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A B S T R A C T   

Enhanced water management systems depend on accurate estimation of subsurface hydraulic properties. How
ever, geologic formations can vary significantly, so information from a single source (e.g., widely spaced 
boreholes) is insufficient in characterizing subsurface aquifer properties. Therefore, multiple sources of infor
mation are needed to complement the hydrogeology understanding of a region. This study presents a numerical 
framework in which information from different measurement sources is combined to characterize the 3D random 
field in a multi-fidelity prediction model. Coupled with the model, a Bayesian experimental design was used to 
determine the best future sampling locations. The Upper Sangamon watershed in east-central Illinois was 
selected as the case study site, where the multi-fidelity Gaussian process model was used to estimate the hy
draulic conductivity in the region of interest. Multi-source observation data were obtained from electrical re
sistivity and borehole pumping tests. The accuracy of the model prediction is dependent on the locations and the 
distribution of both high- and low-fidelity data. Furthermore, the multi-fidelity model was compared with the 
single-fidelity model. The uncertainties and confidence in the measurements and parameter estimates were 
quantified and used to design future cycles of data collection to further improve the confidence intervals.   

1. Introduction 

Reliable prediction of hydraulic properties of subsurface formations 
is a crucial step in improving water management systems. There are 
various testing approaches to obtain information from the given area of 
interest. Borehole cross-pumping test is a traditional, reliable method to 
directly measure subsurface hydro-geophysics properties such as hy
draulic conductivity (Reinhart 2006; Hamm et al., 2007). There are 
several types of cross-pumping tests. Constant-rate pumping test is one 
of them, which directly measures the steady water flow underground by 
maintaining a constant hydraulic head gradient across the subsurface. 
However, although borehole testing can provide relatively 
high-confidence measurement results, drilling a borehole to obtain the 
information at just one specific location is expensive and 
time-consuming. On the other hand, electrical signal measurement such 
as earth electrical resistivity (EER) and electromagnetic induction have 
been broadly used in hydro-geophysics investigations (Lesmes and 

Friedman, 2005). These tests introduce electrical current into the sub
surface and measure the resistivity via several receivers along the 
transect, which provides continuous hydro-geophysics information in 
the measured region without intruding into the ground. However, this 
type of measurement requires direct or inverse empirical relations be
tween electrical and hydro-geophysical properties. Several studies have 
examined factors influencing relationships between electrical resistivity 
and hydraulic properties of aquifers (Kelly 1977; Mazáč et al., 1985; 
Niwas and Singhal 1985; Yadav 1995; Sikandar and Christen 2012). For 
example, Mazáč et al. (1990) studied the relationships between hy
draulic conductivities and rock resistivities, and they examined the role 
of the distribution of hydraulic conductivity on dynamics of pollution 
spreading in rock medium. These relationships are sometimes 
case-specific and not universal for all locations. Also, soil saturation and 
temperature can affect these relationships as well (Khalil and Santos, 
2009). Therefore, the estimation can cause tremendous errors if not used 
properly. 
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Hydraulic conductivity of geologic formations can vary by orders of 
magnitude over relatively small spatial scales, so characterizing sub
surface aquifer properties using only the information acquired from a 
widely spaced single measurement is challenging and potentially inac
curate. One method that has been widely employed is to use an inte
grated exploration approach in which borehole and other geophysical 
datasets are jointly interpreted (Lesmes and Friedman, 2005). Numerous 
studies have used information at different levels of fidelity to estimate 
hydraulic conductivity for groundwater system models (Asher et al., 
2015; Zhang et al., 2018). These multi-fidelity (MF) models combine 
low-fidelity (LF) data with high-fidelity (HF) data to approximate the 
prediction with an accuracy that is better than that offered by a 
single-fidelity (SF) model (Peherstorfer et al., 2018; Fernández-Godino 
et al., 2016). The terms “HF data” and “LF data” refer to different levels 
of detail and accuracy of the data. HF data refers to data that is precise, 
accurate, and of high quality, with a high level of detail and granularity, 
while LF data, on the other hand, refers to data that is less accurate, less 
precise, and of lower quality, with a lower level of detail and 
granularity. 

Forrester et al. (2007) first proposed a global optimization strategy, 
using MF surrogate models to include multiple levels of information into 
the predictions, which is called “MF kriging”. In MF kriging models, data 
points obtained from sensors with different fidelity levels are fit with 
different surrogate models that provide estimation and prediction 
without the need to obtain a large number of expensive tests or run 
expensive numerical simulations. Among the surrogate models, the 
Gaussian Process (i.e., kriging) has been widely used in MF groundwater 
modeling (Zaytsev and Burnaev, 2017). Compared to the traditional 
co-kriging method that uses information from correlated variables to 
improve the accuracy of predictions, which involves modeling the cor
relation between two or more variables, MF kriging focuses on using 
data from multiple levels of fidelity to improve the accuracy of spatial 
predictions by incorporating information from multiple sources. The MF 
models facilitate the usage of data with different levels of fidelity by 
combining a HF function (a more accurate but expensive representation 
of a physical phenomenon) with a LF function (a less accurate but 
inexpensive representation of a physical phenomenon). Asher et al. 
(2015) and Fernández-Godino et al. (2016) extensively surveyed several 
data-driven methods of combining fidelities with a primary focus on 
kriging models for MF applications. This focus was particularly because 
such a Gaussian process entails an uncertainty structure that readily 
lends itself to an MF modeling approach (Fernández-Godino et al., 
2016). A more recent study by Zheng et al. (2018) employed MF 
Gaussian surrogates to propose an adaptive MF ensemble smoother for 
data assimilation to reduce the high computational cost for character
ization of model parameters in ensemble-based methods. 

