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ABSTRACT: This study examines thermodynamic–convection coupling in observations and reanalyses, and attempts to

establish process-level benchmarks needed to guide model development. Thermodynamic profiles obtained from

the NOAA Integrated Global Radiosonde Archive, COSMIC-1 GPS radio occultations, and several reanalyses are

examined alongside Tropical Rainfall Measuring Mission precipitation estimates. Cyclical increases and decreases

in a bulk measure of lower-tropospheric convective instability are shown to be coupled to the cyclical amplification

and decay of convection. This cyclical flow emerges from conditional-mean analysis in a thermodynamic space com-

posed of two components: a measure of “undiluted” instability, which neglects lower-free-tropospheric (LFT)

entrainment, and a measure of the reduction of instability by LFT entrainment. The observational and reanalysis

products examined share the following qualitatively robust characterization of these convective cycles: increases in

undiluted instability tend to occur when the LFT is less saturated, are followed by increases in LFT saturation and

precipitation rate, which are then followed by decreases in undiluted instability. Shallow, convective, and stratiform

precipitation are coupled to these cycles in a manner consistent with meteorological expectations. In situ and satel-

lite observations differ systematically from reanalyses in their depictions of lower-tropospheric temperature and

moisture variations throughout these convective cycles. When using reanalysis thermodynamic fields, these system-

atic differences cause variations in lower-free-tropospheric saturation deficit to appear less influential in determin-

ing the strength of convection than is suggested by observations. Disagreements among reanalyses, as well as

between reanalyses and observations, pose significant challenges to process-level assessments of thermodynamic–

convection coupling.

KEYWORDS: Clouds; Convective clouds; Madden-Julian oscillation; Precipitation; Convective storms; Cumulus clouds;

Thermodynamics

1. Introduction

Tropical convection influences the global distribution of

precipitation, brokers radiative transfer, and redistributes

heat, moisture, and momentum, fundamentally shaping Earth’s

weather and climate. Even relatively short (∼2-day) pulses

of tropical convective heating have been shown to induce

long-lived responses in the midlatitudes (Branstator 2014),

and large-scale phenomena such as the Madden–Julian oscil-

lation (MJO) serve as important sources of predictability on

subseasonal-to-seasonal (S2S) time scales (Bjerknes 1966;

Hoskins and Karoly 1981; Sardeshmukh and Hoskins 1988;

Zhang 2005; Dias and Kiladis 2019; Jiang et al. 2020; Dias et al.

2021). On monthly time scales, variations in the spatial organi-

zation of tropical convection have been shown to substantially

influence the global radiation balance (Bony et al. 2020). Given

these global impacts, it is difficult to overstate the importance

of understanding and representing the processes driving tropi-

cal convective variability (Bony et al. 2015; Stevens et al. 2019).

Thermodynamic–convection coupling plays a crucial role in

determining the distribution, evolution, and organization of

convection, and arises from a myriad of complex interactions

spanning an enormous range of scales, as illustrated schemati-

cally in Fig. 1 (Neelin andHeld 1987; Raymond 2000;Mapes et al.

2006; Khouider and Majda 2008; Kiladis et al. 2009; Adames and

Ming 2018). Understanding and assessing thermodynamic–

convection coupling can be aided by conceptually separating the

coupling process into two distinct steps, posed here as questions

that can be assessed individually:

1) How does convection respond to its thermodynamic

environment?

2) How does convection, in turn, cause its thermodynamic

environment to evolve?

Because thermodynamic–convection coupling is an

interactive process, evolving as characteristics of the

cloud population change, a third question must also be

addressed:

3) How does the coevolution of convection and its thermo-

dynamic environment change as characteristics of the

cloud population change?

Given typical model development goals, this study focuses on

interactions between ensembles of convection and their large-

scale environment, not on those between individual convec-

tive elements and their immediate environment.
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A broad and influential hypothesis of how ensemble-aver-

aged convection responds to the large-scale thermodynamic

environment was put forth in convective quasi-equilibrium

(QE) theory (Arakawa and Schubert 1974). A simplified and

generalized definition of QE is a state of near-zero buoyancy

maintained by an approximate balance between the slow pro-

duction of buoyancy by large-scale forcings (e.g., surface

fluxes, radiative cooling, large-scale convergence) and the fast

consumption of buoyancy by convection (Arakawa 2004;

Neelin et al. 2008). In this simplified QE interpretation,

both the slow drive toward instability by large-scale forc-

ings and the rapid consumption of buoyancy by convection

push the atmosphere toward a “critical point” of convective

instability, sometimes called the QE point, where the tran-

sition from a nonconvecting atmosphere to a convecting

atmosphere occurs. Different variants of QE place varying

emphasis on the importance of temperature and/or mois-

ture fluctuations within the boundary layer and/or free tro-

posphere for convective variability (Arakawa and Schubert

1974; Emanuel 1993; Emanuel et al. 1994; Raymond 1995;

Mapes 2000; Khouider and Majda 2006; Kuang 2008;

Khouider and Majda 2008; Neelin et al. 2008; Raymond and

Herman 2011; Raymond et al. 2015; Raymond and Fuchs-Stone

2021). In simplified QE interpretations, ensemble-averaged

convection is sometimes viewed as being “slaved to the large-

scale” (Neelin et al. 2008).

Convection, in turn, has both direct and indirect impacts on

the thermodynamic environment. While the direct impacts of

convection are generally to reduce convective instability by

vertically transporting heat and removing column water

vapor, convection can also indirectly impact the thermody-

namic environment through the changes that it induces in the

so-called large-scale “forcing” terms. These indirect impacts

can give rise to positive thermodynamic–convection feed-

backs, which have been shown to contribute to large-scale

convective variability such as the Madden–Julian oscillation

and convective self-aggregation in idealized models (Bretherton

et al. 2005; Wing and Emanuel 2014; Chikira 2014; Arnold and

Randall 2015; Adames and Kim 2016). As ensemble-averaged

convection not only responds to, but is also a driver of the

large-scale “forcings,” it has considerably more agency in

determining its own variability and evolution than is immedi-

ately apparent in the simplified QE interpretation presented

above.

This two-way dialogue between convection and its ther-

modynamic environment has been shown to give rise to the

cyclical amplification and decay of convection across a

broad range of spatiotemporal scales (Mapes and Houze

1993; Chen and Houze 1997; Mapes et al. 2006; Kiladis et al.

2009; Inoue and Back 2017; Wolding et al. 2020a; Inoue

et al. 2021). Model intercomparison and process-level studies

indicate that poor representation of the thermodynamic–

convection coupling processes driving these convective cycles

contributes to deficiencies in model representation of tropical

convective variability (Thayer-Calder and Randall 2009; Jiang

et al. 2015; Ahn et al. 2017; Rushley et al. 2018). The primary

scientific goals of this study are to use process-oriented diag-

nostics (PODs) of thermodynamic–convective coupling

to address the three questions posed above and, if possible,

to establish process-level benchmarks to guide model

development.

Data used in this study are described in section 2. In section 3,

a bulk measure of moisture and temperature stratification in

the lower troposphere is introduced, and assumptions made

during its formulation and application are discussed. Section 4

introduces recently developed PODs, which are used to exam-

ine thermodynamic–convection coupling in several reanalysis

products. Thermodynamic–convection coupling is examined

using observations in section 5. Discussion and conclusions

are provided in sections 6 and 7, respectively. Additional anal-

yses of thermodynamic–convection coupling are provided in

the appendixes.

FIG. 1. Schematic illustrating the simplified conceptual approach adopted by this study,

whereby thermodynamic–convection coupling is separated into two distinct steps (gray arrows).

The role that particular processes play in coupling will change as the characteristics of the con-

vective ensemble change.
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2. Data

Analyses are limited to the tropical Indian and west Pacific

Oceans (158N–158S, 608E–1808), regions that have extended

sounding records and that are characterized by similar ther-

modynamic–convection coupling processes (Inoue et al. 2021).

The geographical variability of thermodynamic–convection

coupling is discussed in section 6 and appendix D. Table 1 sum-

marizes the data used for each analysis in this study, and indi-

cates their corresponding figure numbers.

Pressure-level fields of specific humidity q and temperature

T, as well as surface pressure Ps, are obtained from ERA5,

ERA-Interim (hereafter ERAi), and JRA-55 (Dee et al. 2011;

Kobayashi et al. 2015; Hersbach et al. 2020). Unless otherwise

noted, these data are on a 2.58 3 2.58 horizontal grid and aver-

aged to daily temporal resolution. We also make use of two

different Tropical Rainfall Measuring Mission (TRMM) pre-

cipitation data products: daily TRMM 2A23 spanning 1998–

2014 is gridded at 2.583 2.58 resolution, and TRMM 3B42

version 7A spanning 1998–2015 at various spatiotemporal res-

olutions (Huffman et al. 2007). TRMM 2A23 has been modi-

fied by the procedure outlined in Funk et al. (2013), and the

precipitation type classifications are detailed in subsequent

sections. Additional descriptions and analyses of these data

are provided by Ahmed and Schumacher (2015, 2017).

