
Print�eue: Performance Diagnosis via�eue Measurement
in the Data Plane

Yiran Lei†, Liangcheng Yu‡, Vincent Liu‡, Mingwei Xu†
†Tsinghua University, BNRist, Zhongguancun Laboratory ‡University of Pennsylvania

{leiyr20@mails., xumw@}tsinghua.edu.cn, {leoyu, liuv}@seas.upenn.edu

ABSTRACT
When diagnosing performance anomalies, it is often useful to rea-
son about why a packet experienced the queuing that it did. To that
end, we observe that queuing is both a result of historical e�ects
and the current state of the network. Further, both factors involve
short and long timescales by nature. Existing work fails to provide
insight that satis�es all of these needs.

This paper presents PrintQueue, a practical data-plane monitor-
ing system for tracking the provenance of packet-level delays at
both small and large timescales. We propose a set of metrics for de-
scribing ‘congestion regimes’ and present a set of novel data-plane
data structures that accurately track those metrics over arbitrary
time spans. We implement PrintQueue on a To�no switch and eval-
uate it with multiple network traces. Our evaluation shows that the
accuracy of PrintQueue is up to 3⇥ times higher while the overhead
is 20⇥ times smaller than existing work.

CCS CONCEPTS
•Networks!Data path algorithms;Programmable networks;
In-network processing; Network monitoring.

KEYWORDS
Queue measurement, Programmable networks, Data plane
ACM Reference Format:
Yiran Lei, Liangcheng Yu, Vincent Liu, and Mingwei Xu. 2022. PrintQueue:
Performance Diagnosis via Queue Measurement in the Data Plane. In ACM
SIGCOMM 2022 Conference (SIGCOMM ’22), August 22–26, 2022, Amsterdam,
Netherlands. ACM, New York, NY, USA, 14 pages. https://doi.org/10.1145/
3544216.3544257

1 INTRODUCTION
In today’s networks, performance issues can come from many dif-
ferent sources, whether a DoS attack, an ECMP miscon�guration,
TCP incast, or just an unlucky con�uence of application �ows con-
verging at a single link. Performance issues can also yield di�erent
impacts, e.g., dropped packets, SLA violations, or a degraded user
experience. However, almost all performance issues boil down to a
packet getting to its destination late or not at all.

As a result, visibility into a network’s queues is critical for diag-
nosing performance issues and answering questions such as: which
other �ows caused this packet to sit in this particular queue? Unlike

SIGCOMM ’22, August 22–26, 2022, Amsterdam, Netherlands
© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9420-8/22/08.
https://doi.org/10.1145/3544216.3544257

other possible sources of delay like routing issues or failures, queues
are simultaneously hard to predict (because of non-deterministic
packet arrival timing) and hard to reason about after the fact (due
to the high volume of tra�c involved). What is more, the original
causes of the delays can span arbitrary time scales. For shorter
time scales, prior work has found that, in some large networks,
microbursts as brief as 10s to 100s of microseconds are the norm,
not the exception [35]. For longer time scales, di�erentiated classes
of service, mechanisms like Layer-2 pause frames, and the cascad-
ing nature of queuing delays mean that the original causes of a
delay can be far in the past. In fact, in the extreme case where a
low-priority packet ? is continuously delayed by higher priority
tra�c, the set of �ows that caused ?’s delay is unbounded.

Existing work in �ow measurement tends to perform poorly at
the extreme timescales needed by queue diagnosis. For example,
approaches like sketch-based heavy-hitter analysis [12, 14–17, 23–
26, 34] typically operate over �xed windows of time. If a packet
enters and exits the queue on these �xed window boundaries, the
above class of systems can track concurrent �ows precisely. If the
packet does not, especially if it only spends a short time in the queue,
then �xed-window approaches can grossly overestimate the pres-
ence, size, and impact of other �ows. Packet-sampling approaches
[10, 13, 18, 25, 37] su�er from similar issues, either necessitating
heavy sampling or failing to scale to longer periods of congestion.

Work in queue monitoring is slightly more relevant but still lacks
su�cient information to attribute delay precisely. For example, Con-
quest [6] is able to query whether a �ow is a primary contributor
to the current queue whenever the �ow’s packets enqueue. Un-
fortunately, it does not permit the reverse lookup: given a victim,
determine the culprits in its queuing.

In this work, we argue that when trying to determine the causes
of per-switch queuing delay, we must consider the current con-
gestion regime holistically. For example, in a microburst, the early
packets in the burst are, in some ways, just as culpable as the packet
immediately prior to the victim—if either did not exist, the victim
would be sent sooner. To that end, we present a taxonomy of the
low-level causes of per-packet queuing delay. Our taxonomy con-
sists of three types of culprits: packets that directly delay a victim
packet, packets in the current congestion regime that indirectly
delay the victim, and the original causes of the current congestion
regime. Together, these categories paint a picture of the current
period of congestion in its entirety: the �rst one captures the cur-
rent causes of the network’s congestion, and the last two capture
its historical roots.

This paper presents PrintQueue, a monitoring framework that
tracks the causes of queuing delays across an entire congestion
regime. PrintQueue leverages the �exibility of modern programma-
ble switch data/control planes to implement two novel mechanisms

516

5IJT XPSL JT MJDFOTFE VOEFS B $SFBUJWF $PNNPOT "UUSJCVUJPO *OUFSOBUJPOBM ��� -JDFOTF�

https://doi.org/10.1145/3544216.3544257
https://doi.org/10.1145/3544216.3544257
https://doi.org/10.1145/3544216.3544257
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3544216.3544257&domain=pdf&date_stamp=2022-08-22

SIGCOMM ’22, August 22–26, 2022, Amsterdam, Netherlands Yiran Lei, Liangcheng Yu, Vincent Liu, and Mingwei Xu

that, combined, track each of the causes of delay outlined above.
The mechanisms are designed for the speci�c challenges of each
e�ect. When tracking �ows that directly or indirectly impact a vic-
tim packet, PrintQueue e�ectively handles both nanosecond-level
queuing and super-BDP impacts using a hierarchical, probabilistic
�ow-tracking data structure. When tracking the historical roots of
congestion, PrintQueue e�ciently handles the unbounded nature
of the congestion regimes by formulating a simple summarization
scheme that can implicate culprits at a packet-level granularity.

We implement PrintQueue on a To�no switch and evaluate it
with multiple network traces. More speci�cally, this paper makes
the following contributions:

• We propose a set of metrics for describing a congestion regime.
We classify the entire collection of responsible packets into
three groups, i.e., direct, indirect, and original culprits.We show
the necessity to track each group with real-world examples.

• We present PrintQueue, the �rst system to e�ciently track an
entire congestion regime. We design novel data structures, i.e.,
time windows and the queue monitor, for this purpose. The
data structures are compatible with non-FIFO queuing policies.

• We validate PrintQueue with a hardware prototype. Our eval-
uation shows the accuracy of PrintQueue is up to 3⇥ times
higher than existing work while keeping the overhead 20⇥
times smaller.

This work does not raise any ethical issues.

2 DESCRIBING A CONGESTION REGIME
Modern networks operate on increasingly tight deadlines. Both
users and massively distributed computations expect and rely on
low latency. For these networks, queuing can have a major im-
pact on tail latency. Fundamentally, queuing delay is caused by
congestion and its resulting queue buildups. In modern networks,
these buildups tend to happen in waves. For example, consider
microbursts, short-lived periods of high utilization that typically
last for less than a millisecond and cause the majority of congestion
in some data center networks [35].

In a microburst, the delivery of a packet ? is based on the send
time of the previous packet ?1, denoted as ? ?1. However, the
victim ? ’s delay is not just the previous packet ?1’s fault. ?1’s send
time is decided by its previous packet ?2, i.e., ?1 ?2. Similarly,
?2 ?3, and so on. In each case, eliminating the other packets
would have led to an earlier send time for ? , and thus, they con-
tributed to ?’s delay. So the culprits for ?’s delay are the packets that
directly or indirectly point to ? (?1 ?2 ?3 · · ·). This chain
of blame can extend all the way to the beginning of the microburst.
Notably, one cannot assign blame to any packet from before the
start of the microburst.

In this work, we argue that when trying to attribute the cause
of a delay, one must consider the entire congestion regime, i.e.,
the period extending from when the victim packet �nally leaves
the queue back to when the queuing �rst began. More formally,
consider a queue with an arbitrary packet scheduling algorithm
and the burst of packets depicted in Figure 1. All packets depicted
are at least partially culpable in the victim’s queuing delay, not just
those in the queue when the victim arrives at C = 4.

Queue
0

1

2

3

4

5

𝑡

direct indirect

originaloriginal
6

Figure 1: The congestion regime of a single burst of packets.
The red square represents a lower-priority victim packet; all
other packets are higher priority. The white packets increase
the queue depth to 2 and sustain the level. The grey packets
also impact the victim because of their high priority.

We further argue that we can comprehensively categorized these
packet-level causes of queuing delay into three groups:

Packets that directly delay the victim. For a victim packet that
is enqueued at C1 and is dequeued at C2, the packets that directly
contribute to the delay of C2 are precisely those that were dequeued
between C1 and C2. This de�nition is independent of the packet
scheduling algorithm. In Figure 1, directly culpable packets are
marked in grey. In essence, the switch chooses to deliver these grey
packets instead of the victim.

Identifying direct culprits is essential to diagnosing many real
performance issues. For example, knowing the makeup of these
�ows can reveal which �ows are competing with the victim �ow
and, e.g., whether those �ows are just a few heavy hitters or a
collection of smaller higher-priority requests.

Packets that indirectly delay the victim. Using the same sce-
nario, packets that indirectly impact the victim are those that do
not directly delay the victim but may have (indirectly) caused the
queuing of a packet that did. More precisely, these are packets
whose dequeue time, C 02 is before the victim’s enqueue time, C1, and
where the queue depth is greater than zero for the entire period
[C 02, C1]. The union of direct and indirect culprits equals the complete
congestion regime.

