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ABSTRACT: The performance of GCMs in simulating daily precipitation probability distributions is investigated by

comparing 35 CMIP6 models against observational datasets (TRMM-3B42 and GPCP). In these observational datasets,

PDFs on wet days follow a power-law range for low and moderate intensities below a characteristic precipitation cutoff

scale. Beyond the cutoff scale, the probability drops much faster, hence controlling the size of extremes in a given climate.

In the satellite products analyzed, PDFs have no interior peak. Contributions to the first and second moments tend to be

single-peaked, implying a single dominant precipitation scale; the relationship to the cutoff scale and log-precipitation coor-

dinate and normalization of frequency density are outlined. Key metrics investigated include the fraction of wet days, PDF

power-law exponent, cutoff scale, shape of probability distributions, and number of probability peaks. The simulated

power-law exponent and cutoff scale generally fall within observational bounds, although these bounds are large; GPCP

systematically displays a smaller exponent and cutoff scale than TRMM-3B42. Most models simulate a more complex PDF

shape than these observational datasets, with both PDFs and contributions exhibiting additional peaks in many regions. In

most of these instances, one peak can be attributed to large-scale precipitation and the other to convective precipitation.

Similar to previous CMIP phases, most models also rain too often and too lightly. These differences in wet-day fraction

and PDF shape occur primarily over oceans and may relate to deterministic scales in precipitation parameterizations. It is

argued that stochastic parameterizations may contribute to simplifying simulated distributions.

KEYWORDS: Precipitation; Climate models; Diagnostics; General circulation models; Model comparison;

Model evaluation/performance

1. Introduction

Precipitation is an essential element to society and environ-

ment. Beyond its role in providing for agriculture, industry, and

personal water needs, precipitation interacts with other climate

variables, ultimately shaping the world as we know it. In a given

location, a first-order picture of the effects of precipitation is

given by its temporal mean (i.e., the total precipitation that falls

in a given period), but this leaves out important details, such as

the variability of precipitation in the region. Thus, because soci-

ety is not only adapted to mean conditions, a complete assess-

ment of local precipitation should characterize the whole

temporal distribution of rainfall.

An important tool for projecting the local precipitation re-

sponse to a variety of forcings, including different global warming

scenarios, is the use of highly sophisticated global climate models

(GCMs). These models aim to simulate credible realizations that

can be plausibly compared to the actual evolution of weather

and climate. Due to the complex interactions that give rise to

rainfall, precipitation is one of the most challenging variables for

GCMs to simulate (Flato et al. 2013). Indeed, different models

often use different versions of large-scale and convective precipi-

tation parameterizations (which parameterize subgrid-scale pro-

cesses not explicitly simulated), with no approach being immune

to modeling issues. Previous phases of the Coupled Model Inter-

comparison Project (CMIP) have revealed long-standing prob-

lems in simulating, for example, how often and how hard it rains

(Stephens et al. 2010; Rosa and Collins 2013; Terai et al. 2018),

the magnitude of extremes (O’Gorman and Schneider 2009;

Gervais et al. 2014; Wehner et al. 2014; Abdelmoaty et al. 2021),

and the shape of the PDF (Pendergrass and Hartmann 2014;

Terai et al. 2018; Chen et al. 2021)}simulated daily precipitation

PDFs are often more complex than observed, including deviations

in the low- to medium-intensity regime. The main goals of this pa-

per are to introduce a set of metrics to evaluate the probability

distributions of daily precipitation, to place them in context of lit-

erature on their physical interpretation, and to apply them in an

initial evaluation of simulations from phase 6 of CMIP (CMIP6).

There is considerable discussion regarding biases in fre-

quency and intensity of wet-day precipitation [e.g., Flato et al.

(2013)], but for a number of reasons these metrics do not nec-

essarily correspond to the fundamental physical processes on

which simulations of precipitation are based. This may be why

they have not led to substantial improvement over the genera-

tions of model development during which awareness of these
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issues has grown. More physically motivated metrics, and

those that are robust to spatial and temporal resolution, may

be able to break this deadlock.

Since the last generation of CMIP simulation, our understand-

ing of how physical processes govern the shape of daily precipita-

tion PDFs has improved. Martinez-Villalobos and Neelin (2019),

using a model based on a simplified version of the moisture equa-

tion (Stechmann and Neelin 2014; Neelin et al. 2017), provide a

first-order explanation on how the moisture budget controls the

shape of daily precipitation PDFs and why they have shapes that

are often approximated by gamma or similar distributions. A

gamma distribution has historically been one of the most popular

choices to empirically fit daily precipitation PDFs over wet days

(Barger and Thom 1949; Thom 1958; Ropelewski et al. 1985;

Groisman et al. 1999; Wilby and Wigley 2002; Watterson and

Dix 2003; Husak et al. 2007; Martinez-Villalobos and Neelin

2018; Chang et al. 2021), although other gamma-like alterna-

tives are also used (e.g., Wilks 1998; Wilson and Toumi 2005;

Papalexiou and Koutsoyiannis 2012).

To leading order, the bulk of the PDF of observed rainfall

contains two ranges, governed by different physical balances,

and characterized by different metrics: 1) a range with no

dominant physical scale (“scale-free range”) at low-to-medium

intensities, approximated by a power law with exponent

2tP (tP , 1) controlling the probability of low and moderate

daily precipitation values; and 2) a range governed by a domi-

nant scale, namely the precipitation cutoff scale PL that con-

trols the probability of medium-to-large events. These two

ranges can be captured to a leading approximation for present

purposes by a gamma distribution for simplicity. We empha-

size that we are not relying on conformance to a particular dis-

tribution, but we use gamma-like distribution properties to

inform metrics and their interpretations, and the relationships

among them. For applications to more subtle features, such as

deviations from the approximate power-law scaling at low val-

ues (Papalexiou and Koutsoyiannis 2016), or accurately cap-

turing the folding of the very extreme tail (Papalexiou and

Koutsoyiannis 2013; Cavanaugh et al. 2015; Papalexiou and

Koutsoyiannis 2016), then distributions with an additional pa-

rameter (e.g., generalized gamma distribution, Burr type XII dis-

tribution) can be better suited (Papalexiou and Koutsoyiannis

2012)}similar considerations to those presented here can still

apply, although with added complexity, as further discussed in

section 2. The approximate power-law range arises from fluctua-

tions across the threshold between raining and nonraining condi-

tions. For daily average precipitation, a main control of the

exponent tP is the number of individual precipitating events

within wet days (Martinez-Villalobos and Neelin 2019)}all else

being equal, regions with fewer events per day tend to have

steeper power-law ranges. For the approximately exponential

range governing large events, the cutoff scale PL, which is the

main precipitation scale in observed PDFs, is given by a bal-

ance between the variability of moisture converging during

precipitating events and a measure of moisture loss by precipi-

tation in them (Stechmann and Neelin 2014; Neelin et al. 2017;

Martinez-Villalobos and Neelin 2019).

We expect a variety of different model representations of

the processes that yield PL and tP, so as a first-order picture

we evaluate how well models simulate these parameters.

However, models may sometimes deviate from the power-law

and cutoff-scale picture that tends to hold in satellite-based

precipitation products (see below) and station data (Schiro

et al. 2016; Martinez-Villalobos and Neelin 2018, 2019; Chang

et al. 2020). Simulated PDFs can thus be more complex; for

instance, a bump can indicate an artificial scale introduced

into the scale-free range. Thus, in addition to PL, tP and other

commonly used scalar metrics (mean, standard deviation,

fraction of wet days), we also employ metrics that evaluate

the “shape” of simulated probability distributions and their

probability distance compared to their observed counterparts.

The paper is organized as follows. Section 2 presents the data

and introduces the metrics used. Section 3 gives an overview of

the uncertainty between different observational products used

to compare to models. This observational uncertainty is neces-

sary to adequately evaluate model performance. Section 4 pre-

sents the model evaluation. Section 5 summarizes the study and

discusses its implications.

2. Data and methods

a. CMIP6 models and observational datasets

We use daily precipitation from the first variant of 35 CMIP6

models (see Table 1) over the period 1990–2014. To estimate ob-

servational uncertainty bounds for meaningful comparison with

models, we use six different daily precipitation products:

TRMM-3B42 v7.0 (508S–508N, 1998–2016) and its microwave-

calibrated (IR) and microwave-only (MW) variants (Huffman

et al. 2007), CMORPH V1.0 CRT (608S–608N, 1998–2017) (Xie

et al. 2017), PERSIANN CDR v1 r1 (508S–508N, 1983–2017)

(Ashouri et al. 2015), and GPCP 1DD CDR v1.3 (908S–908N,

1997–2017) (Huffman et al. 2001), all taken from the Frequent

Rainfall Observations on Grids (FROGS) database (Roca et al.

2019). These are satellite-based products with correction to

gauges over land. Some models have relatively coarse native res-

olutions (see Table 1), so all models and datasets are coarsened,

using the ESMG_regrid function in NCL under the “conserve”

option, onto a 383 38 latitude–longitude grid prior to analysis.

b. PDFs and contributions

In this subsection and the following one, we aim to reconcile

terminology with the framework for looking at the distribution

of precipitation with Pendergrass and Hartmann (2014). We cal-

culate PDFs as normalized histograms with bins approximately

constant in log(P) space, with P denoting daily precipitation.

