t.)

Check for
Updates

PrintQueue: Performance Diagnosis via Queue Measurement
in the Data Plane

Yiran LeiT, Liangcheng Yui, Vincent Liui, Mingwei Xu'

TTsinghua University, BNRist, Zhongguancun Laboratory

University of Pennsylvania

{leiyr20@mails., xumw@}tsinghua.edu.cn, {leoyu, liuvi@seas.upenn.edu

ABSTRACT

When diagnosing performance anomalies, it is often useful to rea-
son about why a packet experienced the queuing that it did. To that
end, we observe that queuing is both a result of historical effects
and the current state of the network. Further, both factors involve
short and long timescales by nature. Existing work fails to provide
insight that satisfies all of these needs.

This paper presents PrintQueue, a practical data-plane monitor-
ing system for tracking the provenance of packet-level delays at
both small and large timescales. We propose a set of metrics for de-
scribing ‘congestion regimes’ and present a set of novel data-plane
data structures that accurately track those metrics over arbitrary
time spans. We implement PrintQueue on a Tofino switch and eval-
uate it with multiple network traces. Our evaluation shows that the
accuracy of PrintQueue is up to 3X times higher while the overhead
is 20X times smaller than existing work.

CCS CONCEPTS

+ Networks — Data path algorithms; Programmable networks;
In-network processing; Network monitoring.

KEYWORDS

Queue measurement, Programmable networks, Data plane

ACM Reference Format:

Yiran Lei, Liangcheng Yu, Vincent Liu, and Mingwei Xu. 2022. PrintQueue:
Performance Diagnosis via Queue Measurement in the Data Plane. In ACM
SIGCOMM 2022 Conference (SIGCOMM °22), August 22-26, 2022, Amsterdam,
Netherlands. ACM, New York, NY, USA, 14 pages. https://doi.org/10.1145/
3544216.3544257

1 INTRODUCTION

In today’s networks, performance issues can come from many dif-
ferent sources, whether a DoS attack, an ECMP misconfiguration,
TCP incast, or just an unlucky confluence of application flows con-
verging at a single link. Performance issues can also yield different
impacts, e.g., dropped packets, SLA violations, or a degraded user
experience. However, almost all performance issues boil down to a
packet getting to its destination late or not at all.

As a result, visibility into a network’s queues is critical for diag-
nosing performance issues and answering questions such as: which
other flows caused this packet to sit in this particular queue? Unlike

This work is licensed under a Creative Commons Attribution International 4.0 License.

SIGCOMM °22, August 22-26, 2022, Amsterdam, Netherlands
© 2022 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-9420-8/22/08.
https://doi.org/10.1145/3544216.3544257

516

other possible sources of delay like routing issues or failures, queues
are simultaneously hard to predict (because of non-deterministic
packet arrival timing) and hard to reason about after the fact (due
to the high volume of traffic involved). What is more, the original
causes of the delays can span arbitrary time scales. For shorter
time scales, prior work has found that, in some large networks,
microbursts as brief as 10s to 100s of microseconds are the norm,
not the exception [35]. For longer time scales, differentiated classes
of service, mechanisms like Layer-2 pause frames, and the cascad-
ing nature of queuing delays mean that the original causes of a
delay can be far in the past. In fact, in the extreme case where a
low-priority packet p is continuously delayed by higher priority
traffic, the set of flows that caused p’s delay is unbounded.

Existing work in flow measurement tends to perform poorly at
the extreme timescales needed by queue diagnosis. For example,
approaches like sketch-based heavy-hitter analysis [12, 14-17, 23~
26, 34] typically operate over fixed windows of time. If a packet
enters and exits the queue on these fixed window boundaries, the
above class of systems can track concurrent flows precisely. If the
packet does not, especially if it only spends a short time in the queue,
then fixed-window approaches can grossly overestimate the pres-
ence, size, and impact of other flows. Packet-sampling approaches
[10, 13, 18, 25, 37] suffer from similar issues, either necessitating
heavy sampling or failing to scale to longer periods of congestion.

Work in queue monitoring is slightly more relevant but still lacks
sufficient information to attribute delay precisely. For example, Con-
quest [6] is able to query whether a flow is a primary contributor
to the current queue whenever the flow’s packets enqueue. Un-
fortunately, it does not permit the reverse lookup: given a victim,
determine the culprits in its queuing.

In this work, we argue that when trying to determine the causes
of per-switch queuing delay, we must consider the current con-
gestion regime holistically. For example, in a microburst, the early
packets in the burst are, in some ways, just as culpable as the packet
immediately prior to the victim—if either did not exist, the victim
would be sent sooner. To that end, we present a taxonomy of the
low-level causes of per-packet queuing delay. Our taxonomy con-
sists of three types of culprits: packets that directly delay a victim
packet, packets in the current congestion regime that indirectly
delay the victim, and the original causes of the current congestion
regime. Together, these categories paint a picture of the current
period of congestion in its entirety: the first one captures the cur-
rent causes of the network’s congestion, and the last two capture
its historical roots.

This paper presents PrintQueue, a monitoring framework that
tracks the causes of queuing delays across an entire congestion
regime. PrintQueue leverages the flexibility of modern programma-
ble switch data/control planes to implement two novel mechanisms

https://doi.org/10.1145/3544216.3544257
https://doi.org/10.1145/3544216.3544257
https://doi.org/10.1145/3544216.3544257
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3544216.3544257&domain=pdf&date_stamp=2022-08-22

SIGCOMM ’22, August 22-26, 2022, Amsterdam, Netherlands

that, combined, track each of the causes of delay outlined above.
The mechanisms are designed for the specific challenges of each
effect. When tracking flows that directly or indirectly impact a vic-
tim packet, PrintQueue effectively handles both nanosecond-level
queuing and super-BDP impacts using a hierarchical, probabilistic
flow-tracking data structure. When tracking the historical roots of
congestion, PrintQueue efficiently handles the unbounded nature
of the congestion regimes by formulating a simple summarization
scheme that can implicate culprits at a packet-level granularity.

We implement PrintQueue on a Tofino switch and evaluate it
with multiple network traces. More specifically, this paper makes
the following contributions:

e We propose a set of metrics for describing a congestion regime.
We classify the entire collection of responsible packets into
three groups, i.e., direct, indirect, and original culprits. We show
the necessity to track each group with real-world examples.

e We present PrintQueue, the first system to efficiently track an
entire congestion regime. We design novel data structures, i.e.,
time windows and the queue monitor, for this purpose. The
data structures are compatible with non-FIFO queuing policies.

e We validate PrintQueue with a hardware prototype. Our eval-
uation shows the accuracy of PrintQueue is up to 3x times
higher than existing work while keeping the overhead 20x
times smaller.

This work does not raise any ethical issues.

2 DESCRIBING A CONGESTION REGIME

Modern networks operate on increasingly tight deadlines. Both
users and massively distributed computations expect and rely on
low latency. For these networks, queuing can have a major im-
pact on tail latency. Fundamentally, queuing delay is caused by
congestion and its resulting queue buildups. In modern networks,
these buildups tend to happen in waves. For example, consider
microbursts, short-lived periods of high utilization that typically
last for less than a millisecond and cause the majority of congestion
in some data center networks [35].

In a microburst, the delivery of a packet p is based on the send
time of the previous packet p;, denoted as p « p;. However, the
victim p ’s delay is not just the previous packet p;’s fault. p;’s send
time is decided by its previous packet pa, i.e., p1 « py. Similarly,
p2 < p3, and so on. In each case, eliminating the other packets
would have led to an earlier send time for p, and thus, they con-
tributed to p’s delay. So the culprits for p’s delay are the packets that
directly or indirectly point to p (¢«— p1 < p2 < p3---). This chain
of blame can extend all the way to the beginning of the microburst.
Notably, one cannot assign blame to any packet from before the
start of the microburst.

In this work, we argue that when trying to attribute the cause
of a delay, one must consider the entire congestion regime, i.e.,
the period extending from when the victim packet finally leaves
the queue back to when the queuing first began. More formally,
consider a queue with an arbitrary packet scheduling algorithm
and the burst of packets depicted in Figure 1. All packets depicted
are at least partially culpable in the victim’s queuing delay, not just
those in the queue when the victim arrives at t = 4.

517

Yiran Lei, Liangcheng Yu, Vincent Liu, and Mingwei Xu

Queue
OOIOOOOOOOOO = S

—_——

OOIOOOOOO =4 Oi=00
OoO0OmOO0 = OO0i=0000

O0mO = OOi=000000

—_——

4+ O0 = BO =00000000
5| BO =— O00O0OO0OOOO

S

—_

[}S)

W

direct indirect
.
6 | o>EOOO000QOO000
¢ original original

Figure 1: The congestion regime of a single burst of packets.
The red square represents a lower-priority victim packet; all
other packets are higher priority. The white packets increase
the queue depth to 2 and sustain the level. The grey packets
also impact the victim because of their high priority.

We further argue that we can comprehensively categorized these
packet-level causes of queuing delay into three groups:

Packets that directly delay the victim. For a victim packet that
is enqueued at t; and is dequeued at ty, the packets that directly
contribute to the delay of #; are precisely those that were dequeued
between t; and t;. This definition is independent of the packet
scheduling algorithm. In Figure 1, directly culpable packets are
marked in grey. In essence, the switch chooses to deliver these grey
packets instead of the victim.

Identifying direct culprits is essential to diagnosing many real
performance issues. For example, knowing the makeup of these
flows can reveal which flows are competing with the victim flow
and, e.g., whether those flows are just a few heavy hitters or a
collection of smaller higher-priority requests.

Packets that indirectly delay the victim. Using the same sce-
nario, packets that indirectly impact the victim are those that do
not directly delay the victim but may have (indirectly) caused the
queuing of a packet that did. More precisely, these are packets
whose dequeue time, tz’ is before the victim’s enqueue time, #1, and
where the queue depth is greater than zero for the entire period
[£5, t1]. The union of direct and indirect culprits equals the complete
congestion regime.

Identifying indirectly culpable packets is also important. For
instance, in the case of TCP incast or otherwise synchronized traffic
patterns [30], these congestion regimes are characterized by the
entire burst containing a single application’s traffic. In the light of
that, knowing indirect culprits can help identify the synchronized
behavior and the fact that there is sufficient capacity surrounding
the burst, which can be utilized by de-synchronizing the sends.