Identifying indirectly culpable packets is also important. For
instance, in the case of TCP incast or otherwise synchronized tra�c
patterns [30], these congestion regimes are characterized by the
entire burst containing a single application’s tra�c. In the light of
that, knowing indirect culprits can help identify the synchronized
behavior and the fact that there is su�cient capacity surrounding
the burst, which can be utilized by de-synchronizing the sends.

Packets that are the original causes of the congestion. Finally,
out of the indirectly culpable packets, a subset of packets have
slightly more blame—the packets that brought the queue to its
current level. Speci�cally, for a queue depth of = packets, there are

517

Print�eue: Performance Diagnosis via�eue Measurement in the Data Plane SIGCOMM ’22, August 22–26, 2022, Amsterdam, Netherlands

at least = packets whose arrival increased the depth of the queue.
In Figure 1, these are the packets that enqueue during C = [0, 1].

Identifying these historical causes of queue buildup can also
be essential to di�erentiate speci�c types of behavior. Consider a
scenario where several large TCP WAN connections are sharing a
link but properly managing the queue. If a sudden burst of UDP
datagrams arrives, the queue will quickly balloon and stay high
before TCP has time to react. For a subsequent victim packet, the
direct culprits will not contain the burst—it has long since left
the network. The indirect culprits will also be misleading—the
majority (by volume) are the other TCP �ows. The queue buildup
will properly implicate the datagram burst.

3 DESIGN OVERVIEW
For a victim packet, PrintQueue identi�es each of the above types of
culprit packets. It further aggregates the culprits according to their
�ow ID to get per-�ow packet counts. The packet counts serve
as a measure of the �ows’ contribution to the victim’s queuing
delay and a guide for the network operator’s subsequent actions.
Speci�cally, PrintQueue identi�es each culprit �ow with its:
• Flow ID, expressed as 5-Tuple (i.e., source and destination IP
addresses, ports, and protocol ID).

• Contribution, expressed as the total number of culprit packets.
Three key ideas underlie PrintQueue’s design.

(1) To accurately track culprits at �ne-granularity, PrintQueue should
store individual packets and their dequeue times: For both direct and
indirect culprits, their de�nition and discernment rely on their de-
queue timestamps and their relation to the victim packets’ queuing
time. PrintQueue designs a data structure that enables networks
and operators to query an arbitrary time range (small or large) for
queuing-delay culprits. This query interval may correspond to the
total queuing time of a victim packet or the period of a single burst.

As the query interval is arbitrary, PrintQueue can serve as a gen-
eral framework for higher-level queue diagnosis tasks. For example,
operators can trigger a query when they receive a customer com-
plaint about high delays. Alternatively, the egress pipeline in the
data plane can automatically trigger a local query when it detects
high queuing for important tra�c.

(2) To ensure scalability to unbounded time scales, PrintQueue must
compress packets to reduce overhead: While (1) provides the ability
to query for culprit packets at �ne granularity after-the-fact, its
storage requirements are intractable. PrintQueue instead seeks to
store packets belonging to exponentially-growing periods in only
linearly-growing space. The data structure we propose is a time
window.

While time windows necessarily sacri�ce accuracy, PrintQueue
leverages a hierarchical approach to create tiers of tracking ac-
curacy that are ordered by recency. In fact, for the most recent
‘time window,’ every packet is tracked precisely. As the packet ages,
PrintQueue compresses it into successively more approximated
structures that mirror packets to increasingly long intervals. Fig-
ure 2(b) depicts this process and compares it to the more linear
approach taken by existing work.

(3) To prioritize tracking of the original causes of congestion and do so
e�ciently, PrintQueue should maintain a distinct list of packet-level

time

space space space

packets

1 1 1 1 1 1 1

spacespacespacespace

packetspacketspacketspacketspacketspackets

(a) Linear

time

space space space

packetspacketspackets

1 2 4
(b) Exponential (PrintQueue)

Figure 2: The linear storage of most existing work versus
the exponential storage approach of PrintQueue’s time win-
dowsmechanism. In PrintQueue, themost recent time period
(darkest) stores packets in full�delity. Note that PrintQueue’s
space advantages hold even if the linear storage is not full
�delity (but is still proportional), e.g., in the case of a sketch.

Analysis Program

Ingress Pipeline Egress Pipeline

Programmable Switch ASIC

Periodical Polling

Forward Port
Configuration

Data Path

Asynchronous Query

Queuing

Switch Local CPU

Data-plane Query

Register
Records

Traffic
Manager

Time Windows
Queue Monitor

Figure 3: The per-switch PrintQueue architecture. Print-
Queue is activated in speci�c ports by port con�guration.
It tracks culprits with time windows and the queue monitor,
which are periodically checkpointed by the control plane.
Queries can be initiated either remotely (via an asynchro-
nous request) or locally (in the egress pipeline).

‘high-water’ marks: Finally, to �nd the original culprits, PrintQueue
reserves a unique data structure that stores packets causing queue
growth and evicts packets as the queue drains. The insertion and
eviction of packets track queue variations precisely. The data struc-
ture, queue monitor, explains which packets in history brought the
queue depth to its current level.

Architecture. As illustrated in Figure 3, modern switches are split
into ingress and egress packet processing pipelines, with the switch
bu�er placed between the two. While di�erent ports may share
bu�er space or the same physical pipeline, queuing delay is almost
entirely a function of the activity on each independent egress port.

Network operators �rst enable PrintQueue on a per-egress-port
basis. On those ports, PrintQueue tracks culprits with two data-
plane components: time windows (for tracking both direct and

518

SIGCOMM ’22, August 22–26, 2022, Amsterdam, Netherlands Yiran Lei, Liangcheng Yu, Vincent Liu, and Mingwei Xu

Metadata Description

egress_spec The output port where a packet is forwarded.
enq_timestamp The timestamp when a packet enqueues.
deq_timedelta The time that a packet spends in the queue.
enq_qdepth The queue depth when a packet enqueues.

Table 1: Metadata required by PrintQueue.

indirect culprits) and the queue monitor (for tracking the original
causes of congestion).

In the control plane, the analysis program periodically polls and
stores the contents of the time windows and queue monitor. Finally,
higher-layer applications query the culprits either by sending a
request to the analysis program or initiating a synchronous query
in the data-plane egress pipeline. The advantage of the latter is that
it can query the time windows before they age the directly culpable
packets into a less accurate window.

Metadata requirements. PrintQueue uses the metadata �elds in
Table 1. This information is provided by both To�no chip [2] and
BMv2 Simple Switch target [1]. The �ow ID can be derived directly
from packet header contents.

We describe PrintQueue’s components in detail below.

4 TIMEWINDOWS
Time windows are a hierarchical and probabilistic data structure
whose purpose is to answer queries of the form: for a given egress
port and query interval, which �ows are occupying the port, and
how many packets do they contribute?

4.1 Physical Layout
Figure 4 depicts a set of) time windows (indexed from 0 to) � 1).
Each time window is implemented with a stateful register array
consisting of 2: cells. Cells are the smallest building block of a time
window and always hold the information of just a single packet.

The entire set of) time windows covers a �xed, contiguous
timespan, called the set period. Each time window also covers a
contiguous subset of the set period called a window period. Dif-
ferent time windows may cover di�erently sized window periods.
Similarly, each cell covers a contiguous subset of a window period
called a cell period. Like window periods, cell periods can also di�er
in size, although all cells in a single time window will have the same
cell period. In this way, every point in time within the set period
can be attributed to precisely one time window and cell, although
a cell and its single packet’s worth of information can represent a
relatively large span of time (see Section 4.3 for why that is okay).

A key feature of time windows is that each successive window
period (and, thus, their cell periods) is exponentially larger than
the last. As hinted in Figure 2, if the length of window period 0
is 1 unit, the length of window period 8 is 2U8 units, where U is a
con�gurable compression parameter.

In each time window, the cell array functions as a ring bu�er.
As time passes, PrintQueue continually writes packet information
into the time windows, evicting and overwriting the oldest cells of
each. Writing begins at cell 0 and proceeds to cell 2: � 1 before it
loops back to 0. To handle ring-bu�er over�ows, each cell stores a
monotonically increasing Cycle ID to distinguish cell periods from

t

refresh

Time window 0 1 𝑇 − 1

pass
2𝑘cells

drop

packet
…

drop

pass pass

drop
drop

Cell
Flow ID
Cycle ID

A set of time windows

…
wp:1 wp:2𝛼 window period: 2𝛼(𝑇−1)

set period

cell period

Figure 4: The physical layout of a set of Z time windows.
The bottom of the �gure illustrates the timeline of packets
passing through this set of time windows and the relevant
granularities of time in PrintQueue.

32-bit timestamp – 0xAAA9105A
13bits 12bits

Trimmed Timestamp (TTS)
Cycle ID Index

1010101010101 001000100000 1011010

Figure 5: An example to calculate cycle ID and index of times-
tamp 0xAAA9105A. The raw bits of the timestamp are shown
in the bottom row.

di�erent cycles. As newer packets evict older ones, PrintQueue
combines the oldest 2U cells from time window 8 and stores the
combined value as the newest cell in time window 8+1. This process
occurs recursively, sliding all of the windows as it goes.

To ensure packet-level granularity, PrintQueue sets the cell pe-
riod of time window 0 to a value less than the transmission delay
of a minimum-sized packet in the target network (e.g., 64 B). This
means that in time window 0, there will be no cell-level collisions—
each cell has at most one packet to store every cycle. Time win-
dow 0 typically has thousands of cells, making the window period
more than 100 �s. Note that this means queries for the culprits
in microbursts (lasting for 10s to 100s of microseconds) are often
guaranteed to have full precision and recall. Queries triggered soon
after the incurred delay are similarly advantaged.

4.2 Per-packet Procedure
We now delve deeper into the per-packet procedure and Print-
Queue’s method for retrieving culprits across arbitrary query in-
tervals. PrintQueue begins with the packet’s �ow ID and dequeue
timestamp. The dequeue timestamp is computed as (enq_timesta-
mp + deq_timedelta).

