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Abstract

The large scale and non-aseptic fermentation of sugarcane feedstocks into fuel ethanol in biorefineries represents
a unique ecological niche, in which the yeast Saccharomyces cerevisiae is the predominant organism. Several
factors, such as sugarcane variety, process design, and operating and weather conditions, make each of the ~400
industrial units currently operating in Brazil a unique ecosystem. Here, we track yeast population dynamics in two
different biorefineries through two production seasons (April to November of 2018 and 2019), using a novel
statistical framework on a combination of metagenomic and clonal sequencing data. We find that variation from
season to season in one biorefinery is small compared to the differences between the two units. In one
biorefinery, all lineages present during the entire production period derive from one of the starter strains, while in
the other, invading lineages took over the population and displaced the starter strain. However, despite the
presence of invading lineages and the non-aseptic nature of the process, all yeast clones we isolated are
phylogenetically related to other previously sequenced bioethanol yeast strains, indicating a common origin from
this industrial niche. Despite the substantial changes observed in yeast populations through time in each
biorefinery, key process indicators remained quite stable through both production seasons, suggesting that the

process is robust to the details of these population dynamics.

Article Summary

Microbial ecology and evolution is critical to many industrial processes, from the production of cheese to biofuel.
Here, we provide the first high-resolution analysis of microbial evolution in one such process: fermentation of
sugarcane into fuel ethanol in large-scale Brazilian biorefineries. We find that fuel production is robust despite
complex eco-evolutionary dynamics of the baker’s yeast populations that drive this process, which is
characterized by enormous genetic diversity and substantial fluctuations in strain composition, including invasions

by foreign strains.
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INTRODUCTION

Fuel ethanol is used throughout the world to power light vehicles, either on its own or, more commonly, mixed
with gasoline for increased octane rating (Johnson et al. 2015). Brazil is the second largest ethanol producer in the
world, surpassed only by the United States, and accounts for roughly 30% (or 31.66 billion liters predicted for
2022) of the world’s fuel ethanol production (Barros 2022). While American ethanol is mostly corn-based and
requires enzymatic hydrolysis of starch prior to fermentation by the yeast S. cerevisiae, most of Brazil’'s ethanol is

produced from sucrose, glucose, and fructose-rich sugarcane products which can be directly fermented.

The Brazilian process is also unique in that it maintains a very large population of yeast in non-aseptic conditions
throughout the 8-month-long sugarcane harvesting season (Amorim et al. 2011; Della-Bianca et al. 2013; Bermejo
et al. 2021; Fig. 1A). The yeast cells are recycled at every ~12 h fed-batch fermentation-holding-centrifugation-
treatment cycle, allowing for large inocula and short turnaround times. Acid wash and antimicrobials serve to
control the ever-present bacterial contamination, which competes against yeast for carbon, but also affects
fermentation in ways that are not completely understood (Lino et al. 2021; Senne de Oliveira Lino et al. 2021).
These practices are key to the high efficiency of the sugarcane-ethanol industrial process and drastically lower
greenhouse gas emissions in comparison to corn-based ethanol (Crago et al. 2010; Pereira et al. 2019). However,
inconsistencies in fermentation performance associated with cell recycling remain a costly challenge and point to
microbiological routes for process improvement (Amorim et al. 2011; Rich et al. 2018; Senne de Oliveira Lino et al.

2021).

Yeast strains differ in their suitability for industrial-scale fermentation. Traditionally, the readily available baker’s
yeast was used to kickstart the fermentation season, but due to its susceptibility to invasion by foreign S.
cerevisiae lineages, production has largely shifted towards specialized starter strains. A major strain selection
program conducted between 1993 and 2005 solidified the potential for these invading strains themselves to serve
as a source of new industrially relevant variants (Basso et al. 2008). Strains isolated from this program, namely PE-
2, CAT-1, SA-1, BG-1, VR-1, and their derivatives, as well as JP-1 (isolated from a similar effort; da Silva Filho et al.

2005) are the basis for the bulk of today’s ethanol production and have successfully helped maintain the overall
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high yield of the industry. Still, invasion by foreign strains remains common, as fermentation conditions across the
~400 bioethanol plants operating around the country span a range of industrial practices, environmental
conditions, sugarcane varieties, and other factors, in addition to the yet-little-explored possibility of evolutionary

change over the course of a fermentation season.

To identify and track these yeast population dynamics in industry, chromosomal karyotyping became popular in
the 1990s and is still commonly used for process monitoring (Basso 1993; da Silva Filho et al. 2005; Basso et al.
2008). More recently, PCR-based methods have helped in decreasing the cost of strain surveillance (da Silva-Filho
et al. 2005; Antonangelo et al. 2013; Carvalho-Netto et al. 2013; Reis et al. 2017). However, these methods cannot
readily differentiate closely related strains, which may differ by few mutations anywhere along the whole
genome. Moreover, these methods estimate lineage frequencies based on fraction of picked isolates from agar

plate streaks, which leaves room for biased assessments of strain dominance if strains differ in culturability.

Whole-genome metagenomic shotgun sequencing is a potential culture-independent alternative method for
strain differentiation (Anyansi et al. 2020). Temporal metagenomic datasets have been used to assess microbial
community dynamics with subspecies resolution, largely in the context of human gut microbiomes (Schloissnig et
al. 2013; Franzosa et al. 2015; Luo et al. 2015; Scholz et al. 2016; Costea et al. 2017; Truong et al. 2017; Smillie et
al. 2018: 20; Garud et al. 2019; Zhao et al. 2019; Roodgar et al. 2021). However, inference of the underlying strain
movements from metagenomic frequency trajectories remains challenging and methods are mostly limited to
low-diversity and prokaryotic populations. Non-haploidy complicates this inference even further, as the diploid or
polyploid genotype of individual variants (which itself may vary among individuals in a population) must also be

accounted for.

Here, we present a novel framework for inferring the population dynamics of highly diverse, non-haploid, asexual
microbial populations from a combination of clonal sequences and temporal metagenomic data. We employ this
method to investigate the dynamics of yeast genetic diversity across two fermentation seasons, in two
independently run bioethanol plants in Brazil. More specifically, we ask whether starter strains tend to persist and

dominate through an entire production season, and if not, what strains they are replaced with. We also



93 investigate the differences between seasons and production facilities, the origin of invading strains, and the
94  effects they have on the process. Our focus here is on the yeast dynamics, but our sequencing data also contains

95 information on other microbial species, which remains to be analyzed in future work.
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METHODS

Sample collection

We collected whole-population microbiological samples from two independent industrial units, which we refer to
as Site A and Site B, through two fermentation seasons, 2018 and 2019, which ran from April/May through
November/December (Fig. 1). Sampling started on the first day of the fermentation season for Site A 2018, and
~14 days into the season for the other site-years (see sampling dates in Table S1). The two sites are owned by
different companies and are located 18 km apart in the region of Piracicaba, Sdo Paulo, Brazil. Site A used a mix of
four strains to start both the 2018 and 2019 fermentation periods—namely strains PE-2, SA-1, FT-858, and IRA-D.
While the first three are common commercially available industrial strains, IRA-D is an in-house strain isolated
from Site A in a previous fermentation season. In contrast, Site B informed us that they have used PE-2 as their
sole starter strain in both fermentation seasons, although we would later find evidence suggestive of a second

starter strain being used, possibly unknowingly, in 2019 (see Results below).