The first and second moments of the precipitation distribution

are used to calculate mean and variance of precipitation. A

moment ratio will be used as an estimator of the precipitation

scale, so it is useful to examine the contributions to each of

these integrals as a function of precipitation. We thus define

Ĉamount(P) 5 P 3 PDF;

Ĉvar(P) 5 P2
3 PDF:

(1)

Here, Ĉamount is the quantity that integrates to the mean pre-

cipitation over wet days (Pwet, for P measured in millimeters
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per day (mm day21); if P were measured in millimeters the inte-

gral would yield total precipitation). Similarly, Ĉvar is the quan-

tity that integrates to the second moment (m2), a quantity

closely related to the variance on wet days (s2
P):

Pwet 5

�

‘

0

Ĉamount(P)dP,

m2 5

�

‘

0

Ĉvar(P)dP, s
2
P 5 m2 2 P

2

wet:

(2)

Since the quantities that Ĉamount and Ĉvar integrate to are

evaluated with other metrics (see next subsection), it is useful

to define the normalized contributions (referred to simply as

contributions in what follows) as

Camount 5
Ĉamount

Pwet

,

Cvar 5
Ĉvar

m2

,

(3)

such that
�

‘

0
Camount dP5 1 and

�

‘

0
Cvar dP5 1. Thus, any dif-

ference between observed and modeled contributions is in

their shape, which facilitates the construction of metrics for

differences in the shape of distributions.

c. Terminology and normalization

It is worth clarifying differences in nomenclature and in nor-

malization between (linear) precipitation and log-precipitation

variables that exist in the literature. Each approach is self-

consistent, but confusion can arise especially when comparing

and interpreting the different approaches. In one approach,

the PDF normalized in precipitation (Fig. 1a), plotted here in

log-P space, has a long history (e.g., Barger and Thom 1949;

Thom 1958; Groisman et al. 1999; Katz 1999; Watterson and

Dix 2003; Wehner et al. 2014). From this point of view, Figs. 1b

and 1c (or Figs. 1e,f) give the quantities that integrate to the first

and second moment, referred to here and elsewhere as contri-

butions (to the relevant integral) (Karl and Knight 1998; Neelin

et al. 2009; Klingaman et al. 2017; Kuo et al. 2018; Wang et al.

2021); in other cases, these are referred to more explicitly as the

frequency density times the variable P (Watterson and Dix

2003). In a second approach, the PDF normalized in log-P has

been termed the frequency distribution, and the log-P frequency

density multiplied by P has been termed the amount distribution

(Pendergrass and Hartmann 2014; Kooperman et al. 2016a,b;

Pendergrass et al. 2017; Akinsanola et al. 2020). The translation

between calculations in P and log-P coordinates is simply a fac-

tor of P. Specifically, if we denote a PDF calculated in P coordi-

nates as fP(P) and its counterpart calculated in G(P) 5 log(P)

coordinates as f̂G[G(P)]5 f̂G(P), then they are related as

fP(P)5 f̂G(P)dG/dP (von Storch and Zwiers 1999). In this case,

this translates to f̂log(P)(P)5 PfP(P).
This factor of P implies that the PDF or frequency density nor-

malized in log-P coordinates (Pendergrass and Hartmann 2014)

has the same shape as the precipitation amount contribution in

P coordinates, and that the amount distribution normalized in

log(P) coordinates has the same shape as the precipitation vari-

ance contribution in P coordinates.

We briefly summarize advantages of each approach, which

are useful for different purposes, illustrating these in the context

of three common axis choices (Fig. 1). Regardless of normaliza-

tion, a log-log plot of the PDF (Fig. 1a) facilitates comparison

of the light precipitation range to a power law. In the contribu-

tions to the first and second moments (Figs. 1b,c) the slope of

this range is increased by 1 and 2, respectively. A log-linear plot

facilitates examination of the degree to which the large-event

range is approximately exponential (Figs. 1g–i). A linear-y axis

with log-x axis (Figs. 1d–f) makes it easier to see differences

among models in the low-medium precipitation range. Using a

log-P normalization with a linear-y axis has the advantage of

providing a log-P frequency density plot (Fig. 1e), with area vi-

sually proportional to its integral (Pendergrass and Hartmann

2014). The apparent difference in interpretation of frequency

of light rain between the P and log-P normalizations is re-

solved by noting that an integral over a range of precipitation,

such as over the interval (0–0.1 mm day21) in P coordinates, is

spread over a semi-infinite interval in log-P coordinates, with

TABLE 1. List of models.

Model

Nominal

resolution

(km) Reference

ACCESS-CM2 250 Dix et al. (2019)

ACCESS-ESM1-5 250 Ziehn et al. (2019)

BCC-CSM2-MR 100 Wu et al. (2018)

BCC-ESM1 250 Zhang et al. (2018)

CanESM5 500 Swart et al. (2019)

CESM2 100 Danabasoglu (2019b)

CESM2-FV2 250 Danabasoglu (2019a)

CESM2-WACCM 100 Danabasoglu (2019d)

CESM2-WACCM-FV2 100 Danabasoglu (2019c)

CNRM-CM6-1 250 Voldoire (2018)

CNRM-CM6-1-HR 50 Voldoire (2019)

CNRM-ESM2-1 250 Séférian (2018)

EC-Earth3 100 EC-Earth (2019a)

EC-Earth3-Veg 100 EC-Earth (2019b)

FGOALS-f3-L 100 Yu (2019)

FGOALS-g3 250 Li (2019)

GFDL-CM4 100 Guo et al. (2018)

GFDL-ESM4 100 Krasting et al. (2018)

HadGEM3-GC31-LL 250 Ridley et al. (2019a)

HadGEM3-GC31-MM 100 Ridley et al. (2019b)

INM-CM4-8 100 Volodin et al. (2019a)

INM-CM5-0 100 Volodin et al. (2019b)

IPSL-CM6A-LR 250 Boucher et al. (2018)

MIROC6 250 Tatebe and Watanabe (2018)

MIROC-ES2L 500 Hajima et al. (2019)

MPI-ESM-1-2-HAM 250 Neubauer et al. (2019)

MPI-ESM1-2-HR 100 Jungclaus et al. (2019)

MPI-ESM1-2-LR 250 Wieners et al. (2019)

MRI-ESM2-0 100 Yukimoto et al. (2019)

NESM3 250 Cao and Wang (2019)

NorCPM1 250 Bethke et al. (2019)

NorESM2-LM 250 Seland et al. (2019)

NorESM2-MM 100 Bentsen et al. (2019)

SAM0-UNICON 100 Park and Shin (2019)

UKESM1-0-LL 250 Tang et al. (2019)
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corresponding adjustment in the frequency density. Distribu-

tions expressed and normalized in terms of linear P are the

traditional basis for statistically fit distributions such as the

gamma distribution (discussed below), but we emphasize that

the linear- and log-P approaches are equivalent as long as one

is consistent in their use. The choice of P or log-P normaliza-

tion also has some bearing on how we interpret the numerical

value of the probability distance metrics in section 2d(2)(ii).

While contributions provide a generic way of referring to

these quantities, their significance in model evaluation mer-

its a more specific nomenclature, summarized in Table 2.

In what follows, when discussing in terms of linear-P nor-

malization, we equivalently use PDF or frequency density

(Fig. 1a), precipitation amount contribution for its first mo-

ment (Fig. 1e), and precipitation variance contribution for

its second moment (Fig. 1f). When discussing in terms of

amount

amount

amount

FIG. 1. Daily precipitation (left) probability density function (PDF) or frequency density, (center) contribution to precipitation amount

Camount, and (right) contribution to variance Cvar over the Niño-3.4 region (58S–58N, 1908–2408E) according to TRMM-3B42, TRMM-

3B42 (IR), TRMM-3B42 (MW), CMORPH, PERSIANN, and GPCP. The same data are displayed in (a)–(c) log-log, (d)–(f) log-linear,

and (g)–(i) linear-log axes to illustrate the features of each (see text). To calculate, we pool grid data within the Niño-3.4 region prior to

calculation. We estimate the cutoff-scale PL and power-law exponent tP according to Eq. (5), with values (P̂L, t̂P): TRMM-3B42 (IR)

(18.1 mm, 0.76), TRMM-3B42 (MW) (12.2 mm, 0.74), TRMM-3B42 (16.1 mm, 0.76), CMORPH (17.1 mm, 0.75), PERSIANN (15.5 mm, 0.65),

and GPCP (9.1 mm, 0.46). The location of PL in the PDF in each of these datasets is shown by filled circles in (a), (d), and (g). The role of

PL as the e-folding scale of the large events range is also schematized for the slope of one dataset in (g). Note the relationship between

the shape of Camount and Cvar and the shape of log-P frequency and log-P amount distributions, respectively, outlined in section 2c and

Table 2. Blue boxes indicate the panel choices for display in subsequent figures.
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log-P normalization, we use log-P frequency density (Fig. 1e)

and log-P amount (Fig. 1f).

d. Metrics used to evaluate models

1) BULK MEASURES OF THE PDF

Consider, for reference, the form of a gamma distribution:

PDFgamma(P) ∝ P2tPexp 2
P

P
L

( )

(tP , 1): (4)

It has some desirable properties in terms of approximately

reflecting the two physical regimes discussed in the introduc-

tion and elaborated below (see Figs. 1a,g for an example)

while maintaining simplicity}emphasizing that we use this to

inform metrics, and are not relying on strict conformance to

this distribution. Anticipating departures from this, assume

that precipitation follows a distribution over wet days

PDF
P
(P) ∝ P2tPM(P)exp 2N

P

PL

( )

[ ]

(t
P
, 1),

where the unknown functions M(P), N(x) express (with some

redundancy) departures from the simplest case of a gamma

distribution (for which both are 1). For a specific example, we

can consider the generalized gamma distribution, for which

N(P/PL) 5 (P/PL)
n, still governed by the same physical pre-

cipitation scale PL, but where departures of n from 1 can af-

fect PDF extreme tail behavior, decreasing (increasing)

extremes for n greater than (less than) 1.

