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Enhanced water management systems depend on accurate estimation of subsurface hydraulic properties. How-
ever, geologic formations can vary significantly, so information from a single source (e.g., widely spaced
boreholes) is insufficient in characterizing subsurface aquifer properties. Therefore, multiple sources of infor-
mation are needed to complement the hydrogeology understanding of a region. This study presents a numerical
framework in which information from different measurement sources is combined to characterize the 3D random
field in a multi-fidelity prediction model. Coupled with the model, a Bayesian experimental design was used to
determine the best future sampling locations. The Upper Sangamon watershed in east-central Illinois was
selected as the case study site, where the multi-fidelity Gaussian process model was used to estimate the hy-
draulic conductivity in the region of interest. Multi-source observation data were obtained from electrical re-
sistivity and borehole pumping tests. The accuracy of the model prediction is dependent on the locations and the
distribution of both high- and low-fidelity data. Furthermore, the multi-fidelity model was compared with the
single-fidelity model. The uncertainties and confidence in the measurements and parameter estimates were

quantified and used to design future cycles of data collection to further improve the confidence intervals.

1. Introduction

Reliable prediction of hydraulic properties of subsurface formations
is a crucial step in improving water management systems. There are
various testing approaches to obtain information from the given area of
interest. Borehole cross-pumping test is a traditional, reliable method to
directly measure subsurface hydro-geophysics properties such as hy-
draulic conductivity (Reinhart 2006; Hamm et al., 2007). There are
several types of cross-pumping tests. Constant-rate pumping test is one
of them, which directly measures the steady water flow underground by
maintaining a constant hydraulic head gradient across the subsurface.
However, although borehole testing can provide relatively
high-confidence measurement results, drilling a borehole to obtain the
information at just one specific location is expensive and
time-consuming. On the other hand, electrical signal measurement such
as earth electrical resistivity (EER) and electromagnetic induction have
been broadly used in hydro-geophysics investigations (Lesmes and
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Friedman, 2005). These tests introduce electrical current into the sub-
surface and measure the resistivity via several receivers along the
transect, which provides continuous hydro-geophysics information in
the measured region without intruding into the ground. However, this
type of measurement requires direct or inverse empirical relations be-
tween electrical and hydro-geophysical properties. Several studies have
examined factors influencing relationships between electrical resistivity
and hydraulic properties of aquifers (Kelly 1977; Mazac et al., 1985;
Niwas and Singhal 1985; Yadav 1995; Sikandar and Christen 2012). For
example, Mazac et al. (1990) studied the relationships between hy-
draulic conductivities and rock resistivities, and they examined the role
of the distribution of hydraulic conductivity on dynamics of pollution
spreading in rock medium. These relationships are sometimes
case-specific and not universal for all locations. Also, soil saturation and
temperature can affect these relationships as well (Khalil and Santos,
2009). Therefore, the estimation can cause tremendous errors if not used

properly.

Received 22 September 2022; Received in revised form 8 June 2023; Accepted 13 June 2023

Available online 16 June 2023
0309-1708/© 2023 Elsevier Ltd. All rights reserved.


mailto:tsengc@ornl.gov
www.sciencedirect.com/science/journal/03091708
https://www.elsevier.com/locate/advwatres
https://doi.org/10.1016/j.advwatres.2023.104489
https://doi.org/10.1016/j.advwatres.2023.104489
https://doi.org/10.1016/j.advwatres.2023.104489
http://crossmark.crossref.org/dialog/?doi=10.1016/j.advwatres.2023.104489&domain=pdf

C.-Y. Tseng et al.

Hydraulic conductivity of geologic formations can vary by orders of
magnitude over relatively small spatial scales, so characterizing sub-
surface aquifer properties using only the information acquired from a
widely spaced single measurement is challenging and potentially inac-
curate. One method that has been widely employed is to use an inte-
grated exploration approach in which borehole and other geophysical
datasets are jointly interpreted (Lesmes and Friedman, 2005). Numerous
studies have used information at different levels of fidelity to estimate
hydraulic conductivity for groundwater system models (Asher et al.,
2015; Zhang et al., 2018). These multi-fidelity (MF) models combine
low-fidelity (LF) data with high-fidelity (HF) data to approximate the
prediction with an accuracy that is better than that offered by a
single-fidelity (SF) model (Peherstorfer et al., 2018; Fernandez-Godino
et al., 2016). The terms “HF data” and “LF data” refer to different levels
of detail and accuracy of the data. HF data refers to data that is precise,
accurate, and of high quality, with a high level of detail and granularity,
while LF data, on the other hand, refers to data that is less accurate, less
precise, and of lower quality, with a lower level of detail and
granularity.

Forrester et al. (2007) first proposed a global optimization strategy,
using MF surrogate models to include multiple levels of information into
the predictions, which is called “MF kriging”. In MF kriging models, data
points obtained from sensors with different fidelity levels are fit with
different surrogate models that provide estimation and prediction
without the need to obtain a large number of expensive tests or run
expensive numerical simulations. Among the surrogate models, the
Gaussian Process (i.e., kriging) has been widely used in MF groundwater
modeling (Zaytsev and Burnaev, 2017). Compared to the traditional
co-kriging method that uses information from correlated variables to
improve the accuracy of predictions, which involves modeling the cor-
relation between two or more variables, MF kriging focuses on using
data from multiple levels of fidelity to improve the accuracy of spatial
predictions by incorporating information from multiple sources. The MF
models facilitate the usage of data with different levels of fidelity by
combining a HF function (a more accurate but expensive representation
of a physical phenomenon) with a LF function (a less accurate but
inexpensive representation of a physical phenomenon). Asher et al.
(2015) and Fernandez-Godino et al. (2016) extensively surveyed several
data-driven methods of combining fidelities with a primary focus on
kriging models for MF applications. This focus was particularly because
such a Gaussian process entails an uncertainty structure that readily
lends itself to an MF modeling approach (Fernandez-Godino et al.,
2016). A more recent study by Zheng et al. (2018) employed MF
Gaussian surrogates to propose an adaptive MF ensemble smoother for
data assimilation to reduce the high computational cost for character-
ization of model parameters in ensemble-based methods.