Samples (~10 ml) were collected daily (2018) or weekly (2019), after fermentation was completed, directly from
fermentors or holding tanks, into pre-sterilized 15 ml tubes containing 3 ml glycerol. After mixing by vortexing,
samples were stored at —20°C for a period of between one and three months before being transferred to a —80°C
ultrafreezer. Finally, samples were shipped from Brazil to the US in dry ice, where they were stored at —80°C.
Starter strains PE-2, FT-858 and SA-1 were shipped as active dry yeast (ADY), whereas strain IRA-D was shipped as
colonies on agar slants, without dry ice. The collection and shipping of samples has been registered at the Sistema
Nacional de Gestdo do Patrimonio Genético e do Conhecimento Tradicional Associado (SisGen, Brazilian federal
government) under numbers R40E57A, RB42674, R193AED and RAD5521 (for the shippings), and AF14971 (for the
sampling). A full list of samples with associated collection dates can be found in Table S1. Picked clonal isolates are

made available upon request.
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DNA extraction and sequencing

We selected 15 to 20 samples from each site-year for whole-genome metagenomic and clonal sequencing. For
metagenomic sequencing, samples were completely thawed and vortexed, after which 1 ml was aliquoted and
centrifuged to remove the supernatant. Whole DNA extraction was carried out using an in-house protocol(Nguyen

Ba et al. 2019). Sequencing library preparation was done using the transposase-based protocol (Baym et al. 2015).

For clonal isolate sequencing, the same 15 to 20 thawed and homogenized samples were used for plating onto
Yeast Extract-Peptone-Dextrose(YPD)-agar (Table S2). Plates were incubated at 30°C for 24 - 48 h. From each
plate, 2 or 3 CFUs were picked and grown in 5 ml liquid YPD overnight at 30°C, after which DNA extraction and
library preparation proceeded as for metagenomic sequencing. Starter strains were inoculated in liquid YPD, left

to grow overnight at 30°C, plated and prepared in the same manner (Table S3).

Sequencing was carried out in two Illlumina NextSeq and one Illlumina Miseq runs, following a 300 bp paired-end
workflow. Mean coverage after mapping to the reference strain S288c genome and haplotype inference (see
section below) was 87x for metagenomic samples and 26x for clonal isolates. FASTQ files with all sequencing

reads produced for this study were deposited in the NCBI SRA database (see Data and Code Availability).

Variant calling bioinformatic pipeline

We called variant sites (SNPs only) in relation to the S. cerevisiae S288c reference genome (yeastgenome.org,
release R64) in all our metagenomic and clonal isolate data. The full pipelines with specific tools and settings used
can be found in the GitHub repository (see Data and Code Availability). In summary, all sequencing reads were
first trimmed of sequencing adapters using NGmerge (Gaspar 2018), and then aligned to the reference genome
using BWA (Li and Durbin 2009). Variant calling was done with the haplotype inference tools in the Broad
Institute’s GATK (van der Auwera and O’Connor 2020). In essence, these tools assemble local haplotypes from
aligned reads, calculate the posterior probability of each read coming from each of the assembled haplotypes, and
finally infer variant sites jointly across a group of samples for added power to call true low-frequency variants:

intuitively, an observed variant is less likely to be a sequencing error if it is observed in more than one sample.
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Given different probabilistic prior models of allele frequency for clonal and non-clonal data, variant calling of
isolate clonal data is done with HaplotypeCaller jointly across all isolates, while that of the metagenomic data is
done using Mutect?2 jointly across all timepoints within each site-year, in line with GATK guidelines (van der
Auwera and O’Connor 2020). Alternate and reference allele counts (AD field in the VCFs) outputted by the variant
calling tools are estimates based on inferred haplotype membership of aligned reads (instead of being simple
observations from aligned reads). These are the numbers that we use for all later analyses. For convenience,
when referring to a variant site, we will often refer to alternate allele counts as simply counts, and the sum of
alternate and reference allele counts as simply depth. In all further sections, allele frequency at a variant site is
defined as the number that ranges from 0 to 1 given by counts divided by depth. For the sake of simplifying, we

exclude from analyses the small number of variant sites for which we observe more than one alternate allele.

Isolate ploidy

Isolate ploidy was assessed based on visual examination of the distribution of allele frequencies in clonal isolate
data over the whole genome (upper right corner of each panel in File S1): diploid strains have a multimodal
distribution peaked at values 0, 0.5 and 1, while triploid strains, at 0, 1/3, 2/3, and 1. Example allele frequency

distributions from a diploid and a triploid strain are shown in Fig. S8 in Supplementary Information.

Phylogenetic analyses

We infer two phylogenetic trees in this study, both using whole-genome SNP data. Tree 1 was run with the
SNPhylo pipeline (Lee et al. 2014) using default parameters. The tree is inferred based on a total of 27,229 SNPs
across all clonal isolates from all site-years, including isolates from the four starter strains (Newick format tree in
File S2). Tree 2 includes the same clonal isolates, plus all isolates from the 1011 Yeast Genomes Project (Peter et
al. 2018; Fig. S10 in Supplementary Information; Newick format tree in File S3). For this tree, SNPs were first
filtered and aligned using SNPhylo with a missing rate of 0.001, and a maximum likelihood tree was constructed
from 42,012 SNP markers using RAXML (Stamatakis 2014) with 1000 bootstrap replicates, employing the general

time reversible nucleotide substitution model with the GAMMA model of rate heterogeneity. For the purposes of
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downstream analyses and presentation, Tree 1 was rerooted in a node analogue to that from which the

Bioethanol subtree of Tree 2 branches from the remainder of the tree.

Inference of population dynamics

We assume the reproduction during fermentation is exclusively asexual. Therefore, the population is composed of
some large but discrete number of clonal strains of asexually dividing individuals which may have three origins: (1)
preexisting diversity in starting inoculum; (2) invading strains during the course of the fermentation season; (3)

new strains founded by de novo mutational events during fermentation.

Clonal strains share phylogenetic history, and therefore alleles. Assuming no recombination, and no de novo
mutation reversal, we assume that these lineages organize themselves into a hierarchical tree-like structure which
defines clades, herein referred to as lineages, each with a particular set of synapomorphic alleles: i.e. alleles that
are shared by all clonal strains within that lineage, but no strain outside of it. In effect, the inference pipeline
should be able to handle some amount of departure from these assumptions due to past history of
recombination, mutation reversals, and noise, but we expect this pattern to compose the bulk of the observed

data.