However, numerous questions remain unanswered in predicting 
hydraulic properties of subsurface formations in watersheds. For 
example, how many field tests need to be conducted to achieve the 
desired accuracy of the estimation, and what if the existing data points 
are sparse? Many studies have confirmed the usage of MF kriging models 
for predicting the hydro-geophysical information in a specific region 
with abundant HF and LF data, but few studies have focused on dis
cussing the effects of HF and LF data location distribution, especially in a 
data-sparse situations. Another subject that has not been fully addressed 
is to understand how data fidelity associated with different tests would 
affect future test locations. Recently, Menberg et al. (2020) used an MF 
approach along with Bayesian parameter estimation in subsurface heat 
and fluid transport models to include information from a more physi
cally accurate but expensive HF model, as well as a large number of 
evaluations from a less accurate, less expensive LF model. The study 
demonstrated that the combined information from sources with 
different fidelities substantially improved the posterior distribution re
sults, which may be important for determining future test locations to 
optimize the information gained from newly implemented data sources. 

In this study, we present a quantitative MF framework to combine 

information from EER measurements and pumping (borehole) mea
surements with different fidelities and accuracies to enhance the un
derstanding of hydro-geophysical characteristics. For the first time, we 
specifically address the effect of data locations from data with different 
levels of fidelity under sparse data distributions. Also, we investigated 
how future test locations with different fidelities should be conducted to 
optimally enhance our understanding of the geo-hydraulic properties of 
a region according to the new information gained. As a sample case 
study, we selected an intensively managed area located in the Upper 
Sangamon watershed in east-central Illinois as the study site. Traditional 
high-accuracy pumping test data were used with small-scale EER mea
surements to generate 2D maps of hydraulic conductivity over a large- 
scale region with quantified uncertainties in different depth layers. Ac
cording to the MF kriging framework, the discussions focused on how 
the distribution of data with different fidelities would affect the model 
accuracy, especially with sparse data points. We further discussed how 
the MF model can learn from new sensors using probabilistic statistical 
tools to select the best locations for future data collection. The approach 
was based on the Bayesian experimental design, which selects the best 
locations from a set of candidate locations according to the value of 
information that each location is expected to offer (Norberg and Rosn, 
2006). By relating the expected value of information from each location 
to the present levels of uncertainties in the MF kriging model, we thus 
can pick the best location with the most information gain. The proposed 
method can serve as a quantitative decision support framework to 
optimally conduct tests with different cost and accuracy levels. 

The remainder of this paper is organized as follows. In Section 2, we 
provide the theoretical background, which includes detailed informa
tion about site selection, observation data, lognormal ordinary kriging 
(LOK), MF LOK, and optimal Bayesian experimental design. In Section 3, 
we show the topography of the Upper Sangamon watershed and discuss 
how the EER and pumping test data were obtained, and how the multi- 
source data were used in SF kriging with multiple data sources, and MF 
kriging. In Section 4, we discuss the effect of fidelity on the estimated 
field and the estimation accuracy followed by the distribution of LF and 
HF data points. The application of optimal Bayesian experimental design 
for obtaining optimal future sampling locations is also presented. 
Finally, Section 5 provides discussions and conclusions. 

2. Method 

2.1. Study site 

The Sangamon River is a major tributary to the Illinois River with the 
confluence near Chandlerville in Cass County, llinois. The watershed 
spreads across seven counties in east-central Illinois: Champaign, 
Christian, Dewitt, Ford, Macon, McLean, and Piatt. The major urban 
areas within the watershed are Decatur, Monticello, Mahomet, Rantoul, 
and Gibson City. It is intensively managed for soybean and corn pro
duction and is among the five watersheds in Illinois that are identified as 
most in need of attention for water supply planning and management 
(Mattia et al., 2018). The predominant land use in the watershed is row 
crop agriculture, which comprises nearly 90% of the land area (Keefer 
et al., 2005). As an intensively managed landscape, this region is at risk 
for deterioration of land and water systems. Therefore, more observa
tions are needed to understand and predict the behavior of natural 
services (ecological, hydrological, and climatic services) that support 
basic human needs such as water, food, and energy. 

2.2. Data description 

Based on the geological properties of subsurface formation, hy
draulic conductivity is spatially correlated but sometimes can vary 
significantly. Hence information from a single source is insufficient, 
indicating the need of multiple sources of information to complement 
the hydrogeology understanding of a region. In this study, two types of 
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field observation data, EER measurement and pumping tests, were used 
as data sources with different fidelities to estimate hydraulic conduc
tivity of the Upper Sangamon watershed using a MF Gaussian Process 
model (more details in Section 2.4). Fig. 1 shows the data locations. 

The pumping test involved pumping from a test well at a controlled 
rate and monitoring the flow rate through the drawdown at different 
locations along the radial axis from the test well. Hydraulic conductivity 
values of aquifer material as determined from pump tests and aquifer 
tests varies spatially but not as much temporally. Repeated pump tests 
may show changes in hydraulic conductivity at the well skin of pro
duction wells (or within gravel packs immediately surrounding well 
screens) but repeated long-duration aquifer tests would provide similar 
values over time. The measured hydraulic conductivity values of aquifer 
material can provide convincing values. Therefore, pumping test mea
surements have been well recognized as one of the most reliable ways to 
measure soil hydraulic conductivity with high-fidelity, meaning that the 
data is accurate and precise with high quality and less errors or dis
crepancies, which provides a true and faithful representation of the true 
value in the real field. However, because of the high cost of drilling a 
well, limited data can be collected. 