NOAA Integrated Global Radiosonde Archive (IGRA)

soundings provide high-vertical-resolution, quality-controlled

observations of temperature, relative humidity, dewpoint

depression, wind direction, and wind speed at stations span-

ning the tropics (Durre et al. 2006, 2018). Additionally, IGRA

provides sounding-derived moisture and stability parameters

for each suitable sounding. In this study, we retrieve specific

humidity from dewpoint depression, which is successfully

reported more frequently than relative humidity. Each sound-

ing is linearly interpolated in the vertical to 25-hPa resolution

between the minimum and maximum reported pressure levels.

Above 100 hPa, the interpolation resolution changes to include

only the 70-, 50-, 30-, 20-, and 10-hPa levels. A 25-hPa thresh-

old for the maximum distance between a reported pressure

level and interpolated level has been applied. If there are no

reported pressure level data within 625 hPa of the desired

interpolation level, no interpolation is performed. To minimize

the potential impacts of land surface processes, analysis is lim-

ited to 0000 and 1200 UTC soundings from six “small” island

stations in the tropical western Pacific Ocean (Fig. 2), defined

as stations whose nearest corresponding 0.2583 0.258 ERA5

grid point has a land fraction less than 10% (Ahmed and

Schumacher 2015; Bergemann and Jakob 2016; Schiro and

Neelin 2019). These six stations have exceptionally long,

continuous, and high-quality sounding records, and together

account for the vast majority of available small-tropical-island

IGRA soundings having requisite boundary layer temperature

and moisture observations. The ∼115 000 soundings exam-

ined in this study span the period 1970–2018.

Constellation Observing System for Meteorology, Iono-

sphere and Climate (COSMIC-1) level 2 WetPrf radio occul-

tation (RO) profiles provide high-vertical-resolution (∼200 m

in the lower troposphere) observations of temperature and

vapor pressure, from which specific humidity is calculated.

Given the limited abilities of microwave and infrared satellite

sounders to measure water vapor in the presence of

convection, COSMIC RO profiles are uniquely well suited

for examining thermodynamic–convection coupling over

TABLE 1. Summary of data used for each analysis in this study, and their corresponding figure numbers.

Data Horizontal resolution Temporal sampling Geographical location Years Figure(s)

Thermodynamic profiles

ERAi 2.58 3 2.58 Daily 158N–158S, 608E–1808; ocean 1998–2015 Figs. 3–7

ERA5 0.258 3 0.258 Hourly Six warm pool IGRA stations 1998–2015 Figs. 12–14

ERA5 2.58 3 2.58 Daily 158N–158S, 608E–1808; ocean 1998–2015 Fig. 7

JRA-55 2.58 3 2.58 Daily 158N–158S, 608E–1808; ocean 1998–2015 Fig. 7

NOAA IGRA } Twice daily Six warm pool IGRA stations 1970–2018 Figs. 8, 10, 12–14

COSMIC-1 Variable Variable 158N-158S, 608E–1808; ocean 2007–12 Fig. 9

Guam (PGUA) } Variable 138N, 1458E 1999–2001,

2014–19

Fig. 11

Precipitation data

TRMM 3B42 0.58 3 0.58 3 hourly Six warm pool IGRA stations 1998–2015 Fig. 8

TRMM 3B42 0.58 3 0.58 3 hourly “Nearest” COSMIC sounding 2007–12 Fig. 9

TRMM 3B42 2.58 3 2.58 Daily 158N–158S, 608E–1808; ocean 1998–2015 Figs. 3, 4, 7

TRMM 2A23 2.58 3 2.58 Daily 158N–158S, 608E–1808; ocean 1998–2014 Figs. 5, 6

Guam (PGUA) ∼2.58 Within 61.5 h

of sounding

138N, 1458E 1999–2001,

2014–19

Fig. 11

FIG. 2. Boldface numbers indicate the locations of the six

NOAA IGRA sounding stations analyzed, whose corresponding

station IDs are AQM00091765, FMM00091334, FMM00091348,

FMM00091413, PSM00091408, and RMM00091376, respectively.
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sparsely observed tropical oceans because of their global

coverage and insensitivity to clouds and precipitation

(Kursinski et al. 1997; Basha and Ratnam 2009; Xie et al.

2012; Pincus et al. 2017; Ho et al. 2020). Analyses are

limited to quality-controlled oceanic profiles (“badness”

flag = 0) with at least three observations below 850 hPa,

resulting in ∼83 000 RO profiles spanning 2007–12. These

RO profiles typically span ∼18 of latitude–longitude in the low-

est 4.5 km of the troposphere, with some profiles spanning in

excess of 38 of latitude/longitude, and therefore reflect rela-

tively large-scale conditions when compared to IGRA sound-

ings. In subsequent analyses, the average latitude and

longitude values in the lowest 4.5 km are assigned to each

profile.

Ground-based WSR-88D data at Guam (PGUA) provide

additional estimates of rainfall from 1999 to 2001 and 2014 to

2019, and were accessed via the “noaa-nexrad-level2” S3

bucket hosted by Amazon Web Services. Rawinsondes

launched at Guam provided temperature and humidity pro-

files (https://ruc.noaa.gov/raobs/) and were used to calculate

terms in Eq. (1). The radar reflectivity factor was regridded to

a rectilinear grid with spacing of 1 km and 500-m vertical

spacing. The Powell et al. (2016) rain-type classification algo-

rithm was then applied to the interpolated reflectivity at 2-km

height. Based on the size of echo objects and the horizontal

heterogeneity of the local reflectivity field, the algorithm clas-

sified echoes as 1) stratiform: laterally expansive regions of

light rainfall; 2) convective: locally intense rainfall; 3) mixed:

echoes that may contain both convective and stratiform char-

acteristics and immediately surround a convective echo; 4) iso-

lated convective core: convective regions of usually shallow

convection; and 5) isolated convective fringe: echo containing

only small hydrometeors in area immediately surrounding an

isolated convective core. Rain rates were estimated using the

Z–R relationships derived for convective, stratiform, and all

rainfall by Thompson et al. (2018); the category for all rainfall

was applied to both isolated convective fringe and mixed

echo. Mean radar-derived rain rates averaged within 1.5 h of

a rawinsonde launch were paired with corresponding rawin-

sonde-derived quantities. Any radar data collected more than

1.5 h before or after a launch were discarded. As a result,

4076 paired observations were generated.

3. Formulation of lower-tropospheric plume buoyancy

To be both insightful and widely utilized, PODs must strike

a fine balance between completeness and simplicity, including

sufficient complexity to capture the fundamental processes

of interest, while simultaneously remaining easy to calculate

using commonly available model output. In this spirit of

reductionism, we have chosen to use lower-tropospheric

plume buoyancy (BL), which has been developed and exam-

ined observationally and analytically over a series of papers in

recent years, as a simplified measure of the bulk thermody-

namic properties of the lower troposphere (Ahmed and

Neelin 2018, hereafter AN18; Ahmed et al. 2020, hereafter

AAN20; Adames et al. 2021). Use of BL attempts to reduce

the complexities of vertical structure to a single measure of

temperature and moisture stratification between two bulk

layers, a “deep” boundary layer (DBL) stretching from the

surface to 850 hPa, and a lower free troposphere (LFT)

spanning from 850 to 600 hPa.

This choice of layers is motivated by the trimodal nature of

tropical convection, a characteristic highlighted by the semi-

nal observational analyses of the GATE and TOGA-COARE

field campaigns, as well as subsequent radar analyses of the

tropical west Pacific (Thompson et al. 1979; Johnson et al.

1999; Hollars et al. 2004). Tropical convective plumes or ther-

mals face two primary challenges as they develop and attempt

to rise through the lower troposphere: a stable layer at the

trade inversion, and a second weaker stable layer near the

freezing level, which on average lies at around 575 hPa over

the tropical oceans (Johnson et al. 1999). If convection main-

tains buoyancy through the freezing level, two factors begin

to support its further development and transition to deep con-

vection; a decrease in lapse rates above the freezing level, and

a “reinvigoration” from the latent heat of freezing (Johnson

et al. 1999; Zipser 2003; Sahany et al. 2012; Raymond and

Fuchs-Stone 2021). Therefore BL focuses on thermodynamic

factors impacting the buoyancy of convective plumes as they

attempt to rise from the trade inversion to the freezing level,

namely, temperature and moisture fluctuations within two

layers whose variability and physical processes offer a natural

distinction (Raymond et al. 2003; Tulich and Mapes 2010;

Kuang 2010; Fuchs-Stone et al. 2020). Previous results have

shown BL to be an effective predictor for the onset of tropical

precipitation, which increases approximately linearly as BL

increases beyond some critical threshold, making it well suited

for both analytical and observational investigations of ther-

modynamic–convective coupling (AN18; AAN20; Adames

et al. 2021).