Every packet then enters time windows at time window 0. The
cell index in time window 0 is based on the low bits of the dequeue
timestamp. In the beginning, time window 0 is empty, and all pack-
ets are placed directly. Over time, however, PrintQueue may need
to evict older packets. These packets are either dropped or passed
to the next time window as new inputs, with all time windows
repeating the process recursively. The rules for mapping packets to
certain positions in a window and deciding whether to pass packets
to the next time window are as follows.

519

Print�eue: Performance Diagnosis via�eue Measurement in the Data Plane SIGCOMM ’22, August 22–26, 2022, Amsterdam, Netherlands

Mapping rule. For a given time window, the mapping rule is used
to compute the cell index and cycle ID of the target packet. Both can
be computed from the dequeue timestamp using simple bitshifts.

For the �rst time window, PrintQueue shifts the timestamp to the
right by<0 = blog2 (min_pkt_tx_delay)c bits to obtain a trimmed
time-stamp (TTS). In today’s switches with nanosecond clocks,
<0 = 6 (64 ns) is typically su�cient. As each time window has
2: cells, the : least-signi�cant bits of the TTS are used to index
into the appropriate cell, and the remainder of the TTS is stored
as a cycle ID. Figure 5 gives an example of this breakdown for an
example timestamp with<0 = 7, : = 12.

Recall that, when evicting, 2U cell periods are combined and
passed to the next window. Thus, each subsequent time window
shifts the TTS by an additional U bits; again, the lowest : bits of new
TTS are the index and the rest are the cycle ID. For example, suppose
U = 1 and : = 12. In window 0, two cells with TTS 0x3fff000 and
0x3fff001 are mapped into the same cell of window 1, whose TTS
is 0x1fff800. Algorithm 1 shows the procedure, in context.

More formally, time window 8 compresses all the packets in a
period of length 2<0+U8 to a single cell, and a span of 2<0+U8 ⇥ 2: =
2<0+U8+: into a window period. All together, the set period lasts
for a span of

Õ)�1
8=0 2<0+U8+: = 2U) �1

2U�1 2<0+: .

Passing rule.Whenever there is a collision in a cell, PrintQueue
always chooses the newer one. PrintQueue applies a passing rule
to determine the fate of evicted packet record, i.e., whether it is
dropped or carried to the next time window.

Algorithm 1 (lines 6–11) shows the passing rule logic. When a
new packet arrives at a time window, PrintQueue always stores it,
whether the cell is empty or not. If the cycle ID of the new packet
is larger than that of the evicted packet by exactly one, it passes the
evicted packet to the next time window as a new packet. Intuitively,
this means that PrintQueue only has one shot to pass each packet to
the next window—in the next window period immediately following
the packet’s arrival—and it will only pass the packet if it encounters
a packet sharing the same cell index during that window period. It
will not pass competing packets with the same cycle ID and cell
index. Packets that it does not pass will be deleted asynchronously
when another packet arrives in a future cycle.

Thus, deeper time windows correspond to older and larger peri-
ods of time. When a packet is passed into a given time window, it
is guaranteed to be the newest one.

Example. Figure 6 shows a concrete example of both rules in
action. During time step 1, cell 0 and cell 1 of time window 0 are
both passed to cell 0 of time window 1. Flow A’s packet arrives
�rst, but is evicted when �ow B’s packet arrives. Because the two
packets have the same cycle ID, �ow A’s packet is directly dropped
instead of being passed to the next time window.

At the end of time step 2, A’s incoming packet in cell 3 evicts
D’s packet in window 0. D’s packet will not be passed, as its cycle
ID is too far in the past.

At the end of time step 3, B’s packet in cell 0 of time window 0
is pushed out by the incoming A packet and passed to cell 0 of time
window 1. Because the cycle ID of the window 1 packet is exactly
one less than the incoming packet’s cycle ID, the window 1 packet

Algorithm 1: Time windows data-plane algorithm
Input: packet p,<0 , windows, : , U ,)

1 8 = 0 (8 is the time window index)
2 p.TTS = p.dequeue_timestamp >> <0
3 while 8 <) do
4 p.Index = p.TTS & (2: � 1)
5 p.CycleID = p.TTS >> :
6 e = windows[8][p.Index]
7 windows[8][p.Index] = p
8 if p.CycleID - e.CycleID == 1 then
9 p = e (pass the evicted packet)

10 else
11 break (drop and stop)
12 p.TTS = p.TTS >> U
13 8++ (to the next window)
14 end

will be passed to cell 0 of window 2. The newly added packet in
cell 0 of window 1 will be replaced in time step 5.

4.3 Analysis and Proofs
Time windows intentionally drop some packets to better compress
the data. To recover from this loss, they leverage several attributes.

T������ 1. If the probability of a packet arriving at cell 9 in a
window period is I 9 , then the probability that no packet is passed
from cell 9 during the next window period is 1 � I29 .

P����. To pass a packet in the next window period, there must
be two incoming packets in the current and next window period,
respectively. The probability of this occurring is I29 . Otherwise, the
probability of no passing is 1 � I29 . ⇤

If I 9 is i.i.d., let I = I0 = · · · = I2:�1 and ? = 1 � I2.
T������ 2. If I 9 is i.i.d. and there are = new packets stored in

the cells during the current window period, then:
• During the next window period, the subsequent window is

expected to store (1
2U I

1�?2U

1�?)= new packets, passed from the
current window.

• Subsequent time window’s I 9 , the probability that cell 9 stores
a new packet in every window period, is 1 � ?2U .

• Subsequent time window’s I 9 is i.i.d.

P����. For simplicity but without loss of generality, randomly
select one from the new packets that are stored during the current
window period. For it to be stored in the next window period, there
are two requirements. First, the cell must have an incoming packet
during the next window period. The probability is I. Second, after
the selected packet is passed, no later packets of the same window
period push it out. 2U cells, indexed from 0 to 2U � 1, of the current
window are mapped to the single cell of the subsequent window.
Assume the selected packet falls into cell< (0  <  2U � 1). Cells
1 (< + 1  1  2U � 1) should not pass any packets during the
next period. According to Theorem 1, the probability is ?2

U�1�< .
Since the selected packet has equal probability to fall into any of
the 2U cells, the probability that no competing packets push out

the selected packet is 1
2U

Õ2U�1
<=0 ?2

U�1�< = 1
2U

1�?2U

1�? . With two
requirements satis�ed simultaneously, the above probability that

520

SIGCOMM ’22, August 22–26, 2022, Amsterdam, Netherlands Yiran Lei, Liangcheng Yu, Vincent Liu, and Mingwei Xu

0 1 2

0

1

2

3

4

5

CycleID Index FlowIDCycleID Index FlowID CycleID Index FlowIDCycleID Index FlowID
000 00 A
000 01 B

000 11 D

CycleID Index FlowID
000 00 A
000 01 B

000 11 D

CycleID Index FlowID CycleID Index FlowIDCycleID Index FlowID
001 00 B
001 01 A
001 10 C

CycleID Index FlowID
010 00 B
010 01 D
010 10 D
010 11 A

CycleID Index FlowIDCycleID Index FlowID
001 00 B
001 01 A
001 10 C
000 11 D

CycleID Index FlowID
00 00 B

CycleID Index FlowID
011 00 A
011 01 C
011 10 B
011 11 D

CycleID Index FlowID
010 00 B
010 01 D
010 10 D
010 11 A

CycleID Index FlowID
00 00 B

00 10 A
00 11 C

CycleID Index FlowID

CycleID Index FlowID
100 00 D
100 01 B
100 10 C
100 11 D

CycleID Index FlowID
011 00 A
011 01 C
011 10 B
011 11 D

CycleID Index FlowID
01 00 D
01 01 A
00 10 A
00 11 C

CycleID Index FlowID
0 00 B

CycleID Index FlowID
101 00 A

101 11 B

CycleID Index FlowID
100 00 D
100 01 B
100 10 C
100 11 D

CycleID Index FlowID
01 00 D
01 01 A
01 10 C
01 11 D

CycleID Index FlowID
0 00 B
0 01 C

Figure 6: Example of time windows in action; k = 2, Z = 3, " = 1. The diagram shows 6 time steps. In each, the incoming packets
are shown on the left; tables with black headings are the time windows. Arrows show packet movements during time steps.

the selected packet is stored in the subsequent window becomes
1
2U I

1�?2U

1�? . Since we select a packet randomly, the probability is
equivalent for all the new packets of the current window period.

Hence the subsequent window is expected to store (1
2U I

1�?2U

1�?)=
packets.

The packet in each cell of the subsequent window comes from
any of 2U cells of the current window. The probability that no cell
passes packets is ?2

U
. Otherwise, the probability that a cell in the

subsequent window stores a new packet is 1 � ?2U .
The above proof applies to all cells in the subsequent window

so the subsequent window’s I 9 is i.i.d. ⇤

PrintQueue uses the proportional property of Theorem 2 to
recover the original packet counts from the compressed data. In
the beginning, a �ow with = packets is stored in the current time
window. As time goes by, the current window stores new packets,
dropping some of the = packets and passing the rest. In the subse-
quent window, the packet count of the �ow is compressed as we
can only observe some of the = packets. Theorem 2 says that the
observed number is proportional to the original number = in the
preceding time window. We can easily recover the original number

by dividing the observed number by the ratio 1
2U I

1�?2U

1�? .
Theorem 2 also shows that from the �rst time window, the pro-

portional property extends to all the time windows, each with new
I, ? calculated from preceding windows’. We recover the packet
number all the way back to the �rst time window by repeating
the process: divide the number by the ratio between neighbor time
windows. Recall that the �rst time window tracks packets precisely.
Therefore, the estimated packet count in the �rst window is our
target value.

PrintQueue introduces coe�cient to simplify the recovery pro-
cess. PrintQueue �rst computes the ratio between neighbor win-
dows. Then, PrintQueue de�nes coe�cient[8] as the ratio of packet
count in window 8 to the packet count in the �rst window. Appar-
ently, coe�cient[0] is 1. For deeper windows, multiply the ratios
recursively to get coe�cient[8] as shown in Algorithm 2. Finally,

if we observe a �ow with = packets in window 8 , the �ow’s real
packet number in that period is expected to be = / coe�cient[8].

