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ABSTRACT: The performance of GCMs in simulating daily precipitation probability distributions is investigated by
comparing 35 CMIP6 models against observational datasets (TRMM-3B42 and GPCP). In these observational datasets,
PDFs on wet days follow a power-law range for low and moderate intensities below a characteristic precipitation cutoff
scale. Beyond the cutoff scale, the probability drops much faster, hence controlling the size of extremes in a given climate.
In the satellite products analyzed, PDFs have no interior peak. Contributions to the first and second moments tend to be
single-peaked, implying a single dominant precipitation scale; the relationship to the cutoff scale and log-precipitation coor-
dinate and normalization of frequency density are outlined. Key metrics investigated include the fraction of wet days, PDF
power-law exponent, cutoff scale, shape of probability distributions, and number of probability peaks. The simulated
power-law exponent and cutoff scale generally fall within observational bounds, although these bounds are large; GPCP
systematically displays a smaller exponent and cutoff scale than TRMM-3B42. Most models simulate a more complex PDF
shape than these observational datasets, with both PDFs and contributions exhibiting additional peaks in many regions. In
most of these instances, one peak can be attributed to large-scale precipitation and the other to convective precipitation.
Similar to previous CMIP phases, most models also rain too often and too lightly. These differences in wet-day fraction
and PDF shape occur primarily over oceans and may relate to deterministic scales in precipitation parameterizations. It is
argued that stochastic parameterizations may contribute to simplifying simulated distributions.

KEYWORDS: Precipitation; Climate models; Diagnostics; General circulation models; Model comparison;
Model evaluation/performance

1. Introduction rainfall, precipitation is one of the most challenging variables for
GCMs to simulate (Flato et al. 2013). Indeed, different models
often use different versions of large-scale and convective precipi-
tation parameterizations (which parameterize subgrid-scale pro-
cesses not explicitly simulated), with no approach being immune
to modeling issues. Previous phases of the Coupled Model Inter-
comparison Project (CMIP) have revealed long-standing prob-
lems in simulating, for example, how often and how hard it rains
(Stephens et al. 2010; Rosa and Collins 2013; Terai et al. 2018),
the magnitude of extremes (O’Gorman and Schneider 2009;
Gervais et al. 2014; Wehner et al. 2014; Abdelmoaty et al. 2021),
and the shape of the PDF (Pendergrass and Hartmann 2014;
Terai et al. 2018; Chen et al. 2021)—simulated daily precipitation
PDFs are often more complex than observed, including deviations
in the low- to medium-intensity regime. The main goals of this pa-
per are to introduce a set of metrics to evaluate the probability
distributions of daily precipitation, to place them in context of lit-
erature on their physical interpretation, and to apply them in an

initial evaluation of simulations from phase 6 of CMIP (CMIP6).
There is considerable discussion regarding biases in fre-
& Supplemental information related to this paper is available —quency and intensity of wet-day precipitation [e.g., Flato et al.
at the Journals Online website: https://doi.org/10.1175/JCLI-D-21-  (2013)], but for a number of reasons these metrics do not nec-
0617.s1. essarily correspond to the fundamental physical processes on
which simulations of precipitation are based. This may be why
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martinez.v@uai.cl tions of model development during which awareness of these

Precipitation is an essential element to society and environ-
ment. Beyond its role in providing for agriculture, industry, and
personal water needs, precipitation interacts with other climate
variables, ultimately shaping the world as we know it. In a given
location, a first-order picture of the effects of precipitation is
given by its temporal mean (i.e., the total precipitation that falls
in a given period), but this leaves out important details, such as
the variability of precipitation in the region. Thus, because soci-
ety is not only adapted to mean conditions, a complete assess-
ment of local precipitation should characterize the whole
temporal distribution of rainfall.

An important tool for projecting the local precipitation re-
sponse to a variety of forcings, including different global warming
scenarios, is the use of highly sophisticated global climate models
(GCMs). These models aim to simulate credible realizations that
can be plausibly compared to the actual evolution of weather
and climate. Due to the complex interactions that give rise to
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issues has grown. More physically motivated metrics, and
those that are robust to spatial and temporal resolution, may
be able to break this deadlock.

Since the last generation of CMIP simulation, our understand-
ing of how physical processes govern the shape of daily precipita-
tion PDFs has improved. Martinez-Villalobos and Neelin (2019),
using a model based on a simplified version of the moisture equa-
tion (Stechmann and Neelin 2014; Neelin et al. 2017), provide a
first-order explanation on how the moisture budget controls the
shape of daily precipitation PDFs and why they have shapes that
are often approximated by gamma or similar distributions. A
gamma distribution has historically been one of the most popular
choices to empirically fit daily precipitation PDFs over wet days
(Barger and Thom 1949; Thom 1958; Ropelewski et al. 1985;
Groisman et al. 1999; Wilby and Wigley 2002; Watterson and
Dix 2003; Husak et al. 2007; Martinez-Villalobos and Neelin
2018; Chang et al. 2021), although other gamma-like alterna-
tives are also used (e.g., Wilks 1998; Wilson and Toumi 2005;
Papalexiou and Koutsoyiannis 2012).

To leading order, the bulk of the PDF of observed rainfall
contains two ranges, governed by different physical balances,
and characterized by different metrics: 1) a range with no
dominant physical scale (“scale-free range”) at low-to-medium
intensities, approximated by a power law with exponent
—7p (7p < 1) controlling the probability of low and moderate
daily precipitation values; and 2) a range governed by a domi-
nant scale, namely the precipitation cutoff scale P, that con-
trols the probability of medium-to-large events. These two
ranges can be captured to a leading approximation for present
purposes by a gamma distribution for simplicity. We empha-
size that we are not relying on conformance to a particular dis-
tribution, but we use gamma-like distribution properties to
inform metrics and their interpretations, and the relationships
among them. For applications to more subtle features, such as
deviations from the approximate power-law scaling at low val-
ues (Papalexiou and Koutsoyiannis 2016), or accurately cap-
turing the folding of the very extreme tail (Papalexiou and
Koutsoyiannis 2013; Cavanaugh et al. 2015; Papalexiou and
Koutsoyiannis 2016), then distributions with an additional pa-
rameter (e.g., generalized gamma distribution, Burr type XII dis-
tribution) can be better suited (Papalexiou and Koutsoyiannis
2012)—similar considerations to those presented here can still
apply, although with added complexity, as further discussed in
section 2. The approximate power-law range arises from fluctua-
tions across the threshold between raining and nonraining condi-
tions. For daily average precipitation, a main control of the
exponent 7p is the number of individual precipitating events
within wet days (Martinez-Villalobos and Neelin 2019)—all else
being equal, regions with fewer events per day tend to have
steeper power-law ranges. For the approximately exponential
range governing large events, the cutoff scale P;, which is the
main precipitation scale in observed PDFs, is given by a bal-
ance between the variability of moisture converging during
precipitating events and a measure of moisture loss by precipi-
tation in them (Stechmann and Neelin 2014; Neelin et al. 2017,
Martinez-Villalobos and Neelin 2019).

We expect a variety of different model representations of
the processes that yield P, and 7p, so as a first-order picture

JOURNAL OF CLIMATE

VOLUME 35

we evaluate how well models simulate these parameters.
However, models may sometimes deviate from the power-law
and cutoff-scale picture that tends to hold in satellite-based
precipitation products (see below) and station data (Schiro
et al. 2016; Martinez-Villalobos and Neelin 2018, 2019; Chang
et al. 2020). Simulated PDFs can thus be more complex; for
instance, a bump can indicate an artificial scale introduced
into the scale-free range. Thus, in addition to P;, 7p and other
commonly used scalar metrics (mean, standard deviation,
fraction of wet days), we also employ metrics that evaluate
the “shape” of simulated probability distributions and their
probability distance compared to their observed counterparts.

The paper is organized as follows. Section 2 presents the data
and introduces the metrics used. Section 3 gives an overview of
the uncertainty between different observational products used
to compare to models. This observational uncertainty is neces-
sary to adequately evaluate model performance. Section 4 pre-
sents the model evaluation. Section 5 summarizes the study and
discusses its implications.

2. Data and methods
a. CMIP6 models and observational datasets

We use daily precipitation from the first variant of 35 CMIP6
models (see Table 1) over the period 1990-2014. To estimate ob-
servational uncertainty bounds for meaningful comparison with
models, we use six different daily precipitation products:
TRMM-3B42 v7.0 (50°S-50°N, 1998-2016) and its microwave-
calibrated (IR) and microwave-only (MW) variants (Huffman
et al. 2007), CMORPH V1.0 CRT (60°S-60°N, 1998-2017) (Xie
et al. 2017), PERSIANN CDR vl rl1 (50°S-50°N, 1983-2017)
(Ashouri et al. 2015), and GPCP 1DD CDR v1.3 (90°S-90°N,
1997-2017) (Huffman et al. 2001), all taken from the Frequent
Rainfall Observations on Grids (FROGS) database (Roca et al.
2019). These are satellite-based products with correction to
gauges over land. Some models have relatively coarse native res-
olutions (see Table 1), so all models and datasets are coarsened,
using the ESMG_regrid function in NCL under the “conserve”
option, onto a 3° X 3° latitude-longitude grid prior to analysis.

b. PDFs and contributions

In this subsection and the following one, we aim to reconcile
terminology with the framework for looking at the distribution
of precipitation with Pendergrass and Hartmann (2014). We cal-
culate PDFs as normalized histograms with bins approximately
constant in log(P) space, with P denoting daily precipitation.
The first and second moments of the precipitation distribution
are used to calculate mean and variance of precipitation. A
moment ratio will be used as an estimator of the precipitation
scale, so it is useful to examine the contributions to each of
these integrals as a function of precipitation. We thus define

Comoum(P) = P X PDF, o
C,,.(P) = P> X PDF.