As AN18, AAN20, and Adames et al. (2021) provide

detailed derivations of BL, we instead begin with Eq. (7) of

AAN20, and focus our discussion on the process-level

assumptions made during the development and application

of BL that prove particularly relevant to this study. The

expression of BL adopted by AAN20 is

BL � g wB

p̃eB 2 e*L
e*L

︸�����︷︷�����︸

Term1

2 wL

Ly q*L 2 qL

( )

e*L
︸���������︷︷���������︸

Term2

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (1)

where the moist enthalpy (ME) e and p̃ are given by

e � CpT 1 Lyq, (2)

p̃ �
pL

pB

( )Rd=Cp

, (3)

and g is acceleration due to gravity, Ly is the latent heat of

vaporization, q is specific humidity, T is temperature, and *

indicates saturation values of a quantity. Subscripts B and

L denote mass-weighted averages over the DBL and LFT,

which span from the surface to 850 hPa and from 850

to 600 hPa, respectively, in this study. pB = 925 hPa and
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pL = 725 hPa are the midpoint DBL and LFT pressures,

respectively. Note that BL can similarly be formulated using

other quasi-conserved variables such as moist static energy

(MSE) or ue.

The wB and wL parameters scale the relative influence of

the DBL and LFT on plume buoyancy at the freezing level,

and are given by

wB �
aDpB

bDpL
ln

aDpB 1 bDpL

aDpB

( )

, (4)

wL � 1 2 wB, (5)

where DpB and DpL are the pressure thicknesses of the DBL

and LFT, respectively. The a and b parameters are the slopes

of the assumed plume mass flux profile (i.e., the rate of increase

of updraft mass flux with height) within the DBL and LFT,

respectively, and reflect the rates at which environmental air is

entrained into the plume as it rises through these layers. AN18

“reverse-engineered” the values of a and b by applying an iter-

ative precipitation-buoyancy curve fitting procedure to ERAi

thermodynamic fields and TRMM 3B42 precipitation. In other

words, by examining how convective transition statistics were

impacted by small variations in assumed layer weightings, AN18

were able to identify convective mass-flux profiles (i.e., values of

a and b) that yielded a nearly universal onset of observed pre-

cipitation across the tropics. The resultant profiles indicated a

nearly identical linear increase in convective mass flux with

height, which would imply a constant rate of entrainment

throughout the DBL and LFT, such that a ≈ b. With a = b, the

layer weightings wB and wL become 0.59 and 0.41, respectively.

In treating the a and b parameters as constants, one assumes

that the slope of the updraft mass flux profile below the freez-

ing level is, to first order, independent of changes in the com-

position of the cloud ensemble, organizational feedbacks, and

other factors. This assumption has some observational support.

Examining radar wind profiler (RWP) retrievals of vertical

velocity from the GoAmazon2014/15 field campaign, Schiro

et al. (2018) found that both mesoscale and smaller-scale con-

vection exhibited similar nearly linearly increasing updraft

mass flux profiles throughout the depth of the lower tropo-

sphere, often referred to as “deep-inflow” mixing (Kingsmill

and Houze 1999; Mechem et al. 2002; McGee and Van den

Heever 2014; Martin et al. 2016). Comparing data from the

GoAmazon2014/15 field campaign and Nauru Island in the

tropical western Pacific, Schiro and Neelin (2019) showed that

parcel buoyancy estimates based on deep-inflow mixing pro-

files were able to capture deep convective onset at both a tropi-

cal land and a tropical ocean site, irrespective of season or time

of day, for both mesoscale and smaller-scale convection.

Term 1 in Eq. (1) has previously been characterized as a mea-

sure of “undiluted” lower-tropospheric instability that neglects

the impacts of LFT entrainment on plume buoyancy (AN18;

AAN20; Adames et al. 2021). Term 2 is a measure of the

“dilution” of buoyancy that a rising plume experiences due to

LFT entrainment of subsaturated environmental air (Bretherton

et al. 2004; Peters and Neelin 2006; Holloway and Neelin 2009;

Neelin et al. 2009; Ahmed and Schumacher 2017). Previous

characterizations of term 1 are not entirely correct, as a plume

that is nonentraining in the LFT will be defined by a wB = 1.

“Undiluted BL” is therefore more correctly defined by

Undiluted BL � U � g
p̃eB 2 e*L

e*L

( )

: (6)

Using this new definition of undiluted BL, we can rewrite BL as

BL � U2 U 2 BL( )
︸�����︷︷�����︸

Dilution of BL

, (7)

which can again be rewritten as

BL � g
p̃eB 2 e*L

e*L
︸���︷︷���︸

Undiluted BL

2 wL

p̃eB 2 e*L
e*L

2 wL

e*L 2 eL

e*L
︸�����������������︷︷�����������������︸

Dilution of BL

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

: (8)

Equation (8) is equivalent to Eq. (1), and indicates that

“dilution of BL” results from LFT entrainment of subsatu-

rated environmental air, as well as LFT entrainment of envi-

ronmental air whose temperature differs from that of the

plume. These terms are highly anticorrelated, and neither is

negligible (not shown). While the sum of these entrainment

impacts on plume buoyancy have the potential of being either

positive or negative, and would therefore be better described

as “modification” of BL, we retain the “dilution” terminology

for consistency with previous work. In words, Eq. (8) describes

a bulk measure of convective instability meant to mimic the

buoyancy a theoretical plume experiences while rising through

the LFT. It assumes that the plume was launched from 1000

hPa and has already undergone deep-inflow mixing in the

DBL. The decomposition of BL into “undiluted” and

“dilution” components are therefore related specifically to

entrainment occurring in the LFT.

4. Thermodynamic–convection coupling in reanalyses

As BL was originally “reverse-engineered” by AN18 using

ERAi thermodynamic fields and TRMM precipitation, we

will begin our examination of thermodynamic–convection

coupling using these data. To provide context for subsequent

results, we will first examine a conventional BL–precipitation

curve. Figure 3 shows TRMM 3B42 precipitation rate (solid

black line, left Y axis) as a function of ERAi BL for the time

period of 1998–2015, where data have been limited to the

tropical Indian and west Pacific Oceans (158N–158S, 608E–1808).

Precipitation is effectively suppressed at very negative values of

BL, and increases rapidly as BL increases beyond some “critical

point” (BL,crit), where the phase transition from a non-deep-

convecting atmosphere (BL , BL,crit) to a deep-convecting

atmosphere (BL . BL,crit) occurs. In this study, the mode (gray

dashed vertical line) of the PDF of BL (black dashed line, right

Y axis) is used to objectively approximate the value of BL,crit

(Neelin et al. 2008). A simplified and generalized QE interpre-

tation (black schematic arrows) would suggest that the broad

PDF to the left of the critical point results from large-scale forc-

ings slowly driving the atmosphere toward instability, and that
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the rapid drop off of the PDF to the right of the critical point

results from the rapid removal of buoyancy by convection. Both

the slow drive toward instability by large-scale forcings and

the rapid removal of buoyancy by convection push the atmo-

sphere toward the critical point, where the coupled system

spends most of its time (i.e., approximately the mode of the

PDF).

Broadening the analysis of the BL–precipitation curve to

consider the individual components of BL, as well as their

temporal coevolution, offers an opportunity to reexamine this

interpretation of QE, and reassess the relative importance of

moisture and temperature fluctuations in driving convection

(Wolding et al. 2020a). In Fig. 4, data were first separated into

bins of undiluted BL (Y axis) and dilution of BL (X axis) of

width 0.01 m s22. Color shading shows the bin mean TRMM

precipitation rate (log scale). Vectors indicate the temporal

coevolution of the system, calculated as the bin-mean tempo-

ral centered differences of undiluted BL and dilution of BL

using daily data. Vector centers are plotted at bin centers, and

have been scaled by a factor of 2 to aid visualization. The gray

square marks the mode (i.e., the bin with the most samples),

and the number of samples within each bin declines approxi-

mately logarithmically with distance from the mode, such

that regions near the periphery of BL space are sampled much

less frequently than regions closer to the mode (appendix A,

Fig. A1). Black contours show total BL in intervals of 0.05 m s22,

increasing toward the upper-right corner of the figure. The

BL = 0 m s22 is contoured in a thick solid line, and negative

values are contoured in thin dashed lines. Stippling denotes

bins containing less than 200 samples, which are not plotted.

Precipitation is effectively suppressed at very negative val-

ues of BL (lower-left corner), and increases rapidly as BL

increases beyond the mode (gray square) which, in a QE

interpretation, sits on or near the “critical line” or QE line

(i.e., a line of constant BL = BL,crit). The tendency for color

shaded precipitation rate to roughly align with the contours of

total BL in Fig. 4 suggests that precipitation rate is not

impacted by changes in the relative contributions of undiluted

BL and dilution of BL to the total buoyancy. In other words, a

large-scale environment with relatively high undiluted BL and

a relatively large dilution of BL (e.g., dry LFT) appears to

produce roughly the same amount of precipitation as an envi-

ronment with relatively low undiluted BL and a relatively

small dilution of BL (e.g., moist LFT), as long as the total BL

of the two environments is similar.