The proportional property only provides an expected value with-
out any error bounds. Ideally, if the packets of all the �ows fall
randomly into every 2U cells, the errors are minimal, because there
is no bias on passing speci�c �ows’ packets. The errors still exist,
because for extremely small �ows, none of their packets will survive
when traversing through windows multiple times. In practice, after
queuing, packets enter time windows not in the ideal way, but near
randomly. Before packets causing a congestion get enqueued, each
one is likely to experience small random delays when traversing
network ends, links, and switches. So packets of di�erent �ows are
slightly randomized in the queue, making near-random entry into
time windows in the egress pipeline. We show in Section 7 that
under di�erent workloads the errors are limited.

Next, we need a concrete value of I in the �rst window to
apply Theorem 2 to all the time windows. Theorem 3 describes the
necessary assumptions to get the value and proves their su�ciency.
Suppose the transmission delay of minimal-sized packets at line rate
is 3 . The length of cell periods in time window 0 is 2<0 . 2<0  3 .

T������ 3. If the port of switch forwards packets at line rate
and the number of cells, 2: , is large, then:
• The �rst window’s I 9 , the probability of cell 9 storing a new
packet during every window period, is 2<0

3 .
• The �rst window’s I 9 is i.i.d.

P����. The window period 0 is 2:+<0 . The number of new pack-
ets in that period is 2:+<0

3 . With 2: cells and no packet collisions in
the �rst window, the probability that a cell stores a new packet ev-
ery window period is 2:+<0

3 ÷ 2: = 2<0
3 . Suppose a cell has already

stored a new packet. There are still (2:+<0
3 � 1) packets coming in

the window period. Each of the (2: � 1) unoccupied cells has the
probability of (2:+<0

3 � 1) ÷ (2: � 1) ⇡ 2<0
3 (⇡ because : is large)

to store a new packet. Therefore, whether a cell has already stored
a new packet does not a�ect the probability of the rest, proving I 9
is i.i.d. ⇤

521

Print�eue: Performance Diagnosis via�eue Measurement in the Data Plane SIGCOMM ’22, August 22–26, 2022, Amsterdam, Netherlands

Algorithm 2: Coe�cient algorithm
Input: transmission delay of minimal-sized packets 3 ,<0 , U ,)
Output: coe�cient

1 coe�cient[0] = 1
2 8 = 1
3 I = 2<0 / 3
4 022 = 1
5 while 8 <) do
6 ? = 1 � I2
7 022= 022 ⇥ (I ⇥ (1 � ?2U) / (1 � ?) / 2U)
8 coe�cient[8] = 022
9 I = 1 � ?2U

10 8++
11 end

A,10

1

3

2

𝑡

A

B

C

D

stack bottom

B,2 A,1

B,2 A,1
C,3

D,4 B,2 A,1
C,3

Figure 7: Example of queue monitor in action. The queue
monitor is updatedwith each incoming packet in circle; black
arrows represent stack top pointers; red arrows indicate stack
increase/decrease; grey entries are stale.

In practice, PrintQueue sets the number of cells per window,
2: , to be a large number, typically 4096. Besides, time windows
diagnose performance issues at the time of congestion, indicating
the switch is forwarding packets at line rate in speci�c ports. There-
fore, with I = 2<0

3 in the �rst time window, PrintQueue calculates
the I, ? and coe�cients recursively and estimates per-�ow packet
counts from all the time windows.

We note that time windows have higher accuracy in estimating
the packet counts of recent tra�c that just enters. Their packets
are located in the initial time windows, with only a small portion of
dropped ones. Old tra�c, on the contrary, is heavily compressed in
the deep windows, causing larger errors. Therefore, time windows’
accuracy is biased on tra�c’s recency. PrintQueue leverages the
feature and designs the data-plane query to improve accuracy. We
introduce queries in Section 6.

5 QUEUE MONITOR
We augment the time window mechanism with a queue monitor
that tracks the original causes of the current congestion regime for
each port. The queue monitor uses enq_qdepth packet metadata
to learn the queue depth observed by every packet. For ease of
exposition, we discuss tracking for a single port and class of service;
multiple queues are tracked individually.

The primary challenge in the design of the queue monitor is
that the goal of the mechanism—to keep the original causes of
congestion—is fundamentally opposed to the recency bias of time
windows and switch queues. Instead, to retain packets’ in�uence

1 bit q bits k bits1 bit

𝑟(#𝑝𝑜𝑟𝑡𝑠) 2kcells

Binary of Register Index

Read

Record

0 …0 0 1 … 0 …0 0 1 …

Record

Read

0 …0 0 1 … 1 …0 1 …1

Record

Read

0 …0 0 1 … 1 …0 1 …1

Read special registers Record

0 …0 0 1 … 1 …0 1 …1

Record

Read

Finish reading

Read

0 …0 0 1 … 1 …0 1 …1

Read special registersRead special registers Read

Record

Data-plane Query

Periodic Polling

Periodic Polling

Finish reading special registers

Periodic Polling

1 …0 1 …1

Read

Record

1 …0 1 …1

Read

Record
Periodic Polling

Figure 8: The decomposition of register index is shown in
the top left corner. As shown in the upper part, PrintQueue
�ips the second-highest-order bit for asynchronous query.
In the lower part, PrintQueue �ips the highest-order bit for
data-plane query and locks itself until the completion of
reading the special registers.

for an arbitrary time, PrintQueue’s queue monitor is structured as
a sparse stack.

Conceptually, the queue monitor is a register array with length
equal to the maximum length of the queue divided by the bu�er al-
location granularity. Another register, acting as a ‘stack top’ pointer,
stores the latest queue depth at the time of enqueue. In the egress
stages, whenever a packet changes the queue depth (;1 ! ;2), the
packet’s �ow ID will be added to the ;2 register entry along with a
monotonically increasing sequence number. Each entry consists of
two parts. The upper half stores metadata for depth increases, and
the lower half stores decreases. PrintQueue updates the top pointer
in both cases.

In this mechanism, some entries (even those ‘under’ the top
pointer) may be empty or �lled with stale packets. Consider the
instance in Figure 7: (1) at C = 1, packet B brings the queue from a
depth of 2 to 5 units, (2) at C = 2, the queue drains back to 2, and (3)
at C = 3 packet D brings the queue up to 7 units. Entries at 2, 5, and
7 record depth increases, but the entry at 5 is from a previous peak.
PrintQueue can correct for this using the aforementioned sequence
numbers. Speci�cally, the analysis program can, after the fact, walk
the array starting from 0 to the current value of the top pointer
and make note of the largest sequence number observed thus far.
Entries are only considered if they have a higher sequence number
than previous entries.

The above algorithm may generalize to other scheduling algo-
rithms. In particular, we note that e�cient queue management
at high bandwidth puts certain restrictions on feasible hardware.
Others have observed this and created general frameworks for con-
structing advanced scheduling out of smaller FIFO queues [20, 22,
32, 33]. The queue monitor can track each priority or rank sepa-
rately.

6 ANALYSIS PROGRAM
The control-plane analysis program runs on the switch’s control
CPU. The analysis program has three main functions: (1) con�gure
PrintQueue on speci�c ports, (2) checkpoint/collect time window
and queue monitor data-plane state, and (3) execute queries.

522

SIGCOMM ’22, August 22–26, 2022, Amsterdam, Netherlands Yiran Lei, Liangcheng Yu, Vincent Liu, and Mingwei Xu

6.1 Port Con�guration
Users can activate the time windows and queue monitor on a per-
port basis, and they will track each port’s queues separately. Un-
der the hood, users �rst specify the number of ports activating
PrintQueue, denoted as #ports. PrintQueue rounds up #ports to the
nearest power of 2, denoted as A (#ports). PrintQueue then allo-
cates several large register arrays (one for the queue monitor and
) for the time windows). Every register array consists of A (#ports)
partitions, each intended for the use of a single port. The size of
the queue monitor array is a function of the number of ports and
maximum queue depth; the sizes of the time window arrays are a
function of the number of ports and the size of the time windows
structure.

PrintQueue contains a �ow table in the ingress stages thatmatches
on the egress port and gates activation of PrintQueue’s mechanisms.
Speci�cally, the �ow table matches the destination port and returns
the pre�x of the port’s registers (i.e., the value of the @ bits in
Figure 8). If no matching is found, the packet is ignored.

6.2 Frozen Register Reads
While the time windows and queue monitor are updated on ev-
ery packet, the analysis program reads them on a much coarser
granularity. Its reads are triggered in two ways: periodically (to
checkpoint the state) and on-demand (e.g., as a result of a data-plane
triggered query).

Periodic reads. The analysis program saves the values in the time
windows and queue monitor every set time in order to ensure that
it has culprit information for any possible query interval. More
speci�cally, a set of time windows covers a contiguous time span
of Cset = 2U) �1

2U�1 2
<0+: . PrintQueue must capture a snapshot of the

register state at least once per Cset before oldest unread values are
aged out of the time windows.

To ensure atomic and serializable reads of all of the data, Print-
Queue borrows a technique from Mantis [31] and periodically
‘freezes’ the full set of time windows and queue monitor. While
PrintQueue reads the frozen copy, the data plane continues to up-
date a second set of registers. As shown in Figure 8, PrintQueue
implements this by �ipping the second-highest-order bit in the
register index every Cset, when the register set is fully loaded.

On-demand reads. Reads can also be triggered on-demand to take
advantage of time windows’ recency bias, i.e., that recovery from
the initial time windows tends to be more accurate. Examples of
on-demand triggers include packets with unusually high queuing
delay, sampled members of a high-priority �ow, or a special end-
host-generated probe.

