for five generations and stored the saturated culture in
1mL aliquots supplemented with 5% glycerol at −80 °C.

High-throughput binding affinity assay (Tite-Seq)
Tite-Seqwasperformedaspreviouslydescribed36.Weperformed three
replicates of the assay on different days. In the first two replicates, a
small portion of the library variants contained an off-target mutation
(E484W) instead of the intended mutation (E484A). These variants
were removed from the data analysis, and in the third replicate the
library was supplemented with variants containing the intended
mutation (E484A).

Preparation. First, we thawed yeast RBD libraries, as well asWuhanHu-
1 and Omicron BA.1 clonal strains, by inoculating 150μL of corre-
sponding glycerol stock (saturated culture with 5% glycerol stored at
−80 °C) in 5mL SDCAA at 30 °C for 20 hr. On the next day, yeast cul-
tures were diluted to OD600=0.67 in 5mL SGDCAA (6.7 g/L YNB
without amino acid VWR #90004-150), 5 g/L ammonium sulfate
(Sigma-Aldrich #A4418), 2% galactose (Sigma-Aldrich #G0625), 0.1%
dextrose (VWR #90000–904), 5 g/L Bacto casamino acids (VWR
#223050), 1.065 g/L MES buffer (Cayman Chemical, Ann Arbor, MI,

Article https://doi.org/10.1038/s41467-022-34506-z

Nature Communications | ��������(2022)�13:7011� 6



#70310), 100 g/L ampicillin (VWR # V0339)), and rotated at room
temperature for 16–20hr.

Labeling. After overnight induction, yeast cultures were pelleted,
washed twice with 0.01% PBSA (VWR #45001–130; GoldBio, St. Louis,
MO, #A-420–50), and resuspended to an OD600 of 1. A total of 500-
700μL of OD1 yeast cells were labeled with biotinylated human ACE2
(Acrobiosystems #AC2-H2H82E6) at each of the twelve ACE2 con-
centrations (half-log increments spanning 10−12.5–10−7M), with volumes
adjusted to limit ligand depletion effects to be less than 10% (assuming
50,000 surface RBD/cell37). Yeast-ACE2 mixtures were incubated and
rotated at room temperature for 20 hr. Following the incubation,
yeast-ACE2 complexes were pelleted by spinning at 3000 × g for
10min at 4 °C, washed twice with 0.5% PBSA + 2mM EDTA, and sub-
sequently labeled with Streptavidin-RPE (1:100, Thermo Fisher #S866)
and anti-cMyc-FITC (1:50, Miltenyi Biotec, Somerville, MA, #130-116-
485) at 4 °C for 45min. After this secondary labeling, yeast were
washed twice with 0.5% PBSA + 2mM EDTA and left on ice in the dark
until sorting.

Sorting and recovery. We sorted the yeast library complex on a BD
FACS Aria Illu, equipped with 405 nm, 440 nm, 488 nm, 561 nm, and
635 nm lasers, and an 85micron fixed nozzle. Tominimize the spectral
overlap effects, we determined compensation between FITC and PE
using single-fluorophore controls. Single cells were first gated by FSC
vs SSC and then sorted by either expression (FITC) or binding (PE)
fluorescence. At least one million cells were sorted for each sample. In
the expression sorts, singlets (based on FSC vs SSC) were sorted into
eight equivalent log-spaced FITC bins. For the binding sorts, FITC+
cells were sorted into 4 PE bins (the PE- population comprised bin 1,
and the PE+ population was split into three equivalent log-spaced bins
2–414,37. Sorted cells were collected in polypropylene tubes coated and
filled with 1mL YPD supplemented with 1% BSA. Upon recovery, cells
were pelleted by spinning at 3000 x g for 10min and resuspended in
4mL SDCAA. The cultures were rotated at 30°C until late-log phase
(OD600 = 0.9–1.4).

