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Our immune systems constantly coevolve with the pathogens that challenge
them, as pathogens adapt to evade our defense responses, with our immune
repertoires shifting in turn. These coevolutionary dynamics take place across a
vast and high-dimensional landscape of potential pathogen and immune recep-
tor sequence variants. Mapping the relationship between these genotypes and
the phenotypes that determine immune–pathogen interactions is crucial for
understanding, predicting, and controlling disease. Here, we review recent
developments applying high-throughput methods to create large libraries of
immune receptor and pathogen protein sequence variants and measure relevant
phenotypes. We describe several approaches that probe different regions of the
high-dimensional sequence space and comment on how combinations of these
methods may offer novel insight into immune–pathogen coevolution.

Immune–pathogen coevolution
Our adaptive immune systems are engaged in a continuous coevolutionary struggle with the
pathogens that attack us [1,2]. This immune–pathogen coevolution takes place across a range
of spatial and temporal scales: evolution in individual infections is driven by interactions between
pathogens and an individual host immune system, often over the course of days or weeks, while
global pathogen evolution is driven by the collective immune responses of whole, often geogra-
phically dispersed populations across years or decades [3–6]. This pathogen evolution, in turn,
drives shifts in both individual and population-wide host immune repertoires [7–10]. The
dynamics of this coevolutionary process within individuals and across the population is key to
understanding, predicting, and ultimately controlling disease.

Like any evolutionary process, two key components shape these dynamics: the relevant
genotype–phenotypemaps (see Glossary) (which define the landscapes on which coevolution
takes place) and the population genetic environment (the selection pressures, population
sizes, mutation rates, and other factors that determine how evolution navigates the landscape)
(Box 1). While both components are important and incompletely understood, here we focus
on recent work exploiting technological advances to characterize the former: the genotype–
phenotype maps of immune and viral proteins that define the coevolutionary landscape.
Exploring these landscapes is a daunting prospect, because the size of the relevant sequence
spaces is somassive that we cannot possibly explore these spaces comprehensively. However, by
probing landscape structure in ways that are guided by evolution, we can hope to understand
essential features that drive the coevolutionary process.

Inferences from observational data
Scientists have tracked pathogen sequence evolution since the advent of Sanger sequencing
nearly 50 years ago, with a particular focus on viruses such as influenza. In the past two decades,
rapid advances in sequencing technology have led to a dramatic expansion in the scale and
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scope of these surveillance studies and we now have access to detailed databases containing
thousands to millions of sequences of viral pathogens, such as influenza, Zika, Ebola, severe
acute respiratory syndrome coronavirus 2 (SARS-CoV-2), and many others [4,11–13]. Massive
databases of bacterial pathogen sequences are also widely available [14,15]. These resources
offer a unique window into pathogen evolution at the nucleotide level and often allow researchers
to identify novel variants and track their dynamics through space and time [16,17].

Observational studies of the sequence diversity of immune receptors within an individual also date
back a few decades and numerous studies have used these datasets to characterize the immune
response [18–23]. As with the tracking of pathogen evolution, recent advances in sequencing
methods have led to a proliferation of more comprehensive analyses of the B or T cell repertoires
within individuals [24,25] and of how these repertoires change over time (e.g., in response to
vaccination) [23,26,27]. These studies shed light into the evolution of our immune receptor
repertoires, for example, by classifying B cell receptor (BCR) sequences into clonal lineages
[28,29] and using within-lineage diversity to infer aspects of the affinity maturation process
[30–32]. Aspects of the overall statistics of repertoire sequences (e.g., the frequency distribution
of different variants) can also be used to infer parameters of the V(D)J recombination process
that generates naive BCR sequences [33] and the influence of a history of pathogen exposure
and/or vaccination on shaping repertoire statistics [30,34,35].

