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Abstract—An increasing number of systems are being designed
by gathering significant amounts of data and then optimizing the
system parameters directly using the obtained data. Often this is
done without analyzing the dataset structure. As task complexity,
data size, and parameters all increase to millions or even billions,
data summarization is becoming a major challenge. In this work,
we investigate data summarization via dictionary learning (DL),
leveraging the properties of recently introduced non-negative
kernel regression (NNK) graphs. Our proposed NNK-Means,
unlike previous DL techniques, such as kSVD, learns geometric
dictionaries with atoms that are representative of the input data
space. Experiments show that summarization using NNK-Means
can provide better class separation compared to linear and kernel
versions of kMeans and kSVD. Moreover, NNK-Means is scalable,
with runtime complexity similar to that of kMeans.

Index Terms—Data summarization, dataset analysis, dictio-
nary learning, neighborhood methods, kernel methods.

I. INTRODUCTION

Massive high-dimensional datasets are becoming an increas-
ingly common input for system design. While large datasets
are easier to collect, the methods for exploratory (understand-
ing or characterizing the data) and confirmatory (confirming
the validity and stability of a system designed using the data)
analysis are not as scalable and require new techniques that can
cope with big data sizes [1], [2]. Data summarization methods
aim to represent large datasets by a small set of elements,
the insights from which can be used to organize the dataset
into clusters, classify observations to its clusters, or detect
outliers [3]. In datasets with label information, a summary
can be obtained for each class, but summaries are in general
decoupled from downstream data-driven system designs and
thus different from coresets and sketches [4], [5].

Clustering methods such as kMeans [2], [6], vector quanti-
zation [7] and their variants [8], are among the most prevalent
approaches to data summarization [9]. A desirable property
for summarization, which can be obtained with clustering
methods, is the geometric interpretability of elements in the
summary. For example, in kMeans the elements in the sum-
mary are centroids, which are obtained by averaging points
in the input data space, and thus are themselves in the same
data space, so that one can associate properties (e.g., labels)
to the summary points based on the data points these are
derived from. In kMeans, each point in the dataset can be
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considered as a 1-sparse representation based on the nearest
cluster center. This leads to hard partitioning of the input data
space, which suggests that better summarization is possible if
the optimization allows for points to be approximated by a
sparse linear combination of summary points.

In this paper, we investigate data summarization using a
dictionary learning (DL) framework where the summary, or
dictionary, is optimized for k-sparsity, with k£ > 1, i.e., each
data point is represented by a k-sparse combination of ele-
ments (atoms) from an adaptively learned set, the dictionary.
It is important to note that using previous DL schemes such as
the method of optimal directions (MOD) [10], the kSVD algo-
rithm [11], and their kernel extensions [12]-[14], for DL-based
data summarization is not possible for several reasons. Firstly,
current DL methods learn dictionary atoms that are optimized
to represent data and their approximation residuals [15]. This
means that atoms in the dictionary are not guaranteed to be
points that are on, or even near, the input data manifold and
do not have geometric properties as those of cluster centers
in kMeans. Secondly, although DL methods perform well in
signal and image processing tasks, their application to machine
learning problems is largely limited to learning class-specific
dictionaries that can be later used for classification [16], [17].
This is because the individual atoms learned by DL cannot be
directly associated to labels, or other properties of the data, and
can only be assigned labels if separate class-wise dictionaries
are learned. Finally, current DL schemes are impractical even
for datasets of modest size [18], [19] and are thus not suitable
for summarization involving large datasets.

To overcome these limitations and learn dictionaries with
atoms that can be used for data summarization, we leverage
our work on neighborhood definition with non-negative kernel
regression (NNK) [20], [21]. Our proposed NNK-Means algo-
rithm for data summarization is based on a dictionary obtained
using a sparse coding technique based on NNK, where each
selected neighbor corresponds to a direction in input space
that is not represented by other selected neighbors. This
representation can be interpreted geometrically as a polytope
covering of the data by selected atoms [20].

In all DL methods, as in ours, learning is done by alternating
two minimization steps, namely sparse coding and dictionary
update, with differences between the methods arising given
the choice of constraints or optimization in these two steps.
The main novelty in NNK-Means comes from the use of a
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Fig. 1: Left: Proposed NNK-Means. The algorithm alternates between sparse coding (W) using NNK and dictionary update
(A) until either the dictionary elements converge, or a given number of iterations or a reconstruction error is achieved. Middle:
During sparse coding, kMeans assigns each data point to its nearest neighbor while NNK represents each data point in an
adaptively formed convex polytope made of the dictionary atoms. Right: Comparative summary between dictionary learning
methods and proposed NNK-Means approach. kMeans offers a 1-sparse dictionary learning approach while a kSVD offers
a more general approach where the sparse coding stage accommodates for a chosen, fixed kg-sparsity but lacks geometry.
NNK-Means has adaptive sparsity that relies on the relative positions of atoms around each data to be represented.