However, numerous questions remain unanswered in predicting
hydraulic properties of subsurface formations in watersheds. For
example, how many field tests need to be conducted to achieve the
desired accuracy of the estimation, and what if the existing data points
are sparse? Many studies have confirmed the usage of MF kriging models
for predicting the hydro-geophysical information in a specific region
with abundant HF and LF data, but few studies have focused on dis-
cussing the effects of HF and LF data location distribution, especially in a
data-sparse situations. Another subject that has not been fully addressed
is to understand how data fidelity associated with different tests would
affect future test locations. Recently, Menberg et al. (2020) used an MF
approach along with Bayesian parameter estimation in subsurface heat
and fluid transport models to include information from a more physi-
cally accurate but expensive HF model, as well as a large number of
evaluations from a less accurate, less expensive LF model. The study
demonstrated that the combined information from sources with
different fidelities substantially improved the posterior distribution re-
sults, which may be important for determining future test locations to
optimize the information gained from newly implemented data sources.

In this study, we present a quantitative MF framework to combine
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information from EER measurements and pumping (borehole) mea-
surements with different fidelities and accuracies to enhance the un-
derstanding of hydro-geophysical characteristics. For the first time, we
specifically address the effect of data locations from data with different
levels of fidelity under sparse data distributions. Also, we investigated
how future test locations with different fidelities should be conducted to
optimally enhance our understanding of the geo-hydraulic properties of
a region according to the new information gained. As a sample case
study, we selected an intensively managed area located in the Upper
Sangamon watershed in east-central Illinois as the study site. Traditional
high-accuracy pumping test data were used with small-scale EER mea-
surements to generate 2D maps of hydraulic conductivity over a large-
scale region with quantified uncertainties in different depth layers. Ac-
cording to the MF kriging framework, the discussions focused on how
the distribution of data with different fidelities would affect the model
accuracy, especially with sparse data points. We further discussed how
the MF model can learn from new sensors using probabilistic statistical
tools to select the best locations for future data collection. The approach
was based on the Bayesian experimental design, which selects the best
locations from a set of candidate locations according to the value of
information that each location is expected to offer (Norberg and Rosn,
2006). By relating the expected value of information from each location
to the present levels of uncertainties in the MF kriging model, we thus
can pick the best location with the most information gain. The proposed
method can serve as a quantitative decision support framework to
optimally conduct tests with different cost and accuracy levels.

The remainder of this paper is organized as follows. In Section 2, we
provide the theoretical background, which includes detailed informa-
tion about site selection, observation data, lognormal ordinary kriging
(LOK), MF LOK, and optimal Bayesian experimental design. In Section 3,
we show the topography of the Upper Sangamon watershed and discuss
how the EER and pumping test data were obtained, and how the multi-
source data were used in SF kriging with multiple data sources, and MF
kriging. In Section 4, we discuss the effect of fidelity on the estimated
field and the estimation accuracy followed by the distribution of LF and
HF data points. The application of optimal Bayesian experimental design
for obtaining optimal future sampling locations is also presented.
Finally, Section 5 provides discussions and conclusions.

2. Method
2.1. Study site

The Sangamon River is a major tributary to the Illinois River with the
confluence near Chandlerville in Cass County, llinois. The watershed
spreads across seven counties in east-central Illinois: Champaign,
Christian, Dewitt, Ford, Macon, McLean, and Piatt. The major urban
areas within the watershed are Decatur, Monticello, Mahomet, Rantoul,
and Gibson City. It is intensively managed for soybean and corn pro-
duction and is among the five watersheds in Illinois that are identified as
most in need of attention for water supply planning and management
(Mattia et al., 2018). The predominant land use in the watershed is row
crop agriculture, which comprises nearly 90% of the land area (Keefer
et al., 2005). As an intensively managed landscape, this region is at risk
for deterioration of land and water systems. Therefore, more observa-
tions are needed to understand and predict the behavior of natural
services (ecological, hydrological, and climatic services) that support
basic human needs such as water, food, and energy.

2.2. Data description

Based on the geological properties of subsurface formation, hy-
draulic conductivity is spatially correlated but sometimes can vary
significantly. Hence information from a single source is insufficient,
indicating the need of multiple sources of information to complement
the hydrogeology understanding of a region. In this study, two types of
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field observation data, EER measurement and pumping tests, were used
as data sources with different fidelities to estimate hydraulic conduc-
tivity of the Upper Sangamon watershed using a MF Gaussian Process
model (more details in Section 2.4). Fig. 1 shows the data locations.

The pumping test involved pumping from a test well at a controlled
rate and monitoring the flow rate through the drawdown at different
locations along the radial axis from the test well. Hydraulic conductivity
values of aquifer material as determined from pump tests and aquifer
tests varies spatially but not as much temporally. Repeated pump tests
may show changes in hydraulic conductivity at the well skin of pro-
duction wells (or within gravel packs immediately surrounding well
screens) but repeated long-duration aquifer tests would provide similar
values over time. The measured hydraulic conductivity values of aquifer
material can provide convincing values. Therefore, pumping test mea-
surements have been well recognized as one of the most reliable ways to
measure soil hydraulic conductivity with high-fidelity, meaning that the
data is accurate and precise with high quality and less errors or dis-
crepancies, which provides a true and faithful representation of the true
value in the real field. However, because of the high cost of drilling a
well, limited data can be collected.