Vectors, which indicate the temporal coevolution of undi-

luted BL and dilution of BL, trace a clear clockwise evolution

around the mode: i.e., undiluted BL preferentially increases

when the LFT is less saturated, LFT saturation preferentially

increases when undiluted BL is positive, and undiluted BL pref-

erentially decreases when LFT conditions are closer to satura-

tion. This suggests that the system preferentially evolves in a

cyclical manner. Recall that vectors are calculated using bin-

mean temporal centered differences, which are the sum of the

temporal backward (hereafter leading) and forward (hereafter

FIG. 3. Bin-mean daily average 2.58 TRMM 3B42 precipitation

rate (solid black line, left Y axis) as a function of ERAi BL, where

data were separated into bins of BL of width 0.025 m s22. The PDF

of BL (dashed black line, right Y axis) is given as the percentage of

total samples, with the mode (i.e., bin with largest number of sam-

ples) indicated by the vertical dashed gray line. Black schematic

arrows suggest processes that, from a simplified quasi-equilibrium

perspective, drive the atmosphere toward the “critical point”

(BL,crit) or QE point, where the phase transition from a noncon-

vecting atmosphere (BL , BL,crit) to a convecting atmosphere

(BL . BL,crit) occurs.

FIG. 4. Data were separated into bins of width 0.01 m s22 along

the X and Y axes. Color shading shows bin-mean TRMM precipi-

tation rate (log scale). Vectors indicate the temporal coevolution of

the system, calculated as the bin-mean temporal centered differ-

ences of undiluted BL and dilution of BL using daily data. Vector

centers are plotted at bin centers, and have been scaled by a factor

of 2 to aid visualization. The gray square marks the mode (i.e., the

bin with the most samples). Black contours show total BL con-

toured in intervals of 0.05 m s22, with BL = 0 m s22 contoured as a

thick solid line, negative values contoured as thin dashed lines, and

positive values contoured as thin solid lines when present. Stippling

denotes bins containing less than 200 samples, which are not plotted.
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lagging) differences. The leading and lagging behavior of the

system is to move away from and back toward the mode,

respectively, with the mode acting as an attractor of the system

[detailed in appendix B and Wolding et al. (2020a)]. The mode

therefore appears to be a special preferred state on the QE

line (for the mean large-scale forcing), referred to here as a

QE point, the “destination of the adjustment responding to the

large-scale forcing” (Arakawa 2004). The clockwise evolution

seen in Fig. 4 therefore represents the small residual of these

forcings away from and adjustments back toward the QE point,

which do not exactly cancel. This cyclical net evolution only

arises from the aggregated effect of numerous buoyancy per-

turbations (see appendix B; Inoue and Back 2017; Wolding

et al. 2020a; Inoue et al. 2021).

We wish to examine what role the changing characteristics

of the cloud ensemble may play in driving the cyclical evolu-

tion of the coupled system. Figure 5 shows how the relative

contributions of shallow, convective, and stratiform TRMM

precipitation types to the total TRMM precipitation rate (i.e.,

Fig. 4, color shading) vary with changes in undiluted BL and

dilution of BL. These precipitation type classifications reflect

the primary mechanisms of hydrometeor growth, which

occurs primarily through collision–coalescence and/or riming

in the shallow and convective types (Funk et al. 2013). While

both shallow and convective precipitation types can be gener-

ated by “convective” processes, the shallow classification indi-

cates precipitation generated exclusively below the freezing

level. The stratiform type refers to precipitation whose growth

occurs primarily via vapor deposition above the freezing level,

as often occurs in stratiform anvils associated with deep con-

vection. Precipitation produced by low-level stratiform clouds

(e.g., regions of large-scale subsidence) would be considered

“shallow” under this classification system. These precipitation

type definitions were motivated by the impacts that vertical

heating structure has on large-scale circulations, the top-

heaviness of large-scale vertical velocity, and attendant energy

transports, which can contribute to thermodynamic–convection

coupling feedbacks (Houze 1982; Hartmann et al. 1984;

Schumacher et al. 2004; Back and Bretherton 2006; Zhang and

Hagos 2009; Raymond et al. 2009; Wolding and Maloney 2015;

Wolding et al. 2016; Inoue and Back 2017; Inoue et al. 2020,

2021).

Examination of the lower-left corner of Fig. 5 indicates that

shallow precipitation is the primary precipitation type occur-

ring in very stable environments (BL ,, BL,crit). Moving

clockwise around the periphery of BL space indicates that as

the environment becomes more unstable (BL ≈ BL,crit) and

precipitation rates begin to increase rapidly (Fig. 4, color

shading), the predominant precipitation type transitions from

shallow to convective. During this shallow to convective tran-

sition, vectors point upward and to the right, suggesting that

the net effect of the cloud ensemble is to further destabilize

the environment (i.e., increase BL). When the environment

becomes highly unstable and precipitation rates reach their

peak (Fig. 4, upper-right corner), with undiluted BL achieving

its most positive values and the LFT approaching saturation,

the predominant precipitation type transitions from convec-

tive to stratiform (Fig. 5c). Examination of rain area and

conditional rain rates (not shown) suggests that these high

precipitation rates result from a dramatic expansion in the

areal coverage of the stratiform precipitation type. At this

stage vectors begin to point downward, indicating that the net

effect of the cloud ensemble is to reduce undiluted BL and

stabilize the environment. The results of Schiro et al. (2020,

their Fig. 7), who examined thermodynamic–precipitation

pickup curves for non-MCS and MCS precipitation sepa-

rately, suggest that the increased contribution of stratiform

precipitation near and below BL,crit is indicative of MCSs con-

tributing a larger fraction of the total precipitation rate. Vec-

tors then begin to point left as the environment stabilizes and

precipitation rate decreases (i.e., BL decreasing below BL,crit),

suggesting a drying of the LFT.

Taken together, Figs. 4 and 5 suggest that precipitation rate

varies primarily as a function of BL, and is relatively insensi-

tive to changes in the composition of the cloud ensemble, and

changes in the relative contributions of undiluted BL and dilu-

tion of BL. These results suggest that AN18 identified appro-

priate layer weightings (wB and wL) using their “reverse-

FIG. 5. As in Fig. 4, except color shading shows TRMM 2A23 estimates of the contribution of (a) shallow, (b) convective, and (c) strati-

form precipitation types to the total precipitation rate (i.e., Fig. 4, color shading). Note that TRMM 2A23 precipitation spans 1998–2014,

while vectors are calculated using ERAi thermodynamic fields from 1998 to 2015, as in Fig. 4.
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engineering” methodology, and support the “deep-inflow”

assumptions made during the development and application

of BL.

As the cyclical amplification and decay of convection is cou-

pled to cyclical increases and decreases in BL, the processes

controlling the temporal evolution of BL are of utmost interest.

A relatively straightforward methodological approach to such

a problem would be to use budget analyses to examine the pri-

mary balances and/or imbalances of processes that give rise to

the temporal evolution of moisture and temperature within the

DBL and LFT (i.e., the vectors in Fig. 4; e.g., Adames et al.

2021). However, there may be a problem with this approach.

Before embarking on such a budget analysis, it is prudent to ensure

that reasonable agreement in the depiction of thermodynamic–

convection coupling exists among different reanalysis products.

Figure 6 provides such a comparison, where TRMM 3B42

precipitation has been used in concert with thermodynamic

fields from ERA5, ERAi, and JRA-55 datasets for the time

period of 1998–2015. The three reanalyses agree on the most

general characteristics of thermodynamic–convection cou-

pling, namely, that precipitation rate increases with increasing

BL, and that the thermodynamic environment evolves in a

clockwise fashion around the mode in BL space. Yet the three

reanalyses disagree to a considerable extent about several char-

acteristics of thermodynamic–convection coupling, including

the value of BL,crit, the rate at which precipitation increases as

BL increases beyond BL,crit, the maximum values of BL

obtained, and the degree to which buoyancy perturbations

away from the QE point drive a net evolution of the coupled

system. As the same TRMM 3B42 precipitation product has

been used in each analysis, this indicates that reanalyses do not

agree on how moisture and/or temperature within the DBL

and/or LFT evolve in relation to observed precipitation. These

disagreements among reanalyses become more pronounced

when reanalysis precipitation is used in place of TRMM 3B42

precipitation for this analysis (see appendix C).

5. Thermodynamic–convection coupling in observations

In light of the considerable disagreement among reanalyses

documented in the previous section, in situ and satellite

observations will now be used to assess how reanalyses com-

pare to more direct measurements of moisture and tempera-

ture. Comparing thermodynamic profiles from NOAA IGRA

soundings to those from reanalyses is complicated by both the

presence of land at the IGRA stations, as well as the differing

spatiotemporal resolution of the data (e.g., point measure-

ment vs area average). Previous studies have shown that

land surface processes such as strong diurnal heating and

land–sea-breeze organization can alter thermodynamic–-

precipitation relationships (Ahmed and Schumacher 2015;

Bergemann and Jakob 2016; Schiro and Neelin 2019). Point

measurements such as soundings may be impacted by localized

precipitation that modifies boundary layer thermodynamic

conditions at small scales, and may not be representative of

the thermodynamic conditions impacting precipitation mea-

sured on larger scales. Furthermore, while many characteris-

tics of convective cycles exhibit considerable spatiotemporal-

scale invariance, the rate of increase in precipitation with

increasing BL (i.e., the precipitation “pickup”) has been

shown to be impacted by spatiotemporal averaging and sto-

chastic fluctuations (Peters and Neelin 2006; Neelin et al.