Our goal was to use the metagenomic data to infer the frequencies through time of as many lineages as possible
in order to characterize the population dynamics over the course of the fermentation season in each site-year.
Our inference consists of (i) identifying lineages and their synapomorphic alleles based on a maximume-likelihood
phylogeny inferred from our sequenced clones; and (ii) looking for each lineage’s set of synapomorphic alleles
among the metagenomic sequencing data to infer lineage frequencies using a maximume-likelihood framework.
The rationale for this approach is that the metagenomic data samples genetic diversity among chromosomes in
the population in an unbiased way, while the clonal genome sequencing informs us of how to group alleles that
segregate together in the same lineages. We do not assume any particular dynamical model of evolution, and

instead infer lineage frequencies at each timepoint independently. A crucial feature of this inference is that
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genetic diversity that is not sampled among sequenced clones does not bias the frequency estimates of other

lineages.

A detailed description of the inference pipeline is described in the Supplementary Information, together with a

validation analysis using subsampled clonal data. The code developed for this inference is available in the GitHub

repository (see Data and Code Availability).
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RESULTS

We carried out temporal whole-population metagenome sequencing of the S. cerevisiae populations used to
ferment sugarcane products into bioethanol over two fermentation seasons (2018 and 2019), at two
independently-owned biorefineries (Site A and Site B) in the state of Sdo Paulo, Brazil (Fig. 1). We also whole-
genome sequenced ~35 isolated clonal strains from each site-year. Metagenomic and clonal sequencing reads
were aligned to the reference genome of strain s288c and used to call and count genomic variants in the data. See

Methods for details.

High genetic diversity among industrial isolates

We began by investigating genetic diversity in the studied populations. Using our variant calling pipelines (see
Methods), we find a total of 145,066 SNPs among all 134 fermentation and 11 starter strain isolates. 14,200
(9.8%) of these mutations are singletons, while 15,749 (10.5%) are seen in all sequenced clones (see Fig. S7 in
Supplementary Information for the full distribution). We also find a similar number of SNPs (150,265) in the
whole-population metagenome data across all four site-years, with an overlap of 126,845 between the clonal and
the metagenomic datasets. This suggests that the clonal genotyping data covers a substantial fraction of the
genetic diversity of these populations, especially given that the metagenomic data (i) samples from the whole
population, and (ii) represents a sequencing effort of 6154x over all timepoints, which is larger than that of clonal
genotyping (4,341x over all isolates). The 168,486 SNPs uncovered in the whole dataset are widely distributed
along the genome, hitting 6,370 out of all 6,579 genes in the annotated $S288c genome. 129,697 of these SNPs
have been previously observed in the 1011 yeast genomes project, which itself uncovered 1,544,489 SNPs (Peter

et al. 2018).

S. cerevisiae may exist at different ploidies, and so we examined allele frequencies in the clonal isolate data to
infer isolate ploidy (see Methods for details). We found that 64 of our isolates are triploid, while the remaining 70
are diploid (Fig. 2A). All isolates of starter strains FT-858 and IRA-D are triploid, while those of PE-2 and SA-1 are
diploid (as described in Basso et al. 2008, Argueso et al. 2009, and Nagamatsu et al. 2019). An examination of

allele frequencies and sequencing depth along the genome revealed that a small number of isolates carry
11
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structural variations, such as gain or loss of whole chromosomes or sections of chromosomes (File S1). Given the
small number of affected isolates, and in each case a minor fraction of the genome being affected, we keep these

isolates in all further analyses.

We then used the called SNP data to infer a maximum-likelihood phylogenetic tree between all sequenced
isolates (Fig 2A). As expected, we find that several of the isolated clones are closely related to the starter strains
used to initiate the industrial process. We note that PE-2 isolates form two major clades, which are both
represented in starter and fermentation isolates from both sites and years. We also find several other groups of
closely related isolates, mostly triploid, that diverge from the starter strains by thousands of SNPs. These groups

are all composed of isolates from Site B, whereas all Site A isolates fall close to the known starter strains.

Lineage inference

We turned to the whole-population metagenomic data to investigate the yeast population dynamics through the
fermentation season (Fig. 2B). We are interested in understanding how starter strains change in frequency
through the fermentation, as well as identifying events of selection of de novo mutations or invasion by foreign
strains. Examining the raw metagenomic allele frequencies through time, we observe periods when large cohorts
of mutations move together, indicative of competition between divergent strains, as well as periods of stability
when allele frequencies remain mostly constant. Correlation between allele frequency trajectories is indicative of
co-segregation and has been used as the signal for inference of population dynamics in previous studies (Luo et al.
2015; Smillie et al. 2018). However, this type of inference is complicated by several factors. First, our populations
are highly genetically diverse and mutations are shared between different strains in complex patterns. These
patterns are presumably created by earlier, potentially sexual population dynamics that led to the creation of
these strains in the unknown other environments in which they evolved. This means that individual metagenomic
mutation trajectories can depend on the frequency changes of potentially multiple different strains that carry that
mutation. This is complicated by the fact that these different strains may carry a given mutation at different
genotypes (i.e. as homozygous or heterozygous diploids, or in one to three copies in triploids). Finally, it is not

immediately clear how to polarize mutations for lineage frequency inference (i.e. which one should be considered

12
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the references versus alternative allele), which leads to an overall pattern of mirrored mutation trajectories in the

raw metagenomic data (Fig. 2B).

Here, we developed and employed a novel framework for jointly inferring the frequencies of nested asexual
lineages of descent through time from whole-population metagenomic data (Fig 3; see Methods and
Supplementary Information for details). This approach takes advantage of our clonal sequencing data to phase an
informative subset of all mutations into cohorts that segregate together in the population, completely ignoring
the metagenomic data for this purpose. While we are limited to the genetic diversity that is sampled by picked
isolates, by following this approach we overcome the challenges described above, as well as have higher power to
identify small lineages, whose metagenomic trajectories may be indistinguishable from sequencing noise in
correlation-based grouping methods (Luo et al. 2015; Smillie et al. 2018). In doing so, our pipeline automates an
approach similar to that of Zhao and colleagues (2019), while handling high genetic diversity and ploidy variation

in the population.

Among the four site-years, we infer the frequencies of a total of 197 lineages, spanning a wide range of lineage
sizes, with a median maximum lineage frequency of 6.7% (see Fig. S9 in Supplementary Information for the full
distribution). The inferred results pass basic soundness checks: the timepoints at which different isolates were
picked largely correspond to times when their associated inferred lineage frequencies are high, and lineage

frequency trajectories are smooth, even though timepoints are inferred independently from each other.

Stable dynamics dominated by in-house strain in Site A

In Site A, we only observe lineages closely related to the known starter strains (Fig. 4). In particular, we find that
IRA-D, a triploid strain, dominates the process in both years. Curiously, IRA-D is an in-house strain which was
found to invade the process in a previous fermentation season, and since then it has been included in the starter
strain mix. While these observations suggest that IRA-D is the best adapted to these fermentation conditions
among all four starter strains, we observe that it does not completely displace PE-2 in 2019, which continues at a

low frequency in the process even in later timepoints. Coexistence for such a long timescale is suggestive of some

13



268  ecological process, such as niche partitioning, or negative frequency dependence. However, it is unclear why the
269  same dynamics are not seen in 2018, when PE-2 seems to be completely outcompeted. Either the population
270  itself is genetically different between the years (although isolates from both seasons are closely related) or

271  differences in agricultural and industrial practices, or weather patterns, may have affected fermentation

272 conditions.

