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Abstract: Iterative learning control (ILC) is a powerful technique for tracking performance improvement
by adding the iteratively updated learning signal to the feedforward loop of a repetitively operated
system. To increase the robustness to uncertainties and noises, usually a low-pass filter is needed in the
learning law which can result in a final steady-state error as a trade-off. This study proposes a new ILC
algorithm to further reduce the final error associated with the traditional ILC design. This new algorithm
can be easily applied to most ILC systems. In the proposed learning algorithm, when the learning
converges and a final error is obtained, the learning law is updated by adding a compensating term
which consists of a compensatory filter and the obtained final error. The to-be-designed compensatory
filter introduces no more design trade-offs and uncertainties. By updating the learning law, the reached
learning convergence can be broken and the final error is further reduced. The compensatory filter design
guideline along with four different designs are provided and analyzed. Numerical studies with the four
designs have been conducted, and the results are compared to that with the traditional ILC design. It
shows that the proposed learning algorithm is able to further reduce the final error effectively.
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1. INTRODUCTION

Iterative learning control (ILC) is a control technique to im-
prove the tracking performance of a repetitively operated sys-
tem. ILC was first introduced by Arimoto et al. (1984), and
the main idea of ILC is that, for each iteration, a learning
signal is generated by utilizing data from previous iterations
to update the control or reference input. ILC has been applied
to many applications including hard disk drives, see Xu et al.
(2002), industrial manipulators, see Yeon et al. (2009), wafer
scanner systems, see Mishra and Tomizuka (2009), and drone
systems, see Purwin and D’Andrea (2009). A review of the ILC
applications can be found in Bien and Xu (2012).

Control systems are inevitably subject to disturbance, noises,
and uncertainties. ILC is effective to suppress repetitive distur-
bances, see Zheng et al. (2017, 2018); Wang et al. (2018) as the
error associated with the repetitive disturbance can be learned
and removed over iterations. However, traditional ILC is weak
to completely cancel non-repetitive disturbances and thus non-
repetitive errors will accumulate and eventually diverge. To
handle this, high-order ILCs, see Chen and Moore (2002), and
Q filter-based ILCs, see Sun et al. (2014); Lee et al. (2000) have
been designed. The Q filter is usually designed to be a low-pass
filter which aims to filtrate the non-repetitive influence of high
frequency signals. In Lin et al. (2015), a time-varying filter is
designed to first identify the principal components of the non-
repetitive disturbance and then separate it from the repetitive
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disturbance. In Merry et al. (2008), a wavelet filter is designed
for ILC, and by comparing the two error realizations for each
iteration, the non-repetitive part can be identified and removed.

One important parameter in ILCs is the learning filter; it is
usually designed using the model inverse-based method and
norm optimization-based one, see Harte et al. (2005); Ge et al.
(2017); Meng (2018); Adlakha and Zheng (2021). As the learn-
ing filters are usually designed based on the nominal model,
to handle the adverse effects resulting from modelling uncer-
tainties, robustness of the ILC designs have been investigated.
For example, adaptive ILCs, see Yin et al. (2010), and iterative
learning identification-integrated ILCs, see Liu and Alleyne
(2016), have been designed to deal with parametric uncertain-
ties. Robust ILCs which leverage theH∞ optimal control theory,
see Chen et al. (2022b) and µ-synthesis, see Zheng et al. (2017),
have been proposed to handle the modeling uncertainties and
un-modeled dynamics. There are some ILC variants proposed
for heterogeneous systems, see Chen et al. (2020, 2022a) that
also encounter the balancing design between the learning per-
formance and the robustness.

It is worth mentioning that increasing the robustness to the dis-
turbances, noises and uncertainties is at the cost of the system
performance. The final error usually involves the Q filter term
which can not be eliminated, see Wang et al. (2014). This can
be understood that the Q filter has a cutoff frequency, and this
will filtrate partial benign learning signals which is outside the
designed bandwidth region. To alleviate the trade-off, Ye and
Wang (2006) have designed a P-type ILC which uses a negative
learning gain to learn more frequency components and im-
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dynamic parameter design efforts are needed in their study.
ILC combining other adcanced feedback control techniques has
been proposed. For example, Xie and Ren (2018) have designed
the iterative learning-based model predictive control (MPC)
to achieve high precision level, in which the MPC controller
limits the tracking error for all iterations, while the ILC is
applied to ensure high precision tracking. Nevertheless, the
above-mentioned methods are usually designed for specific ILC
algorithms. In this paper, we will introduce a new final error
reduction law that is applicable to most of the ILCs.