Sequencing library preparation. 1.5mL of late-log yeast cultures was
pelleted and stored at −20C for at least six hours prior to extraction.
Yeast display plasmids were extracted using Zymo Yeast Plasmid
Miniprep II (Zymo Research # D2004), following the manufacturer’s
instructions, and eluted in a 17μL elution buffer. RBD amplicon
sequencing libraries were prepared by a two-step PCR as previously
described14,38. In the first PCR, unique molecular identifiers (UMI),
inline indices, and partial Illumina adapters were appended to the
sequence library through 7 amplification cycles to minimize PCR
amplification bias. We used 5μL plasmid DNA as template in a 25μL
reaction volume with Q5 polymerase according to the manufacturer’s
protocol (NEB # M0491L). Reaction was incubated in a thermocycler
with the following program: 1. 60 s at 98 °C, 2. 10 s at 98 °C, 3. 30 s at
66 °C, 4. 30 s at 72 °C, 5. GOTO 2, 6x, 6. 60 s at 72 °C. Shortly after the
reaction completed, we added 25μL water into reactions and per-
formed a 1.2X magnetic bead cleanup (Aline Biosciences #C-1003–5).
The purified products were then eluted in 35μL elution buffer. In the
second PCR, the remainder of the Illumina adapter and sample-specific
Illumina i5 and i7 indices were appended through 35 amplification
cycles (Supplementary Data 4–5 for primer sequences). We used 33μL
of the purified PCR1 product as template, in a total volume of 50μL
using Kapa polymerase (Kapa Biosystems #KK2502) according to the
manufacturer’s instructions. We incubated this second reaction in a
thermocycler with the following program: 1. 30 s at 98 °C, 2. 20 s at
98 °C, 3. 30 s at 62 °C, 4. 30 s at 72 °C, 5. GOTO 2, 34x, 6. 300 s at 72 °C.
The resulting sequencing libraries were purified using 0.85X Aline
beads, amplicon size was verified to be ∼500bp by running on a 1%
agarose gel, and amplicon concentrationwas quantified byfluorescent

DNA-binding dye (Biotium, Fremont, CA, #31068, per manufacturer’s
instructions) on Spectramax i3. We then pooled the amplicon libraries
according to the number of cells sorted and further size-selected this
pool by a two-sided Aline bead purification (0.5–0.9X). The final pool
size was verified by Tapestation 5000 HS and 1000 HS. Final sequen-
cing library was quantitated by Qubit fluorometer and sequenced on
an Illumina NovaSeq SP with 10% PhiX.

Sequence data processing
Weprocessed our rawdemultiplexed sequencing reads to identify and
extract the indexes and mutational sites. To do so, we developed a
snakemake pipeline39 that first parsed through all fastq files and
separated the reads according to inline indices, UMIs, and sequence
reads using Python library regex40. We accepted sequences thatmatch
the entire read (with no restrictions onbases atmutational sites)within
10%bpmismatch tolerance. Next,wediscarded incorrect inline indices
(according to the corresponding i5/i7 indices) and parsed read
sequences into binary genotypes (‘0’ for Wuhan Hu-1 allele or ‘1’ for
Omicron BA.1 allele at each mutation position). Reads with errors at
mutation sites (i.e. not matching either Wuhan Hu-1 allele or Omicron
BA.1 allele) were discarded. Finally, we counted the number of distinct
UMIs for each genotype, and collated genotype counts from all sam-
ples into a single table. The mean coverage across all replicates
was ∼150x.

To fit the binding dissociation constants KD,app for each genotype,
we followed the same procedure as previously described39. In brief, we
used sequencing and flow cytometry data to calculate the mean log-
fluorescence of each genotype s at each concentration c, following:

!Fs,c =
X

b

Fb,cpb,s∣c, ð2Þ

where Fb,cis themean log-fluorescence of bin b at concentration c, and
pb,s_c is the inferredproportionof cells fromgenotype s that are sorted
into bin b at concentration c. The pb,s_c is in turn estimated from the
read counts as

pb,s∣c =

Rb,s,cP
s
Rb,s,c

Cb,c

P
b

Rb,s,cP
s
Rb,s,c

Cb,c

! " , ð3Þ

where Rb,s,c is the number of reads from genotype s that are found in
bin b at concentration c, whereas Cb,c refers to the number of cells
sorted into bin b at concentration c.