273  Foreign lineages systematically invade Site B

274  InSite B, we observe a very different picture, where several large lineages are distantly related to the starter
275 strain PE-2 (Fig. 5). While PE-2 dominates at the start of 2018, it is a minor fraction at the start of 2019, when the
276  process is instead dominated by a different lineage (labeled “starter unknown” in Fig. 2A and 5), suggesting a

277  different starter strain mix for that year.

278  In both years, the population gets substituted by a cohort of much fitter strains halfway into the season (labeled
279  invader strains in Fig. 2A and 5). Most of these strains are triploid, except for a small group present in both years
280  (Fig. 2A and 5). While their genetic distance to other starter strains and minute presence in early timepoints

281  suggest that they invade the fermentation process, we cannot rule out that they were already present in the

282  starter inoculum or have their origin in the industrial equipment itself, where they might find a reservoir from one
283 production season to the next. The fact that closely related isolates are seen in both 2018 and 2019 is indicative of
284  some systematic source of contamination. Surprisingly, despite the large degree of genetic diversity and the

285 ploidy variation within this cohort, these different invading strains stably coexist in the timescale of the

286  fermentation season. Here again, an ecological explanation is suggested.

287  Finally, we observe a second substitution event in the final timepoints of Site B’s 2018 season. The inference
288  suggests that this set of strains were already present since early in the season, remaining at low frequency until
289  they suddenly displace all other strains. This event does not seem to be driven by selection for a de novo

290  mutation, since the expanding lineage retains significant diversity within itself, and instead may be caused by a

291  sudden change in fermentation conditions.
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Origin of invading yeast strains

We further investigate the origin of Site B’s invader strains. While we cannot assess industrial procedures directly,
we can examine the phylogenetic relationship of these strains to other known isolates. For that purpose, the 1011
Yeast Genomes Project (YGP) represents the largest and broadest whole-genome sampling of S. cerevisiae genetic
diversity (Peter et al. 2018). Most importantly, it includes 37 isolates related to the Brazilian bioethanol industry.
Here, we compare all our picked isolates to the YGP collection by inferring a combined phylogeny of both studies
(Fig 6; see Methods for details). The inferred unrooted tree largely replicates the structure of previous inferred
trees of broad yeast diversity (West et al. 2014; Gallone et al. 2016; Peter et al. 2018; Jacobus, Stephens, et al.

2021).

First, we find that all Brazilian bioethanol isolates from both studies form a monophyletic group and are closely
related to a large group of European wine strains, in agreement with previous studies (Fig. 6A; Peter et al. 2018;
Jacobus, Stephens, et al. 2021). As shown in Fig. 6B, we note that among the 37 isolates classified in the Brazilian
bioethanol group in the 1011 YGP, 3 were isolated from cachaca distilleries (a traditional sugarcane-based spirit),
while 2 were from the sugarcane plant or from sugarcane juice (although further detail is missing), while the
remainder were isolated from different bioethanol plants. Among these isolates from the bioethanol industry,
several are closely related to PE-2, SA-1, and most notably, to the “unknown starter” strain in Site B’s 2019
season. Finally, Site B’s “invader strains” do not seem to be represented in the 1011 YGP, but their close
association with other bioethanol isolates points to an industrial origin (e.g. shared equipment, supplies, or
sugarcane), as opposed to invasion by wild strains brought to the industrial environment by vectors such as

insects or birds from foreign niches.

Stability of macroscopic fermentation parameters despite strain dynamics

Yeast strains vary in their suitability for the industrial process due to, among other factors, their ability to produce
and withstand high ethanol concentrations, their propensity to generate foam or cell aggregates in large industrial
settings, or their tendency to be outcompeted by poorer performing strains (Basso et al. 2008; in terms of the

final ethanol yield on sugars). Thus, invasion by unknown strains may harm the fermentation process and the
15
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profitability of the industry, due to decreased ethanol production and/or to higher costs involved with the use of
chemicals, such as sulfuric acid, antimicrobials, antifoaming agents and dispersants. In the case of Site B’s 2018
and 2019 seasons, we have not found a connection between general industrial metrics and inferred events of
population substitution (Fig. S11 in Supplementary Information). Nonetheless, it may still be possible that this
stability was accomplished by the employment of commonly used but costly corrective measures, such as those

outlined above.
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DISCUSSION

In this study, we described the population dynamics of the yeast used for bioethanol production via fermentation
in sugarcane-based biorefineries through the course of two fermentation seasons (2018 and 2019) in two
independently run industrial plants. The method we developed for this purpose allowed for an unprecedented
description of how the starter strains used in the process change in frequency through time and how the
fermentation environment may be invaded by foreign strains. We observe that these large populations (estimated
to be ~10" individuals) harbor a vast amount of genetic diversity, recovering ~8% of alleles previously found in a
S. cerevisiae-wide survey (Peter et al. 2018), plus novel ones. This diversity is not only observed in invading strains,
but also within the starter strains themselves, whose same subtypes are sampled across years and sites (most
notably the two major groups within PE-2; Fig. 2A). This may be due to how propagation companies, which sell
large initial inocula to bioethanol producers, keep and propagate their own stocks: companies may not start from
single colonies every year, and de novo mutations may accumulate during propagation. Similar observations of
strain genotypic (and phenotypic) heterogeneity have also been made in the baking, wine and beer industries

(Racz et al. 2021).

Such large populations must harbor many de novo mutations. At an approximate rate of 5 x 10~1% mutations/bp/
generation (Lang and Murray 2008), and at least 66 generations during one fermentation season, a total of

8 x 10® or more mutations should occur in a diploid population of this size. In fact, at this rate, any given SNP in
the yeast genome should independently occur ~3 x 107 times per generation. We cannot know how many of
these mutations would be adaptive in the industrial environment, but decades of microbial experimental
evolution, including in yeast populations, show that adaptation in large asexual populations is not mutation-
limited (Barrick and Lenski 2009; Levy et al. 2015; Maddamsetti et al. 2015; Good et al. 2017; Nguyen Ba et al.
2019; Johnson et al. 2021). Yet, we do not find clear signs of selection for de novo mutations in our results, which
would be observed as either an inferred lineage that increases in frequency much faster than its closely related
counterparts, or inferred lineages being deflected by some unobserved rising lineage. A likely explanation is that

the timescale of a fermentation season (in number of generations) is too short for selected lineages, carrying de
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novo adaptive mutations of a typical fitness effect, to increase in frequency enough to be sampled by our sparse
isolate picking strategy. All in all, what this suggests is that as long as starter inocula are not produced from the
previous year’s final population, or that the equipment itself is not contaminated with large amounts of previous
populations, evolution on a single-strain background is likely not a consequential factor in the timescale of a

fermentation season due strictly to the large population sizes and dynamics of selection.