non-negative sparse coding procedure in kernel space that
can be described, similar to kMeans, in terms of the local
data geometry. Non-negative DL and kernelized DL were
separately studied in [22]-[24] and [13], [14], respectively.
Closest to our work are [25], [26], where dictionaries are
learned in kernel space with non-negative sparse coding per-
formed using optimization schemes, such as an /; constrained
quadratic solver with multiplicative updates [26]-[28] or make
use of iterative thresholding algorithms with non-negativity
constraint [22]-[24]. In contrast, our framework makes use of
a geometric sparse coding approach based on local neighbors,
a procedure previously unexplored in DL. The sparsity of
the representation in our approach depends on the relative
position of the data and atoms (i.e., the data geometry) and
is thus interpretable and adaptive. Consequently, unlike earlier
DL methods, individual atoms learned by NNK-Means have
explicit geometric properties, with representations that are
obtained as averages of input data examples similar to kMeans,
and can be associated with data properties such as class labels.
This makes the atoms learned by our approach suitable for data
summarization. Note that previous DL methods and sparse
coding approaches lacked such properties, so the proposed
NNK-Means is the first DL framework to study these concepts
with emphasis on geometry for use in data summarization.
Our experiments show that the NNK-Means i) selects atoms
for summarization that belong to the data space, ii) outper-
forms DL methods in terms of downstream classification using
class-specific summaries on several datasets (USPS, MNIST,
and CIFAR10), and iii) achieves train and test runtimes similar
to kernel kMeans, and 67 x and 7x faster than kernel kSVD.

II. PROBLEM SETUP AND BACKGROUND

Sparse Dictionary Learning: Given a dataset of N data
points represented by a matrix X € R¥*¥ the goal of DL is
to find a dictionary D € R¥*M with M << N, and a sparse
matrix W € RM*N that optimizes data reconstruction.

DW= 1X — DW|[% )

arg min
D,W: Vi [|[Wi|lo<k

where the ¢y constraint on W corresponds to the sparsity
requirements on the columns of the reconstruction coefficients

W, € RM and || . || represents the Frobenius norm of the
reconstruction error associated with the representation.

While kMeans can be written in terms of the DL objective
(1) with a 1-sparse constraint on the sparse coding, i.e., each
column of W can have only one nonzero value, there are
several important differences between the two problems. In
particular we can see that: (i) the coefficients involved in the
sparse coding of kMeans are non-negative, (ii) in kMeans,
the sparse coding is based on proximity of the data to the
atoms (i.e., cluster centers), whereas in kSVD or MOD, coding
is done by searching for atoms that maximally correlate with
the residual, and (iii) the dictionary updates are different and
lead to different dictionaries.

A straightforward way of kernelizing DL would involve
replacing the input data by their respective Reproducing Ker-
nel Hilbert Space (RKHS) representation. However, such a
setup is unable to leverage the kernel trick [29], [30] and
thus to overcome this problem, [13] suggest decomposing the
dictionary and solving a modified objective (1), namely,

AW = 1@ -2AW[E (2

arg min
AW : Vi ||W;]|o<k
where @ = ¢(X) corresponds to the RKHS mapping of the
data. In this setup, one learns a dictionary (D = ® A) via the
coefficient matrix A € RN*M

Non-Negative Kernel Regression: The starting point for
our DL method is our graph construction framework using
NNK [20], [21]. NNK formulates neighborhoods as a signal
representation problem, where data points (represented as a
RKHS function) is to be approximated by functions corre-
sponding to its neighbors, i.e.,

min [|¢(z;) - @50, 3)
where ®¢ contains the RKHS representation of a pre-selected
set of data points that are good candidates for NNK neighbor-
hood. Unlike k-nearest neighbor or e-neighborhood, where a
neighbor is selected based on only x(z;, z;) = ¢(x;) ' P(x;),
and can be viewed as representation using thresholding, NNK
leads to optimal neighborhoods, that avoids selecting two
neighbors that are similar to each other. Geometrically, this
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Fig. 2: 100 atoms for MNIST digits (contrast scaled for visualization) obtained using kMeans, DL methods and their constrained
variants, NNK-Means (using cosine kernel [21]). Unlike earlier DL approaches, our method learns individual atoms that are
linear combinations of the digits themselves and can be associated geometrically to the input data. Such explicit properties of
atom are lost when working with [; regularized or thresholding based sparse coding methods used previously in DL.

can be explained using hyperplanes, one per selected NNK
neighbor, which applied inductively leads to a convex polytope
around the data such as the one in Figure 1.