However, while advances in sequencing have dramatically improved our ability to observe
sequence evolution in both pathogens and immune receptor repertoires, it remains more difficult
to connect this sequence evolution with relevant phenotypes. That is, which of the mutations that
we observe in influenza virus or SARS-CoV-2 evolution might lead to immune escape? Which of
the BCR sequences binds a particular antigen and how has this changed across a clonal lineage

Box 1. Fitness landscapes
We can think of the map between genotype and fitness as a ‘fitness landscape’, which we often visualize as an actual
landscape (complete with mountains and valleys), where the ‘height’ represents fitness and horizontal distances are pro-
portional to the similarity between genotypes (see Figure 3 in main text) [124]. Populations can then be visualized as evolv-
ing across these landscapes by acquiring mutations, generally following an upward trajectory to higher fitness, with their
exact dynamics depending on the population genetic environment (e.g., the selection pressures, population size, mutation
rate, etc.). Hence, given some knowledge of these processes, fitness landscapes can be used to predict future evolution.
A key question is the extent to which landscapes are ‘smooth’ (with steadily uphill paths towards higher fitness) versus
‘rugged’ (with local optima that can create traps and dead ends). Because ruggedness arises from non-additive
(i.e., epistatic) interactions between mutations, it is particularly important to characterize these interactions.

While this low-dimensional intuition is appealing, it is also important to remember that genotype space is in fact vast and
extremely high-dimensional. Even for a short peptide of ~20 amino acids, there are more than 1026 potential sequence var-
iants, with a complex web of mutational relationships. The typical structure of such high-dimensional landscapes can run
counter to our low-dimensional intuition (e.g., in considering the likelihood of local peaks and dead ends). In addition, the
implicit assumptions that fitness landscapes are static breaks down when considering coevolving entities such as patho-
gens and immune receptors. Instead, these coevolutionary landscapes can act more as ‘seascapes’, which constantly
shift in response to the opposing selection pressure [125]. For example, a virus may acquire antibody escape mutations,
temporarily improving its fitness and allowing it to move upward in the landscape, but this region of the landscape will then
shift downwards as antibodies mature to recognize the mutant virus [125].

The dynamic, high-dimensional nature of immune–pathogen coevolutionary landscapes makes the relationship between
genotype and fitness impractical to characterize comprehensively using either experimental or computational methods.
Instead, there have been significant advances in understanding the underlying structure of these landscapes by mapping
the relationship between sequence and individual components of fitness (e.g., host receptor affinity, antibody escape) and
the relative importance of these components in various selection environments (e.g., individuals with distinct immune
responses). While seemingly more complicated, this type of decomposition can prove useful because these components
are governed by biophysical and population genetic rules, mitigating the need to exhaustively chart sequence space [126].
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during affinity maturation? Addressing these questions is needed to understand the significance
of observed pathogen and immune evolution and for any attempt to predict future coevolution.

To some extent, we can infer the phenotypic effects of specific mutations based on observational
data (Figure 1). When multiple time points are available, the relative fitness of a specific patho-
gen strain can be directly estimated from its growth [36]. However, while this has been success-
fully applied to SARS-CoV-2 [37,38], there are potential caveats related to population structure
and sampling biases, which can lead to misleading estimates of strain frequencies over time. In
addition, these approaches are often not viable for less densely sequenced viruses. This type
of analysis is also extremely difficult in the context of antibodies: as affinity maturation occurs
entirely within lymph nodes, only the end result of this process is usually sequenced, so we
lack any direct measurements of antibody frequency changes over time. Even experiments
sampling directly from lymph nodes (in mice [39,40] or in humans [41,42]) result in the disruption
of the germinal center, stopping the possibility of assessing an evolutionary process.

When time course data are not available, sequence variation at a snapshot in time can still provide
some insight into selection pressures. For example, analyses based on the frequency of muta-
tions or on the statistics of inferred phylogenetic relationships between sampled sequences
have been used to analyze antigenic selection in influenza virus infections (and hence to predict
future viral evolution) [43–45], as well as antibody responses to vaccination [42]. These ap-
proaches essentially allow us to infer past increases in frequency of specific pathogen strains
or antibody variants (or groups of strains/variants). Some of this work also combines phylogenetic
data with phenotypic information (e.g., cross-neutralization data for influenza [46–48]), which

(A) (B)
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Figure 1. Inferring fitness from observational data. (A) Muller diagram showing changes in frequency of lineages
within a population over time. Each color refers to a specific genotype with a given fitness [corresponding to the phylogeny
in (B); trajectories illustrate the changes in frequency of each lineage through time]. These frequency changes can be used
to infer fitness of each genotype (though as noted in the text, this may be confounded by population structure, sampling
biases, and other factors). (B) For illustration purposes, a hypothetical reconstructed phylogeny from a population sample
collected at a single timepoint is shown. The structure of this phylogeny can be used to infer the fitness effect of
each mutation.