The factor P2tP provides a scale-free power-law range

over low and moderate values, with probability decreasing by

a constant factor log(PDFgamma) ∼2tP log(P) as orders of

magnitude in P increase. This power-law range continues un-

til the PDF approaches a characteristic cutoff-scale PL [the

factor exp(2P/PL)] where the probability drops much faster

[log(PDFgamma) ∼2P/PL], as schematized in Fig. 1a, thus effec-

tively bounding the probability of extremes. The differences

among the slopes of the different observational datasets in Fig. 1g

are primarily associated with different PL values}if the precipita-

tion axis is rescaled by PL, the medium-to-large event portion of

the curves collapses to a common dependence to good approxi-

mation (Martinez-Villalobos and Neelin 2021). The tP and PL pa-

rameters also have physical interpretations. Results from a

stochastic model based on the moisture budget (Stechmann and

Neelin 2014; Neelin et al. 2017; Martinez-Villalobos and Neelin

2019) suggest that the power-law range is steeper (larger tP, im-

plying probability decreasing faster in the low and moderate

range) in generally dry regions where few precipitating events

per day occur, and PL (thus, also extremes) is larger in regions

of higher moisture convergence variance (Martinez-Villalobos

and Neelin 2019). We also expect departures from power-law

behavior if event durations (from precipitation onset to termi-

nation) are not well separated from the daily averaging interval.

An important consideration for metrics is that they be sim-

ple, easily interpretable, and robust to modest departures in

PDF shape. The mean and variance over wet days Pwet and s
2
P

are familiar quantities. These can be rearranged into metrics

closely related to method of moments estimators (Waggoner

1989; Watterson and Dix 2003) for tP and PL. For the gamma

distribution,

P̂L 5
s

2
P

Pwet

,

t̂P 5 1 2
Pwet

P
L

:

(5)

As the PDF shape departs from the gamma distribution,

these remain useful metrics for the two ranges. For strong de-

partures, they should no longer be considered estimators, but

simply a precipitation scale and a nondimensional quantity

created from the first two moments. For example, for the gen-

eralized gamma distribution, the moment estimator is propor-

tional to the scale PL with a prefactor

C[(3 2 tP)/n]
C[(2 2 tP)/n]

2
C[(2 2 tP)/n]
C[(1 2 tP)/n]

that is larger (smaller) than 1 for n below (above) 1.

Although different estimation methods such as maximum

likelihood or linear regression (in log-log or log-linear coordi-

nates for relevant ranges of the PDF) may provide different

numerical values, these are generally spatially well correlated

(Martinez-Villalobos and Neelin 2019). We consider a day

wet when the daily precipitation is at least 0.1 mm. In

some instances we plot 12 t̂P (ranging from 0 to ‘) instead of

t̂P (ranging from 2‘ to 1). A small value of 12 t̂P indicates a

steep power-law range.

The power-law exponent and cutoff scale summarize the wet-

day PDF. To provide a complete description of the daily precipi-

tation PDF for all days, we also calculate the fraction of wet days,

TABLE 2. Nomenclature and mathematical relationship among the normalizations of the precipitation distribution and its moments;

compare to Fig. 1.

log-P

Name } log-P frequency log-P amount

Equation }
�

f̂ log(P)d log P
�

Pf̂ log(P)d logP

Fig. 1 panel } Fig. 1e Fig. 1f

(linear-) P

Name Frequency density, PDF Amount contribution Variance contribution

Equation
�

fP dP
�

PfP dP
�

P2fP dP

Fig. 1 panels Figs. 1a,d,g Figs. 1b,e,h Figs. 1c,f,i
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fwet 5
#wet days

#days
, (6)

the mean over all days Pall, and mean over wet days Pwet.

They are related by

Pall 5 fwetPwet: (7)

Alternatively, wet and dry days could be assessed jointly by

considering a mixed-type PDF [conditional and unconditional

moments are related as in Eqs. (18) and (19) in Papalexiou

(2018)]. Here, we choose to analyze wet and dry times separately.

2) EVALUATING THE FIT AND SHAPE

(i) Gamma distribution fit

The estimators for PL and tP can be expected to approach their

actual values as long as the gamma distribution provides a good

fit. We note that several other distributions produce gamma-like

features over a range of their parameters (Cho et al. 2004;

Kirchmeier-Young et al. 2016) and may account for some subtle

features, such as deviation from a strict exponential decay of the

extreme tail (Papalexiou and Koutsoyiannis 2013; Cavanaugh

et al. 2015), unaccounted by the gamma. In cases or regions

where the gamma distribution fit is suboptimal, the interpretation

of P̂L and t̂P [calculated as in Eq. (5)] as cutoff scale and power-

law estimators is modified. They should be understood simply as

a scale from the (wet day) variance over mean and the nondimen-

sional square of the mean over the variance (as a departure from

1). A well-performing GCM should still reproduce their values.

A simple method, using scalar quantities, to identify regions

where the gamma distribution is expected to provide good or

bad fits is comparing predictions of theoretical gamma distribu-

tions to observations. For a gamma distribution of form pP 5

{1/[C(12 tP)P12tP

L ]} P2tPexp(2P/PL), the nth uncentered mo-

ment is given by Pn〈 〉5 Pn
L{C(n1 12 tP)/[C(12 tP)]}, with C

being the gamma function. Using the property C(z1 1)5 zC(z),

the moment ratio rn is given by rn 5 Pn〈 〉/ Pn21〈 〉5 PL(n2 tP).
Noting that r1 and r2 are used to define estimators P̂L and t̂P

[from (5), P̂L 5 r2 2 r1, t̂P 5 (r2 2 2r1)/(r2 2 r1)], we evaluate
the gamma distribution fit by comparing the observed (or

modeled) third-order moment ratio r3 and its expected value

from the gamma distribution r
gamma
3 5 P̂L(32 t̂P). This mea-

sure is given by

egamma 5
r
gamma
3

r3
: (8)

A value of egamma close to 1 implies reasonably good fits while

significant deviations from 1 point to progressively degraded ones.

(ii) Distance between observed and modeled PDFs and

contributions

To measure how well a modeled PDF (PDFmodel) ap-

proaches an observed one (PDFobs), we define a PDF distance

metric epdf as follows:

epdf 5

�

‘

0

|PDF(P)model(P) 2 PDF(P)obs(P)|dP: (9)

This distance is the simplest case of a family of more general

probability distances (Zolotarev 1977; Korolev and Gorshenin

2020) and provides comparable results to other commonly

used probability distance definitions (Martinez-Villalobos and

Neelin 2021).

Similarly, we define eCamount
and eCvar

as the probability distance

between the modeled and observed precipitation amount and

variance contributions respectively. Note that Camount and Cvar

are weighted progressively toward larger values, with PDFs giv-

ing more weight to the low intensity range, and Cvar giving more

weight to the extreme range. So, epdf, eCamount
, and eCvar

provide

complementary information on differences in modeled probabili-

ties in the low, moderate, and extreme ranges.

(iii) The shape of the PDF

A large probability distance between modeled and observed

PDFs (epdf) may occur because the parameters of the PDFs (tP
and PL) differ substantially (although the basic shape of the PDF

may be well simulated) and/or because significant deviations in

the modeled shape occur compared to the power-law range and

cutoff-scale picture that holds in observational datasets. One ex-

ample of these deviations is the presence of extra peaks in proba-

bility. So, to complement information provided by egamma and epdf
we also track the number of peaks in the PDF, Camount, and Cvar

in models compared to observational products. We note that there

are other more subtle features that also imply a deviation from

form, for example minimums or maximums in derivatives of the

PDF. For this paper, we limit ourselves to only count peaks as a

proxy for deviations from the observed shape. The algorithm used

to identify these peaks take several precautions to not misidentify

them (Savitzky and Golay 1964). Details are given in Text S1 in

the online supplemental material.