Ecological dynamics may explain the observed long periods of coexistence between distantly related lineages in
both sites, such as in PE-2’s permanence in Site A 2019, or the stable relative frequencies of invader strains in Site
B 2019. While it is possible that these observations simply reflect small differences in fitness in the fermentation
environment, the large phylogenetic distance between strains argues against this hypothesis. Large genetic
differences may lead to diversity in resource usage (niche partitioning), and/or in how strains benefit or not from
each other’s presence (frequency dependence). Such ecological dynamics are by no means rare in microbiological
communities in the wild (Faust and Raes 2012; Mitri and Richard Foster 2013), and have been unintentionally
evolved in laboratory E. coli and S. cerevisiae populations (Frenkel et al. 2015; Good et al. 2017). Strain
interactions could open up avenues for designed strain mixes that take advantage of synergistic interactions in
terms of fermentation output and management. We also should not discount the potential bacterial contribution
to these dynamics, as bacteria have been shown to interact both positively and negatively with yeast during
fermentation (Rich et al. 2018; Senne de Oliveira Lino et al. 2021). The analyses carried out for the current study

do not include bacterial data, but such microbial consortia compose an interesting avenue for future work.

The fact that results have varied more between industrial plants than between years suggests that systematic
differences in industrial practices and/or starter strain mix largely explain differences in population dynamics.
Additionally, observed fluctuations in strain frequencies through time (e.g. the strain responsible for the second
substitution event in Site B 2018) indicate that fluctuations in fermentation conditions may make certain strains
more or less fit to the industrial environment. This is not unexpected, as (i) fermentors are only partially protected
from external temperature fluctuations, (ii) incoming sugarcane varieties change through the year and result in

different must compositions, (iii) the ratio of sugarcane juice and molasses in the must is adjusted daily depending
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on current sugar and ethanol prices, (iv) clean-in-place (CIP) practices are carried out on a regular or as-needed
basis, and (v) recycling practice may be adjusted depending on levels of bacterial contamination, among other
factors. Further collaborations with companies, including access to a detailed record of industrial practices and
strain-tracking as done in this study, may shed further light into the causes behind fermentation fluctuations.
These records should especially contain information on the usage of chemicals (e.g. sulfuric acid, antimicrobials,
antifoaming agent and dispersant, among others), which remediate fermentation output, but add to production

cost and greenhouse gas emissions.

Our observation that the in-house strain IRA-D dominates the process throughout the two observed seasons in
site A underscores the potential of in loco isolation of industrial strains. Invading strains have been documented to
cause harm, but they also served as the source for most if not all of the currently used strains in the industry
(Basso et al. 2008; Lopes et al. 2015; Jacobus, Gross, et al. 2021). Previous studies had shown that these known
bioethanol strains are phylogenetically related and harbor genomic signals of domestication, some which are
shared with wine strains and others that are specific to bioethanol strains (Jacobus, Stephens, et al. 2021). These
strains also cluster very far apart known natural S. cerevisiae isolates from other Brazilian biomes, further
suggesting a non-natural origin (Barbosa et al. 2016; Barbosa et al. 2018). Our results show that currently invading
strains in Site B are closely related to these known domesticated bioethanol strains. On top of that, we note that
the dominant strains across all sites and years are largely triploid, suggesting a systematic advantage of higher
ploidy in this industrial environment (Fig. S6 in Supplementary Information). Taken all together, we hypothesize
that the same patterns hold in most strain invasion events in bioethanol plants that follow a process similar to Site
A and B (Fig. 1A). The observed large genetic diversity among invading strains should be further explored as a
potential resource for future strain isolation. Strain tracking as carried out in the current study is thus not only a
useful process-monitoring tool, but also a productive assistive strategy for the selection of novel and locally
adapted industrial strains. For this purpose, industrial plants should have protocols in place for the isolation of
invading strains, record-keeping of associated fermentation metrics, and subsequent testing in blocked off
portions of the industrial pipeline and scaled-down systems that mimic the industrial process (Raghavendran et al.

2017).
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Our study used metagenomics and a newly developed framework to extract individual lineages to illuminate the
yeast population dynamics in industrial sugarcane-based bioethanol production, with the goal of finding routes
towards more consistent fermentation performance. The resolution obtained with this approach surpasses by far
previously described and utilized methods, such as chromosomal karyotyping and PCR-based methods. Our
approach also requires less clonal picking effort than these methods, as corroborated by inference on rarefied
clonal data (see Supplementary Information). We observed that over two sampled production periods in two
independent industrial units, the yeast population dynamics varied more dramatically between units than
between years. In one site we observed dominance and persistence of an in-house strain in both years, whereas
in the other site, foreign strains invaded the process and displaced the starter strain used to initiate the
production period. The several individual clones sequenced, including invading strains, are phylogenetically
grouped with other known bioethanol strains, producing strong evidence that the invading strains originate from
the sugarcane environment itself, and not from natural niches. The data presented, as well as the statistical
framework developed, represent useful material for future investigations on sugarcane biorefineries (as well as
other microbial communities of mixed ploidy). This, in turn, might lead us to a deeper understanding of the yeast
and other microbial ecology in this peculiar environment, opening the way for process improvements, decreased
consumption of costly chemicals, and increased ethanol yields. A potential new paradigm of industrial practice
includes the design of synergistic yeast strain mixes, and the inoculation of beneficial (or probiotic) bacteria in the

process.
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MATERIAL, DATA AND CODE AVAILABILITY

Clonal isolates are available upon request. The Supplementary Information contains a detailed description of the
lineage inference pipeline, as well as all Supplementary Figures. File S1 shows the allele frequency and coverage
along the genome for all clonal isolates. Files S2 and S3 contain the Newick format data for trees in Figs. 2A and
6A. Tables S1-S4 have information on sampled fermentation timepoints, clonal isolates, and Site B fermentation
metrics. Raw sequencing reads for clonal and metagenomic samples have been deposited in the NCBI BioProject
database under accession number PRINA865262. Code for the variant calling pipeline, lineage inference, and
figure generation, as well as parsed called variant data for clonal and metagenomic samples can be found in the

GitHub repository (https://github.com/arturrc/bioethanol inference).
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Figure 1. Schematics of the fermentation process and sequencing strategy. (A) A large population (~10"
individuals) of the yeast S. cerevisiae is maintained over the course of an eight-month-long fermentation season.
Yeast ferments must, a mix of molasses, sugarcane juice and water, to produce ethanol in a fed-batch process
that takes ~8h and runs in a staggered parallel fashion across several fermentors (8—16 in any one plant, each with
a ~500,000 { capacity). The fermented broth (wine) from different fermentors is loaded into a single holding tank,
which continuously feeds a centrifuge for separation of the yeast from the liquid fraction. Holding tanks are larger
than fermentors themselves and allow for mixing between batches. The yeast cells are then treated with
chemicals to control for bacterial growth and are later reused in the process. The yeast population grows by ~10%
every 12h, leading to approximately 66 generations over the course of an ~¥8 months fermentation season. The
season is started with selected industrial strains which are commercialized by yeast suppliers. (B) We collected
whole-population samples of the yeast used for fermentation through two seasons (2018 and 2019) in two plants
(Site A and Site B) located ~18 km apart in the state of S3o Paulo, Brazil. The two plants are owned by different
companies and use different sets of starter strains in their process. We employed a combination of whole-
population metagenome sequencing and clonal whole-genome sequencing to observe the temporal dynamics of

genetic diversity in each site-year. See Tables S1-3 for a complete list of collected samples and isolates.