2009; AAN20; Wolding et al. 2020a; Inoue et al. 2021). Dis-

cussion in this section is therefore focused on results that

appear robust across analyses of different observational prod-

ucts and varying spatiotemporal scales. Additionally, a com-

parison of the ERAi and NOAA IGRA analyses at different

spatiotemporal scales is provided in appendix D.

With the aforementioned uncertainties and caveats in

mind, consider Fig. 7, which shows the analysis of NOAA

IGRA soundings from six small-tropical-island stations in the

western Pacific that have especially long, continuous, and

high-quality sounding records. IGRA thermodynamic profiles

have been matched with the “nearest” (in space and time)

0.58 3-h-resolution TRMM 3B42 precipitation data, which

span the shorter period of 1998–2015. IGRA soundings show

the temporal coevolution of the system (vectors) tracing a

clockwise pattern around the mode in BL space, similar to the

pattern seen in reanalyses (Fig. 6), though more elliptical with

undiluted BL as the major axis. Importantly, the IGRA analy-

sis shows a notably different relationship between precipitation

rate (color shading) and the thermodynamic environment than

FIG. 6. As in Fig. 4, but for (a) ERA5 thermodynamic fields, (b) ERAi thermodynamic fields, and (c) JRA-55 thermodynamic fields.

TRMM precipitation was used in all cases. Note that (b) is the same as Fig. 4, recreated here to facilitate comparison.
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was seen in reanalyses, with precipitation rate showing much less

sensitivity to variations in undiluted BL in the IGRA analysis, and

much more sensitivity to variations in dilution ofBL.

In an effort to verify that the thermodynamic–precipitation

relationship seen in Fig. 7 is not adversely impacted by the

presence of the islands, nor by the point-measurement nature

of soundings, we repeated the analysis using tropical oceanic

COSMIC-1 RO thermodynamic profiles. RO profiles are limb

occultations that typically span a degree or more of latitude

and/or longitude in the lower troposphere, and therefore reflect

relatively large-scale conditions when compared to the IGRA

soundings. COSMIC-1 thermodynamic profiles were collocated

with the “nearest” (in space and time) 0.58 3-h-resolution

TRMM 3B42 precipitation data, shown in Fig. 8. Given the

irregular spatiotemporal sampling of RO profiles, the temporal

coevolution of the system (i.e., vectors) could not be calculated

in this analysis. While the precipitation pickup is more gradual

than in the IGRA analysis (Fig. 7), likely due to the coarse hori-

zontal resolution of the RO profiles, the results confirm that pre-

cipitation rate shows more sensitivity to variations in dilution of

BL than was suggested by reanalyses, as indicated by the more

negatively sloped lines of constant precipitation rate (color shad-

ing) in BL space (Fig. 8). One potential physical interpretation of

the higher sensitivity of precipitation rate to variations in dilution

ofBL is that convective mass flux may increase more rapidly with

height in the LFT than it does in the DBL [i.e., b. a in Eq. (4)].

Select IGRA sounding-derived quantities exhibiting

coherent variations within BL space are shown in Fig. 9.

Again tracing a clockwise pattern around the mode, maximum

values of bin-mean CAPE (Fig. 9b) occur just prior to the

rapid increase in precipitation rates (Fig. 9a). As precipitation

rates approach their maximum values, CAPE decreases rapidly,

CIN begins to increase (Fig. 9c), and bin-mean 850–500-hPa

wind shear begins to increase (Fig. 9d). The evolution of

1000–850- and 1000–500-hPa wind shear (not shown) is very

similar to that seen in Fig. 9d. Figures 9e and 9f, which show

the standard deviation of 950-hPa wind speed and tempera-

ture within each bin in BL space, respectively, indicate that

near-surface wind speed variance and near-surface tempera-

ture variance are also increasing at these times. This may be

indicative of increased “triggering energy” (e.g., cold pools)

(Mapes 2000), which may help convection to overcome the

relative dearth of low-level buoyancy and increased convec-

tive inhibition seen at these times. Additionally, convective

downdrafts that reduce DBL ME and increase CIN can also

increase DBL ME variance, such that regions of high ME

may remain despite decreased area mean ME (Nicholls and

Lemone 1980; Kingsmill and Houze 1999; Mapes 2000). As

precipitation rates decrease, bin-mean CIN becomes even

more negative, and wind shear, near-surface wind speed

variance, and near-surface temperature variance remain

elevated.

Given the limited overlap of IGRA soundings and TRMM

2A23 precipitation data, rawinsonde data and radar retrievals

collocated in Guam are used to provide a precipitation type

analysis that does not depend on reanalysis thermodynamic

fields. This analysis provides a “bottom-up” perspective that

compliments the top-down perspective of the previous analysis

(Fig. 5), and implements the precipitation classification algo-

rithm of Powell et al. (2016), which includes an additional

FIG. 7. As in Fig. 4, but for thermodynamic fields obtained from

twice-daily soundings spanning 1970–2018 at six small-tropical-island

stations in the western Pacific. IGRA soundings were matched with

the “nearest” (in space and time) 0.58 3-h-resolution TRMM 3B42

precipitation data, which span the shorter period of 1998–2015. A

minimum of 200 samples per bin was used for plotting vectors and,

due to the shorter precipitation record, a lesser threshold of 100 sam-

ples per bin was used for color shading. Stippling denotes bins con-

taining less than the required number of samples, which are not plot-

ted. Data were separated into bins of width 0.02 m s22 along the X

and Y axes.

FIG. 8. As in Fig. 4, but for thermodynamic fields obtained from

COSMIC-1 radio occultation (RO) profiles spanning 2007–12. RO

thermodynamic fields were matched with the “nearest” (in space

and time) 0.58 3-h-resolution TRMM 3B42 precipitation data. Stip-

pling denotes bins containing less than 200 samples, which are not

plotted. Data were separated into bins of width 0.02 m s22 along

theX and Y axes.
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precipitation type for precipitation exhibiting “mixed” convec-

tive and stratiform characteristics. Detailed comparisons of

these analyses are complicated by their differing precipitation

type classifications, as well as the relatively limited data avail-

able at Guam. Therefore, the Guam analysis is presented solely

to emphasize that coherent changes in the characteristics of the

cloud ensemble occur throughout BL space, and are not arti-

facts of the TRMM 2A23 precipitation analysis. Figure 10

shows how the relative contributions of isolated, convective,

and mixed and stratiform precipitation types to the total

precipitation rate vary with changes in undiluted BL and dilu-

tion of BL. Moving clockwise around the mode (gray square)

indicates that the predominant precipitation type changes from

isolated, to convective, to mixed and stratiform, a progression

characteristic of a prototypical convective life cycle (Mapes

and Houze 1993; Chen and Houze 1997; Mapes et al. 2006;

Kiladis et al. 2009; Inoue and Back 2017).

That the IGRA sounding analysis and the RO analysis agree

on the main features of the dependence of precipitation rate on

BL lends strong support to the notion that the observational

FIG. 9. (a) As in Fig. 7, recreated here to facilitate comparison. (b)–(f) As in Fig. 7, except color shading indicates IGRA sounding-

derived (b) bin-mean CAPE, (c) bin-mean CIN, (d) bin-mean 850–500-hPa wind shear, (e) bin standard deviation of 950-hPa wind speed,

and (f) bin standard deviation of 950-hPa temperature. Stippling denotes bins containing less than 200 samples, which are not plotted.

FIG. 10. As in Fig. 5, but for the percentage of rain attributed to (a) isolated convective core and fringe combined, (b) convective, and

(c) mixed and stratiform precipitation types, derived using Guam WSR-88D data and nearby rawinsonde data as described in section 2.

Vectors are omitted because of small sample size.
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results of Figs. 7 and 8 are a better representation of reality than

the reanalysis results of Fig. 6. The discrepancies between

reanalyses and observations will now be examined in further

detail.

Discrepancies between thermodynamic–convection

coupling in observations and reanalyses

To further examine the discrepancies between how observa-

tions and reanalyses characterize thermodynamic–convection

coupling, IGRA thermodynamic profiles spanning 1998–2015

were matched with the “nearest” 0.258 hourly ERA5 thermo-

dynamic profiles, and the values of BL, undiluted BL, and dilu-

tion of BL were computed for each set of profiles. ERA5 data

were then separated into bins of width 0.02 m s22 according to

their corresponding IGRA profile values of undiluted BL and

dilution of BL.