EER measurement has also been widely applied to estimate hydraulic
conductivity of the subsurface based on a 2D resistivity model of the
relationships between aquifer hydraulic and electrical properties (Kelly
and Frohlich 1985; Slater 2007; Khalil and Santos 2009; Tizro et al.,
2010). The measurement relies on testing with a dipole-dipole electrode
configuration in a vertical 2D plane of the field, which is commonly used
in 2D electrical resistivity surveys because it provides good resolution of
subsurface structures with high sensitivity to lateral changes in re-
sistivity. In the array, current is injected into the ground using two
current electrodes, and voltage measurements are made using two pairs
of potential electrodes placed at a distance from the current electrodes.
The distance between the current and potential electrodes is increased
systematically to obtain measurements at various depths. The
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dipole-dipole array is particularly useful for detecting planar variations
vertically and horizontally in subsurface resistivity to infer the hydraulic
conductivity. However, the accuracy depends on the equipment preci-
sion. Hence, the measurement has lower cost but also lower fidelity due
to its lower accuracy compared with traditional pumping (borehole)
testing. In general, EER values are known to vary. There are many fac-
tors that can affect the measured resistivity, like soil texture, clayey
matters, pore structure, and temperature. The greatest variability
generally comes from the changes in saturation conditions and tem-
perature (Khalil and Santos, 2009). Within the Upper Sangamon
watershed, the water table is within a few meters of the ground surface
except in areas of very steep slopes and very coarse materials. These
areas are a small percentage of the entire area and thus can be neglected
at the scale of this study. There is some variation from temperature, but
we neglected this effect because it is small within the context of this
generalized study.

EER measurement provides a continuous estimation of hydraulic
conductivity in a small vertical plane (~800 m long and ~80 m deep).
To apply the EER data together with the pumping test data in the MF
Gaussian Process model, we need to ensure that two data sources pro-
vide the same physical meanings. Therefore, EER has to be converted to
hydraulic conductivity since pumping tests directly provide the hy-
draulic conductivity information. A study by Lu et al. (2019) demon-
strated that the relationship between the soil’s hydraulic conductivity,
K, and electrical conductivity, cgc, follows an exponential function form
as K = ae = + ¢, where the parameters a, b, and c can be estimated
using the calculated ogc in soil layers, which is the inverse of the re-
sistivity data captured by EER testing. According to their experiment
results with sands, when K is a dependent variable, the given best fitted
empirical parameters can be obtained by fitting to a comprehensive data
set:
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Fig. 1. Locations for data in the Upper Sangamon watershed. The Black dashed line represents the Upper Sangamon watershed. Blue circle markers represent the

pumping test data locations. Black cross markers represent the EER data locations.
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As mentioned previously, many factors can affect the empirical
relationship between the measured resistivity and K, especially the soil
pore size. Within the Upper Sangamon watershed, the dominant soil
types found in this area are Mollisols and Alfisols whose pore sizes can
range from 0.1 to 1.0 mm, which is similar to the pore size of the typical
sands (0.2 to 2.0 mm). Therefore, we assumed that Eq. (1) by Lu et al.
(2019) is valid within the context of this generalized study. In this study,
as the soil deposition was accumulated layer by layer, resulting in a
consistent geological composition horizontally, after converting the
measured resistivity, 6gc, into hydraulic conductivity, K, the horizontal
mean value of K was set as the representative value in each depth for the
LF data input in the MF kriging model.

Borehole pumping tests were conducted at specific locations with
different depths. Unlike EER measurement, which provides continuous
vertical information, pumping tests provide point information on sub-
surface properties from the measurement of flow velocities within soil
pores. They offer higher accuracy on hydraulic conductivity, which was
set as the HF data source in MF kriging. We obtained EER data from 15
locations with continuous depth and pumping test data from 68 loca-
tions with specific depths for each test. Compared to the entire hori-
zontal study domain (60km x 50km) with the relatively sparse
distributions of the data points, both EER and pumping test can be
viewed as point measurements in the model under nearly the same
measurement scale in each layer. The EER and pumping tests were
conducted by the Illinois State Geological Survey and Illinois State
Water Survey, and the locations of the tests were originally selected to
aid in Quaternary mapping projects and to develop communities’ water
supply planning and management.

2.3. Lognormal ordinary kriging

Lognormal Ordinary Kriging (LOK) is a commonly used geostatistical
procedure that generates an estimated mapping of geo-properties from a
scattered set of points with scalar values based on a logarithmic trans-
formation of the estimators (Balaban and Dengiz, 2018). Compared to
the traditional ordinary kriging model, the LOK model can improve the
calculation of statistics and weighted averages to avoid negative and
extreme estimated values, which helps to reduce the impact of outliers
on the estimated values (Roth, 1998). Also, the LOK model can be more
appropriate when the variable being studied exhibits a positive skewed
distribution, providing more accurate and realistic estimates, since it
considers the asymmetry of the distribution. As shown in Fig. 2, the
positively skewed distribution of K can be observed in both pumping test
data and EER data under a normal scale. However, after we transformed
the data on a log scale, the data looks more symmetrical without any
extreme data.

The LOK model algorithm follows the structure of Gaussian pro-
cesses:

In(y) = f(x) ~ GP(i, K), ®)

where x = {x;} represents the locations of the data points, y = {y;}
represents the measured hydraulic conductivity corresponding to the
locations x, 7 is the mean value of In(y) within the simulation domain,
and K = {Kj;} is a symmetric matrix, which is constructed by the kriging
function k(x;xj; 8) with exponential variogram through the following
equation:

xi=%j

Kijv:k(x,v,xj;H) :n+s<lfefT>, 3)

where 6 = (n, s, r) are the kriging parameters, namely nugget (n), sill (s),
and range (7). The nugget (n) is related to the amount of a short range of
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Fig. 2. Histogram of the measured hydraulic conductivities from the pumping
tests under (a) normal scale and (b) log scale; and from the EER tests under (c)
normal scale and (d) log scale.

the initial randomness or noise in the data. The range (r) represents the
distance at which data are no longer correlated and the semivariance
first flattens out and reaches the sill (s), the total variance where the
empirical variogram appears to level off. The kriging parameters can be
obtained by fitting the sample variogram to the semivariance, y, with the
given the observation data {x, y}, which can be expressed as