EER measurement has also been widely applied to estimate hydraulic 
conductivity of the subsurface based on a 2D resistivity model of the 
relationships between aquifer hydraulic and electrical properties (Kelly 
and Frohlich 1985; Slater 2007; Khalil and Santos 2009; Tizro et al., 
2010). The measurement relies on testing with a dipole–dipole electrode 
configuration in a vertical 2D plane of the field, which is commonly used 
in 2D electrical resistivity surveys because it provides good resolution of 
subsurface structures with high sensitivity to lateral changes in re
sistivity. In the array, current is injected into the ground using two 
current electrodes, and voltage measurements are made using two pairs 
of potential electrodes placed at a distance from the current electrodes. 
The distance between the current and potential electrodes is increased 
systematically to obtain measurements at various depths. The 

dipole-dipole array is particularly useful for detecting planar variations 
vertically and horizontally in subsurface resistivity to infer the hydraulic 
conductivity. However, the accuracy depends on the equipment preci
sion. Hence, the measurement has lower cost but also lower fidelity due 
to its lower accuracy compared with traditional pumping (borehole) 
testing. In general, EER values are known to vary. There are many fac
tors that can affect the measured resistivity, like soil texture, clayey 
matters, pore structure, and temperature. The greatest variability 
generally comes from the changes in saturation conditions and tem
perature (Khalil and Santos, 2009). Within the Upper Sangamon 
watershed, the water table is within a few meters of the ground surface 
except in areas of very steep slopes and very coarse materials. These 
areas are a small percentage of the entire area and thus can be neglected 
at the scale of this study. There is some variation from temperature, but 
we neglected this effect because it is small within the context of this 
generalized study. 

EER measurement provides a continuous estimation of hydraulic 
conductivity in a small vertical plane (~800 m long and ~80 m deep). 
To apply the EER data together with the pumping test data in the MF 
Gaussian Process model, we need to ensure that two data sources pro
vide the same physical meanings. Therefore, EER has to be converted to 
hydraulic conductivity since pumping tests directly provide the hy
draulic conductivity information. A study by Lu et al. (2019) demon
strated that the relationship between the soil’s hydraulic conductivity, 
K, and electrical conductivity, σEC, follows an exponential function form 
as K = ae−bσEC + c, where the parameters a, b, and c can be estimated 
using the calculated σEC in soil layers, which is the inverse of the re
sistivity data captured by EER testing. According to their experiment 
results with sands, when K is a dependent variable, the given best fitted 
empirical parameters can be obtained by fitting to a comprehensive data 
set: 

Fig. 1. Locations for data in the Upper Sangamon watershed. The Black dashed line represents the Upper Sangamon watershed. Blue circle markers represent the 
pumping test data locations. Black cross markers represent the EER data locations. 
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a = 299.6e−0.001147σEC + 157
b = 0.2061e−0.0001535σEC + 0.004299

c = 7.996e−0.0001264σEC + 0.6567
. (1) 

As mentioned previously, many factors can affect the empirical 
relationship between the measured resistivity and K, especially the soil 
pore size. Within the Upper Sangamon watershed, the dominant soil 
types found in this area are Mollisols and Alfisols whose pore sizes can 
range from 0.1 to 1.0 mm, which is similar to the pore size of the typical 
sands (0.2 to 2.0 mm). Therefore, we assumed that Eq. (1) by Lu et al. 
(2019) is valid within the context of this generalized study. In this study, 
as the soil deposition was accumulated layer by layer, resulting in a 
consistent geological composition horizontally, after converting the 
measured resistivity, σEC, into hydraulic conductivity, K, the horizontal 
mean value of K was set as the representative value in each depth for the 
LF data input in the MF kriging model. 

Borehole pumping tests were conducted at specific locations with 
different depths. Unlike EER measurement, which provides continuous 
vertical information, pumping tests provide point information on sub
surface properties from the measurement of flow velocities within soil 
pores. They offer higher accuracy on hydraulic conductivity, which was 
set as the HF data source in MF kriging. We obtained EER data from 15 
locations with continuous depth and pumping test data from 68 loca
tions with specific depths for each test. Compared to the entire hori
zontal study domain (60km × 50km) with the relatively sparse 
distributions of the data points, both EER and pumping test can be 
viewed as point measurements in the model under nearly the same 
measurement scale in each layer. The EER and pumping tests were 
conducted by the Illinois State Geological Survey and Illinois State 
Water Survey, and the locations of the tests were originally selected to 
aid in Quaternary mapping projects and to develop communities’ water 
supply planning and management. 

2.3. Lognormal ordinary kriging 

Lognormal Ordinary Kriging (LOK) is a commonly used geostatistical 
procedure that generates an estimated mapping of geo-properties from a 
scattered set of points with scalar values based on a logarithmic trans
formation of the estimators (Balaban and Dengiz, 2018). Compared to 
the traditional ordinary kriging model, the LOK model can improve the 
calculation of statistics and weighted averages to avoid negative and 
extreme estimated values, which helps to reduce the impact of outliers 
on the estimated values (Roth, 1998). Also, the LOK model can be more 
appropriate when the variable being studied exhibits a positive skewed 
distribution, providing more accurate and realistic estimates, since it 
considers the asymmetry of the distribution. As shown in Fig. 2, the 
positively skewed distribution of K can be observed in both pumping test 
data and EER data under a normal scale. However, after we transformed 
the data on a log scale, the data looks more symmetrical without any 
extreme data. 

The LOK model algorithm follows the structure of Gaussian pro
cesses: 

ln(y) = f (x) ∼ GP(μ, K), (2)  

where x = {xi} represents the locations of the data points, y = {yi} 
represents the measured hydraulic conductivity corresponding to the 
locations x, μ is the mean value of ln(y) within the simulation domain, 
and K = {Kij} is a symmetric matrix, which is constructed by the kriging 
function k(xi,xj; θ) with exponential variogram through the following 
equation: 

Kij = k
(
xi, xj; θ

)
= n + s

(

1 − e−
|xi−xj|

r/3

)

, (3)  

where θ = (n, s, r) are the kriging parameters, namely nugget (n), sill (s), 
and range (r). The nugget (n) is related to the amount of a short range of 

the initial randomness or noise in the data. The range (r) represents the 
distance at which data are no longer correlated and the semivariance 
first flattens out and reaches the sill (s), the total variance where the 
empirical variogram appears to level off. The kriging parameters can be 
obtained by fitting the sample variogram to the semivariance, γ, with the 
given the observation data {x, y}, which can be expressed as 

γ
(
dij

)
=

1
2

E
[
ln(yi) − ln

(
yj

)]2
= k

(
xi, xj; θ

)
, (4)  

where dij = |xi − xj| and E() is the expectation operator that returns the 
mean value. 