Packets that are the original causes of the congestion. Finally,
out of the indirectly culpable packets, a subset of packets have
slightly more blame—the packets that brought the queue to its
current level. Specifically, for a queue depth of n packets, there are

PrintQueue: Performance Diagnosis via Queue Measurement in the Data Plane

at least n packets whose arrival increased the depth of the queue.
In Figure 1, these are the packets that enqueue during ¢ = [0, 1].

Identifying these historical causes of queue buildup can also
be essential to differentiate specific types of behavior. Consider a
scenario where several large TCP WAN connections are sharing a
link but properly managing the queue. If a sudden burst of UDP
datagrams arrives, the queue will quickly balloon and stay high
before TCP has time to react. For a subsequent victim packet, the
direct culprits will not contain the burst—it has long since left
the network. The indirect culprits will also be misleading—the
majority (by volume) are the other TCP flows. The queue buildup
will properly implicate the datagram burst.

3 DESIGN OVERVIEW

For a victim packet, PrintQueue identifies each of the above types of
culprit packets. It further aggregates the culprits according to their
flow ID to get per-flow packet counts. The packet counts serve
as a measure of the flows’ contribution to the victim’s queuing
delay and a guide for the network operator’s subsequent actions.
Specifically, PrintQueue identifies each culprit flow with its:

e Flow ID, expressed as 5-Tuple (i.e., source and destination IP
addresses, ports, and protocol ID).
e Contribution, expressed as the total number of culprit packets.

Three key ideas underlie PrintQueue’s design.

(1) To accurately track culprits at fine-granularity, PrintQueue should
store individual packets and their dequeue times: For both direct and
indirect culprits, their definition and discernment rely on their de-
queue timestamps and their relation to the victim packets’ queuing
time. PrintQueue designs a data structure that enables networks
and operators to query an arbitrary time range (small or large) for
queuing-delay culprits. This query interval may correspond to the
total queuing time of a victim packet or the period of a single burst.

As the query interval is arbitrary, PrintQueue can serve as a gen-
eral framework for higher-level queue diagnosis tasks. For example,
operators can trigger a query when they receive a customer com-
plaint about high delays. Alternatively, the egress pipeline in the
data plane can automatically trigger a local query when it detects
high queuing for important traffic.

(2) To ensure scalability to unbounded time scales, PrintQueue must
compress packets to reduce overhead: While (1) provides the ability
to query for culprit packets at fine granularity after-the-fact, its
storage requirements are intractable. PrintQueue instead seeks to
store packets belonging to exponentially-growing periods in only
linearly-growing space. The data structure we propose is a time
window.

While time windows necessarily sacrifice accuracy, PrintQueue
leverages a hierarchical approach to create tiers of tracking ac-
curacy that are ordered by recency. In fact, for the most recent
‘time window, every packet is tracked precisely. As the packet ages,
PrintQueue compresses it into successively more approximated
structures that mirror packets to increasingly long intervals. Fig-
ure 2(b) depicts this process and compares it to the more linear
approach taken by existing work.

(3) To prioritize tracking of the original causes of congestion and do so
efficiently, PrintQueue should maintain a distinct list of packet-level

518

SIGCOMM °22, August 22-26, 2022, Amsterdam, Netherlands

space

space space | space | space | space | space
|
I
I
1
|

THBEMHRME

packets! packets:packetsipacketsipackets :packetsi packetsi

time 1 1 1 1 1 1 1
(a) Linear
space | space | space

1 1 \ N

' 1 \ Sso

ipackets; packets packets Tl

1 1 \ Sso

H ! \ N
time 1 2 4

(b) Exponential (PrintQueue)

Figure 2: The linear storage of most existing work versus
the exponential storage approach of PrintQueue’s time win-
dows mechanism. In PrintQueue, the most recent time period
(darkest) stores packets in full fidelity. Note that PrintQueue’s
space advantages hold even if the linear storage is not full
fidelity (but is still proportional), e.g., in the case of a sketch.

Programmable Switch ASIC

Ingress Pipeline

Data-plane Query

Port Data Path

Configuration

Time Windows

Queuing 5
© Queue Monitor

Periodical Polling

Records

Asynchronous QucryM &

Switch Local CPU

Analysis Program

Figure 3: The per-switch PrintQueue architecture. Print-
Queue is activated in specific ports by port configuration.
It tracks culprits with time windows and the queue monitor,
which are periodically checkpointed by the control plane.
Queries can be initiated either remotely (via an asynchro-
nous request) or locally (in the egress pipeline).

‘high-water’ marks: Finally, to find the original culprits, PrintQueue
reserves a unique data structure that stores packets causing queue
growth and evicts packets as the queue drains. The insertion and
eviction of packets track queue variations precisely. The data struc-
ture, queue monitor, explains which packets in history brought the
queue depth to its current level.

Architecture. As illustrated in Figure 3, modern switches are split
into ingress and egress packet processing pipelines, with the switch
buffer placed between the two. While different ports may share
buffer space or the same physical pipeline, queuing delay is almost
entirely a function of the activity on each independent egress port.

Network operators first enable PrintQueue on a per-egress-port
basis. On those ports, PrintQueue tracks culprits with two data-
plane components: time windows (for tracking both direct and

SIGCOMM ’22, August 22-26, 2022, Amsterdam, Netherlands

Metadata Description

egress_spec
eng_timestamp
deq_timedelta
eng_qdepth

The output port where a packet is forwarded.
The timestamp when a packet enqueues.

The time that a packet spends in the queue.
The queue depth when a packet enqueues.

Table 1: Metadata required by PrintQueue.

indirect culprits) and the queue monitor (for tracking the original
causes of congestion).

In the control plane, the analysis program periodically polls and
stores the contents of the time windows and queue monitor. Finally,
higher-layer applications query the culprits either by sending a
request to the analysis program or initiating a synchronous query
in the data-plane egress pipeline. The advantage of the latter is that
it can query the time windows before they age the directly culpable
packets into a less accurate window.

Metadata requirements. PrintQueue uses the metadata fields in
Table 1. This information is provided by both Tofino chip [2] and
BMv2 Simple Switch target [1]. The flow ID can be derived directly
from packet header contents.

We describe PrintQueue’s components in detail below.

4 TIME WINDOWS

Time windows are a hierarchical and probabilistic data structure
whose purpose is to answer queries of the form: for a given egress
port and query interval, which flows are occupying the port, and
how many packets do they contribute?

4.1 Physical Layout

Figure 4 depicts a set of T time windows (indexed from 0 to T — 1).
Each time window is implemented with a stateful register array
consisting of 2k cells. Cells are the smallest building block of a time
window and always hold the information of just a single packet.

The entire set of T time windows covers a fixed, contiguous
timespan, called the set period. Each time window also covers a
contiguous subset of the set period called a window period. Dif-
ferent time windows may cover differently sized window periods.
Similarly, each cell covers a contiguous subset of a window period
called a cell period. Like window periods, cell periods can also differ
in size, although all cells in a single time window will have the same
cell period. In this way, every point in time within the set period
can be attributed to precisely one time window and cell, although
a cell and its single packet’s worth of information can represent a
relatively large span of time (see Section 4.3 for why that is okay).

A key feature of time windows is that each successive window
period (and, thus, their cell periods) is exponentially larger than
the last. As hinted in Figure 2, if the length of window period 0
is 1 unit, the length of window period i is 221 ynits, where « is a
configurable compression parameter.

In each time window, the cell array functions as a ring buffer.
As time passes, PrintQueue continually writes packet information
into the time windows, evicting and overwriting the oldest cells of
each. Writing begins at cell 0 and proceeds to cell 2k — 1 before it
loops back to 0. To handle ring-buffer overflows, each cell stores a
monotonically increasing Cycle ID to distinguish cell periods from

519

Yiran Lei, Liangcheng Yu, Vincent Liu, and Mingwei Xu

A set of time windows

Time window 0 1
l refreshl -
— 2kcells
packet] pass ==
— —
drop |
A

i i - —
wwp:l>— wp:2¥ —! !«— window period: 2¢T~D

set period

Figure 4: The physical layout of a set of T time windows.
The bottom of the figure illustrates the timeline of packets
passing through this set of time windows and the relevant
granularities of time in PrintQueue.

32-bit timestamp — 0OXAAA9105A

Cycle ID Index
1010101010101 001000100000

1011010 |

Figure 5: An example to calculate cycle ID and index of times-
tamp 0xAAA9105A. The raw bits of the timestamp are shown
in the bottom row.

different cycles. As newer packets evict older ones, PrintQueue
combines the oldest 2% cells from time window i and stores the
combined value as the newest cell in time window i+1. This process
occurs recursively, sliding all of the windows as it goes.

To ensure packet-level granularity, PrintQueue sets the cell pe-
riod of time window 0 to a value less than the transmission delay
of a minimum-sized packet in the target network (e.g., 64 B). This
means that in time window 0, there will be no cell-level collisions—
each cell has at most one packet to store every cycle. Time win-
dow 0 typically has thousands of cells, making the window period
more than 100 ps. Note that this means queries for the culprits
in microbursts (lasting for 10s to 100s of microseconds) are often
guaranteed to have full precision and recall. Queries triggered soon
after the incurred delay are similarly advantaged.

4.2 Per-packet Procedure

We now delve deeper into the per-packet procedure and Print-
Queue’s method for retrieving culprits across arbitrary query in-
tervals. PrintQueue begins with the packet’s flow ID and dequeue
timestamp. The dequeue timestamp is computed as (enq_timesta-
mp + deq_timedelta).

Every packet then enters time windows at time window 0. The
cell index in time window 0 is based on the low bits of the dequeue
timestamp. In the beginning, time window 0 is empty, and all pack-
ets are placed directly. Over time, however, PrintQueue may need
to evict older packets. These packets are either dropped or passed
to the next time window as new inputs, with all time windows
repeating the process recursively. The rules for mapping packets to
certain positions in a window and deciding whether to pass packets
to the next time window are as follows.

PrintQueue: Performance Diagnosis via Queue Measurement in the Data Plane

Mapping rule. For a given time window, the mapping rule is used
to compute the cell index and cycle ID of the target packet. Both can
be computed from the dequeue timestamp using simple bitshifts.

For the first time window, PrintQueue shifts the timestamp to the
right by mg = |log, (min_pkt_tx_delay)] bits to obtain a trimmed
time-stamp (TTS). In today’s switches with nanosecond clocks,
mo = 6 (64ns) is typically sufficient. As each time window has
2k cells, the k least-significant bits of the TTS are used to index
into the appropriate cell, and the remainder of the TTS is stored
as a cycle ID. Figure 5 gives an example of this breakdown for an
example timestamp with mo =7, k = 12.