In the top row of Fig. 11, color shading shows how the bin

mean values of (Fig. 11a) ERA5 BL, (Fig. 11b) ERA5 undi-

luted BL, and (Fig. 11c) ERA5 dilution of BL vary as a func-

tion of IGRA dilution of BL (X axis) and IGRA undiluted BL

(Y axis). The bottom row of Fig. 11 shows the difference of

ERA5 minus IGRA (i.e., the disagreement) for each of these

terms in color shading, where IGRA data have again been

used for the X and Y axes. Disagreements between ERA5 BL

and IGRA BL (Fig. 11d) arise primarily from disagreements

in undiluted BL (Fig. 11e), with disagreements in dilution of

BL (Fig. 11f) being relatively small. Figure 11e suggests that

ERA5 generally underestimates the magnitude of both large

positive and large negative values of undiluted BL (i.e., under-

estimates the extremes), but does so in a way that shifts or tilts

the values of ERA5 undiluted BL by roughly 458 clockwise in

BL space relative to their IGRA counterparts (Fig. 11b). The

net effect of these systematic differences in undiluted BL and

dilution of BL is that lines of constant ERA5 BL are shifted

roughly 258 clockwise in BL space relative to their IGRA

counterparts (Fig. 11a), which in turn gives rise to the “phase

shift” in the relationship between BL and precipitation that is

seen when comparing reanalyses (Fig. 6) and observations

(Fig. 7).

To further examine the vertical structure of differences

between IGRA and reanalysis thermodynamic profiles, we

define a buoyancy perturbation index (BPI) which can be

used to classify and composite data based on its thermo-

dynamic state. The magnitude and phase of the BPI are

given by

magnitude � UndilutedB
′2
L 1 Dilution ofB

′2
L

( )1=2

, (9)

phase � tan21 UndilutedB′
L

Dilution ofB′
L

( )

, (10)

where prime indicates a buoyancy perturbation from its value

at the QE point, objectively defined as the mode (Figs. 7 and

11, gray square). The magnitude of the BPI quantifies the

FIG. 11. ERA5 data spanning 1998–2015 were separated into bins of width 0.02 m s22 according to their corresponding IGRA profile

values of dilution of BL and undiluted BL (X and Y axes, respectively). Color shading shows bin-mean (a) ERA5 BL, (b) ERA5 undiluted

BL, (c) ERA5 dilution of BL. (d)–(f) The difference between ERA5 and IGRA for each of these terms. The gray square marks the mode

of IGRA data (i.e., the bin with the most samples). Black contours show total BL from IGRA contoured in intervals of 0.05 m s22, with

BL = 0 m s22 contoured as a thick solid line, and negative values contoured as thin dashed lines. Stippling denotes bins containing less

than 200 samples, which are not plotted.

WO LD I NG E T A L . 1791JULY 2022

Brought to you by UNIVERSITY OF CALIFORNIA Los Angeles | Unauthenticated | Downloaded 10/07/22 10:19 PM UTC



magnitude of the buoyancy perturbation away from the QE

point, and has units of m s22. The phase of the BPI is deter-

mined by the relative contributions of undiluted BL and dilu-

tion of BL to the buoyancy perturbation, and has values

spanning 61808. A phase of 1808 corresponds to a negative

perturbation in dilution of BL, a phase of 908 corresponds to a

positive perturbation in undiluted BL, a phase of 08 corre-

sponds to a positive perturbation in dilution of BL, and a

phase of2908 corresponds to a negative perturbation in undi-

luted BL. Thus, a BPI with constant magnitude 0.05 m s22 and

phase decreasing from 1808 to 21808 would trace a clockwise

circle of radius 0.05 m s22 around the mode in Figs. 7 and 11.

BPI values were calculated for each of the IGRA soundings

from 1998 to 2015. To examine “QE point” thermodynamic

profiles, IGRA soundings were limited to those whose corre-

sponding BPI magnitude is less than 0.01 m s22 (i.e., very close

to the mode in Figs. 7 and 11). For each of the remaining IGRA

soundings, the “nearest” 0.258 hourly ERA5 thermodynamic

profile was selected, and composites of both sets of profiles

were made. Figure 12 shows composite QE point profiles of

specific humidity and temperature for IGRA (black line) and

ERA5 (red line). Unsurprisingly these profiles are similar to

tropical profiles commonly observed during lightly precipitating

conditions (e.g., Fig. 1 in Holloway and Neelin (2009). The dif-

ferences between IGRA and ERA5 profiles (bottom row)

of specific humidity are small, but ERA5 temperature

exhibits a cold bias in the DBL and LFT relative to

IGRA.

The vertical structure of buoyancy perturbations away from

these QE point profiles were examined by limiting IGRA

soundings to those whose corresponding BPI magnitude is

between 0.025 and 0.05 m s22, which corresponds to a moder-

ate buoyancy perturbation. The remaining IGRA soundings

were then separated into bins of width 158 spanning 61808

based on their corresponding BPI phase. Again, for each of the

IGRA soundings in each phase bin, the “nearest” 0.258 hourly

ERA5 thermodynamic profile was selected, and composites of

both sets of profiles were made. Figure 13 shows the composite

buoyancy perturbation profiles of specific humidity and tem-

perature for IGRA (top row) and ERA5 (middle row). To

emphasize the structure of specific humidity and temperature

variations, the respective IGRA and ERA5 QE point profiles

have been subtracted. The bottom panel shows the difference

between ERA5 and IGRA profiles, where the QE point profile

bias has been included. Moisture and temperature variations

above the freezing level (∼575 hPa) are fairly well represented in

FIG. 12. (top) Composite IGRA (black) and ERA5 (red) thermodynamic profiles, and (bottom) differences

between ERA5 and IGRA profiles, for the IGRA QE point (i.e., very close to the mode in Figs. 7 and 11).

Data were limited to those whose corresponding IGRA buoyancy perturbation index (BPI) magnitude is less

than 0.01 m s22 for the time period of 1998 to 2015. This resulted in 1706 profiles, which were then averaged

together.
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ERA5. A dipole structure of small differences in both moisture

and temperature occurs near the freezing level, with ERA5

being a little colder and drier than IGRA just below the freez-

ing level during periods of intense convection (i.e., phases of

458 to 08). Systematic differences between IGRA and ERA5

specific humidity variations are evident in the DBL, with ERA5

underestimating the magnitude of moisture variations relative

to IGRA. Systematic differences between IGRA and ERA5

specific humidity variations in the DBL are accompanied by

compensating differences of the opposite sign in the LFT.

6. Discussion

a. Potential sources of discrepancies between

thermodynamic–convection coupling in observations

and reanalyses

We have shown that observations and reanalyses disagree

on the timing and magnitude of moisture and temperature

variations that are coupled to the cyclical amplification and

decay of convection, especially variations occurring within the

boundary layer. When using reanalysis thermodynamic fields,

FIG. 13. Vertical structure of buoyancy perturbations away from composite QE point profiles (Fig. 12, top) for

(top) IGRA and (middle) ERA5. (bottom) Differences between ERA5 and IGRA, which includes QE point biases

(Fig. 12, bottom). ( right) Specific humidity perturbations are contoured every 0.2 g Kg21 in the top and middle rows,

and every 0.1 g Kg21 in the bottom row, with positive values in solid contours, and negative values in dashed contours.

Moving from left to right along the X axis shows IGRA BPI phase decreasing from 1808 to21808, which is analogous

to tracing a clockwise circle of radius 0.025–0.05 m s22 around the mode in Figs. 7 and 11. A phase of 1808 corresponds

to a negative perturbation in dilution of BL, a phase of 908 corresponds to a positive perturbation in undiluted BL, a

phase of 08 corresponds to a positive perturbation in dilution of BL, and a phase of 2908 corresponds to a negative

perturbation in undiluted BL. Data from 1998 to 2015 were limited to those whose corresponding IGRA BPI magni-

tude is between 0.025 and 0.05 m s22, and separated into bins of width 158 spanning61808 based on their correspond-

ing IGRA BPI phase. This resulted in between 493 and 1696 profiles per phase bin.
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these differences cause variations in dilution of BL to appear

less influential (relative to variations in undiluted BL) in

determining the strength of convection than is suggested by

observations. This can be seen by examining the slope of the

lines of constant precipitation rate (color shading) in BL

space, which are more negatively sloped in observations

(Figs. 7 and 8) than in reanalyses (Figs. 6 and C1).

Despite undergoing extensive quality controls, various and

varied biases in temperature and humidity have been docu-

mented in both NOAA IGRA soundings and COSMIC RO

profiles (Durre et al. 2006; Ho et al. 2010; Durre et al. 2018;

Ho et al. 2020). Additionally, both NOAA IGRA soundings

and COSMIC RO profiles have spatiotemporal sampling

characteristics that differ from reanalyses. Therefore, it is pos-

sible that the discrepancies between how observations and

reanalyses characterize thermodynamic–convection coupling

arise from biases within the observations themselves, or from

the spatiotemporal-scale differences between observations

and reanalyses.

However, the large disagreement among reanalyses clearly

indicates that their representation of lower-tropospheric ther-

modynamic variability is poorly constrained, a finding consis-

tent with recent reanalysis intercomparison studies (Schröder

et al. 2016; Yasunaga et al. 2019; Ren et al. 2021). Addition-

ally, NOAA IGRA soundings and COSMIC RO profiles

have distinct observational limitations and differ in sampling

frequency and resolution, yet still agree on the main features

of the dependence of precipitation rate on BL. Taken

together, these findings suggest that discrepancies among rean-

alyses, as well as between reanalyses and observations, may

result from the relative dearth of thermodynamic observations

in the marine atmospheric boundary layer, which creates a large

dependence on the assimilating model and its parameterized

treatments of processes impacting moisture and temperature

variability in the lower troposphere (Pincus et al. 2017).

