1 OCTOBER 2022 EMMENEGGER ET AL. 2743

Evaluating Tropical Precipitation Relations in CMIP6 Models with ARM Data?
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ABSTRACT: A set of diagnostics based on simple, statistical relationships between precipitation and the thermodynamic
environment in observations is implemented to assess phase 6 of the Coupled Model Intercomparison Project (CMIP6)
model behavior with respect to precipitation. Observational data from the Atmospheric Radiation Measurement (ARM)
permanent field observational sites are augmented with satellite observations of precipitation and temperature as an obser-
vational baseline. A robust relationship across observational datasets between column water vapor (CWYV) and precipita-
tion, in which conditionally averaged precipitation exhibits a sharp pickup at some critical CWV value, provides a useful
convective onset diagnostic for climate model comparison. While a few models reproduce an appropriate precipitation
pickup, most models begin their pickup at too low CWV and the increase in precipitation with increasing CWV is too
weak. Convective transition statistics compiled in column relative humidity (CRH) partially compensate for model temper-
ature biases—although imperfectly since the temperature dependence is more complex than that of column saturation.
Significant errors remain in individual models and weak pickups are generally not improved. The conditional-average pre-
cipitation as a function of CRH can be decomposed into the product of the probability of raining and mean precipitation
during raining times (conditional intensity). The pickup behavior is primarily dependent on the probability of raining near
the transition and on the conditional intensity at higher CRH. Most models roughly capture the CRH dependence of these
two factors. However, compensating biases often occur: model conditional intensity that is too low at a given CRH is com-
pensated in part by excessive probability of precipitation.
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1. Introduction This sharp increase in precipitation represents the occurrence
of conditional instability in the transition to deep convection as
a function of thermodynamic conditions (Schiro et al. 2016).
Holloway and Neelin (2009) assessed this transition with radio-
sondes from the tropical western pacific ARM site Nauru,
concluding that CWV serves as a proxy for the role of free tro-
pospheric humidity on the buoyancy of entraining plumes.
Plume buoyancy is highly sensitive to entrainment and mixing
of environmental air; the importance of free-tropospheric hu-
midity to the onset of deep convection is well known and is re-
flected in the pickup (Kuo et al. 2018; Bretherton et al. 2004;
Ahmed and Schumacher 2015; Neelin et al. 2009). Recent work
has focused on the conditional average temporal evolution asso-
ciated with this transition (Wolding et al. 2020).

The onset of deep convection is a complex process, and re-
alistic representations of it in climate models are necessary for
accurate simulations of convective-precipitation statistics

The U.S. Department of Energy (DOE)’s Atmospheric
Radiation Measurement (ARM) program provides unique
field observations at its tropical and subtropical sites for ex-
ploring the complex interactions and relationships between
clouds, aerosols, and radiation and their associated large-scale
environments (Mather and Voyles 2013; Xie et al. 2010; Zhang
et al. 2020). Bretherton et al. (2004) identified a robust non-
linear relationship between column water vapor (CWV) and
precipitation, ((P)), conditionally averaged by CWV bin. At
sufficiently high temporal and spatial resolution, condition-
ally averaged precipitation ramps up once a critical CWV has
been reached. That is, for CWV values past a certain thresh-
old, the expected rate of precipitation begins to increase rap-
idly or “pickup.” The CWV-precipitation relationship applies
to both mesoscale and smaller convective scales and is observed
over tropical land and ocean in observational records (Neelin

et al. 2009; Schiro 2017) and some models (Kuo et al. 2020). (Sahany et al. 2012). In past generations of global climate
models (GCMs), model precipitation has been shown to be

too insensitive to free-tropospheric humidity, leading to er-
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concluded that the basic convection onset statistics can distin-
guish convective parameterizations. A large intermodel spread
in tropical precipitation presents a challenge toward future cli-
mate projections (Biasutti and Sobel 2009; Biasutti 2013; Voigt
et al. 2016; Su et al. 2017; Maloney et al. 2019). Tropical pre-
cipitation contributes significantly to biases in climatologies
and large-scale modes of tropical variability such as the MJO
(Del Genio 2012; Zhu and Hendon 2015; Jiang et al. 2021),
the diurnal cycle of precipitation (Del Genio and Wu 2010;
Rio et al. 2009; Hourdin et al. 2013; Covey et al. 2016), and the
double ITCZ (Mapes and Neale 2011; Hwang and Frierson
2013; Oueslati and Bellon 2013; Hirota et al. 2014; Tian and
Dong 2020).

Model diagnostics of tropical convection play an integral
part in understanding the limitations of model behavior in fu-
ture warming scenarios; this study explores biases in tropical
precipitation related processes across a model cohort from
the recent phase 6 of the Coupled Model Intercomparison
Project (CMIP6). The analysis tools presented in this work
form part of the ARM data-oriented metrics and diagnos-
tics package (ARM-DIAGS; Zhang et al. 2020), to facili-
tate process-level evaluation of climate models using ARM
datasets. After overviewing data and models (section 2), in
section 3 we present the convective transition statistics at two
tropical western Pacific sites, Manus and Nauru, highlighting
the important features of the observed datasets and discuss
and compare CMIP6 model behavior. In section 4 we discuss
the influence of temperature in the surrounding large scale en-
vironment and identify potential biases of models. In section 5
we present the statistics compiled in column-relative humidity
as a way of reducing model temperature bias in the diagnostics.

2. Data and models

The ARM program datasets of precipitation and CWV are
used as an observational baseline in the model comparison in
evaluating the relationship of CWV and precipitation. Here
we present the results from two tropical western Pacific ARM
sites: Nauru (0°31’S, 166°54’E) for the period 1999-2009 and
Manus (2°3’S, 147°25'E) for 1998-2010. ARM sites use a mi-
crowave radiometer for CWV measurements and an Optical
Scientific optical rain gauge (ORGS815) for precipitation (here-
inafter referred to as ORG). CWV measurements are recorded
every 20 s but exhibit gaps due to the “wet-window” problem in
which water collects on the surface of the lens and introduces
erroneous measurements during intense precipitation. As in
Schiro et al. (2016), the wet-window problem is addressed by a
linear interpolation of CWV values across time periods of 6 h
or less. The wet-window problem primarily affects high CWV
bins, and the interpolation is often across short time scales and
underestimates peak CWV (Schiro et al. 2016). CWV during
strong precipitation events does not diminish rapidly—typically
on the scale of hours (Schiro et al. 2016).

In addition to the in situ precipitation data, satellite retrieval
Tropical Rainfall Measuring Mission (TRMM) 3B42 version 7
precipitation measurements (TRMM 2011) are augmented with
the in situ CWV. In model evaluation, TRMM 3B42 data are
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averaged spatially over 1° from its 0.25° X 0.25° resolution, cen-
tered on the latitude-longitude point nearest to the sites.

