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Abstract 21 

The large scale and non-aseptic fermentation of sugarcane feedstocks into fuel ethanol in biorefineries represents 22 

a unique ecological niche, in which the yeast Saccharomyces cerevisiae is the predominant organism. Several 23 

factors, such as sugarcane variety, process design, and operating and weather conditions, make each of the ~400 24 

industrial units currently operating in Brazil a unique ecosystem. Here, we track yeast population dynamics in two 25 

different biorefineries through two production seasons (April to November of 2018 and 2019), using a novel 26 

statistical framework on a combination of metagenomic and clonal sequencing data. We find that variation from 27 

season to season in one biorefinery is small compared to the differences between the two units. In one 28 

biorefinery, all lineages present during the entire production period derive from one of the starter strains, while in 29 

the other, invading lineages took over the population and displaced the starter strain. However,  despite the 30 

presence of invading lineages and the non-aseptic nature of the process, all yeast clones we isolated are 31 

phylogenetically related to other previously sequenced bioethanol yeast strains, indicating a common origin from 32 

this industrial niche. Despite the substantial changes observed in yeast populations through time in each 33 

biorefinery, key process indicators remained quite stable through both production seasons, suggesting that the 34 

process is robust to the details of these population dynamics. 35 

Article Summary 36 

Microbial ecology and evolution is critical to many industrial processes, from the production of cheese to biofuel. 37 

Here, we provide the first high-resolution analysis of microbial evolution in one such process: fermentation of 38 

sugarcane into fuel ethanol in large-scale Brazilian biorefineries. We find that fuel production is robust despite 39 

complex eco-evolutionary dynamics of the baker’s yeast populations that drive this process, which is 40 

characterized by enormous genetic diversity and substantial fluctuations in strain composition, including invasions 41 

by foreign strains.  42 
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INTRODUCTION 43 

Fuel ethanol is used throughout the world to power light vehicles, either on its own or, more commonly, mixed 44 

with gasoline for increased octane rating (Johnson et al. 2015). Brazil is the second largest ethanol producer in the 45 

world, surpassed only by the United States, and accounts for roughly 30% (or 31.66 billion liters predicted for 46 

2022) of the world’s fuel ethanol production (Barros 2022). While American ethanol is mostly corn-based and 47 

requires enzymatic hydrolysis of starch prior to fermentation by the yeast S. cerevisiae, most of Brazil’s ethanol is 48 

produced from sucrose, glucose, and fructose-rich sugarcane products which can be directly fermented. 49 

The Brazilian process is also unique in that it maintains a very large population of yeast in non-aseptic conditions 50 

throughout the 8-month-long sugarcane harvesting season (Amorim et al. 2011; Della-Bianca et al. 2013; Bermejo 51 

et al. 2021; Fig. 1A). The yeast cells are recycled at every ~12 h fed-batch fermentation-holding-centrifugation-52 

treatment cycle, allowing for large inocula and short turnaround times. Acid wash and antimicrobials serve to 53 

control the ever-present bacterial contamination, which competes against yeast for carbon, but also affects 54 

fermentation in ways that are not completely understood (Lino et al. 2021; Senne de Oliveira Lino et al. 2021). 55 

These practices are key to the high efficiency of the sugarcane-ethanol industrial process and drastically lower 56 

greenhouse gas emissions in comparison to corn-based ethanol (Crago et al. 2010; Pereira et al. 2019). However, 57 

inconsistencies in fermentation performance associated with cell recycling remain a costly challenge and point to 58 

microbiological routes for process improvement (Amorim et al. 2011; Rich et al. 2018; Senne de Oliveira Lino et al. 59 

2021). 60 

Yeast strains differ in their suitability for industrial-scale fermentation. Traditionally, the readily available baker’s 61 

yeast was used to kickstart the fermentation season, but due to its susceptibility to invasion by foreign S. 62 

cerevisiae lineages, production has largely shifted towards specialized starter strains. A major strain selection 63 

program conducted between 1993 and 2005 solidified the potential for these invading strains themselves to serve 64 

as a source of new industrially relevant variants (Basso et al. 2008). Strains isolated from this program, namely PE-65 

2, CAT-1, SA-1, BG-1, VR-1, and their derivatives, as well as JP-1 (isolated from a similar effort; da Silva Filho et al. 66 

2005) are the basis for the bulk of today’s ethanol production and have successfully helped maintain the overall 67 
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high yield of the industry. Still, invasion by foreign strains remains common, as fermentation conditions across the 68 

~400 bioethanol plants operating around the country span a range of industrial practices, environmental 69 

conditions, sugarcane varieties, and other factors, in addition to the yet-little-explored possibility of evolutionary 70 

change over the course of a fermentation season. 71 

To identify and track these yeast population dynamics in industry, chromosomal karyotyping became popular in 72 

the 1990s and is still commonly used for process monitoring (Basso 1993; da Silva Filho et al. 2005; Basso et al. 73 

2008). More recently, PCR-based methods have helped in decreasing the cost of strain surveillance (da Silva-Filho 74 

et al. 2005; Antonangelo et al. 2013; Carvalho-Netto et al. 2013; Reis et al. 2017). However, these methods cannot 75 

readily differentiate closely related strains, which may differ by few mutations anywhere along the whole 76 

genome. Moreover, these methods estimate lineage frequencies based on fraction of picked isolates from agar 77 

plate streaks, which leaves room for biased assessments of strain dominance if strains differ in culturability. 78 

Whole-genome metagenomic shotgun sequencing is a potential culture-independent alternative method for 79 

strain differentiation (Anyansi et al. 2020). Temporal metagenomic datasets have been used to assess microbial 80 

community dynamics with subspecies resolution, largely in the context of human gut microbiomes (Schloissnig et 81 

al. 2013; Franzosa et al. 2015; Luo et al. 2015; Scholz et al. 2016; Costea et al. 2017; Truong et al. 2017; Smillie et 82 

al. 2018: 20; Garud et al. 2019; Zhao et al. 2019; Roodgar et al. 2021). However, inference of the underlying strain 83 

movements from metagenomic frequency trajectories remains challenging and methods are mostly limited to 84 

low-diversity and prokaryotic populations. Non-haploidy complicates this inference even further, as the diploid or 85 

polyploid genotype of individual variants (which itself may vary among individuals in a population) must also be 86 

accounted for. 87 

Here, we present a novel framework for inferring the population dynamics of highly diverse, non-haploid, asexual 88 

microbial populations from a combination of clonal sequences and temporal metagenomic data. We employ this 89 

method to investigate the dynamics of yeast genetic diversity across two fermentation seasons, in two 90 

independently run bioethanol plants in Brazil. More specifically, we ask whether starter strains tend to persist and 91 

dominate through an entire production season, and if not, what strains they are replaced with. We also 92 
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investigate the differences between seasons and production facilities, the origin of invading strains, and the 93 

effects they have on the process. Our focus here is on the yeast dynamics, but our sequencing data also contains 94 

information on other microbial species, which remains to be analyzed in future work.  95 



 

 6 

METHODS 96 

Sample collection 97 

We collected whole-population microbiological samples from two independent industrial units, which we refer to 98 

as Site A and Site B, through two fermentation seasons, 2018 and 2019, which ran from April/May through 99 

November/December (Fig. 1). Sampling started on the first day of the fermentation season for Site A 2018, and 100 

~14 days into the season for the other site-years (see sampling dates in Table S1). The two sites are owned by 101 

different companies and are located 18 km apart in the region of Piracicaba, São Paulo, Brazil. Site A used a mix of 102 

four strains to start both the 2018 and 2019 fermentation periods—namely strains PE-2, SA-1, FT-858, and IRA-D. 103 

While the first three are common commercially available industrial strains, IRA-D is an in-house strain isolated 104 

from Site A in a previous fermentation season. In contrast, Site B informed us that they have used PE-2 as their 105 

sole starter strain in both fermentation seasons, although we would later find evidence suggestive of a second 106 

starter strain being used, possibly unknowingly, in 2019 (see Results below). 107 

Samples (~10 ml) were collected daily (2018) or weekly (2019), after fermentation was completed, directly from 108 

fermentors or holding tanks, into pre-sterilized 15 ml tubes containing 3 ml glycerol. After mixing by vortexing, 109 

samples were stored at –20°C for a period of between one and three months before being transferred to a –80°C 110 

ultrafreezer. Finally, samples were shipped from Brazil to the US in dry ice, where they were stored at –80°C. 111 

Starter strains PE-2, FT-858 and SA-1 were shipped as active dry yeast (ADY), whereas strain IRA-D was shipped as 112 

colonies on agar slants, without dry ice. The collection and shipping of samples has been registered at the Sistema 113 

Nacional de Gestão do Patrimônio Genético e do Conhecimento Tradicional Associado (SisGen, Brazilian federal 114 

government) under numbers R40E57A, RB42674, R193AED and RAD5521 (for the shippings), and AF14971 (for the 115 

sampling). A full list of samples with associated collection dates can be found in Table S1. Picked clonal isolates are 116 

made available upon request. 117 
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DNA extraction and sequencing 118 

We selected 15 to 20 samples from each site-year for whole-genome metagenomic and clonal sequencing. For 119 

metagenomic sequencing, samples were completely thawed and vortexed, after which 1 ml was aliquoted and 120 

centrifuged to remove the supernatant. Whole DNA extraction was carried out using an in-house protocol(Nguyen 121 

Ba et al. 2019). Sequencing library preparation was done using the transposase-based protocol (Baym et al. 2015). 122 

For clonal isolate sequencing, the same 15 to 20 thawed and homogenized samples were used for plating onto 123 

Yeast Extract-Peptone-Dextrose(YPD)-agar (Table S2). Plates were incubated at 30°C for 24 - 48 h. From each 124 

plate, 2 or 3 CFUs were picked and grown in 5 ml liquid YPD overnight at 30°C, after which DNA extraction and 125 

library preparation proceeded as for metagenomic sequencing. Starter strains were inoculated in liquid YPD, left 126 

to grow overnight at 30°C, plated and prepared in the same manner (Table S3). 127 

Sequencing was carried out in two Illumina NextSeq and one Illumina Miseq runs, following a 300 bp paired-end 128 

workflow. Mean coverage after mapping to the reference strain S288c genome and haplotype inference (see 129 

section below) was 87x for metagenomic samples and 26x for clonal isolates. FASTQ files with all sequencing 130 

reads produced for this study were deposited in the NCBI SRA database (see Data and Code Availability). 131 