Recall that, when evicting, 2% cell periods are combined and
passed to the next window. Thus, each subsequent time window
shifts the TTS by an additional « bits; again, the lowest k bits of new
TTS are the index and the rest are the cycle ID. For example, suppose
a =1 and k = 12. In window 0, two cells with TTS 0x3fff000 and
0x3fffee1 are mapped into the same cell of window 1, whose TTS
is 0x1fff800. Algorithm 1 shows the procedure, in context.

More formally, time window i compresses all the packets in a
period of length 20+ 0 a single cell, and a span of 20! x 2k =
2mo*ai+k inio a window period. All together, the set period lasts

omotaitk _ 2”’7—12m0+k
= 2@ :

for a span of ZiT;Ol
Passing rule. Whenever there is a collision in a cell, PrintQueue
always chooses the newer one. PrintQueue applies a passing rule
to determine the fate of evicted packet record, i.e., whether it is
dropped or carried to the next time window.

Algorithm 1 (lines 6—-11) shows the passing rule logic. When a
new packet arrives at a time window, PrintQueue always stores it,
whether the cell is empty or not. If the cycle ID of the new packet
is larger than that of the evicted packet by exactly one, it passes the
evicted packet to the next time window as a new packet. Intuitively,
this means that PrintQueue only has one shot to pass each packet to
the next window—in the next window period immediately following
the packet’s arrival—and it will only pass the packet if it encounters
a packet sharing the same cell index during that window period. It
will not pass competing packets with the same cycle ID and cell
index. Packets that it does not pass will be deleted asynchronously
when another packet arrives in a future cycle.

Thus, deeper time windows correspond to older and larger peri-
ods of time. When a packet is passed into a given time window, it
is guaranteed to be the newest one.

Example. Figure 6 shows a concrete example of both rules in
action. During time step 1, cell 0 and cell 1 of time window 0 are
both passed to cell 0 of time window 1. Flow A’s packet arrives
first, but is evicted when flow B’s packet arrives. Because the two
packets have the same cycle ID, flow A’s packet is directly dropped
instead of being passed to the next time window.

At the end of time step 2, A’s incoming packet in cell 3 evicts
D’s packet in window 0. D’s packet will not be passed, as its cycle
ID is too far in the past.

At the end of time step 3, B’s packet in cell 0 of time window 0
is pushed out by the incoming A packet and passed to cell 0 of time
window 1. Because the cycle ID of the window 1 packet is exactly
one less than the incoming packet’s cycle ID, the window 1 packet

520

SIGCOMM °22, August 22-26, 2022, Amsterdam, Netherlands

Algorithm 1: Time windows data-plane algorithm

Input: packet p, mg, windows, k, o, T

1i=0 (i is the time window index)
2 pTTS = p.dequeue_timestamp >> my

3 whilei < T do

4 p.Index = pTTS & (2K — 1)

5 p.CycleID =pTTS >> k

6 e = windows[i][p.Index]

7 windows|[i][p.Index] = p

8 if p.CyclelD - e.CycleID == 1 then

9 ‘ p=e (pass the evicted packet)
10 else

11 ‘ break (drop and stop)
12 pITS =pTTS >> «

13 i++ (to the next window)
14 end

will be passed to cell 0 of window 2. The newly added packet in
cell 0 of window 1 will be replaced in time step 5.

4.3 Analysis and Proofs

Time windows intentionally drop some packets to better compress
the data. To recover from this loss, they leverage several attributes.

THEOREM 1. If the probability of a packet arriving at cell j in a
window period is zj, then the probability that no packet is passed
from cell j during the next window period is 1 — z?.

Proor. To pass a packet in the next window period, there must
be two incoming packets in the current and next window period,
respectively. The probability of this occurring is Z?. Otherwise, the

probability of no passing is 1 — z?. O

Ifzj isiid,letz=zp=---=2zyu_jandp=1 —z2,

THEOREM 2. If 2 is i.i.d. and there are n new packets stored in
the cells during the current window period, then:

e During the next window period, the subsequent window is

expected to store (%z%)n new packets, passed from the
current window.

¢ Subsequent time window’s z;, the probability that cell j stores
a new packet in every window period, is 1 — pza.

¢ Subsequent time window’s z; is i.i.d.

Proor. For simplicity but without loss of generality, randomly
select one from the new packets that are stored during the current
window period. For it to be stored in the next window period, there
are two requirements. First, the cell must have an incoming packet
during the next window period. The probability is z. Second, after
the selected packet is passed, no later packets of the same window
period push it out. 2% cells, indexed from 0 to 2% — 1, of the current
window are mapped to the single cell of the subsequent window.
Assume the selected packet falls into cell m (0 < m < 2% —1). Cells
b(m+1 < b < 2% - 1) should not pass any packets during the
next period. According to Theorem 1, the probability is pza_l_m.
Since the selected packet has equal probability to fall into any of

the 2% cells, the probability that no competing packets push out
o o - za
the selected packet is 2%, an:_ol p2iTlmm = 2% llf . With two

requirements satisfied simultaneously, the above probability that

SIGCOMM ’22, August 22-26, 2022, Amsterdam, Netherlands

Yiran Lei, Liangcheng Yu, Vincent Liu, and Mingwei Xu

000 | 00 | A 011 | 00 | A 010 [00 | B—o>00 [00 | BT
0] o0 |or | B 3o o] ¢ o0 [o1 | DAl
011 10 B 010 10 D 00 10 A
000 | 11 D 011 | 11 D 010 [11 A 00 11 C
0 1 2
(CycleID|Index [FlowID| (‘yclclbl Index |I<‘IuwlD (‘ycl(‘lDlln(lc,\'lFlowID CycleID|Index |FlowID)| (‘_\'clelDlln(lexlFlowID C_\clcl[)llndexlFlnw]D
001 00 B 000 00 A TT% 100 00 D 011 00 A 01 00 D 0 00 B
1| oo1 01 A 000 01 B 4| 100 01 B 011 01 C 01 01 A Ve
001 10 C 100 10 C i 011 10 B N 00 10 A
000 11 D 100 11 D 011 11 D 11 o0 11 C
(CycleID|Index [FlowID) (‘yclcl[)lln(l(-xlFlnwlD (‘yclcl[)llndex (CycleID|Index [FlowID) (‘yclelDlIndexlFIowlD (‘_\'clelDlln(lexlFlowID ('_\'clelDllndexlFlowlD
010 00 B 001 00 B 00 00 B 101 00 A 100 00 D 101 00 D 0 00 B
2| 010 |01 | D 001 [o1 | A 5 10 [o1 | B [|g01 |01 [A o |o1| C
010 10 D nd 001 10 C S 100 10 C 01 10 C \\l
010 11 A 000 11 D 101 11 B 100 11 D 01 11 D

Figure 6: Example of time windows in action; k = 2, T = 3, @ = 1. The diagram shows 6 time steps. In each, the incoming packets
are shown on the left; tables with black headings are the time windows. Arrows show packet movements during time steps.

the selected packet is stored in the subsequent window becomes

—p2®
2%2%. Since we select a packet randomly, the probability is

equivalent for all the new packets of the current window period.
Hence the subsequent window is expected to store (z%z%)n
packets.

The packet in each cell of the subsequent window comes from
any of 2% cells of the current window. The probability that no cell
passes packets is p2. Otherwise, the probability that a cell in the
subsequent window stores a new packet is 1 — pza.

The above proof applies to all cells in the subsequent window
so the subsequent window’s z; is i.i.d. O

PrintQueue uses the proportional property of Theorem 2 to
recover the original packet counts from the compressed data. In
the beginning, a flow with n packets is stored in the current time
window. As time goes by, the current window stores new packets,
dropping some of the n packets and passing the rest. In the subse-
quent window, the packet count of the flow is compressed as we
can only observe some of the n packets. Theorem 2 says that the
observed number is proportional to the original number n in the
preceding time window. We can easily recover the original number
1-p*

T-p °

Theorem 2 also shows that from the first time window, the pro-
portional property extends to all the time windows, each with new
z, p calculated from preceding windows’. We recover the packet
number all the way back to the first time window by repeating
the process: divide the number by the ratio between neighbor time
windows. Recall that the first time window tracks packets precisely.
Therefore, the estimated packet count in the first window is our
target value.

PrintQueue introduces coefficient to simplify the recovery pro-
cess. PrintQueue first computes the ratio between neighbor win-
dows. Then, PrintQueue defines coefficient[i] as the ratio of packet
count in window i to the packet count in the first window. Appar-
ently, coefficient[0] is 1. For deeper windows, multiply the ratios
recursively to get coefficient[i] as shown in Algorithm 2. Finally,

by dividing the observed number by the ratio 2%,2

521

if we observe a flow with n packets in window i, the flow’s real
packet number in that period is expected to be n / coeflicient[i].

The proportional property only provides an expected value with-
out any error bounds. Ideally, if the packets of all the flows fall
randomly into every 2¢ cells, the errors are minimal, because there
is no bias on passing specific flows’ packets. The errors still exist,
because for extremely small flows, none of their packets will survive
when traversing through windows multiple times. In practice, after
queuing, packets enter time windows not in the ideal way, but near
randomly. Before packets causing a congestion get enqueued, each
one is likely to experience small random delays when traversing
network ends, links, and switches. So packets of different flows are
slightly randomized in the queue, making near-random entry into
time windows in the egress pipeline. We show in Section 7 that
under different workloads the errors are limited.

Next, we need a concrete value of z in the first window to
apply Theorem 2 to all the time windows. Theorem 3 describes the
necessary assumptions to get the value and proves their sufficiency.
Suppose the transmission delay of minimal-sized packets at line rate
is d. The length of cell periods in time window 0 is 2"™0. 20 < d.

THEOREM 3. If the port of switch forwards packets at line rate
and the number of cells, 2%, is large, then:
o The first window’s zj, the probability of cell j storing a new
packet during every window period, is %
o The first window’s z; is i.i.d.