1 2
y(dy) = EE[ln(y,-) —In(y)]" = k(x;,x;;60), “4)
where djj = |x; — xj| and E() is the expectation operator that returns the

mean value.
Then, for the estimations at a set of new locations of points x*,
k(x*,x;60)

normal distribution is applied:
f(x*)} NN(, k(x",x*; 0) ) 5
{f(x) S K ' ©

According to the resulting conditional distribution, estimations at a
given point are given by

S ) ~N(w, o1 ), (6)
where

W =0+ k(" x; 0K (v — 1), )
6, = k(x*,x*;0) — k(x*,x;0)K'k(x,x"; 0). (8)

Since f(x*) is in logarithmic scale, to estimate the parameter of in-
terest (in this case, the hydraulic conductivity), we converted the loga-
rithmic values, p; and 67, back to the actual mean and standard deviation
values according to
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62
po=exp (u, + 7’) , 9

6" = \/lexp(6}) — Llexp(2p, + 6). (10)
2.4. Multi-fidelity lognormal ordinary kriging

To combine the observation data from EER measurements and
pumping testing, the MF LOK model was used to perform 2D hydraulic
conductivity mapping in different depth layers with smooth and
continuous fusion of information from two sources with different levels
of fidelity/precision. The MF kriging algorithm follows the structure
proposed by Kennedy and O’Hagan (2000) and Forrester et al. (2007),
assuming that

ur(x) ~ GP(i, k. (x,x;6.)), an
up (x) ~ GP(f, ki (x,%;0)) 12)

are two independent kriging functions. Then, the LF and HF LOK func-
tions can be modeled as fi(x) = uy(x) and fy(x) = pup(x) + ug(x),
respectively, which can be expressed as a multi-output LOK:

{fL(x)} ~ GP(ﬁ., { o) i) } ) a3
fi(x) i (%, 01, p)  Kn (%, 01,0, p)

where

krp(x,x;0L) = ki (x,x;01), a4
ko (x,%; 01, p) = kit (%, %; 01, p) = pk(x,%;01), 1s)
ke (x,%; 01,04, p) = pzk,‘(x7x; 01) + ku(x,x;64). ae)

k; and ky are the kriging functions (Eq. (3)) for the LF and HF data,
respectively, and p is the MF constant, which was first proposed by
Forrester et al. (2007) as a scaling factor to approximate the data with a
LF contribution to the prediction. Following the auto-regressive model
(Kennedy and O’Hagan, 2000), the idea is to approximate the
high-fidelity function, fy(x), as the low-fidelity Gaussian Process sur-
rogate, ur(x) multiplied by a scaling factor p plus a high-fidelity
Gaussian Process surrogate uy(x) that represents the difference be-
tween pup(x) and ugy(x) to consider both contributions from the
low-fidelity and high-fidelity data.

Given the observation LF and HF data, {xp,yr} and {xg,yn}, the
kriging parameters 6, and 6y can be fitted by the sample variogram
according to the kriging functions of the LF and HF data, respectively. To
obtain the optimized p, normal distribution is applied:

fmg[’(z) NN(ﬁ,K), (17)
where

_ |In0)
= [non) e

kLH(vaxH;eLﬂ/)) (19)

K= kLL(xuxL;eL)
ke (Xu, X5 01,0, p) |

k. (xg, x5 0L, p)

and the optimized constant p can be trained by minimizing the negative
log marginal likelihood (NLML):

1 1 N
NLML(6y,6y,p) = ?TK" y+ 5zn\K| + Eln(Zﬂ'), (20)

where N is the total number of the data points. In this study, we used a
truncated Newton algorithm minimization method (Nash, 1984) to
obtain the optimized constant p. For the estimations at a new set of
points x*, we first constructed the joint distribution:
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), @1

q" =k (X", x1;00,p), kup (X", x4 61, 61,p) ]. (22)

Like the SF LOK model, according to the resulting conditional dis-
tribution, predictions can be estimated by

{fﬂ(x*)} N(ﬁ kary (X, x"501,01.p)  q"
z ’ q K

where

Ju(x"[2) ~ N(Wy; O ), (23)
where

R, =A+q'K'(y—F), 24
6 = kun(x",x") — ¢'K'q. (25)

Finally, we back-transform the mean py,, and the standard deviation
om of the MF model into the normal domain:

o
n=exp (u,,, +7'") , (26)

o = /[exn(@}) ~ texp (2, +3). @)
2.5. Optimal bayesian experimental design

Our experimental design addresses the challenge of identifying the
best locations for future tests or data collections. These locations are
identified based on the value of information that each location is ex-
pected to offer (Norberg and Rosn, 2006). For instance, in the context of
hydraulic property estimation for aquifers, measurements collected
from locations that are closely spaced will provide much less informa-
tion compared with those obtained from locations that are farther apart.
In establishing a quantitative framework that captures these facts, a
Bayesian experimental design procedure can be used. This begins by
quantifying the value of information. Specifically, the value of infor-
mation is defined as the information gain conditioned on the design
variables. The information gain is formally defined as the Kull-
back-Leibler divergence from the posterior distributions of the model
parameter to the prior (Chaloner and Verdinelli, 1995). The best
experiment among the ensemble of candidates is the one that maximizes
the information gain, taken to be the Kullback-Leibler divergence from
posterior to prior. Solving this optimization problem is numerically
complicated because the evaluation of Kullback-Leibler divergence re-
quires samples from the prior and posterior of the parameters. Here, we
provide the technical background for this experimental design approach
combined with the MF kriging model.

Using Bayesian inference, the posterior distribution of model pa-
rameters p(6|d, s) can be expressed as

_ p(Bls)p(d|0,s)

0|d,s) = P S 28
p(0ld, s) odp) (28)

where p(@|s) is the prior distribution, p(d|, s) is the likelihood, and p(d|
s) is the evidence, which can be considered as a normalizing constant:

p(dls) = / p(d}B, $)p(0]5)db. 29)

In this study, @ is the sampled kriging parameters, including n, s, and
r. nand s are constant values according to the MF model, and r represents
the Gaussian distributed samples based on the fitted LF and HF range, r;,
and ry, with 67 = 0.01r; and 6y = 0.01r;, which were selected to create
data samples that are closely clustered around the mean range values ry,
and ry. More specifically, we aim to make the data samples to be very
precise and consistent with little variations, so that the modeled varia-
tions of the prior distribution mainly come from d, which is the sampled
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observation data whose probability distribution can be assumed
Gaussian-like with the model-estimated p and o. s represents the
designed future sampling location. Since the prior knowledge of  is not
affected by s, the prior distribution

p(8ls) = p(6).