In these cases, when PrintQueue sees a packet that requires diag-
nosis, the data plane immediately freezes the current data, directs
subsequent per-packet updates to a third set of registers, and sends
a noti�cation to the control-plane analysis program. Periodic up-
dates will �ip between the two unused sets of registers. The analysis
program, upon receiving the noti�cation, knows the existence of
the on-demand read and starts to read the recently frozen regis-
ter set (we call it the ‘special’ registers). The noti�cation contains
the triggering packets’ enqueue and dequeue timestamps, which
can act as the query interval. As shown in Figure 8, PrintQueue

Algorithm 3: Filter algorithm for time windows
Input: windows,) , : , U

1 8 = 0
2 TTS, CID, Idx = LatestCell(windows[0])
3 for 8 <) do
4 9 = 0
5 for 9  Idx do
6 if windows[8][9].CycleID < CID then
7 windows[8][9] = nil
8 9++
9 end

10 for 9 < 2: do
11 if windows[8][9].CycleID + 1 < CID then
12 windows[8][9] = nil
13 9++
14 end
15 TTS = (TTS �2:) >> U (the most recently passed cell)
16 Idx = TTS & (2: � 1)
17 CID = TTS >> :
18 8++
19 end

implements this by �ipping the highest-order bit of register index
in the data plane. Note that only a single on-demand read can be in
progress at any point. Concurrent reads will be temporarily ignored
until PrintQueue can �nish reading the special register set.
We note that the time periods covered by the periodically polled
registers and special registers do not overlap, because packet at any
time point would belong to only one register set.

6.3 Query Execution
After reading the registers, the analysis program stores the values
for use in query execution. Queries are distinguished by whether
they target information in the time windows or the queue monitor,
which accept di�erent inputs and return di�erent results:
• Time window queries accept a query interval as input and
return an estimate of the per-�ow packet counts over that
period, whether for direct or indirect culprits.

• Queue monitor queries accept a query point as input and return
the list of original causes of congestion at the time instant
closest to the input time.

The queries are also classi�ed into two types: asynchronous
and data-plane queries. The former accept arbitrary query inter-
vals/points in the control plane and retrieve packets from all the
registers. The latter, however, are initiated by packets in the data
plane, leverage the on-demand reads, and retrieve packets from
the special registers. Both are eventually executed by the analysis
program.
Time window queries. Querying time windows involves two
steps: �ltering out stale cells and accumulating packet counts. Fil-
tering (Algorithm 3) is applied once to remove old packets that
have not yet been evicted from the raw time windows. LatestCell()
in line 2 iterates through all the cells in a window, �nds the latest
one, and returns its TTS, cycle ID, and cell index. PrintQueue only
retains cells that are either (1) in the same cycle ID or (2) in the
previous cycle ID with an index greater than the latest cell, i.e.,
within one window period of the most recent cell.

When a query arrives, PrintQueue �rst determines the set of
applicable time windows. If the query interval crosses multiple

523

Print�eue: Performance Diagnosis via�eue Measurement in the Data Plane SIGCOMM ’22, August 22–26, 2022, Amsterdam, Netherlands

windows or window sets, PrintQueue splits it into disjoint pieces.
In each time window, it divides the per-�ow packet counts by the
corresponding coe�cient[8]. Finally, PrintQueue aggregates the
results from each window.

Queue monitor queries. Queue monitor queries also involve a
�ltering and a retrieval step. Filtering is necessary to remove stale
entries that arise from the combination of �uctuating queue depths
and the sparse layout of the data structure. It occurs exactly as
described at the end of Section 5. As mentioned, when a query
arrives, PrintQueue returns the queue monitor snapshot closest to
the query time.

7 EVALUATION
We implement a prototype of PrintQueue on a To�no programmable
switch. Time windows need 4 MAU stages for preparations and
two additional stages for each time window. The queue monitor
uses six, but these can be overlapped with the above. PrintQueue
consists of ⇠5000 lines of code in total.

7.1 Time Windows Performance
Testbed and workload. To evaluate the time windows mechanism,
we use a hardware testbed consisting of a single To�no switch and
4 Linux servers. Each server has 2⇥ 2.40 GHz Xeon E5-2620 v3 CPU
and 64GB RAM. Two servers send tra�c through 40Gbps links,
while the other two receive the tra�c through 10Gbps links.

For workloads, we utilize the University of Wisconsin Data Cen-
ter Trace [4] (abbrev. UW) and two synthetic traces modeled after
well-known �ow size distributions. The �rst pattern is from web
search tasks [3] (abbrev. WS), while the second is from a data min-
ing cluster [9] (abbrev. DM). Flows and packets arrive according to
Poisson processes. We use tcpreplay to emulate the TCP packet
traces. To scale up the traces to today’s link speeds, we leverage the
tcpreplay multiplier option and the Netmap [19] driver to ensure
the kernel can keep up. The two senders replay di�erent pcap �les.

In order to capture the ground-truth, the switch inserts a teleme-
try header into every packet that contains the enqueue/dequeue
timestamps and queue depth at the packet’s enqueue time. This
header is not required in a real PrintQueue deployment—only to
compute our evaluation metrics. On the receiver, the server lever-
ages DPDK [7] to process packets at line rate and store the telemetry
headers in �les. The ground-truth per-�ow packet counts are later
computed by parsing the �les for their dequeue timestamps.

Methodology.We evaluate a range of con�gurations and examine
several classes of packets in each. To evaluate worst-case perfor-
mance, we assume asynchronous queries on periodically read data
unless otherwise speci�ed. When we evaluate on-demand queries,
we examine performance for the packet that triggered the lookup.
Regardless of the query type, we choose a victim packet and pro-
vide its enqueue and dequeue time to the analysis program as the
query interval. Note that this corresponds to a query for the directly
culpable packets, but queries for indirect culprits are identical.

Separately, we examine the logged telemetry headers to compute
the ground truth of which packets were dequeued during the target
period. With both the time windows and the ground truth per-
�ow packet counts, we use precision and recall to calculate the

1-2 2-5 5-10 10-15 15-20 >20
0.5

0.6

0.7

0.8

0.9

1.0

Pr
ec
is
io
n

Queue Depth (103)

 UW DQ UW AQ
 WS DQ WS AQ
 DM DQ DM AQ

(a) precision

1-2 2-5 5-10 10-15 15-20 >20
0.5

0.6

0.7

0.8

0.9

1.0

R
ec
al
l

Queue Depth (103)

 UW DQ UW AQ
 WS DQ WS AQ
 DM DQ DM AQ

(b) recall

Figure 9: Precision and recall versus queue depth under dif-
ferent workloads.

accuracy of PrintQueue. We �rst compute, for every �ow in the
query period, the true positives of PrintQueue. Precision is the sum
of the true positives over PrintQueue’s cumulative packet count
estimate. Recall is the sum of the true positives over the ground
truth’s cumulative estimate. The time window result is equivalent
to the ground truth if and only if both precision and recall are 1.

Accuracy versus queue depth. We begin by analyzing accuracy
as a function of queue depth under our three workloads.

For a given victim packet, we classify its query into six groups
based on the queuing it encounters: 1k to 2k, 2k to 5k, 5k to 10k, 10k
to 15k, 15k to 20k, and above 20k. For asynchronous queries (abbrev.
AQ), we randomly sample 100 victim packets experiencing each
queue depth, query their direct causes of congestion, and compute
precision and recall of the results (larger sample sizes produced
similar results). For on-demand data-plane queries (abbrev. DQ),
we add a threshold in the data plane that initiates a query if they
observe each queue depth.

Figure 9 shows the average accuracy for each queue-depth group.
For data-plane queries, the accuracy is consistently high (>90%) be-
cause the queries are predominantly touching the least compressed
time windows. Accuracy decreases slightly for longer query inter-
vals as the �rst time window can no longer hold all the packets
of the target interval, pushing some culprits into deeper windows.
Somewhat surprisingly, for asynchronous queries, we see the op-
posite trend: the accuracy is higher for longer query intervals,
but decreases for shorter intervals as intervals have a chance of
falling into a more heavily approximated time window, which has
a disproportionate e�ect on short query intervals. Note that while
data-plane queries are always more accurate than asynchronous
queries, they must read an extra set of registers, which has a rate
limited by the e�ciency of control plane polling. Thus, operators
should be judicious about initiating data-plane queries.

The accuracy di�erences among the three traces primarily stem
from packet size (UW: around 100 bytes, WS/DM: near MTU). With
a constant link rate of 10Gbps, packets are forwarded at di�erent
rates (UW: 9.1Mpps with average packet interval 110 ns, WS/DM:
0.84Mpps with average packet interval 1200 ns).We choose<0 = 10
and a smaller compression factor U = 1 for WS/DM while<0 =
6, U = 2 for UW.) = 4 and : = 12 for all. Fundamentally, the
accuracy of UW is lower because the number of packets to track is
near 10⇥ times larger than in WS/DM. Because of that, UW has to
use a bigger compression factor U = 2, leading to bigger errors.

Our Python analysis program front end can execute⇠100 queries
per second.

524

SIGCOMM ’22, August 22–26, 2022, Amsterdam, Netherlands Yiran Lei, Liangcheng Yu, Vincent Liu, and Mingwei Xu

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0.0
0.2
0.4
0.6
0.8
1.0

CD
F

Precision

 PrintQueue 4096 4
 HashPipe 4096 5
 FlowRadar 4096 5

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0.0
0.2
0.4
0.6
0.8
1.0

CD
F

Recall

 PrintQueue 4096 4
 HashPipe 4096 5
 FlowRadar 4096 5

(a) 1k – 5k

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0.0
0.2
0.4
0.6
0.8
1.0

C
D
F

Precision

 PrintQueue
 HashPipe
 FlowRadar

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0.0
0.2
0.4
0.6
0.8
1.0

C
D
F

Recall

 PrintQueue
 HashPipe
 FlowRadar

(b) 5k – 15k

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0.0
0.2
0.4
0.6
0.8
1.0

C
D
F

Precision

 PrintQueue
 HashPipe
 FlowRadar

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0.0
0.2
0.4
0.6
0.8
1.0

C
D
F

Recall

 PrintQueue
 HashPipe
 FlowRadar

(c) >15k

Figure 10: PrintQueue versus HashPipe and FlowRadar with di�erent queue-depth-based query intervals under UW traces. The
resource consumption of the primary data structures of each approach are listed in the graphs of the left-most column.