To further reduce the final error associated with traditional ILC,
this paper designs a new ILC algorithm that is applicable to
most of ILC systems with easy implementation. When the error
converges, the learning law is updated by added an extra term,
and then the iteration resumes with the updated learning law.
This extra term mainly consists a compensatory filter which is
designed based on the known dynamics. The compensatory fil-
ter will not introduce further uncertainties and inaccuracy. This
updated learning law aims to break the current convergence by
learning more components to further reduce the error.

The main contributions of this paper can be highlighted as fol-
lows. (a) The compensatory filter design is introduced system-
atically with theoretically-proved performance enhancement
and will not affect the stability of the system. (b) It can be easily
applied to most of the existing ILC systems by just adding
an extra term and does not introduce additional design trade-
offs. (c) An analytical design guideline along with four selected
different designs for compensatory filters are provided.

The remainder is organized as follows. Section 2 illustrates
the traditional ILC basics. Section 3 presents the new ILC,
where the updating mechanism, compensatory filter design, and
convergence analysis are demonstrated. Section 4 shows the
numerical studies with four compensatory filter designs along
with the traditional ILC, and Section 5 concludes the paper.

2. TRADITIONAL ILC BASICS

This section first reviews the traditional ILC learning law. Then
the final error associated with it is derived and discussed.

2.1 Learning law

The ILC framework is given in Fig. 1, where r denotes a
repetitive trajectory reference; P denotes a stable closed-loop
system with a baseline controller included; j as the iteration
index; s j, y j, e j as the learning signal, tracking trajectory,
and tracking error at iteration j, respectively. E contains the
converged errors which is elaborated in Section 3.

In this study, we focus on linear time invariant (LTI) systems,
and the theoretical derivations are presented in the frequency
domain. Define e0 as the tracking error of the initial iteration
when there is no learning signal added to the control loop. From
Fig. 1, we have e0 = r−y0 = r−P{r} and

e j = r−y j = r−P{r+ s j}= e0−P{s j}. (1)

The traditional ILC iteratively updates the learning signal as
s j = Q{s j−1+L{e j−1}} (2)

Memory

++

+ -

Compensatory filter

TILC learning law
New ILC 

learning law

Fig. 1. ILC framework. The memory contains the tracking in-
formation from previous iterations. TILC is short for tra-
ditional ILC. The proposed new ILC adds a compensatory
filter to the TILC, and the new ILC learning law along with
the compensatory filter design is given in Section 3.

where L is a learning filter, and Q is usually a low-pass filter
which is close to 1 over a wide range of frequencies. With (1)
and (2), the error and learning signal can be represented in the
iteration domain as

e j = Q(1−PL){e j−1}+(1−Q){e0} (3)

s j = Q(1−PL){s j−1}+QL{e0}. (4)
The main design task in traditional ILC is to compose two
suitable parametersQ and L to make e j decrease monotonously,
that is, to make ||e j||< ||e j−1||. With (3), a sufficient condition
to guarantee the stability of e j is that Q is close to 1, and

||Λ||∞ < 1 (5)
where Λ= Q(1−PL).

2.2 Final error

The error usually converges after a few learning iterations.
Define the convergence criteria as

||e j||2 ≤ ||e j−1||2
and
|(||e j||2−||e j−1||2)|/(||e j−1||2)< σ

(6)

where σ is a user-defined threshold. That is, (6) judges the
error converges if e j is no longer reduced compared to e j−1
in the sense of 2-norm, and the absolute value of the difference
between e j and e j−1 is within a defined small range. Then it is
rational to treat e j = e j−1.