Proor. The window period 0 is 2k+mo_The number of new pack-
ok+myg

ets in that period is . With 2K cells and no packet collisions in
the first window, the probability that a cell stores a new packet ev-

zk;mo 2k = % Suppose a cell has already

ery window period is
ok+my
d
the window period. Each of the (2K — 1) unoccupied cells has the
probability of (zk;mo -+ @2k-1)~ % (~ because k is large)
to store a new packet. Therefore, whether a cell has already stored
a new packet does not affect the probability of the rest, proving z;

is iid. o

stored a new packet. There are still (— 1) packets coming in

PrintQueue: Performance Diagnosis via Queue Measurement in the Data Plane

Algorithm 2: Coefficient algorithm

Input: transmission delay of minimal-sized packets d, mo, a, T
Output: coefficient
coefficient[0] = 1
i=1
z=2"0 /d
acc=1
while i < T do
p=1- z?
acc=acc X (zx (1 —pza) / (1—=p) [2%)

coefficient[i] = acc
za

N BTSN R CRN

® 3

9 z=1-p
10 i++

11 end

3 stack bottom
ol TAr] |
0 I
I s
T Tl == A]
H B2 Al
1 ; ,
S)
1 B,2 Al
. , ,
© s e
1D4 B2 Al
. XN~ -
ERNOR i = —— == o i

Figure 7: Example of queue monitor in action. The queue
monitor is updated with each incoming packet in circle; black
arrows represent stack top pointers; red arrows indicate stack
increase/decrease; grey entries are stale.

In practice, PrintQueue sets the number of cells per window,
2k , to be a large number, typically 4096. Besides, time windows
diagnose performance issues at the time of congestion, indicating
the switch is forwarding packets at line rate in specific ports. There-

20

fore, with z = 7 in the first time window, PrintQueue calculates
the z, p and coefficients recursively and estimates per-flow packet
counts from all the time windows.

We note that time windows have higher accuracy in estimating
the packet counts of recent traffic that just enters. Their packets
are located in the initial time windows, with only a small portion of
dropped ones. Old traffic, on the contrary, is heavily compressed in
the deep windows, causing larger errors. Therefore, time windows’
accuracy is biased on traffic’s recency. PrintQueue leverages the
feature and designs the data-plane query to improve accuracy. We
introduce queries in Section 6.

5 QUEUE MONITOR

We augment the time window mechanism with a queue monitor
that tracks the original causes of the current congestion regime for
each port. The queue monitor uses enq_qdepth packet metadata
to learn the queue depth observed by every packet. For ease of
exposition, we discuss tracking for a single port and class of service;
multiple queues are tracked individually.

The primary challenge in the design of the queue monitor is
that the goal of the mechanism—to keep the original causes of
congestion—is fundamentally opposed to the recency bias of time
windows and switch queues. Instead, to retain packets’ influence

522

SIGCOMM °22, August 22-26, 2022, Amsterdam, Netherlands

Record Record

Periodic Polling
¢ » [0j0]...jof1]..

Read Periodic Polling
1lo].J1]1].] < » |10 |1]1]..

0[0]...[0 1.
RCCXWd

Binary of Register Index

[N q bits | k bits |

4 4
r(#ports) 2kcells

{
:

Read Read
Record Read special registers Record
Data-plane Query —* ——
LoJo[.Jo[n 1ol i) & a LofolJolt[.Jtol.J1]1]]
Read Read
Finish reading special registers a / lPeriodic Polling
Record / \ Finish reading Record
(—A—\
lofol . Jon[.JnJo[. [i1]] @ < » @& [ofof. [o[n[.[1Jol Ju]1].
I Periodic Polling — —

Read special registers Read Read special registers ~ Read

Figure 8: The decomposition of register index is shown in
the top left corner. As shown in the upper part, PrintQueue
flips the second-highest-order bit for asynchronous query.
In the lower part, PrintQueue flips the highest-order bit for
data-plane query and locks itself until the completion of
reading the special registers.

for an arbitrary time, PrintQueue’s queue monitor is structured as
a sparse stack.

Conceptually, the queue monitor is a register array with length
equal to the maximum length of the queue divided by the buffer al-
location granularity. Another register, acting as a ‘stack top’ pointer,
stores the latest queue depth at the time of enqueue. In the egress
stages, whenever a packet changes the queue depth (; — Iz), the
packet’s flow ID will be added to the I, register entry along with a
monotonically increasing sequence number. Each entry consists of
two parts. The upper half stores metadata for depth increases, and
the lower half stores decreases. PrintQueue updates the top pointer
in both cases.

In this mechanism, some entries (even those ‘under’ the top
pointer) may be empty or filled with stale packets. Consider the
instance in Figure 7: (1) at ¢ = 1, packet B brings the queue from a
depth of 2 to 5 units, (2) at ¢ = 2, the queue drains back to 2, and (3)
at t = 3 packet D brings the queue up to 7 units. Entries at 2, 5, and
7 record depth increases, but the entry at 5 is from a previous peak.
PrintQueue can correct for this using the aforementioned sequence
numbers. Specifically, the analysis program can, after the fact, walk
the array starting from 0 to the current value of the top pointer
and make note of the largest sequence number observed thus far.
Entries are only considered if they have a higher sequence number
than previous entries.

The above algorithm may generalize to other scheduling algo-
rithms. In particular, we note that efficient queue management
at high bandwidth puts certain restrictions on feasible hardware.
Others have observed this and created general frameworks for con-
structing advanced scheduling out of smaller FIFO queues [20, 22,
32, 33]. The queue monitor can track each priority or rank sepa-
rately.

6 ANALYSIS PROGRAM

The control-plane analysis program runs on the switch’s control
CPU. The analysis program has three main functions: (1) configure
PrintQueue on specific ports, (2) checkpoint/collect time window
and queue monitor data-plane state, and (3) execute queries.

SIGCOMM ’22, August 22-26, 2022, Amsterdam, Netherlands

6.1 Port Configuration

Users can activate the time windows and queue monitor on a per-
port basis, and they will track each port’s queues separately. Un-
der the hood, users first specify the number of ports activating
PrintQueue, denoted as #ports. PrintQueue rounds up #ports to the
nearest power of 2, denoted as r(#ports). PrintQueue then allo-
cates several large register arrays (one for the queue monitor and
T for the time windows). Every register array consists of r(#ports)
partitions, each intended for the use of a single port. The size of
the queue monitor array is a function of the number of ports and
maximum queue depth; the sizes of the time window arrays are a
function of the number of ports and the size of the time windows
structure.

PrintQueue contains a flow table in the ingress stages that matches
on the egress port and gates activation of PrintQueue’s mechanisms.
Specifically, the flow table matches the destination port and returns
the prefix of the port’s registers (i.e., the value of the g bits in
Figure 8). If no matching is found, the packet is ignored.

6.2 Frozen Register Reads

While the time windows and queue monitor are updated on ev-
ery packet, the analysis program reads them on a much coarser
granularity. Its reads are triggered in two ways: periodically (to
checkpoint the state) and on-demand (e.g., as a result of a data-plane
triggered query).

Periodic reads. The analysis program saves the values in the time
windows and queue monitor every set time in order to ensure that
it has culprit information for any possible query interval. More

specifically, a set of time windows covers a contiguous time span
aT
-1

T 2Mo*k PrintQueue must capture a snapshot of the
register state at least once per tg; before oldest unread values are
aged out of the time windows.

To ensure atomic and serializable reads of all of the data, Print-
Queue borrows a technique from Mantis [31] and periodically
‘freezes’ the full set of time windows and queue monitor. While
PrintQueue reads the frozen copy, the data plane continues to up-
date a second set of registers. As shown in Figure 8, PrintQueue
implements this by flipping the second-highest-order bit in the
register index every fg;, when the register set is fully loaded.

of tset = 2

On-demand reads. Reads can also be triggered on-demand to take
advantage of time windows’ recency bias, i.e., that recovery from
the initial time windows tends to be more accurate. Examples of
on-demand triggers include packets with unusually high queuing
delay, sampled members of a high-priority flow, or a special end-
host-generated probe.

In these cases, when PrintQueue sees a packet that requires diag-
nosis, the data plane immediately freezes the current data, directs
subsequent per-packet updates to a third set of registers, and sends
a notification to the control-plane analysis program. Periodic up-
dates will flip between the two unused sets of registers. The analysis
program, upon receiving the notification, knows the existence of
the on-demand read and starts to read the recently frozen regis-
ter set (we call it the ‘special’ registers). The notification contains
the triggering packets’ enqueue and dequeue timestamps, which
can act as the query interval. As shown in Figure 8, PrintQueue

523

Yiran Lei, Liangcheng Yu, Vincent Liu, and Mingwei Xu

Algorithm 3: Filter algorithm for time windows

Input: windows, T, k, «
11=0
2 TTS, CID, Idx = LatestCell(windows[0])
3 fori < Tdo
4 j=0
for j <Idx do
if windows[i][j].CycleID # CID then
‘ windows[i][j] = nil
J++

© ® g oW

end

for j < 2¥ do

if windows[i][j].CycleID + 1 # CID then
‘ windows[i][j] = nil

J++

end

TTS = (TTS =25) >> «
Idx = TTS & (2K — 1)
CID =TTS >> k

i++

(the most recently passed cell)

19 end

implements this by flipping the highest-order bit of register index
in the data plane. Note that only a single on-demand read can be in
progress at any point. Concurrent reads will be temporarily ignored
until PrintQueue can finish reading the special register set.

We note that the time periods covered by the periodically polled
registers and special registers do not overlap, because packet at any
time point would belong to only one register set.

6.3 Query Execution

After reading the registers, the analysis program stores the values
for use in query execution. Queries are distinguished by whether
they target information in the time windows or the queue monitor,
which accept different inputs and return different results:

e Time window queries accept a query interval as input and
return an estimate of the per-flow packet counts over that
period, whether for direct or indirect culprits.

e Queue monitor queries accept a query point as input and return
the list of original causes of congestion at the time instant
closest to the input time.

The queries are also classified into two types: asynchronous

and data-plane queries. The former accept arbitrary query inter-
vals/points in the control plane and retrieve packets from all the
registers. The latter, however, are initiated by packets in the data
plane, leverage the on-demand reads, and retrieve packets from
the special registers. Both are eventually executed by the analysis
program.
Time window queries. Querying time windows involves two
steps: filtering out stale cells and accumulating packet counts. Fil-
tering (Algorithm 3) is applied once to remove old packets that
have not yet been evicted from the raw time windows. LatestCell()
in line 2 iterates through all the cells in a window, finds the latest
one, and returns its TTS, cycle ID, and cell index. PrintQueue only
retains cells that are either (1) in the same cycle ID or (2) in the
previous cycle ID with an index greater than the latest cell, i.e.,
within one window period of the most recent cell.