Figure 2. Yeast populations in bioethanol fermentors are genetically diverse and dynamic. (A) Phylogenetic tree
of isolated clonal strains from all site-years, as well as known starter strains used. Most isolates are closely related
the known starter strains, but several are not. The tree was inferred with a maximum likelihood model using the
data of 27,229 SNPs. Ploidy of each isolate, assessed as described in the Methods, is indicated by diamonds.
Nodes and tips are colored as in Figs. 4 and 5. The tree is rooted in the same place as the independently inferred
tree in Fig. 6. Isolates are grouped as in Figs. 4—6. Isolates are named as <site><year>:<timepoint>(<letter
identifier>), while starter strain isolates are marked with an asterisk. The associated Newick tree can be found in
File S2. The allele frequency data used for ploidy assessment can be visualized in File S1. Selected examples of a
diploid and triploid strain can be seen in Fig. S8 in Supplementary Information. (B) Frequency of alternate allele (in
relation to the reference genome of strain s288c) through time for an arbitrary subset of 2000 mutations (out of

~100k) per site-year. Overall, mutation trajectories indicate alternation between periods of stasis, when one
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major strain dominates, and periods of transition, when many mutations change in frequency in a correlated way
indicative of strain dynamics. Noise in mutation trajectories comes from random sampling (approximately

binomial), as well as sequencing and mapping errors, which is not homogeneous across mutations.

Figure 3. Schematics of lineage inference procedure. We use temporal metagenomics and clonal isolate whole-
genome sequencing to infer the unobserved frequencies of asexual lineages in the original population over the
course of a fermentation season. (Upper left) Starter, invading, and newly mutated lineages change in frequency
through time due to selective and random factors. (Lower left) A phylogeny of clonal isolates is used to select the

sets of clade-defining variants (colored bars on tree branches) that we will later search in the metagenomic data
and use for lineage inference. (Upper right) At each timepoint t, we jointly infer the frequencies f of all asexual

lineages by optimizing a likelihood model offgiven the metagenomic allele counts x;,,, of variant m, which is a
clade-defining variant for lineage [, the read depth d,;,, and the variant’s genotype g,, (which takes values 0, 0.5
or 1 for diploid, and 0, 1/3, 2/3 or 1 for triploid lineages). The frequencies of all lineages are jointly inferred and
constrained such that the summed frequencies of sister lineages do not exceed that of the respective parent
lineage. (Lower right) Undersampling of genetic diversity by isolates will cause whole lineages to be left out, but

that should not bias the frequency estimation of included lineages.

Figure 4. In Site A the in-house starter strain IRA-D consistently dominates over other starter strains. On the
left, inferred strain dynamics in Site A over the two fermentation seasons. White space corresponds to non-
inferred genetic diversity in the population. On the right, subtrees of the tree in Fig. 2A including only the isolates

from each respective site-year. Circles on nodes and tips indicate inferred lineages and their respective colors.

Figure 5. In Site B, a group of diverse invading strains systematically takes over the process. Despite the genetic
diversity among invader strains, they seem to coexist, except for the second substitution event in 2018, which
involves a different set of invading strains. In the 2019 fermentation season the process starts with a large

amount of an unexpected unknown strain. See Fig. 4 for a description of the diagrams.

Figure 6. Starter and invader isolates all cluster together within a larger group of Brazilian Bioethanol strains.

(A) A SNP-based maximum likelihood phylogeny combining isolates from the current study and from the 1011
27



634

635

636

637

638

639

Yeast Genomes Project (Peter et al. 2018). Other groups of domesticated strains are highlighted for reference.
This tree was inferred based on 42,012 SNPs. (B) Subtree of bioethanol-related isolates. Isolates from the current
study are closely associated with isolates from the bioethanol industry and cachaca distilleries (a sugarcane-based
spirit). Individual isolate origins are indicated with colored rectangles. Branches are collapsed to aid visualization.
A full phylogeny can be seen in Fig. S10 in Supplementary Information, and its associated Newick tree can be

found in File S3.
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INFERENCE OF POPULATION DYNAMICS

As described in the Methods, we assume that the population at each site-year is composed of a large but finite
number of clonal strains which are related by some phylogenetic history in a tree-like manner. Clades in this tree
represent lineages of descent from a common ancestor and is what we will be referring to as lineages throughout
the text.

Our goal here is to (i) use the whole-genome clonal isolate data to identify as many as possible sets of lineage-
defining synapomorphic alleles, and (ii) use the metagenomic frequencies of these synapomorphic alleles to infer
their respective lineage frequencies in the population through the course of a fermentation season. By doing this,
we ignore correlation between mutations in the metagenomic data as signal of coinheritance, something that has
been previously done in literature [refs]. The advantage of following this route is higher power to identify low-
frequency lineages, whose mutations’ metagenomic trajectories would be too overpowered by noise to ever have
a significant correlation signal (although our ability to identify these low-frequency lineages is still ultimately
limited by the clonal isolate sampling).

In spirit, we follow a strategy similar to that of [Tami’s paper], with the important difference that our populations
are highly diverse and non-haploid. The consequence is that a large number of mutations will be unsuitable for
inference, either because they are not monophyletically shared in the inferred phylogeny, or because their
genotype (i.e. number of allele copies within an isolate’s genome) varies among isolates that carry it, thus
complicating the mathematical relationship between lineage frequency in the population and allele frequency in
the metagenomic data.

Lineage assignment

We will define lineages as monophyletic clades in the phylogenetic tree inferred for all isolates from our
experiment, which is in principle an unrooted tree (Fig. 2A). Since we observe (in a second inferred tree of all our
isolates and those from the 1011 genomes project; see Methods for details) that all Brazilian bioethanol isolates
cluster together, and within that cluster the SA-1 isolates are the most basal among our isolates (Fig. 6B), we root
that first tree of isolates in the analogue node (as shown in Fig. 2A). From this rerooted tree, we define all
lineages, (i) which include the very base of the tree with all isolates in the experiment, (ii) all internal nodes and
their respective descendant isolates, and (iii) each tip with its associated isolate. Note that since this tree is
inferred from isolates, it is most likely undersampling the genetic diversity of the population. Some lineages,
especially the smaller ones, will most likely be missed (as illustrated in Fig. 3).



Finding lineage-specific alleles

For each one of the lineages defined above, we first would like to find a set of alleles that are unique to it. We
cannot assess all individuals in the original population, and so instead we use the observed alternate allele counts
and depth of coverage at variant sites in the clonal isolate data as a proxy. Therefore, for each lineage, we first
flag all variant sites for which either (i) counts in all lineage members are larger than zero, while counts in non-
lineage members are zero, or (ii) counts in all lineage members are less than the depth, while counts in all non-
lineage members equal the depth. The second case covers variant sites for which the reference allele is the
derived (synapomorphic) one in the phylogeny. For these mutations, in all analyses described below, counts will
refer to the count of reference allele (instead of alternate allele).