Here, Camoun is the quantity that integrates to the mean pre-
cipitation over wet days (Pye, for P measured in millimeters
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TABLE 1. List of models.

MARTINEZ-VILLALOBOS ET AL.

Nominal
resolution

Model (km) Reference
ACCESS-CM2 250 Dix et al. (2019)
ACCESS-ESM1-5 250 Ziehn et al. (2019)
BCC-CSM2-MR 100 Wau et al. (2018)
BCC-ESM1 250  Zhang et al. (2018)
CanESMS5 500 Swart et al. (2019)
CESM2 100 Danabasoglu (2019b)
CESM2-FV2 250 Danabasoglu (2019a)
CESM2-WACCM 100 Danabasoglu (2019d)
CESM2-WACCM-FV2 100 Danabasoglu (2019¢)
CNRM-CM6-1 250 Voldoire (2018)
CNRM-CM6-1-HR 50 Voldoire (2019)
CNRM-ESM2-1 250 Séférian (2018)
EC-Earth3 100 EC-Earth (2019a)
EC-Earth3-Veg 100 EC-Earth (2019b)
FGOALS-f3-L 100 Yu (2019)
FGOALS-g3 250 Li (2019)
GFDL-CM4 100 Guo et al. (2018)
GFDL-ESM4 100 Krasting et al. (2018)
HadGEM3-GC31-LL 250 Ridley et al. (2019a)
HadGEM3-GC31-MM 100 Ridley et al. (2019b)
INM-CM4-8 100 Volodin et al. (2019a)
INM-CM5-0 100 Volodin et al. (2019b)
IPSL-CM6A-LR 250 Boucher et al. (2018)
MIROC6 250 Tatebe and Watanabe (2018)
MIROC-ES2L 500 Hajima et al. (2019)
MPI-ESM-1-2-HAM 250 Neubauer et al. (2019)
MPI-ESM1-2-HR 100 Jungclaus et al. (2019)
MPI-ESM1-2-LR 250 Wieners et al. (2019)
MRI-ESM2-0 100 Yukimoto et al. (2019)
NESM3 250 Cao and Wang (2019)
NorCPM1 250 Bethke et al. (2019)
NorESM2-LM 250 Seland et al. (2019)
NorESM2-MM 100 Bentsen et al. (2019)
SAMO-UNICON 100 Park and Shin (2019)
UKESM1-0-LL 250 Tang et al. (2019)

per day (mm day '); if P were measured in millimeters the inte-
gral would yield total precipitation). Similarly, Cy,, is the quan-
tity that integrates to the second moment (m,), a quantity

closely related to the variance on wet days (02 ):

ﬁwet = J. éamounl(P)dP’
0
- (2)
m, = J C,.(P)AP, 0% =m, — Pry.

var
0

Since the quantities that Camoum and Cvar integrate to are
evaluated with other metrics (see next subsection), it is useful
to define the normalized contributions (referred to simply as
contributions in what follows) as

C — Camoum
amount P
wet
) 3)
C — var
var ’
m,
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such that [ CamountdP =1 and [ CyordP = 1. Thus, any dif-
ference between observed and modeled contributions is in
their shape, which facilitates the construction of metrics for
differences in the shape of distributions.

c. Terminology and normalization

It is worth clarifying differences in nomenclature and in nor-
malization between (linear) precipitation and log-precipitation
variables that exist in the literature. Each approach is self-
consistent, but confusion can arise especially when comparing
and interpreting the different approaches. In one approach,
the PDF normalized in precipitation (Fig. 1a), plotted here in
log-P space, has a long history (e.g., Barger and Thom 1949;
Thom 1958; Groisman et al. 1999; Katz 1999; Watterson and
Dix 2003; Wehner et al. 2014). From this point of view, Figs. 1b
and 1c (or Figs. le,f) give the quantities that integrate to the first
and second moment, referred to here and elsewhere as contri-
butions (to the relevant integral) (Karl and Knight 1998; Neelin
et al. 2009; Klingaman et al. 2017; Kuo et al. 2018; Wang et al.
2021); in other cases, these are referred to more explicitly as the
frequency density times the variable P (Watterson and Dix
2003). In a second approach, the PDF normalized in log-P has
been termed the frequency distribution, and the log-P frequency
density multiplied by P has been termed the amount distribution
(Pendergrass and Hartmann 2014; Kooperman et al. 2016a,b;
Pendergrass et al. 2017; Akinsanola et al. 2020). The translation
between calculations in P and log-P coordinates is simply a fac-
tor of P. Specifically, if we denote a PDF calculated in P coordi-
nates as fp(P) and its counterpart calculated in G(P) = log(P)
coordinates as fG[G(P)] = fG(P), then they are related as
fp(P) = fG(P)dG/dP (von Storch and Zwiers 1999). In this case,
this translates to iiog( p)(P) = Pfp(P).

This factor of P implies that the PDF or frequency density nor-
malized in log-P coordinates (Pendergrass and Hartmann 2014)
has the same shape as the precipitation amount contribution in
P coordinates, and that the amount distribution normalized in
log(P) coordinates has the same shape as the precipitation vari-
ance contribution in P coordinates.

We briefly summarize advantages of each approach, which
are useful for different purposes, illustrating these in the context
of three common axis choices (Fig. 1). Regardless of normaliza-
tion, a log-log plot of the PDF (Fig. 1a) facilitates comparison
of the light precipitation range to a power law. In the contribu-
tions to the first and second moments (Figs. 1b,c) the slope of
this range is increased by 1 and 2, respectively. A log-linear plot
facilitates examination of the degree to which the large-event
range is approximately exponential (Figs. 1g-i). A linear-y axis
with log-x axis (Figs. 1d-f) makes it easier to see differences
among models in the low-medium precipitation range. Using a
log-P normalization with a linear-y axis has the advantage of
providing a log-P frequency density plot (Fig. 1e), with area vi-
sually proportional to its integral (Pendergrass and Hartmann
2014). The apparent difference in interpretation of frequency
of light rain between the P and log-P normalizations is re-
solved by noting that an integral over a range of precipitation,
such as over the interval (0-0.1 mm day ') in P coordinates, is
spread over a semi-infinite interval in log-P coordinates, with
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FIG. 1. Daily precipitation (left) probability density function (PDF) or frequency density, (center) contribution to precipitation amount
Camount> and (right) contribution to variance Cy,, over the Nifio-3.4 region (5°S-5°N, 190°-240°E) according to TRMM-3B42, TRMM-
3B42 (IR), TRMM-3B42 (MW), CMORPH, PERSIANN, and GPCP. The same data are displayed in (a)-(c) log-log, (d)—(f) log-linear,
and (g)-(i) linear-log axes to illustrate the features of each (see text). To calculate, we pool grid data within the Nifio-3.4 region prior to
calculation. We estimate the cutoff-scale P, and power-law exponent 7p according to Eq. (5), with values (P, #p): TRMM-3B42 (IR)
(18.1 mm, 0.76), TRMM-3B42 (MW) (12.2 mm, 0.74), TRMM-3B42 (16.1 mm, 0.76), CMORPH (17.1 mm, 0.75), PERSIANN (15.5 mm, 0.65),
and GPCP (9.1 mm, 0.46). The location of P, in the PDF in each of these datasets is shown by filled circles in (a), (d), and (g). The role of
P, as the e-folding scale of the large events range is also schematized for the slope of one dataset in (g). Note the relationship between
the shape of C,mount and Cy,, and the shape of log-P frequency and log-P amount distributions, respectively, outlined in section 2c and
Table 2. Blue boxes indicate the panel choices for display in subsequent figures.

corresponding adjustment in the frequency density. Distribu-
tions expressed and normalized in terms of linear P are the
traditional basis for statistically fit distributions such as the
gamma distribution (discussed below), but we emphasize that
the linear- and log-P approaches are equivalent as long as one
is consistent in their use. The choice of P or log-P normaliza-
tion also has some bearing on how we interpret the numerical
value of the probability distance metrics in section 2d(2)(ii).
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While contributions provide a generic way of referring to
these quantities, their significance in model evaluation mer-
its a more specific nomenclature, summarized in Table 2.
In what follows, when discussing in terms of linear-P nor-
malization, we equivalently use PDF or frequency density
(Fig. 1a), precipitation amount contribution for its first mo-
ment (Fig. le), and precipitation variance contribution for
its second moment (Fig. 1f). When discussing in terms of
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TABLE 2. Nomenclature and mathematical relationship among the normalizations of the precipitation distribution and its moments;
compare to Fig. 1.