Then, for the estimations at a set of new locations of points x*, 
normal distribution is applied: 
[

f (x∗)

f (x)

]

∼ N
(

μ,

[
k(x∗, x∗; θ) k(x∗, x; θ)

k(x, x∗; θ) K

] )

. (5) 

According to the resulting conditional distribution, estimations at a 
given point are given by 

f (x∗|x) ∼ N(μl, σl ), (6)  

where 

μl = μ + k(x∗, x; θ)K−1(y − μ), (7)  

σl = k(x∗, x∗; θ) − k(x∗, x; θ)K−1k(x, x∗; θ). (8) 

Since f(x*) is in logarithmic scale, to estimate the parameter of in
terest (in this case, the hydraulic conductivity), we converted the loga
rithmic values, μl and σl, back to the actual mean and standard deviation 
values according to 

Fig. 2. Histogram of the measured hydraulic conductivities from the pumping 
tests under (a) normal scale and (b) log scale; and from the EER tests under (c) 
normal scale and (d) log scale. 
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μ∗ = exp
(

μl +
σ2

l

2

)

, (9)  

σ∗ =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

[exp(σ2
l ) − 1]exp(2μl + σ2

l )

√

. (10)  

2.4. Multi-fidelity lognormal ordinary kriging 

To combine the observation data from EER measurements and 
pumping testing, the MF LOK model was used to perform 2D hydraulic 
conductivity mapping in different depth layers with smooth and 
continuous fusion of information from two sources with different levels 
of fidelity/precision. The MF kriging algorithm follows the structure 
proposed by Kennedy and O’Hagan (2000) and Forrester et al. (2007), 
assuming that 

uL(x) ∼ GP(μ, kL(x, x; θL)), (11)  

uH(x) ∼ GP(μ, kH(x, x; θH)) (12)  

are two independent kriging functions. Then, the LF and HF LOK func
tions can be modeled as fL(x) = uL(x) and fH(x) = ρuL(x) + uH(x), 
respectively, which can be expressed as a multi-output LOK: 
[

fL(x)

fH(x)

]

∼ GP
(

μ,

[
kLL(x, x; θL) kLH(x, x; θL, ρ)

kHL(x, x; θL, ρ) kHH(x, x; θL, θH , ρ)

] )

, (13)  

where 

kLL(x, x; θL) = kL(x, x; θL), (14)  

kLH(x, x; θL, ρ) = kHL(x, x; θL, ρ) = ρkL(x, x; θL), (15)  

kHH(x, x; θL, θH , ρ) = ρ2kL(x, x; θL) + kH(x, x; θH). (16)  

kL and kH are the kriging functions (Eq. (3)) for the LF and HF data, 
respectively, and ρ is the MF constant, which was first proposed by 
Forrester et al. (2007) as a scaling factor to approximate the data with a 
LF contribution to the prediction. Following the auto-regressive model 
(Kennedy and O’Hagan, 2000), the idea is to approximate the 
high-fidelity function, fH(x),  as the low-fidelity Gaussian Process sur
rogate, uL(x) multiplied by a scaling factor ρ plus a high-fidelity 
Gaussian Process surrogate uH(x) that represents the difference be
tween ρuL(x) and uH(x) to consider both contributions from the 
low-fidelity and high-fidelity data. 

Given the observation LF and HF data, {xL,yL} and {xH,yH}, the 
kriging parameters θL and θH can be fitted by the sample variogram 
according to the kriging functions of the LF and HF data, respectively. To 
obtain the optimized ρ, normal distribution is applied: 

fmgp(z) ∼ N(μ, K), (17)  

where 

z =

[
ln(yL)

ln(yH)

]

, (18)  

K =

[
kLL(xL, xL; θL) kLH(xL, xH; θL, ρ)

kHL(xH, xL; θL, ρ) kHH(xH, xH; θL, θH , ρ)

]

, (19)  

and the optimized constant ρ can be trained by minimizing the negative 
log marginal likelihood (NLML): 

NLML(θL, θH , ρ) =
1
2
yTK−1y +

1
2

ln|K| +
N
2

ln(2π), (20)  

where N is the total number of the data points. In this study, we used a 
truncated Newton algorithm minimization method (Nash, 1984) to 
obtain the optimized constant ρ. For the estimations at a new set of 
points x*, we first constructed the joint distribution: 

[
fH(x∗)

z

]

∼ N
(

μ,

[
kHH(x∗, x∗; θL, θH , ρ) qT

q K

] )

, (21)  

where 

qT = [kHL(x∗, xL; θL, ρ), kHH(x∗, xH; θL, θH , ρ) ]. (22) 

Like the SF LOK model, according to the resulting conditional dis
tribution, predictions can be estimated by 

fH(x∗|z) ∼ N(μm, σm ), (23)  

where 

μm = μ + qT K−1(y − μ), (24)  

σm = kHH(x∗, x∗) − qT K−1q. (25) 

Finally, we back-transform the mean μm and the standard deviation 
σm of the MF model into the normal domain: 

μ∗ = exp
(

μm +
σ2

m

2

)

, (26)  

σ∗ =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅[
exp

(
σ2

m

)
− 1

]
exp

(
2μm + σ2

m

)√

. (27)  

2.5. Optimal bayesian experimental design 

Our experimental design addresses the challenge of identifying the 
best locations for future tests or data collections. These locations are 
identified based on the value of information that each location is ex
pected to offer (Norberg and Rosn, 2006). For instance, in the context of 
hydraulic property estimation for aquifers, measurements collected 
from locations that are closely spaced will provide much less informa
tion compared with those obtained from locations that are farther apart. 
In establishing a quantitative framework that captures these facts, a 
Bayesian experimental design procedure can be used. This begins by 
quantifying the value of information. Specifically, the value of infor
mation is defined as the information gain conditioned on the design 
variables. The information gain is formally defined as the Kull
back–Leibler divergence from the posterior distributions of the model 
parameter to the prior (Chaloner and Verdinelli, 1995). The best 
experiment among the ensemble of candidates is the one that maximizes 
the information gain, taken to be the Kullback–Leibler divergence from 
posterior to prior. Solving this optimization problem is numerically 
complicated because the evaluation of Kullback–Leibler divergence re
quires samples from the prior and posterior of the parameters. Here, we 
provide the technical background for this experimental design approach 
combined with the MF kriging model. 