Assume that at iteration a where a is a number index, the
error converges. By setting e j = e j−1 = ea in (3), and we have
ea = Q(1−PL){ea}+(1−Q){e0}, and

ea = Γ{e0} (7)

where
Γ= [1−Q(1−PL)]−1(1−Q). (8)

As mentioned above, the design task of ILC is to make e j
in (3) decrease monotonously. Then it is rational to assume
||ea|| < ||e0||, and in the frequency range of the interest (e.g.,
the low-frequency range or the frequency of the input signal to
Γ), we have

||Γ||< 1. (9)



	 Zhu Chen  et al. / IFAC PapersOnLine 55-37 (2022) 788–794	 789

Copyright © 2022 The Authors. This is an open access article under the CC BY-NC-ND license  
(https://creativecommons.org/licenses/by-nc-nd/4.0/)

proves the final error level. Li et al. (2021) have designed a dual-
loop ILC to reduce the final error, in which the inner loop uses
the traditional ILC and the outer loop generates a feedforward
signal to the ILC when the error converges, and no additional
dynamic parameter design efforts are needed in their study.
ILC combining other adcanced feedback control techniques has
been proposed. For example, Xie and Ren (2018) have designed
the iterative learning-based model predictive control (MPC)
to achieve high precision level, in which the MPC controller
limits the tracking error for all iterations, while the ILC is
applied to ensure high precision tracking. Nevertheless, the
above-mentioned methods are usually designed for specific ILC
algorithms. In this paper, we will introduce a new final error
reduction law that is applicable to most of the ILCs.

To further reduce the final error associated with traditional ILC,
this paper designs a new ILC algorithm that is applicable to
most of ILC systems with easy implementation. When the error
converges, the learning law is updated by added an extra term,
and then the iteration resumes with the updated learning law.
This extra term mainly consists a compensatory filter which is
designed based on the known dynamics. The compensatory fil-
ter will not introduce further uncertainties and inaccuracy. This
updated learning law aims to break the current convergence by
learning more components to further reduce the error.

The main contributions of this paper can be highlighted as fol-
lows. (a) The compensatory filter design is introduced system-
atically with theoretically-proved performance enhancement
and will not affect the stability of the system. (b) It can be easily
applied to most of the existing ILC systems by just adding
an extra term and does not introduce additional design trade-
offs. (c) An analytical design guideline along with four selected
different designs for compensatory filters are provided.

The remainder is organized as follows. Section 2 illustrates
the traditional ILC basics. Section 3 presents the new ILC,
where the updating mechanism, compensatory filter design, and
convergence analysis are demonstrated. Section 4 shows the
numerical studies with four compensatory filter designs along
with the traditional ILC, and Section 5 concludes the paper.

2. TRADITIONAL ILC BASICS

This section first reviews the traditional ILC learning law. Then
the final error associated with it is derived and discussed.

2.1 Learning law

The ILC framework is given in Fig. 1, where r denotes a
repetitive trajectory reference; P denotes a stable closed-loop
system with a baseline controller included; j as the iteration
index; s j, y j, e j as the learning signal, tracking trajectory,
and tracking error at iteration j, respectively. E contains the
converged errors which is elaborated in Section 3.

In this study, we focus on linear time invariant (LTI) systems,
and the theoretical derivations are presented in the frequency
domain. Define e0 as the tracking error of the initial iteration
when there is no learning signal added to the control loop. From
Fig. 1, we have e0 = r−y0 = r−P{r} and

e j = r−y j = r−P{r+ s j}= e0−P{s j}. (1)

The traditional ILC iteratively updates the learning signal as
s j = Q{s j−1+L{e j−1}} (2)
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Fig. 1. ILC framework. The memory contains the tracking in-
formation from previous iterations. TILC is short for tra-
ditional ILC. The proposed new ILC adds a compensatory
filter to the TILC, and the new ILC learning law along with
the compensatory filter design is given in Section 3.

where L is a learning filter, and Q is usually a low-pass filter
which is close to 1 over a wide range of frequencies. With (1)
and (2), the error and learning signal can be represented in the
iteration domain as

e j = Q(1−PL){e j−1}+(1−Q){e0} (3)

s j = Q(1−PL){s j−1}+QL{e0}. (4)
The main design task in traditional ILC is to compose two
suitable parametersQ and L to make e j decrease monotonously,
that is, to make ||e j||< ||e j−1||. With (3), a sufficient condition
to guarantee the stability of e j is that Q is close to 1, and

||Λ||∞ < 1 (5)
where Λ= Q(1−PL).

2.2 Final error

The error usually converges after a few learning iterations.
Define the convergence criteria as

||e j||2 ≤ ||e j−1||2
and
|(||e j||2−||e j−1||2)|/(||e j−1||2)< σ

(6)

where σ is a user-defined threshold. That is, (6) judges the
error converges if e j is no longer reduced compared to e j−1
in the sense of 2-norm, and the absolute value of the difference
between e j and e j−1 is within a defined small range. Then it is
rational to treat e j = e j−1.