Variant calling bioinformatic pipeline 132 

We called variant sites (SNPs only) in relation to the S. cerevisiae S288c reference genome (yeastgenome.org, 133 

release R64) in all our metagenomic and clonal isolate data. The full pipelines with specific tools and settings used 134 

can be found in the GitHub repository (see Data and Code Availability). In summary, all sequencing reads were 135 

first trimmed of sequencing adapters using NGmerge (Gaspar 2018), and then aligned to the reference genome 136 

using BWA (Li and Durbin 2009). Variant calling was done with the haplotype inference tools in the Broad 137 

Institute’s GATK (van der Auwera and O’Connor 2020). In essence, these tools assemble local haplotypes from 138 

aligned reads, calculate the posterior probability of each read coming from each of the assembled haplotypes, and 139 

finally infer variant sites jointly across a group of samples for added power to call true low-frequency variants: 140 

intuitively, an observed variant is less likely to be a sequencing error if it is observed in more than one sample. 141 
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Given different probabilistic prior models of allele frequency for clonal and non-clonal data, variant calling of 142 

isolate clonal data is done with HaplotypeCaller jointly across all isolates, while that of the metagenomic data is 143 

done using Mutect2 jointly across all timepoints within each site-year, in line with GATK guidelines (van der 144 

Auwera and O’Connor 2020). Alternate and reference allele counts (AD field in the VCFs) outputted by the variant 145 

calling tools are estimates based on inferred haplotype membership of aligned reads (instead of being simple 146 

observations from aligned reads). These are the numbers that we use for all later analyses. For convenience, 147 

when referring to a variant site, we will often refer to alternate allele counts as simply counts, and the sum of 148 

alternate and reference allele counts as simply depth. In all further sections, allele frequency at a variant site is 149 

defined as the number that ranges from 0 to 1 given by counts divided by depth. For the sake of simplifying, we 150 

exclude from analyses the small number of variant sites for which we observe more than one alternate allele. 151 

Isolate ploidy 152 

Isolate ploidy was assessed based on visual examination of the distribution of allele frequencies in clonal isolate 153 

data over the whole genome (upper right corner of each panel in File S1): diploid strains have a multimodal 154 

distribution peaked at values 0, 0.5 and 1, while triploid strains, at 0, 1/3, 2/3, and 1. Example allele frequency 155 

distributions from a diploid and a triploid strain are shown in Fig. S8 in Supplementary Information. 156 

Phylogenetic analyses 157 

We infer two phylogenetic trees in this study, both using whole-genome SNP data. Tree 1 was run with the 158 

SNPhylo pipeline (Lee et al. 2014) using default parameters. The tree is inferred based on a total of 27,229 SNPs 159 

across all clonal isolates from all site-years, including isolates from the four starter strains (Newick format tree in 160 

File S2). Tree 2 includes the same clonal isolates, plus all isolates from the 1011 Yeast Genomes Project (Peter et 161 

al. 2018; Fig. S10 in Supplementary Information; Newick format tree in File S3). For this tree, SNPs were first 162 

filtered and aligned using SNPhylo with a missing rate of 0.001, and a maximum likelihood tree was constructed 163 

from 42,012 SNP markers using RAxML (Stamatakis 2014) with 1000 bootstrap replicates, employing the general 164 

time reversible nucleotide substitution model with the GAMMA model of rate heterogeneity. For the purposes of 165 
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downstream analyses and presentation, Tree 1 was rerooted in a node analogue to that from which the 166 

Bioethanol subtree of Tree 2 branches from the remainder of the tree. 167 

Inference of population dynamics 168 

We assume the reproduction during fermentation is exclusively asexual. Therefore, the population is composed of 169 

some large but discrete number of clonal strains of asexually dividing individuals which may have three origins: (1) 170 

preexisting diversity in starting inoculum; (2) invading strains during the course of the fermentation season; (3) 171 

new strains founded by de novo mutational events during fermentation. 172 

Clonal strains share phylogenetic history, and therefore alleles. Assuming no recombination, and no de novo 173 

mutation reversal, we assume that these lineages organize themselves into a hierarchical tree-like structure which 174 

defines clades, herein referred to as lineages, each with a particular set of synapomorphic alleles: i.e. alleles that 175 

are shared by all clonal strains within that lineage, but no strain outside of it. In effect, the inference pipeline 176 

should be able to handle some amount of departure from these assumptions due to past history of 177 

recombination, mutation reversals, and noise, but we expect this pattern to compose the bulk of the observed 178 

data. 179 

Our goal was to use the metagenomic data to infer the frequencies through time of as many lineages as possible 180 

in order to characterize the population dynamics over the course of the fermentation season in each site-year. 181 

Our inference consists of (i) identifying lineages and their synapomorphic alleles based on a maximum-likelihood 182 

phylogeny inferred from our sequenced clones; and (ii) looking for each lineage’s set of synapomorphic alleles 183 

among the metagenomic sequencing data to infer lineage frequencies using a maximum-likelihood framework. 184 

The rationale for this approach is that the metagenomic data samples genetic diversity among chromosomes in 185 

the population in an unbiased way, while the clonal genome sequencing informs us of how to group alleles that 186 

segregate together in the same lineages. We do not assume any particular dynamical model of evolution, and 187 

instead infer lineage frequencies at each timepoint independently. A crucial feature of this inference is that 188 
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genetic diversity that is not sampled among sequenced clones does not bias the frequency estimates of other 189 

lineages. 190 

A detailed description of the inference pipeline is described in the Supplementary Information, together with a 191 

validation analysis using subsampled clonal data. The code developed for this inference is available in the GitHub 192 

repository (see Data and Code Availability). 193 
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RESULTS 194 

We carried out temporal whole-population metagenome sequencing of the S. cerevisiae populations used to 195 

ferment sugarcane products into bioethanol over two fermentation seasons (2018 and 2019), at two 196 

independently-owned biorefineries (Site A and Site B) in the state of São Paulo, Brazil (Fig. 1). We also whole-197 

genome sequenced ~35 isolated clonal strains from each site-year. Metagenomic and clonal sequencing reads 198 

were aligned to the reference genome of strain s288c and used to call and count genomic variants in the data. See 199 

Methods for details. 200 

High genetic diversity among industrial isolates 201 

We began by investigating genetic diversity in the studied populations. Using our variant calling pipelines (see 202 

Methods), we find a total of 145,066 SNPs among all 134 fermentation and 11 starter strain isolates. 14,200 203 

(9.8%) of these mutations are singletons, while 15,749 (10.5%) are seen in all sequenced clones (see Fig. S7 in 204 

Supplementary Information for the full distribution). We also find a similar number of SNPs (150,265) in the 205 

whole-population metagenome data across all four site-years, with an overlap of 126,845 between the clonal and 206 

the metagenomic datasets. This suggests that the clonal genotyping data covers a substantial fraction of the 207 

genetic diversity of these populations, especially given that the metagenomic data (i) samples from the whole 208 

population, and (ii) represents a sequencing effort of 6154x over all timepoints, which is larger than that of clonal 209 

genotyping (4,341x over all isolates). The 168,486 SNPs uncovered in the whole dataset are widely distributed 210 

along the genome, hitting 6,370 out of all 6,579 genes in the annotated S288c genome. 129,697 of these SNPs 211 

have been previously observed in the 1011 yeast genomes project, which itself uncovered 1,544,489 SNPs (Peter 212 

et al. 2018). 213 

S. cerevisiae may exist at different ploidies, and so we examined allele frequencies in the clonal isolate data to 214 

infer isolate ploidy (see Methods for details). We found that 64 of our isolates are triploid, while the remaining 70 215 

are diploid (Fig. 2A). All isolates of starter strains FT-858 and IRA-D are triploid, while those of PE-2 and SA-1 are 216 

diploid (as described in Basso et al. 2008, Argueso et al. 2009, and Nagamatsu et al. 2019). An examination of 217 

allele frequencies and sequencing depth along the genome revealed that a small number of isolates carry 218 
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structural variations, such as gain or loss of whole chromosomes or sections of chromosomes (File S1). Given the 219 

small number of affected isolates, and in each case a minor fraction of the genome being affected, we keep these 220 

isolates in all further analyses. 221 

We then used the called SNP data to infer a maximum-likelihood phylogenetic tree between all sequenced 222 

isolates (Fig 2A). As expected, we find that several of the isolated clones are closely related to the starter strains 223 

used to initiate the industrial process. We note that PE-2 isolates form two major clades, which are both 224 

represented in starter and fermentation isolates from both sites and years. We also find several other groups of 225 

closely related isolates, mostly triploid, that diverge from the starter strains by thousands of SNPs. These groups 226 

are all composed of isolates from Site B, whereas all Site A isolates fall close to the known starter strains. 227 

Lineage inference 228 

We turned to the whole-population metagenomic data to investigate the yeast population dynamics through the 229 

fermentation season (Fig. 2B). We are interested in understanding how starter strains change in frequency 230 

through the fermentation, as well as identifying events of selection of de novo mutations or invasion by foreign 231 

strains. Examining the raw metagenomic allele frequencies through time, we observe periods when large cohorts 232 

of mutations move together, indicative of competition between divergent strains, as well as periods of stability 233 

when allele frequencies remain mostly constant. Correlation between allele frequency trajectories is indicative of 234 

co-segregation and has been used as the signal for inference of population dynamics in previous studies (Luo et al. 235 

2015; Smillie et al. 2018). However, this type of inference is complicated by several factors. First, our populations 236 

are highly genetically diverse and mutations are shared between different strains in complex patterns. These 237 

patterns are presumably created by earlier, potentially sexual population dynamics that led to the creation of 238 

these strains in the unknown other environments in which they evolved. This means that individual metagenomic 239 

mutation trajectories can depend on the frequency changes of potentially multiple different strains that carry that 240 

mutation. This is complicated by the fact that these different strains may carry a given mutation at different 241 

genotypes (i.e. as homozygous or heterozygous diploids, or in one to three copies in triploids). Finally, it is not 242 

immediately clear how to polarize mutations for lineage frequency inference (i.e. which one should be considered 243 
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the references versus alternative allele), which leads to an overall pattern of mirrored mutation trajectories in the 244 

raw metagenomic data (Fig. 2B). 245 

Here, we developed and employed a novel framework for jointly inferring the frequencies of nested asexual 246 

lineages of descent through time from whole-population metagenomic data (Fig 3; see Methods and 247 