1-2 2-5 5-10 10-15 15-20 >20
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0 PrintQueue P PrintQueue R

 HashPipe P HashPipe R
 FlowRadar P FlowRadar R

A
cc
ur
ac
y

Queue Depth (103)

(a) U = 2, : = 12,) = 4

1-2 2-5 5-10 10-15 15-20 >20
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0 PrintQueue P PrintQueue R

 HashPipe P HashPipe R
 FlowRadar P FlowRadar R

A
cc
ur
ac
y

Queue Depth (103)

(b) U = 2, : = 12,) = 5

1-2 2-5 5-10 10-15 15-20 >20
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

A
cc
ur
ac
y

Queue Depth (103)

 PrintQueue P PrintQueue R
 HashPipe P HashPipe R
 FlowRadar P FlowRadar R

(c) U = 3, : = 12,) = 4

Figure 11: PrintQueue versus related works with di�erent parameters under UW traces.

Trace PrintQueue HashPipe FlowRadar

UW 0.684/0.634 0.396/0.341 0.391/0.350
WS 0.909/0.864 0.801/0.582 0.763/0.582
DM 0.977/0.948 0.838/0.671 0.838/0.671

Table 2: Average precision/recall of PrintQueue, HashPipe,
and FlowRadar under di�erent traces.

PrintQueue versus other systems. The above accuracy num-
bers signi�cantly outperform existing work, which tends to collect
and reset the data structures at �xed intervals. To provide a fair
comparison, we use two recent proposals for �ow-size estimation,
HashPipe [23] and FlowRadar [15], and set their reset intervals to
the set period of PrintQueue (as the periodic control plane polling
interval is the common bottleneck). These con�gurations result
in comparable SRAM requirements: HashPipe and FlowRadar use
4096 register entries in each of �ve stages, while PrintQueue uses
4096 cells in each of four time windows. We note that HashPipe
and FlowRadar are only queryable on the granularity of a reset pe-
riod. We, therefore, improve their estimations by prorating packet
counts using a multiplier equal to the length of the query interval
over the length of the total period. For fairness, we also only show
PrintQueue results on asynchronous queries, as data-plane queries
have much higher accuracy. We do not compare to sketches as they
cannot provide �ow IDs, only aggregate byte counts.

As shown in Table 2, the average precision and recall of Print-
Queue is signi�cantly higher than either HashPipe or FlowRadar
under all three workloads. We dig further into the UW traces, which
are the most challenging. Figure 10 shows the results for a few cat-
egories of queue depths (i.e., query intervals): low occupancy (1k

to 5k), medium occupancy (5k to 15k), and high occupancy (>15k).
The median accuracy of PrintQueue is up to 3⇥ times higher than
that of existing work. The results of HashPipe and FlowRadar are
similar, as they both capture the heavy hitters over the entire mon-
itoring interval. We note that these inaccuracies are not caused by
hash collisions or other factors that are traditionally the target of
heavy-hitter accuracy improvements. Rather, it is because they run
in �xed monitoring intervals, and proportional prorating of the
results can greatly over- or under-estimate reality.

PrintQueue versus related work with di�erent parameters.
We repeat the comparisons under UW traces while varying the
parameters U , : , and) . Each subgraph of Figure 11 shows the
median accuracy of the sampled packets for di�erent queue depths.

Across all evaluated parameter sets, PrintQueue outperforms
existing work at larger query intervals. PrintQueue can also outper-
form existing work at small query intervals, but its accuracy can
drop with higher values of U and) . For the former, it is because
the compression ratio becomes too large. In particular, the queuing
period of 1k to 2k depth is approximately 60 �s to 120 �s. With
U = 3,) = 4, the cell periods of the four windows are 64 ns, 512 ns,
4 �s, and 32 �s. If the query interval falls into the last window–a
common occurrence in asynchronous queries—time windows must
estimate the per-�ow packet counts with only four cells total. A
similar e�ect occurs when we increase) and add a time window
with lower accuracy. Larger query intervals decrease the proba-
bility of this worst-case scenario and enable queries to leverage
the advantages of PrintQueue’s exponential storage. Data-plane
queries do not su�er from either issue.

525

Print�eue: Performance Diagnosis via�eue Measurement in the Data Plane SIGCOMM ’22, August 22–26, 2022, Amsterdam, Netherlands

0 1 2 3 4
0.70

0.75

0.80

0.85

0.90

0.95

1.00
218 219 220 221 222

Pr
ec
is
io
n

Time Window ID

 Top 50
 Top 100
 Top 200
 Top 500
 All

Duration (nanosecond)

(a) precision

0 1 2 3 4
0.70

0.75

0.80

0.85

0.90

0.95

1.00
218 219 220 221 222

R
ec
al
l

Time Window ID

 Top 50
 Top 100
 Top 200
 Top 500
 All

Duration (nanosecond)

(b) recall

Figure 12: Top-K �ows from a single time window under UW
traces.

0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00
100

101

102

2_12_4

2_12_5
3_12_4

2_11_4

1_12_5

St
or

ag
e

O
ve

rh
ea

d
(M

B/
s)

Precision

Data Exchange Limit

_k_T

(a) storage versus precision

0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00
100

101

102

2_12_4

2_12_5
3_12_4

2_11_4

1_12_5

St
or

ag
e

O
ve

rh
ea

d
(M

B/
s)

Recall

Data Exchange Limit

_k_T

(b) storage versus recall

Figure 13: Storage versus accuracy with " , k, Z under UW
traces.

In practice, network operators should choose the lowest values
of U and) that are feasible for their networks. We evaluate and
discuss relevant constraints later in this section.

Accuracy versus di�erent windows for Top-K �ows. We next
evaluate the relative accuracy of individual time window with the
metric of Top-K �ow packet counts. We again focus on the UW
traces. We use U = 1, : = 12,) = 5, and set the query interval to be
the full window period.

As shown in Figure 12, the accuracy of 5 windows varies. As
expected, the precision drops with the depth of windows, with the
�rst window achieving precision near 1 because it is un-compressed.
Any errors are due to mismatches between the packet size and
cell granularities. As in previous experiments, errors accumulate in
deeper windows.We note that since each packet has an approximate
probability of being passed across windows, PrintQueue tends to
store �ows with more packets and so the top-k results remain
relatively accurate. For reference, during most window periods, the
�ow number is on the order of thousands.

We observe that the UW traces [4] have an extreme long-tailed
distribution. In fact, the packet count of the 100th largest �ow is
less than 1% of the packet count of the largest �ow. When moving
to the Top-500 �ows, the mice begin to overwhelm the elephants,
dropping the accuracy in larger time windows.

Accuracy versus control-plane overhead. One underlying con-
straint on the con�guration of PrintQueue is the control plane’s
ability to extract results frequently enough to ensure no gaps in
time window coverage. Fundamentally, the control plane is limited
by analysis program I/O throughput and PCIe bandwidth. Thus,
the limitation can be quanti�ed in terms of the number of register
entries that can be read per second.

1 2 3 4 5
100

101

102

103

Li
ne

ar
 :

Ex
po

ne
nt

ia
l

T

 =1
 =2
 =3

(a) linear versus exponential

9_5 10_5 11_5 12_5 12_4 12_3 12_2
0

5

10

15

20

SR
A

M
 U

til
iz

at
io

n
(%

)

k_T

(b) SRAM usage

Figure 14: Storage overhead comparison and SRAM.

1 2 4 8 10
0

10

20

30

40

50

0.5

0.6

0.7

0.8

0.9

1.0

SR
A

M
 U

til
iz

at
io

n
(%

)

Port Number

 SRAM
 Precision AQ
 Recall AQ

A
cc

ur
ac

y

=1
k=12

=1
k=11

=2
k=10

=2
k=10

=2
k=10

Figure 15: Accuracy versus port number under WS traces.

Figure 13 shows the required PCIe bandwidth in MB/s versus
precision and recall for di�erent con�gurations of PrintQueue under
UW traces. We plot a rough estimate of the maximum capabilities of
our current analysis program implementation. When the data size
per second is above the line, the time needed to read the registers is
longer than PrintQueue’s set period, which leads to packets getting
evicted before they are successfully read and stored.

With larger U , the compression of PrintQueue becomes more
aggressive, reducing the I/O requirements of the system. At the
same time, larger U leads to reduced precision and recall.) has a
similar e�ect as each additional window has exponentially more
compression, but here too, more compression translates to less
accuracy.

The parameter : does not in�uence parameter feasibility, as the
set period and the number of registers are multiplied by the same
factor. Our experiment also shows that : has little impact on the
accuracy for asynchronous queries under UW traces. Larger values
of : are, however, preferred for data-plane queries as they mean
that longer query intervals �t within the initial time windows. The
con�gurations we chose in the preceding sections related to queries
are all below the feasibility line.

Linear storage versus exponential storage. We also compare
PrintQueue’s storage overhead with techniques like NetSight [10]
and BurstRadar [13]—two systems with linear storage requirements.
Figure 14(a) shows the ratio of the linear storage overhead to Print-
Queue’s overhead with di�erent U,) . PrintQueue’s overhead is up
to three orders of magnitude less than linear storage methods.

SRAM overhead. We evaluate the data-plane SRAM overhead of
time windows across a range of : and) parameters. U does not
a�ect resource consumption. As shown in Figure 14(b), across dif-
ferent parameters, time windows consume only a moderate amount
of resources, making the system practical in real networks.

Port parallelism. We activate PrintQueue on several of ports
simultaneously and evaluate the accuracy for a single one. Naturally,
we can activate more ports if the SRAM usage grows linearly with

526

SIGCOMM ’22, August 22–26, 2022, Amsterdam, Netherlands Yiran Lei, Liangcheng Yu, Vincent Liu, and Mingwei Xu

0.8 0.9 1.0 1.1

0

10

20

Q
ue

ue
 D

ep
th

 (
10
3)

Enqueue Timestamp (109 nanosecond)

Diagnosis

Arrival of new TCP flow

(a) queue depth

Direct Indirect Original
0

20

40

60

80

100

Pa
ck

et
 P

ro
po

rti
on

 (%
)

Types of Culprits

 burst
 background
 new TCP

(b) direct, indirect, and original

Figure 16: Time windows versus queue monitor for tracking
the burst �ow.

the port number. But the method does not scale as the port number
continues growing. Instead, we adjust parameters U and : to reduce
the total SRAM cost. Figure 15 shows accuracy of asynchronous
queries against the total data-plane SRAM utilization. With U = 2,
at most 10 ports can run PrintQueue in parallel. A further increase
is constrained by the PCIe bandwidth limit of the local interface.