Assume that at iteration a where a is a number index, the
error converges. By setting e j = e j−1 = ea in (3), and we have
ea = Q(1−PL){ea}+(1−Q){e0}, and

ea = Γ{e0} (7)

where
Γ= [1−Q(1−PL)]−1(1−Q). (8)

As mentioned above, the design task of ILC is to make e j
in (3) decrease monotonously. Then it is rational to assume
||ea|| < ||e0||, and in the frequency range of the interest (e.g.,
the low-frequency range or the frequency of the input signal to
Γ), we have

||Γ||< 1. (9)
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In practice, Q is designed as a dynamic parameter and Q  = 1.
Therefore, Γ  = 0 and the final error ea  = 0 based on (7) and (8).

Though ILC can reduce the error from e0 through multiple
learning iterations, (7) and (8) show that the final error of
traditional ILC ea will not reach zero partially due to the Q
term. In practice, the final error can also be caused by noises,
disturbances, uncertainties. On the other hand, the low-pass fil-
ter Q plays an important role of filtrating high-frequency noises
and disturbances, and a non-zero final error ea is inevitable, and
its value is determined by P, L, Q and e0 as (7) indicates. In
other words, for a given reference r, plant P, the designed Q
and L, the final error can be determined. However, our proposed
method is able to break the convergence and further reduce the
final error ea by updating the learning law and continue the
learning iterations, as presented in the following section.

3. NEW ILC ALGORITHM

This section presents the new ILC algorithm including the
learning law, compensatory filter design, and convergence anal-
ysis.

3.1 Overview of the new ILC

As given in Fig. 1, the proposed ILC updates the learning
law when a learning convergence is reached. To elaborate the
updating algorithm, we first illustrate the process of updating
the learning law of traditioanl ILC when the final error ea is
reached. Then we generalize the algorithm.

When the learning convergence is reached and ea is obtained,
the learning law in (2) is updated as

s j = Q{s j−1+L{e j−1}}+∆{ea} (10)
where ∆ is the to-be-designed compensatory filter. Compare it
to the learning law in (2), the new learning law in (10) only adds
a fixed extra term ∆{ea} which aims to break the convergence.
Then with the new learning law in (10), the iterations continue,
and the error can be further reduced. Assume that with a few
more iterations, the error converges with the new learning law,
and the new final error is labelled as eb. Then the learning law
in (10) can be updated as

s j = Q{s j−1+L{e j−1}}+∆{ea}+∆{eb} (11)
to further reduce eb with further iterations. Assume that by
using (11) with a few iterations, the error converges and a new
final error ec is obtained.

During the iterating process, we label the final errors as
ea, eb, ec, . . . in the chronological order. Define the set E
contains those final errors and E = {ea, eb, ec, . . . , elast},
where elast is the last element of E. When a new final error
is obtained, it will be added to set E as its last element. The
extra term ∆{elast}will be added to update the learning law. The
proposed learning law updating algorithm is given in algorithm
1.

3.2 Compensatory filter design

This section presents the the compensatory filter, and its design
guidelines. The compensatory filter is designed as

∆= QL+(1−Q)(−
n

∑
i=1

(
n
i

)
[Pk×i−1(−LkQm)i]) (12)

where k, m, n are user-defined integers and k≥ 1, m≥ 0, n≥ 0.
The design guideline for ∆ is that it will not introduce any

Algorithm 1 Proposed learning law updating algorithm
Inputs:
dynamic parameters P, Q, L
reference r
Initialization:
set iteration index as j = 0
set (2) as the current learning law
set E = {}
while satisfactory e j is not obtained do

if e j is not converged then
1. continue the iterations with current learning law
2. record e j

else
1. add the new final error e j to set E as the last element
2. select a compensatory filter ∆
3. Update the current learning law by adding the extra
term ∆{elast}
4. set j = j+ 1; set the updated learning law as the
current learning law

end
end

design trade-offs and compromises which is adverse to the
system performance. For example, an exact model inverse may
be impossible to obtain if the model is non-minimum phase
system, and instead, an approximation of the model inverse
is used. This approximation is considered as a design trade-
off between design feasibility and accuracy. In our case, the
compensatory filter designed in (12) meets the following two
conditions: 1) it does not introduce new dynamic parameters
but just includes P, Q, L terms; 2) it dose not include model
inverse terms such as P−1, Q−1, L−1.