Using Bayesian inference, the posterior distribution of model pa
rameters p(θ|d, s) can be expressed as 

p(θ|d, s) =
p(θ|s)p(d|θ, s)

p(d|s)
, (28)  

where p(θ|s) is the prior distribution, p(d|θ, s) is the likelihood, and p(d| 
s) is the evidence, which can be considered as a normalizing constant: 

p(d|s) =

∫

p(d|θ, s)p(θ|s)dθ. (29) 

In this study, θ is the sampled kriging parameters, including n, s, and 
r. n and s are constant values according to the MF model, and r represents 
the Gaussian distributed samples based on the fitted LF and HF range, rL 
and rH, with σL = 0.01rL and σH = 0.01rL, which were selected to create 
data samples that are closely clustered around the mean range values rL 
and rH. More specifically, we aim to make the data samples to be very 
precise and consistent with little variations, so that the modeled varia
tions of the prior distribution mainly come from d, which is the sampled 
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observation data whose probability distribution can be assumed 
Gaussian-like with the model-estimated μ and σ. s represents the 
designed future sampling location. Since the prior knowledge of θ is not 
affected by s, the prior distribution 

p(θ|s) = p(θ). (30) 

The expected utility in Bayesian experimental design can be 
expressed as (Lindley, 1956) 

U(s) =

∫

u(s, d, θ)p(θ, d|s)dθdd, (31)  

where u(s, d, θ) is the utility function. Following the algorithm proposed 
by Zhang et al. (2015), the relative entropy from the prior to the pos
terior is chosen as the utility function (Lindley, 1956), which considers 
the expected gain in Shannon information (Shannon, 1948) given by the 
experiment 

u(s, d, θ) =

∫

p(θ|d, s)ln
[

p(θ|d, s)

p(θ|s)

]

dθ. (32) 

According to Bayes’ theorem and the Monte Carlo approach, the 
integral in Eq. (31) can be approximated by the sum of the discrete 
values 

U(s) ≈
1
n

∑N

i=1
{ln[p(di|θi, s)] − ln[p(di|s)]}, (33)  

where di is each of the sampling data point, and N is the total number of 
the sampling data points. From Eqs. (29) and (30), the evidence p(di|s) 
can also be approximated by the Monte Carlo approach 

p(di|s) =

∫

p(di|θ, s)p(θ)dθ ≈
1
n

∑n

j=1
p

(
di|θj, s

)
, (34)  

where the likelihood function, p(di|θj,s), uses the Gaussian radial basis 
likelihood function that consists of a exponential decaying function with 
the MF kriging model G: 

p
(
di|θj, s

)
= exp

(

−
1
2

(
di − G

(
θj, s

))2
)

. (35) 

Combining Eqs. (33), (34), and (35), the optimal sampling location 
s* can be obtained by maximizing the expected utility U(s) over the 
design domain D, which can be achieved by minimizing the negative U 
(s) 

s∗ = argmax
s∈D

[U(s)] = argmin
s∈D

[−U(s)]. (36) 

To avoid being trapped by the local minimum points during opti
mization process, we applied a traditional brutal approach by setting the 

candidate locations for s every 1 km in x- and y- directions and then 
selected the one who had the minimum utility value U(s) as s*. The 
results of the sequential Bayesian experimental design application for 
future sampling locations are demonstrated in Section 4.3. 

3. Results 

3.1. Topography investigation 

We used Lidar data from the US Geological Survey National Eleva
tion Dataset for the Upper Sangamon watershed, along with the EER and 
pumping test data. The Lidar data are uniformly distributed in the 
rectangular region of the Upper Sangamon watershed, as shown in 
Fig. 1. Multi-quadratic radial basis function with Euclidean distance was 
used to interpolate the elevation between the Lidar data points. Fig. 3(a) 
shows that the topography of the watershed is generally flat, which is on 
average within a range of approximately 210 to 230 m. There is only a 
relatively low region in the southeastern region (~180 m). The flat 
topography suggests that a reasonable approach would be to represent 
the domain in a Cartesian coordinate system (x-y-z), denoting x-coor
dinate along the latitude, y-coordinate along the longitude, and the z- 
coordinate by depth (distance from the surface) to ignore the surface 
variation and set all the locations’ surface as zero in depth for the z- 
value. 

3.2. Single-fidelity results with multiple data sources 

The Upper Sangamon watershed is in a typical glaciated Midwest 
River basin, which shows characteristic low-relief landscapes and re
flects glacial deposition patterns, except for regions modified by stream 
processes in valleys. Therefore, soil deposition patterns are expected to 
have a layer-by-layer distribution. The watershed contains mostly sand 
and gravel deposits concentrated in different layers, which are typically 
10 to 15 m thick (Selkregg and Kempton, 1958). With an additional 
sensitivity analysis between the MF kriging results in five layers (Δz =
15 m) and the results in eight layers (Δz = 10 m) at similar depth, the 
comparison reconfirms that five layers with 15 m thickness is good 
enough to show the general geological property, such as hydraulic 
conductivity, in different layers in the watershed. Therefore, we divided 
the 75 m thick domain region into five 15 m thick layers, where EER and 
pumping test data are located in a range between 10 and 85 m deep from 
the surface, as shown in Fig. 3(b). Within the same layer, soil and hy
draulic properties (e.g., hydraulic conductivity) are similar and correlate 
across different locations. We constructed a 2D (horizontal) kriging 
model in different layers to construct a multilayer mapping of hydraulic 
conductivity. 