III. PROPOSED METHOD: NNK-MEANS

We propose a two-stage learning scheme where we solve
sparse coding and dictionary update until convergence, or until
a given number of iterations or reconstruction error is reached.
We describe the two steps, the respective optimization in-
volved, interpretation, and runtime complexity in this section'.

Sparse Coding: Given a dictionary, A, in this step
we seek to find a sparse matrix W that optimizes data
reconstruction in kernel space. We will additionally require
the coefficients of representation to be non-negative with the
number of nonzero coefficients at most k. Thus, the objective
to minimize at this step is

N
W = arg min Z||¢i*’~1’AVV¢H§, 4

Vi W;>0, [|Willo<k =5
where ¢; corresponds to the RKHS representation of data x;.
Solving for each W; in equation (4) involves working with a
N x N kernel matrix leading to run times that scale poorly with
the size of the dataset. However, the geometric understanding
of the NNK objective in [20], allows us to efficiently solve for
the sparse coefficients (W;) for each data point by selecting
and optimizing starting from a small subset of data points,
here the k-nearest neighbors. Objective (4) can be rewritten
for each data point and solved with NNK to obtain W; as

W, s = argmin||¢p; — ®AsO;||2 and Wi 5c =0  (5)

6,>0
where the set .S corresponds to the selected subset of indices
corresponding to the set of the dictionary atoms ® A that can
have a nonzero influence in the sparse non-negative reconstruc-
tion. The above reduced objective can be solved efficiently as
in NNK graphs [20]. Sparse coding using NNK allows us to
explain the obtained sparse codes, leverage nearest-neighbor
tools for scaling to large datasets, and analyze the obtained

! A longer version of the paper is posted on arxiv with proofs of theoretical
statements and additional experiments [31]

atoms geometrically, very much similar to kMeans, where
each data is represented by an adaptive set of non-redundant
neighbors rather than just 1. This step includes a neighborhood
search and a non-negative quadratic optimization with runtime
complexities O(NMd) and O(Nk?).

Dictionary Update: Assuming that the sparse codes for
each training data, W, are calculated and fixed, the goal is
to update A such that the reconstruction error is minimized.
Here, we propose an update similar to MOD, where the
dictionary matrix A is obtained based on W as

A=wT(wwh)! (6)

The runtime associated with this step is O(M?3 + NMk),
where we use the fact that W has at most Nk non zero
elements. We note that using k-nearest neighbor directly for
sparse coding, apart from lacking adaptivity, is sub-optimal
and leads to instabilities at the dictionary update stage and
thus is unsuitable for DL in a similar setup.

Proposition 1. The dictionary update rule in (6) reduces to
kMeans cluster update A = W T~ when W consists of
N columns from (e; ...enr), where e, is a basis vector, i.e.,
emi = 0V i # mand epym = 1 and & € RMXM s ¢
diagonal matrix containing the degree or number of times each
basis vector e, appears in W.

Proposition 1 shows that our proposed method reduces to
the kMeans algorithm when the sparsity of each column in
W is constrained to 1 and can thus be considered a DL
generalization that maintains the geometric and interpretable
properties of kMeans. One can easily verify that our iterative
procedure for DL, alternating between sparse coding and
dictionary update, does converge (Theorem 1) and produces
atoms that belong to the input data manifold.

Theorem 1. The residual ||® — ® AW ||% decreases mono-
tonically under the NNK sparse coding step (5) for W given
matrix A . For a fixed W, the dictionary update (6) for A is
the optimal solution to minga ||® — ® AW ||% . Thus, NNK-
Means objective decreases monotonically and converges.
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Fig. 3: Visualizing predictions (each color corresponds to a class) obtained using various dictionary based classification schemes
on a 4-class synthetic dataset. Each method learns a 10 atom dictionary per class based on given training data (N = 600, x)
with sparsity constrain, where applicable, of 5. The learned per class dictionary is then used to classify a test data (N = 200, e)
with accuracy as indicated in parenthesis for each method. We see that the kSVD approach is unable to adapt to the nonlinear
structure of data and adding a kernel is crucial in such scenarios. NNK-Means better adapts to the geometry of the data with
a runtime comparable to that of kMeans while having 4x and 2Xx faster train and test times in comparison with kernel kSVD.