log-P
Name —
Equation —
Fig. 1 panel —
(linear-) P

Name
Equation

Frequency density, PDF
[fedP

Fig. 1 panels Figs. la,d,g

log-P frequency

If log(P)d log P
Fig. le

log-P amount
IPflog(P)dIOgP
Fig. 1f

Variance contribution
[P*fpap
Figs. 1c,f,i

Amount contribution
[ PfpdP
Figs. 1b,e,h

log-P normalization, we use log-P frequency density (Fig. le)
and log-P amount (Fig. 1f).

d. Metrics used to evaluate models
1) BULK MEASURES OF THE PDF

Consider, for reference, the form of a gamma distribution:
. P
PDFgamma(P) o P7rexp( — P (rp < 1). “4)
L

It has some desirable properties in terms of approximately
reflecting the two physical regimes discussed in the introduc-
tion and elaborated below (see Figs. la,g for an example)
while maintaining simplicity—emphasizing that we use this to
inform metrics, and are not relying on strict conformance to
this distribution. Anticipating departures from this, assume
that precipitation follows a distribution over wet days

PDF (P) o« P~» M(P)exp

—N(;L)] (7p < 1),

where the unknown functions M(P), N(x) express (with some
redundancy) departures from the simplest case of a gamma
distribution (for which both are 1). For a specific example, we
can consider the generalized gamma distribution, for which
N(PIPr) = (PIP)", still governed by the same physical pre-
cipitation scale P;, but where departures of v from 1 can af-
fect PDF extreme tail behavior, decreasing (increasing)
extremes for v greater than (less than) 1.

The factor P~™ provides a scale-free power-law range
over low and moderate values, with probability decreasing by
a constant factor 1og(PDFgamma) ~ —7plog(P) as orders of
magnitude in P increase. This power-law range continues un-
til the PDF approaches a characteristic cutoff-scale P; [the
factor exp(—P/P;)] where the probability drops much faster
[log(PDFgamma) ~ —P/Pr], as schematized in Fig. 1a, thus effec-
tively bounding the probability of extremes. The differences
among the slopes of the different observational datasets in Fig. 1g
are primarily associated with different P, values—if the precipita-
tion axis is rescaled by P;, the medium-to-large event portion of
the curves collapses to a common dependence to good approxi-
mation (Martinez-Villalobos and Neelin 2021). The 7p and P pa-
rameters also have physical interpretations. Results from a
stochastic model based on the moisture budget (Stechmann and
Neelin 2014; Neelin et al. 2017; Martinez-Villalobos and Neelin

2019) suggest that the power-law range is steeper (larger 7p, im-
plying probability decreasing faster in the low and moderate
range) in generally dry regions where few precipitating events
per day occur, and P; (thus, also extremes) is larger in regions
of higher moisture convergence variance (Martinez-Villalobos
and Neelin 2019). We also expect departures from power-law
behavior if event durations (from precipitation onset to termi-
nation) are not well separated from the daily averaging interval.

An important consideration for metrics is that they be sim-
ple, easily interpretable, and robust to modest departures in
PDF shape. The mean and variance over wet days Py and o3
are familiar quantities. These can be rearranged into metrics
closely related to method of moments estimators (Waggoner
1989; Watterson and Dix 2003) for 7p and P;. For the gamma
distribution,

b=
=1 — et
P PL

As the PDF shape departs from the gamma distribution,
these remain useful metrics for the two ranges. For strong de-
partures, they should no longer be considered estimators, but
simply a precipitation scale and a nondimensional quantity
created from the first two moments. For example, for the gen-
eralized gamma distribution, the moment estimator is propor-
tional to the scale P, with a prefactor

(@ —p)/v]l T2 — 1p)/v]

(@2 = 7p)v] T = 7p)/v]

that is larger (smaller) than 1 for v below (above) 1.

Although different estimation methods such as maximum
likelihood or linear regression (in log-log or log-linear coordi-
nates for relevant ranges of the PDF) may provide different
numerical values, these are generally spatially well correlated
(Martinez-Villalobos and Neelin 2019). We consider a day
wet when the daily precipitation is at least 0.1 mm. In
some instances we plot 1 — #p (ranging from 0 to «) instead of
#p (ranging from —o to 1). A small value of 1 — %p indicates a
steep power-law range.

The power-law exponent and cutoff scale summarize the wet-
day PDF. To provide a complete description of the daily precipi-
tation PDF for all days, we also calculate the fraction of wet days,
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_ #wet days
fwel - #days > (6)
the mean over all days P, and mean over wet days P.e.
They are related by

Fall = fwelﬁwel' (7)

Alternatively, wet and dry days could be assessed jointly by
considering a mixed-type PDF [conditional and unconditional
moments are related as in Egs. (18) and (19) in Papalexiou
(2018)]. Here, we choose to analyze wet and dry times separately.

2) EVALUATING THE FIT AND SHAPE
(i) Gamma distribution fit

The estimators for P, and 7p can be expected to approach their
actual values as long as the gamma distribution provides a good
fit. We note that several other distributions produce gamma-like
features over a range of their parameters (Cho et al. 2004;
Kirchmeier-Young et al. 2016) and may account for some subtle
features, such as deviation from a strict exponential decay of the
extreme tail (Papalexiou and Koutsoyiannis 2013; Cavanaugh
et al. 2015), unaccounted by the gamma. In cases or regions
where the gamma distribution fit is suboptimal, the interpretation
of Py and #p [calculated as in Eq. (5)] as cutoff scale and power-
law estimators is modified. They should be understood simply as
a scale from the (wet day) variance over mean and the nondimen-
sional square of the mean over the variance (as a departure from
1). A well-performing GCM should still reproduce their values.

A simple method, using scalar quantities, to identify regions
where the gamma distribution is expected to provide good or
bad fits is comparing predictions of theoretical gamma distribu-
tions to observations. For a gamma distribution of form pp =
{U[ra - frp)P}:T”]} P~"exp(—P/Pp), the nth uncentered mo-
ment is given by (P") = P} {I'(n + 1 — 7p)/[T(1 — 7p)]}, with T
being the gamma function. Using the property I'(z + 1) = zI'(z),
the moment ratio 7, is given by r, = (P")P"~1) = P, (n — 7p).
Noting that r; and r, are used to define estimators P, and #p
[from (5), Po=r—r, fp= (r2 = 2r1)/(r, — r1)], we evaluate
the gamma distribution fit by comparing the observed (or
modeled) third-order moment ratio r; and its expected value
from the gamma distribution 75"™™* = P; (3 — #p). This mea-
sure is given by

egamma == . (8)

A value of egamma close to 1 implies reasonably good fits while
significant deviations from 1 point to progressively degraded ones.

(ii) Distance between observed and modeled PDFs and

contributions

To measure how well a modeled PDF (PDF™%!) ap-
proaches an observed one (PDF°™), we define a PDF distance
metric epqy as follows:

Cost = r [PDF(P)™%!(P) — PDF(P)°*(P)ldP.  (9)
0
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This distance is the simplest case of a family of more general
probability distances (Zolotarev 1977; Korolev and Gorshenin
2020) and provides comparable results to other commonly
used probability distance definitions (Martinez-Villalobos and
Neelin 2021).

Similarly, we define ec,,,, and ec,, as the probability distance
between the modeled and observed precipitation amount and
variance contributions respectively. Note that Cymount and Cyyy
are weighted progressively toward larger values, with PDFs giv-
ing more weight to the low intensity range, and C,,, giving more
weight to the extreme range. So, €yar, €C o> and ec,,, provide
complementary information on differences in modeled probabili-
ties in the low, moderate, and extreme ranges.

(iii) The shape of the PDF

A large probability distance between modeled and observed
PDFs (epqr) may occur because the parameters of the PDFs (7p
and P;) differ substantially (although the basic shape of the PDF
may be well simulated) and/or because significant deviations in
the modeled shape occur compared to the power-law range and
cutoff-scale picture that holds in observational datasets. One ex-
ample of these deviations is the presence of extra peaks in proba-
bility. So, to complement information provided by €yamma and epar
we also track the number of peaks in the PDF, Cypnount, and Cyyy
in models compared to observational products. We note that there
are other more subtle features that also imply a deviation from
form, for example minimums or maximums in derivatives of the
PDF. For this paper, we limit ourselves to only count peaks as a
proxy for deviations from the observed shape. The algorithm used
to identify these peaks take several precautions to not misidentify
them (Savitzky and Golay 1964). Details are given in Text S1 in
the online supplemental material.