SF kriging with multiple data sources was conducted as the reference 
to compare with the MF kriging model. In the SF kriging model, the data 

Fig. 3. (a) The surface elevation map of the rectangular region of the Upper Sangamon watershed shown in Fig. 1. Red dots represent the Lidar data. Blue circle 
markers represent the locations of EER data. Black cross markers represent the locations of pumping test data. Champaign City, Illinois (40◦06′54″N, 88◦16′22″W) was 
set as the origin point (x = 0 km, y = 0 km). (b) Sketch of the vertical layers setup, where k is the layer number. 
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sources were treated equally, ignoring their different fidelities. The 
exponential model is one of the most commonly used models to char
acterize cross spatial dependence in geological property data, which 
suggests that data spatial autocorrelation decreases exponentially with 
increasing distance based on prior knowledge of the phenomenon 
(Oliver and Webster, 2015). We thus used the exponential 
function-based variogram to fit the semivariance of the data (Eq. (4)), 
including EER and pumping test data on the sample variogram (Oliver 
and Webster, 1990). A Python-based fitting tool, using a nonlinear least 
squares algorithm, was applied for curve fitting. The fitted kriging pa
rameters of n = 0.02, s = 0.79, and r = 11.39 were used. 

When measurements are done at irregular grid points, setting a 
bandwidth, lag tolerance, and angle tolerance to account for the direc
tional influence (anisotropic effects) can be helpful to statistically 
quantify and analyze sample contributions in different ranges depending 
on the direction. However, since there is a limited number of repre
sentative observation data from EER and pumping tests, we assumed 
isotropic contribution from all the measurements without setting a 
bandwidth or tolerance to ensure sufficient data points in the sample 
variogram. 

In Fig. 4, the SF kriging result shows a relatively uniform distribution 
of mapped hydraulic conductivity, K, in the upper three layers (depth 

Fig. 4. SF kriging of the hydraulic conductivity and corresponding standard deviation in the Upper Sangamon watershed in different depth layers. (a) Layer k = 1, 
depth = 17.5 m. (b) Layer k = 2, depth = 32.5 m. (c) Layer k = 3, depth = 47.5 m. (d) Layer k = 4, depth = 62.5 m. (e) Layer k = 5, depth = 77.5 m. The value of 
depth shown on top of each panel is the center z-location in each layer (Fig. 3(b)). Blue circle markers represent the EER data locations. Black cross markers represent 
the pumping test data locations. 
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<50 m), and some peak values can be observed in the lower two layers 
(depth >50 m). This result suggests that more varying soil properties 
exist in the deeper layers of the watershed. The uncertainty in the esti
mated properties is presented by the standard deviations, σ. However, 
we can see that some regions with high standard deviation around the 
HF data point shown in Fig. 4d and 4e. It is because when converting the 
standard deviation, σ*, from the lognormal scale back to normal scale, 
the magnitude of σ* is also related to the magnitude of the mean value, μl 
(Eq. (10)). At the region where the estimated mean magnitude of K is 
high will result in a relatively high deviation. However, if we look closer 
to the lower-left point (inside the blue circle) in Fig. 4e, the deviation 

around the data point remains low (blue to yellow) due to the unbiased 
estimate from the model near the data point, but quickly becomes higher 
(orange) due to the high mean K region (red region in the upper panels). 

3.3. Multi-fidelity results 

The SF kriging model did not account for the fact that data are from 
different sources, so they were considered with the same uncertainty. 
However, since different data sources typically have different uncer
tainty/error ranges depending on equipment, methods, and human 
factors, the fidelity of these data sources should also be incorporated 

Fig. 5. MF kriging of the hydraulic conductivity and corresponding standard deviation in the Upper Sangamon watershed in different depth layers. (a) Layer k = 1, 
depth = 17.5 m. (b) Layer k = 2, depth = 32.5 m. (c) Layer k = 3, depth = 47.5 m. (d) Layer k = 4, depth = 62.5 m. (e) Layer k = 5, depth = 77.5 m. The value of 
depth shown on top of each panel is the center z-location in each layer (Fig. 3(b)). Blue circles represent the HF data locations. Black cross markers represent the LF 
data locations. 
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into the model. Incorporation of these factors makes MF kriging models 
a more accurate approach than SF kriging models when multiple sources 
of data are available. Thus, not much confidence can be placed in the SF 
kriging result shown in Fig. 4. Data with different levels of fidelity 
should also be treated separately in the sample variogram for two sets of 
fitted kriging parameters. 

In the MF kriging model, we treated EER and pumping test data 
separately where kriging parameters were obtained from each sample 
variogram. The fitted kriging parameters based on the exponential 
function-based variogram are n = 0.06, s = 0.08, and r = 2.91 for EER 
measurement; and n = 0.49, s = 0.88, and r = 21.12 for pumping tests. 
According to the fitted kriging parameters, the range (r) of the High- 

fidelity pumping test dataset, r = 21.12, which is much higher than 
the range (r) of the Low-fidelity EER dataset, r = 2.91, indicating that 
EER data has weaker spatial correlation due to its low fidelity of the data 
accuracy and quality. 

Fig. 5 shows the MF kriging result of the hydraulic conductivity and 
the corresponding standard deviation in the Upper Sangamon water
shed. Compared with the SF kriging results shown in Fig. 4, MF kriging 
puts more weight on the HF data (shown by circle markers). Thus, the 
estimated K and σ distribution patterns generally follow the distribution 
of the pumping test data. Furthermore, regions near the HF data points 
(blue circles in Fig. 5) have lower standard deviation. This means that 
the model assesses higher confidence in the estimates in those regions. 

Fig. 6. SHF kriging of the hydraulic conductivity and the corresponding standard deviation in the Upper Sangamon watershed with only HF data (pumping test data) 
in different depth layers. (a) Layer k = 1, depth = 17.5 m. (b) Layer k = 2, depth = 32.5 m. (c) Layer k = 3, depth = 47.5 m. (d) Layer k = 4, depth = 62.5 m. (e) Layer 
k = 5, depth = 77.5 m. The value of depth shown on top of each panel is the center z-location in each layer (Fig. 3(b)). Blue circles represent the locations of HF data. 
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The LF data (shown by cross markers), however, do not help reduce 
uncertainty levels in a large area but nevertheless provide local hy
draulic information in regions far from the HF data locations. 