Due to the relatively sparse availability of observations in the

tropics, particularly in the atmospheric boundary layer over the

open ocean where issues related to ducting and superrefraction

often prevent assimilation of RO data, the vertical thermody-

namic structure of reanalyses is poorly constrained and subject to

systematic errors arising from parameterized processes (Poli et al.

2010; Xie et al. 2012; Pincus et al. 2017; Ho et al. 2020; Ren et al.

2021). While passive microwave and infrared measurements help

to constrain total column water vapor at large scales over remote

tropical oceans, the vertical distribution of water vapor can be

heavily influenced by the assimilating model (Pincus et al. 2017).

Pincus et al. (2017) showed that the lack of observational con-

straints on MABL humidity, combined with the coarse vertical

resolution of infrared and microwave sounders, allows analysis

systems to make compensating errors in the vertical structure of

humidity that approximately preserve column integrated water

vapor, which is more strongly constrained by observations. Com-

pensating errors similar to those seen in Fig. 13 are also evident

in climatological profiles of humidity over the warm pool in vari-

ous reanalyses (see Ren et al. 2021, Fig. 2h).

One physical interpretation of the observed BL–precipita-

tion relationship is that convective mass flux increases more

rapidly with height in the lower free troposphere than it does

in the boundary layer [i.e., b . a in Eq. (4)]. In other words,

convective plumes may entrain environmental air more rap-

idly as they rise through the lower free troposphere than they

do as they rise through the boundary layer. While the deep-

inflow mixing assumptions made in the formulation of BL

benefit from limited observational support, further investiga-

tion is certainly warranted (Schiro et al. 2018). Unfortunately,

there are few long-running observational datasets with which

to characterize the evolution of convective mass flux and its

dependence on the characteristics of the cloud ensemble, and

the uniquely well-suited Darwin observational supersite was

decommissioned in 2017 (Kumar et al. 2015; Schiro et al.

2018; Retsch et al. 2020). Such data limitations may challenge

further observational assessment of deep-inflow mixing

assumptions related to mesoscale organization, large-scale

vertical velocity structure, and other processes.

b. Convective quasi equilibrium and the cyclical

amplification and decay of convection

Convective QE theory posits that both the slow drive toward

instability by large-scale “forcings” (e.g., surface fluxes, radiative

cooling, large-scale convergence) and the rapid consumption of

buoyancy by convection push the atmosphere toward a “critical

point” of convective instability, where the transition from a non-

convecting atmosphere to a convecting atmosphere occurs. The

results of this study suggest that, of the various and varied ther-

modynamic conditions that can produce a critical quantity of

convective instability, preferred thermodynamic states, referred

to as QE points, arise in convecting regions of the tropics.

The composition of the cloud ensemble at a QE point

appears to be unique in its ability to consume large-scale con-

vective instability at the same rate that it is being produced by

“background” large-scale forcings and its own self-induced

feedbacks (e.g., convectively driven large-scale circulations).

Buoyancy perturbations away from a QE point are associated

with changes in the convective-to-stratiform (CS) precipita-

tion ratio (Fig. 5), which is known to impact the vertical struc-

ture of apparent heating, the top-heaviness of large-scale

vertical velocity, attendant large-scale convergence/divergence,

and the efficiency with which convection imports/exports mois-

ture and MSE from the column (Houze 1982; Schumacher

et al. 2004; Back and Bretherton 2006; Raymond et al. 2009;

Chikira 2014; Inoue and Back 2017; Inoue et al. 2021). Buoy-

ancy perturbations are adjusted back toward the QE point,

but result in a small net evolution of the thermodynamic

environment from its preperturbation state (appendix B).

Integrated over numerous buoyancy perturbations, these

incremental net evolutions drive cyclical increases and

decreases in large-scale convective instability around the QE

point, which are coupled to the cyclical amplification and

decay of convection (appendix B). Larger buoyancy perturba-

tions are associated with larger changes in the CS ratio which

may, through the aforementioned large-scale circulation feed-

backs and other processes (Fig. 1), contribute to a larger net

evolution of system. Inoue and Back (2017) highlight that

because of these feedbacks, the current state of the coupled
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system (i.e., location in BL space) can confer valuable prog-

nostic information regarding the subsequent amplification

or decay of convection.

Inoue et al. (2021), who examined convective cycles using

ERAi column-integrated MSE budgets and TRMM 3B42 pre-

cipitation, found horizontal moisture advection to be the pri-

mary driver of day-to-day precipitation variations in tropical

convergence zones. Positive “column-process” feedbacks were

shown to drive the spontaneous amplification of precipitation

in the absence of horizontal advective drying (Chikira 2014;

Wolding et al. 2016; Inoue et al. 2021). Uncertainties docu-

mented in the present study suggest that the findings of Inoue

et al. (2021), while both insightful and intriguing, should be

confirmed against thermodynamic budgets calculated from

other reanalysis and observational datasets.

This study focused on the Indian and western Pacific

Oceans (IOWP), regions which Inoue et al. (2021) found to

be characterized by similar convective-coupling processes.

While results of an analysis limited to the central Pacific

Ocean (CP) (see appendix D, section b) appear remarkably

similar to those from the IOWP in this diagnostic framework,

Inoue et al. (2021) highlight that the primary balances and

imbalances of processes driving convective cycles in the CP

differ from those in the IOWP. Future studies should therefore

take geographical variability into account when examining the

processes underlying thermodynamic–convection coupling.

7. Summary and conclusions

In this study, newly developed process-oriented diagnostics

(PODs) were used to examine thermodynamic–convection

coupling in observations and reanalyses. The PODs are based

on a reductionist measure of convective instability known as

lower-tropospheric plume buoyancy (BL), which depends on

moisture and temperature stratification in the lower tropo-

sphere (AN18; AAN20; Adames et al. 2021). These PODs

were applied to thermodynamic profiles obtained from the

NOAA Integrated Global Radiosonde Archive, COSMIC-1

GPS radio occultations, and several reanalyses, as well as pre-

cipitation estimates from the Tropical Rainfall Measuring

Mission. The application of these PODs has led us to make

the following main conclusions:

1) Cyclical increases and decreases in BL are coupled to the

cyclical amplification and decay of convection.

2) In situ observations and radio occultation profiles differ

systematically from reanalyses in their depictions of

lower-tropospheric temperature and moisture variations

throughout these convective cycles.

3) When using reanalysis thermodynamic fields, these systematic

differences cause variations in lower-free-tropospheric satura-

tion deficit to appear less influential in determining the

strength of convection than is suggested by observations.

The cyclical amplification and decay of convection emerges

as a conditional-mean flow in a thermodynamic space com-

posed of two components: undiluted BL, a measure of convec-

tive instability which neglects lower-free-tropospheric (LFT)

entrainment, and dilution of BL, a measure of the impacts of

LFT entrainment on convective instability. The observational

and reanalysis products examined share the following qualita-

tively robust characterization of these convective cycles: undi-

luted BL preferentially increases when the LFT is less

saturated, LFT saturation preferentially increases when undi-

luted BL is positive, and undiluted BL preferentially decreases

when LFT conditions are closer to saturation. This condi-

tional-mean flow is the residual of numerous comparatively

large buoyancy fluctuations [detailed in appendix B and

Wolding et al. (2020a)]. Shallow, convective, and stratiform

precipitation are coupled to these cycles in a manner consis-

tent with meteorological expectations.

Understanding the primary balances and imbalances of pro-

cesses that give rise to cyclical increases and decreases in BL

represents an important step toward better understanding and

representing convective variability in the tropics. A primary

goal of this study was to use reanalyses and observations to

establish process-level benchmarks of thermodynamic–

convection coupling, which could then be used to guide

model development. Unfortunately, this study has shown

that considerable disagreement exists among reanalyses, as

well as between reanalyses and observations, as to how the

thermodynamic environment evolves in relation to observed

convection. Such disagreement suggests that the feasibility of

using thermodynamic budgets calculated from reanalyses to

more fully characterize thermodynamic–convection coupling

may be limited. While field campaign data (e.g., DYNAMO,

OTREC) may allow more reliable calculations of such ther-

modynamic budgets, the relatively short length of these data

may be insufficient to reduce the “noise” inherent in analyses of

stochastic convection (Yoneyama et al. 2013; Sobel et al. 2014;

Johnson et al. 2014; Fuchs-Stone et al. 2020). While such chal-

lenges may currently limit the establishment of clear process-level

benchmarks, PODs have nonetheless proven useful for identifying

process-level sources of intermodel spread in thermodynamic–

convection coupling (Ahmed and Neelin 2021). Global CPM

FIG. 14. Schematic illustrating common Earth system science

approach to understanding and modeling complex processes and

systems, and the potential hazard of self-affirmation that arises

when model-influenced data are reintegrated into the workflow.