3) MODEL SUMMARY SCORE FOR EACH METRIC

To calculate an overall score on a particular metric we need

to reduce noise, which is especially important if the metric in-

volves the calculation of the PDF and contributions. Thus,

prior to evaluation we divide the area within 508S–508N into

240 different regions of 108 latitude and 158 longitude. Then,

we pool the time series in each region and calculate a single

value of P̂L, t̂P,Pall,Pwet, fwet, and sP as well as the PDF and

contributions, representative of the region. To evaluate the

overall performance in PL, tP, Pall,Pwet, sP, and fwet, we use a

root-mean-square (RMS) error given by

RMS error x 5

�����������������������������

∑

i

Ai[xobsi 2 xmodel
i ]2

∑

i

A
i

√

√

√

√

√

√

√

, (10)

where i denotes a particular 108 3 158 region, Ai denotes its

area (which scales with the cosine of the latitude), and xobsi

and xmodel
i denote the value of the metric in a particular obser-

vational dataset and model respectively. This RMS error gives

a measure of the typical deviation (of any sign) of a particular

model compared to observations.

Similarly, an overall error in the distance between observed

and modeled PDFs [section 2d(2)(ii)] is given by
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epdf 5

∑

i

A
i
eipdf

∑

i

Ai

, (11)

where eipdf is the probability distance between PDFs (9) in re-

gion i. Total errors in the simulation of contributions are cal-

culated similarly.

Finally, we condense the overall differences in probability

peaks between models and observations by calculating the

percentage of the 240 regions previously defined where mod-

els and observational products disagree in the number of

PDF, Camount, and Cvar peaks.

For all metrics, the overall score shown and discussed in the

rest of the paper is a weighted average of the model differ-

ences compared separately to TRMM-3B42 and GPCP. We

chose these datasets because they tend to bracket the obser-

vational estimates of the other datasets in most metrics (see

next section). To contextualize the difference between models

and observations, we compare each metric against the differ-

ence between GPCP and TRMM-3B42 estimates to provide a

measure of the observational uncertainty. Given that TRMM-

3B42 and GPCP share some input data (Huffman et al. 2007),

this observational uncertainty is admittedly a conservative

estimate.

3. Comparison among observational products

a. PDFs and contributions and uncertainty quantification

Different daily precipitation observational datasets are

known to have substantial differences (Donat et al. 2014;

Pendergrass and Deser 2017; Klingaman et al. 2017; Sun et al.

2018; Rajulapati et al. 2020; Alexander et al. 2020; Martinez-

Villalobos and Neelin 2021). Before evaluating models it is

important to be aware of these differences, and use them to

provide a measure of observational uncertainty.

Figure 1 shows the daily precipitation PDF over the Niño-3.4

area using the six different observational datasets considered. In

all cases the PDFs follow a similar shape}a power-law range

and an approximately exponential drop in probability. The

power-law range can be seen as a straight line in the log-log plot

(Fig. 1a), occurring from the lowest value to approximately the

location of the cutoff scale PL (shown in circles), and the drop in

probability associated to the cutoff occurs for P ’ PL. However,

the estimators of parameters PL and tP differ in all cases, with

P̂L ranging from 9.2 mm in GPCP to 18.4 mm in TRMM-3B42.

Similarly, the contributions have a similar shape (Figs. 1e,f), but

the differences in PL and tP imply different locations of their

peaks and widths.

To the extent that the PDFs in Fig. 1a are well described by

gamma distributions of shape (4), then the contributions in

Figs. 1b and 1c would approximately follow the mathematical

form

Camount ∝ P 3 PDF ≈ P2tP11exp 2
P

P
L

( )

,

Cvar ∝ P2
3 PDF ≈ P2tP12exp 2

P

P
L

( )

:

(12)

This implies that the PDFs in Fig. 1a, the contribution to

total precipitation in Fig. 1b, and the contribution to vari-

ance in Fig. 1c follow a similar shape in the large event range,

with the main differences being in the power-law exponent

(2tP for the PDF, 1 2 tP for Camount, and 2 2 tP for Cvar).

The differences in power-law exponent imply a different shape

for the low and moderate range, which results in Cvar preferen-

tially weighted toward larger values, Camount weighted toward

more moderate values, and the PDF having more of its weight

in the light precipitation range. This implies that the extreme

range contributes more to the second daily precipitation mo-

ment and the moderate range contributes preferentially to the

total (or mean) precipitation.

Figure 2 shows the zonal average of P̂L and t̂P in the six

different observational datasets considered. These have a

more symmetric pattern between hemispheres in P̂L than oc-

curs for the mean (see below), as features like the ITCZ, seen

clearly in the mean pattern, are attenuated or absent in the

spatial pattern of P̂L. Generally, larger values of P̂L occur in

the tropics through the equatorward flank of midlatitude

storm tracks; poleward of the storm tracks P̂L quickly de-

creases. However, considerable differences may be noted in

the details of the P̂L pattern among observational datasets.

The power-law exponent estimator t̂P has a more consistent

pattern among observational estimates, with smaller values in

regions where we expect frequent precipitation (as expected

from theory; see Martinez-Villalobos and Neelin 2019), like

the ITCZ and storm tracks, and larger values (a more steep

power-law range) for regions with little precipitation, as in the

subtropics.

Despite qualitative agreement, these different satellite

products differ quantitatively, indicating a substantial degree

of uncertainty. To a large extent, GPCP and TRMM-3B42

bracket the range of these products}we use the difference

between these datasets in each metric as a measure of obser-

vational uncertainty, as in Martinez-Villalobos and Neelin

(2021), although this is a conservative estimate. Comparison

between models and each of these satellite products differ

in some cases, so we report a weighted model error e as

follows:

e 5
1

2
(eGPCP 1 eTRMM), (13)

where eGPCP is the model error compared to GPCP and

eTRMM is the error compared to TRMM-3B42.

b. Relationships among metrics

The metrics defined here, in particular PL, Pwet, and number

of Camount and Cvar peaks, have several connections to the rain

frequency density and amount peaks defined in Pendergrass

and Deser (2017), based on the rain frequency and amount

distributions defined in Pendergrass and Hartmann (2014,

hereafter PH14), and used in several other studies [e.g.,

Kooperman et al. (2016a); Pendergrass et al. (2017); Terai

et al. (2018); Akinsanola et al. (2020)]. Recall from section 2c

that these log-P frequency density and amount distributions

have the same shape as Camount and Cvar, respectively, in
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(linear) P normalization. If PDFs [Eq. (4)] and contributions

[Eq. (12)] are well described by gamma distributions, then the

location of their peaks can be calculated analytically. Noting

that the observed range in tP tends to be within the interval

[0, 1) (see below), we find that PDFs in GPCP and TRMM-

3B42 satellite products have no interior peak (i.e., the largest

daily precipitation probability occurs at the smallest resolvable

amount, for tP . 0), whereas Camount and Cvar have a single

peak given by

P
peak
Camount

5 (1 2 t̂P)P̂L 5 Pwet (tP , 1),

P
peak
Cvar

5 (2 2 t̂P)P̂L 5 Pwet 1 P̂L (tP , 2):
(14)

That is, the peak of Camount is given by the mean on wet

days Pwet, and the difference between Cvar and Camount peaks

is given by P̂L. Similarly, the standard deviation of Cvar

(a quantity proportional to its width) is given by P̂L

���������

32 t̂P

√
.

We note that P̂L and t̂P predicts the peak of Cvar (or PH14

amount distribution) more robustly than the peak of Camount

(or PH14 frequency density distribution), as any error deter-

mining tP has a larger impact in this case, especially if t̂P

is close to one. While observed PDFs and contributions may

deviate from forms (4) and (12), we report good agreement

between the actual location of Camount peaks and Pwet (spatial

correlation coefficients equal to r 5 0.76 in TRMM-3B42,

r 5 0.88 in GPCP, and r5 0.9 in the CMIP6 multimodel mean;

not shown) and a better agreement between Cvar peaks and

Pwet 1 PL (r 5 0.9 in TRMM-3B42, r 5 0.91 in GPCP, and

r 5 0.94 in CMIP6 multimodel mean; see Fig. S1 in the online

supplemental material).

4. Model evaluation

In this section we evaluate models according to the metrics

defined in section 2. We exclude regions poleward of 508, as

TRMM-3B42 is only given within 508N and 508S latitude

bands. We start with the evaluation of the suitability of the

gamma distribution in observations and models. Then, we

evaluate the model representation of cutoff scales and power-

law ranges and, subsequently, the probability distance between

observed and modeled PDFs and contributions to precipitation

amount and variance. These probability distances depend on

how well models simulate the power-law exponent and cutoff

scale parameters but also on how well models simulate the ba-

sic “shape” of the PDF. Accordingly, to end this section we

evaluate model deviations from the observed shape in GPCP

and TRMM-3B42 satellite products using the number of peaks

in PDFs and contributions as a proxy.

a. Evaluation of the gamma distribution approximation

A global map evaluating the suitability of the gamma distri-

bution to approximate PDFs in satellite products and in the

multimodel mean is given in Fig. 3 (first and second row for

TRMM-3B42 and GPCP, and third row for the multimodel

mean). The first column shows the ratio between the third

and second moment r3 [defined in section 2d(2)(i)], the sec-

ond column shows the expected ratio if the gamma distribu-

tion held perfectly r
gamma
3 , and the third column shows egamma

[Eq. (8)], the ratio between the two. Visual comparison be-

tween r3 and r
gamma
3 shows similar features between these

quantities in the satellite products and the multimodel mean.