Supplementary Information for details). This approach takes advantage of our clonal sequencing data to phase an 248 

informative subset of all mutations into cohorts that segregate together in the population, completely ignoring 249 

the metagenomic data for this purpose. While we are limited to the genetic diversity that is sampled by picked 250 

isolates, by following this approach we overcome the challenges described above, as well as have higher power to 251 

identify small lineages, whose metagenomic trajectories may be indistinguishable from sequencing noise in 252 

correlation-based grouping methods (Luo et al. 2015; Smillie et al. 2018). In doing so, our pipeline automates an 253 

approach similar to that of Zhao and colleagues (2019), while handling high genetic diversity and ploidy variation 254 

in the population. 255 

Among the four site-years, we infer the frequencies of a total of 197 lineages, spanning a wide range of lineage 256 

sizes, with a median maximum lineage frequency of 6.7% (see Fig. S9 in Supplementary Information for the full 257 

distribution). The inferred results pass basic soundness checks: the timepoints at which different isolates were 258 

picked largely correspond to times when their associated inferred lineage frequencies are high, and lineage 259 

frequency trajectories are smooth, even though timepoints are inferred independently from each other. 260 

Stable dynamics dominated by in-house strain in Site A 261 

In Site A, we only observe lineages closely related to the known starter strains (Fig. 4). In particular, we find that 262 

IRA-D, a triploid strain, dominates the process in both years. Curiously, IRA-D is an in-house strain which was 263 

found to invade the process in a previous fermentation season, and since then it has been included in the starter 264 

strain mix. While these observations suggest that IRA-D is the best adapted to these fermentation conditions 265 

among all four starter strains, we observe that it does not completely displace PE-2 in 2019, which continues at a 266 

low frequency in the process even in later timepoints. Coexistence for such a long timescale is suggestive of some 267 
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ecological process, such as niche partitioning, or negative frequency dependence. However, it is unclear why the 268 

same dynamics are not seen in 2018, when PE-2 seems to be completely outcompeted. Either the population 269 

itself is genetically different between the years (although isolates from both seasons are closely related) or 270 

differences in agricultural and industrial practices, or weather patterns, may have affected fermentation 271 

conditions. 272 

Foreign lineages systematically invade Site B 273 

In Site B, we observe a very different picture, where several large lineages are distantly related to the starter 274 

strain PE-2 (Fig. 5). While PE-2 dominates at the start of 2018, it is a minor fraction at the start of 2019, when the 275 

process is instead dominated by a different lineage (labeled “starter unknown” in Fig. 2A and 5), suggesting a 276 

different starter strain mix for that year. 277 

In both years, the population gets substituted by a cohort of much fitter strains halfway into the season (labeled 278 

invader strains in Fig. 2A and 5). Most of these strains are triploid, except for a small group present in both years 279 

(Fig. 2A and 5). While their genetic distance to other starter strains and minute presence in early timepoints 280 

suggest that they invade the fermentation process, we cannot rule out that they were already present in the 281 

starter inoculum or have their origin in the industrial equipment itself, where they might find a reservoir from one 282 

production season to the next. The fact that closely related isolates are seen in both 2018 and 2019 is indicative of 283 

some systematic source of contamination. Surprisingly, despite the large degree of genetic diversity and the 284 

ploidy variation within this cohort, these different invading strains stably coexist in the timescale of the 285 

fermentation season. Here again, an ecological explanation is suggested. 286 

Finally, we observe a second substitution event in the final timepoints of Site B’s 2018 season. The inference 287 

suggests that this set of strains were already present since early in the season, remaining at low frequency until 288 

they suddenly displace all other strains. This event does not seem to be driven by selection for a de novo 289 

mutation, since the expanding lineage retains significant diversity within itself, and instead may be caused by a 290 

sudden change in fermentation conditions. 291 
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Origin of invading yeast strains 292 

We further investigate the origin of Site B’s invader strains. While we cannot assess industrial procedures directly, 293 

we can examine the phylogenetic relationship of these strains to other known isolates. For that purpose, the 1011 294 

Yeast Genomes Project (YGP) represents the largest and broadest whole-genome sampling of S. cerevisiae genetic 295 

diversity (Peter et al. 2018). Most importantly, it includes 37 isolates related to the Brazilian bioethanol industry. 296 

Here, we compare all our picked isolates to the YGP collection by inferring a combined phylogeny of both studies 297 

(Fig 6; see Methods for details). The inferred unrooted tree largely replicates the structure of previous inferred 298 

trees of broad yeast diversity (West et al. 2014; Gallone et al. 2016; Peter et al. 2018; Jacobus, Stephens, et al. 299 

2021). 300 

First, we find that all Brazilian bioethanol isolates from both studies form a monophyletic group and are closely 301 

related to a large group of European wine strains, in agreement with previous studies (Fig. 6A; Peter et al. 2018; 302 

Jacobus, Stephens, et al. 2021). As shown in Fig. 6B, we note that among the 37 isolates classified in the Brazilian 303 

bioethanol group in the 1011 YGP, 3 were isolated from cachaça distilleries (a traditional sugarcane-based spirit), 304 

while 2 were from the sugarcane plant or from sugarcane juice (although further detail is missing), while the 305 

remainder were isolated from different bioethanol plants. Among these isolates from the bioethanol industry, 306 

several are closely related to PE-2, SA-1, and most notably, to the “unknown starter” strain in Site B’s 2019 307 

season. Finally, Site B’s “invader strains” do not seem to be represented in the 1011 YGP, but their close 308 

association with other bioethanol isolates points to an industrial origin (e.g. shared equipment, supplies, or 309 

sugarcane), as opposed to invasion by wild strains brought to the industrial environment by vectors such as 310 

insects or birds from foreign niches. 311 

Stability of macroscopic fermentation parameters despite strain dynamics  312 

Yeast strains vary in their suitability for the industrial process due to, among other factors, their ability to produce 313 

and withstand high ethanol concentrations, their propensity to generate foam or cell aggregates in large industrial 314 

settings, or their tendency to be outcompeted by poorer performing strains (Basso et al. 2008; in terms of the 315 

final ethanol yield on sugars). Thus, invasion by unknown strains may harm the fermentation process and the 316 
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profitability of the industry, due to decreased ethanol production and/or to higher costs involved with the use of 317 

chemicals, such as sulfuric acid, antimicrobials, antifoaming agents and dispersants. In the case of Site B’s 2018 318 

and 2019 seasons, we have not found a connection between general industrial metrics and inferred events of 319 

population substitution (Fig. S11 in Supplementary Information). Nonetheless, it may still be possible that this 320 

stability was accomplished by the employment of commonly used but costly corrective measures, such as those 321 

outlined above. 322 
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DISCUSSION 323 

In this study, we described the population dynamics of the yeast used for bioethanol production via fermentation 324 

in sugarcane-based biorefineries through the course of two fermentation seasons (2018 and 2019) in two 325 

independently run industrial plants. The method we developed for this purpose allowed for an unprecedented 326 

description of how the starter strains used in the process change in frequency through time and how the 327 

fermentation environment may be invaded by foreign strains. We observe that these large populations (estimated 328 

to be ~1017 individuals) harbor a vast amount of genetic diversity, recovering ~8% of alleles previously found in a 329 

S. cerevisiae-wide survey (Peter et al. 2018), plus novel ones. This diversity is not only observed in invading strains, 330 

but also within the starter strains themselves, whose same subtypes are sampled across years and sites (most 331 

notably the two major groups within PE-2; Fig. 2A). This may be due to how propagation companies, which sell 332 

large initial inocula to bioethanol producers, keep and propagate their own stocks: companies may not start from 333 

single colonies every year, and de novo mutations may accumulate during propagation. Similar observations of 334 

strain genotypic (and phenotypic) heterogeneity have also been made in the baking, wine and beer industries 335 

(Rácz et al. 2021). 336 

Such large populations must harbor many de novo mutations. At an approximate rate of 5 × 10!"# mutations/bp/ 337 

generation (Lang and Murray 2008), and at least 66 generations during one fermentation season, a total of 338 

8 × 10"$ or more mutations should occur in a diploid population of this size. In fact, at this rate, any given SNP in 339 

the yeast genome should independently occur ~3 × 10% times per generation. We cannot know how many of 340 

these mutations would be adaptive in the industrial environment, but decades of microbial experimental 341 

evolution, including in yeast populations, show that adaptation in large asexual populations is not mutation-342 

limited (Barrick and Lenski 2009; Levy et al. 2015; Maddamsetti et al. 2015; Good et al. 2017; Nguyen Ba et al. 343 

2019; Johnson et al. 2021). Yet, we do not find clear signs of selection for de novo mutations in our results, which 344 

would be observed as either an inferred lineage that increases in frequency much faster than its closely related 345 

counterparts, or inferred lineages being deflected by some unobserved rising lineage. A likely explanation is that 346 

the timescale of a fermentation season (in number of generations) is too short for selected lineages, carrying de 347 
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novo adaptive mutations of a typical fitness effect, to increase in frequency enough to be sampled by our sparse 348 

isolate picking strategy. All in all, what this suggests is that as long as starter inocula are not produced from the 349 

previous year’s final population, or that the equipment itself is not contaminated with large amounts of previous 350 

populations, evolution on a single-strain background is likely not a consequential factor in the timescale of a 351 

fermentation season due strictly to the large population sizes and dynamics of selection. 352 

Ecological dynamics may explain the observed long periods of coexistence between distantly related lineages in 353 

both sites, such as in PE-2’s permanence in Site A 2019, or the stable relative frequencies of invader strains in Site 354 

B 2019. While it is possible that these observations simply reflect small differences in fitness in the fermentation 355 

environment, the large phylogenetic distance between strains argues against this hypothesis. Large genetic 356 

differences may lead to diversity in resource usage (niche partitioning), and/or in how strains benefit or not from 357 

each other’s presence (frequency dependence). Such ecological dynamics are by no means rare in microbiological 358 

communities in the wild (Faust and Raes 2012; Mitri and Richard Foster 2013), and have been unintentionally 359 

evolved in laboratory E. coli and S. cerevisiae populations (Frenkel et al. 2015; Good et al. 2017). Strain 360 

interactions could open up avenues for designed strain mixes that take advantage of synergistic interactions in 361 

terms of fermentation output and management. We also should not discount the potential bacterial contribution 362 

to these dynamics, as bacteria have been shown to interact both positively and negatively with yeast during 363 

fermentation (Rich et al. 2018; Senne de Oliveira Lino et al. 2021). The analyses carried out for the current study 364 

do not include bacterial data, but such microbial consortia compose an interesting avenue for future work. 365 