Define a new variable
Ω= (1−PkLkQm)n (13)

and based on the binomial theorem, see Weisstein (2002), Ω
can be expanded as

Ω=
n

∑
i=0

(
n
i

)
(−PkLkQm)i (14)

where i is a dummy variable and(
n
i

)
=

n!
i!(n− i)!

. (15)

With (12) and (13), we have
P∆= PQL+(1−Q)[1−Ω]. (16)

Different k, m, n integers can be selected to generate different
compensatory filters and this can lead to different tracking per-
formance and error convergence, as observed in the numerical
studies in Section 4. The design guideline for Ω is to achieve

||Ω|| ≤ 1 (17)
at the frequency range of the interest, and this will be further
explained in later sections. Four example designs are given in
Table 1.

3.3 Convergence analysis

With the new ILC algorithm, the initial learning law in (2) is
used, and then the learning law is updated as (10). We first
analyze the convergence by comparing ea and eb.

Plug (10) into (1) to have

Table 1. Four compensatory filters

Design # Integers Ω ∆
1 n= 0 1 QL
2 n= 1, m= 0, k = 1 1−PL L
3 n= 1, m= 1, k = 1 1−PLQ QL(2−Q)
4 n= 2, m= 1, k = 1 (1−PLQ)2 QL+(1−Q)(2QL−PL2Q2)

e j+1 = e0−P{s j+1}
= e0−P[Q(s j+Le j)+∆{ea}]
= e0−Q(P{s j})−PQL{e j}−P∆{ea}
= e0−Q(e0− e j)−PQL{e j}−P∆{ea}
= Q(1−PL){e j}+(1−Q)e0−P∆{ea}.

(18)

Similarly, to obtain the final error eb which is associated with
the learning law in (10), we treat eb = e j = e j+1 and plug it into
(18), and with (7), (8), (16), we have

eb =[1−Q(1−PL)]−1(1−Q){e0}
− [1−Q(1−PL)]−1P∆{ea}

=ea− [1−Q(1−PL)]−1P∆{ea}
=(1− [1−Q(1−PL)]−1[PQL+(1−Q)(1−Ω)]){ea}
=ΩΓ{ea}.

(19)
If (9) and (17) hold, then (19) indicates that ||eb||< ||ea||.
If the learning law is updated from (10) to (11), and the final
error ec which is associated with the learning law in (11)
can be related to eb as ec = ΩΓ{eb} by following the same
derivation process in (18) and (19). Therefore, ||ec|| < ||eb||
can be observed. That is, with this algorithm, the final errors
in set E decrease monotonously in the chronological order
which guarantees the learning convergence. The convergence
rate within set E (reduction between two adjacent final errors)
depends on the parameter Ω and Γ, as (19) indicates.

Eq. (3) and (18) indicates that the new ILC and the traditional
ILC share the same convergence rate from iteration to iteration
since e j and e j−1 are related with the same Λ. Therefore, the
stability condition in (5) is also applied to (18) with respect to
e j. This is straightforward to observe, similar to the traditional
ILC, in this control framework the new ILC generates learning
signals only to modify the reference which will not affect the
system stability.

4. NUMERICAL STUDIES

In this section, a drone model is used to simulate the trajectory
tracking in its heading direction. The new ILC algorithm which
uses the four different ∆ in Table 1 are simulated and their
results are compared to the learning with traditional ILC. The
drone’s closed-loop dynamics for position tracking is identified
as an LTI system P(z),

P(z) =
0.01241z−1

0.9829−1.775z−1+0.8041z−2
(20)

where z is the discrete-time operator. The sampling time equals
0.1 seconds, and this is the suitable sampling time to implement
with a quadrotor drone in practice. The stable learning filter L is
designed to approximate the plant inverse P−1; and Q is a low-
pass filter with a cutoff frequency of around 0.6 hz. The low-
pass filter is designed with a small bandwidth to provide more
robustness to high-frequency noises. The bode plots of P, Q, L
are given is Fig. 2. The two to-be-tracked references are given

in Fig. 3, where reference #1 contains several sharp corners
which is challenging for the drone to follow, and reference #2 is
a sinusoidal signal. Three tracking scenarios are simulated. In
scenario 1 and scenario 2, the system is tracking reference #1,
and in scenario 3, the system is tracking reference #2.