3) MODEL SUMMARY SCORE FOR EACH METRIC

To calculate an overall score on a particular metric we need
to reduce noise, which is especially important if the metric in-
volves the calculation of the PDF and contributions. Thus,
prior to evaluation we divide the area within 50°S-50°N into
240 different regions of 10° latitude and 15° longitude. Then,
we pool the time series in each region and calculate a single
value of Py, %p, Pail, Puet, fuwer, and op as well as the PDF and
contributions, representative of the region. To evaluate the
overall performance in Py, 7p, Pay, Pwet, 0p, and fier, We use a
root-mean-square (RMS) error given by

ZAi[x?bS _ x:_'nodel]z
i

24
1

RMS error x =

(10)

where i denotes a particular 10° X 15° region, A; denotes its
area (which scales with the cosine of the latitude), and x®
and x"°%! denote the value of the metric in a particular obser-
vational dataset and model respectively. This RMS error gives
a measure of the typical deviation (of any sign) of a particular
model compared to observations.

Similarly, an overall error in the distance between observed
and modeled PDFs [section 2d(2)(ii)] is given by
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Z Aiei)df
1

epdf = ﬁa (11)
i

where ei)df is the probability distance between PDFs (9) in re-
gion i. Total errors in the simulation of contributions are cal-
culated similarly.

Finally, we condense the overall differences in probability
peaks between models and observations by calculating the
percentage of the 240 regions previously defined where mod-
els and observational products disagree in the number of
PDF, Camount, and Cy,; peaks.

For all metrics, the overall score shown and discussed in the
rest of the paper is a weighted average of the model differ-
ences compared separately to TRMM-3B42 and GPCP. We
chose these datasets because they tend to bracket the obser-
vational estimates of the other datasets in most metrics (see
next section). To contextualize the difference between models
and observations, we compare each metric against the differ-
ence between GPCP and TRMM-3B42 estimates to provide a
measure of the observational uncertainty. Given that TRMM-
3B42 and GPCP share some input data (Huffman et al. 2007),
this observational uncertainty is admittedly a conservative
estimate.

3. Comparison among observational products
a. PDFs and contributions and uncertainty quantification

Different daily precipitation observational datasets are
known to have substantial differences (Donat et al. 2014;
Pendergrass and Deser 2017; Klingaman et al. 2017; Sun et al.
2018; Rajulapati et al. 2020; Alexander et al. 2020; Martinez-
Villalobos and Neelin 2021). Before evaluating models it is
important to be aware of these differences, and use them to
provide a measure of observational uncertainty.

Figure 1 shows the daily precipitation PDF over the Nino-3.4
area using the six different observational datasets considered. In
all cases the PDFs follow a similar shape—a power-law range
and an approximately exponential drop in probability. The
power-law range can be seen as a straight line in the log-log plot
(Fig. 1a), occurring from the lowest value to approximately the
location of the cutoff scale P;, (shown in circles), and the drop in
probability associated to the cutoff occurs for P 2 P;. However,
the estimators of parameters P, and 7p differ in all cases, with
P ranging from 9.2 mm in GPCP to 18.4 mm in TRMM-3B42.
Similarly, the contributions have a similar shape (Figs. le,f), but
the differences in P, and 7p imply different locations of their
peaks and widths.

To the extent that the PDFs in Fig. 1a are well described by
gamma distributions of shape (4), then the contributions in
Figs. 1b and 1c would approximately follow the mathematical
form

C

amount

« P X PDF ~ P*TP“exp(—
(12)

va

v

C,,, « P2 X PDF » P’Tﬁzexp(—
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This implies that the PDFs in Fig. 1a, the contribution to
total precipitation in Fig. 1b, and the contribution to vari-
ance in Fig. 1c follow a similar shape in the large event range,
with the main differences being in the power-law exponent
(—7p for the PDF, 1 — 7p for Camount, and 2 — 7p for Cyyy).
The differences in power-law exponent imply a different shape
for the low and moderate range, which results in C,,, preferen-
tially weighted toward larger values, C,mount Weighted toward
more moderate values, and the PDF having more of its weight
in the light precipitation range. This implies that the extreme
range contributes more to the second daily precipitation mo-
ment and the moderate range contributes preferentially to the
total (or mean) precipitation.

Figure 2 shows the zonal average of i’L and 7p in the six
different observational datasets considered. These have a
more symmetric pattern between hemispheres in P, than oc-
curs for the mean (see below), as features like the ITCZ, seen
clearly in the mean pattern, are attenuated or absent in the
spatial pattern of P;. Generally, larger values of P; occur in
the tropics through the equatorward flank of midlatitude
storm tracks; poleward of the storm tracks P, quickly de-
creases. However, considerable differences may be noted in
the details of the P; pattern among observational datasets.
The power-law exponent estimator #p has a more consistent
pattern among observational estimates, with smaller values in
regions where we expect frequent precipitation (as expected
from theory; see Martinez-Villalobos and Neelin 2019), like
the ITCZ and storm tracks, and larger values (a more steep
power-law range) for regions with little precipitation, as in the
subtropics.

Despite qualitative agreement, these different satellite
products differ quantitatively, indicating a substantial degree
of uncertainty. To a large extent, GPCP and TRMM-3B42
bracket the range of these products—we use the difference
between these datasets in each metric as a measure of obser-
vational uncertainty, as in Martinez-Villalobos and Neelin
(2021), although this is a conservative estimate. Comparison
between models and each of these satellite products differ
in some cases, so we report a weighted model error e as
follows:

1

¢e= Z(EGPCP + errm)>

(13)
where egpcp is the model error compared to GPCP and
etrmM is the error compared to TRMM-3B42.

b. Relationships among metrics

The metrics defined here, in particular P;, Pyet, and number
of Camount and Cy,, peaks, have several connections to the rain
frequency density and amount peaks defined in Pendergrass
and Deser (2017), based on the rain frequency and amount
distributions defined in Pendergrass and Hartmann (2014,
hereafter PH14), and used in several other studies [e.g.,
Kooperman et al. (2016a); Pendergrass et al. (2017); Terai
et al. (2018); Akinsanola et al. (2020)]. Recall from section 2¢
that these log-P frequency density and amount distributions
have the same shape as C,mount and Cy,,, respectively, in
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FIG. 2. Observational estimates of the zonal average of (a) P, and (b) #p according to TRMM-3B42 (IR),
TRMM-3B42 (MW), TRMM-3B42, CMORPH, PERSIANN, and GPCP.

(linear) P normalization. If PDFs [Eq. (4)] and contributions
[Eq. (12)] are well described by gamma distributions, then the
location of their peaks can be calculated analytically. Noting
that the observed range in 7p tends to be within the interval
[0, 1) (see below), we find that PDFs in GPCP and TRMM-
3B42 satellite products have no interior peak (i.e., the largest
daily precipitation probability occurs at the smallest resolvable
amount, for tp > 0), whereas Camount and Cy,, have a single
peak given by

PEY = (1= #,)P, =Py, (p < 1),
preak— -3 p =P+ P <2 (9
c,. TPy = Py L (1 )

var

That is, the peak of Cypount i given by the mean on wet
days Py, and the difference between Cyyr and Comount peaks
is given by P;. Similarly, the standard deviation of Ciq;
(a quantity proportional to its width) is given by P, 3 — #p.
We note that P; and #p predicts the peak of Cy, (or PH14
amount distribution) more robustly than the peak of Cumount
(or PH14 frequency density distribution), as any error deter-
mining 7p has a larger impact in this case, especially if 7p
is close to one. While observed PDFs and contributions may
deviate from forms (4) and (12), we report good agreement
between the actual location of Cypeunt peaks and Poet (spatial
correlation coefficients equal to r = 0.76 in TRMM-3B42,
r = 0.88 in GPCP, and r = 0.9 in the CMIP6 multimodel mean;
not shown) and a better agreement between C,,  peaks and
Py + P (r = 0.9 in TRMM-3B42, r = 091 in GPCP, and
r = 0.94 in CMIP6 multimodel mean; see Fig. S1 in the online
supplemental material).