The fact that results have varied more between industrial plants than between years suggests that systematic 366 

differences in industrial practices and/or starter strain mix largely explain differences in population dynamics. 367 

Additionally, observed fluctuations in strain frequencies through time (e.g. the strain responsible for the second 368 

substitution event in Site B 2018) indicate that fluctuations in fermentation conditions may make certain strains 369 

more or less fit to the industrial environment. This is not unexpected, as (i) fermentors are only partially protected 370 

from external temperature fluctuations, (ii) incoming sugarcane varieties change through the year and result in 371 

different must compositions, (iii) the ratio of sugarcane juice and molasses in the must is adjusted daily depending 372 
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on current sugar and ethanol prices, (iv) clean-in-place (CIP) practices are carried out on a regular or as-needed 373 

basis, and (v) recycling practice may be adjusted depending on levels of bacterial contamination, among other 374 

factors. Further collaborations with companies, including access to a detailed record of industrial practices and 375 

strain-tracking as done in this study, may shed further light into the causes behind fermentation fluctuations. 376 

These records should especially contain information on the usage of chemicals (e.g. sulfuric acid, antimicrobials, 377 

antifoaming agent and dispersant, among others), which remediate fermentation output, but add to production 378 

cost and greenhouse gas emissions. 379 

Our observation that the in-house strain IRA-D dominates the process throughout the two observed seasons in 380 

site A underscores the potential of in loco isolation of industrial strains. Invading strains have been documented to 381 

cause harm, but they also served as the source for most if not all of the currently used strains in the industry 382 

(Basso et al. 2008; Lopes et al. 2015; Jacobus, Gross, et al. 2021). Previous studies had shown that these known 383 

bioethanol strains are phylogenetically related and harbor genomic signals of domestication, some which are 384 

shared with wine strains and others that are specific to bioethanol strains (Jacobus, Stephens, et al. 2021). These 385 

strains also cluster very far apart known natural S. cerevisiae isolates from other Brazilian biomes, further 386 

suggesting a non-natural origin (Barbosa et al. 2016; Barbosa et al. 2018). Our results show that currently invading 387 

strains in Site B are closely related to these known domesticated bioethanol strains. On top of that, we note that 388 

the dominant strains across all sites and years are largely triploid, suggesting a systematic advantage of higher 389 

ploidy in this industrial environment (Fig. S6 in Supplementary Information). Taken all together, we hypothesize 390 

that the same patterns hold in most strain invasion events in bioethanol plants that follow a process similar to Site 391 

A and B (Fig. 1A). The observed large genetic diversity among invading strains should be further explored as a 392 

potential resource for future strain isolation. Strain tracking as carried out in the current study is thus not only a 393 

useful process-monitoring tool, but also a productive assistive strategy for the selection of novel and locally 394 

adapted industrial strains. For this purpose, industrial plants should have protocols in place for the isolation of 395 

invading strains, record-keeping of associated fermentation metrics, and subsequent testing in blocked off 396 

portions of the industrial pipeline and scaled-down systems that mimic the industrial process (Raghavendran et al. 397 

2017). 398 
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Our study used metagenomics and a newly developed framework to extract individual lineages to illuminate the 399 

yeast population dynamics in industrial sugarcane-based bioethanol production, with the goal of finding routes 400 

towards more consistent fermentation performance. The resolution obtained with this approach surpasses by far 401 

previously described and utilized methods, such as chromosomal karyotyping and PCR-based methods. Our 402 

approach also requires less clonal picking effort than these methods, as corroborated by inference on rarefied 403 

clonal data (see Supplementary Information). We observed that over two sampled production periods in two 404 

independent industrial units, the yeast population dynamics varied more dramatically between units than 405 

between years. In one site we observed dominance and persistence of an in-house strain in both years, whereas 406 

in the other site, foreign strains invaded the process and displaced the starter strain used to initiate the 407 

production period. The several individual clones sequenced, including invading strains, are phylogenetically 408 

grouped with other known bioethanol strains, producing strong evidence that the invading strains originate from 409 

the sugarcane environment itself, and not from natural niches. The data presented, as well as the statistical 410 

framework developed, represent useful material for future investigations on sugarcane biorefineries (as well as 411 

other microbial communities of mixed ploidy). This, in turn, might lead us to a deeper understanding of the yeast 412 

and other microbial ecology in this peculiar environment, opening the way for process improvements, decreased 413 

consumption of costly chemicals, and increased ethanol yields. A potential new paradigm of industrial practice 414 

includes the design of synergistic yeast strain mixes, and the inoculation of beneficial (or probiotic) bacteria in the 415 

process.  416 
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MATERIAL, DATA AND CODE AVAILABILITY 417 

Clonal isolates are available upon request. The Supplementary Information contains a detailed description of the 418 

lineage inference pipeline, as well as all Supplementary Figures. File S1 shows the allele frequency and coverage 419 

along the genome for all clonal isolates. Files S2 and S3 contain the Newick format data for trees in Figs. 2A and 420 

6A. Tables S1–S4 have information on sampled fermentation timepoints, clonal isolates, and Site B fermentation 421 

metrics. Raw sequencing reads for clonal and metagenomic samples have been deposited in the NCBI BioProject 422 

database under accession number PRJNA865262. Code for the variant calling pipeline, lineage inference, and 423 

figure generation, as well as parsed called variant data for clonal and metagenomic samples can be found in the 424 

GitHub repository (https://github.com/arturrc/bioethanol_inference). 425 
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Figure 1. Schematics of the fermentation process and sequencing strategy. (A) A large population (~1017 583 

individuals) of the yeast S. cerevisiae is maintained over the course of an eight-month-long fermentation season. 584 

Yeast ferments must, a mix of molasses, sugarcane juice and water, to produce ethanol in a fed-batch process 585 

that takes ~8h and runs in a staggered parallel fashion across several fermentors (8–16 in any one plant, each with 586 

a ~500,000 ℓ capacity). The fermented broth (wine) from different fermentors is loaded into a single holding tank, 587 

which continuously feeds a centrifuge for separation of the yeast from the liquid fraction. Holding tanks are larger 588 

than fermentors themselves and allow for mixing between batches. The yeast cells are then treated with 589 

chemicals to control for bacterial growth and are later reused in the process. The yeast population grows by ~10% 590 

every 12h, leading to approximately 66 generations over the course of an ~8 months fermentation season. The 591 

season is started with selected industrial strains which are commercialized by yeast suppliers. (B) We collected 592 

whole-population samples of the yeast used for fermentation through two seasons (2018 and 2019) in two plants 593 

(Site A and Site B) located ~18 km apart in the state of São Paulo, Brazil. The two plants are owned by different 594 

companies and use different sets of starter strains in their process. We employed a combination of whole-595 

population metagenome sequencing and clonal whole-genome sequencing to observe the temporal dynamics of 596 

genetic diversity in each site-year. See Tables S1–3 for a complete list of collected samples and isolates. 597 

Figure 2. Yeast populations in bioethanol fermentors are genetically diverse and dynamic. (A) Phylogenetic tree 598 

of isolated clonal strains from all site-years, as well as known starter strains used. Most isolates are closely related 599 

the known starter strains, but several are not. The tree was inferred with a maximum likelihood model using the 600 

data of 27,229 SNPs. Ploidy of each isolate, assessed as described in the Methods, is indicated by diamonds. 601 

Nodes and tips are colored as in Figs. 4 and 5. The tree is rooted in the same place as the independently inferred 602 

tree in Fig. 6. Isolates are grouped as in Figs. 4–6. Isolates are named as <site><year>:<timepoint>(<letter 603 

identifier>), while starter strain isolates are marked with an asterisk. The associated Newick tree can be found in 604 

File S2. The allele frequency data used for ploidy assessment can be visualized in File S1. Selected examples of a 605 

diploid and triploid strain can be seen in Fig. S8 in Supplementary Information. (B) Frequency of alternate allele (in 606 

relation to the reference genome of strain s288c) through time for an arbitrary subset of 2000 mutations (out of 607 

~100k) per site-year. Overall, mutation trajectories indicate alternation between periods of stasis, when one 608 
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major strain dominates, and periods of transition, when many mutations change in frequency in a correlated way 609 

indicative of strain dynamics. Noise in mutation trajectories comes from random sampling (approximately 610 

binomial), as well as sequencing and mapping errors, which is not homogeneous across mutations. 611 

Figure 3. Schematics of lineage inference procedure. We use temporal metagenomics and clonal isolate whole-612 

genome sequencing to infer the unobserved frequencies of asexual lineages in the original population over the 613 

course of a fermentation season. (Upper left) Starter, invading, and newly mutated lineages change in frequency 614 

through time due to selective and random factors. (Lower left) A phylogeny of clonal isolates is used to select the 615 

sets of clade-defining variants (colored bars on tree branches) that we will later search in the metagenomic data 616 

and use for lineage inference. (Upper right) At each timepoint t, we jointly infer the frequencies 𝑓 of all asexual 617 

lineages by optimizing a likelihood model of 𝑓 given the metagenomic allele counts 𝑥&' of variant 𝑚, which is a 618 

clade-defining variant for lineage 𝑙, the read depth 𝑑&', and the variant’s genotype 𝑔' (which takes values 0, 0.5 619 

or 1 for diploid, and 0, 1/3, 2/3 or 1 for triploid lineages). The frequencies of all lineages are jointly inferred and 620 

constrained such that the summed frequencies of sister lineages do not exceed that of the respective parent 621 

lineage. (Lower right) Undersampling of genetic diversity by isolates will cause whole lineages to be left out, but 622 

that should not bias the frequency estimation of included lineages. 623 

Figure 4. In Site A the in-house starter strain IRA-D consistently dominates over other starter strains. On the 624 

left, inferred strain dynamics in Site A over the two fermentation seasons. White space corresponds to non-625 

inferred genetic diversity in the population. On the right, subtrees of the tree in Fig. 2A including only the isolates 626 

from each respective site-year. Circles on nodes and tips indicate inferred lineages and their respective colors. 627 