Here we analyze 11 CMIP6 models and include the 1-hourly
European Centre for Medium-Range Weather Forecasts
Reanalysis Fifth Generation (ERAS) atmospheric reanalysis
product (Hersbach et al. 2020); model and the reanalysis
data used are summarized in Table 1. The 6-hourly snapshots
of three-dimensional moisture and temperature, and 3-
hourly averaged precipitation rates are extracted from the
model cohort for the years 1995-2015 of their historical ex-
periment. The Department of Energy (DOE) E3SM project
provides data from two simulations: E3SM-1-0 0.25° X 0.25°,
a 21-yr, high-resolution coupled simulation forced with re-
peating annual cycle forcing approximating observed condi-
tions in 1950 (Caldwell et al. 2019) and E3SM-1-0-EAM
1.00° X 1.00°, a 6-yr atmosphere-only Atmospheric Model In-
tercomparison Project (AMIP) climatology run using present-
day climate forcing for the year 2000, with climatological sea
surface temperature and sea ice prescribed from observations
(Rasch et al. 2019; Xie et al. 2018; Zhang et al. 2019). These
models were chosen based on availability of 6-hourly three-
dimensional snapshots of temperature and moisture and 3-h-
average precipitation data in the Earth System Grid Federation
archive at the time of analysis.

The data for each model is extracted from the nearest
point to each ARM site. The column for CWV is defined as
from the surface to 200 mb (1 mb = 1 hPa). Precipitation data
for NASA-GISS, MPI-ESM1-2-LR, MIROC-E2SL, MIROCS,
MRI-ESM2-0, NESM3, E3SM-1-0-EAM, and E3SM-1-0 is
3-hourly averaged output, while MPI-ESM1-2-LR, NorESM2-
LM, and NorESM2-MM output is 6-hourly averaged. The ef-
fects of using different temporal averaging windows in the sta-
tistics are discussed in the beginning of section 3. With the
exception of the E3SM-1-0-EAM, all model outputs are from
coupled ocean-atmosphere GCMs. Model CWV data for all
models are 6-hourly instantaneous snapshots. CWV is analyzed
as causal to precipitation; the start of the precipitation averag-
ing window coincides with the time of the CWYV snapshot, or
precipitation lags CWV. The statistics presented in the following
sections were also evaluated with precipitation leading CWV and
the statistics remained robust (not shown). We note the caveat
that the ARM radiometer CWYV is measured locally, as opposed
to the model values from a grid cell on the order of (100?) km?
and is available at higher time resolution. The comparison re-
mains reasonable given that CWV tends to have longer spatial
and temporal autocorrelation than precipitation (Holloway and
Neelin 2010; Abbott et al. 2016; Kuo et al. 2018) and that coarse-
graining of data on scales from 25 to 200 km has modest impacts
(Kuo et al. 2018). The spatial dependence of the convective onset
statistics is further explored in section 3.

In section 4, we address the temperature dependence of the
moisture—precipitation relationship which requires a calcula-
tion of the column-integrated (from the surface to 200 mb)
saturation specific humidity q_,, g, = g’qusat[T(p), pldp,
where g T(p), p] is the saturation humidity with respect to
liquid water, is used as a bulk measure of tropospheric tem-
perature. The column relative humidity for observations is
calculated from 1-hourly snapshots of CWV and temperature
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TABLE 1. List of models analyzed in this study. Table is similar to the table in Pathak et al. (2019) for CMIP5 models. The references

column gives the data source and the source for the convective trigger/closure.

Resolution (lon X lat),
vertical levels

2.00° X 2.00°, 40

References

Higher moist static energy (NASA/GISS) (2018);
of an adiabat to DelGenio and Yao (1993);
environment at level Schmidt et al. (2014)
above/cloud-base

Model name Institute

NASA-GISS

Convective trigger/closure

Goddard Institute for
Space Studies, NASA

buoyancy

MPI-ESM-1-2-HAM Max Planck Institute for 1.85° X 1.88°, 47 Net positive moisture Wieners et al. (2019); Mobis
Meteorology convergence/ CAPE and Stevens (2012)

MPI-ESM1-2-LR Max Planck Institute for 1.85° X 1.88°, 47 Net positive moisture Wieners et al. (2019); Mobis
Meteorology convergence/CAPE and Stevens (2012)

MIROC-E2SL Japan Agency for Marine- 2.77° X 2.81°, 40 CAPE/prognostic Hajima et al. (2019); Ando
Earth Science and convective kinetic et al. (2021)
Technology energy

MIROC6 Japan Agency for Marine- 1.39° X 1.41°, 81 CAPE/prognostic Tatebe and Watanabe (2018);
Earth Science and convective kinetic Ando et al. (2021)
Technology energy

MRI-ESM2-0 Meteorological Research 1.11° X 1.13°, 80 CAPE/CAPE Yukimoto et al. (2019, 2011)
Institute Japan
Meteorological Agency

NorESM2-LM Norwegian Meteorological 1.89° X 2.50°, 32 CAPE/CAPE Seland et al. (2019, 2020)
Institute

NorESM2-MM Norwegian Meteorological 0.94° X 1.25°, 32 CAPE/CAPE Bentsen et al. (2019); Seland
Institute et al. (2020)

NESM3 Nanjing University of 1.85° X 1.88°, 47 Net positive moisture Cao and Wang (2019); Cao
Information Science convergence/ CAPE et al. (2018)
and Technology

E3SM-1-0 DOE E3SM Project 0.25° X 0.25°, 72 CAPE/CAPE Caldwell et al. (2019)

E3SM-1-0-EAM DOE E3SM Project 1.00° X 1.00°, 72 CAPE/CAPE Rasch et al. (2019)

of the ARM Best Estimate data (ARMBE; Xie et al. 2010),
an hourly integrated product assembled from various ARM
measurements for use in climate model evaluation. Stringent
quality controls were applied to raw ARM data used in pro-
ducing ARMBE. The 1-hourly snapshots at the beginning of
the precipitation averaging window are chosen for the ARMBE
statistics, remaining consistent with the causal relationship of
CWYV to precipitation. Model g, is calculated from 6-hourly
snapshots and treated in the same fashion as CWYV in that it
leads the precipitation averaging window. In the following dis-
cussion, we use “ARM?” to refer to the data directly from ARM
individual instruments, which are often at much higher tempo-
ral frequencies and applied less data quality controls than the
ARMBE product.

3. Convective transition statistics in CWV

Figures 1 and 2 show the basic set of convective onset statis-
tics for ensemble of CMIP6 models at the Nauru and Manus
site. Schiro et al. (2016) and Kuo et al. (2018) examined the
effects of temporal averaging on the convection onset statis-
tics, concluding that up to and including a 3-h-averaging win-
dow (the temporal resolution of the majority of the cohort of
CMIP6 models examined here) the prominent characteristics
of the pickups (Figs. 1a and 2a) are largely preserved; beyond
3 h, the pickups begin to be slightly smoothed by the averaging.