7.2 Queue Monitor Case Study
We show the e�ectiveness of the queue monitor qualitatively using
a case study. Speci�cally, we let one server send a background TCP
�ow limited to ⇠90% of the link capacity (9 Gbps). Another server
�rst sends a burst of 10000 datagrams at a rate of 4Gbps. After a
short time, it then begins a TCP �ow at a low rate (0.5 Gbps).

As shown in Figure 16(a), the burst �ow causes a rapid increase
in queue depth. While the burst �ow lasts for only around 5ms,
the queuing caused by the burst lasts for 376ms (i.e., 76⇥ times
longer than the burst period itself)! The new TCP �ow arrives at
the blue arrow in Figure 16(a). At the star, PrintQueue leverages
time windows and the queue monitor to query the direct, indirect,
and original culprits to diagnose the high queuing delay of the new
TCP �ow. In this setting, we expect to be able to implicate the burst
�ow because, without it, the queuing would not exist or be nearly
as severe.

As shown in Figure 16, direct culprits consider the background
tra�c the most signi�cant contributor. They do not include any
packets of burst �ow, as the packets have long before left the queue.
Indirect culprits have captured all the packets since the beginning
of the congestion. The burst �ow can be found, but it is indistin-
guishable from a normal mouse �ow. The results of the query for
the original culprits, instead correctly show that the culpability
of the burst �ow is comparable to that of the background tra�c
(5597:6096) despite their di�erences in total size.

The SRAM usage of queue monitor for a single port is 12.81% of
data-plane resources.

8 RELATEDWORK
PrintQueue is related to a rich body of prior work in queue and per-
formance monitoring. In this section, we discuss the most relevant
work in these areas.

Queue measurement techniques. Others have previously noted
the importance of queue-based performance monitoring and pro-
posed methods to do so. Many of the earlier instances in this set
focus on the length of the queue rather than its contents [29, 35].

Many others rely on raw �ow sampling [10, 11, 13, 18, 25, 37] to
reconstruct queue contents; compared to these approaches, Print-
Queue requires signi�cantly less space and pipeline overhead.

One particularly relevant work to time windows is ConQuest [5,
6], which also tracks queue composition in the data plane using a
special snapshot-based data structure. However, ConQuest solves
a di�erent problem. It judges whether the current packet’s �ow is
the main contributor to queuing. To implicate the causes of delay
in a speci�c victim packet’s queuing, ConQuest would need o�ine
storage space linear to the total packets in the network. Further,
ConQuest only supports FIFO queues while PrintQueue’s time
windows are agnostic to the packet scheduling policy.

We also note that Microscope [8] makes a similar observation
about the importance of historical causes of queuing, but in the
context of network function performance. The speci�cs of packet
queuing delay and PrintQueue’s implementation on programmable
data planes introduce novel constraints.

Flow counting techniques. Prior work, e.g., FlowRadar [15], Tur-
boFlow [24], and CounterBraids [16], develops accurate per-�ow
tra�c counters. Heavy hitter detection techniques, e.g., HashPi-
pe [23], DOVE [14], and others [17, 26, 34], only track the tra�c of
large �ows. Flow counter techniques can provide �ow information
along with its size like PrintQueue. But they work under �xed time
periods, failing to retrieve �ows in arbitrary query intervals.

Bandwidthmeasurement techniques.Work [27]measures band-
width at all time scales. But it calculates total rates without the
knowledge of each �ow’s contribution. The algorithms modify the
network stacks of end hosts and can not be applied in today’s
programmable switches.

Provenance. Prior work, e.g., Dapper [21], DTaP [36], Zeno [28],
gives detailed explanations of event causes in the distributed system.
PrintQueue expands the concept of provenance to packet queuing.
PrintQueue’s results can be incorporated into these higher-level
frameworks.

9 CONCLUSION
In this paper, we systematically classify the culprit packets of queu-
ing in switches. We present PrintQueue, a practical data-plane
monitoring system for tracking the provenance of packet-level
queuing delays at both small and large timescales. We design time
windows to capture direct and indirect culprits over any time span,
and queue monitor to track original culprit packets. We imple-
ment PrintQueue on a To�no switch and evaluate it with multiple
network traces. Through evaluations, we show that PrintQueue
achieves high accuracy with limited overhead.

ACKNOWLEDGMENTS
We thank our shepherd Aurojit Panda and all the anonymous SIG-
COMM reviewers for their helpful and thoughtful comments. This
work was supported by the National Natural Science Foundation of
China under Grant 61832013. It was also funded in part by Google,
Meta, VMWare, and NSF grant CNS-1845749. Mingwei Xu is the
corresponding author.

527

Print�eue: Performance Diagnosis via�eue Measurement in the Data Plane SIGCOMM ’22, August 22–26, 2022, Amsterdam, Netherlands

REFERENCES
[1] [n. d.]. The BMv2 Simple Switch target. Website. ([n. d.]). https://github.com/

p4lang/behavioral-model/blob/main/docs/simple_switch.md.
[2] [n. d.]. Intel Open-To�no. Website. ([n. d.]). https://github.com/barefootnetworks/

Open-To�no.
[3] Mohammad Alizadeh, Albert Greenberg, David Maltz, Jitendra Padhye, Parveen

Patel, Balaji Prabhakar, Sudipta Sengupta, and Murari Sridharan. 2010. Data
center TCP (DCTCP). ACM SIGCOMM Computer Communication Review 40,
63–74. https://doi.org/10.1145/1851182.1851192

[4] Theophilus Benson, Aditya Akella, and Dave Maltz. 2010. Network Tra�c
Characteristics of Data Centers in the Wild. In Internet Measurement Conference
(internet measurement conference ed.). Association for Computing Machinery,
Inc. https://www.microsoft.com/en-us/research/publication/network-tra�c-
characteristics-of-data-centers-in-the-wild/

[5] Xiaoqi Chen, Shir Landau Feibish, Yaron Koral, Jennifer Rexford, and Ori Rot-
tenstreich. 2018. Catching the Microburst Culprits with Snappy. In Proceedings
of the Afternoon Workshop on Self-Driving Networks (SelfDN 2018). Association
for Computing Machinery, New York, NY, USA, 22–28. https://doi.org/10.1145/
3229584.3229586

[6] Xiaoqi Chen, Shir Landau Feibish, Yaron Koral, Jennifer Rexford, Ori Rotten-
streich, Steven A Monetti, and Tzuu-Yi Wang. 2019. Fine-Grained Queue
Measurement in the Data Plane. In Proceedings of the 15th International Con-
ference on Emerging Networking Experiments And Technologies (CoNEXT ’19).
Association for Computing Machinery, New York, NY, USA, 15–29. https:
//doi.org/10.1145/3359989.3365408

[7] Linux Foundation. 2015. Data Plane Development Kit (DPDK). (2015). http:
//www.dpdk.org

[8] Junzhi Gong, Yuliang Li, Bilal Anwer, Aman Shaikh, and Minlan Yu. 2020. Mi-
croscope: Queue-Based Performance Diagnosis for Network Functions. In Pro-
ceedings of the Annual Conference of the ACM Special Interest Group on Data
Communication on the Applications, Technologies, Architectures, and Protocols for
Computer Communication (SIGCOMM ’20). Association for ComputingMachinery,
New York, NY, USA, 390–403. https://doi.org/10.1145/3387514.3405876

[9] Albert Greenberg, James Hamilton, Navendu Jain, Srikanth Kandula, Changhoon
Kim, Parantap Lahiri, David Maltz, Parveen Patel, and Sudipta Sengupta. 2011.
VL2: A scalable and �exible data center network. ACM SIGCOMM Computer
Communication Review 39 (01 2011), 51–62. https://doi.org/10.1145/1594977.
1592576

[10] Nikhil Handigol, Brandon Heller, Vimalkumar Jeyakumar, David Mazières,
and Nick McKeown. 2014. I Know What Your Packet Did Last Hop: Using
Packet Histories to Troubleshoot Networks. In 11th USENIX Symposium on
Networked Systems Design and Implementation (NSDI 14). USENIX Associa-
tion, Seattle, WA, 71–85. https://www.usenix.org/conference/nsdi14/technical-
sessions/presentation/handigol

[11] Vimalkumar Jeyakumar, Mohammad Alizadeh, Yilong Geng, Changhoon Kim,
and David Mazières. 2014. Millions of Little Minions: Using Packets for Low
Latency Network Programming and Visibility. SIGCOMM Comput. Commun. Rev.
44, 4 (Aug. 2014), 3–14. https://doi.org/10.1145/2740070.2626292

[12] Lavanya Jose and Minlan Yu. 2011. Online Measurement of Large Tra�c Ag-
gregates on Commodity Switches. In Workshop on Hot Topics in Management
of Internet, Cloud, and Enterprise Networks and Services (Hot-ICE 11). USENIX
Association, Boston, MA. https://www.usenix.org/conference/hot-ice11/online-
measurement-large-tra�c-aggregates-commodity-switches

[13] Raj Joshi, Ting Qu, Mun Choon Chan, Ben Leong, and Boon Thau Loo. 2018.
BurstRadar: Practical Real-Time Microburst Monitoring for Datacenter Networks.
In Proceedings of the 9th Asia-Paci�c Workshop on Systems (APSys ’18). Association
for Computing Machinery, New York, NY, USA, Article 8, 8 pages. https://doi.
org/10.1145/3265723.3265731

[14] Yiran Lei, Yu Zhou, Yunsenxiao Lin, Mingwei Xu, and Yangyang Wang. 2021.
DOVE: Diagnosis-driven SLO Violation Detection. In 2021 IEEE 29th International
Conference on Network Protocols (ICNP). 1–11. https://doi.org/10.1109/ICNP52444.
2021.9651986