Figure 5. In Site B, a group of diverse invading strains systematically takes over the process. Despite the genetic 628 

diversity among invader strains, they seem to coexist, except for the second substitution event in 2018, which 629 

involves a different set of invading strains. In the 2019 fermentation season the process starts with a large 630 

amount of an unexpected unknown strain. See Fig. 4 for a description of the diagrams. 631 

Figure 6. Starter and invader isolates all cluster together within a larger group of Brazilian Bioethanol strains. 632 

(A) A SNP-based  maximum likelihood phylogeny combining isolates from the current study and from the 1011 633 



 

 28 

Yeast Genomes Project (Peter et al. 2018). Other groups of domesticated strains are highlighted for reference. 634 

This tree was inferred based on 42,012 SNPs. (B) Subtree of bioethanol-related isolates. Isolates from the current 635 

study are closely associated with isolates from the bioethanol industry and cachaça distilleries (a sugarcane-based 636 

spirit). Individual isolate origins are indicated with colored rectangles. Branches are collapsed to aid visualization. 637 

A full phylogeny can be seen in Fig. S10 in Supplementary Information, and its associated Newick tree can be 638 

found in File S3. 639 



must

recycled yeast yeast wine

wine

excess yeast
(for animal feed)

clari�ed wine
(to distillery)

Yeast recycling Continuous
centrifuge

Holding
tank

H2SO4

antimicrobials
anti-foam

Staggered fed-batch fermentation process

1st: yeast is added 2nd: must is added 3rd: fermentation 4th: tank is emptied

molasses

cane juice

water

from
sugar mill

A. Bioethanol production with yeast recycling B. Sampling and sequencing

Site A

Site B

2018

2019

2018

2019

Apr
Nov

Sugarcane season

～15 whole-population
samples per site-year

…

3 CFUs per sample

Metagenome 
Sequencing

(～100x per sample)

Clonal
Whole-Genome

Sequencing
(～20x per CFU)

PE-2
SA-1

IRA-D
FT-8

58

Starter strains used



A. Phylogeny of isolates B. Temporal metagenomics

2018 2019

Site B
Site A

Day of sampling

Fr
eq

ue
nc

y 
in

 m
et

ag
en

om
ic

 d
at

a

A19:1(b)
*FT−858(a)
A18:9(b)
A18:3(c)
A19:1(c)
A18:17(

a)A18:16
7(c)*FT−8

58(c)A19:1
(a)A18:

27(b
)A18

:17(
c)*FT

−85
8(b)A18

:7(a
)

A19
:13

4(a
)A19

:92
(a)
A1
9:7
7(a
)

A1
8:9
(a)B1

8:9
(c)B1

8:7
(b)A1

8:9
(c)

A1
9:8
(a)

B1
8:7
(a)

*P
E−
2(
b)

B1
8:1
(c)

A1
8:
16
7(
a)

A1
8:
47
(a
)

A1
8:
1(
a)

B1
8:
47
(a
)

B1
8:
10
9(
a)

B1
8:
77
(c
)

A1
9:
8(
b)

B1
8:
77
(b
)

B1
8:
47
(b
)

B1
8:
9(
a)

B1
8:
47
(c
)

A1
9:
13
(b
))a(31:91A

A18:57(c)

A18:17(b)

A19:150(a)

*PE−2(a)

B18:27(b)

B18:27(c)

B18:27(a)

A18:3(a)

A18:27(c)

A18:1(b)

*PE−2(c)

A18:3(b)

A19:27(a)

B18:1(b)

B18:57(c)

B18:57(a)

B18:1(a)

B18:9(b)

A18:27(a)
B18:77(a)A18:167(b)

A19:92(b)
A19:107(a)

A19:38(b)
A19:163(b)

A19:107(b)

A18:57(b)A19:174(a)A19:38(a)A18:217(d)A19:174(b)A19:27(b)
A19:8(c)

A18:227(a)
A19:174(c)
*IRA−D(b)
A19:51(a)
A18:57(a)
A19:163(a)

*IRA−D(a)

A18:227
(c)

A19:77
(b)

A19:5
1(b)

A19:6
5(b)

A19:
65(a

)

A18:
47(c

)

A18
:227

(b)

A18
:109

(a)

A18
:10

9(b
)

A18
:21
7(c
)

A1
9:1
50(

b)

B1
8:2
03(
c)
B1
8:2
01
(b)

B1
8:2
03
(a)

B1
8:1
97
(b)

B1
8:1
97
(c)

B1
8:2
01
(a)

B1
8:1
97
(a)

B1
8:8
7(
b)

B1
8:5

7(
b)

B1
9:
28
(b
)

B1
9:
28
(a
) B1
9:
15
1(
b)

B1
8:
14
7(
b)

B1
8:
10
9(
c)

B1
9:
17
2(
b)

B1
8:
20
3(
b)

B1
8:
16
7(
b)

B1
9:
18
4(
b)

B1
8:
87
(c
)

B1
8:
10
9(
b)

B1
9:
10
9(
a)

)c
(7

61
:8

1B
B19:184(c)
B19:137(b)

B18:147(a)
B19:172(a)
B19:184(a)

B19:137(a)
B19:109(b)

B19:151(a)
B19:95(a)

B19:95(b)
B18:167(a)
B18:147(c)

B18:87(a)
B19:81(a)
B19:5(b)
B19:5(c)
B19:1(c)

B19:13(b)

B19:54(a)

B19:67(a)

B19:13(c)

B19:1(b)

B19:54(b)

B19:40(a)

B19:5(a)

B19:40(b)

B19:13(a)
B19:81(b)

B19:1(a)

A18:7(b)
A18:1(c)
A18:47(b)
*SA−1(c)
*SA−1(b)
*SA−1(a)

0.05

A19:1(b)
*FT−858(a)
A18:9(b)
A18:3(c)
A19:1(c)
A18:17(

a)A18:16
7(c)*FT−8

58(c)A19:1
(a)A18:

27(b
)A18

:17(
c)*FT

−85
8(b)A18

:7(a
)

A19
:13

4(a
)A19

:92
(a)
A1
9:7
7(a
)

A1
8:9
(a)B1

8:9
(c)B1

8:7
(b)A1

8:9
(c)

A1
9:8
(a)

B1
8:7
(a)

*P
E−
2(
b)

B1
8:1
(c)

A1
8:
16
7(
a)

A1
8:
47
(a
)

A1
8:
1(
a)

B1
8:
47
(a
)

B1
8:
10
9(
a)

B1
8:
77
(c
)

A1
9:
8(
b)

B1
8:
77
(b
)

B1
8:
47
(b
)

B1
8:
9(
a)

B1
8:
47
(c
)

A1
9:
13
(b
))a(31:91A

A18:57(c)

A18:17(b)

A19:150(a)

*PE−2(a)

B18:27(b)

B18:27(c)

B18:27(a)

A18:3(a)

A18:27(c)

A18:1(b)

*PE−2(c)

A18:3(b)

A19:27(a)

B18:1(b)

B18:57(c)

B18:57(a)

B18:1(a)

B18:9(b)

A18:27(a)
B18:77(a)A18:167(b)

A19:92(b)
A19:107(a)

A19:38(b)
A19:163(b)

A19:107(b)

A18:57(b)A19:174(a)A19:38(a)A18:217(d)A19:174(b)A19:27(b)
A19:8(c)

A18:227(a)
A19:174(c)
*IRA−D(b)
A19:51(a)
A18:57(a)
A19:163(a)

*IRA−D(a)

A18:227
(c)

A19:77
(b)

A19:5
1(b)

A19:6
5(b)

A19:
65(a

)

A18:
47(c

)

A18
:227

(b)

A18
:109

(a)

A18
:10

9(b
)

A18
:21
7(c
)

A1
9:1
50(

b)

B1
8:2
03(
c)
B1
8:2
01
(b)

B1
8:2
03
(a)

B1
8:1
97
(b)

B1
8:1
97
(c)

B1
8:2
01
(a)

B1
8:1
97
(a)

B1
8:8
7(
b)

B1
8:5

7(
b)

B1
9:
28
(b
)

B1
9:
28
(a
) B1
9:
15
1(
b)

B1
8:
14
7(
b)

B1
8:
10
9(
c)

B1
9:
17
2(
b)

B1
8:
20
3(
b)

B1
8:
16
7(
b)

B1
9:
18
4(
b)

B1
8:
87
(c
)

B1
8:
10
9(
b)

B1
9:
10
9(
a)

)c
(7

61
:8

1B
B19:184(c)
B19:137(b)

B18:147(a)
B19:172(a)
B19:184(a)

B19:137(a)
B19:109(b)

B19:151(a)
B19:95(a)

B19:95(b)
B18:167(a)
B18:147(c)

B18:87(a)
B19:81(a)
B19:5(b)
B19:5(c)
B19:1(c)

B19:13(b)

B19:54(a)

B19:67(a)

B19:13(c)

B19:1(b)

B19:54(b)

B19:40(a)

B19:5(a)

B19:40(b)

B19:13(a)
B19:81(b)

B19:1(a)

A18:7(b)
A18:1(c)
A18:47(b)
*SA−1(c)
*SA−1(b)
*SA−1(a) A19:1(b)

*FT−858(a)
A18:9(b)
A18:3(c)
A19:1(c)
A18:17(

a)A18:16
7(c)*FT−8

58(c)A19:1
(a)A18:

27(b
)A18

:17(
c)*FT

−85
8(b)A18

:7(a
)

A19
:13

4(a
)A19

:92
(a)
A1
9:7
7(a
)

A1
8:9
(a)B1

8:9
(c)B1

8:7
(b)A1

8:9
(c)

A1
9:8
(a)

B1
8:7
(a)

*P
E−
2(
b)

B1
8:1
(c)

A1
8:
16
7(
a)

A1
8:
47
(a
)

A1
8:
1(
a)

B1
8:
47
(a
)

B1
8:
10
9(
a)

B1
8:
77
(c
)

A1
9:
8(
b)

B1
8:
77
(b
)

B1
8:
47
(b
)

B1
8:
9(
a)

B1
8:
47
(c
)

A1
9:
13
(b
))a(31:91A

A18:57(c)

A18:17(b)

A19:150(a)

*PE−2(a)

B18:27(b)

B18:27(c)

B18:27(a)

A18:3(a)

A18:27(c)

A18:1(b)

*PE−2(c)