4. Discussion 

4.1. Fidelity effect on the predicted field 

In MF kriging, pumping test data were selected as the HF data source 
because they offer a more reliable measurement method than EER data. 
Hence, the estimated K and σ values based on MF kriging (Fig. 5) are 
mostly dominated by the HF data (pumping test data). To further study 
the fidelity effect, we excluded the LF data and only considered the HF 
data in the kriging model (Fig. 6) to compare with the MF results (Fig. 5). 
Fig. 6 shows that in regions near the HF data, the estimated K and σ 
values are similar to those in Fig. 5. However, in regions far from the HF 
data points, the models provide very different K and σ estimates, espe
cially in the upper three layers (depth <50 m) where HF data points are 
scarce. The higher σ estimations are because of the additional infor
mation provided by the LF data. However, the higher estimated σ does 
not suggest that the LF data provide incorrect information; instead, the 
different estimations of K suggest that the LF data do provide valuable 
information about the hydraulic conductivity properties for regions 
where expensive HF tests are not available or economically not feasible. 

4.2. Fidelity effect on the estimation accuracy 

To evaluate the estimated K values in the MF kriging model, we 
focused on the lower two layers (depth >50 m) and removed HF data 
points in each layer from the estimation model. Since HF data was 
measured directly by the pumping test with high accuracy, we assumed 
its measured K is the true value and used the removed HF data points as 
the reference to compare with the model estimated values. In Fig. 7, the 
red circles show the locations of the removed HF data points in each 
layer. The removed data points were selected based on their locations. 
Specifically, we preferred HF locations that were close to an LF data 
location to assess the accuracy of LF data contributions. The calculated 
standard deviation values did not differ significantly between the MF 
model and the SHF model. More HF data can increase the confidence 
levels in both cases. However, a difference in estimated K values was not 
observed in this comparison. 

The removed HF data points provide a reference value of K = 0.078 
cm/s (Fig. 7a) and 0.026 cm/s (Fig. 7d) in the fourth layer and K =

0.081 cm/s (Fig. 7g) in the fifth layer at the data locations. After the data 
points were removed, the MF model provided a prediction of K = 0.081 
cm/s (Fig. 7b) and 0.033 cm/s (Fig. 7e) in the fourth layer and K =

0.107 cm/s (Fig. 7h) in the fifth layer at the data locations. The SHF 
model provided a prediction of K = 0.052 cm/s (Fig. 7c) and 0.032 cm/s 
(Fig. 7f) in the fourth layer and K = 0.086 cm/s (Fig. 7i) in the fifth layer 
at the data locations. These results provide an estimated accuracy. To 

Fig. 7. Comparisons between MF kriging and SHF kriging with specific points removed. a), d), g): MF kriging of the hydraulic with all data points in the last two 
layers. b), e), h): MF kriging of the hydraulic with specific points removed in the lower two layers. c), f), i) HF kriging of the hydraulic conductivity with specific 
points removed in the lower two layers. Blue circle markers represent the HF data locations. Black cross markers represent the LF data locations. Red circles highlight 
the removed HF data points. 
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obtain a more precise measure of accuracy, we defined ak as 

ak = 1 −
(
Kpred − Kref

)/
Kref (37)  

where Kpred is the predicted K from the MF or SHF model, Kref is the 
reference K (i.e., the removed HF data). For the MF model, the accuracy 
is 96% (Fig. 7b) and 73% (Fig. 7e) in the fourth layer and 68% (Fig. 7h) 
in the fifth layer, and for the SHF model, the accuracy was 67% (Fig. 7c) 
and 77% (Fig. 7f) in the fourth layer and 94% (Fig. 7i) in the fifth layer. 
The accuracy shows that when the removed points were far from the 
other HF data points, LF data provided important information to 
enhance the estimation of the kriging model (Fig. 7a, b, c). When the 
removed points were relatively close to the other HF data points, LF data 
were not necessary, and the predictions are dominated by the infor
mation provided from the surrounding HF data points with nearly the 
same accuracy in MF and SHF models (Figure d, e, f). When the removed 
points were in similar distances from the surrounding HF and LF data 
points, LF data might even provide information with higher variance 
due to its relatively low accuracy compared with the HF information 
(Fig. 7g, h, i). Thus, the accuracy of the MF model depends on the lo
cations and the distribution of both the LF and HF data. When HF data 
points are scarce and far from the LF data points, the information pro
vided from LF data becomes important and can enhance model perfor
mance and accuracy. 

To further investigate the fidelity effect, we choose the deepest (fifth) 
layer as the test case and consecutively remove HF data points one by 
one within or close to the LF data points. Fig. 8 shows the estimated 
hydraulic conductivity field by MF kriging and SHF kriging under four- 
point removal scenarios: keep all the HF data; remove one point; remove 
two points; and remove three points. Comparing the results of MF 
kriging versus SHF kriging, as more data points were removed, SHF 
kriging showed a relatively lower and more uniform estimated K field. 
However, since LF data still provided the surrounding information in MF 
kriging, they provided estimated K values closer to the original estimates 
where all the data points were present. 

According to the definition in Eq. (37), Fig. 9 shows the accuracy of K 
estimates at locations pt-1, pt-2, and pt-3 under MF kriging and SHF 
kriging when no data points, one data point, two data points, and three 
data points were removed. When all data points were present, the ac
curacy was 100% at all three locations. When one point was removed (at 
location pt-1), the accuracy remained 100% at locations pt-2 and pt-3, 

but at location pt-1, SHF kriging shows a greater accuracy compared 
with MF kriging because of the far distance between the removed point 
and the LF data points, as discussed in Fig. 7. When data at two points 
(locations pt-1 and pt-2) were removed, MF kriging began to show 
higher accuracy at locations pt-1 and pt-2, and location pt-3 remained at 
100% accuracy. When all three data points were removed, MF kriging 
showed obviously higher accuracy at all the locations compared with 
SHF kriging. The results again confirm that when HF data become 
scarcer, the information provided by LF data becomes more critical in 
MF kriging and can lead to better estimation of hydraulic conductivity. 