When a query arrives, PrintQueue first determines the set of
applicable time windows. If the query interval crosses multiple

PrintQueue: Performance Diagnosis via Queue Measurement in the Data Plane

windows or window sets, PrintQueue splits it into disjoint pieces.
In each time window, it divides the per-flow packet counts by the
corresponding coefficient[i]. Finally, PrintQueue aggregates the
results from each window.

Queue monitor queries. Queue monitor queries also involve a
filtering and a retrieval step. Filtering is necessary to remove stale
entries that arise from the combination of fluctuating queue depths
and the sparse layout of the data structure. It occurs exactly as
described at the end of Section 5. As mentioned, when a query
arrives, PrintQueue returns the queue monitor snapshot closest to
the query time.

7 EVALUATION

We implement a prototype of PrintQueue on a Tofino programmable
switch. Time windows need 4 MAU stages for preparations and
two additional stages for each time window. The queue monitor
uses six, but these can be overlapped with the above. PrintQueue
consists of ~5000 lines of code in total.

7.1 Time Windows Performance

Testbed and workload. To evaluate the time windows mechanism,
we use a hardware testbed consisting of a single Tofino switch and
4 Linux servers. Each server has 2x 2.40 GHz Xeon E5-2620 v3 CPU
and 64 GB RAM. Two servers send traffic through 40 Gbps links,
while the other two receive the traffic through 10 Gbps links.

For workloads, we utilize the University of Wisconsin Data Cen-
ter Trace [4] (abbrev. UW) and two synthetic traces modeled after
well-known flow size distributions. The first pattern is from web
search tasks [3] (abbrev. WS), while the second is from a data min-
ing cluster [9] (abbrev. DM). Flows and packets arrive according to
Poisson processes. We use tcpreplay to emulate the TCP packet
traces. To scale up the traces to today’s link speeds, we leverage the
tcpreplay multiplier option and the Netmap [19] driver to ensure
the kernel can keep up. The two senders replay different pcap files.

In order to capture the ground-truth, the switch inserts a teleme-
try header into every packet that contains the enqueue/dequeue
timestamps and queue depth at the packet’s enqueue time. This
header is not required in a real PrintQueue deployment—only to
compute our evaluation metrics. On the receiver, the server lever-
ages DPDK [7] to process packets at line rate and store the telemetry
headers in files. The ground-truth per-flow packet counts are later
computed by parsing the files for their dequeue timestamps.

Methodology. We evaluate a range of configurations and examine
several classes of packets in each. To evaluate worst-case perfor-
mance, we assume asynchronous queries on periodically read data
unless otherwise specified. When we evaluate on-demand queries,
we examine performance for the packet that triggered the lookup.
Regardless of the query type, we choose a victim packet and pro-
vide its enqueue and dequeue time to the analysis program as the
query interval. Note that this corresponds to a query for the directly
culpable packets, but queries for indirect culprits are identical.
Separately, we examine the logged telemetry headers to compute
the ground truth of which packets were dequeued during the target
period. With both the time windows and the ground truth per-
flow packet counts, we use precision and recall to calculate the

524

SIGCOMM °22, August 22-26, 2022, Amsterdam, Netherlands

1.0 —&—= ¢ 10 f——at——————4——4—4
> >—N\:\: ey e,
- B = — . . .
(%] U S 0.9 I
v
£ v
208 =o08p 7
z it
8 ot B "
07 . 07 .
e PR °
06 . —=—UWDQ- - -UWAQ 0.6 .- —=—UWDQ--e-UWAQ
O .- —4—WSDQ - ¥ - WS AQ - o —A-WSDQ-v-WSAQ

—<4—DMDQ - » - DM AQ
12 25 510 10-15 1520 >20
Queue Depth (10%)

—<—DMDQ - » - DM AQ
2-5 510 10-15 15-20 >20
Queue Depth (10%)

(b) recall

0.5

.
1-2
(a) precision

Figure 9: Precision and recall versus queue depth under dif-
ferent workloads.

accuracy of PrintQueue. We first compute, for every flow in the
query period, the true positives of PrintQueue. Precision is the sum
of the true positives over PrintQueue’s cumulative packet count
estimate. Recall is the sum of the true positives over the ground
truth’s cumulative estimate. The time window result is equivalent
to the ground truth if and only if both precision and recall are 1.

Accuracy versus queue depth. We begin by analyzing accuracy
as a function of queue depth under our three workloads.

For a given victim packet, we classify its query into six groups
based on the queuing it encounters: 1k to 2k, 2k to 5k, 5k to 10k, 10k
to 15k, 15k to 20k, and above 20k. For asynchronous queries (abbrev.
AQ), we randomly sample 100 victim packets experiencing each
queue depth, query their direct causes of congestion, and compute
precision and recall of the results (larger sample sizes produced
similar results). For on-demand data-plane queries (abbrev. DQ),
we add a threshold in the data plane that initiates a query if they
observe each queue depth.

Figure 9 shows the average accuracy for each queue-depth group.
For data-plane queries, the accuracy is consistently high (>90%) be-
cause the queries are predominantly touching the least compressed
time windows. Accuracy decreases slightly for longer query inter-
vals as the first time window can no longer hold all the packets
of the target interval, pushing some culprits into deeper windows.
Somewhat surprisingly, for asynchronous queries, we see the op-
posite trend: the accuracy is higher for longer query intervals,
but decreases for shorter intervals as intervals have a chance of
falling into a more heavily approximated time window, which has
a disproportionate effect on short query intervals. Note that while
data-plane queries are always more accurate than asynchronous
queries, they must read an extra set of registers, which has a rate
limited by the efficiency of control plane polling. Thus, operators
should be judicious about initiating data-plane queries.

The accuracy differences among the three traces primarily stem
from packet size (UW: around 100 bytes, WS/DM: near MTU). With
a constant link rate of 10 Gbps, packets are forwarded at different
rates (UW: 9.1 Mpps with average packet interval 110 ns, WS/DM:
0.84 Mpps with average packet interval 1200 ns). We choose my = 10
and a smaller compression factor @ = 1 for WS/DM while my =
6, = 2for UW. T = 4 and k = 12 for all. Fundamentally, the
accuracy of UW is lower because the number of packets to track is
near 10X times larger than in WS/DM. Because of that, UW has to
use a bigger compression factor « = 2, leading to bigger errors.

Our Python analysis program front end can execute ~100 queries
per second.

SIGCOMM ’22, August 22-26, 2022, Amsterdam, Netherlands

Yiran Lei, Liangcheng Yu, Vincent Liu, and Mingwei Xu

1.0p — 1.0 _ 1.0r -
mg‘g’ 7 PrintQueue 4096x4 mg'g’ o H-g'gi /7
-OF _,;” rintQueue X .OF 4% PrintQueue .OF 4 PrintQueue
8 8-‘2‘: - - ~HashPipe 4096x5 8 8/2‘: - ~ - HashPipe 88‘2‘: - - - HashPipe
0.0F == —- = FlowRadar 4096x5 oof - FlowRadar 0.0F -- FlowRadar
0.0 01 02 03 04 05 06 07 08 09 10 0.0 Ol 02 03 04 05 06 07 08 09 10 0.0 Ol 02 03 04 05 06 07 08 09 lO
o Precision o Precision o Precision
o o 0 T 08 T
E 0.6r PrintQueue 4096x4 E 0.6- P Prle}leue E 0.6 e PrintQueue
o ~ - —HashPipe 4096x5 S - - - HashPipe o4 e - - - HashPipe
0.0k —- = FlowRadar 4096x5 oop —— " —— FlowRadar 00F ——— - FlowRadar
0.0 01 02 03 04R051106 07 08 09 10 0.0 0.1 02 0.3 0.4R0.510.6 0.7 0.8 09 1.0 0.0 01 02 ()3 04R05106 ()7 08 09 lO
ecal ecal ca
(@) 1k - 5k (b) 5k - 15k (©) >15k

Figure 10: PrintQueue versus HashPipe and FlowRadar with different queue-depth-based query intervals under UW traces. The
resource consumption of the primary data structures of each approach are listed in the graphs of the left-most column.

—a— PrintQueue P —@— PrintQueue R —8— PrintQueue P —@— PrintQueue R —m— PrintQueue P —@— PrintQueue R
1.0 —A— HashPipe P HashPipe R 1.0 —A— HashPipe P HashPipe R 1.0 —A— HashPipe P HashPipe R
0.9F —<«— FlowRadarP —»— FlowRadar R 0.9F —<— FlowRadarP —»— FlowRadar R 0.9 —<— FlowRadarP —»— FlowRadar R
038 R —y 08 038 .
07} = e 0.7 0.7 Za
§0.6 .>. ?o 6 Zos l// *
305 —* 305 305 . =
204 =t 204 204 ‘%{ =
03 0.3 03} ® / r —4
0.2 0.2 02t "
0.1 0.1 0.1
0.0 00— : : : : ‘ 0.0— ‘ ‘ ‘ ‘ ‘
12 2-5 510 10-15 1520 >20 12 25 510 10-15 1520 >20 12 25 5-10 10-15 1520 >20
Queue Depth (10%) Queue Depth (103) Queue Depth (10%)
(@a=2k=12T=4 b)a=2k=12T=5 (©a=3k=12T=4
Figure 11: PrintQueue versus related works with different parameters under UW traces.
Trace PrintQueue HashPipe FlowRadar to 5k), medium occupancy (5k to 15k), and high occupancy (>15k).
The median accuracy of PrintQueue is up to 3X times higher than
uw 0.684/0.634 0.396/0.341 0.391/0.350 .. Y Q P . &
that of existing work. The results of HashPipe and FlowRadar are
WS 0.909/0.864 0-801/0.582 0.763/0.582 similar, as they both capture the heavy hitters over the entire mon-
DM 0.977/0.948 0.838/0.671 0.838/0.671 : Y P Y

Table 2: Average precision/recall of PrintQueue, HashPipe,
and FlowRadar under different traces.

PrintQueue versus other systems. The above accuracy num-
bers significantly outperform existing work, which tends to collect
and reset the data structures at fixed intervals. To provide a fair
comparison, we use two recent proposals for flow-size estimation,
HashPipe [23] and FlowRadar [15], and set their reset intervals to
the set period of PrintQueue (as the periodic control plane polling
interval is the common bottleneck). These configurations result
in comparable SRAM requirements: HashPipe and FlowRadar use
4096 register entries in each of five stages, while PrintQueue uses
4096 cells in each of four time windows. We note that HashPipe
and FlowRadar are only queryable on the granularity of a reset pe-
riod. We, therefore, improve their estimations by prorating packet
counts using a multiplier equal to the length of the query interval
over the length of the total period. For fairness, we also only show
PrintQueue results on asynchronous queries, as data-plane queries
have much higher accuracy. We do not compare to sketches as they
cannot provide flow IDs, only aggregate byte counts.