Glossary
Affinity maturation: process by which
antibodies increase their affinity against
pathogens through rounds of somatic
hypermutation and selection.
Antigenic drift: gradual accumulation
of mutations in a pathogen, leading to
changes in effectiveness of an immune
response.
Biased mutation profile: set of
probabilities of mutation types that are
biased relative to other somatic
mutations.
Cross-neutralization: the ability of
antibodies to neutralize related pathogen
strains.
Deep mutational scanning (DMS):
method to analyze the effects of genetic
variation by systematically introducing
mutations into genes and measuring
their effects on the corresponding
phenotype.
Directed evolution: method of
evolving biomolecules towards desired
properties through experimentally
imposed cycles of mutagenesis and
selection.
Epistasis: non-additive interactions
between mutations.
Extant sequences: sequences
present in nature.
Fitness landscape: map between
genotype (nucleotide sequence) and
fitness (often represented by a proxy
phenotype such as binding affinity,
expression, antigenicity, etc.).
Focal sequence background: region
of the protein sequence that is not
mutated with respect to the starting
(focal) sequence.
Fragment-antigen binding domain
(Fab): part of an antibody that binds
antigens. Constituted by two domains
(constant and variable) for both the
heavy and light chains. Used in antibody
display.
Genotype–phenotype maps: map
between genotype and a specific
phenotype.
Historical contingency: influence of
initial mutations on the evolutionary
accessibility of future mutations.
Kinetic exclusion assays: measure
the fraction of ligand bound to a receptor
over a short period of time to quantify
ligand–receptor interactions.
Low-dimensional antigenic space:
hypothetical low-dimensional
representation of all antigens that would
retain accurate distances between
immunological properties of each strain.
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can improve the accuracy of inferred selection pressures but requires careful curation of the phe-
notypic data [43,47]. By contrast, other studies have focused entirely on phylogenetic information
[49]. However, irrespective of these details, these types of analyses require relatively large
datasets and make assumptions regarding evolutionary dynamics [50]. In addition, it is particu-
larly challenging to apply these approaches to antibody sequence diversity, largely because of
the properties of affinity maturation: namely, antibodies evolve in a handful of generations [39],
under strong selection pressures [30], and with a biased mutation profile [51]. These complica-
tions violate assumptions of many population genetic models, making it difficult to apply standard
methods.

Connecting genotype to phenotype
The limitations of these purely observational methods highlight the need for direct experimental
measurements that connect genotypic diversity to the phenotypes that drive immune–pathogen
coevolution. There are numerous phenotypes that influence the fitness of pathogens and anti-
bodies and it is impossible to measure them all. However, several key phenotypes (e.g., protein
stability, binding affinity to relevant target proteins, and neutralization of pathogenic strains by
sera) are thought to be major drivers of immune–pathogen coevolution [52–56]. While these traits
do not encompass all the selection pressures relevant for coevolution, they are useful proxies for
important aspects of this process.

One approach to characterize these phenotypes involves direct analysis of protein struc-
tures, such as in early work using the structure of the influenza hemagglutinin (HA) protein
to pinpoint sites of potential importance for immune evasion [57,58]. However, protein struc-
ture alone is usually insufficient to predict the effect of specific mutations. This motivates the
use of methods that directly measure phenotypes, which often rely on traditional biochemical
and immunological assays. Neutralization assays, for example, measure the ability of mono-
clonal antibodies (or of polyclonal sera) to inhibit viral infection of host cells [59]. This is rele-
vant for analyzing population-level viral evolution [37,46], though it is less informative about
intra-host immune evolution because it does not reveal the underlying antibody sequence
changes. Other approaches tend to focus on more specific phenotypes, such as binding be-
tween surface proteins and antibodies. These measurements are typically made using puri-
fied proteins, using various techniques such as surface plasmon resonance, kinetic
exclusion assays, titration-based methods, and ELISA [60–63]. While these measurements
may not be as straightforward to interpret as neutralization data, they often provide a more direct
insight into the mechanistic basis of antibody–pathogen interactions and hence can bemore useful
for making predictions.