To propagate the uncertainty in the mean bin estimate, we used
the formula

δ!Fs,c =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX

b
δF2

b,cp
2
b,s∣c + F

2
b,cδp

2

b,s∣c

$ %r
ð4Þ

whereδFb,c is the spreadof logfluorescenceof cells sorted intobinb at
concentration c. As previously investigated, we found that estimating
δFb,c≈σFb,c is sufficient to capture the variation we observed in log-
fluorescence within each bin. In contrast, the error in pb,s_c emerges
from the sampling error, which can be approximated as a Poisson
process when read counts are high enough.

Thus we have:

δpb,s∣c =
pb,s∣cffiffiffiffiffiffiffiffiffiffiffi
Rb,s,c

p : ð5Þ

Finally, we inferred the binding dissociation constant (KD,s) for
each variant by fitting the logarithm of Hill function to the mean log-
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fluorescence!Fs,c, as a function of ACE2 concentrations c:

!Fs,c = log10
c

c+KD,s
As +Bs

! "
, ð6Þ

where As is the increase in fluorescence at ACE2 saturation, and Bs is
the background fluorescence level. The fit was performed using the
curve_fit function in the Python package scipy.optimize. Across all
genotypes, we gave reasonable bounds on the values of As to be
102−106, Bs to be 1-105, and KD,s to be 10−14−10−5. We then averaged the
inferred KD,s values across the three replicates after removing values
with poor fit (r2 <0:8).

We note that our approach here differs slightly from some earlier
work9,41 which often fits this Hill function directly using the mean bin
with the following equation:

X
bpb,s,c = log10

c
c+KD,s

As +Bs

! "
ð7Þ

rather than using the inferred mean fluorescence values. This use of
average bin values introduces bias because the bin numbers are pro-
portional to mean log-fluorescence, rather than to mean fluorescence.
Hence the KD,s values inferred with this earlier method are not exact.
However, in our measurement range, these values are still linearly
correlated to our measurements (see Supplementary Fig. 1e).

Isogenic measurements for validation
We validated our high-throughput binding affinity method by select-
ing 10 specific RBD clones for lower-throughput validation:WuhanHu-
1, Omicron, 5 single-mutants (K417N, S477N, T478K, Q498R, N501),
two double mutants (Q498R/N501Y and E484A/Q498R), and one
genotype with fourmutations (K417N/E484A/Q498R/N501Y). For each
isogenic titration curve, we followed the same labeling strategy,
titrating ACE2 at concentrations ranging from 10−12−10−7 M for isogenic
yeast strains that display only the sequence of interest. The mean log
fluorescence was measured using a BD LSR Fortessa cell analyzer. We
directly computed the mean and variances of these distributions for
each concentration and used them to infer the value of –log10(KD)
using formula (shown above) (see Supplementary Fig. 1).

Epistasis analysis
We first used a simple linear model where the effects of combinations
of mutations sum to the phenotype of a sequence. The logarithm of
the binding affinity log10 KD,s

& '
is proportional to free energy changes,

hence in amodel without interaction, theywould combine additively41.
The full K-order model can be written:

#log10 KD,s
& '

= β0 +
XK

i = 1

X

c2Ci

βcxc,s , ð8Þ

where βc denotes the coefficient for the combination of mutation
c(either single-mutation coefficient for i= 1 or interaction coefficient
otherwise), contains all combinations of i mutations and is equal to 1 if
the sequence contains all the mutations in and to 0 otherwise. This
choice is called ‘biochemical’ or ‘local’ epistasis42 and is the one used in
the main text. Another option, called ‘statistical’ or ‘ensemble’
epistasis, consists of replacing the coefficients by. In this “statistical”
model, the baseline is themean affinity of the population and the first-
order effects of the mutations correspond to their mean effect on
affinity. We present the result of this analysis, and the differences with
the biochemical model, in Supplementary Fig. 6.