As shown in Table 2, the average precision and recall of Print-
Queue is significantly higher than either HashPipe or FlowRadar
under all three workloads. We dig further into the UW traces, which
are the most challenging. Figure 10 shows the results for a few cat-
egories of queue depths (i.e., query intervals): low occupancy (1k

525

itoring interval. We note that these inaccuracies are not caused by
hash collisions or other factors that are traditionally the target of
heavy-hitter accuracy improvements. Rather, it is because they run
in fixed monitoring intervals, and proportional prorating of the
results can greatly over- or under-estimate reality.

PrintQueue versus related work with different parameters.
We repeat the comparisons under UW traces while varying the
parameters «, k, and T. Each subgraph of Figure 11 shows the
median accuracy of the sampled packets for different queue depths.

Across all evaluated parameter sets, PrintQueue outperforms
existing work at larger query intervals. PrintQueue can also outper-
form existing work at small query intervals, but its accuracy can
drop with higher values of « and T. For the former, it is because
the compression ratio becomes too large. In particular, the queuing
period of 1k to 2k depth is approximately 60 ps to 120 ps. With
a =3, T = 4, the cell periods of the four windows are 64 ns, 512 ns,
4 ps, and 32 ps. If the query interval falls into the last window-a
common occurrence in asynchronous queries—time windows must
estimate the per-flow packet counts with only four cells total. A
similar effect occurs when we increase T and add a time window
with lower accuracy. Larger query intervals decrease the proba-
bility of this worst-case scenario and enable queries to leverage
the advantages of PrintQueue’s exponential storage. Data-plane
queries do not suffer from either issue.

PrintQueue: Performance Diagnosis via Queue Measurement in the Data Plane

Duration (nanosecond) Duration (nanosecond)
218 219 220 220 P 219 220 22

1.00f

0.95]

0.90|

all

2 .85 —=— Top 50 3 0.85 —=— Top 50
E —e— Top 100 & —e— Top 100
0.801 —a— Top 200 080F 4 Top200
0.75 Top 500 0.75 Top 500
—>—All —r—All

0.70'

0 0

1 2 3
Time Window ID
(b) recall

1 2 3
Time Window ID

(a) precision

Figure 12: Top-K flows from a single time window under UW
traces.

02

2

_ ok T - ok T
2 z
o A
2 2
3 b 124 9 2114
£10 4 €10 - e
z z
3 <)
g g 212
g 5 3124
1) 172}
100 " " loﬂ L L L L L L L J
0.60 0.65 0.70 0.75 0.80 085 090 095 1.00

0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00

Precision Recall

(a) storage versus precision (b) storage versus recall

Figure 13: Storage versus accuracy with «, k, T under UW
traces.

In practice, network operators should choose the lowest values
of a and T that are feasible for their networks. We evaluate and
discuss relevant constraints later in this section.

Accuracy versus different windows for Top-K flows. We next
evaluate the relative accuracy of individual time window with the
metric of Top-K flow packet counts. We again focus on the UW
traces. We use @ = 1, k = 12, T = 5, and set the query interval to be
the full window period.

As shown in Figure 12, the accuracy of 5 windows varies. As
expected, the precision drops with the depth of windows, with the
first window achieving precision near 1 because it is un-compressed.
Any errors are due to mismatches between the packet size and
cell granularities. As in previous experiments, errors accumulate in
deeper windows. We note that since each packet has an approximate
probability of being passed across windows, PrintQueue tends to
store flows with more packets and so the top-k results remain
relatively accurate. For reference, during most window periods, the
flow number is on the order of thousands.

We observe that the UW traces [4] have an extreme long-tailed
distribution. In fact, the packet count of the 100th largest flow is
less than 1% of the packet count of the largest flow. When moving
to the Top-500 flows, the mice begin to overwhelm the elephants,
dropping the accuracy in larger time windows.

Accuracy versus control-plane overhead. One underlying con-
straint on the configuration of PrintQueue is the control plane’s
ability to extract results frequently enough to ensure no gaps in
time window coverage. Fundamentally, the control plane is limited
by analysis program I/O throughput and PCle bandwidth. Thus,
the limitation can be quantified in terms of the number of register
entries that can be read per second.

526

SIGCOMM °22, August 22-26, 2022, Amsterdam, Netherlands

20

Lol Hﬂﬂ

105 115 125 124 123 122
kT

CL <
S o

SRAM Utilization (%)
»

Linear : Exponential

=)
=

(A
1

(a) linear versus exponential (b) SRAM usage

Figure 14: Storage overhead comparison and SRAM.

50

[SRAM
—=— Precision AQ
—a— Recall AQ

=
= S

Accuracy
[~}
=
SRAM Utilization (%)

>

2 4 8
Port Number

Figure 15: Accuracy versus port number under WS traces.

Figure 13 shows the required PCle bandwidth in MB/s versus
precision and recall for different configurations of PrintQueue under
UW traces. We plot a rough estimate of the maximum capabilities of
our current analysis program implementation. When the data size
per second is above the line, the time needed to read the registers is
longer than PrintQueue’s set period, which leads to packets getting
evicted before they are successfully read and stored.

With larger a, the compression of PrintQueue becomes more
aggressive, reducing the I/O requirements of the system. At the
same time, larger « leads to reduced precision and recall. T has a
similar effect as each additional window has exponentially more
compression, but here too, more compression translates to less
accuracy.

The parameter k does not influence parameter feasibility, as the
set period and the number of registers are multiplied by the same
factor. Our experiment also shows that k has little impact on the
accuracy for asynchronous queries under UW traces. Larger values
of k are, however, preferred for data-plane queries as they mean
that longer query intervals fit within the initial time windows. The
configurations we chose in the preceding sections related to queries
are all below the feasibility line.

Linear storage versus exponential storage. We also compare
PrintQueue’s storage overhead with techniques like NetSight [10]
and BurstRadar [13]—two systems with linear storage requirements.
Figure 14(a) shows the ratio of the linear storage overhead to Print-
Queue’s overhead with different @, T. PrintQueue’s overhead is up
to three orders of magnitude less than linear storage methods.

SRAM overhead. We evaluate the data-plane SRAM overhead of
time windows across a range of k and T parameters. a does not
affect resource consumption. As shown in Figure 14(b), across dif-
ferent parameters, time windows consume only a moderate amount
of resources, making the system practical in real networks.

Port parallelism. We activate PrintQueue on several of ports
simultaneously and evaluate the accuracy for a single one. Naturally,
we can activate more ports if the SRAM usage grows linearly with

SIGCOMM ’22, August 22-26, 2022, Amsterdam, Netherlands

=)
S

burst
\ background
i

new TCP

[}
S

Arrival of new TCP flow

£

=N
S

Diagnosis

S
S

Packet Proportion (%)

Queue Depth (x10°)
=
=4

=)

Direct

Indirect
Types of Culprits

0.8 0.9 1.0 1.1

. Original
Enqueue Timestamp (x10° nanosecond)

(a) queue depth (b) direct, indirect, and original

Figure 16: Time windows versus queue monitor for tracking
the burst flow.

the port number. But the method does not scale as the port number
continues growing. Instead, we adjust parameters « and k to reduce
the total SRAM cost. Figure 15 shows accuracy of asynchronous
queries against the total data-plane SRAM utilization. With a = 2,
at most 10 ports can run PrintQueue in parallel. A further increase
is constrained by the PCle bandwidth limit of the local interface.

7.2 Queue Monitor Case Study

We show the effectiveness of the queue monitor qualitatively using
a case study. Specifically, we let one server send a background TCP
flow limited to ~90% of the link capacity (9 Gbps). Another server
first sends a burst of 10000 datagrams at a rate of 4 Gbps. After a
short time, it then begins a TCP flow at a low rate (0.5 Gbps).

As shown in Figure 16(a), the burst flow causes a rapid increase
in queue depth. While the burst flow lasts for only around 5 ms,
the queuing caused by the burst lasts for 376 ms (i.e., 76X times
longer than the burst period itself)! The new TCP flow arrives at
the blue arrow in Figure 16(a). At the star, PrintQueue leverages
time windows and the queue monitor to query the direct, indirect,
and original culprits to diagnose the high queuing delay of the new
TCP flow. In this setting, we expect to be able to implicate the burst
flow because, without it, the queuing would not exist or be nearly
as severe.

As shown in Figure 16, direct culprits consider the background
traffic the most significant contributor. They do not include any
packets of burst flow, as the packets have long before left the queue.
Indirect culprits have captured all the packets since the beginning
of the congestion. The burst flow can be found, but it is indistin-
guishable from a normal mouse flow. The results of the query for
the original culprits, instead correctly show that the culpability
of the burst flow is comparable to that of the background traffic
(5597:6096) despite their differences in total size.

The SRAM usage of queue monitor for a single port is 12.81% of
data-plane resources.

8 RELATED WORK

PrintQueue is related to a rich body of prior work in queue and per-
formance monitoring. In this section, we discuss the most relevant
work in these areas.

Queue measurement techniques. Others have previously noted
the importance of queue-based performance monitoring and pro-
posed methods to do so. Many of the earlier instances in this set
focus on the length of the queue rather than its contents [29, 35].

527

Yiran Lei, Liangcheng Yu, Vincent Liu, and Mingwei Xu

Many others rely on raw flow sampling [10, 11, 13, 18, 25, 37] to
reconstruct queue contents; compared to these approaches, Print-
Queue requires significantly less space and pipeline overhead.

One particularly relevant work to time windows is ConQuest [5,
6], which also tracks queue composition in the data plane using a
special snapshot-based data structure. However, ConQuest solves
a different problem. It judges whether the current packet’s flow is
the main contributor to queuing. To implicate the causes of delay
in a specific victim packet’s queuing, ConQuest would need offline
storage space linear to the total packets in the network. Further,
ConQuest only supports FIFO queues while PrintQueue’s time
windows are agnostic to the packet scheduling policy.

We also note that Microscope [8] makes a similar observation
about the importance of historical causes of queuing, but in the
context of network function performance. The specifics of packet
queuing delay and PrintQueue’s implementation on programmable
data planes introduce novel constraints.