4.1 Scenario 1

In this scenario, an ideal case is simulated without introducing
modelling uncertainties and noises. 14 repetitive iterations are
carried out for the drone tracking reference #1, and the learning
law with each of the 4 compensatory filter in Table 1 is imple-
mented. The 2-norm of the tracking error for each iteration is
recorded. To compare results, the traditional ILC is also imple-
mented. The abbreviation ‘TILC’ in the figures and table stands
for traditional ILC. In this study, we set σ = 0.00001. The 2-
norm of the tracking error is given in Fig. 4, where it shows that
at iteration 5, the error with traditional ILC converges, and ea
is obtained; The proposed algorithm then updates the learning
law, and each of the 4 new learning laws can further decrease
the error; at iteration 9 with design #1, and iteration 10 with
design #2∼4, the error converges once more and eb is obtained.

The trajectory tracking with design #1 is given in Fig. 5 and Fig.
6, and it shows that with iterations, the tracking is getting closer
to the reference. Results of partial iterations are hidden for clear
view purposes since they can be overlapped with the current
curves in the figure. Note that this reference contains sharp
corners which can be dynamically infeasible, and therefore the
steady-state error can be persistent.
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The bode plots of the dynamic parameters Λ, Γ, and the three
Ω designs in Table 1 are given in Fig. 7, where it shows that
at the low frequency range (< 1 hz), the magnitude of these
parameters are all smaller than 1, and this meets the design
guidelines in (5), (9), (17). Not that in this study, we only
investigated the frequency range of our interest, which is at the
low-frequency range. However, this method has the potential
to be effective for all frequency range if parameters can be
designed such that conditions in (5), (9), (17) are guaranteed
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Table 1. Four compensatory filters

Design # Integers Ω ∆
1 n= 0 1 QL
2 n= 1, m= 0, k = 1 1−PL L
3 n= 1, m= 1, k = 1 1−PLQ QL(2−Q)
4 n= 2, m= 1, k = 1 (1−PLQ)2 QL+(1−Q)(2QL−PL2Q2)

e j+1 = e0−P{s j+1}
= e0−P[Q(s j+Le j)+∆{ea}]
= e0−Q(P{s j})−PQL{e j}−P∆{ea}
= e0−Q(e0− e j)−PQL{e j}−P∆{ea}
= Q(1−PL){e j}+(1−Q)e0−P∆{ea}.

(18)

Similarly, to obtain the final error eb which is associated with
the learning law in (10), we treat eb = e j = e j+1 and plug it into
(18), and with (7), (8), (16), we have

eb =[1−Q(1−PL)]−1(1−Q){e0}
− [1−Q(1−PL)]−1P∆{ea}

=ea− [1−Q(1−PL)]−1P∆{ea}
=(1− [1−Q(1−PL)]−1[PQL+(1−Q)(1−Ω)]){ea}
=ΩΓ{ea}.

(19)
If (9) and (17) hold, then (19) indicates that ||eb||< ||ea||.
If the learning law is updated from (10) to (11), and the final
error ec which is associated with the learning law in (11)
can be related to eb as ec = ΩΓ{eb} by following the same
derivation process in (18) and (19). Therefore, ||ec|| < ||eb||
can be observed. That is, with this algorithm, the final errors
in set E decrease monotonously in the chronological order
which guarantees the learning convergence. The convergence
rate within set E (reduction between two adjacent final errors)
depends on the parameter Ω and Γ, as (19) indicates.

Eq. (3) and (18) indicates that the new ILC and the traditional
ILC share the same convergence rate from iteration to iteration
since e j and e j−1 are related with the same Λ. Therefore, the
stability condition in (5) is also applied to (18) with respect to
e j. This is straightforward to observe, similar to the traditional
ILC, in this control framework the new ILC generates learning
signals only to modify the reference which will not affect the
system stability.

