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ABSTRACT

In this work, we present a novel framework to represent
time-varying signals as dynamic graphs using the Non Neg-
ative Kernel (NNK) graph construction algorithm. Visibility
Graphs (VG) are utilized to transform the time-series signals
from time domain to graph domain. Degree similarity and
clustering coefficients of these temporal graphs are used to
characterize the similarity between different nodes. Using
this similarity metric, a spatiotemporal graph is obtained by
NNK algorithm. In addition, by introducing the delayed
signals of the same node in the dictionary, we explored the
relation between the delayed signals, which helped us discov-
ering the synchronization between time-series signals. This
technique is applied on a temperature dataset which consists
of daily temperatures that are collected by 160 US weather
stations in 2020. We compared the results of our proposed
method to an alternative graph construction technique. Fi-
nally, we have shown that, for a highly correlated dataset,
proposed NNK algorithm can still achieve a sparse graph that
is compliant with the geographical information.

Index Terms— Time Varying Graphs, Temporal Graphs,
Dynamic Graphs, Visibility Graphs, Graph Signal Processing

1. INTRODUCTION

With the enormous growth of data, understanding the com-
plex interactions and the underlying structures is becoming
more important than ever. Representing signals in graph do-
main, helps us to understand these sophisticated relations be-
tween the signals [1].

The recent developments in graph signal processing en-
able us to represent signals in more efficient ways. Dong et al

and Kalofolias et al proposed graph learning techniques for
signals that have smooth variations [2, 3]. Egilmez et al pro-
posed a graph construction method for signals under Lapla-
cian and structural constraints [4]. However, these graph con-
struction techniques have smoothness assumption or struc-
tural constraints. Moreover, these works, like many others,
target at static graphs and they do not consider the temporal
evolution of the graphs.

Biological signals, financial information, environmental
data and social networks are some of the fields where graph
signal processing methods are utilized [5, 6, 7, 8, 9]. Most
real-world signals are time-varying signals by their nature.
Modeling these data in time-varying graph domain is advanta-
geous in analyzing and demonstrating the spatiotemporal con-
nections.

There were many attempts in graph construction for time-
varying signals [10, 11, 12, 13, 14, 15]. Kalofolias et al pro-
posed a time-varying graph learning method, which assumes
smooth variation in time [10, 3]. Liu et al also proposed a
time-varying graph construction framework for smooth sig-
nals [13, 16]. Yamada et al proposed a time-varying graph
learning for signals that show slow variation in time and for
the signals that have switching behaviour [14]. Grassi et al

proposed a joint framework for time-varying graphs [15].
Previously, k Nearest Neighbor (kNN) graphs were used

for time-series signals to avoid computation of inverse covari-
ance matrices and Laplacians [17]. KNN graphs are distance
based graphs, which are sensitive to redundant features and
number of neighbors and K has to be tuned.

Non Negative Kernel regression (NNK) is a new graph
construction technique that aims at efficient graph represen-
tation with non-negative basis pursuit [18, 19]. In the NNK
algorithm, sparsity is a function of the geometry of the data.
NNK graph construction is geometrically explicable and in-
tuitive. A direct extension of NNK graphs is time-varying
NNK graphs.However, the adaptation of NNK for time-series
signals requires finding a suitable similarity metric for the ap-
plication, determining the time window and taking time de-
lays into an account. In addition, for shorter time windows,
the signals become highly correlated, in that case, obtaining a
sparse graph can be challenging.

To address the challenges of dealing with highly corre-
lated time-series signals, we used Visibility Graphs (VG) to
obtain a meaningful pairwise similarity matrix between the
signals in sliding window fashion. In addition, time-shifted
signals of the same nodes are included in the NNK dictionary.
Incremental NNK is modified to avoid unstable matrices and
to enforce consistency between the time-shifted signals.

The rest of the paper is organized as follows. Section 2
explains Visibility Graphs (VG), Section 3 reviews the NNK



algorithm, in Section 4 time-varying NNK graphs are intro-
duced and in Section 5 we present and discuss our method
applied on temperature dataset.

2. VISIBILITY GRAPHS

The naı̈ve approach for finding the pairwise similarities be-
tween the time-series signals in time-domain is to compare
direct cosine similarity, or using the statistical features, such
as mean, standard deviation, minimum or maximum. How-
ever, these approaches are not robust to noise, they are sensi-
tive to scaling and they cannot characterize the nonlinear fea-
tures in the time-series signals. Visibility Graphs(VG) were
proposed by Lacasa et al to uncover the scale-free relations
in time series signals [20]. Visibility Graphs transform time
series signals into a graph, preserving the geometric relations.
For chaotic, complex and non-periodic signals like biological
signals or financial data, this method has been used as a fea-
ture extraction tool to extract nonlinear characteristics of the
signals [21, 22, 23, 24, 25] .

Visibility criterion is defined as follows:

y(tk) < y(tj) + (y(ti)� y(tj)).
tj � tk
tj � ti

, (1)

where y(ti),y(tj) and y(tk) are the data points at time ti,tj
and tk.