Numerous studies have used these experimental measurements in combination with epidemio-
logical models to infer and predict immune–pathogen coevolutionary dynamics. For example,
serum reactivity studies can be used to define immune-similarity metrics between antigens, in
the hope of defining a relatively low-dimensional antigenic space (see, e.g., [46,64,65]); one
can then model viral escape dynamics through this space (see, e.g., [66]). Other studies
make simplifying assumptions about the broader coevolutionary landscape (e.g., assuming
that the effects of viral and antibody variants on binding affinities are additive to predict the
dynamics of HIV-1 escape from monoclonal antibodies [67]).

A key limitation of these traditional phenotypic measurements is throughput: individual experi-
ments can only test one pathogen strain or antibody at a time and are both time-consuming
and expensive. As a result, studies have focused on relatively small sets of pathogen or antibody
sequences. For example, one can isolate the relatively small fraction of B cells that bind a specific

Muller diagram: graphical
representation showing the frequency of
all sequence variants within a
population over time.
Population genetic environment:
factors that determine how a population
generates variation and navigates the
fitness landscape.
Relative fitness: measure of fitness
compared with other variants in the
population; this determines relative
changes in frequency over time.
Reverse genetics: set of methods that
infer the function of a gene by
engineering specific mutations and
observing their effects on phenotype.
Sequence logo plots: graphical
representation of the effects of
individual mutations on a given
phenotype. Refers to additive effects in a
specific focal background and does not
include potential epistatic effects.
Single-chain variable fragment
(scFv): fusion protein of antibody heavy
and light variable regions. Used in
antibody display.
Surface plasmon resonance: label-
free method to measure the
concentration of ligands bound to a
surface coated with a receptor and,
hence, quantify ligand–receptor
interactions.
Tite-Seq: high-throughput approach to
estimate the binding affinities of tens of
thousands of protein variants to a given
ligand.
Training neural networks: statistical
approach for inferring parameters of a
neural network based on a given data
set.
V(D)J recombination: gene
recombination process that generates
naive antibody and T cell receptor
diversity.
Viral escape dynamics: evolutionary
changes in virus structure leading to
immune escape.
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antigen from blood samples and characterize the binding of these sequences to that antigen
[68–71]. However, this still constrains the analysis to one small part of the landscape that was
explored by affinity maturation in one particular individual. While one can alternatively create
and analyze other types of sequence variants, basic constraints on throughput will still limit
analysis to extremely small corners of the genotype space. This limitation can be circumvented
by making simplifying assumptions (e.g., additivity of mutational effects) that allow us to infer
the phenotypes of unobserved genotypes. However, these inferences are likely to fail because
of widespread epistasis across the large diversity of viral strains and antibody sequences
(Box 1). The key problem is that even small changes in viral or antibody proteins can have
dramatic and context-dependent effects on their interactions [72].