4. Model evaluation

In this section we evaluate models according to the metrics
defined in section 2. We exclude regions poleward of 50°, as
TRMM-3B42 is only given within 5S0°N and 50°S latitude

bands. We start with the evaluation of the suitability of the
gamma distribution in observations and models. Then, we
evaluate the model representation of cutoff scales and power-
law ranges and, subsequently, the probability distance between
observed and modeled PDFs and contributions to precipitation
amount and variance. These probability distances depend on
how well models simulate the power-law exponent and cutoff
scale parameters but also on how well models simulate the ba-
sic “shape” of the PDF. Accordingly, to end this section we
evaluate model deviations from the observed shape in GPCP
and TRMM-3B42 satellite products using the number of peaks
in PDFs and contributions as a proxy.

a. Evaluation of the gamma distribution approximation

A global map evaluating the suitability of the gamma distri-
bution to approximate PDFs in satellite products and in the
multimodel mean is given in Fig. 3 (first and second row for
TRMM-3B42 and GPCP, and third row for the multimodel
mean). The first column shows the ratio between the third
and second moment r; [defined in section 2d(2)(i)], the sec-
ond column shows the expected ratio if the gamma distribu-
tion held perfectly #5"™™, and the third column shows €yamma
[Eq. (8)], the ratio between the two. Visual comparison be-
tween r; and A" shows similar features between these
quantities in the satellite products and the multimodel mean.
This implies that the gamma distribution provides a reason-
able first-order picture of the PDFs. More subtle differences
between r3 and 5" are revealed by egamma- In the case of
TRMM-3B42, ey3mma deviates from 1 (implying degraded fits)
mainly in regions with low precipitation. The reason for this
is likely twofold. First, PH14 and Pendergrass et al. (2017)
report inconsistent behavior between TRMM-3B42 and
GPCP at low precipitation rates over ocean, which are likely
related to differences in the assumptions of their algorithms
since similar data goes into each of these products. Second,
from a theoretical point of view, regions with few precipitat-
ing events are characterized by steep power-law ranges, with
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FIG. 3. Spatial pattern of the (a) observed third-order moment ratio r3, (b) third-order moment ratio predicted by a gamma distribution

gamma
3

but for the CMIP6 multimodel mean. To calculate the multimodel mean, we calculate r3, r5

and (c) the ratio between the two (€yamma) according to TRMM-3B42. (d)—(f) As in (a)—(c), but using GPCP. (g)—(i) As in (a)—(c),

£9MEand €gamma in each model individually and

then average. A value of egamma close to 1 indicate regions where better fits are expected. See details in section 2d(2)(i).

7p values that may exceed 1 (Martinez-Villalobos and Neelin
2019), that is, beyond the range of the gamma distribution.
These cases can exhibit the PDF form given in (4) above the
minimum observable rain rate, but the power law is too steep
to normalize the PDF over a range that includes 0, and thus
the expression (5) for #p is not a good estimate of the power-
law exponent. In the case of GPCP, deviations are seen
mainly in the tropical Indo-Pacific collocated with the inter-
tropical convergence zone (ITCZ). Visual inspection in that
region reveals PDFs decaying slightly faster than exponential
(not shown). Deviations of eyamma in the CMIP6 multimodel
mean are mainly collocated with the deviations occurring in
TRMM-3B42, although they tend to be more accentuated. In
addition, the fit is less good over the poles than in the GPCP
case. In most regions, however, the gamma distribution
parameters provide conveniently summarized leading-
order information on the full wet-day PDF.

b. Evaluating model simulation of PDF power-law
exponent, cutoff scale, and fraction of wet days

Global maps of P;,1 — %p, Py, Pyet, and fraction of wet
days fie: are shown in Fig. 4 for TRMM-3B42 (50°S-50°N),
GPCP, and the multimodel mean. We note a substantial

degree of observational uncertainty in P, and 1 — #p, and to
some degree also in Pyer and fwer- To a large extent, the satel-
lite products have similar mean precipitation P pattern, but
their PDFs are different (even though the paradigm of power
law and cutoff scale is well followed in both products), with
larger extremes (larger P;) and sharper power-law range
(smaller 1 — 7p) in TRMM-3B42. Both P; and #p CMIP6
multimodel mean patterns tend to be within GPCP and
TRMM-3B42 estimates, although closer to GPCP in magni-
tude. This implies that (given that a day is wet) models tend
to simulate weaker extremes than TRMM-3B42 but stronger
extremes than GPCP. Despite differences in magnitude, the
multimodel mean spatial patterns of P 1. and #p are reasonably
well correlated with GPCP and TRMM-3B42 corresponding
patterns (correlation coefficients of 0.73 and 0.76 in the case
of P,, and 0.67 and 0.77 in the case of #p for GPCP and
TRMM-3B42 respectively. Correlations are taken over
50°S-50°N). These correlation coefficients are comparable
with the corresponding correlation coefficients between
TRMM-3B42 and GPCP (0.75 for P, 0.77 for #p). This good
agreement between the CMIP6 model mean and observed
patterns has previously been noted by Martinez-Villalobos
and Neelin (2021) in the case of P; and suggests that, after
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FIG. 4. Spatial pattern of the cutoff scale estimator P; (5) according to (a) TRMM-3B42, (b) GPCP, and (c) CMIP6 multimodel mean.
(d)—(f) Asin (a)—(c), but for the power-law exponent estimator #p [Eq. (5)] (1 — #p is plotted). (g)—(i) As in (a)—(c), but for the mean daily
precipitation Py. (j)—(1) As in (a)=(c), but for the mean daily precipitation over wet days Pye. (m)-(0) As in (a)—(c), but for the fraction
of wet days [Eq. (6)], expressed as a percent. See details in section 2d(1). Boxes in the upper two rows show the Nifio-3.4 region, southern
Europe, and the western United States, used in Fig. 7.
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FIG. 5. Zonal average daily precipitation (a) PDF cutoff scale estimator Py, (b) power-law exponent estimator 45, (c) standard devia-
tion on wet days op, (d) mean over all days Py, (¢) mean over wet days Py, and (f) fraction of wet days, according to GPCP (blue),
TRMM-3B42 (red), CMIP6 multimodel mean (thick solid black), and individual models (thin solid black).

cancellation of models, random errors, the CMIP6 ensemble
simulates a good spatial representation of the processes yield-
ing extremes, albeit of different magnitude.

As is the case in previous CMIP phases (Flato et al. 2013),
the mean precipitation P,y pattern in the CMIP6 ensemble
(Fig. 4, third row) captures to a good degree the observations
(see also Fig. 5d), both spatially and in magnitude, although
traces of the double ITCZ problem in the eastern Pacific
(Mechoso et al. 1995; de Szoeke and Xie 2008; Bellucci et al.
2010) can still be seen. The agreement occurs, however, due
to errors in the mean over wet days Py, (Fig. 4, fourth row)
and fraction of wet days fy.r (Fig. 4, fifth row) canceling each
other. As in previous CMIP phases, the long-standing bias of
too frequent (large fie) and too weak (small Py.) precipita-
tion (Dai et al. 1999; Sun et al. 2006; Stephens et al. 2010;
Rosa and Collins 2013; Catto et al. 2019) persists in CMIP6.
This pattern remains largest over ocean; however, it is
smaller over land (color bars over land match satellite prod-
ucts to a large degree; see the fifth row of Fig. 4). However,
there are caveats when evaluating models against satellite
products, especially over ocean. The data going into these
satellite products are known not to capture light precipita-
tion, especially in the subtropics, and over ocean there are no

gauges to correct the satellite data (Berg et al. 2010; Kay et al.
2018). Furthermore, the frequency and intensity of wet-day
precipitation are sensitive to the wet-day threshold (0.1 mm
in this case).

While the CMIP6 ensemble provides credible spatial pat-
terns of P 1 and 7p, the model spread is substantial, as can be
seen in Figs. 5a and 5b. This spread arises from the relatively
large model spread in variance (Fig. Sc) and mean over pre-
cipitating days (Fig. Se) combining to produce a large spread
in 4p and P, especially in the tropics. The large model spread
in P, and consequently extreme percentiles, in the tropics
suggests that its origin might reside in the different convective
parameterizations used (O’Gorman 2015). It is interesting to
note that, while the ITCZ signature is clearly present in the
mean (Figs. 5d,e) and variance (Fig. 5¢), it is largely absent
from the extremes (as measured by P;; Fig. 5a), in both
models and observations. We also note that, although the
PL and #p CMIP6 ensemble mean tends to be within obser-
vational estimates, there are several individual models
producing estimates outside the bounds of the satellite
products.

Both the mean precipitation over wet days (Fig. Se) and
fraction of wet days (Fig. 5f) in models tend to follow the
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FI1G. 6. Overall model RMS error (blue bars), as calculated in (10), in how they simulate (a) the
cutoff scale estimator P, and (b) the power-law exponent estimator #p. We compare this error to
the corresponding observational error between GPCP and TRMM-3B42 (black bar). Models with
smaller errors than the difference between observational datasets simulate the numerical value of
these parameters (5) better than this measure of observational uncertainty.

latitudinal pattern of observations, but the bias previously
mentioned (models raining too frequently and too little) is
evident. An exception is that the strength of precipitation
over the ITCZ on wet days (Pye) is well simulated. How-
ever, the double ITCZ problem is clearer in the zonally aver-
aged picture. In the fy. case, we note that no model simulates
a smaller fraction of wet days, over any latitude band, com-
pared to observations.

It is clear looking at Fig. 5 that some models provide sub-
stantially closer results compared to observations than
others. Figure 6 provides an evaluation of their individual
performance for P; and #p using the methodology outlined
in section 2d (a similar plot for Py, op, Pyet, and fie is
shown in Fig. S2). We note that for P; and %p most models
are closer to (a weighted version) of the observational prod-
ucts used (GPCP and TRMM-3B42) than the extent the obser-
vational products are close to each other. RMS errors for
GPCP compared to TRMM-3B42 are on the order of 5 mm
for P 1. and 0.25 for #p. In the case of P £ only five models are
outside observational bounds (Fig. 6a), while in the case of 7p
13 out of 35 are (Fig. 6b).