Observational data for Figs. 1 and 2 use 3-h averages, the effects
of temporal averaging are shown in Fig. S1 of the supplemental
material.

The convective transition statistics of three observational
products: TRMM Microwave Imager processed by Remote
Sensing Systems algorithm v7.1 (TMI; Wentz et al. 2015),
0.25° X 0.25° resolution, ARMBE, and ARM are compared
in Fig. 3. CWV measurements between observational prod-
ucts are compared in Fig. S2 of the supplemental material,
and overall, observational CWV measurements are consis-
tent, with a slight low bias in TMI measurements. In ground-
based observational products, ARM and ARMBE, the drop
of precipitation at the highest CWV can be attributed to the
wet-window problem (Kuo et al. 2018). That is, the CWV val-
ues during high precipitation events are likely missing from
the record, and the gap-filling can only partially restore the
missing information. Heavily raining times are thus preferen-
tially missing, or are associated with gap-filled portions of the
CWYV that tend to miss the very highest values, resulting in a
low bias in precipitation at the highest CWV. The (P) of TMI
reaches much higher precipitation rates (~6 mm h™') at the
highest CWV bin (Fig. 3). ARMBE data exhibits a (P) with
nonzero values at low CWYV due to its hourly average.

The probability of precipitation curves (Figs. 1b and 2b)
display the most sensitivity to temporal averaging: as the tem-
poral averaging increases, the pickup occurs at lower CWV
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Nauru annual Averaged over 3 hours
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FIG. 1. (a) CWV conditionally averaged precipitation rate ({(P)), the critical water vapor value of the pickup
(w.) is quantified by a linear fit to (P) and is listed in the legend; models are listed in ascending order according
to their estimate of w,, error bars represent the standard error probability of precipitation, (b) fraction of pre-
cipitation > 0.25 mm h™! in respective CWV bin, error bars are the Wilson score interval for 90% confidence,
(c) the CWV PDF, with 90% Wald interval error bars, and (d) the precipitation contribution, or the (P)-weighted
PDF ((P) X CWYV PDF), with error bars that represent the error propagation of the weighting [the sum of fractional
error in (a) and (c)] for ARM in situ ORG (dashed black), TRMM-3B42 1° spatial average precipitation (solid black),
CMIP6 models (colors), and the multimodel mean (blue) for the Nauru ARM site. The observational and all model
precipitation data with the exception of MPI-ESM-1-2-HAM, NorESM2-LM, and NorESM2-MM are averaged over
3-h windows. MPI-ESM-1-2-HAM, NorESM2-LM, and NorESM2-MM precipitation data are 6-h averages. Both
observational precipitation products are augmented with ARM in situ microwave radiometer CWV. The CWV bin
width is 2 mm. Statistics are not calculated for bins with less than 10 counts.

and higher CWV values display a higher probability of precip-
itation. Temporal averages over 3 h or greater intervals are
more likely to span raining times. The wet-window problem
similarly affects the observed probability at the highest CWV.

The important feature of the conditionally averaged precip-
itation is the sharp, sudden increase of (P) or “pickup” above
a critical CWV value. We refer to this critical value of CWV
as w.. Previous quantitative approximations of w,. have been
calculated through the CWV-axis intercept of a linear fit in a
representative range of (P) (Sahany et al. 2012; Kuo et al.
2018). The range for the fit used here corresponds to consecu-
tive monotonically increasing (P) above 0.25 mm h™' and w,
is defined as the point in which the linear fit crosses a precipi-
tation value of 0.25 mm h™'. Applying these conditions to ap-
proximating w, lessens low w, bias caused by slower increasing
(P) (see NESM3 (P) in Figs. 1a and 2a for example of weakly
increasing (P)) and/or nonzero (P) values at low CWV caused

by potential drizzle biases. Approximated w, values are dis-
played in the legend of Figs. 1 and 2.

An important takeaway when comparing observational
products in Fig. 3, is that the critical value of the pickup re-
mains robust across the satellite retrieval and ARM datasets
at ~60 mm. Although the form of the pickup remains the same,
the w, value can depend on factors that vary between land and
ocean such as the mean tropospheric temperature, boundary
layer dynamics and a stronger diurnal cycle over land (Schiro
et al. 2016). In evaluating model performance with the convec-
tive transition statistics, whether the model point nearest to the
ARM site used in analysis is one over land or ocean could have
an impact on the location of its w,.. In Fig. 3, w, remains robust
at the Nauru sites across the ARM ground-based data and the
TMI satellite retrieval. Note that only Nauru is shown here as
TMI retrieval data are limited to points over oceans; the spatial
extent of Nauru [4 km X 6 km (Long and McFarlane 2012)] is
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Manus annual Averaged over 3 hours
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FIG. 2. As in Fig. 1, but for the Manus Island ARM site.

small enough such that TMI records data for the site, while the
2° X 2° data centered on Manus contains missing points. Nauru
may exhibit more maritime characteristics due to its small spatial
extent, but still has some island heating characteristics (Long
and McFarlane 2012), impacting boundary layer structure and
generating downwind cloud streets (Matthews et al. 2007).

The spatial dependence of the convective transition statis-
tics was discussed in Kuo et al. (2018); the authors find (P)
and the CWV PDF insensitive to the spatial resolution due to
the large autocorrelation on spatial scales of moisture and tem-
perature, while the probability of precipitation shifts slightly
toward lower CWV values. Figure 3 shows a comparison of ob-
servational products and the effects of spatial averaging in the
convective onset statistics. The spatial averages taken from
boxes of 0.5° to 2.0° centered on Nauru do not substantially dif-
fer from each other. The w, of the spatial averages occur slightly
earlier than that of the non-averaged points. The probability of
precipitation = 0.25 mm h™! occurs earlier for spatial averages,
and increases at a slightly faster rate, particularly at lower CWV
values where the probability transitions from nonzero values.

The robustness of (P) over different spatial scales up to a
2° box is due to the large spatial autocorrelation of CWV. The
TMI curve (green) in Fig. 3 includes all points within a 1° box
centered on Nauru; compared to the 1° average in the plot
(purple), the pickup is slightly later and CWV PDF extends to
higher values, suggesting that the spatial average reduces the
probability of high CWYV values.