IV. EXPERIMENTS

In this section, we validate properties of NNK-Means that
make it suitable for data summarization. Figure 2 presents a
visual comparison of the atoms obtained using our method
with that of kMeans and previous DL approaches. Unlike
standard DL approaches, we observe that atoms learned by
NNK-Means have representations that are similar to the input
data. We will now focus on a standard experiment setting in
DL, namely DL-based classification [13], [19], to compare
NNK-Means with previous DL approaches. Note that learning
a good summary leads to better classification. Since existing
DL methods cannot associate labels directly to the atoms
obtained, experiments are constrained to learning a dictionary
for each class ({A;}%,) in training data that are later used to
classify queries based on the class-specific reconstruction error
{e;}$_,, i.e., we sparse code a query @, using each dictionary
A; and assign the query to the class (c¢) with lowest reconstruc-
tion error (e.). NNK-Means outperforms all other methods
consistently in classification while having desirable runtimes
relative to kMeans, kSVD, and their kernelized versions? in
both synthetic and real datasets. We use a Gaussian kernel
k(x,y) = exp(||z — y||3/2) and report average performance
over 10 runs for all experiments.

Synthetic dataset: We consider a 4-class dataset con-
sisting of samples generated from a non-linear manifold and
corrupted with gaussian noise (as in Figure 3). Since the data
corresponding to each class have similar support, namely the
entire space R?, dictionaries learned using kSVD are indis-
tinguishable for each class and lead to at-chance performance
in classification of test queries. On the contrary, a kernelized
version of kSVD is able to handle the manifold, although
it is not robust at some test locations, but at the cost of
increased computational complexity. Interestingly, we observe
that a non-negative neighborhood-based sparse coding is able
to adapt to input space non-linearity even when constrained
to 1-sparsity (kMeans) indicative of the importance of non-
negativity and geometry in data summarization.

2We use the efficient implementations, as in [19], from omp-box and kSVD-
box libraries [32] and Kernel kSVD code of [13].

Method MNIST-S MNIST CIFAR-S CIFAR
kMeans 94.89 96.34 83.88 84.91
K-kMeans 91.56 93.19 84.22 85.06
kSVD 95.53 95.86 86.01 86.28
K-kSVD 96.45 - 86.71 -

NNK-Means 96.70 97.79 86.95 87.21

TABLE I. Classification accuracy (in %, higher is better)
on MNIST, CIFAR10 and their subset (S, 20% of randomly
sampled training set). Each method learns a 50-atom dictionary
per class, initialized randomly, with sparsity constraint, where
applicable, of 30 and run for at most 10 iterations. NNK-
Means consistently produces better classification in terms of
test accuracy while having a reduced runtime in comparison to
kSVD approaches and comparable to that of kMeans. Kernel
k-SVD produces comparable performance but at the cost of
67x and 7x slower train and test time relative to NNK-Means.

USPS, MNIST, CIFARIO: We use as features the pixel
values of the images for USPS (d = 256) and MNIST (d =
784) dataset. For CIFAR10, we train a self-supervised model
using SimCLR loss [33] on unlabelled training data to obtain
features (d = 512) for our experiment. We use the standard
train/test split for each dataset and standardize the feature
vectors to zero mean and unit variance. We report here results
of DL with a subset of the training data, namely MNIST-S and
CIFARI10-S, for a fair comparison with kernel kSVD. We note
that kernel kSVD scaled poorly with dataset size and timed
out when working with the entire training set of MNIST and
CIFAR10. NNK-Means is able to efficiently learn a compact
set of atoms that are capable of representing each class which
in turn provides better classification of test data in all settings
as made evident in Figure 4 and the results in Table 1.

V. CONCLUSION

We investigate data summarization using DL and propose
a framework, NNK-Means, that overcomes the limitations of
previous DL methods for summarization. NNK-Means learns
atoms that are geometric like kMeans centroids and leverages
neighborhood tools to efficiently perform sparse coding and
adaptively represent data using learned summary elements or
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Fig. 4: Plots: Test classification accuracy, train time and test time as a function of number of dictionary atoms per class on
USPS dataset for various DL methods. Each method is initialized similarly and is trained for a maximum of 10 iterations with
sparsity constraint, where applicable, of 30. The plots demonstrate the benefits of NNK-Means both in accuracy of classification
and runtime. The major gain in runtime for NNK-Means comes from the pre-selection of atoms in the form of nearest neighbors
which leads to fast sparse coding (as can be seen via test time which performs only sparse coding) relative to kSVD approaches
that sequentially perform a linear search for atoms that correlate with the residue at that stage. The training time in kSVD
approaches decreases with more atoms since the sparse coding stage requires fewer atom selection steps compared to those
where the dictionary is small. Source code for all experiments are made available at github.com/STAC-USC.

atoms of the dictionary. Experiments show that our method
has runtimes similar to kMeans while learning dictionaries
that can provide better discrimination than competing methods.
In the future, we plan to study the trade-offs associated with
summary size and the use of obtained summaries in improving
analysis and design of data-driven machine learning systems.
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