This implies that the gamma distribution provides a reason-

able first-order picture of the PDFs. More subtle differences

between r3 and r
gamma
3 are revealed by egamma. In the case of

TRMM-3B42, egamma deviates from 1 (implying degraded fits)

mainly in regions with low precipitation. The reason for this

is likely twofold. First, PH14 and Pendergrass et al. (2017)

report inconsistent behavior between TRMM-3B42 and

GPCP at low precipitation rates over ocean, which are likely

related to differences in the assumptions of their algorithms

since similar data goes into each of these products. Second,

from a theoretical point of view, regions with few precipitat-

ing events are characterized by steep power-law ranges, with

FIG. 2. Observational estimates of the zonal average of (a) P̂L and (b) t̂P according to TRMM-3B42 (IR),

TRMM-3B42 (MW), TRMM-3B42, CMORPH, PERSIANN, and GPCP.
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tP values that may exceed 1 (Martinez-Villalobos and Neelin

2019), that is, beyond the range of the gamma distribution.

These cases can exhibit the PDF form given in (4) above the

minimum observable rain rate, but the power law is too steep

to normalize the PDF over a range that includes 0, and thus

the expression (5) for t̂P is not a good estimate of the power-

law exponent. In the case of GPCP, deviations are seen

mainly in the tropical Indo-Pacific collocated with the inter-

tropical convergence zone (ITCZ). Visual inspection in that

region reveals PDFs decaying slightly faster than exponential

(not shown). Deviations of egamma in the CMIP6 multimodel

mean are mainly collocated with the deviations occurring in

TRMM-3B42, although they tend to be more accentuated. In

addition, the fit is less good over the poles than in the GPCP

case. In most regions, however, the gamma distribution

parameters provide conveniently summarized leading-

order information on the full wet-day PDF.

b. Evaluating model simulation of PDF power-law

exponent, cutoff scale, and fraction of wet days

Global maps of P̂L, 12 t̂P,Pall, Pwet, and fraction of wet

days fwet are shown in Fig. 4 for TRMM-3B42 (508S–508N),

GPCP, and the multimodel mean. We note a substantial

degree of observational uncertainty in P̂L and 12 t̂P, and to

some degree also in Pwet and fwet. To a large extent, the satel-

lite products have similar mean precipitation Pall pattern, but

their PDFs are different (even though the paradigm of power

law and cutoff scale is well followed in both products), with

larger extremes (larger PL) and sharper power-law range

(smaller 1 2 tP) in TRMM-3B42. Both P̂L and t̂P CMIP6

multimodel mean patterns tend to be within GPCP and

TRMM-3B42 estimates, although closer to GPCP in magni-

tude. This implies that (given that a day is wet) models tend

to simulate weaker extremes than TRMM-3B42 but stronger

extremes than GPCP. Despite differences in magnitude, the

multimodel mean spatial patterns of P̂L and t̂P are reasonably

well correlated with GPCP and TRMM-3B42 corresponding

patterns (correlation coefficients of 0.73 and 0.76 in the case

of P̂L, and 0.67 and 0.77 in the case of t̂P for GPCP and

TRMM-3B42 respectively. Correlations are taken over

508S–508N). These correlation coefficients are comparable

with the corresponding correlation coefficients between

TRMM-3B42 and GPCP (0.75 for P̂L, 0.77 for t̂P). This good

agreement between the CMIP6 model mean and observed

patterns has previously been noted by Martinez-Villalobos

and Neelin (2021) in the case of P̂L and suggests that, after

FIG. 3. Spatial pattern of the (a) observed third-order moment ratio r3, (b) third-order moment ratio predicted by a gamma distribution

r
gamma
3 and (c) the ratio between the two (egamma) according to TRMM-3B42. (d)–(f) As in (a)–(c), but using GPCP. (g)–(i) As in (a)–(c),

but for the CMIP6 multimodel mean. To calculate the multimodel mean, we calculate r3, r
gamma
3 , and egamma in each model individually and

then average. A value of egamma close to 1 indicate regions where better fits are expected. See details in section 2d(2)(i).
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FIG. 4. Spatial pattern of the cutoff scale estimator P̂L (5) according to (a) TRMM-3B42, (b) GPCP, and (c) CMIP6 multimodel mean.

(d)–(f) As in (a)–(c), but for the power-law exponent estimator t̂P [Eq. (5)] (12 t̂P is plotted). (g)–(i) As in (a)–(c), but for the mean daily

precipitation Pall. (j)–(l) As in (a)–(c), but for the mean daily precipitation over wet days Pwet. (m)–(o) As in (a)–(c), but for the fraction

of wet days [Eq. (6)], expressed as a percent. See details in section 2d(1). Boxes in the upper two rows show the Niño-3.4 region, southern

Europe, and the western United States, used in Fig. 7.
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cancellation of models, random errors, the CMIP6 ensemble

simulates a good spatial representation of the processes yield-

ing extremes, albeit of different magnitude.

As is the case in previous CMIP phases (Flato et al. 2013),

the mean precipitation Pall pattern in the CMIP6 ensemble

(Fig. 4, third row) captures to a good degree the observations

(see also Fig. 5d), both spatially and in magnitude, although

traces of the double ITCZ problem in the eastern Pacific

(Mechoso et al. 1995; de Szoeke and Xie 2008; Bellucci et al.

2010) can still be seen. The agreement occurs, however, due

to errors in the mean over wet days Pwet (Fig. 4, fourth row)

and fraction of wet days fwet (Fig. 4, fifth row) canceling each

other. As in previous CMIP phases, the long-standing bias of

too frequent (large fwet) and too weak (small Pwet) precipita-

tion (Dai et al. 1999; Sun et al. 2006; Stephens et al. 2010;

Rosa and Collins 2013; Catto et al. 2019) persists in CMIP6.

This pattern remains largest over ocean; however, it is

smaller over land (color bars over land match satellite prod-

ucts to a large degree; see the fifth row of Fig. 4). However,

there are caveats when evaluating models against satellite

products, especially over ocean. The data going into these

satellite products are known not to capture light precipita-

tion, especially in the subtropics, and over ocean there are no

gauges to correct the satellite data (Berg et al. 2010; Kay et al.

2018). Furthermore, the frequency and intensity of wet-day

precipitation are sensitive to the wet-day threshold (0.1 mm

in this case).

While the CMIP6 ensemble provides credible spatial pat-

terns of P̂L and t̂P, the model spread is substantial, as can be

seen in Figs. 5a and 5b. This spread arises from the relatively

large model spread in variance (Fig. 5c) and mean over pre-

cipitating days (Fig. 5e) combining to produce a large spread

in t̂P and P̂L, especially in the tropics. The large model spread

in P̂L, and consequently extreme percentiles, in the tropics

suggests that its origin might reside in the different convective

parameterizations used (O’Gorman 2015). It is interesting to

note that, while the ITCZ signature is clearly present in the

mean (Figs. 5d,e) and variance (Fig. 5c), it is largely absent

from the extremes (as measured by P̂L; Fig. 5a), in both

models and observations. We also note that, although the

P̂L and t̂P CMIP6 ensemble mean tends to be within obser-

vational estimates, there are several individual models

producing estimates outside the bounds of the satellite

products.

Both the mean precipitation over wet days (Fig. 5e) and

fraction of wet days (Fig. 5f) in models tend to follow the

FIG. 5. Zonal average daily precipitation (a) PDF cutoff scale estimator P̂L, (b) power-law exponent estimator t̂P, (c) standard devia-

tion on wet days sP, (d) mean over all days Pall, (e) mean over wet days Pwet, and (f) fraction of wet days, according to GPCP (blue),

TRMM-3B42 (red), CMIP6 multimodel mean (thick solid black), and individual models (thin solid black).
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latitudinal pattern of observations, but the bias previously

mentioned (models raining too frequently and too little) is

evident. An exception is that the strength of precipitation

over the ITCZ on wet days (Pwet) is well simulated. How-

ever, the double ITCZ problem is clearer in the zonally aver-

aged picture. In the fwet case, we note that no model simulates

a smaller fraction of wet days, over any latitude band, com-

pared to observations.