The characteristic shape of the CWV PDFs of the observa-
tions features a gradual increase at a low CWV toward a broad
peak which drops off rapidly around w, and is determined by
the large-scale flow interacting with convective physics (Kuo
et al. 2020). The CWV PDF is limited on the left by the large-
scale flow—regions dominated by ascent (descent) spend more
time at higher (lower) CWV—and the right by precipitation.
The sharp decrease in the CWV PDF at higher (P) is consistent
with precipitation becoming an effective moisture sink as the
CWYV reaches w, (Schiro et al. 2016). The aforementioned wet
window could also affect the highest portion of the CWV PDF,
reducing the frequency at which high CWV values are recorded
by the radiometer during strong precipitation. In comparing ob-
servational products, (satellite to ground-based measurements;
Fig. 3) the most notable differences in the statistics are the char-
acteristics of the CWV PDFs. At both sites, the CWV PDFs of
TMI data rise and peak at lower CWYV values and drop off be-
fore the in situ radiometer data. It is likely this low bias in the
TMI data stems from the retrieval algorithms of the instru-
ments, as the bias is noticeable in the scatterplots of the CWV
from the ARM in situ and TMI (Fig. S2). However, the start of
the CWYV PDF drop-off is robust between the two datasets, dif-
fering in the rate at which the PDF begins drop.

In general, models tend to have an early pickup. Around
half of the models: NASA-GISS, NorESM2-LM, NorESM2-
MM, MIROCS6, and E3SM-1-0-EAM reach similar {P) at their
highest CWV bin to observations at both sites. MRI-ESM2-0
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Nauru annual Averaged over 3 hours
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FIG. 3. Asin Fig. 1, but for observational products and different spatial averages.

precipitates at a higher rate (~3 mm h™?') at both sites, picking
up earlier yet increasing its (P) at a slower rate. MPI-ESM-1-2-
HAM, MIROC-ES2L, and NESM3 show low maximum rates
of (P) at both sites. The approximated w, for some models
(MIROC6, MRI-ESM2-0, NorESM models, and NESM3)
models are within a range of ~3 mm to observations at both
sites; the difference in the approximated w, in these models
stems from the rate at which their (P) increases. MPI-ESM-
1-2-HAM, NorESM2-LM, and NorESM2-MM precipitation
data are 6-h time averages. As discussed in the beginning of
this section, a 6-h temporal averaging window slightly smooths
the pickup in (P) and reduces the precipitation rate only slightly,
although NorESM2-LM and NorESM2-MM (P) curves agree
fairly well with observations.

Respective model performance of (P) remains relatively
consistent in magnitude, slope, and w, of (P) across the two
sites. Model pickup tends to be too weak with increasing
CWYV at both sites. NASA-GISS, MIROC6, and E3SM-1-0-
EAM pickup at a rate similar to that of observations at Nauru,
while only E3SM-1-0-EAM replicates the pickup slope at
Manus. One known factor that can contribute to an early
pickup (ie., at low CWV) is insufficient effect of lower free tro-
pospheric moisture on buoyancy through entrainment (Holloway
and Neelin 2009; Kuo et al. 2017; Schiro and Neelin 2019). It is
also plausible that the early pickup in models could be associ-
ated with the pervasive model drizzle problem (Rushley et al.
2018; Stephens et al. 2010; Jing et al. 2017; Chen and Dai 2019),

suggesting that the lack of sufficiently strong dependence on
the moisture environment yields models that precipitate too
frequently at low intensities. In addition, the unrealistically
strong coupling of convection with surface heating, as assumed
in many convection parameterizations, may also lead model
convection to be triggered too easily (Xie et al. 2019).

Figures 1b and 2b show the fraction of precipitation over a
threshold, 0.25 mm h™!, in each CWV bin. The error bars rep-
resent the Wilson score 95% confidence interval for each bin.
In comparison to observations, the fraction above the thresh-
old increases at a similar rate to the ORG precipitation set of
observations at Nauru, and slightly faster than the TRMM-
3B42 precipitation set with increasing CWV. At Manus, the
majority of models increase slightly faster than both observa-
tional precipitation datasets. We note that the probability of
precipitation (Figs. 1b and 2b) is more sensitive to averaging
than (P), both to temporal averaging as previously discussed,
and to spatial averaging, as observed when comparing the
higher precipitation fraction of the TRMM 3B42 curve (aver-
aged over 1°) in comparison to the in situ ORG curve. Nonethe-
less there is high consistency between the probability measure
of the pickup and the conditional average measure—models
that pickup early in one also do so in the other.

Differences in the observational CWV PDFs between the
Nauru and Manus site are easily observed in terms of their
shapes. Nauru exhibits a broad peak from ~40 to 60 mm,
while Manus shows a more narrow peak from ~55 to 65 mm.
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This reflects the large-scale flow around each site. The Manus
site is located at the heart of the western Pacific warm pool
and exhibits a more pronounced ascent climatology compared
to the Nauru site, which is located on the edge of the western
Pacific warm pool (Xie et al. 2010). Nauru experiences both
the upwelling and downwelling portions of the Walker circu-
lation (Long and McFarlane 2012).

At the Nauru site, most models exhibit more complicated
CWYV PDFs than the observations. MPI-ESM-1-2-HAM has a
strong peak toward lower CWYV, with a long trailing tail to
higher CWYV at the right. Generally, models exhibit either a
broad peak or bimodal distribution at Nauru (Fig. 1c). The
more complicated PDF shapes observed in models could pos-
sibly be attributed to climatological biases. The Nauru site’s
location on the edge of the western Pacific warm pool is asso-
ciated with a weaker ascent regime compared to the Manus
site, leading to more time spent at lower CWV. The location
of the sites in the tropical western pacific would suggest likely
effects of ENSO related forcing on vertical motion. The peak
at lower CWV can be attributed to the balance between sur-
face evaporation and moisture divergence (Kuo et al. 2018).
E3SM-1-0-EAM and MIROC-E2SL show a prominent peak
and narrow range of CWV, with a steep and early drop-off
around their w,. for both Nauru and Manus (Figs. 1c and 2c).
In the above discussion of the relation of w, to the CWV PDF
and the peaks of the contribution, models that pickup early
(late) in general have CWV PDFs and contribution peaks
shifted toward lower (higher) CWV (Figs. 1c and 2c¢).

Overall, the models replicate the characteristic shape of the
CWYV PDF at the Manus site, implying that the models are
able to capture the ascent regime of the large scale flow at
Manus. NorESM2-LM almost replicates the observed PDF
exactly. The widths of the CWV PDF peaks are appropriate
for the majority of models at Manus. Peaks of the CWV PDF
for MRI-ESM2-0, Nor-ESM2-MM, NASA-GISS rise too
slow, and these models have fatter tails to the left of their
peaks. Models peak at lower CWYV than in observations, con-
sistent with the location of their w,.. Although NESM3’s w,. is
the closest to observations, its PDF peaks at a higher CWV. It
is possible that the weaker pickup of this model allows the
column to stay at higher CWV as precipitation is not as effec-
tive of a moisture sink as in other models. This calls for an ad-
ditional consideration in the relationship between the pickup
and CWYV PDF. Typically, the CWV PDF is characterized by
an abrupt drop on the right at higher CWV around values in
the range of the pickup; the sudden drop is consistent with
precipitation’s dissipative effects of water vapor and buoyancy
(Schiro et al. 2016). The slope of (P) reflects the behavior of a
convective event in which the high precipitation rate cannot
be sustained as CWV and buoyancy are consumed, and the
precipitation rate starts to diminish. All models capture the
prominent peak in the CWV PDF at Manus (Fig. 2¢) and for
the most part have CWV PDF drop-off rates similar to obser-
vations, yet have more shallow (P) rates of increase.