The expected utility in Bayesian experimental design can be
expressed as (Lindley, 1956)

(30)

Us) = / u(s,d, 0)p(0, d|s)dodd, @31)

where u(s, d, 9) is the utility function. Following the algorithm proposed
by Zhang et al. (2015), the relative entropy from the prior to the pos-
terior is chosen as the utility function (Lindley, 1956), which considers
the expected gain in Shannon information (Shannon, 1948) given by the
experiment
p(8ld,s)
u(s,d,0 :/p 0ld, s ln{— de.
(5.4.0) = [ p(oid. | "0

According to Bayes’ theorem and the Monte Carlo approach, the
integral in Eq. (31) can be approximated by the sum of the discrete
values

(32)

Uls) ~ % Z{ln@(dilﬁfﬁ)] — Inlp(dis)]}, (33)

where d; is each of the sampling data point, and N is the total number of
the sampling data points. From Egs. (29) and (30), the evidence p(d;|s)
can also be approximated by the Monte Carlo approach

1 n
plals) = [ p(al0.s)p®)d0 ~ S pldl.). 34)
=1

where the likelihood function, p(di|9j,s), uses the Gaussian radial basis
likelihood function that consists of a exponential decaying function with
the MF kriging model G:

p(dl6),5) = exp( - G(Hj,s))2>.

Combining Egs. (33), (34), and (35), the optimal sampling location
s* can be obtained by maximizing the expected utility U(s) over the
design domain D, which can be achieved by minimizing the negative U

()

s = argmax(U(s)] = argmin[~U(s))

(35)

(36)

To avoid being trapped by the local minimum points during opti-
mization process, we applied a traditional brutal approach by setting the
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candidate locations for s every 1 km in x- and y- directions and then
selected the one who had the minimum utility value U(s) as s*. The
results of the sequential Bayesian experimental design application for
future sampling locations are demonstrated in Section 4.3.

3. Results
3.1. Topography investigation

We used Lidar data from the US Geological Survey National Eleva-
tion Dataset for the Upper Sangamon watershed, along with the EER and
pumping test data. The Lidar data are uniformly distributed in the
rectangular region of the Upper Sangamon watershed, as shown in
Fig. 1. Multi-quadratic radial basis function with Euclidean distance was
used to interpolate the elevation between the Lidar data points. Fig. 3(a)
shows that the topography of the watershed is generally flat, which is on
average within a range of approximately 210 to 230 m. There is only a
relatively low region in the southeastern region (~180 m). The flat
topography suggests that a reasonable approach would be to represent
the domain in a Cartesian coordinate system (x-y-z), denoting x-coor-
dinate along the latitude, y-coordinate along the longitude, and the 2-
coordinate by depth (distance from the surface) to ignore the surface
variation and set all the locations’ surface as zero in depth for the z-
value.

3.2. Single-fidelity results with multiple data sources

The Upper Sangamon watershed is in a typical glaciated Midwest
River basin, which shows characteristic low-relief landscapes and re-
flects glacial deposition patterns, except for regions modified by stream
processes in valleys. Therefore, soil deposition patterns are expected to
have a layer-by-layer distribution. The watershed contains mostly sand
and gravel deposits concentrated in different layers, which are typically
10 to 15 m thick (Selkregg and Kempton, 1958). With an additional
sensitivity analysis between the MF kriging results in five layers (Az =
15 m) and the results in eight layers (Az = 10 m) at similar depth, the
comparison reconfirms that five layers with 15 m thickness is good
enough to show the general geological property, such as hydraulic
conductivity, in different layers in the watershed. Therefore, we divided
the 75 m thick domain region into five 15 m thick layers, where EER and
pumping test data are located in a range between 10 and 85 m deep from
the surface, as shown in Fig. 3(b). Within the same layer, soil and hy-
draulic properties (e.g., hydraulic conductivity) are similar and correlate
across different locations. We constructed a 2D (horizontal) kriging
model in different layers to construct a multilayer mapping of hydraulic
conductivity.

SF kriging with multiple data sources was conducted as the reference
to compare with the MF kriging model. In the SF kriging model, the data

(b)
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ik 40m
3 k=3
55m
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Fig. 3. (a) The surface elevation map of the rectangular region of the Upper Sangamon watershed shown in Fig. 1. Red dots represent the Lidar data. Blue circle
markers represent the locations of EER data. Black cross markers represent the locations of pumping test data. Champaign City, Illinois (40°06'54"N, 88°16'22"W) was
set as the origin point (x = 0 km, y = 0 km). (b) Sketch of the vertical layers setup, where k is the layer number.
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sources were treated equally, ignoring their different fidelities. The
exponential model is one of the most commonly used models to char-
acterize cross spatial dependence in geological property data, which
suggests that data spatial autocorrelation decreases exponentially with
increasing distance based on prior knowledge of the phenomenon
(Oliver and Webster, 2015). We thus used the exponential
function-based variogram to fit the semivariance of the data (Eq. (4)),
including EER and pumping test data on the sample variogram (Oliver
and Webster, 1990). A Python-based fitting tool, using a nonlinear least
squares algorithm, was applied for curve fitting. The fitted kriging pa-
rameters of n = 0.02, s = 0.79, and r = 11.39 were used.
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When measurements are done at irregular grid points, setting a
bandwidth, lag tolerance, and angle tolerance to account for the direc-
tional influence (anisotropic effects) can be helpful to statistically
quantify and analyze sample contributions in different ranges depending
on the direction. However, since there is a limited number of repre-
sentative observation data from EER and pumping tests, we assumed
isotropic contribution from all the measurements without setting a
bandwidth or tolerance to ensure sufficient data points in the sample
variogram.