Data points y(ti) are y(tj) visible if tk is between ti and
tj and if y(ti),y(tj) and y(tk) satisfy this criterion. The idea
is depicted in Figure 1.

Fig. 1. Visibility Graph criterion is satisfied by data points
y(ti) , y(tj) and y(tk) in this example.

After VGs are obtained for each time window, degree dis-
tribution and clustering coefficient are used as metrics to char-
acterize and summarize the VGs.

degree distribution is given below:

DD (2)

clustering coefficient is given below:

CC (3)

3. NON NEGATIVE KERNEL ALGORITHM

Non Negative Kernel (NNK) algorithm aims at constructing
a sparse graph by non negative basis pursuit. The key idea
behind the NNK algorithm is to approximate each node by
a linear combination of atoms from a dictionary formed by
its neighboring nodes. By this technique, we can eliminate
redundant connections [18, 19] .

NNK algorithm is also useful for understanding the
graphs from a geometric perspective. After initialization
with Gaussian Kernel, a polytope is formed with Kernel Ra-
tio Interval (KRI) condition, which was described in [18].
Gaussian Kernel is given as

G(xi,xj) = e�
dist(xi,xj)

�2 (4)

where dist(xi,xj) is the Euclidean distance between xi

and xj . However, different similarity measures can be used,
which are beyond the scope of this work. In this approach, xi

and xj belong to a subset of nodes, that is defined by a kNN
neighborhood, the size of which is controlled by the parame-
ter K. Here, � is also chosen as a function of K to define the
neighborhood.

In our adaptation, we use the average of pairwise degree
similarity and clustering coefficient as xi and xj in Gaussian
Kernel computations, as given in 2 and 2.

It is important to note that, for an accurate graph construc-
tion, intuitively it is better to start with the largest neighbor-
hood possible and then to shrink the graph with NNK algo-
rithm. However, under some conditions, this selection can
lead to unstable graphs when it is applied to time-varying sig-
nals.

4. TIME-VARYING NNK GRAPHS

We define Gt(Vt, Et) as the graph for the timestamp t, with
vertices at Vt and edges Et, both of them are the functions of
the timestamp t. As introduced in [10], we also segment the
time-series sequences into smaller non-overlapping windows,
with window size w.Each graph Gt(Vt, Et) is obtained from
the segments of the sequences of size w in a sliding window
manner.

Time window w is a design parameter and just as it was
discussed in [10], there is a trade-off between the temporal
resolution of time-varying graphs and the number of samples
available for learning the graph, Gt(Vt, Et). In addition to
that, the choice of w also affects the optimal K for NNK al-
gorithm. If we apply NNK algorithm for short window sizes
and if we start with a large value for K, this will result in ill-
conditioned Gaussian Kernel, as the sequences will be very
similar to each other. Condition number measures how poorly
the matrix is conditioned for inversion, formulated as in (5).
The greater condition number indicates that solutions with
this matrix will be more sensitive to the perturbations.



(A) = ||A|| ·
����A�1

���� (5)

To overcome this problem, a modified incremental NNK
is used instead. Potential neighbors are sorted using kNN,
and they are added one by one until the number of edges stays
constant. Before each optimization step, condition number as
given in 5 of Gvi is checked to avoid ill-conditioned matrix.
If the condition number exceeds the threshold, search for a
new edge is terminated.

For time-varying graphs, it’s also important to analyze
how time-series signals propagate in time.

For this purpose, time-shifted signals of the nodes, i.e.
signals that are shifted by delays 1, 2, .., d are added to the
dictionary, as if they were separate nodes.

We treat additional delayed time-series signals equally
and to find the basis nodes one-by-one and then do the prun-
ing.

To enforce the consistency between the delayed signals,
we used pruning. In pruning, the goal is to find the strongest
connections between the time-shifted signals of the same
nodes.

In Figure 4, flowchart is given.

The modified OMP-NNK Algorithm is described for the
second approach in [?].

KRI Condition with Gaussian Kernels:

Lemma 4.1. Kernel Ratio Interval (KRI) for NNK algorithm

to form an edge between node i wtih time series signal f(t)
and node j0 with time series signal f(t) with noise n(t), but

not with node j1, where j1 represents the same signal as in j0
but delayed by 1, is given in terms of the angle between the

distance vectors d(i, j0) and d(i, j1) which is denoted as ↵,

noise and the difference between f(t + 1) and f(t) denoted

as d below:

||n||
||n+ d|| < cos↵ <

||n+ d||
||n||

Proof. Let node i be a function f(t) and let nodes j0 and j1
represent f(t) with additive noise n(t) and delayed j0 by one
sample, respectively.
Distances between i and j0 ,and i and j1 are denoted as

Algorithm 1 Multinode OMP-NNK algorithm
Require: Kernel : K
Ensure: ConditionNumberforKS,S < threshold
0: for i = 0, 1, ..., N do
0: j1(t, d) argmaxj Ki(t,0),j(t,d)

0: ✓1  Ki(t,0),j1(t,d)

0: S = {j1(t), j1(t + 1), ..., j1(t + d)} {add all delayed
signals of the same node}