¢. Evaluating the distance between modeled and
observed PDFs

To illustrate how well models simulate daily precipitation
probabilities, Fig. 7 shows PDFs and amount and variance
contributions for the best and lowest performing model
based on the epqr, €cypom» and ec,,, metric in three different
regions: (shown in Fig. 4 top two rows): the Nifio-3.4 region
(5°S-5°N, 190°-240°E; Fig. 7, top row), southern Europe

(40°-50°N, 0°-20°E; Fig. 7, middle row), and the western
United States (30°-48°N, 236°-257°E; Fig. 7, bottom row).
These are chosen to show examples of PDFs and contributions
in a variety of climates; a maritime tropical region (Nifo-3.4 re-
gion), a relatively wet midlatitude region (southern Europe),
and a relatively dry midlatitude region (western United States).
Although located in very different climates, there is a large
degree of commonality in the shape of PDFs and contribu-
tions in the GPCP and TRMM-3B42 products and to a good
extent also in models over these regions. In all cases, the
paradigm of a power-law range and a cutoff scale for the
PDFs (Fig. 7, first column) is well followed, although with
some slight differences that deserve attention in the western
United States. In this particular case TRMM-3B42 displays
a sharper power-law range with 7p exceeding one, which is
not unexpected in dry regions with few precipitating events
per day (Martinez-Villalobos and Neelin 2019). This leads
to a TRMM-3B42 contribution to precipitation amount that
peaks at the lowest resolvable intensity (Fig. 7h), which
stands in contrast to Cypoune in Other regions (with one ex-
ception in Fig. 7b) and for other datasets in the western
United States that display a single peak.

Contributions to variance C,,, (Fig. 7, third column) are
single peaked in all cases, and are more robust in terms of
shape, consistent with previous studies (Pendergrass and
Deser 2017). While the shape of PDFs and contributions to
amount and variance tend to be well simulated by these mod-
els in these regions, the main difference between the best and
lowest performing model is in how well they simulate the
power-law range and cutoff scale. Errors in these lead to
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FIG. 7. Best (red) and lowest (blue) performing models under (left) probability error metrics for the PDF (e,qy), (center) contribution to
precipitation amount Camount (€, )» @01d (right) contribution to variance (ec,, ) in three different regions: (a)-(c) the Nifo-3.4 region
(5°S-5°N, 190°-240°E), (d)—(f) southern Europe (40°-50°N, 0°~20°E), and (g)—(i) the western United States (30°—48°N, 236°-257°E). Com-
parison is against GPCP (gray) and TRMM-3B42 (black).

deviations in probability weight (e.g., MPI-ESM-1-2-HAM
puts too much probability weight in the light precipitation
range in the Nifio-3.4 region; Fig. 7b) and in where the contri-

bution peaks are located.

In the examples in Fig. 7, we note that the largest difference
in e,qr occurs in the Nifio-3.4 region, with the highest and lowest
scoring models performing similarly close to satellite products
in the midlatitude regions. This result tends to hold in general,
with tropical regions having a larger model spread compared to

midlatitudes (Fig. 8). While the model spread is large in tropical
regions, on average the dry subtropics is where models have
the largest differences from satellite products (Figs. 8d,e), with

the exception of C,,, where the entire subtropical/tropical
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regions are worse simulated than the midlatitudes (Fig. 8f). To
put these results in context we should note, however, that
uncertainties between satellite products are large and tend to
mirror model errors, with larger uncertainties over the ocean
and tropical and subtropical regions (Figs. 8a—c) as
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zonal averages of ey, €¢ o and ec,,, probability distances between GPCP and TRMM-3B42.

highlighted in Pendergrass and Deser (2017). Overall, com-
pared to the range between satellite products, model proba-
bility errors tend to be larger in the light and moderate
range (as measured by epq and ec,,,,, in Figs. 8d,e), with
extreme probabilities (as measured by C,,,) more similar to
GPCP and TRMM-3B42, in agreement with Martinez-Villalobos
and Neelin (2021). However, GPCP has known issues for heavy
precipitation, which should also temper our interpretation at this
end of the distribution (Bador et al. 2020).

A ranking of the models in terms of their simulation of
daily precipitation PDFs [based on the integrated eyq¢ error;
section 2d(2)(ii)] is given in Fig. 9a (Fig. S3 shows the corre-
sponding ranking for Cymount and Cy,y, as well as a compari-
son to another metric, the Kullback-Leibler divergence;
Kullback and Leibler 1951). Model performance in simulating
power-law exponents and cutoff scales is a good predictor of
how well models simulate PDFs—models with low RMS error
in both P and 4 (Fig. 6) tend to be the same models with low
epar errors (Fig. 9a)—but this does not capture the full story.
Model simulation of P 1. and 7p tends to be within observational
estimates (Fig. 6) while integrated errors in the simulation
of the PDFs (and Camount and to some extent Cy,,) are not
(Fig. 9a). This implies that modeled PDFs deviations from the
power-law range and cutoff shape, which occurs to some extent
in models but is rare in observations, also plays a role.

To quantify the extent to which model performance in sim-
ulating PDFs (Fig. 9a) can be explained by model perfor-
mance in simulating cutoff scales (Fig. 6a) and power-law
exponents (Fig. 6b), we calculate an e,y measure that can be at-
tributed solely to errors in the simulation of P, and #p. To do
this, we generate long synthetic “daily precipitation” time series

that are perfectly gamma distributed with P; and 7p parameters
given by their observed or modeled values. From these time
series we calculate an overall epq value [using Egs. (4), (9), (11)],
which is not affected by deviations from the assumed gamma
distribution shape. This epqs, due solely to errors in P; and
7p (Fig. 9b, x axis), can be compared to the measured epq¢
(Fig. 9b, y axis), which also includes deviations from the as-
sumed shape. First, we note that both quantities are well cor-
related (r = 0.7 across models; Fig. 9b), which implies that
Py and #p are indeed good measures to quantify errors in
the PDF; however, they do not tell the whole story. (We
note that errors in P 1 and #p are better predictors of errors
in Cymount and Cyy,, in both cases r = 0.88; see Fig. 9d for
Cyar). This prompts us to investigate modeled PDF devia-
tions from the power-law and cutoff-scale picture that tends
to hold in observational datasets.

d. Counting the number of peaks

To a very good approximation, observed daily precipitation
PDFs are characterized by a scale-free range (the power-law
range, with exponent usually in the 0-1 range) and a single
physical scale (the cutoff scale). This implies that daily precip-
itation PDFs have no interior peak (the most probable daily
precipitation value is the lowest resolvable amount) and that
contributions are single-peaked, with the Cymount peak giving
the daily precipitation intensity that most contributes to pre-
cipitation amount and the C,,, peak giving the scale that most
contributes to the second moment (section 2b).

As illustrated in the bottom row of Fig. 10, important dif-
ferences in the shape of observed and simulated PDFs and
contributions may occur, which in the most severe cases may

Unauthenticated | Downloaded 01/16/23 03:44 AM UTC



1 SEPTEMBER 2022

MARTINEZ-VILLALOBOS ET AL.

5733

a. PDF error epyr (integrated over 50S-50N)

0.4
~
”0.3~
>
©
S0
g
o O.
0.0-
= = v £ 4 ¢ = 4 d = ¢ = Q@ 0z Jdg xx ¥ g VW s 0T Q »oax o4 0w O m 4 0 Jd I
A R R R EE EE R EE TR EERE:
E @m0 g2 g8 ag iy dzge e 228 Y02 L0250 F Y YES 6y
EF o s =953 a3z w 25235005 0533285289338 85808 %
S 2z 9@ =z sW®50 2 Bz oW o6 goc sz 88 B2 0 a9 F g
E25:z2z2z 2932327322205 738%0zRYa5 4808328
S8 zZ <Y 69 s 5 O = 3 wog T g = Y2 & 3 = o & &/ ™ !
o ) o - ™ ~ & noog < m M m
H ; £ = - - u = N8 P ™
2 m - — O — ~N
— ~ 2 ~
0.45 b. ep4r vs errorin Py, Tp (505-50N) 0.45 €. epqr Vs PDF # peaks difference 08d ec,., Vs errorin P, Tp (50S-50N)
— r=0.7 — r=0.58 — r=0.88 &3
0.401 0.401
0.351 0.351
. N
g 5
¥ 0.301 0.301 o
B
0.25 A 0.251
0.20 0.20+
. . ; . ; : . : 0.3 . . . .
0.15 0.20 0.25 0 10 20 30 40 50 60 0.3 0.4 0.5 0.6

epgr due to errorin P. and Tp

PDF # peaks difference (%) (50S-50N)

ec,,, due to error in P and Tp
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ing value for the distance between GPCP and TRMM-3B42.

include additional peaks not present in observations. While
we note that deviations from the power-law range and cutoff-
scale shape may be more subtle, here we provide a first quanti-
fication of model differences in shape by counting the number
of simulated peaks in the PDF and contributions versus obser-
vations. In contrast to other metrics, observational datasets
tend to agree in these measures—both GPCP and TRMM-
3B42 display zero interior peaks in the PDF and one peak in
Cyr almost everywhere (Figs. 10a,c), with some differences for
Camount (Fig. 10b). We should note, however, that these
observational products miss light rain (Kay et al. 2018), so
the existence of additional peaks in that range is not ruled
out (see also section 5b). In the case of Camount, GPCP and
TRMM-3B42 tend to display a single peak almost every-
where (97.5% of regions within 50°S-50°N in GPCP and
75% in TRMM-3B42); however, TRMM-3B42 tends to dis-
play no interior peaks in dry subtropical regions (22.9% of
regions; see Fig. 10b), associated with a steeper power-law
range there [7p tending to exceed one; see Eq. (14)].