Distributions of precipitation contributions give how much
of the total amount of precipitation comes from a given range
of water vapor values (units are h™' from the precipitation
units mm h™! and the PDF units of mm ™' giving the occurrences
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per interval of water vapor). These are useful because they cap-
ture the combination of two effects: the sharp increase of condi-
tionally averaged precipitation at w, and the rapid drop in the
frequency of occurrence above w,.. These provide similar infor-
mation as the PDFs of precipitating points (the PDF of time
spent at a CWV and precipitating greater than 0.25 mm h™!;
not shown here) but without the need of setting a threshold.

The contribution peaks are generally wider than those
of the observations. Contribution peaks for the models with
the appropriate w, to observations at Nauru, NESM3 and
NorESM2-LM, show early peaks in their contribution. All
models behave appropriately in their characteristics of CWV
PDFs and precipitation contributions respective of their w,:
rapid drop-off of the CWV PDF in the range of high (P) and
precipitation contribution peaks in a narrow range after w,.

We note significant difference between the ERAS reanaly-
sis and the ARM CWYV at both sites. The ERAS w, occurs at
a lower value than the ARM data at both sites, resulting in a
low-CWYV environment bias (Figs. 1 and 2). A significant
contributor to this is likely temperature bias, as discussed
in section 5. Figure 3 illustrates that significant differences
in (P) and the CWV PDFs are not readily attributable to
those which arise from varying spatial-averaging domains
and in situ measurements.

4. Temperature dependence

In evaluating the models, biases of the large-scale environ-
ment should be taken into account before definitive conclusions
of the efficacy of model’s convective-precipitation-related pro-
cesses are reached. The temperature dependence of the convec-
tion onset statistics is inferred from column saturation: higher
average column temperature requires higher CWV to reach sat-
uration which shifts w, toward higher CWV. The threshold w,
is dependent on the temperature through the convecting layer,
sometimes parameterized as a fixed value of its saturation in
models [e.g., Betts and Miller (1986) scheme]. Models that ex-
hibit a cold bias in daily temperatures should therefore reach
column saturation at lower CWV and pick up earlier (lower w,.).
A traditional way to account for a temperature bias would be to
examine convection onset statistics in column relative humidity
[CRH(%) = (CWV/q_,) X 100], where CRH is calculated with
its instantaneous CWV and ¢, values (Bretherton et al. 2004;
Wolding et al. 2020).

The convection onset statistics for observations (1°-averaged
TRMM-3B42 precipitation) and three representative models—the
rest of the models are shown in the supplemental material
(Figs. S5 and S6)—conditioned on g, are shown in Nauru
(Fig. 4) and Manus (Fig. 5). The same data in the CWV do-
main is shown in the supplemental material Figs. S3 and S4.
The models shown here were chosen to give a survey of vari-
ous model biases with respect to observations: MRI-ESM2-0
picks up at a slow rate with a w, within 3 mm of observations
and reaches a higher rate of precipitation in its highest CWV
bin, NESM3 exhibits the slowest pickup and its CWV PDF
drops off at higher CWV than observations, E3SM-1-0 picks
up at a rate similar to that of observations, yet much earlier
than observations. For observational statistics conditioned on
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FIG. 4. (a) (P) conditioned on g, error bars represent the standard error with the w, for each respective (P) listed in the legend,
(b) the CRH PDF conditioned on g, with 90% Wald interval error bars, and (c) the (P)-weighted PDF with error bars that represent
the error propagation of the weighting [the fractional sum of error of (a) and (b)] for each g bin for Nauru. The ARMBE CRH with
TRMM 3B42 precipitation averaged over 1° centered on the nearest spatial point is shown in (a)—(c). (d)—(l) Three representative models

are shown, all with w, within a close range to that of the observations.

The most populated g_, bin for observations (74.5 mm) statistics are

overlaid on the model (black x). Statistics are not calculated for bins with less than 10 counts.

ARMBE derived g, the temperature dependence discussed
above is observed as g -binned pickup curves and PDFs col-
lapse to a nearly single CRH value. An additional measure of
G, for observations is calculated from 1-hourly 0.25° European
Centre for Medium-Range Weather Forecasts ERAS atmo-
spheric temperature reanalysis (Hersbach et al. 2020) for
the years 2002-14. Results using ERAS5 g_ are displayed in
Figs. S5d, S5e, S5, S6d, Sée, and S6f.

In general, models exhibit some degree of temperature de-
pendence, the two exceptions being the MPI models (shown
in supplemental material Figs. SSm-r and Sém-1). Models are

consistent in showing temperature dependence across the
Nauru and Manus sites. The g, value with the largest contri-
bution (Figs. 4 and 5) depends on large-scale conditions in the
frequency of temperature, as the magnitude of g, -conditioned
(P) at saturation does not display a discernible dependence
ongq,.

Basinwide convective transition statistics are consistent
when conditioned on ERAS5 and NCEP2 Reanalyses g, (not
shown). The g_, PDF for the ARMBE, NCEP Reanalysis 2,
and the ERAS reanalysis products and models is shown in
Fig. 6. A cold bias is seen in the NCEP Reanalysis 2 g,
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Manus Averaged over 3 hours
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FIG. 5. As in Fig. 4, but for the Manus site. A w, value of “Nan” in the legend indicates that (P) does not contain an adequate number of
points in the precipitation rate range for estimation.

compared to ERAS especially for Manus. ARMBE g_ is
significantly warmer than both reanalysis products and the
majority of models. The statistics for column variables of
the ARMBE were compared to radiosonde measurements
(Stokes and Schwartz 1994) and were found to be nearly
identical (not shown).

A noticeable feature of the model comparisons in Fig. 6 is
the g, bias apparent in each model. In comparing the thermo-
dynamic environment of models, NASA-GISS, MIROC-E2SL
and MPI-ESM-1-2-HAM have a strong cold bias (peaks ~5 mm
low of ERAS), MRI-ESM2-0 is the only model with a large
warm bias (peaks ~3 mm high) at both sites while the other
models seem to crowd around the ERA5 g_~ peak, mostly at a
slightly higher (within ~1 mm) g_.