If the lineage under consideration has a single isolate, then all flagged mutations are kept. Otherwise, we must
select only those mutations for which we believe all isolates in the lineage to have the same genotype. For a

diploid strain, the genotype of the mutation m in isolate i takes values g,,; € {0, 1/2 , 1}, while for a triploid

strain, gmi € {0, 1/3 , 2/3 , 1}. For this reason, we exclude from further analyses any lineages composed of a mix
of diploid and triploid isolates. For each of the mutations flagged for a lineage we apply a statistical test of
genotype heterogeneity, explained in more detail in the section below, where the null hypothesis is that all
isolates in the lineage carry that mutation at the same genotype. We then use a procedure similar to Benjamini-
Hochberg to select mutations for which we do not reject the null at a False Omission Rate of 0.05 (defined as false
negatives/[false negatives + true negatives]).

We apply some filters before arriving at a final list of lineages and mutations for later frequency inference. First,
we only keep those mutations that we also observe in the metagenomic dataset. Second, we limit the total
number of mutations in a lineage to 500 to keep later steps computationally tractable. When this limit is imposed,
mutations are chosen arbitrarily. Third, we filter mutations based on their observed depths in the metagenomic
dataset, as they suggest underlying read mapping issues: we remove any mutations that have median depth in the
metagenomic data lower than 10, or that has any metagenomic timepoint with depth equal to 0. Finally, we
exclude any lineages for which we have selected 3 or less mutations, as we have observed that to result in noisy
frequency inference.

Genotype heterogeneity test

As described in the section above, we would like to test whether a mutation is carried at the same genotype
across all isolates from a lineage. For that we do a chi-squared test of goodness of fit to the model that all isolates
have the same genotype.

Let a,,; and b,,;; be the counts and depths of mutation m in isolate i. We first would like to define a generative
model for the data so that we can compute the likelihood P(a,,;|bmigmi)- We choose a simple approach that
assumes that a,,; is largely binomially distributed, except for a small probability of random errors, which can shift
the count a,,; upwards or downwards. These errors may come from any of the preceding steps in data generation
and analysis (e.g. sequencing and mapping errors), and they need to be accounted for the correct genotyping of
homozygous sites that show a small (erroneous) count towards the opposite allele. We assume that the observed
count ay,; is the result of a mixture of two populations of reads observed at site i: true and error reads. The b';
true reads contribute with an alternate allele count a,Tni~Binom(b,Tni, gmi), while the bZ; error reads contribute
with an alternate allele count af;li~Binom(b,§1i, 0.5). We further assume that error reads are independent of

each other and occur with equal probability peyror, such that bE  ~Binom (b, Perror)- Since bZ; and aZ,; are
unobserved quantities, we marginalize over their possible values, and thus

by min(bg;am)

P(amilbmigmi) = 2 Z P(al; = ami — aby|bhi = bmi — by, gmi)P(aly|bh) P(bEi|bmi),
E.=0

E _
bmi_0 Ami



where each probability above is calculated based on the probability mass function of the binomial distribution.
Finally, we assume pg;or = 0.01, which accomplishes our goal of a less stringent genotyping criterion at
homozygous sites (Fig. S1).

If the null hypothesis that all isolates have the same genotype is true, then all inference could be done on the
summed counts and depths a,,, = X;a,,,; and b,, = X;b,,;, in which case the most likely genotype g, for that
mutation is

Gm = maxg, [P(an|bm, gm)],
where P(a,;|by, gm) is calculated as described above.
We calculate the expected counts if the null is true as @,,;; = Gmbmi, With which we compute the test statistic
X% =Y, (amia\_d‘mi)z.
mi
If @y > 5 for all i, we compute an exact p-value taking X%~ x%_uofisolates—1 Under the null assumption.

Otherwise, we calculate an empirical p-value from 1,000 permutations of alternate and reference allele
observations keeping the isolate depths constant.

Genotype posterior probability

In the later lineage frequency inference step, we would like to marginalize the likelihood of a mutation’s
metagenomic counts and depths by its genotype g,,,, which effectively serves to downweight mutations for which
we have less certainty about their genotype. For that we use an Expectation-Maximization procedure. We
compute the posterior probability of the genotype g,, given the summed isolate clonal counts and depths a,, and
b, (see section above) as

P(am|gmbm)P(Gm)
g P(am|g;;1:bm)P(g:n)’

P(gmlam: bm) = 5 am~Binom(bm, gm)-

At first, we assume a uniform prior for P(g,,), but having calculated the posteriors, we can update the priors as

P(gm) = Zm*P(gm* = gmlam*vbm*)r

where m”* iterates over all mutations selected for a given lineage. We iterate over the two equations above until
values converge enough, using a stop criterion on the change per iteration of the total likelihood of the data.

Joint inference of lineage frequencies in the metagenome

At this point, we have a list of lineages and their associated synapomorphic mutations. Note that, by definition,
there is no overlap between the mutations used to identify any two lineages. We would like to use the
metagenomic data for these mutations to infer the frequencies of the lineages during the fermentation season.
For now, we will infer the frequency f;(t) of chromosomes of lineage [ among all chromosomes in the population.
This differs from the frequency f;"(t) of individuals of lineage [ among all individuals in the population because
our populations are composed of a mix of diploid and triploid strains. We calculate this latter quantity in the
section below.

We will do this inference independently for each timepoint, to avoid having to assume any particular model about
how these lineages change in frequency through time. At each timepoint, we infer frequencies for all lineages
jointly. If we allowed frequencies to vary freely, this would be equivalent to inferring each lineage’s frequency
independently. However, our lineages are hierarchically organized according to the inferred phylogenetic tree
used to define them (as shown in Fig. 2A): we will use the term parent, child, and sibling lineages to point to the
relationship between lineages in this hierarchy. In the most basal part of the tree, we will have one or more

lineages that have no parent. Therefore, the frequencies f(t) of all lineages at a timepoint t are constrained by
the set of inequalities



Yues fi(t) < 1, for the set of sibling basal lineages B, and
Zzecpfz(t) < fp(t), for the set C,, of children of a given lineage p.

We assume that the error in metagenomic counts for different mutations are independent from each other,
which is an assumption that only breaks in the case of mutations that are close enough in the genome that they
may be covered by a same sequencing read. We therefore calculate the likelihood of a given model of lineage
frequencies given the data as (suppressing t for convenience)

£(fdata) = [T, TIn Xg,,, P Ctm|dmy Gy 1) P (G| @y b)),

where x,,, and d,,, are the counts and depths of mutation m in the metagenomic data, and we assume
Xm~Binom(d,, gmfl)

We maximize the likelihood model above using a gradient descent method with a log-barrier that bounds
solutions to the inequalities above as implemented in the function constrOptim in base R [ref]. To make this

inference computationally tractable we do not infer the frequencies of all lineages at once, and instead follow an
iterative procedure where at each step we infer the frequencies of a parent and all its children jointly starting
from the most basal lineages:

(1) jointly fit frequencies of basal lineages [ € B, keeping Y,;cg fi(t) < 1;
(2) randomly sort basal lineages; following this order jointly fit the frequency of basal lineage p and children
lineages Cp, with inequalities

fp <1- Zp*eB|p*¢p fp*r and
Yiec, fi(t) < f(0);

(3) keep this new frequency f,;
(4) for each fit grandparent lineage g, randomly sort its (also already fit) children Cg; following this order, fit
jointly the frequencies of lineage p € C; and its respective children [ € €, with inequalities

fo<fg— Zp*ecglp*ip fp» and

Yiec, i) < f(0);

(5) keep this new frequency f;
(6) repeat steps (4) and (5) until there are no more lineages to be fit.