Exploring large and high-dimensional landscapes
To more comprehensively analyze the large and high-dimensional genotype–phenotype maps
that are relevant for immune–pathogen coevolution, extensive efforts have been devoted in recent
years to developing methods to dramatically increase the throughput of the phenotypic measure-
ments described earlier. These approaches typically use next-generation sequencing to measure
relative enrichments of pathogen or immune receptor sequences across some experimentally
imposed selection pressure, making it possible to conduct phenotypic measurements for large
libraries of sequences in parallel (Figure 2). For example, numerous studies measure the effect
of large libraries of sequence variants of influenza HA [73–76], SARS-CoV-2 spike protein
[77,78], or HIV-1 envelope [79] on the ability of the corresponding viruses to infect target cells.
Similar methods have been used to characterize the interactions between a library of antibody
variants and their cognate antigen [80,81]. Other studies have developed ‘Tite-Seq’ methods
tomake precise quantitative measurements of the binding dissociation constants of large libraries
of antibody sequences to specific antigen proteins [54,82,83] (or conversely of large libraries of
pathogen proteins to specific antibodies and target proteins [55,84–86]). These can be under-
taken by displaying the library of interest on the surface of yeast, sorting the yeast cells into
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Figure 2. High-throughput phenotypic measurements. (A) Large libraries of protein sequence variants can be assayed
for various phenotypes of interest by conducting some assay, grouping variants based on the result of this assay [e.g., selecting
using flow cytometry based on binding to a fluorescently labeled antibody as in (B), or based on some other experimental
selection pressure as in (C)] and sequencing to determine the relative enrichment of each variant within each group. (B) A
fluorescence-activated cell sorting (FACS)-based method to measure phenotypes such as binding or protein expression, in
which the protein of interest is labeled with fluorescent tags for FACS-based cell sorting, is shown. (C) A direct passaging
method, in which viral variants are incubated with target cells and allowed to replicate, is shown. After some time,
successfully replicating (i.e., infectious) variants are isolated [95,136,137]. Abbreviation: NGS, next-generation sequencing.
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bins based on binding of the surface-expressed protein to fluorescently labeled target, and
sequencing these bins. In principle, similar types of approaches could conceivably be used to
dramatically increase the throughput of other types of phenotypic testing; for example, this
might be done by using methods analogous to Tite-Seq to measure the ability of large libraries
of antibody variants to neutralize a specific viral strain, or the ability of a specific antibody
sequence to neutralize a large library of viral variants.

High-throughput approaches often (though not always) rely on simplified or idealized systems, for
example, viruses may be represented by a single protein that is recombinantly produced and
antibodies may be truncated to enable expression on display systems [e.g., a single-chain
variable fragment (scFv), or fragment-antigen binding domain (Fab)] (Box 2); this can
make it possible to explore phenotypes across amuch larger portion of sequence space. However,
despite these increases in throughput, the potential sequence space relevant for even a small viral
protein (or a relatively short variable region in an antibody sequence) is so vast that we can still only
hope to sample a tiny fraction of possible variants. Consequently, phenotypic measurements must
be restricted to a well-chosen and relevant subset of genotypes. The choice of these subsets must
be guided both by the specific research questions addressed (e.g., sampling variants in a way that
is ideally related to the natural evolutionary process) and by technical constraints (particularly on the
methods used to construct large variant libraries). Next, we describe three broad categories of
approaches to the construction of these libraries used to explore distinct parts of antibody and
pathogen sequence spaces (Figure 3, Key figure).

Local exploration
In the short term, evolution always acts locally, by sampling genotypes in the immediate muta-
tional neighborhood of extant sequences. This has motivated extensive efforts to explore the
local mutational landscape around antibody or pathogen sequences of particular interest
(Figure 3A). For instance, numerous studies have used the deep mutational scanning (DMS)
approach [87,88] to assess the phenotypic effect of various mutations on a specific focal
sequence background. In these studies, libraries containing variants with one to a few amino
acid substitutions from the focal sequence are generated and subjected to a selection pressure

Box 2. Relevant expression and display technologies
Numerous advances in protein expression technology over the past several decades have helped enable high-throughput
measurements of various phenotypes. These technologies often rely on culturing phage ormicrobes, which produce recom-
binant protein either in solution or displayed on cell surfaces. Screening phenotypes of soluble proteins typically requires
individual measurements for each variant because there is noway to link specific variants with their sequence in a bulk assay.
While these soluble protein screens can often be conducted in 96- or 384-well plate format, the need for individual measure-
ments still limits throughput significantly. For this reason, high-throughput phenotyping measurements are often carried out
using either a protein display strategy (where the variant sequence is encoded on a plasmid or in the genome) or by linking a
variant-specific tag to each protein molecule (e.g., using an mRNA or a ribosome display system [127]).