The observations and reanalysis products conditioned using
g, collapse to a nearly single critical CRH at the sites. In
ARMBE and models, the collapse is not perfect, owing to the
more nuanced relationship of convective onset to plume
buoyancy and its associated factors: boundary layer mois-
ture and temperature relative to the lower free troposphere
(LFT), and sub-saturation of the LFT (Ahmed and Neelin
2018; Adames et al. 2021). Models are consistent in their
temperature dependence in the pickup conditioned on g,
across sites (Figs. 4 and 5).

The characteristics shapes of the g_-binned CRH PDFs in
Figs. 4b,e,h,k and Sb.e,hk are similar to the CWV PDFs
(Figs. 1c and 2c) discussed earlier—a peak at low CRH with a
sharp decrease toward lower CRH and a slow increase to the
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FIG. 6. The g, PDF for (top) Nauru and (bottom) Manus of obser-
vations and reanalysis products and models.

right, peaking again around w,, and dropping off sharply. The
point at which the PDF (Figs. 4b,e,h,k and 5b,e,h.k) begins to
decrease rapidly is referred to as the drop-off. It occurs above
w, in the range where convection and the moisture sink asso-
ciated with precipitation tend to oppose increases of buoy-
ancy and CWYV, respectively. The highest g_, -bin PDF seems
to spend more time at lower CRH and drops off before the
other bins. The probability shifting to lower CRH values as
g, increases is expected, as reaching higher values of CRH
at higher g_, requires more moisture. However, the inconsis-
tency of the CRH value of the drop-offs across the g_, bins
presents a caveat in using CRH in the statistics. CRH tends to
overcompensate for temperature dependence as the location
of the drop-off of the PDFs in CWV does not increase as fast
with temperature as g, (Neelin et al. 2009; Kuo et al. 2020).
This results in the failure of normalization by g_, to completely
collapse the statistics in Figs. 4b,e,h,k and 5b,e,hk. In other
words, CRH puts too much emphasis on saturation; other con-
siderations with respect to temperature affect the drop-offs of
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the g_ -binned PDFs. For convective precipitation, criteria for
conditional instability have a more complex dependence on
temperature than simply saturation, so it is unsurprising that
temperature biases are not completely resolved when using
CRH.

5. Convective transition statistics in CRH
a. Does CRH collapse temperature dependence?

In section 4, we discuss how compiling the convection onset
statistics in CRH helps account for potential model tempera-
ture biases through g, binning. In general, model convection
onset statistics display temperature dependence at both sites,
q,,,-binned conditionally averaged precipitation in CRH col-
lapse to a single critical CRH, CRH PDFs drop off at a similar
CRH—also replicate the “overcompensation” behavior of the
higher g, bins noted in the observations—and contributions
peak around a similar CRH. The early pickups of the models
in CWYV are suggestive of a cold bias. In Fig. 6 we note a large
spread of temperature biases at Nauru compared to the ERAS
dataset: three models which show a relatively strong cold
bias (NASA-GISS, MPI-ESM-1-2-HAM, MIROC-E2SL), two
models with a slight cold bias (MIROC6 and NorESM2-MM),
three with a slight warm bias (MPI-ESM-1-2-LR, NorESM2-
LM, and NESM3), and one model with a strong warm bias
(MRI-ESM2-0).

Figures 7 and 8 are similar to Figs. 1 and 2, but the statistics
are now compiled in CRH. The statistics for two additional
ARM sites are included in the supplemental material to ex-
pand on site comparisons included in the ARM-DIAGS
package: Darwin, another ARM tropical western Pacific site
(2°3’ 36”S, 147°25’30”E) and Southern Great Plains (SGP;
36°36’18”N, 97°29'6”W) in Figs. S7 and S8, respectively (Gaus-
tad and Riihimaki 1998; Holdridge and Kyrouac 1998; Turner
et al. 2007).

b. Basic convective onset statistics in CRH

Despite the limitations of CRH in accounting for tempera-
ture dependence (because the CRH PDFs drop off earlier for
higher g, as discussed above), it does prove useful for ac-
counting for systematic model bias. Specifically, while the ma-
jority of models tend to pick up early relative to observations
and reanalysis products in CWV, in Figs. 7a and 8a, we see
that accounting for temperature biases with CRH shifts model
pickups so that they exhibit a spread above and below obser-
vations. The ARMBE g_ for both locations shown here
(Fig. 6) is significantly warmer (~5 mm) than ERAS5 and
the multimodel ensemble mean. Accounting for the large
difference in g_,, by compiling the statistics in CRH shifts
the pickup of the observations near the center of the model
cohort at both sites. Note that despite differences in g,
between ARMBE and ERAS, the pickups in CRH agree
fairly well, suggesting consistency between water vapor and g_,
values within each product.

The CRH statistics are not limited to only adjusting the
pickup. Similar to the CWV PDFs shown in section 3, the
CRH PDFs of the models maintain their ability to capture
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Nauru annual Averaged over 3 hours
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FIG. 7. As in Fig. 1, but the statistics are compiled in CRH for the Nauru site. The CRH bin width is 5%.

the characteristic shape seen in observations at Manus, and
show similar discrepancies to their CWV in their CRH distri-
bution at the Nauru site. The smaller peak in the observational
CRH PDF at Nauru is an artifact of the large scale environ-
ment effect on the CWV PDF and determined by the dry re-
gime dynamics.

Considering the temperature dependence of CWV and the
g.,.-binned CRH PDFs, the CRH PDFs collapse as (lower)
higher CWV bins coincide with (lower) higher g, and the
drop-off of the ﬁ;-binned CRH PDFs seen in Figs. 4b,e.h.k
and 5b,e,h,k have a drop-off located around a similar CRH in
Figs. 7c and 8c (e.g., just below 80% CRH in these cases). The
collapsing effect of CRH is more notable at the Nauru site,
the broad peak of the CWV PDF at Nauru in observations
narrows into a more prominent CRH peak around its critical
CRH. As discussed in section 2, the models behave appropri-
ately in their CWV with respect to their pickup so models
with temperature dependence should be able to replicate this
behavior. In lower 5; bins, where overcompensation is not a
problem (i.e., critical CWV increases relatively one-to-one
with g_) the CRH PDF will tighten around its critical CRH.
The effect to which the overcompensation has on the CRH
PDFs is dependent on the value of the higher g, bins and
their frequency. With respect to both these factors, higher g_,
bins only have a minor shift to the left (around a 1-2 CRH
bins) and do not constitute a significant portion of the PDFs
in both observations and models and may only shift some
mass to the left, making the CRH PDF a little wider. A notable

feature of the three models with g_, dependence is that their
CRH PDFs drop off faster than the observations, while they
exhibited more appropriate drop-offs in the CWV PDF. An
interesting feature of the CRH PDFs at Manus is that model
PDFs which drop-off at a similar rate to observations in
CWYV maintain to do so in CRH, although the precipitation
does not pick up in the models as fast as observations. A no-
ticeable feature in the NASA-GISS model is the drastic
drop-off close to saturation at both sites. The contribution
peak of models follows the aforementioned discussion re-
lated to the CRH PDF and conditional precipitation, in that
models that pickup early tend to peak their contributions too
early at all sites.