To choose the optimal value of K, we follow the method detailed
in Phillips and Lawrence et al., 202142. Briefly, we use 10-fold cross-
validation to test all values of K ≤ 6. For each value of K, the data is split
into ten and eachof the ten sub-dataset is used as a test set for amodel

trained on the rest of the data.We chose the value of K thatmaximizes
the prediction performance (R²) averaged over all ten testing datasets.
For this dataset we found an optimal value of K = 5 (Supplementary
Fig. 5). Finally, we trained aK=5model over the complete dataset to get
the final coefficients. The number of parameters of the final model
(~5000) is much lower than the number of observed data points
(215 = 32768).

As mentioned above, the logarithm of binding affinity is propor-
tional to a free energy change, an extensive quantity. This theoretically
justifies the use of a linear model. Nonetheless, in some scenarios, the
interactions betweenmutations can be better explained by a nonlinear
function with few parameters acting on the full phenotype (“global
epistasis”) rather than a large number of small-effects interactions at
high order (“idiosyncratic epistasis”). Our implementation is similar to
that described by Sailer and Harms, 201743 and follows closely Phillips
and Lawrence et al., 202142. In short, we use a logistic functionΦ, with
four parameters, to fit the expression:

#log10 KD,s
& '

=Φ β0 +
XK

i = 1

X

c2Ci

βcxc,s

0

@

1

A,withΦ yð Þ=
A

1 + eðy#μÞ=σ +B

ð9Þ

The choice of a logistic function is justified by the general formof
KD,app distribution, which slightly “plateaued” at strong KD,app. This
effect is not caused by experimental artifacts (Supplementary Fig. 3)
but instead by a form of “diminishing returns” epistasis43. Practically,
the parameters are inferred by fitting successively the additive βi and
the nonlinear function parameters. Although the global epistasis
transformationdoes improve the fit, the additive coefficients observed
at low order do not change significantly (Supplementary Fig. 7).

Structural analysis
We used the reference structure of a 2.79 Å cryo-EM structure of
Omicron BA.1 complexed with ACE2 (PDB ID: 7WPB). In Fig. 2c, the
contact surface area isdeterminedbyusingChimeraX44 tomeasure the
buried surface area between ACE2 and each mutated residue in the
RBD (measure buriedarea function, default probeRadius of 1.4 Å). In
Fig. 2E, the distance between α-carbons is measured using PyMol45.

Order of mutations
ACE2 binding affinity impacts the fitness of SARS-CoV-2 variants and
can thus be leveraged to partially infer its past trajectory. This piece of
information is particularly important for Omicron BA.1, where phylo-
genetic information is limited. Because our dataset contains the ACE2
affinity of all possible evolutionary intermediates, we can infer the
likelihoods of all pathways between the ancestral Wuhan Hu-1
sequence and Omicron BA.1. To do this we need to choose a selec-
tion model. The circumstances in which the Omicron variant evolved
are unknown, and the evolutionaryfitness of the virus ismore complex
than its capacity to bind ACE2 – immune pressure, structural stability,
and expression level also play a role, among many other factors46. In
addition, back-mutations are common in viral evolution and selection
pressure can change depending on whether the strain is switching
hosts rapidly or part of a long-term infection. Here, we have chosen to
adopt an extremely simple weak-mutation/strong-selection regime of
viral evolution.

In that model, selection proceeds as a Markov process, where the
population is characterized by a single sequence that acquires a single
mutation at each discrete step31,47. We assume that backmutations (i.e.
a residue changing from the Wuhan Hu-1 amino-acid to the BA.1 one)
are not possible. Once such a sequence is generated, it will either fix in
the full population or die out. The important parameter is then the
fixation probability, which depends on the binding affinity of both the
original andmutated sequences.We choose to use the commonly used
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classicalfixation probability48, for amutationwith selection coefficient
σ in a population of size N:

pf ix σ,Nð Þ=
1# e#σ

1 + e#Nσ
ð10Þ

Here, the selection coefficient is proportional to the difference
in log binding affinities between the two sequences. We use this
model in the “strong selection” limit (N→∞ and σ→∞), where a
mutation fixes if it is advantageous or if it is the less deleterious
choice among all the leftover mutations. Weaker selection models,
with lower values of σ and N, give qualitatively similar results pro-
vided the selection pressure is high enough (see Supplementary
Fig. 11b; for small enough selection pressures the order becomes
random as expected). To implement this model, we use a transition
matrix approach that allows us to quickly compute the probability
that each residue appears at a specific position. To verify that the
order of specific mutations is statistically significant we use a
bootstrap method and sample affinity values from normal dis-
tributions with mean and standard deviation given by our experi-
mental measurements. We then sample mutations according to the
model described previously and use standard methods to deter-
mine significance.

Force directed layout
The high-dimensional binding affinity landscape can be projected in
two dimensions with a force-directed graph layout approach (see
https://desai-lab.github.io/wuhan_to_omicron/). Each sequence in the
antibody library is a node, connected by edges to its single-mutation
neighbors. An edge between two sequences s and t is given the weight:

ws,t =
1

0:01 + ∣log10 KD,s
& '

# log10 KD,t
& '

∣ ð11Þ

In a force-directed representation, nodes repel each other, while
the edges pull together the nodes they are attached to. In our scenario,
this means that nodes with a similar genotype (a few mutations apart)
and a similar phenotype (binding affinity) will be close to each other in
two dimensions.

Importantly this is not a “landscape” representation: the distance
between two points is unrelated to how easy it is to reach one geno-
type from another in a particular selection model. Practically, after
assigning all edge weights, we use the layout function layout_drl from
the Python package iGraph, with default settings, to obtain the layout
coordinates for each variant.

Genomic data
To analyze SARS-CoV-2 phylogeny (Fig. 4a, b), we used all complete
RBD sequences from all SARS-CoV-2 genomes deposited in the Global
Initiative on Sharing All Influenza Data (GISAID) repository49–51 with the
GISAID Audacity global phylogeny (EPI_SET ID: EPI_SET_20220615uq,
available on GISAID up to June 15, 2022, and accessible at https://doi.
org/10.55876/gis8.220615uq). We pruned the tree to remove all
sequences with RBD not matching any of the possible intermediates
between Wuhan Hu-1 and Omicron BA.1 and analyzed this tree using
the python toolkit ete352. We measured the frequency of each muta-
tion (Fig. 4a) by counting how many times it occurs independently in
the tree (i.e., how often the mutation appears on a node whose parent
node does not have that mutation). For Fig. 4b, we counted two
mutations as co-appearing if both mutations are absent in the parent
node and contained in at least one of the descendant nodes. Hence we
are limiting our scope to mutations that appear in the same branch
rather than consideringmutations in all the descendants. This allow us
to reduce the effect of noise and contingency. For example, a neutral
mutation that arrives early in a lineage will have many descendants,

which could bias its influence. This strategy of studying the relative
frequency of co-appearing mutations is a specific case of the method
developed in Kryazhimskiy et al47, which infers epistasis between
mutations from phylogenetic data (the general method was not
applicable in this specific dataset due to its size).

Statistical analyses and visualization
All data processing and statistical analyses were performed using R
v4.1.053 and python 3.10.054. All figures were generated using ggplot255

and matplotlib56.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The Raw sequencing reads generated in this study have been depos-
ited in the NCBI BioProject database under accession number
PRJNA849979. The github repository39 https://github.com/desai-lab/
compensatory_epistasis_omicron/ contains all associated metadata
(‘Titeseq/metadata‘) and the flow cytometry fcs files (‘Titeseq/facs_-
data‘). We also used a publicly available third party dataset from
GISAID, accessible at https://doi.org/10.55876/gis8.220615uq.

Code availability
The Github repository39 https://github.com/desai-lab/compensatory_
epistasis_omicron/Titeseq/ contains all associated analysis codes.
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