0: for s = 2, 3, ..., k do
0: js(t) argmaxj Ki(t,0),j(t,d) �KT

S,j(t,d)✓s�1

0: if Ki(t,0),j(t,d) �KT
S,j(t,d)✓s�1 < 0 then

0: break
0: end if
0: S  S [ {js(t), js(t+ 1), ..., js(t+ d)}
0: ✓s = min 1

2✓
TKS,S✓ �KT

S,i(t,0)✓
0: end for
0: Ji(t,0) =

1
2✓

TKS,S✓ �KT
S,i(t,0)✓ +

1
2Ki(t,0),i(t,0)

0: Wi(t,0),S = ✓S ,Wi(t,0),Sc = 0
0: Ei(t,0),s = Ji(t,0)1k, Eit,0,Sc = 0
0: end for
0: W ,E =0

d(i, j0) and d(i, j1) .

d(i, j0) = d(f(t)� (f(t) + n(t))) = ||n|| := a

d(i, j1) = d(f(t)� (f(t+ 1) + n(t+ 1))) := ||n+ d|| = b

where d is the difference between functions f(t) and f(t+ 1)

Kernels Ki,j0,Ki,j1 and Kj0,j1 are given below:

Ki,j0 = exp(� 1

2�2
(a2)

Ki,j1 = exp(� 1

2�2
(b2)

Kj0,j1 = exp(� 1

2�2
(bcos↵)2 � (bsin↵)2)

Kj0,j1 = exp(� 1

2�2
(b2 + a2 � 2abcos↵)

KRI condition 1:



Ki,j0

Ki,j1

> Kj0,j1

exp(� 1

2�2
(b2 � a2)) > exp(� 1

2�2
(b2 + a2 � 2abcos↵)

�a2

2�2
>

a2 � 2abcos↵

2�2

b2 � a2 > �(b2 + a2 � 2abcos↵)2b2 > 2abcos↵

b > acos↵

||n+ d|| > ||n||cos↵, ✓ij0 > 0

cos↵ <
||n+ d||
||n|| , ✓ij0 > 0

KRI condition 2:

Ki,j0

Ki,j1

<
1

Kj0,j1

exp(� 1

2�2
(b2 � a2)) < exp(

1

2�2
(b2 + a2 � 2abcos↵)

�a2

2�2
<

a2 � 2abcos↵

2�2

2abcos↵ < 2a2

bcos↵ < a

bcos↵ > a, ✓ij1 = 0

d(i, j1)cos↵ < d(i, j0)

||n+ d||cos↵ > ||n||, ✓ij1 = 0

cos↵ >
||n||

||n+ d|| , ✓ij1 = 0

||n||
||n+ d|| < cos↵ <

||n+ d||
||n|| , ✓ij0 > 0, ✓ij1 = 0

5. RESULTS

The proposed framework is applied on temperature dataset.
Temperature dataset consists of daily temperature measure-
ments by 160 US stations over 366 days (N = 160, T = 366)
1. Each time-series signal is detrended by a 4th order polyno-
mial. For these experiments, window size is chosen as 12
days (w=12).

Fixed delays of 1,2 days are considered in both kNN and
NNK graphs. To have a fair comparison, all other parameters
are constant. The results are visualized in Figure 2.

1“National Climactic Data Center,” 2020. Available:
ftp://ftp.ncdc.noaa.gov/pub/data/gsod

It can be seen in Fig 2 that, pruned NNK graphs, both
singlenode and multinode solutions can achieve sparser rep-
resentation for temperature dataset than a pruned kNN graph.
Singlenode and multinode solutions look very similar after
pruning, which suggests that multinode OMP-NNK can be
a good alternative for OMP-NNK. There are common edges
in kNN and NNK graphs, as expected. In addition, although
physical distances between the stations were not used, mostly
physically neighbouring nodes are connected, and edges be-
tween the closely located stations are stronger; which is con-
sistent with our geographical knowledge. Less connections
are observed in the Northwest, as also reported in [9], due
to the Rocky Mountain. Predominant west-to-est direction of
the wind as described in [9] is also visible in all three maps
in Figure 2. Unlike the entire time series as in [9], a shorter
window is used. Therefore, edges are affected more by the
meteorological features than the geographical distances.

Sparsity comparison is given for all time frames, when
sliding window size is 12 and sliding step is 12 in Figure 3.

6. CONCLUSION

We presented a new method to represent time-series signals
using NNK algorithm. The key novelty of this work is, we
have introduced a new framework for constructing time-
varying graphs with NNK using VGs and including delayed
representations of the signals. Then we demonstrated the
proposed graph construction on temperature dataset and we
compared it to one of the state-of-the-art methods. We have
shown that, for the temperature dataset, where time sequences
are highly correlated, NNK can construct sparser graphs that
are also consistent with the geographical information.



(a) Pruned kNN (b) Pruned OMP-NNK

Fig. 2. Pruned kNN, pruned OMP-NNK, pruned Multinode OMP-NNK. w=12, d = 0, 1, 2. For one time window

Fig. 3. Sparsity Comparison
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