¢. Decomposition into probability of precipitation and
conditional intensity, Pr(P") and (P")

In our discussion of the slope of (P) in section 3, we draw
comparisons between the drop-offs of the CWV PDFs in
models and observations. The pickup depends strongly not
only on the probability of raining times (e.g., Peters and Neelin
2006; Holloway and Neelin 2010; Brown et al. 2010) but also
has a dependence on the sensitivity of precipitation intensity to
environmental humidity during raining times (e.g., Kuo et al.
2018). A probability decomposition of the pickup such as the
one performed in Igel and Biello (2019) for global precipitation,
can help look at the relative contributions of these two factors.
Consider a simple formulation of (P) based on the law of total
expectation where the sample space is partitioned in two
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FIG. 8. Asin Fig. 7, but for the Manus ARM site.

regimes, raining (precipitation above some threshold, P*)
and nonraining (precipitation measurement below some
threshold, P7):

(P); = E(P,|P;)Pr(P) + E(P,|P; )Pr(P;)

(P);  E(P|P)Pr(P), M

where the subscript 7 is used to denote the CRH bins, Pr is
the probability operator, and E is the expectation operator.
The threshold is set to 0.25 mm h ™! here, consistent with the
probability of precipitation metric (Figs. 1b, 2b, 7b, and 8b).
Assuming that the average of precipitation values under the
threshold is negligible compared to the average above, the
conditional precipitation can be thought of as the product of
probability of raining and the conditional mean precipitation
during raining times, (P"), here termed conditional intensity
for brevity. Figure 9 shows (P™") for the cohort.

Observations and model (P*), with the exception of
NESM3, show sensitivity to CRH at both sites. The Proba-
bility of Precipitation (Figs. 7b and 8b) and (P") exhibits a
sharp increase at some point in the CRH domain, suggest-
ing that (P) is the product of two pickups: (P*) and Pr(P™).
In ARMBE CRH and ERAS CRH with TRMM-3b42 pre-
cipitation, (P*) increases sharply in the upper CRH range
(black curves in Fig. 9). In models, with the exception of the
MPI models, this occurs at even higher CRH.

This behavior may be summarized as: (i) the beginning
of the (P) pickup is more dependent on increases in the
Probability of Precipitation: (ii) where the probability caps out
at high CRH, (P") begins to govern the (P). This can be seen
in Fig. 10, which shows the decomposition of the two factors
asin Eq. (1). The logarithmic y axis of Fig. 10 allows the fac-
tors in Eq. (1) to be seen additively as In(P*) + InPr(P™")
(with the caveat that a constant could be added to one and
subtracted from the other). Thus the change across the CRH
range of the orange and green curves in Fig. 10 gives the rela-
tive contribution of (P*) and Pr(P™), respectively. Note differ-
ences between In (P) and its estimation, +In{P") + InPr(P")
are small except for at lower (P) values. In observations
(Figs. 10a—c) the probability Pr(P™) governs (P) through the
early part of the increase, until Pr(P") flattens out, where-
upon (P*) increases become important.

Most of the models capture this behavior at least qualita-
tively, with the following exceptions. The MPI models have a
(P*) increase that is reasonable compared to observations
(Figs. 9 and 10ef) but the probability Pr(P*) picks up sub-
stantially earlier (Figs. 7b and 8b) resulting in an early pickup
in (P) (Figs. 7a and 8a). NESM3’s (P*) lies relatively flat or
shows very little sensitivity to CRH (Figs. 9 and 101).

In neither the observational products nor the models is the
(P) curve well described by an exponential, perhaps not sur-
prisingly given the competing ingredients contributing to it.
The observational products show a faster-than-exponential
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FIG. 9. Asin Figs. 7a and 8a, but the conditional average, (P*) is
calculated over raining times only (precipitation greater than or
equal to 0.25 mm h™"). Error bars represent the standard error of
the precipitating points.

increase (upward curvature in Fig. 10) in the vicinity of w,,
and a slower-than-exponential increase at very high CRH.
Most of the models share this feature, with the exception of
the MPI models and MRI-ESM2-0, and with NASA-GSS
exhibiting an exaggerated version.

The competing contributions of (P*) and Pr(P") may be
expected to depend on spatial resolution for very fine scales.
However, Fig. S9 shows that for the range of spatial averaging
relevant to model comparison, the observations are not sensi-
tive to spatial scale.
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With respect to averaging over raining times, the sensitivity
of the precipitation threshold needs to be considered. The
larger the threshold, the larger the non-raining times average
precipitation is compared to raining average. The choice of
0.25 mm h™! captures the sharp increase in probability of
raining in Figs. 1b, 2b, 7b, and 8b, while low enough such that
its increase in probability remains robust when averaging over
spatial scales used in models (Fig. 3b). The average over non-
raining times also remains negligible compared to the average
over raining times as seen in Fig. 10.

An analysis of precipitation biases in CMIP5 models by
Pathak et al. (2019) found that biases in models were more
closely related to convective trigger and closure assumptions,
as opposed to the cloud model employed in the GCM. A pop-
ular trigger based on convective potential energy (CAPE)
where convection is activated once CAPE is above a certain
threshold [often with modifications such as CAPE generation
by large scale forcing (Xie and Zhang 2000), additional rela-
tive humidity thresholds (Xie et al. 2002), diluting CAPE with
entrainment assumptions (Zhang 2009), or some combination
(Suhas and Zhang 2014)] is used in the majority of the models
examined here with the exception of the NASA-GISS, the
MPI models, and NESM3. NASA-GISS uses a convective trig-
ger based on buoyancy considerations (a virtual temperature
test) where convection is initiated if a parcel, lifted adiabati-
cally, has a higher virtual temperature than the level above
(DelGenio and Yao 1993). Suhas and Zhang (2014) evaluated
convective triggers and found CAPE-based triggers to be among
the best performing in activating convection at appropriate
times. Convective triggers for each model are listed in Table 1.

Contrasting to the above, MPI models and NESM3 use the
Tiedtke (1989) scheme with modifications for deep convection
by Nordeng (1994). The convective triggers for these models
have buoyancy requirements and also require net positive mois-
ture convergence (Mdbis and Stevens 2012) since this is used in
the convective closure. The buoyancy component is simply
buoyant surface-level air at the lifting condensation level, which
may be too easily met.