Flow counting techniques. Prior work, e.g., FlowRadar [15], Tur-
boFlow [24], and CounterBraids [16], develops accurate per-flow
traffic counters. Heavy hitter detection techniques, e.g., HashPi-
pe [23], DOVE [14], and others [17, 26, 34], only track the traffic of
large flows. Flow counter techniques can provide flow information
along with its size like PrintQueue. But they work under fixed time
periods, failing to retrieve flows in arbitrary query intervals.

Bandwidth measurement techniques. Work [27] measures band-
width at all time scales. But it calculates total rates without the
knowledge of each flow’s contribution. The algorithms modify the
network stacks of end hosts and can not be applied in today’s
programmable switches.

Provenance. Prior work, e.g., Dapper [21], DTaP [36], Zeno [28],
gives detailed explanations of event causes in the distributed system.
PrintQueue expands the concept of provenance to packet queuing.
PrintQueue’s results can be incorporated into these higher-level
frameworks.

9 CONCLUSION

In this paper, we systematically classify the culprit packets of queu-
ing in switches. We present PrintQueue, a practical data-plane
monitoring system for tracking the provenance of packet-level
queuing delays at both small and large timescales. We design time
windows to capture direct and indirect culprits over any time span,
and queue monitor to track original culprit packets. We imple-
ment PrintQueue on a Tofino switch and evaluate it with multiple
network traces. Through evaluations, we show that PrintQueue
achieves high accuracy with limited overhead.

ACKNOWLEDGMENTS

We thank our shepherd Aurojit Panda and all the anonymous SIG-
COMM reviewers for their helpful and thoughtful comments. This
work was supported by the National Natural Science Foundation of
China under Grant 61832013. It was also funded in part by Google,
Meta, VMWare, and NSF grant CNS-1845749. Mingwei Xu is the
corresponding author.

PrintQueue: Performance Diagnosis via Queue Measurement in the Data Plane

REFERENCES

[1] [n.d.]. The BMv2 Simple Switch target. Website. ([n. d.]). https://github.com/

p4lang/behavioral-model/blob/main/docs/simple_switch.md.
[2

—

Open-Tofino.

[3] Mohammad Alizadeh, Albert Greenberg, David Maltz, Jitendra Padhye, Parveen
Patel, Balaji Prabhakar, Sudipta Sengupta, and Murari Sridharan. 2010. Data
center TCP (DCTCP). ACM SIGCOMM Computer Communication Review 40,

63-74. https://doi.org/10.1145/1851182.1851192
[4

flaa

characteristics- of-data-centers-in-the-wild/

w1
=

3229584.3229586
[6

=

streich, Steven A Monetti, and Tzuu-Yi Wang. 2019.

//doi.org/10.1145/3359989.3365408

[7] Linux Foundation. 2015. Data Plane Development Kit (DPDK). (2015). http:

/Iwww.dpdk.org

[8] Junzhi Gong, Yuliang Li, Bilal Anwer, Aman Shaikh, and Minlan Yu. 2020. Mi-
croscope: Queue-Based Performance Diagnosis for Network Functions. In Pro-
ceedings of the Annual Conference of the ACM Special Interest Group on Data
Communication on the Applications, Technologies, Architectures, and Protocols for
Computer Communication (SIGCOMM °20). Association for Computing Machinery,

New York, NY, USA, 390-403. https://doi.org/10.1145/3387514.3405876
[9

=

1592576
[10]

sessions/presentation/handigol

—
—

44, 4 (Aug. 2014), 3-14. https://doi.org/10.1145/2740070.2626292
[12]

measurement-large-traffic-aggregates-commodity- switches
[13

org/10.1145/3265723.3265731

2021.9651986
[15]

li-yuliang
[16]

https://doi.org/10.1145/1375457.1375472

[17] Jonatas Marques, Kirill Levchenko, and Luciano Gaspary. 2020. IntSight: Diag-
nosing SLO Violations with in-Band Network Telemetry. In Proceedings of the
16th International Conference on Emerging Networking EXperiments and Technolo-
gies (CoNEXT ’20). Association for Computing Machinery, New York, NY, USA,

[n. d.]. Intel Open-Tofino. Website. ([n. d.]). https://github.com/barefootnetworks/

Theophilus Benson, Aditya Akella, and Dave Maltz. 2010. Network Traffic
Characteristics of Data Centers in the Wild. In Internet Measurement Conference
(internet measurement conference ed.). Association for Computing Machinery,
Inc. https://www.microsoft.com/en-us/research/publication/network-traffic-

Xiaoqi Chen, Shir Landau Feibish, Yaron Koral, Jennifer Rexford, and Ori Rot-
tenstreich. 2018. Catching the Microburst Culprits with Snappy. In Proceedings
of the Afternoon Workshop on Self-Driving Networks (SelfDN 2018). Association
for Computing Machinery, New York, NY, USA, 22-28. https://doi.org/10.1145/

Xiaoqi Chen, Shir Landau Feibish, Yaron Koral, Jennifer Rexford, Ori Rotten-
Fine-Grained Queue
Measurement in the Data Plane. In Proceedings of the 15th International Con-
ference on Emerging Networking Experiments And Technologies (CONEXT ’19).
Association for Computing Machinery, New York, NY, USA, 15-29. https:

Albert Greenberg, James Hamilton, Navendu Jain, Srikanth Kandula, Changhoon
Kim, Parantap Lahiri, David Maltz, Parveen Patel, and Sudipta Sengupta. 2011.
VL2: A scalable and flexible data center network. ACM SIGCOMM Computer
Communication Review 39 (01 2011), 51-62. https://doi.org/10.1145/1594977.

Nikhil Handigol, Brandon Heller, Vimalkumar Jeyakumar, David Maziéres,
and Nick McKeown. 2014. I Know What Your Packet Did Last Hop: Using
Packet Histories to Troubleshoot Networks. In 11th USENIX Symposium on
Networked Systems Design and Implementation (NSDI 14). USENIX Associa-
tion, Seattle, WA, 71-85. https://www.usenix.org/conference/nsdil4/technical-

Vimalkumar Jeyakumar, Mohammad Alizadeh, Yilong Geng, Changhoon Kim,
and David Mazieres. 2014. Millions of Little Minions: Using Packets for Low
Latency Network Programming and Visibility. SIGCOMM Comput. Commun. Rev.

Lavanya Jose and Minlan Yu. 2011. Online Measurement of Large Traffic Ag-
gregates on Commodity Switches. In Workshop on Hot Topics in Management
of Internet, Cloud, and Enterprise Networks and Services (Hot-ICE 11). USENIX
Association, Boston, MA. https://www.usenix.org/conference/hot-ice11/online-

Raj Joshi, Ting Qu, Mun Choon Chan, Ben Leong, and Boon Thau Loo. 2018.
BurstRadar: Practical Real-Time Microburst Monitoring for Datacenter Networks.
In Proceedings of the 9th Asia-Pacific Workshop on Systems (APSys ’18). Association
for Computing Machinery, New York, NY, USA, Article 8, 8 pages. https://doi.

Yiran Lei, Yu Zhou, Yunsenxiao Lin, Mingwei Xu, and Yangyang Wang. 2021.
DOVE: Diagnosis-driven SLO Violation Detection. In 2021 IEEE 29th International
Conference on Network Protocols (ICNP). 1-11. https://doi.org/10.1109/ICNP52444.

Yuliang Li, Rui Miao, Changhoon Kim, and Minlan Yu. 2016. FlowRadar: A Better
NetFlow for Data Centers. In 13th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 16). USENIX Association, Santa Clara, CA, 311-
324. https://www.usenix.org/conference/nsdil6/technical-sessions/presentation/

Yi Lu, Andrea Montanari, Balaji Prabhakar, Sarang Dharmapurikar, and Ab-
dul Kabbani. 2008. Counter Braids: A Novel Counter Architecture for per-
Flow Measurement. In Proceedings of the 2008 ACM SIGMETRICS International
Conference on Measurement and Modeling of Computer Systems (SIGMETRICS
’08). Association for Computing Machinery, New York, NY, USA, 121-132.

528

(18]

(19]

[20

[22

[23

[24]

[25]

[26

(28]

[29

[30

[31

[32

(34]

(35]

SIGCOMM °22, August 22-26, 2022, Amsterdam, Netherlands

421-434. https://doi.org/10.1145/3386367.3431306

Jeff Rasley, Brent Stephens, Colin Dixon, Eric Rozner, Wes Felter, Kanak Agarwal,
John Carter, and Rodrigo Fonseca. 2014. Planck: Millisecond-Scale Monitoring
and Control for Commodity Networks. SIGCOMM Comput. Commun. Rev. 44, 4
(Aug. 2014), 407-418. https://doi.org/10.1145/2740070.2626310

Luigi Rizzo. 2012. Netmap: A Novel Framework for Fast Packet I/O. In Proceedings
of the 2012 USENIX Conference on Annual Technical Conference (USENIX ATC’12).
USENIX Association, USA, 9.

Vishal Shrivastav. 2019. Fast, Scalable, and Programmable Packet Scheduler in
Hardware. In Proceedings of the ACM Special Interest Group on Data Communica-
tion (SIGCOMM °19). Association for Computing Machinery, New York, NY, USA,
367-379. https://doi.org/10.1145/3341302.3342090

Benjamin H. Sigelman, Luiz André Barroso, Mike Burrows, Pat Stephenson,
Manoj Plakal, Donald Beaver, Saul Jaspan, and Chandan Shanbhag. 2010. Dapper,
a Large-Scale Distributed Systems Tracing Infrastructure. Technical Report. Google,
Inc. https://research.google.com/archive/papers/dapper-2010-1.pdf

Anirudh Sivaraman, Suvinay Subramanian, Mohammad Alizadeh, Sharad Chole,
Shang-Tse Chuang, Anurag Agrawal, Hari Balakrishnan, Tom Edsall, Sachin Katti,
and Nick McKeown. 2016. Programmable Packet Scheduling at Line Rate. In
Proceedings of the 2016 ACM SIGCOMM Conference (SSIGCOMM ’16). Association
for Computing Machinery, New York, NY, USA, 44-57. https://doi.org/10.1145/
2934872.2934899

Vibhaalakshmi Sivaraman, Srinivas Narayana, Ori Rottenstreich, S. Muthukr-
ishnan, and Jennifer Rexford. 2017. Heavy-Hitter Detection Entirely in the
Data Plane. In Proceedings of the Symposium on SDN Research (SOSR ’17). As-
sociation for Computing Machinery, New York, NY, USA, 164-176. https:
//doi.org/10.1145/3050220.3063772

John Sonchack, Adam J. Aviv, Eric Keller, and Jonathan M. Smith. 2018. Turboflow:
Information Rich Flow Record Generation on Commodity Switches. In Proceedings
of the Thirteenth EuroSys Conference (EuroSys ’18). Association for Computing
Machinery, New York, NY, USA, Article 11, 16 pages. https://doi.org/10.1145/
3190508.3190558

John Sonchack, Oliver Michel, Adam J. Aviv, Eric Keller, and Jonathan M. Smith.
2018. Scaling Hardware Accelerated Network Monitoring to Concurrent and Dy-
namic Queries with *flow (USENIX ATC ’18). USENIX Association, USA, 823-835.
Praveen Tammana, Rachit Agarwal, and Myungjin Lee. 2018. Distributed Network
Monitoring and Debugging with Switchpointer (NSDI'18). USENIX Association,
USA, 453-466.