Protein display technologies have been established in phage, prokaryotic, and eukaryotic systems and have been used to
measure various protein phenotypes, especially binding affinity [128–131]. For example, phage display was first introduced
in 1985 [132] and has become amainstay in novel therapeutic development, especially for antibody treatments. The relatively
small size of bacteriophages makes it possible to analyze enormous libraries (up to tens of millions of variants) in a single
measurement [132]. Although yeast-display libraries are substantially smaller than those in phage, they enable protein expression
with eukaryotic post-translational modifications, which can crucially influence viral protein and antibody receptor function [131].
Still, most yeast-display systems are constrained to individual protein domains, limiting their utility for examining
phenotypes involving multiple domains or oligomers. Recently, there have been several advances in human cell display
technologies (e.g., engineered T cell receptor display), enabling display of full-length, natively processed viral proteins
and immune receptors [78,133]. Separately, reverse genetics approaches enable construction of viral libraries
[134,135], where viral protein variants are expressed in virions containing the corresponding genetic information and ‘fitness’
can be easily measured by viral replication.
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Key figure

Strategies for exploring sequence space
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Figure 3. We show an example of a short 15-residue peptide (with genotype space consisting of 1520 = 3 × 1023 total
possible sequence variants), which has evolved from a wild-type sequence to a mutant with five mutations at the sites
indicated in blue. Shown are several types of variant libraries that explore different subsets of the sequence space (left)
and lead to different observables (right). (A) Local exploration. These methods focus on the local mutational landscape
around a specific focal genotype (here the wild-type or mutant sequences) using saturating mutagenesis (i.e., constructing
all genotypes one mutation away from the focal genotype, 20*L total variants) or random mutagenesis. Sequence logo
plots (right) are commonly used to summarize the impact (in the focal genotype) of all possible mutations at each site on
the phenotype. This approach surveys both negative and positive mutational effects but does not provide information on
epistasis. (B) Combinatorial exploration. Here the library contains all possible combinations of N mutations separating the
mutant from the wild-type sequence (2N total variants); both positive and negative mutational effects as well as epistatic
interactions can be analyzed. All possible trajectories from wild-type to mutant sequences are shown on the right, with
lines indicating the probability of each based on an evolutionary model given the measured phenotypes corresponding to
each genotype (right). These probabilities can be used to define ‘pathway accessibility’, which refers to the likelihood of
each possible pathway given a particular evolutionary model of natural selection and genetic drift. (C) Random exploration
with selection. These libraries are generated with multiple rounds of random mutagenesis and selection; this approach is
suited primarily to studying mutations with positive effects. The resulting population dynamics are shown on a Muller
diagram, which shows the changes in frequency over time of each sequence variant (right).
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such as binding affinity [89–94]. Following selection, relative enrichment of each variant is mea-
sured (more recent studies can also measure absolute binding affinities; see [55,85,86]).

DMS studies have identified mutations relevant to immune escape and pathogen function in
many different viral systems involving influenza [73,75,95], hepatitis C [96], HIV-1 [79], and
numerous SARS-CoV-2 variants [55,86], among others. This work has obvious direct implica-
tions for short-term evolutionary dynamics. For example, a number of studies on influenza virus
show that the HA sequence is highly tolerant to mutations, enabling rapid antigenic drift
[73,92,95,97]. Similar work on the SARS-CoV-2 spike protein has identified three receptor-
binding domain (RBD) sites with mutations that increase binding affinity to the host cell receptor
ACE2, while other RBD patches are constrained and therefore might be desirable targets for
potential therapeutic antibodies [55,86]. Later DMS studies have identified other key spike protein
sites in which mutations are likely to lead to immune escape variants [85,98]. Although these
studies have largely been focused on viral proteins, the same strategies have been applied to
investigate libraries of antibody variants, for example, by scanning complementarity-determining
regions of relevant antibodies for mutations that enhance their binding to various antigens
[81,82,99,100].

While this body of work has provided a wealth of insight into immune–pathogen coevolution,
these approaches also have key limitations. The central constraint is that comprehensive DMS
libraries are expensive (and/or laborious) to create, so while we can use this approach to compre-
hensively explore local sequence space, we can do so only around a small number of focal
sequences of interest. Random mutagenesis can be used to create libraries more cheaply (at
the cost of not being comprehensive), but the number of focal sequenceswe can explore remains
relatively small. Thus, these approaches are generally limited to analyzing the landscapes that are
relevant for very short-term coevolutionary dynamics around a handful of strains of interest. Some
studies attempt to extrapolate to larger genetic distances. For example, this can be done by
estimating the combined effects of multiple mutations based on their individual mutation effects
in a DMS study [101], or by training neural networks (e.g., using SARS-CoV-2 receptor
binding motif mutagenesis data [102]). However, widespread epistasis unavoidably means that
the accuracy of any type of extrapolation of this kind will often fall off rapidly with mutational
distance [103]. This places fundamental limits on the extent to which we can use these
approaches to predict evolutionary dynamics.