4. NUMERICAL STUDIES

In this section, a drone model is used to simulate the trajectory
tracking in its heading direction. The new ILC algorithm which
uses the four different ∆ in Table 1 are simulated and their
results are compared to the learning with traditional ILC. The
drone’s closed-loop dynamics for position tracking is identified
as an LTI system P(z),

P(z) =
0.01241z−1

0.9829−1.775z−1+0.8041z−2
(20)

where z is the discrete-time operator. The sampling time equals
0.1 seconds, and this is the suitable sampling time to implement
with a quadrotor drone in practice. The stable learning filter L is
designed to approximate the plant inverse P−1; and Q is a low-
pass filter with a cutoff frequency of around 0.6 hz. The low-
pass filter is designed with a small bandwidth to provide more
robustness to high-frequency noises. The bode plots of P, Q, L
are given is Fig. 2. The two to-be-tracked references are given

in Fig. 3, where reference #1 contains several sharp corners
which is challenging for the drone to follow, and reference #2 is
a sinusoidal signal. Three tracking scenarios are simulated. In
scenario 1 and scenario 2, the system is tracking reference #1,
and in scenario 3, the system is tracking reference #2.

4.1 Scenario 1

In this scenario, an ideal case is simulated without introducing
modelling uncertainties and noises. 14 repetitive iterations are
carried out for the drone tracking reference #1, and the learning
law with each of the 4 compensatory filter in Table 1 is imple-
mented. The 2-norm of the tracking error for each iteration is
recorded. To compare results, the traditional ILC is also imple-
mented. The abbreviation ‘TILC’ in the figures and table stands
for traditional ILC. In this study, we set σ = 0.00001. The 2-
norm of the tracking error is given in Fig. 4, where it shows that
at iteration 5, the error with traditional ILC converges, and ea
is obtained; The proposed algorithm then updates the learning
law, and each of the 4 new learning laws can further decrease
the error; at iteration 9 with design #1, and iteration 10 with
design #2∼4, the error converges once more and eb is obtained.

The trajectory tracking with design #1 is given in Fig. 5 and Fig.
6, and it shows that with iterations, the tracking is getting closer
to the reference. Results of partial iterations are hidden for clear
view purposes since they can be overlapped with the current
curves in the figure. Note that this reference contains sharp
corners which can be dynamically infeasible, and therefore the
steady-state error can be persistent.
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The bode plots of the dynamic parameters Λ, Γ, and the three
Ω designs in Table 1 are given in Fig. 7, where it shows that
at the low frequency range (< 1 hz), the magnitude of these
parameters are all smaller than 1, and this meets the design
guidelines in (5), (9), (17). Not that in this study, we only
investigated the frequency range of our interest, which is at the
low-frequency range. However, this method has the potential
to be effective for all frequency range if parameters can be
designed such that conditions in (5), (9), (17) are guaranteed
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Fig. 6. Scenario 1: tracking errors with design #1

for the whole frequency range. And this will be explored in the
future work.
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4.2 Scenario 2

In this scenario, while keeping the same settings used in sce-
nario 1, some model mismatch is introduced in the simulation.
A nominal model P̂(z) is generated as

P̂(z) =
0.01241z−1

0.7175−1.292z−1+0.587z−2 .
(21)

This study does not explicitly consider the robustness to model
mismatch, however, we reasonably assume the model mismatch
is bounded and small for derivation purposes. The parameters
L and ∆ are designed based on P̂(z), while the learning signal
is injected to the actual model P(z).
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A random measurement noise is generated and added to the
output iteratively. With the same reference, parameter designs,
and simulation settings as in scenario 1, the drone’s trajectory
tracking is simulated, and the 2-norm of the tracking error
is given in Fig. 8, where it shows that with the traditional
ILC, the error converges at iteration 7, and remains unchanged
afterwards. With the new ILC algorithm, after iteration 7, the
learning law is updated, and all the 4 learning laws are able to
further reduce the error. With design #1, the error converges
at iteration 13, and with design #2∼#4, the error converges
at iteration 14. Note that the error might not be decrease
monotonously, such as the error at iteration 3 is larger than that
at iteration 2, and this is caused by the model mismatch. Also,
this phenomenon will not affect the convergence. As the first
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Fig. 10. Scenario 2: trajectory tracking error with design #1

condition in (6) is not met, further iterations will be conducted
until the error converges. The tracking with design #1 is given
in Fig. 9 and Fig. 10, and it indicates that overall, the error is
reduced iteratively.