In Fig. 4, the SF kriging result shows a relatively uniform distribution
of mapped hydraulic conductivity, K, in the upper three layers (depth
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Fig. 4. SF kriging of the hydraulic conductivity and corresponding standard deviation in the Upper Sangamon watershed in different depth layers. (a) Layer k = 1,
depth = 17.5 m. (b) Layer k = 2, depth = 32.5 m. (c) Layer k = 3, depth = 47.5 m. (d) Layer k = 4, depth = 62.5 m. (e) Layer k = 5, depth = 77.5 m. The value of
depth shown on top of each panel is the center z-location in each layer (Fig. 3(b)). Blue circle markers represent the EER data locations. Black cross markers represent
the pumping test data locations.
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<50 m), and some peak values can be observed in the lower two layers
(depth >50 m). This result suggests that more varying soil properties
exist in the deeper layers of the watershed. The uncertainty in the esti-
mated properties is presented by the standard deviations, 6. However,
we can see that some regions with high standard deviation around the
HF data point shown in Fig. 4d and 4e. It is because when converting the
standard deviation, ¢*, from the lognormal scale back to normal scale,
the magnitude of 6* is also related to the magnitude of the mean value, y;
(Eq. (10)). At the region where the estimated mean magnitude of K is
high will result in a relatively high deviation. However, if we look closer
to the lower-left point (inside the blue circle) in Fig. 4e, the deviation

k =1 (depth = 17.5m))
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around the data point remains low (blue to yellow) due to the unbiased
estimate from the model near the data point, but quickly becomes higher
(orange) due to the high mean K region (red region in the upper panels).

3.3. Multi-fidelity results

The SF kriging model did not account for the fact that data are from
different sources, so they were considered with the same uncertainty.
However, since different data sources typically have different uncer-
tainty/error ranges depending on equipment, methods, and human
factors, the fidelity of these data sources should also be incorporated
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Fig. 5. MF kriging of the hydraulic conductivity and corresponding standard deviation in the Upper Sangamon watershed in different depth layers. (a) Layer k = 1,
depth = 17.5 m. (b) Layer k = 2, depth = 32.5 m. (c) Layer k = 3, depth = 47.5 m. (d) Layer k = 4, depth = 62.5 m. (e) Layer k = 5, depth = 77.5 m. The value of
depth shown on top of each panel is the center z-location in each layer (Fig. 3(b)). Blue circles represent the HF data locations. Black cross markers represent the LF
data locations.
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into the model. Incorporation of these factors makes MF kriging models
a more accurate approach than SF kriging models when multiple sources
of data are available. Thus, not much confidence can be placed in the SF
kriging result shown in Fig. 4. Data with different levels of fidelity
should also be treated separately in the sample variogram for two sets of
fitted kriging parameters.

In the MF kriging model, we treated EER and pumping test data
separately where kriging parameters were obtained from each sample
variogram. The fitted kriging parameters based on the exponential
function-based variogram are n = 0.06, s = 0.08, and r = 2.91 for EER
measurement; and n = 0.49, s = 0.88, and r = 21.12 for pumping tests.
According to the fitted kriging parameters, the range (r) of the High-
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fidelity pumping test dataset, r = 21.12, which is much higher than
the range (r) of the Low-fidelity EER dataset, r = 2.91, indicating that
EER data has weaker spatial correlation due to its low fidelity of the data
accuracy and quality.

Fig. 5 shows the MF kriging result of the hydraulic conductivity and
the corresponding standard deviation in the Upper Sangamon water-
shed. Compared with the SF kriging results shown in Fig. 4, MF kriging
puts more weight on the HF data (shown by circle markers). Thus, the
estimated K and o distribution patterns generally follow the distribution
of the pumping test data. Furthermore, regions near the HF data points
(blue circles in Fig. 5) have lower standard deviation. This means that
the model assesses higher confidence in the estimates in those regions.

k = 3 (depth = 47.5m)

0.20

o
=
wu

o
[
[ §
(s/wid) 3 A3ARONPUOD

0.05

0.00
10 -40 10

0.20

0.15

O High Fidelity Data

-10 10

k =5 (depth = 77.5m)

30 —
) 3
_ [0)) |
c ] O
=
1 (0]
> .
o | 0 .
(@) T g
0 .
O High Fidelity Data O High Fidelity Data
5 T T T ¥ | T T T T
-40 -30 -20 -10 0 10 -40 -30 -20 -10 0 10
30
> ' d
20 ]
15 . ]
€ 10 1 id
=
= 5 i
0 ] . °
-5 4
B e o
O High Fidelity Data - O High Fidelity Data
-15 T T T 7 { T r T T
-40 -30 -20 -10 0 10 -40 -30 -20 -10 0 10
x (km) x (km)

Fig. 6. SHF kriging of the hydraulic conductivity and the corresponding standard deviation in the Upper Sangamon watershed with only HF data (pumping test data)
in different depth layers. (a) Layer k = 1, depth = 17.5 m. (b) Layer k = 2, depth = 32.5 m. (c) Layer k = 3, depth = 47.5 m. (d) Layer k = 4, depth = 62.5 m. (e) Layer
k = 5, depth = 77.5 m. The value of depth shown on top of each panel is the center z-location in each layer (Fig. 3(b)). Blue circles represent the locations of HF data.
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The LF data (shown by cross markers), however, do not help reduce
uncertainty levels in a large area but nevertheless provide local hy-
draulic information in regions far from the HF data locations.