Figure 10 shows the model ensemble average of the num-
ber of PDF interior peaks (Fig. 10a), Camount peaks (Fig. 10b),
and C,,, peaks (Fig. 10c) and TRMM-3B42 counterparts for
these measures (see caption for details). In all cases, there are
particular regions, mostly over oceans, where many models sim-
ulate more peaks than satellite products. In the case of the PDF,
models tend to simulate interior probability peaks over all
oceans, except some limited wet regions (the northern Indian
Ocean, the Nifo-3.4 region, the coast of California and Baja
California, and the northern tropical Atlantic). For Camount, ad-
ditional peaks are mostly present only over the North Pa-
cific and tropical Atlantic. In addition, a number of models
simulate zero Cymount interior peaks over dry regions, some-
what collocated with the regions where TRMM-3B42 also dis-
play zero Cuymount peaks. As in the TRMM-3B42 case, this is
expected in dry regions where the PDF power-law range is
steep (larger than 1 in some cases), which results in Camount
peaking at the lowest resolvable amount. The general behav-
ior is more robust for Cy,,, with models simulating a single
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FIG. 10. (a) Map of the average number of PDF interior peaks in 35 CMIP6 models. (b) As in (a), but for the contribution to precipita-
tion amount Cypmount- (¢) As in (a), but for the contribution to variance Cy,,. The number of PDF interior peaks is zero in all observational
datasets, and in most cases is one for Cymount @and one for C,,,. Deviations from this are noted for TRMM-3B42 by solid and dashed con-
tours, with solid denoting two peaks and dashed denoting zero peaks. Other datasets, with exception of CMORPH v1, have substantially
fewer regions with zero or two interior peaks for Cymount- (d) Example of a typical modeled PDF shape with one interior peak (MIRO-
ES2L, red circles) over a region in the Indian Ocean [shown in (a)]. This contrasts with PDFs over the same region using GPCP and
TRMM-3B42 with one peak (gray and black circles respectively). (e) As in (d), but for Cymoun- In this case the region is located in the trop-
ical western Pacific and the modeled (MRI-ESM2-0) Cymount have two peaks, in contrast with one peak in GPCP and TRMM-3B42. (f) As

in (e) but for C,,,, over a region in the subtropical Atlantic and using FGOALS-f3-L.

peak almost everywhere, with exceptions over the dry sub-
tropical regions, with some models simulating a bimodal Cy,,.
This implies that as we increase the weight of larger daily pre-
cipitation values (C,,, is weighted more toward extremes than
the PDF) the differences between models and satellite prod-
ucts decrease. This suggests that most differences are concen-
trated in the power-law range and that the simulation of the
shape of the extreme tail generally agrees with satellite prod-
ucts, consistent with the findings of Martinez-Villalobos and
Neelin (2021).

Figure S4 shows the ranking of the models in terms of how
closely they agree in the number of PDF, C,mount, and Cyy,
peaks with GPCP and TRMM-3B42 [see section 2d(2)(iii)]
over the 50°S-50°N range. We note that while counting peaks
does not provide the full measure of errors in form, models
simulating fewer additional PDF peaks tend to also be the
models with the overall simulation of PDFs closest to satellite
products, as captured by the e,qr metric (r = 0.58 across mod-
els; Fig. 9c). Combining the information from errors in P
and 7p (explaining 49% of epq¢ variance; Fig. 9b) and errors in
peak (explaining 34% of epq; variance; Fig. 9c) allows us to ex-
plain 72% of epq; variance across models.

e. Convective and large-scale precipitation yield more
probability peaks

To further investigate why some models tend to simulate
more probability peaks, we also analyze daily convective

precipitation and daily large-scale precipitation (defined here
as total minus convective) from BCC-CSM2-MR, MIROC-
ES2L, MPI-ESM1-2-HR, and MRI-ESM2-0, four of the low-
est performing models in this measure (Fig. S4). Similarly as
before, we calculate convective precipitation and large-scale
precipitation PDFs and contributions, with some minor meth-
odological modifications. First, convective (or large scale) pre-
cipitation PDFs are normalized proportional to their bin
counts. That is, they do not integrate to 1 but rather to
[# counts convective (or large-scale)/# counts total]. Second,
we do not normalize these contributions (including precipita-
tion amount contribution) as in (3). We do these modifications
to visually preserve the relative contributions from convective
and large-scale precipitation to total precipitation. It is impor-
tant to note that while convective and large-scale precipitation
add up to total precipitation, this is not the case for the PDFs
and contributions (i.e., the convective precipitation PDF plus
the large-scale precipitation PDF do not add up to the total
precipitation PDF). This is because lower values of convective
or large-scale precipitation contribute to the same or higher
values of total precipitation.

Figure 11 shows examples of total, convective, and large-
scale precipitation PDFs and contributions in regions with
more interesting behavior. For good measure, Fig. S5 also
shows the same in some less interesting regions. In these mod-
els, additional peaks in PDFs can arise from either peaks in
large-scale precipitation PDFs (Fig. 11a) or, in rarer cases,
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FIG. 11. Large-scale precipitation (blue), convective precipitation (red), and total precipitation (black) (a) PDFs in a region in the tropi-
cal North Atlantic (10°-30°N, 310°-340°E, shown in Fig. 10c) simulated by the MIROC-ES2L model. (b) Contribution to precipitation
amount Cymoune in the Nifio-1 + 2 region (10°-0°S, 270°-280°E) simulated by the MPI-ESM1-2-HR model, and (c) contribution to variance
Cy,r In a region in the tropical North Pacific (10°-20°N, 140°~170°E, shown in Fig. 10b) simulated by the BCC-CSM2-MR model.

from convective precipitation PDFs (not shown). We note in
this example that the convective precipitation PDF follows a
power-law range plus cutoff scale, and that the large-scale
precipitation PDF imprints a distinctive peak in the total pre-
cipitation power-law range, with the large event range follow-
ing the convective precipitation PDF tail. Contributions peaks
arise in some cases from convective precipitation contribu-
tions (Fig. S6), with large-scale precipitation contributions
usually having a single peak or a broad background contribu-
tion to a range of precipitation scales (i.e., contributing simi-
larly to low, moderate, and extreme ranges; see Fig. S6 for an
example). Most often, however, extra peaks arise when com-
bining single-peaked large-scale and convective precipitation
contributions, consistent with previous findings derived from
the GFDL AM2 atmospheric model (Lin et al. 2013) and the
NCAR Community Atmosphere Model for parameters yield-
ing similar convective and large precipitation amounts in per-
turbed parameter sensitivity experiments (Kooperman et al.
2018). That is, there is usually a peak at low precipitation val-
ues, arising from one type of precipitation (convective or large
scale), and another at higher values arising from the other
type of precipitation (Figs. 11b,c). Given that there is little
communication between large-scale and convective precipita-
tion parameterizations, extra probability peaks arising by
combining these two precipitation sources are not surprising.

5. Summary and discussion
a. Summary

The performance of CMIP6 global climate models in their
simulation of daily precipitation probabilities across differ-
ent regions and climatological regimes is assessed. Similarly
to previous CMIP phases, the long-standing bias of models
raining too lightly and too often persists in CMIP6. How-
ever, this is driven by models’ performance over oceans.
Despite issues with feedbacks of precipitation on land coupling
(DeMott et al. 2007), errors of this kind tend to be smaller un-
der these metrics over land. Focusing on wet days, we compare
modeled probability distributions, precipitation amount contri-
bution, and precipitation variance contribution to two widely
used observational products for these purposes: GPCP and
TRMM-3B42. Over most regions, observed daily precipitation

PDFs are relatively simple, consisting of a power-law range and
a close to exponential cutoff scale for large values. We find sim-
ulated numerical values of power-law exponents (%p) and cutoff
scales (P1) to be generally within observational error bounds.
However, in some regions—particularly over ocean areas, and
especially over subtropical high pressure regions—modeled
PDFs and contributions tend to be more complex than their
counterparts from satellite products, sometimes exhibiting addi-
tional probability peaks. These peaks tend to occur in the
power-law range of the PDF. The large event range is generally
well simulated, except in subtropical regions of low rainfall.