It is clear looking at Fig. 5 that some models provide sub-

stantially closer results compared to observations than

others. Figure 6 provides an evaluation of their individual

performance for P̂L and t̂P using the methodology outlined

in section 2d (a similar plot for Pall, sP, Pwet, and fwet is

shown in Fig. S2). We note that for P̂L and t̂P most models

are closer to (a weighted version) of the observational prod-

ucts used (GPCP and TRMM-3B42) than the extent the obser-

vational products are close to each other. RMS errors for

GPCP compared to TRMM-3B42 are on the order of 5 mm

for P̂L and 0.25 for t̂P. In the case of P̂L only five models are

outside observational bounds (Fig. 6a), while in the case of t̂P
13 out of 35 are (Fig. 6b).

c. Evaluating the distance between modeled and

observed PDFs

To illustrate how well models simulate daily precipitation

probabilities, Fig. 7 shows PDFs and amount and variance

contributions for the best and lowest performing model

based on the epdf, eCamount
, and eCvar

metric in three different

regions: (shown in Fig. 4 top two rows): the Niño-3.4 region

(58S–58N, 1908–2408E; Fig. 7, top row), southern Europe

(408–508N, 08–208E; Fig. 7, middle row), and the western

United States (308–488N, 2368–2578E; Fig. 7, bottom row).

These are chosen to show examples of PDFs and contributions

in a variety of climates; a maritime tropical region (Niño-3.4 re-

gion), a relatively wet midlatitude region (southern Europe),

and a relatively dry midlatitude region (western United States).

Although located in very different climates, there is a large

degree of commonality in the shape of PDFs and contribu-

tions in the GPCP and TRMM-3B42 products and to a good

extent also in models over these regions. In all cases, the

paradigm of a power-law range and a cutoff scale for the

PDFs (Fig. 7, first column) is well followed, although with

some slight differences that deserve attention in the western

United States. In this particular case TRMM-3B42 displays

a sharper power-law range with tP exceeding one, which is

not unexpected in dry regions with few precipitating events

per day (Martinez-Villalobos and Neelin 2019). This leads

to a TRMM-3B42 contribution to precipitation amount that

peaks at the lowest resolvable intensity (Fig. 7h), which

stands in contrast to Camount in other regions (with one ex-

ception in Fig. 7b) and for other datasets in the western

United States that display a single peak.

Contributions to variance Cvar (Fig. 7, third column) are

single peaked in all cases, and are more robust in terms of

shape, consistent with previous studies (Pendergrass and

Deser 2017). While the shape of PDFs and contributions to

amount and variance tend to be well simulated by these mod-

els in these regions, the main difference between the best and

lowest performing model is in how well they simulate the

power-law range and cutoff scale. Errors in these lead to

FIG. 6. Overall model RMS error (blue bars), as calculated in (10), in how they simulate (a) the

cutoff scale estimator P̂L and (b) the power-law exponent estimator t̂P. We compare this error to

the corresponding observational error between GPCP and TRMM-3B42 (black bar). Models with

smaller errors than the difference between observational datasets simulate the numerical value of

these parameters (5) better than this measure of observational uncertainty.
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deviations in probability weight (e.g., MPI-ESM-1-2-HAM

puts too much probability weight in the light precipitation

range in the Niño-3.4 region; Fig. 7b) and in where the contri-

bution peaks are located.

In the examples in Fig. 7, we note that the largest difference

in epdf occurs in the Niño-3.4 region, with the highest and lowest

scoring models performing similarly close to satellite products

in the midlatitude regions. This result tends to hold in general,

with tropical regions having a larger model spread compared to

midlatitudes (Fig. 8). While the model spread is large in tropical

regions, on average the dry subtropics is where models have

the largest differences from satellite products (Figs. 8d,e), with

the exception of Cvar where the entire subtropical/tropical

regions are worse simulated than the midlatitudes (Fig. 8f). To

put these results in context we should note, however, that

uncertainties between satellite products are large and tend to

mirror model errors, with larger uncertainties over the ocean

and tropical and subtropical regions (Figs. 8a–c) as

FIG. 7. Best (red) and lowest (blue) performing models under (left) probability error metrics for the PDF (epdf), (center) contribution to

precipitation amount Camount (eCamount
), and (right) contribution to variance (eC var

) in three different regions: (a)–(c) the Niño-3.4 region

(58S–58N, 1908–2408E), (d)–(f) southern Europe (408–508N, 08–208E), and (g)–(i) the western United States (308–488N, 2368–2578E). Com-

parison is against GPCP (gray) and TRMM-3B42 (black).
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highlighted in Pendergrass and Deser (2017). Overall, com-

pared to the range between satellite products, model proba-

bility errors tend to be larger in the light and moderate

range (as measured by epdf and eCamount
in Figs. 8d,e), with

extreme probabilities (as measured by Cvar) more similar to

GPCP and TRMM-3B42, in agreement withMartinez-Villalobos

and Neelin (2021). However, GPCP has known issues for heavy

precipitation, which should also temper our interpretation at this

end of the distribution (Bador et al. 2020).

A ranking of the models in terms of their simulation of

daily precipitation PDFs [based on the integrated epdf error;

section 2d(2)(ii)] is given in Fig. 9a (Fig. S3 shows the corre-

sponding ranking for Camount and Cvar, as well as a compari-

son to another metric, the Kullback–Leibler divergence;

Kullback and Leibler 1951). Model performance in simulating

power-law exponents and cutoff scales is a good predictor of

how well models simulate PDFs}models with low RMS error

in both P̂L and t̂P (Fig. 6) tend to be the same models with low

epdf errors (Fig. 9a)}but this does not capture the full story.

Model simulation of P̂L and t̂P tends to be within observational

estimates (Fig. 6) while integrated errors in the simulation

of the PDFs (and Camount and to some extent Cvar) are not

(Fig. 9a). This implies that modeled PDFs deviations from the

power-law range and cutoff shape, which occurs to some extent

in models but is rare in observations, also plays a role.

To quantify the extent to which model performance in sim-

ulating PDFs (Fig. 9a) can be explained by model perfor-

mance in simulating cutoff scales (Fig. 6a) and power-law

exponents (Fig. 6b), we calculate an epdf measure that can be at-

tributed solely to errors in the simulation of P̂L and t̂P. To do

this, we generate long synthetic “daily precipitation” time series

that are perfectly gamma distributed with PL and tP parameters

given by their observed or modeled values. From these time

series we calculate an overall epdf value [using Eqs. (4), (9), (11)],

which is not affected by deviations from the assumed gamma

distribution shape. This epdf, due solely to errors in PL and

tP (Fig. 9b, x axis), can be compared to the measured epdf
(Fig. 9b, y axis), which also includes deviations from the as-

sumed shape. First, we note that both quantities are well cor-

related (r 5 0.7 across models; Fig. 9b), which implies that

P̂L and t̂P are indeed good measures to quantify errors in

the PDF; however, they do not tell the whole story. (We

note that errors in P̂L and t̂P are better predictors of errors

in Camount and Cvar, in both cases r 5 0.88; see Fig. 9d for

Cvar). This prompts us to investigate modeled PDF devia-

tions from the power-law and cutoff-scale picture that tends

to hold in observational datasets.

d. Counting the number of peaks

To a very good approximation, observed daily precipitation

PDFs are characterized by a scale-free range (the power-law

range, with exponent usually in the 0–1 range) and a single

physical scale (the cutoff scale). This implies that daily precip-

itation PDFs have no interior peak (the most probable daily

precipitation value is the lowest resolvable amount) and that

contributions are single-peaked, with the Camount peak giving

the daily precipitation intensity that most contributes to pre-

cipitation amount and the Cvar peak giving the scale that most

contributes to the second moment (section 2b).

As illustrated in the bottom row of Fig. 10, important dif-

ferences in the shape of observed and simulated PDFs and

contributions may occur, which in the most severe cases may

FIG. 8. Spatial map of the CMIP6 multimodel mean of (a) PDF probability error epdf, (b) Camount probability error eCamount
, and

(c) Cvar probability error eCvar
. Hatching denotes regions where the multimodel mean probability error is smaller than the probability dis-

tance between TRMM-3B42 and GPCP. (d)–(f) Multimodel mean (red thick solid) of the zonal average of epdf, eCamount
, and eCvar

respec-

tively. Thin red lines show the 5th–95th percentiles of these quantities across the 35 CMIP6 models. Dashed line shows the corresponding

zonal averages of epdf, eC amount
, and eC var

probability distances between GPCP and TRMM-3B42.
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include additional peaks not present in observations. While

we note that deviations from the power-law range and cutoff-

scale shape may be more subtle, here we provide a first quanti-

fication of model differences in shape by counting the number

of simulated peaks in the PDF and contributions versus obser-

vations. In contrast to other metrics, observational datasets

tend to agree in these measures}both GPCP and TRMM-

3B42 display zero interior peaks in the PDF and one peak in

Cvar almost everywhere (Figs. 10a,c), with some differences for

Camount (Fig. 10b). We should note, however, that these

observational products miss light rain (Kay et al. 2018), so

the existence of additional peaks in that range is not ruled

out (see also section 5b). In the case of Camount, GPCP and

TRMM-3B42 tend to display a single peak almost every-

where (97.5% of regions within 508S–508N in GPCP and

75% in TRMM-3B42); however, TRMM-3B42 tends to dis-

play no interior peaks in dry subtropical regions (22.9% of

regions; see Fig. 10b), associated with a steeper power-law

range there [tP tending to exceed one; see Eq. (14)].