4. Discussion
4.1. Fidelity effect on the predicted field

In MF kriging, pumping test data were selected as the HF data source
because they offer a more reliable measurement method than EER data.
Hence, the estimated K and ¢ values based on MF kriging (Fig. 5) are
mostly dominated by the HF data (pumping test data). To further study
the fidelity effect, we excluded the LF data and only considered the HF
data in the kriging model (Fig. 6) to compare with the MF results (Fig. 5).
Fig. 6 shows that in regions near the HF data, the estimated K and ¢
values are similar to those in Fig. 5. However, in regions far from the HF
data points, the models provide very different K and o estimates, espe-
cially in the upper three layers (depth <50 m) where HF data points are
scarce. The higher ¢ estimations are because of the additional infor-
mation provided by the LF data. However, the higher estimated ¢ does
not suggest that the LF data provide incorrect information; instead, the
different estimations of K suggest that the LF data do provide valuable
information about the hydraulic conductivity properties for regions
where expensive HF tests are not available or economically not feasible.

All data (MF)

Removed Point (MF)

k = 4 (depth = 62.5m)
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4.2. Fidelity effect on the estimation accuracy

To evaluate the estimated K values in the MF kriging model, we
focused on the lower two layers (depth >50 m) and removed HF data
points in each layer from the estimation model. Since HF data was
measured directly by the pumping test with high accuracy, we assumed
its measured K is the true value and used the removed HF data points as
the reference to compare with the model estimated values. In Fig. 7, the
red circles show the locations of the removed HF data points in each
layer. The removed data points were selected based on their locations.
Specifically, we preferred HF locations that were close to an LF data
location to assess the accuracy of LF data contributions. The calculated
standard deviation values did not differ significantly between the MF
model and the SHF model. More HF data can increase the confidence
levels in both cases. However, a difference in estimated K values was not
observed in this comparison.

The removed HF data points provide a reference value of K = 0.078
cm/s (Fig. 7a) and 0.026 cm/s (Fig. 7d) in the fourth layer and K =
0.081 cm/s (Fig. 7g) in the fifth layer at the data locations. After the data
points were removed, the MF model provided a prediction of K = 0.081
cm/s (Fig. 7b) and 0.033 cm/s (Fig. 7e) in the fourth layer and K =
0.107 cm/s (Fig. 7h) in the fifth layer at the data locations. The SHF
model provided a prediction of K = 0.052 cm/s (Fig. 7c) and 0.032 cm/s
(Fig. 7f) in the fourth layer and K = 0.086 cm/s (Fig. 7i) in the fifth layer
at the data locations. These results provide an estimated accuracy. To
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Fig. 7. Comparisons between MF kriging and SHF kriging with specific points removed. a), d), g): MF kriging of the hydraulic with all data points in the last two
layers. b), e), h): MF kriging of the hydraulic with specific points removed in the lower two layers. c), f), i) HF kriging of the hydraulic conductivity with specific
points removed in the lower two layers. Blue circle markers represent the HF data locations. Black cross markers represent the LF data locations. Red circles highlight

the removed HF data points.

10



C.-Y. Tseng et al.

obtain a more precise measure of accuracy, we defined ax as

ar =1~ (Kprea = Kreg) [ Krp (37
where Kpreq is the predicted K from the MF or SHF model, K is the
reference K (i.e., the removed HF data). For the MF model, the accuracy
is 96% (Fig. 7b) and 73% (Fig. 7e) in the fourth layer and 68% (Fig. 7h)
in the fifth layer, and for the SHF model, the accuracy was 67% (Fig. 7c)
and 77% (Fig. 7f) in the fourth layer and 94% (Fig. 7i) in the fifth layer.
The accuracy shows that when the removed points were far from the
other HF data points, LF data provided important information to
enhance the estimation of the kriging model (Fig. 7a, b, ¢). When the
removed points were relatively close to the other HF data points, LF data
were not necessary, and the predictions are dominated by the infor-
mation provided from the surrounding HF data points with nearly the
same accuracy in MF and SHF models (Figure d, e, f). When the removed
points were in similar distances from the surrounding HF and LF data
points, LF data might even provide information with higher variance
due to its relatively low accuracy compared with the HF information
(Fig. 7g, h, i). Thus, the accuracy of the MF model depends on the lo-
cations and the distribution of both the LF and HF data. When HF data
points are scarce and far from the LF data points, the information pro-
vided from LF data becomes important and can enhance model perfor-
mance and accuracy.

To further investigate the fidelity effect, we choose the deepest (fifth)
layer as the test case and consecutively remove HF data points one by
one within or close to the LF data points. Fig. 8 shows the estimated
hydraulic conductivity field by MF kriging and SHF kriging under four-
point removal scenarios: keep all the HF data; remove one point; remove
two points; and remove three points. Comparing the results of MF
kriging versus SHF kriging, as more data points were removed, SHF
kriging showed a relatively lower and more uniform estimated K field.
However, since LF data still provided the surrounding information in MF
kriging, they provided estimated K values closer to the original estimates
where all the data points were present.

According to the definition in Eq. (37), Fig. 9 shows the accuracy of K
estimates at locations pt-1, pt-2, and pt-3 under MF kriging and SHF
kriging when no data points, one data point, two data points, and three
data points were removed. When all data points were present, the ac-
curacy was 100% at all three locations. When one point was removed (at
location pt-1), the accuracy remained 100% at locations pt-2 and pt-3,
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but at location pt-1, SHF kriging shows a greater accuracy compared
with MF kriging because of the far distance between the removed point
and the LF data points, as discussed in Fig. 7. When data at two points
(locations pt-1 and pt-2) were removed, MF kriging began to show
higher accuracy at locations pt-1 and pt-2, and location pt-3 remained at
100% accuracy. When all three data points were removed, MF kriging
showed obviously higher accuracy at all the locations compared with
SHF kriging. The results again confirm that when HF data become
scarcer, the information provided by LF data becomes more critical in
MF kriging and can lead to better estimation of hydraulic conductivity.