Frank Uyeda, Luca Foschini, Fred Baker, Subhash Suri, and George Varghese. 2011.
Efficiently Measuring Bandwidth at All Time Scales. In 8th USENIX Symposium
on Networked Systems Design and Implementation (NSDI 11). USENIX Association,
Boston, MA. https://www.usenix.org/conference/nsdi11/efficiently-measuring-
bandwidth-all-time-scales

Yang Wu, Ang Chen, and Linh Thi Xuan Phan. 2019. Zeno: Diagnosing Per-
formance Problems with Temporal Provenance. In 16th USENIX Symposium on
Networked Systems Design and Implementation (NSDI 19). USENIX Association,
Boston, MA, 395-420. https://www.usenix.org/conference/nsdi19/presentation/
wu

Nofel Yaseen, John Sonchack, and Vincent Liu. 2018. Synchronized Network
Snapshots (SIGCOMM ’18). Association for Computing Machinery, New York,
NY, USA, 402-416. https://doi.org/10.1145/3230543.3230552

Nofel Yaseen, John Sonchack, and Vincent Liu. 2020. tpprof: A Network Traffic
Pattern Profiler. In 17th USENIX Symposium on Networked Systems Design and
Implementation (NSDI 20). USENIX Association, Santa Clara, CA, 1015-1030.
https://www.usenix.org/conference/nsdi20/presentation/yaseen

Liangcheng Yu, John Sonchack, and Vincent Liu. 2020. Mantis: Reactive Pro-
grammable Switches. In Proceedings of the Annual Conference of the ACM Spe-
cial Interest Group on Data Communication on the Applications, Technologies,
Architectures, and Protocols for Computer Communication (SIGCOMM °20). As-
sociation for Computing Machinery, New York, NY, USA, 296-309. https:
//doi.org/10.1145/3387514.3405870

Liangcheng Yu, John Sonchack, and Vincent Liu. 2022. Cebinae: Scalable In-
network Fairness Augmentation. In Proceedings of the Annual Conference of
the ACM Special Interest Group on Data Communication on the Applications,
Technologies, Architectures, and Protocols for Computer Communication (SIGCOMM
"22). Association for Computing Machinery, Amsterdam, Netherlands. https:
//doi.org/10.1145/3544216.3544240

Zhuolong Yu, Chuheng Hu, Jingfeng Wu, Xiao Sun, Vladimir Braverman,
Mosharaf Chowdhury, Zhenhua Liu, and Xin Jin. 2021. Programmable Packet
Scheduling with a Single Queue. In Proceedings of the 2021 ACM SIGCOMM 2021
Conference (SIGCOMM °21). Association for Computing Machinery, New York,
NY, USA, 179-193. https://doi.org/10.1145/3452296.3472887

Lihua Yuan, Chen-Nee Chuah, and Prasant Mohapatra. 2011. ProgME: Towards
Programmable Network Measurement. IEEE/ACM Trans. Netw. 19, 1 (feb 2011),
115-128. https://doi.org/10.1109/TNET.2010.2066987

Qiao Zhang, Vincent Liu, Hongyi Zeng, and Arvind Krishnamurthy. 2017. High-
Resolution Measurement of Data Center Microbursts. In Proceedings of the 2017
Internet Measurement Conference (IMC ’17). Association for Computing Machinery,

https://github.com/p4lang/behavioral-model/blob/main/docs/simple_switch.md
https://github.com/p4lang/behavioral-model/blob/main/docs/simple_switch.md
https://github.com/barefootnetworks/Open-Tofino
https://github.com/barefootnetworks/Open-Tofino
https://doi.org/10.1145/1851182.1851192
https://www.microsoft.com/en-us/research/publication/network-traffic-characteristics-of-data-centers-in-the-wild/
https://www.microsoft.com/en-us/research/publication/network-traffic-characteristics-of-data-centers-in-the-wild/
https://doi.org/10.1145/3229584.3229586
https://doi.org/10.1145/3229584.3229586
https://doi.org/10.1145/3359989.3365408
https://doi.org/10.1145/3359989.3365408
http://www.dpdk.org
http://www.dpdk.org
https://doi.org/10.1145/3387514.3405876
https://doi.org/10.1145/1594977.1592576
https://doi.org/10.1145/1594977.1592576
https://www.usenix.org/conference/nsdi14/technical-sessions/presentation/handigol
https://www.usenix.org/conference/nsdi14/technical-sessions/presentation/handigol
https://doi.org/10.1145/2740070.2626292
https://www.usenix.org/conference/hot-ice11/online-measurement-large-traffic-aggregates-commodity-switches
https://www.usenix.org/conference/hot-ice11/online-measurement-large-traffic-aggregates-commodity-switches
https://doi.org/10.1145/3265723.3265731
https://doi.org/10.1145/3265723.3265731
https://doi.org/10.1109/ICNP52444.2021.9651986
https://doi.org/10.1109/ICNP52444.2021.9651986
https://www.usenix.org/conference/nsdi16/technical-sessions/presentation/li-yuliang
https://www.usenix.org/conference/nsdi16/technical-sessions/presentation/li-yuliang
https://doi.org/10.1145/1375457.1375472
https://doi.org/10.1145/3386367.3431306
https://doi.org/10.1145/2740070.2626310
https://doi.org/10.1145/3341302.3342090
https://research.google.com/archive/papers/dapper-2010-1.pdf
https://doi.org/10.1145/2934872.2934899
https://doi.org/10.1145/2934872.2934899
https://doi.org/10.1145/3050220.3063772
https://doi.org/10.1145/3050220.3063772
https://doi.org/10.1145/3190508.3190558
https://doi.org/10.1145/3190508.3190558
https://www.usenix.org/conference/nsdi11/efficiently-measuring-bandwidth-all-time-scales
https://www.usenix.org/conference/nsdi11/efficiently-measuring-bandwidth-all-time-scales
https://www.usenix.org/conference/nsdi19/presentation/wu
https://www.usenix.org/conference/nsdi19/presentation/wu
https://doi.org/10.1145/3230543.3230552
https://www.usenix.org/conference/nsdi20/presentation/yaseen
https://doi.org/10.1145/3387514.3405870
https://doi.org/10.1145/3387514.3405870
https://doi.org/10.1145/3544216.3544240
https://doi.org/10.1145/3544216.3544240
https://doi.org/10.1145/3452296.3472887
https://doi.org/10.1109/TNET.2010.2066987

SIGCOMM ’22, August 22-26, 2022, Amsterdam, Netherlands

New York, NY, USA, 78-85. https://doi.org/10.1145/3131365.3131375

Wenchao Zhou, Suyog Mapara, Yiging Ren, Yang Li, Andreas Haeberlen, Zachary
Ives, Boon Thau Loo, and Micah Sherr. 2012. Distributed Time-Aware Provenance.
Proc. VLDB Endow. 6, 2 (Dec. 2012), 49-60. https://doi.org/10.14778/2535568.
2448939

Yibo Zhu, Nanxi Kang, Jiaxin Cao, Albert Greenberg, Guohan Lu, Ratul Mahajan,
Dave Maltz, Lihua Yuan, Ming Zhang, Ben Y. Zhao, and Haitao Zheng. 2015.
Packet-Level Telemetry in Large Datacenter Networks. In Proceedings of the 2015
ACM Conference on Special Interest Group on Data Communication (SIGCOMM
’15). Association for Computing Machinery, New York, NY, USA, 479-491.

[36]

[37]

A ARTIFACT APPENDIX
Abstract

PrintQueue’s artifact is publicly available, including the source code
and documents for all the mentioned components in the paper. The
artifact can reproduce the paper results. The detailed instructions to
build, deploy, and operate the system are introduced in the Github
repository.

Scope

The artifact is used to reproduce all the major results of PrintQueue.

Contents
The artifact includes the source code of PrintQueue, consisting of:

e P4 code running at Intel Tofino programmable switch, including
the data-plane code (implementation of time windows and

529

Yiran Lei, Liangcheng Yu, Vincent Liu, and Mingwei Xu

queue monitor) and control-plane code (read and filter registers;
execute queries).

e DPDK code running at receiver server, extracting and storing
PrintQueue telemetry headers.

o Code to simulate traces modelled after DCTCP and VL2 flow
distribution.

e Experiment data collected from our testing and script to repro-
duce the paper results.

Hosting
The aritifact is accessible via Github (please refer to the master
branch and the latest commit) and Zenodo.
e Githublink: https://github.com/A-Dying-Pig/PrintQueue/tree/
master
e Zenodo DOI: 10.5281/zen0do.6789638

Requirements
PrintQueue requires specific hardware and software environments:
o The switch code functioned on the Intel Tofino switch.
e The receiver code required DPDK-compatible NIC and DPDK
library.
o The packages required by Python scripts were listed in the
documents.

https://doi.org/10.1145/3131365.3131375
https://doi.org/10.14778/2535568.2448939
https://doi.org/10.14778/2535568.2448939
https://github.com/A-Dying-Pig/PrintQueue/tree/master
https://github.com/A-Dying-Pig/PrintQueue/tree/master

	Abstract
	1 Introduction
	2 Describing a Congestion Regime
	3 Design Overview
	4 Time Windows
	4.1 Physical Layout
	4.2 Per-packet Procedure
	4.3 Analysis and Proofs

	5 Queue Monitor
	6 Analysis Program
	6.1 Port Configuration
	6.2 Frozen Register Reads
	6.3 Query Execution

	7 Evaluation
	7.1 Time Windows Performance
	7.2 Queue Monitor Case Study

	8 Related Work
	9 Conclusion
	Acknowledgments
	References
	A Artifact Appendix