Figure 10 shows the model ensemble average of the num-

ber of PDF interior peaks (Fig. 10a), Camount peaks (Fig. 10b),

and Cvar peaks (Fig. 10c) and TRMM-3B42 counterparts for

these measures (see caption for details). In all cases, there are

particular regions, mostly over oceans, where many models sim-

ulate more peaks than satellite products. In the case of the PDF,

models tend to simulate interior probability peaks over all

oceans, except some limited wet regions (the northern Indian

Ocean, the Niño-3.4 region, the coast of California and Baja

California, and the northern tropical Atlantic). For Camount, ad-

ditional peaks are mostly present only over the North Pa-

cific and tropical Atlantic. In addition, a number of models

simulate zero Camount interior peaks over dry regions, some-

what collocated with the regions where TRMM-3B42 also dis-

play zero Camount peaks. As in the TRMM-3B42 case, this is

expected in dry regions where the PDF power-law range is

steep (larger than 1 in some cases), which results in Camount

peaking at the lowest resolvable amount. The general behav-

ior is more robust for Cvar, with models simulating a single

FIG. 9. (a) Ranking of model performance in simulating daily precipitation probability density functions (PDFs) according to the epdf
metric [Eqs. (9) and (11)]. This metric calculates the probability distance between models and observations. (b) Scatter between the ob-

served epdf (y axis; integrated over 508S–508N) and an estimation of epdf that only takes into account model errors in the cutoff scale PL

and power-law exponent tP (x axis). (c) Scatter between model epdf (y axis) and the percentage of 108–158 latitude–longitude regions in

each model (within 508S–508N) that display a larger number of daily precipitation PDF peaks compared to observations. (d) As in (b), but

for Cvar. The thick solid black lines in (b)–(d) display regression lines with corresponding correlation coefficients displayed in the legend.

Individual models’ values are shown in (b)–(d) by a blue dot and are numbered as in the x axis of (a). The black dot shows the correspond-

ing value for the distance between GPCP and TRMM-3B42.
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peak almost everywhere, with exceptions over the dry sub-

tropical regions, with some models simulating a bimodal Cvar.

This implies that as we increase the weight of larger daily pre-

cipitation values (Cvar is weighted more toward extremes than

the PDF) the differences between models and satellite prod-

ucts decrease. This suggests that most differences are concen-

trated in the power-law range and that the simulation of the

shape of the extreme tail generally agrees with satellite prod-

ucts, consistent with the findings of Martinez-Villalobos and

Neelin (2021).

Figure S4 shows the ranking of the models in terms of how

closely they agree in the number of PDF, Camount, and Cvar

peaks with GPCP and TRMM-3B42 [see section 2d(2)(iii)]

over the 508S–508N range. We note that while counting peaks

does not provide the full measure of errors in form, models

simulating fewer additional PDF peaks tend to also be the

models with the overall simulation of PDFs closest to satellite

products, as captured by the epdf metric (r 5 0.58 across mod-

els; Fig. 9c). Combining the information from errors in PL

and tP (explaining 49% of epdf variance; Fig. 9b) and errors in

peak (explaining 34% of epdf variance; Fig. 9c) allows us to ex-

plain 72% of epdf variance across models.

e. Convective and large-scale precipitation yield more

probability peaks

To further investigate why some models tend to simulate

more probability peaks, we also analyze daily convective

precipitation and daily large-scale precipitation (defined here

as total minus convective) from BCC-CSM2-MR, MIROC-

ES2L, MPI-ESM1-2-HR, and MRI-ESM2-0, four of the low-

est performing models in this measure (Fig. S4). Similarly as

before, we calculate convective precipitation and large-scale

precipitation PDFs and contributions, with some minor meth-

odological modifications. First, convective (or large scale) pre-

cipitation PDFs are normalized proportional to their bin

counts. That is, they do not integrate to 1 but rather to

[# counts convective (or large-scale)/# counts total]. Second,

we do not normalize these contributions (including precipita-

tion amount contribution) as in (3). We do these modifications

to visually preserve the relative contributions from convective

and large-scale precipitation to total precipitation. It is impor-

tant to note that while convective and large-scale precipitation

add up to total precipitation, this is not the case for the PDFs

and contributions (i.e., the convective precipitation PDF plus

the large-scale precipitation PDF do not add up to the total

precipitation PDF). This is because lower values of convective

or large-scale precipitation contribute to the same or higher

values of total precipitation.

Figure 11 shows examples of total, convective, and large-

scale precipitation PDFs and contributions in regions with

more interesting behavior. For good measure, Fig. S5 also

shows the same in some less interesting regions. In these mod-

els, additional peaks in PDFs can arise from either peaks in

large-scale precipitation PDFs (Fig. 11a) or, in rarer cases,

FIG. 10. (a) Map of the average number of PDF interior peaks in 35 CMIP6 models. (b) As in (a), but for the contribution to precipita-

tion amount Camount. (c) As in (a), but for the contribution to variance Cvar. The number of PDF interior peaks is zero in all observational

datasets, and in most cases is one for Camount and one for Cvar. Deviations from this are noted for TRMM-3B42 by solid and dashed con-

tours, with solid denoting two peaks and dashed denoting zero peaks. Other datasets, with exception of CMORPH v1, have substantially

fewer regions with zero or two interior peaks for Camount. (d) Example of a typical modeled PDF shape with one interior peak (MIRO-

ES2L, red circles) over a region in the Indian Ocean [shown in (a)]. This contrasts with PDFs over the same region using GPCP and

TRMM-3B42 with one peak (gray and black circles respectively). (e) As in (d), but for Camount. In this case the region is located in the trop-

ical western Pacific and the modeled (MRI-ESM2-0) Camount have two peaks, in contrast with one peak in GPCP and TRMM-3B42. (f) As

in (e) but for Cvar, over a region in the subtropical Atlantic and using FGOALS-f3-L.
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from convective precipitation PDFs (not shown). We note in

this example that the convective precipitation PDF follows a

power-law range plus cutoff scale, and that the large-scale

precipitation PDF imprints a distinctive peak in the total pre-

cipitation power-law range, with the large event range follow-

ing the convective precipitation PDF tail. Contributions peaks

arise in some cases from convective precipitation contribu-

tions (Fig. S6), with large-scale precipitation contributions

usually having a single peak or a broad background contribu-

tion to a range of precipitation scales (i.e., contributing simi-

larly to low, moderate, and extreme ranges; see Fig. S6 for an

example). Most often, however, extra peaks arise when com-

bining single-peaked large-scale and convective precipitation

contributions, consistent with previous findings derived from

the GFDL AM2 atmospheric model (Lin et al. 2013) and the

NCAR Community Atmosphere Model for parameters yield-

ing similar convective and large precipitation amounts in per-

turbed parameter sensitivity experiments (Kooperman et al.

2018). That is, there is usually a peak at low precipitation val-

ues, arising from one type of precipitation (convective or large

scale), and another at higher values arising from the other

type of precipitation (Figs. 11b,c). Given that there is little

communication between large-scale and convective precipita-

tion parameterizations, extra probability peaks arising by

combining these two precipitation sources are not surprising.

5. Summary and discussion

a. Summary

The performance of CMIP6 global climate models in their

simulation of daily precipitation probabilities across differ-

ent regions and climatological regimes is assessed. Similarly

to previous CMIP phases, the long-standing bias of models

raining too lightly and too often persists in CMIP6. How-

ever, this is driven by models’ performance over oceans.

Despite issues with feedbacks of precipitation on land coupling

(DeMott et al. 2007), errors of this kind tend to be smaller un-

der these metrics over land. Focusing on wet days, we compare

modeled probability distributions, precipitation amount contri-

bution, and precipitation variance contribution to two widely

used observational products for these purposes: GPCP and

TRMM-3B42. Over most regions, observed daily precipitation

PDFs are relatively simple, consisting of a power-law range and

a close to exponential cutoff scale for large values. We find sim-

ulated numerical values of power-law exponents (t̂P) and cutoff

scales (P̂L) to be generally within observational error bounds.

However, in some regions}particularly over ocean areas, and

especially over subtropical high pressure regions}modeled

PDFs and contributions tend to be more complex than their

counterparts from satellite products, sometimes exhibiting addi-

tional probability peaks. These peaks tend to occur in the

power-law range of the PDF. The large event range is generally

well simulated, except in subtropical regions of low rainfall.

As a summary Fig. 12 shows a portrait plot with the model

rankings over all 12 metrics studied. We highlight the following

models that consistently perform well in most measures (top 10

in at least 8 of 12 metrics): HadGEM3-GC31-MM, CNRM-

CM6-1, CNRM-CM6-1-HR, UKESM1-0-LL, CNRM-ESM2-1,

NorESM2-MM, and HadGEM3-GC31-LL.

b. Discussion

We note that several of the eight models highlighted are

from the same modeling group. All three models contributed

by CNRM-CERFACS (CNRM-CM6-1, CNRM-CM6-1-HR,

CNRM-ESM2-1) (Voldoire et al. 2019; Séférian et al. 2019)

are in this group, as well as the three models contributed by

the U.K. Met Office (HadGEM3-GC31-MM, HadGEM3-

GC31-LL, UKESM1-0-LL, the latter in collaboration with

the U.K. Natural Environment Research Council) (Kuhlbrodt

et al. 2018; Williams et al. 2018; Sellar et al. 2019). In most

other cases, models from the same modeling group tend to

have similar levels of performance (Fig. 12). This suggests

that, with few exceptions, the core physics common to differ-

ent model variants is the leading-order factor that explains

model performance in simulating daily precipitation PDFs

(Knutti 2010).