We underline that biases in w, are not only due to biases in
a model’s convective trigger, but are also related to the life cy-
cle of a convective cloud (Wolding et al. 2020). During a pre-
cipitating event, a convective column evolves through different
convective-cloud/precipitation-type regimes reflected in changes
to the column’s moisture and/or temperature content. The
pickup is therefore not so readily attributable to the onset of
convection, but also may reflect a later stage in the convective
life cycle from which moisture is consumed by precipitation, and
the column shifts to a lower CRH or CWV content. The diag-
nostic separation into (P*) and Pr(P™") here will depend on this
full life cycle and thus on both convective triggers and closures.

The models with moisture-convergent-based triggers/closures,
MPI models and NESM3, show a shallower rate of (P) in-
crease along with more nonzero values (lower probability of
precipitation past pickup bin) compared to the rest of the co-
hort (Figs. 7a,b and 8a,b, respectively). While their behavior
differs in terms of (P*) (MPI performing well, while NESM3
is essentially flat), in their overall simulation of {P), (P*), and
Pr(P") (Figs. 7-10), they tend to be outliers in terms of poor
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Note that the y axis is in log units. The orange curve here is the same as the (P") curves shown in Fig. 9.

performance relative to models with buoyancy-based triggers/
closures.

The w. of buoyancy-based trigger (CAPE triggers and
NASA-GISS) models lie in a close vicinity to that of observa-
tions and the probability of raining is too high at lower and
midrange CRH values (Figs. 7a,b and 8a,b, respectively), im-
plying that these models seem to compensate for the nearly
constant values of precipitation in mid-values of CRH by rain-
ing more frequently. This is similar to the drizzle problem
mentioned earlier—a consequence of models reacting too fast
to surface heating and the diurnal cycle, as CAPE does not ac-
cumulate to allow for strong precipitation events (Xie et al.
2019).

Here we have focused on tying model biases in (P) to the
frequency and magnitude of precipitation—for the purpose of at-
tributing bias to behavior during the raining ((P*)) or nonraining

(probability of precipitation) regime. Column integrated meas-
ures do not fully elucidate the biases in the generation of CAPE
and buoyancy that contribute to these biases. Event-by-event
statistics, their temporal evolution, and the associated vertical
thermodynamic structures are explored in a companion paper, in
which a similar set of statistics in the more physically insightful
buoyancy domain is used, similar to the analysis done in Ahmed
and Neelin (2021).

6. Conclusions and discussion

The relationship between CWV and precipitation is ob-
served across ARM sites and in all CMIP6 models examined
here. All models exhibit some form of the observed CWV-
related pickup in precipitation in which the conditional-average
precipitation rate increases rapidly past some critical value of
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CWYV, w,.. The physical relationship among statistics seen in ob-
servations is reflected in the behavior of the individual models
in which w, determines the CWV PDF drop-off. The majority
of the models’ convection onset statistics display some degree
of temperature dependence in the CWYV value of the pickup
and collapse approximately to a common critical CRH value
across g, bins. However, prior results suggest that the onset
of convective instability has a more complex dependence on
temperature. The vertical structure of temperature and mois-
ture, as well as the entrainment of free tropospheric air, affect
the buoyancy of a rising convective plume, yielding an onset
moisture-temperature dependence slightly different than that
of bulk saturation (Holloway and Neelin 2009; Kuo et al. 2017,
Schiro et al. 2018; Wolding and Maloney 2015; Wolding et al.
2020). Some aspect of these factors is apparently systemati-
cally different in the climate model representations than in
the ARMBE data and ERAS reanalysis. However, models
are able to reproduce similar column saturation humidity
PDFs to those of observations.

In section 4, we examine the temperature dependence of
the convection transition statistics. We note the problems as-
sociated with compiling the statistics in CRH, despite the
hope that this common practice might reduce the effect of the
temperature biases of models. Compiling the statistics in CRH
helps to account for model temperature biases in bringing the
critical point of model pickup closer to that of observations,
shifting the cohort of model pickups so that not all models
pick up earlier than observations and reanalysis. This is espe-
cially important for the case of the ERAS reanalysis product
whose cold temperature bias at the ARM sites relative to
ARMBE data (shown in Fig. 6) accounts for its earlier pickup
in CWV (Figs. 1a and 2a). CRH PDF drop-offs remain consis-
tent with the location of w.. The rate of drop-off of model
CRH PDFs remains similar to that of the observations for
models with no temperature dependence, while models that
display temperature dependence exhibited a faster rate in
their CRH PDF drop-off. Further separating the conditional
average precipitation into probability of precipitation, Pr(P")
and conditional intensity (conditional precipitation in the rain-
ing regime, (P*)) reveals that models which produce (P) simi-
lar to observations do so through compensating biases. Through
this framework, the (P) behavior is characterized as being pri-
marily dependent on the probability of precipitation near the
transition and the conditional intensity at higher CRH. Models
which do perform well in reproducing (P) similar to that of ob-
servations do so by initiating convection too often at lower
CRH, while their (P") picks up at a value later than observa-
tions. Most models exhibit low conditional intensity (P*) rela-
tive to observations. A few models that pick up at too low CRH
values, the MPI models, are able to replicate a similar (P") to
that of observations, but are limited in their CRH range, and
rain too frequently at low CRH. Models using descendants of
the Tiedtke scheme appear to fare worse overall by these meas-
ures than models with buoyancy-based schemes. Except for
NASA-GISS, models rain too frequently at low CRH regard-
less of the convective trigger.

Models are able to capture the characteristic shape of the
CWYV and CRH PDFs fairly well at the Manus site, a site
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dominated by the ascent regime. Models do have trouble with
their PDFs at sites with seasonal variations in large-scale flow
regime. At the Nauru site, the observational PDFs of CWV
have a single broad peak whereas in some models, the CWV
PDF is bimodal. In general, the CMIP6 model cohort exam-
ined here: 1) pickup too early in CWV and do not increase
their conditionally averaged precipitation fast enough in both
CWYV and CRH; 2) associated with this, the precipitation con-
tribution as a function of CWV or CRH peaks at too low a
value; 3) the models capture the characteristic shape of CWV
and CRH PDFs for sites that do not have strong variations in
large-scale flow regime; and 4) exhibit behavior consistent in
their CWV and CRH PDFs and peaks of contributions in re-
lation to their critical CWV and CRH.

The ARM datasets allow for higher temporal resolution
analysis. As discussed in section 3a, time-averaging up to 3 h
has little effect on the important characteristics of the statis-
tics; we expect the higher resolution Cloud Feedback Model
Intercomparison Project data for the models discussed here to
remain consistent with our results once released. Higher reso-
lution data would benefit diagnosing the large intermodel
spread in regard to the various convective parameterizations
on faster time scales. In a companion paper, we explore event-
by-event behavior of models in the context of their associated
vertical thermodynamic structures. The analysis tools and
datasets presented here will be continued to be added in the
ARM-DIAGS package to facilitate use of these analyses by
the climate community (Zhang et al. 2020).
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