Table 2. Selected 2-norm of the tracking errors

Iteration # Design #1 Design #2 Design #3 Design #4 TILC
Scenario 1

5 2.26 2.26 2.26 2.26 2.26
6 1.29 0.19 0.86 0.59 2.26
10 0.81 0.14 0.81 0.56 2.26
11 0.77 0.11 0.42 0.25 2.26

Scenario 2
7 1.67 1.67 1.67 1.67 1.67
8 0.65 0.62 0.61 0.65 1.67
14 0.60 0.68 0.58 0.56 1.67

Scenario 3
7 1.60 1.60 1.60 1.60 1.60
8 0.75 0.54 0.49 0.53 1.60
14 0.49 0.60 0.47 0.43 1.60

4.3 Scenario 3

In scenario 3, the drone is tracking reference #2 while other
settings (model mismatch and measurement noise) are kept the
same as that in scenario 2. The 2-norm of the tracking error is
given in Fig. 11; the tracking is given in Fig. 12 and Fig. 13.
The results from scenario 3 also indicate that the proposed ILC
outperforms the traditional ILC, which proves that the proposed
ILC is applicable to different references.

To provide some insights statistically, partial 2-norm values
recorded from the simulation are given in Table 2 and it in-
dicates that in all the three scenarios, the 4 new designs can
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further reduce the error to a large extent compared to that with
traditional ILC. Within the performed 14 iterations, the results
from scenario 1 indicate that the learning law with design #2
has the best performance, and in scenario 2 and scenario 3, the
learning law with design #4 has the best performance regarding
the tracking accuracy in the sense of 2-norm. Note that the
noise and model mismatch exist in scenario 2, and this can lead
to different initial tracking performance with that in scenario
1. Also, when compare the 2-norm values between different
scenarios, the factor that the number of tracking points is dif-
ferent in scenario 2 and scenario 3 should also be considered.
The results verify that the proposed algorithm is effective to
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condition in (6) is not met, further iterations will be conducted
until the error converges. The tracking with design #1 is given
in Fig. 9 and Fig. 10, and it indicates that overall, the error is
reduced iteratively.

Table 2. Selected 2-norm of the tracking errors

Iteration # Design #1 Design #2 Design #3 Design #4 TILC
Scenario 1

5 2.26 2.26 2.26 2.26 2.26
6 1.29 0.19 0.86 0.59 2.26
10 0.81 0.14 0.81 0.56 2.26
11 0.77 0.11 0.42 0.25 2.26

Scenario 2
7 1.67 1.67 1.67 1.67 1.67
8 0.65 0.62 0.61 0.65 1.67
14 0.60 0.68 0.58 0.56 1.67

Scenario 3
7 1.60 1.60 1.60 1.60 1.60
8 0.75 0.54 0.49 0.53 1.60
14 0.49 0.60 0.47 0.43 1.60

4.3 Scenario 3

In scenario 3, the drone is tracking reference #2 while other
settings (model mismatch and measurement noise) are kept the
same as that in scenario 2. The 2-norm of the tracking error is
given in Fig. 11; the tracking is given in Fig. 12 and Fig. 13.
The results from scenario 3 also indicate that the proposed ILC
outperforms the traditional ILC, which proves that the proposed
ILC is applicable to different references.

To provide some insights statistically, partial 2-norm values
recorded from the simulation are given in Table 2 and it in-
dicates that in all the three scenarios, the 4 new designs can
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further reduce the error to a large extent compared to that with
traditional ILC. Within the performed 14 iterations, the results
from scenario 1 indicate that the learning law with design #2
has the best performance, and in scenario 2 and scenario 3, the
learning law with design #4 has the best performance regarding
the tracking accuracy in the sense of 2-norm. Note that the
noise and model mismatch exist in scenario 2, and this can lead
to different initial tracking performance with that in scenario
1. Also, when compare the 2-norm values between different
scenarios, the factor that the number of tracking points is dif-
ferent in scenario 2 and scenario 3 should also be considered.
The results verify that the proposed algorithm is effective to
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break the convergence with traditional ILC and have final error
reduction.

5. CONCLUSIONS

This paper presents a new ILC algorithm with theoretically-
proved performance enhancement compared to the traditional
ILC. As explained in the paper, in traditional ILCs, a low-pass
filter is usually needed to obtain good robustness to modeling
uncertainties and noises, which results in a final steady-state
error as a trade-off. The proposed new ILC can break the con-
vergence of traditional ILC and further reduce the final error
by updating the learning law. The learning law is updated by
adding a compensating term which consists of a compensatory
filter and the obtained final error. Extensive studies on four
selected designs have been conducted, and the results are com-
pared to that of the traditional ILC design. It shows that the
proposed learning algorithm is able to further reduce the final
error effectively.
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