Combinatorial exploration
Given the widespread importance of epistasis in immune–pathogen coevolution, a natural alter-
native approach is to construct combinatorial libraries of antibody or pathogen protein variants
involving various combinations of mutations at some set of sites (Figure 3B). This allows us to
characterize phenotypes that are relevant for potential longer-term evolutionary trajectories in-
volving these sites (with the tradeoff that we are limited to just these sites and thus cannot explore
potential trajectories involving other mutations elsewhere in the sequence). For example, recent
work used this approach to show that epistasis between several SARS-CoV-2 Omicron BA.1
spike protein RBD mutations strongly interacted to modulate ACE2 binding affinity [78,104,105].

Many combinatorial studies attempt to construct all possible combinations of specific sets of
mutations to provide a comprehensive characterization of the corresponding high-dimensional
landscapes. This makes it possible to measure the phenotypes of all possible evolutionary inter-
mediates between some ancestral sequence and its evolved descendant. These studies have
been used to study protein evolution in a variety of contexts (e.g., to characterize constraints
on the evolution of beta-lactamase [106–108] or to measure the importance of epistasis in a
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fluorescent protein [109]). Recent work by us and others applied these methods to study
immune–pathogen interactions, for example, by constructing all possible combinations of muta-
tions leading from germline antibody sequences to several broadly neutralizing anti-influenza virus
antibodies [54,83], or from the ancestral Wuhan Hu-1 strain of the SARS-CoV-2 spike protein
RBD to the Omicron BA.1 variant [84,110]. We then measured the binding affinities of antibodies
to relevant antigens, as well as the binding affinities of spike protein variants to human ACE2 and
monoclonal antibodies. The structure of the resulting landscapes has provided some insight into
how these antibody and viral strains evolved (e.g., that CR-9114, an extremely broadly neutraliz-
ing antibody, likely evolved in response to a specific sequential antigen exposure history).

These combinatorial studies allow us to comprehensively analyze the high-dimensional land-
scape defined by all possible evolutionary trajectories between the ancestral and evolved
sequence (i.e., all possible orders in which this specific set of mutations could have occurred
[107,111]). However, this is inherently retrospective and does not provide any insight into alterna-
tive potential evolutionary trajectories involving mutations at other sites. This is not a fundamental
limitation of the approach: in principle, it is possible to construct combinatorial libraries involving
any set of mutations of interest. For example, in future work it may be useful to analyze ‘chimeric’
libraries corresponding to variants across a broader phylogenetic tree; this could provide insight
into how initial mutations constrain future evolution (‘historical contingency’) [103,112]. Other
studies might focus on libraries of mutations that were identified based on structural analyses.
Another promising avenue for future work is to integrate combinatorial approaches with data
from DMS and mutagenesis studies. For example, one can identify a set of key mutations from
DMS studies in a specific focal background and then explore the combinatorial landscape
defined by these variants. Alternatively, one can conduct a combinatorial analysis, use it to identify
key intermediate genotypes along likely evolutionary trajectories, and then conduct DMS or
mutagenesis around these focal genotypes.

Regardless of how we select sets of mutations, a key constraint on combinatorial exploration of
genotype–phenotype maps is the exponential explosion of the size of the library as the number of
mutations involved increases. While it is generally relatively inexpensive to construct large libraries
using combinatorial assembly methods, the scale at which we can measure corresponding phe-
notypes (even with high-throughput methods) becomes limiting. For example, Tite-Seq-based
binding affinity assays are constrained by experimental limitations on flow cytometry throughput
and sequencing costs; this renders the measurement of phenotypes of more than a few hundred
thousand variants challenging [82]. Thus, if we wish to analyze combinatorially complete land-
scapes, we can consider at most, sets of 16–18mutations. Alternatively, it is possible to consider
combinatorial landscapes of larger sets of mutations in a less comprehensive way, for example,
by grouping mutations into subsets and looking at all possible combinations of these subsets,
or by making incomplete libraries consisting of a random sampling of possible mutation combina-
tions [113]. This random sampling approach may be particularly promising, as it does broadly
survey many potential epistatic interactions and hence may provide a better basis for extrapolat-
ing landscapes by inferring phenotypes of unobserved genotypes.