A18:3(b)

A19:27(a)

B18:1(b)

B18:57(c)

B18:57(a)

B18:1(a)

B18:9(b)

A18:27(a)
B18:77(a)A18:167(b)

A19:92(b)
A19:107(a)

A19:38(b)
A19:163(b)

A19:107(b)

A18:57(b)A19:174(a)A19:38(a)A18:217(d)A19:174(b)A19:27(b)
A19:8(c)

A18:227(a)
A19:174(c)
*IRA−D(b)
A19:51(a)
A18:57(a)
A19:163(a)

*IRA−D(a)

A18:227
(c)

A19:77
(b)

A19:5
1(b)

A19:6
5(b)

A19:
65(a

)

A18:
47(c

)

A18
:227

(b)

A18
:109

(a)

A18
:10

9(b
)

A18
:21
7(c
)

A1
9:1
50(

b)

B1
8:2
03(
c)
B1
8:2
01
(b)

B1
8:2
03
(a)

B1
8:1
97
(b)

B1
8:1
97
(c)

B1
8:2
01
(a)

B1
8:1
97
(a)

B1
8:8
7(
b)

B1
8:5

7(
b)

B1
9:
28
(b
)

B1
9:
28
(a
) B1
9:
15
1(
b)

B1
8:
14
7(
b)

B1
8:
10
9(
c)

B1
9:
17
2(
b)

B1
8:
20
3(
b)

B1
8:
16
7(
b)

B1
9:
18
4(
b)

B1
8:
87
(c
)

B1
8:
10
9(
b)

B1
9:
10
9(
a)

)c
(7

61
:8

1B
B19:184(c)
B19:137(b)

B18:147(a)
B19:172(a)
B19:184(a)

B19:137(a)
B19:109(b)

B19:151(a)
B19:95(a)

B19:95(b)
B18:167(a)
B18:147(c)

B18:87(a)
B19:81(a)
B19:5(b)
B19:5(c)
B19:1(c)

B19:13(b)

B19:54(a)

B19:67(a)

B19:13(c)

B19:1(b)

B19:54(b)

B19:40(a)

B19:5(a)

B19:40(b)

B19:13(a)
B19:81(b)

B19:1(a)

A18:7(b)
A18:1(c)
A18:47(b)
*SA−1(c)
*SA−1(b)
*SA−1(a)

Ploidy
2N
3N

st
ar

te
r P

E-2

invader strains

starter FT-858

sta
rte

r I
RA

-D

starter unknown
SA

-1
starter



Time

Fr
eq

ue
nc

y 
in

 p
op

ul
at

io
n

Unobserved asexual lineage dynamics

Inferred lineage dynamics

Time

Fr
eq

ue
nc

y 
in

 p
op

ul
at

io
n

Generative model of metagenomic data

Metagenome dataClone phylogeny

Time

Fr
eq

ue
nc

y 
in

 m
et

ag
en

om
e



*FT−858(a)
9(b)
3(c)
17(a)
167(c)
*FT−858(c)
27(b)
17(c)
*FT−858(b)
7(a)

9(a)
9(c)
*PE−2(b)
167(a)
47(a)
1(a)

57(c)
17(b)
*PE−2(a)
3(a)
27(c)
1(b)
*PE−2(c)
3(b)
27(a)

167(b)
57(b)
217(d)
227(a)
*IRA−D(b)
57(a)
*IRA−D(a)
227(c)
47(c)
227(b)
109(a)
109(b)
217(c)

7(b)
1(c)
47(b)
*SA−1(c)
*SA−1(b)
*SA−1(a)

0.05

starter 
PE-2

starter
IRA-D

starter SA-1

starter 
FT-858

1(b)
*FT−858(a)
1(c)
*FT−858(c)
1(a)
*FT−858(b)

134(a)
92(a)

77(a)
8(a)
*PE−2(b)
8(b)

13(b)
13(a)

150(a)
*PE−2(a)
*PE−2(c)
27(a)

92(b)
107(a)

38(b)
163(b)
107(b)

174(a)
38(a)
174(b)
27(b)
8(c)
174(c)
*IRA−D(b)
51(a)
163(a)
*IRA−D(a)
77(b)
51(b)
65(b)
65(a)
150(b)

*SA−1(c)
*SA−1(b)
*SA−1(a)

0.05

starter 
FT-858

starter
IRA-D

starter
PE-2

starter SA-1

A. Site A - 2018

B. Site A - 2019

0.00

0.25

0.50

0.75

1.00

1 50 100 150 200
Day of sampling

Fr
eq

ue
nc

y 
in

 th
e 

po
pu

la
tio

n

0.00

0.25

0.50

0.75

1.00

1 50 100 150
Day of sampling

Fr
eq

ue
nc

y 
in

 th
e 

po
pu

la
tio

n



starter 
PE-2

invader
strains

starter 
unknown

invader
strains

starter
PE-2

A. Site B - 2018

B. Site B - 2019

0.00

0.25

0.50

0.75

1.00

1 50 100 150 200
Day of sampling

Fr
eq

ue
nc

y 
in

 th
e 

po
pu

la
tio

n

0.00

0.25

0.50

0.75

1.00

1 50 100 150
Day of sampling

Fr
eq

ue
nc

y 
in

 th
e 

po
pu

la
tio

n

9(c)
7(b)
7(a)
*PE−2(b)
1(c)
47(a)
109(a)
77(c)
77(b)
47(b)
9(a)
47(c)

*PE−2(a)
27(b)
27(c)
27(a)
*PE−2(c)
1(b)
57(c)
57(a)
1(a)
9(b)
77(a)

203(c)
201(b)
203(a)
197(b)
197(c)
201(a)
197(a)

87(b)
57(b)
147(b)
109(c)
203(b)
167(b)
87(c)
109(b)
167(c)

147(a)
167(a)
147(c)

87(a)

0.05

*PE−2(b)
*PE−2(a)
*PE−2(c)

28(b)
28(a)

151(b)
172(b)

184(b)
109(a)

184(c)
137(b)

172(a)
184(a)
137(a)

109(b)
151(a)
95(a)

95(b)
81(a)
5(b)
5(c)
1(c)
13(b)
54(a)
67(a)
13(c)
1(b)

54(b)
40(a)

5(a)
40(b)
13(a)

81(b)
1(a)

0.05



Brazilian bioethanol
+ this study

Wine/European

Taiwanese

Sake

African palm wine

Ale beer
African beer

Other beer

0.2

A. 1011 strains + this study

0.05

starter PE-2

invader strains

starter 
unkown

starter IRA-D

starter SA-1

starter FT-858

Isolate origin

Other bioethanol
Cachaça distillery
Sugarcane plant

This study

B. Bioethanol subtree



 1 

Supplementary Information 
 

INFERENCE OF POPULATION DYNAMICS .............................................................................................................................. 1 
Lineage assignment ................................................................................................................................................................... 1 
Finding lineage-specific alleles ................................................................................................................................................... 2 
Genotype heterogeneity test ..................................................................................................................................................... 2 
Genotype posterior probability .................................................................................................................................................. 3 
Joint inference of lineage frequencies in the metagenome ....................................................................................................... 3 
Calculation of lineage frequency in the population ................................................................................................................... 4 

VALIDATION ON RAREFIED CLONAL DATA ............................................................................................................................ 5 
 

INFERENCE OF POPULATION DYNAMICS 
As described in the Methods, we assume that the population at each site-year is composed of a large but finite 
number of clonal strains which are related by some phylogenetic history in a tree-like manner. Clades in this tree 
represent lineages of descent from a common ancestor and is what we will be referring to as lineages throughout 
the text.  

Our goal here is to (i) use the whole-genome clonal isolate data to identify as many as possible sets of lineage-
defining synapomorphic alleles, and (ii) use the metagenomic frequencies of these synapomorphic alleles to infer 
their respective lineage frequencies in the population through the course of a fermentation season. By doing this, 
we ignore correlation between mutations in the metagenomic data as signal of coinheritance, something that has 
been previously done in literature [refs]. The advantage of following this route is higher power to identify low-
frequency lineages, whose mutations’ metagenomic trajectories would be too overpowered by noise to ever have 
a significant correlation signal (although our ability to identify these low-frequency lineages is still ultimately 
limited by the clonal isolate sampling). 

In spirit, we follow a strategy similar to that of [Tami’s paper], with the important difference that our populations 
are highly diverse and non-haploid. The consequence is that a large number of mutations will be unsuitable for 
inference, either because they are not monophyletically shared in the inferred phylogeny, or because their 
genotype (i.e. number of allele copies within an isolate’s genome) varies among isolates that carry it, thus 
complicating the mathematical relationship between lineage frequency in the population and allele frequency in 
the metagenomic data. 

Lineage assignment 
We will define lineages as monophyletic clades in the phylogenetic tree inferred for all isolates from our 
experiment, which is in principle an unrooted tree (Fig. 2A). Since we observe (in a second inferred tree of all our 
isolates and those from the 1011 genomes project; see Methods for details) that all Brazilian bioethanol isolates 
cluster together, and within that cluster the SA-1 isolates are the most basal among our isolates (Fig. 6B), we root 
that first tree of isolates in the analogue node (as shown in Fig. 2A). From this rerooted tree, we define all 
lineages, (i) which include the very base of the tree with all isolates in the experiment, (ii) all internal nodes and 
their respective descendant isolates, and (iii) each tip with its associated isolate. Note that since this tree is 
inferred from isolates, it is most likely undersampling the genetic diversity of the population. Some lineages, 
especially the smaller ones, will most likely be missed (as illustrated in Fig. 3). 
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Finding lineage-specific alleles 
For each one of the lineages defined above, we first would like to find a set of alleles that are unique to it. We 
cannot assess all individuals in the original population, and so instead we use the observed alternate allele counts 
and depth of coverage at variant sites in the clonal isolate data as a proxy. Therefore, for each lineage, we first 
flag all variant sites for which either (i) counts in all lineage members are larger than zero, while counts in non-
lineage members are zero, or (ii) counts in all lineage members are less than the depth, while counts in all non-
lineage members equal the depth. The second case covers variant sites for which the reference allele is the 
derived (synapomorphic) one in the phylogeny. For these mutations, in all analyses described below, counts will 
refer to the count of reference allele (instead of alternate allele). 