4.3. Future data collection using bayesian experimental design

We applied the Bayesian experimental design along with the MF
kriging model to determine the future sampling locations for the HF data
(pumping test) measurement. We chose the deepest (fifth) layer, which
has more uniform distribution of both LF and HF data points. Five
optimal sampling locations for future pumping test data were estimated
one by one with the initial guesses of the sampling location uniformly
assigned in the simulation domain (Fig. 1). Once the current optimal
point was obtained, the hydraulic conductivity value was then predicted
by the MF kriging model at that location. The current estimated optimal
point with its predicted hydraulic conductivity was then put back in the
MF kriging model as one of the synthetic measurement data points to
update the model and train the new optimized constant p for the next
optimal sampling location.

The final optimal result is shown in Fig. 10. The optimal locations are
denoted by the red triangles with the numbers indicating the sequential
order. The sampling points were located in the region where ¢ was high,
indicating the need of future measurements to enhance the confidence of
the prediction and understanding of the region of interest. The future
sampling points provided more information to the region near the sug-
gested locations, where variances were greatly reduced. Variances were
slightly increased in regions far from the suggested locations because of
the unbalanced information entered into the model. However, according
to Bayesian experimental design, those regions were relatively less
efficient for future measurements compared with the suggested loca-
tions when considering the expected gain in Shannon information (see
Section 2.5).

The Bayesian experimental design model can be carried out for both
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Fig. 8. Comparisons between MF kriging and SHF kriging in the deepest layer (depth >70 m) with three consecutive points removal. MF kriging of the hydraulic
conductivity with (a) all data points, (b) one point removed, (c) two points removed, and (d) three points removed. SHF kriging of the hydraulic conductivity with (e)
all data points, (f) one point removed, (g) two points removed, and (h) three points removed. Blue circles represent the HF data locations. Black cross markers
represent the LF data locations. Red circles highlight the removed HF data points, and the nearby red numbers in (a) and (e) show the removal order of the points.
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Fig. 9. The accuracy of (a) location 1, (b) location 2, and (c) location 3 under MF kriging and SHF kriging when removing no data points, one data point, two data
points, and three data points. The removed points’ locations are shown in the top-right panel, and the removal order follows the denoted number of the points.

pumping test data and EER measurement data. However, because the
pumping test data (HF data) are dominant in the MF kriging model and
the pumping test is more expensive and thus more limited, the appro-
priate future optimal locations are more critical than EER test locations
from an economical perspective. Therefore, in this study, we performed
the Bayesian experimental design to infer the optimal locations for
future pumping tests, which can provide more valuable information, as
suggested by the model. This work can be used in future studies on
developing a more robust optimization framework that incorporates
data cost and fidelity and can reveal their complex interactions.

5. Discussions and conclusions

This work presents a robust approach to exploit multi-source data to
estimate the 3D random field of hydraulic conductivities. We demon-
strated how the described framework can use the combination of
pumping test data from boreholes, which are expensive and highly ac-
curate, with observation data from less expensive and less accurate EER
measurements. This approach offers a cost-effective approach to reliably
characterize the hydraulic conductivity properties, specifically in under-
sampled sites, and can be particularly used in obtaining large-scale
parameter maps for a region using small-scale measurements in an
efficient way. For the first time, we studied the distribution effect of
different fidelity data, showing that the estimation accuracy of MF
kriging depends on the locations of both the LF and HF data. When HF
data points are sparse and the location is far from the other HF data
points, the information provided from the LF data becomes crucial and
can greatly enhance model accuracy.

This study suggests that HF data can provide more information to the
model compared with LF data. However, HF data are generally more
expensive to obtain, mainly because of their more precise testing pro-
cess. For example, pumping tests require drilling wells into the ground,
which costed approximately $11,000 for each 80 m well for each data
point in this study. However, the EER measurements were conducted
completely on the surface, with no need for drilling. This makes the cost
of EER testing much lower, at approximately only $600 for 80 m deep

continuous data. Since the results also demonstrate that LF data can
provide useful information to enhance the model estimation, especially
in regions where data points are sparsely distributed, there is a trade-off
between deciding on HF versus LF measurements. By implementing
Bayesian experimental design along with the current confidence levels
from the kriging model, optimal sensor placement locations for future
data collection are suggested, which were related to the expected value
of information from future sensor data. To rigorously inform the deci-
sion as to what should be the combination of LF and HF measurements,
future study is needed to develop a more holistic optimization frame-
work that incorporates both data cost and fidelity and evaluates their
complex interplay.

Some future works are required according to the limitations of the
model and the assumptions made for data usage. For example, EER
measurements can correlate very differently with hydraulic conductivity
on different scales and different soil mediums since soil porosity affects
the correlation. The relationships between EER and hydraulic conduc-
tivity used in the study were obtained from an experiment with sand (Lu
et al., 2019), which might not be representative of other types of
geologic materials. This consideration requires additional experiments
to obtain a more universal empirical relationship between EER and
hydraulic conductivity, which is outside the scope of the current study.
Also, kriging is limited to the condition of when correlations are
non-local in a continuous field. Sometimes, in a sparsely sampled area or
in cases when the field is discontinuous because of rivers, fractures, or
faults, kriging might not be necessarily accurate. Therefore, more
measurements are needed to further confirm our approach for this study
site. However, the current study presents a robust framework that re-
veals important facts about the usage of MF models along with Bayesian
statistics tools to enhance understanding and future observation design
of hydro-geology properties based on the existing data. Once the data
provide certain levels of confidence, MF kriging models can extract
useful information from the data according to different levels of fidelity
to make reasonable predictions with corresponding assumptions.

12
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Fig. 10. The suggested sequential optimal sampling locations using Bayesian experimental design with the MF kriging model for the deepest (fifth) layer. (a) Initial
kriging result. (b) Updated mean and variance with the first observation point. (c¢) Updated mean and variance with the first and second observation points. (d)
Updated mean and variance with the first , second, and third observation points. (¢) Updated mean and variance with the first, second, third, and fourth observation
points. (f) Updated mean and variance with all five optimal observation points. Blue circle markers represent the HF data locations. Black cross markers represent the
LF data locations. Red triangles represent the suggested optimal future sampling locations. The red numbers represent the order of the samplings.
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