Random exploration guided by selection
A third approach to the characterization of high-dimensional genotype–phenotype maps is to at-
tempt to directly recreate the process by which evolution samples these landscapes: mutational
exploration combined with natural selection (Figure 3C). This essentially involves conducting
directed evolution, in which one alternates rounds of mutagenesis with artificial selection for
some phenotype of interest [114,115]. For example, a recent study conducted directed evolution
of the SARS-CoV-2 spike protein RBD, finding that rounds of mutagenesis and selection for
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expression and ACE2 binding led the original Wuhan Hu-1 strain to accumulate mutations that
were common across the natural phylogeny [116].

Directed evolution studies are particularly widespread in the context of antibody affinity matura-
tion, where numerous studies have evolved antibody sequences towards high affinity for a variety
of specific antigens [117–122]. However, these studies have been primarily used for optimization,
with the goal of rapidly producing antibodies with desired binding properties [115,123]. In prin-
ciple, however, we could also use directed evolution in a more exploratory way, to artificially
produce large numbers of replicate evolutionary trajectories through a high-dimensional land-
scape and measure relevant phenotypes of each intermediate. Similar approaches should also
make it possible to emulate and analyze coevolutionary trajectories by simultaneously selecting
antibodies to bind pathogen proteins and pathogen proteins to evade binding by correspond-
ing antibodies. The variants identified in these directed evolution studies might then form the
basis for subsequent combinatorial studies and the final evolved sequences (as well as key
intermediates) might serve as focal genotypes for DMS analysis. These are exciting areas for
future work, which offer the potential for entirely novel ways to explore high-dimensional
coevolutionary landscapes.

Concluding remarks
As with any high-dimensional genotype–phenotype map, the central problem in empirically char-
acterizing immune–pathogen coevolutionary landscapes is themassive scale of sequence space.
Regardless of how rapidly we improve experimental methods and throughput, we will never be
able to comprehensively survey even a small fraction of all possible genotypes. A key challenge
is therefore to determine which combinations of the approaches described earlier, along with
other strategies that we may not yet have conceived, can provide the most power for extrapola-
tion (see Outstanding questions). That is, what types of measurements (and which computational
approaches) will best allow us to accurately infer the larger-scale structure of the coevolutionary
landscape from inevitably limited data? There is reason to be optimistic that this is possible: evo-
lution itself cannot and does not comprehensively explore sequence space. Instead, it samples
and selects trajectories based on relatively limited information. Thus, if we can collect a similar
sort of information, it should be possible to make at least general statistical predictions about
how evolution will act. This has the potential to improve our ability to understand, and eventually
even predict, the effectiveness of antibody affinity maturation in response to vaccination or path-
ogen exposure and the corresponding evolution of pathogen immune escape.

We also note that throughout this review, we have focused on methods to empirically characterize
genotype–phenotype maps. An equally important task is the development of theoretical and compu-
tational methods to predict how evolution navigates these complex high-dimensional landscapes.
These methods can help us to understand what aspects of the landscapes are most crucial in shap-
ing coevolutionary trajectories, which in turn can then shape future experimental directions.
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Outstanding questions
What variant library structure provides
the most power to infer the phenotypes
of unobserved genotypes? How does
the choice of model used for this
inference affect the accuracy of this
extrapolation and how does this
accuracy change as a function of
genetic distance?

What aspects of landscape structure
are most crucial for determining
coevolutionary dynamics and what
types of empirical approaches can be
used to most efficiently characterize
these aspects?

What phenotypes or combinations
of phenotypes are most relevant for
determining selection pressures in
nature? How can we improve the
design and throughput of empirical
methods to measure more complex
phenotypes that may be better proxies
for these pressures?

What general themes can emerge from
the study of landscapes across many
different pathogen and immune
receptor proteins and phenotypes?
Are there common patterns in the
statistical structure of genotype–
phenotype maps across many
systems and, if so, what general impli-
cations does this have for immune–
pathogen coevolution?
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