4.3. Future data collection using bayesian experimental design 

We applied the Bayesian experimental design along with the MF 
kriging model to determine the future sampling locations for the HF data 
(pumping test) measurement. We chose the deepest (fifth) layer, which 
has more uniform distribution of both LF and HF data points. Five 
optimal sampling locations for future pumping test data were estimated 
one by one with the initial guesses of the sampling location uniformly 
assigned in the simulation domain (Fig. 1). Once the current optimal 
point was obtained, the hydraulic conductivity value was then predicted 
by the MF kriging model at that location. The current estimated optimal 
point with its predicted hydraulic conductivity was then put back in the 
MF kriging model as one of the synthetic measurement data points to 
update the model and train the new optimized constant ρ for the next 
optimal sampling location. 

The final optimal result is shown in Fig. 10. The optimal locations are 
denoted by the red triangles with the numbers indicating the sequential 
order. The sampling points were located in the region where σ was high, 
indicating the need of future measurements to enhance the confidence of 
the prediction and understanding of the region of interest. The future 
sampling points provided more information to the region near the sug
gested locations, where variances were greatly reduced. Variances were 
slightly increased in regions far from the suggested locations because of 
the unbalanced information entered into the model. However, according 
to Bayesian experimental design, those regions were relatively less 
efficient for future measurements compared with the suggested loca
tions when considering the expected gain in Shannon information (see 
Section 2.5). 

The Bayesian experimental design model can be carried out for both 

Fig. 8. Comparisons between MF kriging and SHF kriging in the deepest layer (depth >70 m) with three consecutive points removal. MF kriging of the hydraulic 
conductivity with (a) all data points, (b) one point removed, (c) two points removed, and (d) three points removed. SHF kriging of the hydraulic conductivity with (e) 
all data points, (f) one point removed, (g) two points removed, and (h) three points removed. Blue circles represent the HF data locations. Black cross markers 
represent the LF data locations. Red circles highlight the removed HF data points, and the nearby red numbers in (a) and (e) show the removal order of the points. 
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pumping test data and EER measurement data. However, because the 
pumping test data (HF data) are dominant in the MF kriging model and 
the pumping test is more expensive and thus more limited, the appro
priate future optimal locations are more critical than EER test locations 
from an economical perspective. Therefore, in this study, we performed 
the Bayesian experimental design to infer the optimal locations for 
future pumping tests, which can provide more valuable information, as 
suggested by the model. This work can be used in future studies on 
developing a more robust optimization framework that incorporates 
data cost and fidelity and can reveal their complex interactions. 

5. Discussions and conclusions 

This work presents a robust approach to exploit multi-source data to 
estimate the 3D random field of hydraulic conductivities. We demon
strated how the described framework can use the combination of 
pumping test data from boreholes, which are expensive and highly ac
curate, with observation data from less expensive and less accurate EER 
measurements. This approach offers a cost-effective approach to reliably 
characterize the hydraulic conductivity properties, specifically in under- 
sampled sites, and can be particularly used in obtaining large-scale 
parameter maps for a region using small-scale measurements in an 
efficient way. For the first time, we studied the distribution effect of 
different fidelity data, showing that the estimation accuracy of MF 
kriging depends on the locations of both the LF and HF data. When HF 
data points are sparse and the location is far from the other HF data 
points, the information provided from the LF data becomes crucial and 
can greatly enhance model accuracy. 

This study suggests that HF data can provide more information to the 
model compared with LF data. However, HF data are generally more 
expensive to obtain, mainly because of their more precise testing pro
cess. For example, pumping tests require drilling wells into the ground, 
which costed approximately $11,000 for each 80 m well for each data 
point in this study. However, the EER measurements were conducted 
completely on the surface, with no need for drilling. This makes the cost 
of EER testing much lower, at approximately only $600 for 80 m deep 

continuous data. Since the results also demonstrate that LF data can 
provide useful information to enhance the model estimation, especially 
in regions where data points are sparsely distributed, there is a trade-off 
between deciding on HF versus LF measurements. By implementing 
Bayesian experimental design along with the current confidence levels 
from the kriging model, optimal sensor placement locations for future 
data collection are suggested, which were related to the expected value 
of information from future sensor data. To rigorously inform the deci
sion as to what should be the combination of LF and HF measurements, 
future study is needed to develop a more holistic optimization frame
work that incorporates both data cost and fidelity and evaluates their 
complex interplay. 

Some future works are required according to the limitations of the 
model and the assumptions made for data usage. For example, EER 
measurements can correlate very differently with hydraulic conductivity 
on different scales and different soil mediums since soil porosity affects 
the correlation. The relationships between EER and hydraulic conduc
tivity used in the study were obtained from an experiment with sand (Lu 
et al., 2019), which might not be representative of other types of 
geologic materials. This consideration requires additional experiments 
to obtain a more universal empirical relationship between EER and 
hydraulic conductivity, which is outside the scope of the current study. 
Also, kriging is limited to the condition of when correlations are 
non-local in a continuous field. Sometimes, in a sparsely sampled area or 
in cases when the field is discontinuous because of rivers, fractures, or 
faults, kriging might not be necessarily accurate. Therefore, more 
measurements are needed to further confirm our approach for this study 
site. However, the current study presents a robust framework that re
veals important facts about the usage of MF models along with Bayesian 
statistics tools to enhance understanding and future observation design 
of hydro-geology properties based on the existing data. Once the data 
provide certain levels of confidence, MF kriging models can extract 
useful information from the data according to different levels of fidelity 
to make reasonable predictions with corresponding assumptions. 

Fig. 9. The accuracy of (a) location 1, (b) location 2, and (c) location 3 under MF kriging and SHF kriging when removing no data points, one data point, two data 
points, and three data points. The removed points’ locations are shown in the top-right panel, and the removal order follows the denoted number of the points. 
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