As a summary Fig. 12 shows a portrait plot with the model
rankings over all 12 metrics studied. We highlight the following
models that consistently perform well in most measures (top 10
in at least 8 of 12 metrics): HadGEM3-GC31-MM, CNRM-
CM6-1, CNRM-CM6-1-HR, UKESM1-0-LL, CNRM-ESM2-1,
NorESM2-MM, and HadGEM3-GC31-LL.

b. Discussion

We note that several of the eight models highlighted are
from the same modeling group. All three models contributed
by CNRM-CERFACS (CNRM-CM6-1, CNRM-CM6-1-HR,
CNRM-ESM2-1) (Voldoire et al. 2019; Séférian et al. 2019)
are in this group, as well as the three models contributed by
the U.K. Met Office (HadGEM3-GC31-MM, HadGEM3-
GC31-LL, UKESM1-0-LL, the latter in collaboration with
the U.K. Natural Environment Research Council) (Kuhlbrodt
et al. 2018; Williams et al. 2018; Sellar et al. 2019). In most
other cases, models from the same modeling group tend to
have similar levels of performance (Fig. 12). This suggests
that, with few exceptions, the core physics common to differ-
ent model variants is the leading-order factor that explains
model performance in simulating daily precipitation PDFs
(Knutti 2010).

An important difference between models and satellite
products is that models tend to have more peaks in PDFs and
contributions not present in the satellite products. In satellite
products, PDFs peak at the lowest resolvable amount and
contributions tend to have a single peak. In contrast, in many
regions and especially over oceans, models simulate PDFs
that peak at some moderate value in the power-law range (e.g.,
Fig. 10d) and contributions that are bimodal (e.g., Figs. 10ef).
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FI1G. 12. Model ranking compared to GPCP and TRMM 3B42 products (increasing number means decreasing per-
formance) in the 12 metrics analyzed. Note that this diagram only provides the ranking information and does not pro-
vide information about the distance between models. Models are displayed in the x axis from lowest to highest rank
based on the summation of their rankings. This is the same order used in previous figures.

There are two ways to contend with these results. First, some
light rain may be present that is not captured by these satel-
lite products. The measurements going into TRMM-3B42
and GPCP are known to miss warm, light rain over ocean
(Huffman et al. 2007; Berg et al. 2010; Behrangi et al. 2014;
Pendergrass et al. 2017), partially accounting for the differ-
ence between at least one model and observational estimates
that are sensitive to light rain (Kay et al. 2018). We can thus
not exclude the possibility that there may exist additional
contribution peaks in the light precipitation range that GPCP
and TRMM-3B42 do not capture, although in situ measure-
ments commonly yield the same form of PDF (Groisman et al.
2001; Schiro et al. 2016; Martinez-Villalobos and Neelin 2018;
Chang et al. 2020).

An alternative possibility is that models simulate spurious
additional PDF or contributions peaks. Models’ additional
probability peaks may signal, for example, precipitation
parameterizations with multiple overly deterministic scales
embedded. Generally speaking, localized deviations from
power-law scaling in probability signal the presence of deter-
ministic scales present in the physics (Lovejoy and Schertzer
1985; Christensen and Moloney 2005; Peters and Neelin 2006;
Neelin et al. 2008; Clauset et al. 2009; Corral and Gonzalez
2019). In observations, a single main physical scale—the cut-
off scale—seems to be the leading contributor in determining
the character of observed PDFs and contributions. This cutoff
scale is determined by a balance between moisture conver-
gence fluctuations and moisture loss by precipitation during
precipitating events (Stechmann and Neelin 2014; Neelin et al.
2017; Martinez-Villalobos and Neelin 2019), a balance that is
not fundamentally affected by the details (i.e., convective or
large scale) of the precipitation process. In addition to the

cutoff scale, other possible scales for daily precipitation in-
clude the seasonal cycle, the typical duration of precipitating
events, and the averaging interval (a day in this case). In the
case of the seasonal cycle, it is conceivable that models exhib-
iting strong seasonality may have multiple contribution peaks
(e.g., one peak from winter precipitation and the other from
summer precipitation). This possibility deserves further scru-
tiny in the future. In the case of event duration, Martinez-Villa-
lobos and Neelin (2019) show that as long as the typical
duration of extreme events (from local onset to termination,
not the duration of the synoptic system) is much smaller than
the averaging interval, then the daily precipitation PDF does
not “feel” its influence.

In most cases we have examined, multiple contribution
peaks arise when combining single-peaked large-scale and
convective precipitation contributions. Since there is little in-
teraction between convective and large-scale precipitation
schemes, it is not surprising that convective or large precipita-
tion may dominate the low/moderate range of precipitation
and the other field the extremes. This would naturally yield
two distinct probability peaks (e.g., Figs. 11b,c). While intui-
tively it may make sense to have two distinct parameteriza-
tions for large-scale and convective precipitation, the lack of
multiple contribution peaks in satellite products suggests that
the gap between large-scale and convective precipitation may
be smoother than modeled. This also suggests that the distinc-
tion between large-scale and convective precipitation may be
better thought of as two parts of a continuum rather than sepa-
rate entities. A possible way to bridge this gap is the use of sto-
chastic parameterizations. Even if there are several legitimate
deterministic scales coexisting in the physics (e.g., shallow and
deep convection), stochastic parameterizations may bridge the
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gap between different scales, smoothing out additional
peaks as a result. Given that most deterministic parameter-
izations do not (and cannot) account for the effect of all
subgrid processes, stochastic parameterizations are an ap-
pealing way to statistically account for their effect, and have
been advocated by a large body of literature (Palmer 2001;
Sardeshmukh et al. 2001; Lin and Neelin 2002, 2003; Penland
2003; Williams 2005, 2012; Neelin et al. 2008; Teixeira and
Reynolds 2008; Plant and Craig 2008; Stolle et al. 2009;
Khouider et al. 2010; Chekroun et al. 2011; Gottwald et al.
2016; Berner et al. 2017).

Support for the idea that localized deviation from power-law
scaling in probability or additional peaks may be smoothed out
by the presence of enough stochasticity is provided by the
studies of Wang et al. (2016) and Wang et al. (2021). These
studies compare the deterministic Zhang-McFarlane con-
vection scheme (Zhang and McFarlane 1995) to a stochastic
version based on the Plant-Craig scheme (Plant and Craig
2008; Groenemeijer and Craig 2012) in the NCAR CAMS.3
(Hurrell et al. 2013) and the DOE E3SMv1.0 (Golaz et al.
2019) atmosphere models respectively. The deterministic
version produces PDFs with a localized deviation from
power-law scaling (although not a peak) in probability in
the power-law range, which disappears when the stochastic
scheme is used. Moreover, the stochastic version increases
the probability of excursions to larger precipitation values,
which improves the bias of models generally raining at too
low intensity, and reduces the long-standing “drizzling prob-
lem.” Generally, deterministic schemes “fire off” when a deter-
ministic condition is satisfied (Suhas and Zhang 2014; Rio et al.
2019), while stochastic schemes fire off with “some” probabil-
ity. The main impediment is the necessity to carefully constrain
this “firing off” probability observationally, for which process-
oriented diagnostics, as advocated by Rio et al. (2019), relating
precipitation to measures of buoyancy (Neelin et al. 2008;
Khouider et al. 2010; Kuo et al. 2018; Schiro et al. 2016, 2018;
Ahmed and Neelin 2018; Ahmed et al. 2020; Serrano-Vincenti
et al. 2020) are a starting point.

This study also highlights the importance of taking into
account observational uncertainty in model evaluation. Our
estimate of observational uncertainty is large and yet con-
servative, since it takes into account products based on sim-
ilar data treated in overall similar ways. This should draw
attention to how challenging is to measure precipitation
compared to other variables.

We hope that evaluating model simulations can spur im-
provement in future generations. Ongoing efforts include the
introduction of stochastic parameterizations (Keane and Plant
2012; Bengtsson et al. 2013; Deng et al. 2015; Dorrestijn et al.
2016; Sakradzija et al. 2016; Hagos et al. 2018); machine learn-
ing approaches (Schneider et al. 2017; Gentine et al. 2018;
O’Gorman and Dwyer 2018); increases in model resolution
allowing an explicit treatment of convection (Khairoutdinov
and Randall 2003; Tao and Moncrieff 2009; Holloway et al.
2013; Liu et al. 2017; Belusic et al. 2020) and improvements in
aerosol—cloud interaction (Terai et al. 2020; Miilmenstadt and
Wilcox 2021); “unified” convection parameterizations treating
dry, boundary layer, shallow and deep convection in an integrated
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manner (Kuang and Bretherton 2006; Guérémy 2011; D’ Andrea
et al. 2014; Park 2014); and “scale-aware” approaches appropri-
ate for coarse horizontal resolution models (>50 km, as the
models used here where convection is parameterized), high
resolution models (<10 km), and the “gray zone” in between
(Randall et al. 2003; Arakawa and Wu 2013; Sakradzija et al.
2016; Kwon and Hong 2017). However, modeling efforts need
to be accompanied with similar efforts in reducing observational
interproduct differences, if these modeling improvements are to
continue.
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