An important difference between models and satellite

products is that models tend to have more peaks in PDFs and

contributions not present in the satellite products. In satellite

products, PDFs peak at the lowest resolvable amount and

contributions tend to have a single peak. In contrast, in many

regions and especially over oceans, models simulate PDFs

that peak at some moderate value in the power-law range (e.g.,

Fig. 10d) and contributions that are bimodal (e.g., Figs. 10e,f).

FIG. 11. Large-scale precipitation (blue), convective precipitation (red), and total precipitation (black) (a) PDFs in a region in the tropi-

cal North Atlantic (108–308N, 3108–3408E, shown in Fig. 10c) simulated by the MIROC-ES2L model. (b) Contribution to precipitation

amount Camount in the Niño-11 2 region (108–08S, 2708–2808E) simulated by the MPI-ESM1-2-HR model, and (c) contribution to variance

Cvar in a region in the tropical North Pacific (108–208N, 1408–1708E, shown in Fig. 10b) simulated by the BCC-CSM2-MRmodel.
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There are two ways to contend with these results. First, some

light rain may be present that is not captured by these satel-

lite products. The measurements going into TRMM-3B42

and GPCP are known to miss warm, light rain over ocean

(Huffman et al. 2007; Berg et al. 2010; Behrangi et al. 2014;

Pendergrass et al. 2017), partially accounting for the differ-

ence between at least one model and observational estimates

that are sensitive to light rain (Kay et al. 2018). We can thus

not exclude the possibility that there may exist additional

contribution peaks in the light precipitation range that GPCP

and TRMM-3B42 do not capture, although in situ measure-

ments commonly yield the same form of PDF (Groisman et al.

2001; Schiro et al. 2016; Martinez-Villalobos and Neelin 2018;

Chang et al. 2020).

An alternative possibility is that models simulate spurious

additional PDF or contributions peaks. Models’ additional

probability peaks may signal, for example, precipitation

parameterizations with multiple overly deterministic scales

embedded. Generally speaking, localized deviations from

power-law scaling in probability signal the presence of deter-

ministic scales present in the physics (Lovejoy and Schertzer

1985; Christensen and Moloney 2005; Peters and Neelin 2006;

Neelin et al. 2008; Clauset et al. 2009; Corral and González

2019). In observations, a single main physical scale}the cut-

off scale}seems to be the leading contributor in determining

the character of observed PDFs and contributions. This cutoff

scale is determined by a balance between moisture conver-

gence fluctuations and moisture loss by precipitation during

precipitating events (Stechmann and Neelin 2014; Neelin et al.

2017; Martinez-Villalobos and Neelin 2019), a balance that is

not fundamentally affected by the details (i.e., convective or

large scale) of the precipitation process. In addition to the

cutoff scale, other possible scales for daily precipitation in-

clude the seasonal cycle, the typical duration of precipitating

events, and the averaging interval (a day in this case). In the

case of the seasonal cycle, it is conceivable that models exhib-

iting strong seasonality may have multiple contribution peaks

(e.g., one peak from winter precipitation and the other from

summer precipitation). This possibility deserves further scru-

tiny in the future. In the case of event duration, Martinez-Villa-

lobos and Neelin (2019) show that as long as the typical

duration of extreme events (from local onset to termination,

not the duration of the synoptic system) is much smaller than

the averaging interval, then the daily precipitation PDF does

not “feel” its influence.

In most cases we have examined, multiple contribution

peaks arise when combining single-peaked large-scale and

convective precipitation contributions. Since there is little in-

teraction between convective and large-scale precipitation

schemes, it is not surprising that convective or large precipita-

tion may dominate the low/moderate range of precipitation

and the other field the extremes. This would naturally yield

two distinct probability peaks (e.g., Figs. 11b,c). While intui-

tively it may make sense to have two distinct parameteriza-

tions for large-scale and convective precipitation, the lack of

multiple contribution peaks in satellite products suggests that

the gap between large-scale and convective precipitation may

be smoother than modeled. This also suggests that the distinc-

tion between large-scale and convective precipitation may be

better thought of as two parts of a continuum rather than sepa-

rate entities. A possible way to bridge this gap is the use of sto-

chastic parameterizations. Even if there are several legitimate

deterministic scales coexisting in the physics (e.g., shallow and

deep convection), stochastic parameterizations may bridge the

FIG. 12. Model ranking compared to GPCP and TRMM 3B42 products (increasing number means decreasing per-

formance) in the 12 metrics analyzed. Note that this diagram only provides the ranking information and does not pro-

vide information about the distance between models. Models are displayed in the x axis from lowest to highest rank

based on the summation of their rankings. This is the same order used in previous figures.
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gap between different scales, smoothing out additional

peaks as a result. Given that most deterministic parameter-

izations do not (and cannot) account for the effect of all

subgrid processes, stochastic parameterizations are an ap-

pealing way to statistically account for their effect, and have

been advocated by a large body of literature (Palmer 2001;

Sardeshmukh et al. 2001; Lin and Neelin 2002, 2003; Penland

2003; Williams 2005, 2012; Neelin et al. 2008; Teixeira and

Reynolds 2008; Plant and Craig 2008; Stolle et al. 2009;

Khouider et al. 2010; Chekroun et al. 2011; Gottwald et al.

2016; Berner et al. 2017).

Support for the idea that localized deviation from power-law

scaling in probability or additional peaks may be smoothed out

by the presence of enough stochasticity is provided by the

studies of Wang et al. (2016) and Wang et al. (2021). These

studies compare the deterministic Zhang–McFarlane con-

vection scheme (Zhang and McFarlane 1995) to a stochastic

version based on the Plant–Craig scheme (Plant and Craig

2008; Groenemeijer and Craig 2012) in the NCAR CAM5.3

(Hurrell et al. 2013) and the DOE E3SMv1.0 (Golaz et al.

2019) atmosphere models respectively. The deterministic

version produces PDFs with a localized deviation from

power-law scaling (although not a peak) in probability in

the power-law range, which disappears when the stochastic

scheme is used. Moreover, the stochastic version increases

the probability of excursions to larger precipitation values,

which improves the bias of models generally raining at too

low intensity, and reduces the long-standing “drizzling prob-

lem.”Generally, deterministic schemes “fire off” when a deter-

ministic condition is satisfied (Suhas and Zhang 2014; Rio et al.

2019), while stochastic schemes fire off with “some” probabil-

ity. The main impediment is the necessity to carefully constrain

this “firing off” probability observationally, for which process-

oriented diagnostics, as advocated by Rio et al. (2019), relating

precipitation to measures of buoyancy (Neelin et al. 2008;

Khouider et al. 2010; Kuo et al. 2018; Schiro et al. 2016, 2018;

Ahmed and Neelin 2018; Ahmed et al. 2020; Serrano-Vincenti

et al. 2020) are a starting point.

This study also highlights the importance of taking into

account observational uncertainty in model evaluation. Our

estimate of observational uncertainty is large and yet con-

servative, since it takes into account products based on sim-

ilar data treated in overall similar ways. This should draw

attention to how challenging is to measure precipitation

compared to other variables.

We hope that evaluating model simulations can spur im-

provement in future generations. Ongoing efforts include the

introduction of stochastic parameterizations (Keane and Plant

2012; Bengtsson et al. 2013; Deng et al. 2015; Dorrestijn et al.

2016; Sakradzija et al. 2016; Hagos et al. 2018); machine learn-

ing approaches (Schneider et al. 2017; Gentine et al. 2018;

O’Gorman and Dwyer 2018); increases in model resolution

allowing an explicit treatment of convection (Khairoutdinov

and Randall 2003; Tao and Moncrieff 2009; Holloway et al.

2013; Liu et al. 2017; Belušić et al. 2020) and improvements in

aerosol–cloud interaction (Terai et al. 2020; Mülmenstädt and

Wilcox 2021); “unified” convection parameterizations treating

dry, boundary layer, shallow and deep convection in an integrated

manner (Kuang and Bretherton 2006; Guérémy 2011; D’Andrea

et al. 2014; Park 2014); and “scale-aware” approaches appropri-

ate for coarse horizontal resolution models (.50 km, as the

models used here where convection is parameterized), high

resolution models (,10 km), and the “gray zone” in between

(Randall et al. 2003; Arakawa and Wu 2013; Sakradzija et al.

2016; Kwon and Hong 2017). However, modeling efforts need

to be accompanied with similar efforts in reducing observational

interproduct differences, if these modeling improvements are to

continue.
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