If the lineage under consideration has a single isolate, then all flagged mutations are kept. Otherwise, we must 
select only those mutations for which we believe all isolates in the lineage to have the same genotype. For a 
diploid strain, the genotype of the mutation 𝑚 in isolate 𝑖 takes values 𝑔!" ∈ {0, 1 2* , 1}, while for a triploid 
strain, 𝑔!" ∈ {0, 1 3* , 2 3* , 1}. For this reason, we exclude from further analyses any lineages composed of a mix 
of diploid and triploid isolates. For each of the mutations flagged for a lineage we apply a statistical test of 
genotype heterogeneity, explained in more detail in the section below, where the null hypothesis is that all 
isolates in the lineage carry that mutation at the same genotype. We then use a procedure similar to Benjamini-
Hochberg to select mutations for which we do not reject the null at a False Omission Rate of 0.05 (defined as false 
negatives/[false negatives + true negatives]). 

We apply some filters before arriving at a final list of lineages and mutations for later frequency inference. First, 
we only keep those mutations that we also observe in the metagenomic dataset. Second, we limit the total 
number of mutations in a lineage to 500 to keep later steps computationally tractable. When this limit is imposed, 
mutations are chosen arbitrarily. Third, we filter mutations based on their observed depths in the metagenomic 
dataset, as they suggest underlying read mapping issues: we remove any mutations that have median depth in the 
metagenomic data lower than 10, or that has any metagenomic timepoint with depth equal to 0. Finally, we 
exclude any lineages for which we have selected 3 or less mutations, as we have observed that to result in noisy 
frequency inference. 

Genotype heterogeneity test 
As described in the section above, we would like to test whether a mutation is carried at the same genotype 
across all isolates from a lineage. For that we do a chi-squared test of goodness of fit to the model that all isolates 
have the same genotype. 

Let 𝑎!"  and 𝑏!"  be the counts and depths of mutation 𝑚 in isolate 𝑖. We first would like to define a generative 
model for the data so that we can compute the likelihood 𝑃(𝑎!"|𝑏!"𝑔!"). We choose a simple approach that 
assumes that 𝑎!"  is largely binomially distributed, except for a small probability of random errors, which can shift 
the count 𝑎!"  upwards or downwards. These errors may come from any of the preceding steps in data generation 
and analysis (e.g. sequencing and mapping errors), and they need to be accounted for the correct genotyping of 
homozygous sites that show a small (erroneous) count towards the opposite allele. We assume that the observed 
count 𝑎!"  is the result of a mixture of two populations of reads observed at site 𝑖: true and error reads. The 𝑏!"#  
true reads contribute with an alternate allele count 𝑎!"# ~Binom9𝑏!"# , 𝑔!":, while the 𝑏!"$  error reads contribute 
with an alternate allele count 𝑎!"$ ~Binom9𝑏!"$ , 0.5:. We further assume that error reads are independent of 
each other and occur with equal probability 𝑝%&&'&, such that 𝑏!"$ ~Binom(𝑏!" , 𝑝%&&'&). Since 𝑏!"$  and 𝑎!"$  are 
unobserved quantities, we marginalize over their possible values, and thus 

𝑃(𝑎!"|𝑏!"𝑔!") = ? ? 𝑃9𝑎!"# = 𝑎!" − 𝑎!"$ A𝑏!"# = 𝑏!" − 𝑏!"$ , 𝑔!":𝑃9𝑎!"$ A𝑏!"$ :

()*+,!"
# ,.!"/

.!"
# 01

𝑃9𝑏!"$ A𝑏!":,
,!"

,!"
# 01

 



 3 

where each probability above is calculated based on the probability mass function of the binomial distribution. 
Finally, we assume 𝑝%&&'& = 0.01, which accomplishes our goal of a less stringent genotyping criterion at 
homozygous sites (Fig. S1). 

If the null hypothesis that all isolates have the same genotype is true, then all inference could be done on the 
summed counts and depths 𝑎! = Σ"𝑎!" 	and 𝑏! = Σ"𝑏!", in which case the most likely genotype 𝑔D! for that 
mutation is 

𝑔D! = max2![𝑃(𝑎!|𝑏!, 𝑔!)], 

where 𝑃(𝑎!|𝑏!, 𝑔!) is calculated as described above. 

We calculate the expected counts if the null is true as 𝑎D!" = 𝑔D!𝑏!", with which we compute the test statistic 

𝑥3 = ∑ (.!"5.6!")$

.6!"
" . 

If 𝑎D!" > 5 for all 𝑖, we compute an exact 𝑝-value taking 𝑥3~𝜒df0#of	isolates5C3  under the null assumption. 
Otherwise, we calculate an empirical 𝑝-value from 1,000 permutations of alternate and reference allele 
observations keeping the isolate depths constant. 

Genotype posterior probability 
In the later lineage frequency inference step, we would like to marginalize the likelihood of a mutation’s 
metagenomic counts and depths by its genotype 𝑔!, which effectively serves to downweight mutations for which 
we have less certainty about their genotype. For that we use an Expectation-Maximization procedure. We 
compute the posterior probability of the genotype 𝑔! given the summed isolate clonal counts and depths 𝑎! and 
𝑏! (see section above) as 

𝑃(𝑔!|𝑎!, 𝑏!) =
D(.!|2!,,!)D(2!)

∑ D(.!|2!∗ ,,!)D(2!∗ )&!∗
, 𝑎!~Binom(𝑏!, 𝑔!). 

At first, we assume a uniform prior for 𝑃(𝑔!), but having calculated the posteriors, we can update the priors as 

𝑃(𝑔!) = ∑ 𝑃(𝑔!∗ = 𝑔!|𝑎!∗ , 𝑏!∗)!∗ , 

where 𝑚∗ iterates over all mutations selected for a given lineage. We iterate over the two equations above until 
values converge enough, using a stop criterion on the change per iteration of the total likelihood of the data. 

Joint inference of lineage frequencies in the metagenome 
At this point, we have a list of lineages and their associated synapomorphic mutations. Note that, by definition, 
there is no overlap between the mutations used to identify any two lineages. We would like to use the 
metagenomic data for these mutations to infer the frequencies of the lineages during the fermentation season. 
For now, we will infer the frequency 𝑓H(𝑡) of chromosomes of lineage 𝑙 among all chromosomes in the population. 
This differs from the frequency 𝑓H∗(𝑡) of individuals of lineage 𝑙 among all individuals in the population because 
our populations are composed of a mix of diploid and triploid strains. We calculate this latter quantity in the 
section below. 

We will do this inference independently for each timepoint, to avoid having to assume any particular model about 
how these lineages change in frequency through time. At each timepoint, we infer frequencies for all lineages 
jointly. If we allowed frequencies to vary freely, this would be equivalent to inferring each lineage’s frequency 
independently. However, our lineages are hierarchically organized according to the inferred phylogenetic tree 
used to define them (as shown in Fig. 2A): we will use the term parent, child, and sibling lineages to point to the 
relationship between lineages in this hierarchy. In the most basal part of the tree, we will have one or more 
lineages that have no parent. Therefore, the frequencies 𝑓(𝑡) of all lineages at a timepoint 𝑡 are constrained by 
the set of inequalities 
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∑ 𝑓H(𝑡)H∈J ≤ 1, for the set of sibling basal lineages 𝐵, and 

∑ 𝑓H(𝑡)H∈K' ≤ 𝑓L(𝑡), for the set 𝐶L of children of a given lineage 𝑝. 

We assume that the error in metagenomic counts for different mutations are independent from each other, 
which is an assumption that only breaks in the case of mutations that are close enough in the genome that they 
may be covered by a same sequencing read. We therefore calculate the likelihood of a given model of lineage 
frequencies given the data as (suppressing 𝑡 for convenience) 

ℒ9𝑓|data: = ∏ ∏ ∑ 𝑃(𝑥!|𝑑!, 𝑔!, 𝑓H)𝑃(𝑔!|𝑎!, 𝑏!)2!!H , 

where 𝑥! and 𝑑! are the counts and depths of mutation 𝑚 in the metagenomic data, and we assume 
𝑥!~Binom(𝑑!, 𝑔!𝑓H). 

We maximize the likelihood model above using a gradient descent method with a log-barrier that bounds 
solutions to the inequalities above as implemented in the function constrOptim in base R [ref]. To make this 
inference computationally tractable we do not infer the frequencies of all lineages at once, and instead follow an 
iterative procedure where at each step we infer the frequencies of a parent and all its children jointly starting 
from the most basal lineages: 

(1) jointly fit frequencies of basal lineages 𝑙 ∈ 𝐵, keeping ∑ 𝑓H(𝑡)H∈J ≤ 1; 
(2) randomly sort basal lineages; following this order jointly fit the frequency of basal lineage 𝑝 and children 

lineages 𝐶L, with inequalities 

𝑓L ≤ 1 − ∑ 𝑓L∗L∗∈J|L∗ML , and 

∑ 𝑓H(𝑡)H∈K' ≤ 𝑓L(𝑡); 

(3) keep this new frequency 𝑓L; 
(4) for each fit grandparent lineage 𝑔, randomly sort its (also already fit) children 𝐶2; following this order, fit 

jointly the frequencies of lineage 𝑝 ∈ 𝐶2 and its respective children 𝑙 ∈ 𝐶L, with inequalities 

𝑓L ≤ 𝑓2 − ∑ 𝑓L∗L∗∈K&|L∗ML , and 

∑ 𝑓H(𝑡)H∈K' ≤ 𝑓L(𝑡); 

(5) keep this new frequency 𝑓L; 
(6) repeat steps (4) and (5) until there are no more lineages to be fit. 

We show inferred 𝑓(𝑡) for all four site-years in Figs. S2A, S3A, S4A, and S5A. 

Calculation of lineage frequency in the population 

Having inferred the frequencies 𝑓(𝑡) of all lineages in the metagenome, we proceed to calculating frequencies 
𝑓∗(𝑡) of all lineages in the population. These two quantities are related as (suppressing 𝑡 for convenience) 

𝑓H =
𝑝H
𝑝̅
𝑓H∗ 

where 𝑝H ∈ {2,3} is the ploidy of lineage 𝑙, and 𝑝̅ is the mean ploidy in the population. Notice that if the whole 
population is composed of individuals of the same ploidy, then 𝑓H = 𝑓H∗. 