Data inform simplified conceptual models of how complex pro-

cesses and systems work. The simplified conceptual models guide

development of reduced-order representations (i.e., parameteriza-

tions) of these complex processes and systems, which can then be

incorporated into numerical models. Reintegration of numerical

model output into earlier stages of this workflow, as is sometimes

necessitated by the scarcity and/or structure of observational data,

risks self-affirming assessments of conceptual models and parame-

terizations. Individuals’ awareness of this potential hazard may be

reduced by the penchant of Earth system scientists to work primar-

ily within only one of the schematic boxes of this workflow.
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simulations, such as those involved in the DYAMOND project

(Stevens et al. 2019), may provide fruitful avenues for future

investigation of thermodynamic–convection coupling.

One potential source of the discrepancies among reanalyses,

as well as between reanalyses and observations, is the lack of

thermodynamic observations in the marine atmospheric bound-

ary layer, which creates a large dependence on the assimilating

model and its parameterized treatments of processes impacting

moisture and temperature variability in the lower troposphere

(Pincus et al. 2017). Expanded observations that can be assimi-

lated by global forecast models will be required to better

constrain tropical marine atmospheric boundary layer thermody-

namic variability. Yet previous studies have highlighted that in

the absence of targeted process-level model improvements, the

benefits of expanded observations may go largely unexploited by

reanalyses and forecasts (e.g., Pincus et al. 2017).

Reanalysis products offer the benefit of broad and continuous

spatiotemporal coverage of the tropics at a resolution that can be

matched to that of satellite precipitation products, making them

a convenient choice for studies of thermodynamic–convection

coupling. This study is a reminder of the potential hazards of

allowing model-influenced data to be reintegrated into the Earth

system science workflow of understanding and modeling com-

plex processes and systems, as illustrated in Fig. 14. Previous

studies of thermodynamic–convection coupling that have relied

solely on reanalysis thermodynamic fields, such as Wolding et al.

(2020a,b), should be interpreted with caution, and their findings

reexamined in future work using more direct observations when

possible. Convective mass flux variations, mesoscale convective

organization, and processes impacting convective instability will

be further examined in the context of thermodynamic–convec-

tion coupling in future work.
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APPENDIX A

PDFs of IGRA Soundings and Reanalyses

Figure A1 shows PDFs of undiluted BL and dilution of

BL, calculated using thermodynamic fields from (Fig. A1a)

FIG. B1. As in Fig. 7, except color shading indicates the fraction of samples within each bin having a positive temporal

difference of (left) undiluted BL and (right) dilution of BL for the time period considered.
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NOAA IGRA soundings, (Fig. A1b) ERAi, (Fig. A1c)

ERA5, and (Fig. A1d) JRA-55. Samples decrease approxi-

mately logarithmically with distance from the mode in BL

space. The major axis of the elliptically shaped PDF is ori-

ented more in line with undiluted BL in NOAA IGRA

soundings than in reanalyses.

APPENDIX B

Leading, Lagging, and Net Temporal Evolution

Figure B1 shows the leading, lagging, and net temporal

coevolution of undiluted BL and dilution of BL for the sam-

ple of soundings used to construct Fig. 7. “Leading” shows

the evolution over the 12 h leading up to the observations

in each bin, calculated using bin-mean backward temporal

differences. “Lagging” shows the evolution over the 12 h

following the observations in each bin, calculated using bin-

mean forward temporal differences. “Net” shows the evolu-

tion over the 24 h centered on the observations in each bin,

which is calculated using bin-mean centered temporal dif-

ferences, and represents the sum effect of the leading and

lagging evolutions. The fraction of samples within each

bin having a positive temporal difference of undiluted BL

(left column) and dilution of BL (right column) is color

shaded. Vectors are the same within each row of plots,

where leading, lagging, and net vectors are plotted with

vector heads, vector tails, and vector centers at bin cen-

ters, respectively. Please note that net vector magnitudes

are scaled by a factor of 2 to aid visualization (bottom

row), and that the color scale differs from those of the

leading and lagging evolutions.

Vectors generally diverge away from and converge back

toward the mode of the PDF (Fig. A1a) in the leading and

lagging evolutions, respectively, but their offset is inexact,

resulting in a net evolution of the system. The magnitude of

the resulting net evolution is small relative to the leading

perturbations and lagging forcings and/or adjustments from

which it arises. In the net evolution (bottom row, note color

bar limits), the fraction of samples in each bin having a

FIG. C1. (a),(c) As in Fig. 6b and Fig. 6a, respectively, repeated here to facilitate comparison. (b),(d) As in (a) and (c),

except that reanalysis precipitation was used in place of TRMM 3B42 precipitation.
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positive temporal difference of undiluted BL or dilution of

BL rarely drops below 0.4 or exceeds 0.6. This suggests that

the cyclical net evolution seen in Fig. B1 only arises from

the aggregated effect of numerous buoyancy perturba-

tions. This net evolution is consistent with the orbital fluc-

tuations in the GMS plane documented by Inoue and

Back (2017). The absence of any lagging or net evolution

at the QE point indicates that the precipitating cloud pop-

ulation (Fig. 10) is able to consume BL at approximately

the same rate at which it is being produced, and do so with-

out changing the relative contributions of undiluted BL and

dilution of BL.

APPENDIX C

Comparison of Thermodynamic–Convection Coupling

Using Observed versus Reanalysis Precipitation

Figure C1 shows the POD applied to TRMM 3B42 precipi-

tation (left column) and reanalysis precipitation (right

column) for ERAi (top row) and ERA5 (bottom row). At

precipitation rates less than 10 mm day21 (cool color shad-

ing), ERAi precipitation (Fig. C1b) shows very little sensitiv-

ity to variations in dilution of BL, similar to many CMIP5

models examined by Rushley et al. (2018). At precipitation

rates greater than 10 mm day21 (warm color shading), ERAi

precipitation (Fig. C1b) shows a similar sensitivity to varia-

tions in undiluted BL and dilution of BL as is seen in TRMM

precipitation (Fig. C1a), although the overall increase in pre-

cipitation rate with increasing BL is more gradual in ERAi

precipitation than in TRMM. ERA5 precipitation (Fig. C1d)

has similar characteristics to TRMM precipitation (Fig. C1c),

but has an earlier and more gradual increase in precipitation

rate with increasing BL than TRMM. Process studies of con-

vection, even those leveraging thermodynamic fields from

reanalysis, often elect to use observational estimates of pre-

cipitation, as reanalysis estimates of precipitation are highly

dependent on parameterizations of processes such as

convection.

FIG. D1. (a) As in Fig. 4, except data are 6 hourly. (b) As in Fig. 4, repeated here to facilitate comparison. (c) As in

Fig. 7. (d) As in Fig. 7, except twice-daily soundings were averaged to daily before calculating BL, and TRMM 3B42

precipitation is daily averaged at 2.583 2.58 horizontal resolution.
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APPENDIX D

Spatiotemporal-Scale Dependence and Geographical

Variability of Thermodynamic–Convection

Coupling Analysis

a. Spatiotemporal-scale dependence

Previous studies examining thermodynamic–convection

coupling have documented a considerable degree of scale

invariant behavior, consistent with “slow-drive fast dissipation”

systems with a critical-point attractor (Peters and Neelin

2006; Neelin et al. 2009; Inoue and Back 2017; Wolding et al.

2020a; Inoue et al. 2021). Spatiotemporal averaging has

been shown to result in an earlier and more gradual

increase in precipitation with increasing BL (AAN20).

Figures D1a and D1b show the POD applied to TRMM

precipitation and ERAi thermodynamic fields at 6-hourly

and daily time scales, respectively, where 2.58 3 2.58 hori-

zontal resolution has been used in both cases. The general

characteristics of thermodynamic–convection coupling remain

largely unchanged between the 6-hourly and daily time scales,

though the latter shows an earlier and more gradual increase in

precipitation rate with increasing BL, consistent with AAN20.

At daily time scales (Figs. D1b), the clockwise evolution of the

vectors become less consistent toward the periphery of BL

space, likely a result of the smaller sample size of the daily

data. Figures D1c and D1d show the POD applied to TRMM

precipitation and IGRA thermodynamic fields across a broader

range of spatiotemporal scales. Again, the larger-spatiotempo-

ral-scale data show an earlier and more gradual increase in pre-

cipitation rate with increasing BL. Note that the negative slope

of lines of constant precipitation rate (color shading) in BL

space is not impacted by averaging of the IGRA and TRMM

data to larger spatiotemporal scales (Figs. D1c,d).

b. Geographical variability

Figures D2a, D2b, and D2c show the POD applied to

data limited to the IOWP (158N–158S, 608E–1808), central

Pacific Ocean (CP; 158N–08, 1808–2408E), and all tropical

oceans (158N–158S), respectively. While application of this

POD to data from these different geographical regions

produces results that appear remarkably similar, Inoue et al.

(2021) highlight that the primary balances and imbalances

of processes driving convective cycles in the CP differ from

those in the IOWP, suggesting that these geographical

regions should be considered separately.
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