We show inferred f(t) for all four site-years in Figs. S2A, S3A, S4A, and S5A.

Calculation of lineage frequency in the population

Having inferred the frequencies f(t) of all lineages in the metagenome, we proceed to calculating frequencies

-

f*(t) of all lineages in the population. These two quantities are related as (suppressing t for convenience)
b ..
fi==h
p

where p; € {2,3} is the ploidy of lineage [, and p is the mean ploidy in the population. Notice that if the whole
population is composed of individuals of the same ploidy, then f; = f;".

We cannot directly assess the ploidy of all individuals in the original population, so instead we use inferred f(t)
and respective lineage ploidies to estimate the mean ploidy in the population, but with two caveats. First, our
isolate sampling may have missed ploidy heterogeneity within lineages. Second, our inference is not bound to
infer frequencies that sum to 1 in the population, and thus may leave some portion of the population uninferred
and of unknown ploidy. This is not a significant fraction in our study (see Figs. $2-S5), but it may be in other
systems. We therefore make two assumptions: that (/) we are not missing ploidy heterogeneity in the inferred



portion of the population, and that (ii) any non-inferred portion of the population has the same mean ploidy as
the inferred portion.
Let F,(t) and F3(t) be the total frequency of diploid and triploid strains in the metagenome as computed from

inferred f(t). The frequencies F; (t) and F5(t) of diploid and triploid strains in the population are, thus, given by
(suppressing t for convenience)

YTE R
2 3
from which we compute the mean ploidy in the population as

p = 2F} + 3F3.

+ [

We show computed F, (t) and F; (t) in Fig. S6, and inferred f*(t) in Figures 4 and 5 of the main text. Effectively,
they only slightly deviate from inferred f(t) (Figs. S2—-S5).

VALIDATION ON RAREFIED CLONAL DATA

In this section, we assess the robustness of the inference procedure described above with respect to changes in
the composition of picked clones in our dataset. To do this, we rarefy the data by selecting a simple random
sample of 20, 10, or 5 among picked and starter clones for each of the four site-years. We then infer the lineages
and their frequencies using only this subset of the clonal sequencing data while keeping the metagenomic
sequencing dataset constant. To restrict this validation to the lineage inference procedure itself, we do not reinfer
the clone phylogeny based on the rarefied clone dataset. A full account of phylogenetic uncertainty on the results
of the inference requires substantial investigation and is beyond the scope of the current work.

Our analysis reveals that the rarefied clonal data largely preserves the large-scale lineage dynamics across all four
site-years (Figs. S2-S5). This finding indicates that our inference method is generally robust to clonal
undersampling. Reducing the number of picked clones reduces the number of inferred lineages in a size-
dependent way. Larger lineages that dominate the dynamics are also more likely to be represented among picked
clones, and their inferred frequencies are overall robust to undersampling. On the other hand, increasing the
number of clones breaks large lineages down into smaller sublineages, allowing for the observation of finer-grain
dynamics.

As anticipated from the inequality-constrained joint inference procedure, we note that the estimate of lineage
frequencies becomes less constrained the less lineages there are in the inference. For example, the significant
sweep observed in the last few timepoints in Site A — 2018 is not reflected in the estimate of sampled lineages in
the rarefied dataset of 5 clones (Fig. S2D). Consequently, it remains desirable to sample sufficient clonal diversity
in the population to more effectively constrain the inference. In practical terms, we suggest a similar rarefaction
analysis to assess whether enough clones have been sampled in any particular study that uses this inference
procedure.



Supplementary

Genotype posterior probability

Figure S1. Probability of isolate data given genotype allowing for sequencing error. We show the computed
probability of observing an alternate allele count value based on a given depth of coverage at that site, the
probability of count errors pg,ror (€ in the figure), and the isolate ploidy.
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Figure S2. Inferred frequency of lineages in the metagenome for Site A—2018. We show the inference results
for (A) all picked clones, or a simple random sample of (B) 20, (C) 10, or (D) 5 of clones. Lineage frequencies

-

f(t) are inferred with the procedure described in the sections above and are later used to compute the

frequencies f * (t) of lineages in the population, as shown in Figs. 4 and 5. Lineages are color-labeled as in Fig.
4 and 5.
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Figure S3. Inferred frequency of lineages in the metagenome for Site A—2019. We show the inference results
for (A) all picked clones, or a simple random sample of (B) 20, (C) 10, or (D) 5 of clones. Lineage frequencies

f(t) are inferred with the procedure described in the sections above and are later used to compute the

frequencies f * (t) of lineages in the population, as shown in Figs. 4 and 5. Lineages are color-labeled as in Fig.
4 and 5.
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Figure S4. Inferred frequency of lineages in the metagenome for Site B —2018. We show the inference results
for (A) all picked clones, or a simple random sample of (B) 20, (C) 10, or (D) 5 of clones. Lineage frequencies

-

f(t) are inferred with the procedure described in the sections above and are later used to compute the

frequencies f * (t) of lineages in the population, as shown in Figs. 4 and 5. Lineages are color-labeled as in Fig.
4 and 5.
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Figure S5. Inferred frequency of lineages in the metagenome for Site B —2019. We show the inference results
for (A) all picked clones, or a simple random sample of (B) 20, (C) 10, or (D) 5 of clones. Lineage frequencies

-

f(t) are inferred with the procedure described in the sections above and are later used to compute the

frequencies f * (t) of lineages in the population, as shown in Figs. 4 and 5. Lineages are color-labeled as in Fig.
4 and 5.
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Figure S6. Inferred fraction of diploid and triploid strains along time based on inferred lineages' frequencies and

ploidies. Estimated frequencies in both the metagenome (i.e. fraction of genetic material of the population that
can be assigned to diploid or triploid individuals) and in the population (fraction of individuals) are shown. See
Section "Calculation of lineage frequency in the population" of the Supp. Information for details.
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Figure S7. Histogram of number of isolates observed to carry a given alternate allele in the clonal sequencing

data. Starter strains were excluded.
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Figure S8. Representative examples of diploid and triploid whole-genome allele frequency distribution in the
clonal sequencing data. The y-axes are cropped for better visualization.
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Figure S9. Distribution of maximum inferred frequency (over all timepoints) for all 197 inferred lineages across
all site-years.
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P

Figure $10. Midrooted labeled version of the tree in Fig. 6A. Clones from this study are labeled as in Table S2 and
S3. Clones from the 1011 YGP are labeled as in Supp. Table 1 of Peter and colleagues (2018).
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Figure S11. Fermentation metrics in Site B show no clear relationship with invasion by foreign strains. We show
weekly data over the 2018 and 2019 fermentation seasons for (left) ethanol content of fermented wine, (middle)
total bioethanol output, and (right) fermentation yield, as a measure of amount of ethanol produced out of a
theoretical maximum. A running average is shown as an aid (orange line). The raw data can be found in Table S4.
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