We cannot directly assess the ploidy of all individuals in the original population, so instead we use inferred 𝑓(𝑡) 
and respective lineage ploidies to estimate the mean ploidy in the population, but with two caveats. First, our 
isolate sampling may have missed ploidy heterogeneity within lineages. Second, our inference is not bound to 
infer frequencies that sum to 1 in the population, and thus may leave some portion of the population uninferred 
and of unknown ploidy. This is not a significant fraction in our study (see Figs. S2–S5), but it may be in other 
systems. We therefore make two assumptions: that (i) we are not missing ploidy heterogeneity in the inferred 
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portion of the population, and that (ii) any non-inferred portion of the population has the same mean ploidy as 
the inferred portion. 

Let 𝐹3(𝑡) and 𝐹N(𝑡) be the total frequency of diploid and triploid strains in the metagenome as computed from 
inferred 𝑓(𝑡). The frequencies  𝐹3∗(𝑡) and 𝐹N∗(𝑡) of diploid and triploid strains in the population are, thus, given by 
(suppressing 𝑡 for convenience) 

𝐹L∗ =

𝐹L
𝑝

𝐹3
2 +

𝐹N
3
		, 

from which we compute the mean ploidy in the population as 

𝑝̅ = 2𝐹3∗ + 3𝐹N∗. 

We show computed 𝐹L(𝑡) and 𝐹L∗(𝑡) in Fig. S6, and inferred 𝑓∗(𝑡) in Figures 4 and 5 of the main text. Effectively, 
they only slightly deviate from inferred 𝑓(𝑡) (Figs. S2–S5). 

VALIDATION ON RAREFIED CLONAL DATA 
In this section, we assess the robustness of the inference procedure described above with respect to changes in 
the composition of picked clones in our dataset. To do this, we rarefy the data by selecting a simple random 
sample of 20, 10, or 5 among picked and starter clones for each of the four site-years. We then infer the lineages 
and their frequencies using only this subset of the clonal sequencing data while keeping the metagenomic 
sequencing dataset constant. To restrict this validation to the lineage inference procedure itself, we do not reinfer 
the clone phylogeny based on the rarefied clone dataset. A full account of phylogenetic uncertainty on the results 
of the inference requires substantial investigation and is beyond the scope of the current work. 

Our analysis reveals that the rarefied clonal data largely preserves the large-scale lineage dynamics across all four 
site-years (Figs. S2–S5). This finding indicates that our inference method is generally robust to clonal 
undersampling. Reducing the number of picked clones reduces the number of inferred lineages in a size-
dependent way. Larger lineages that dominate the dynamics are also more likely to be represented among picked 
clones, and their inferred frequencies are overall robust to undersampling. On the other hand, increasing the 
number of clones breaks large lineages down into smaller sublineages, allowing for the observation of finer-grain 
dynamics. 

As anticipated from the inequality-constrained joint inference procedure, we note that the estimate of lineage 
frequencies becomes less constrained the less lineages there are in the inference. For example, the significant 
sweep observed in the last few timepoints in Site A – 2018 is not reflected in the estimate of sampled lineages in 
the rarefied dataset of 5 clones (Fig. S2D). Consequently, it remains desirable to sample sufficient clonal diversity 
in the population to more effectively constrain the inference. In practical terms, we suggest a similar rarefaction 
analysis to assess whether enough clones have been sampled in any particular study that uses this inference 
procedure. 
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Supplementary Figures 

 
Figure S1. Probability of isolate data given genotype allowing for sequencing error. We show the computed 
probability of observing an alternate allele count value based on a given depth of coverage at that site, the 
probability of count errors 𝑝%&&'& (e in the figure), and the isolate ploidy. 
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Figure S2. Inferred frequency of lineages in the metagenome for Site A – 2018. We show the inference results 
for (A) all picked clones, or a simple random sample of (B) 20, (C) 10, or (D) 5 of clones. Lineage frequencies 
𝑓(𝑡) are inferred with the procedure described in the sections above and are later used to compute the 
frequencies 𝑓 ∗ (𝑡) of lineages in the population, as shown in Figs. 4 and 5. Lineages are color-labeled as in Fig. 
4 and 5. 
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Figure S3. Inferred frequency of lineages in the metagenome for Site A – 2019. We show the inference results 
for (A) all picked clones, or a simple random sample of (B) 20, (C) 10, or (D) 5 of clones. Lineage frequencies 
𝑓(𝑡) are inferred with the procedure described in the sections above and are later used to compute the 
frequencies 𝑓 ∗ (𝑡) of lineages in the population, as shown in Figs. 4 and 5. Lineages are color-labeled as in Fig. 
4 and 5. 
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Figure S4. Inferred frequency of lineages in the metagenome for Site B – 2018. We show the inference results 
for (A) all picked clones, or a simple random sample of (B) 20, (C) 10, or (D) 5 of clones. Lineage frequencies 
𝑓(𝑡) are inferred with the procedure described in the sections above and are later used to compute the 
frequencies 𝑓 ∗ (𝑡) of lineages in the population, as shown in Figs. 4 and 5. Lineages are color-labeled as in Fig. 
4 and 5. 

A. Site B - 2018: all clones

B. Site B - 2018: 20 clones

C. Site B - 2018: 10 clones

D. Site B - 2018: 5 clones

0.00

0.25

0.50

0.75

1.00

1 50 100 150 200
Day of sampling

Fr
eq

ue
nc

y 
in

 th
e 

po
pu

la
tio

n

0.00

0.25

0.50

0.75

1.00

1 50 100 150 200
Day of sampling

Fr
eq

ue
nc

y 
in

 th
e 

po
pu

la
tio

n

0.00

0.25

0.50

0.75

1.00

1 50 100 150 200
Day of sampling

Fr
eq

ue
nc

y 
in

 th
e 

po
pu

la
tio

n
0.00

0.25

0.50

0.75

1.00

1 50 100 150 200
Day of sampling

Fr
eq

ue
nc

y 
in

 th
e 

po
pu

la
tio

n

*FT−858(a)
9(b)
3(c)
17(a)
167(c)
*FT−858(c)
27(b)
17(c)
*FT−858(b)
7(a)

9(a)
9(c)
*PE−2(b)
167(a)
47(a)
1(a)

57(c)
17(b)
*PE−2(a)
3(a)
27(c)
1(b)
*PE−2(c)
3(b)
27(a)

167(b)
57(b)
217(d)
227(a)
*IRA−D(b)
57(a)
*IRA−D(a)
227(c)
47(c)
227(b)
109(a)
109(b)
217(c)

7(b)
1(c)
47(b)
*SA−1(c)
*SA−1(b)
*SA−1(a)

0.05

*FT−858(a)
9(b)
3(c)
17(a)
167(c)
*FT−858(c)
27(b)
17(c)
*FT−858(b)
7(a)

9(a)
9(c)
*PE−2(b)
167(a)
47(a)
1(a)

57(c)
17(b)
*PE−2(a)
3(a)
27(c)
1(b)
*PE−2(c)
3(b)
27(a)

167(b)
57(b)
217(d)
227(a)
*IRA−D(b)
57(a)
*IRA−D(a)
227(c)
47(c)
227(b)
109(a)
109(b)
217(c)

7(b)
1(c)
47(b)
*SA−1(c)
*SA−1(b)
*SA−1(a)

0.05

*FT−858(a)
9(b)
3(c)
17(a)
167(c)
*FT−858(c)
27(b)
17(c)
*FT−858(b)
7(a)

9(a)
9(c)
*PE−2(b)
167(a)
47(a)
1(a)

57(c)
17(b)
*PE−2(a)
3(a)
27(c)
1(b)
*PE−2(c)
3(b)
27(a)

167(b)
57(b)
217(d)
227(a)
*IRA−D(b)
57(a)
*IRA−D(a)
227(c)
47(c)
227(b)
109(a)
109(b)
217(c)

7(b)
1(c)
47(b)
*SA−1(c)
*SA−1(b)
*SA−1(a)

0.05

*FT−858(a)
9(b)
3(c)
17(a)
167(c)
*FT−858(c)
27(b)
17(c)
*FT−858(b)
7(a)

9(a)
9(c)
*PE−2(b)
167(a)
47(a)
1(a)

57(c)
17(b)
*PE−2(a)
3(a)
27(c)
1(b)
*PE−2(c)
3(b)
27(a)

167(b)
57(b)
217(d)
227(a)
*IRA−D(b)
57(a)
*IRA−D(a)
227(c)
47(c)
227(b)
109(a)
109(b)
217(c)

7(b)
1(c)
47(b)
*SA−1(c)
*SA−1(b)
*SA−1(a)

0.05



 10 

 
Figure S5. Inferred frequency of lineages in the metagenome for Site B – 2019. We show the inference results 
for (A) all picked clones, or a simple random sample of (B) 20, (C) 10, or (D) 5 of clones. Lineage frequencies 
𝑓(𝑡) are inferred with the procedure described in the sections above and are later used to compute the 
frequencies 𝑓 ∗ (𝑡) of lineages in the population, as shown in Figs. 4 and 5. Lineages are color-labeled as in Fig. 
4 and 5. 
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Figure S6. Inferred fraction of diploid and triploid strains along time based on inferred lineages' frequencies and 
ploidies. Estimated frequencies in both the metagenome (i.e. fraction of genetic material of the population that 
can be assigned to diploid or triploid individuals) and in the population (fraction of individuals) are shown. See 
Section "Calculation of lineage frequency in the population" of the Supp. Information for details. 
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Figure S7. Histogram of number of isolates observed to carry a given alternate allele in the clonal sequencing 
data. Starter strains were excluded.  
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Figure S8. Representative examples of diploid and triploid whole-genome allele frequency distribution in the 
clonal sequencing data. The y-axes are cropped for better visualization.  
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Figure S9. Distribution of maximum inferred frequency (over all timepoints) for all 197 inferred lineages across 
all site-years.  
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Figure S10. Midrooted labeled version of the tree in Fig. 6A. Clones from this study are labeled as in Table S2 and 
S3. Clones from the 1011 YGP are labeled as in Supp. Table 1 of Peter and colleagues (2018). 
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Figure S11. Fermentation metrics in Site B show no clear relationship with invasion by foreign strains. We show 
weekly data over the 2018 and 2019 fermentation seasons for (left) ethanol content of fermented wine, (middle) 
total bioethanol output, and (right) fermentation yield, as a measure of amount of ethanol produced out of a 
theoretical maximum. A running average is shown as an aid (orange line). The raw data can be found in Table S4. 
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