[15] Yuliang Li, Rui Miao, Changhoon Kim, and Minlan Yu. 2016. FlowRadar: A Better
NetFlow for Data Centers. In 13th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 16). USENIX Association, Santa Clara, CA, 311–
324. https://www.usenix.org/conference/nsdi16/technical-sessions/presentation/
li-yuliang

[16] Yi Lu, Andrea Montanari, Balaji Prabhakar, Sarang Dharmapurikar, and Ab-
dul Kabbani. 2008. Counter Braids: A Novel Counter Architecture for per-
Flow Measurement. In Proceedings of the 2008 ACM SIGMETRICS International
Conference on Measurement and Modeling of Computer Systems (SIGMETRICS
’08). Association for Computing Machinery, New York, NY, USA, 121–132.
https://doi.org/10.1145/1375457.1375472

[17] Jonatas Marques, Kirill Levchenko, and Luciano Gaspary. 2020. IntSight: Diag-
nosing SLO Violations with in-Band Network Telemetry. In Proceedings of the
16th International Conference on Emerging Networking EXperiments and Technolo-
gies (CoNEXT ’20). Association for Computing Machinery, New York, NY, USA,

421–434. https://doi.org/10.1145/3386367.3431306
[18] Je� Rasley, Brent Stephens, Colin Dixon, Eric Rozner, Wes Felter, Kanak Agarwal,

John Carter, and Rodrigo Fonseca. 2014. Planck: Millisecond-Scale Monitoring
and Control for Commodity Networks. SIGCOMM Comput. Commun. Rev. 44, 4
(Aug. 2014), 407–418. https://doi.org/10.1145/2740070.2626310

[19] Luigi Rizzo. 2012. Netmap: A Novel Framework for Fast Packet I/O. In Proceedings
of the 2012 USENIX Conference on Annual Technical Conference (USENIX ATC’12).
USENIX Association, USA, 9.

[20] Vishal Shrivastav. 2019. Fast, Scalable, and Programmable Packet Scheduler in
Hardware. In Proceedings of the ACM Special Interest Group on Data Communica-
tion (SIGCOMM ’19). Association for Computing Machinery, New York, NY, USA,
367–379. https://doi.org/10.1145/3341302.3342090

[21] Benjamin H. Sigelman, Luiz André Barroso, Mike Burrows, Pat Stephenson,
Manoj Plakal, Donald Beaver, Saul Jaspan, and Chandan Shanbhag. 2010. Dapper,
a Large-Scale Distributed Systems Tracing Infrastructure. Technical Report. Google,
Inc. https://research.google.com/archive/papers/dapper-2010-1.pdf

[22] Anirudh Sivaraman, Suvinay Subramanian, Mohammad Alizadeh, Sharad Chole,
Shang-Tse Chuang, Anurag Agrawal, Hari Balakrishnan, Tom Edsall, Sachin Katti,
and Nick McKeown. 2016. Programmable Packet Scheduling at Line Rate. In
Proceedings of the 2016 ACM SIGCOMM Conference (SIGCOMM ’16). Association
for Computing Machinery, New York, NY, USA, 44–57. https://doi.org/10.1145/
2934872.2934899

[23] Vibhaalakshmi Sivaraman, Srinivas Narayana, Ori Rottenstreich, S. Muthukr-
ishnan, and Jennifer Rexford. 2017. Heavy-Hitter Detection Entirely in the
Data Plane. In Proceedings of the Symposium on SDN Research (SOSR ’17). As-
sociation for Computing Machinery, New York, NY, USA, 164–176. https:
//doi.org/10.1145/3050220.3063772

[24] John Sonchack, Adam J. Aviv, Eric Keller, and JonathanM. Smith. 2018. Turbo�ow:
Information Rich FlowRecordGeneration onCommodity Switches. In Proceedings
of the Thirteenth EuroSys Conference (EuroSys ’18). Association for Computing
Machinery, New York, NY, USA, Article 11, 16 pages. https://doi.org/10.1145/
3190508.3190558

[25] John Sonchack, Oliver Michel, Adam J. Aviv, Eric Keller, and Jonathan M. Smith.
2018. Scaling Hardware Accelerated Network Monitoring to Concurrent and Dy-
namic Queries with *�ow (USENIX ATC ’18). USENIX Association, USA, 823–835.

[26] Praveen Tammana, Rachit Agarwal, andMyungjin Lee. 2018. DistributedNetwork
Monitoring and Debugging with Switchpointer (NSDI’18). USENIX Association,
USA, 453–466.

[27] Frank Uyeda, Luca Foschini, Fred Baker, Subhash Suri, and George Varghese. 2011.
E�ciently Measuring Bandwidth at All Time Scales. In 8th USENIX Symposium
on Networked Systems Design and Implementation (NSDI 11). USENIX Association,
Boston, MA. https://www.usenix.org/conference/nsdi11/e�ciently-measuring-
bandwidth-all-time-scales

[28] Yang Wu, Ang Chen, and Linh Thi Xuan Phan. 2019. Zeno: Diagnosing Per-
formance Problems with Temporal Provenance. In 16th USENIX Symposium on
Networked Systems Design and Implementation (NSDI 19). USENIX Association,
Boston, MA, 395–420. https://www.usenix.org/conference/nsdi19/presentation/
wu

[29] Nofel Yaseen, John Sonchack, and Vincent Liu. 2018. Synchronized Network
Snapshots (SIGCOMM ’18). Association for Computing Machinery, New York,
NY, USA, 402–416. https://doi.org/10.1145/3230543.3230552

[30] Nofel Yaseen, John Sonchack, and Vincent Liu. 2020. tpprof: A Network Tra�c
Pattern Pro�ler. In 17th USENIX Symposium on Networked Systems Design and
Implementation (NSDI 20). USENIX Association, Santa Clara, CA, 1015–1030.
https://www.usenix.org/conference/nsdi20/presentation/yaseen

[31] Liangcheng Yu, John Sonchack, and Vincent Liu. 2020. Mantis: Reactive Pro-
grammable Switches. In Proceedings of the Annual Conference of the ACM Spe-
cial Interest Group on Data Communication on the Applications, Technologies,
Architectures, and Protocols for Computer Communication (SIGCOMM ’20). As-
sociation for Computing Machinery, New York, NY, USA, 296–309. https:
//doi.org/10.1145/3387514.3405870

[32] Liangcheng Yu, John Sonchack, and Vincent Liu. 2022. Cebinae: Scalable In-
network Fairness Augmentation. In Proceedings of the Annual Conference of
the ACM Special Interest Group on Data Communication on the Applications,
Technologies, Architectures, and Protocols for Computer Communication (SIGCOMM
’22). Association for Computing Machinery, Amsterdam, Netherlands. https:
//doi.org/10.1145/3544216.3544240

[33] Zhuolong Yu, Chuheng Hu, Jingfeng Wu, Xiao Sun, Vladimir Braverman,
Mosharaf Chowdhury, Zhenhua Liu, and Xin Jin. 2021. Programmable Packet
Scheduling with a Single Queue. In Proceedings of the 2021 ACM SIGCOMM 2021
Conference (SIGCOMM ’21). Association for Computing Machinery, New York,
NY, USA, 179–193. https://doi.org/10.1145/3452296.3472887

[34] Lihua Yuan, Chen-Nee Chuah, and Prasant Mohapatra. 2011. ProgME: Towards
Programmable Network Measurement. IEEE/ACM Trans. Netw. 19, 1 (feb 2011),
115–128. https://doi.org/10.1109/TNET.2010.2066987

[35] Qiao Zhang, Vincent Liu, Hongyi Zeng, and Arvind Krishnamurthy. 2017. High-
Resolution Measurement of Data Center Microbursts. In Proceedings of the 2017
InternetMeasurement Conference (IMC ’17). Association for ComputingMachinery,

528

https://github.com/p4lang/behavioral-model/blob/main/docs/simple_switch.md
https://github.com/p4lang/behavioral-model/blob/main/docs/simple_switch.md
https://github.com/barefootnetworks/Open-Tofino
https://github.com/barefootnetworks/Open-Tofino
https://doi.org/10.1145/1851182.1851192
https://www.microsoft.com/en-us/research/publication/network-traffic-characteristics-of-data-centers-in-the-wild/
https://www.microsoft.com/en-us/research/publication/network-traffic-characteristics-of-data-centers-in-the-wild/
https://doi.org/10.1145/3229584.3229586
https://doi.org/10.1145/3229584.3229586
https://doi.org/10.1145/3359989.3365408
https://doi.org/10.1145/3359989.3365408
http://www.dpdk.org
http://www.dpdk.org
https://doi.org/10.1145/3387514.3405876
https://doi.org/10.1145/1594977.1592576
https://doi.org/10.1145/1594977.1592576
https://www.usenix.org/conference/nsdi14/technical-sessions/presentation/handigol
https://www.usenix.org/conference/nsdi14/technical-sessions/presentation/handigol
https://doi.org/10.1145/2740070.2626292
https://www.usenix.org/conference/hot-ice11/online-measurement-large-traffic-aggregates-commodity-switches
https://www.usenix.org/conference/hot-ice11/online-measurement-large-traffic-aggregates-commodity-switches
https://doi.org/10.1145/3265723.3265731
https://doi.org/10.1145/3265723.3265731
https://doi.org/10.1109/ICNP52444.2021.9651986
https://doi.org/10.1109/ICNP52444.2021.9651986
https://www.usenix.org/conference/nsdi16/technical-sessions/presentation/li-yuliang
https://www.usenix.org/conference/nsdi16/technical-sessions/presentation/li-yuliang
https://doi.org/10.1145/1375457.1375472
https://doi.org/10.1145/3386367.3431306
https://doi.org/10.1145/2740070.2626310
https://doi.org/10.1145/3341302.3342090
https://research.google.com/archive/papers/dapper-2010-1.pdf
https://doi.org/10.1145/2934872.2934899
https://doi.org/10.1145/2934872.2934899
https://doi.org/10.1145/3050220.3063772
https://doi.org/10.1145/3050220.3063772
https://doi.org/10.1145/3190508.3190558
https://doi.org/10.1145/3190508.3190558
https://www.usenix.org/conference/nsdi11/efficiently-measuring-bandwidth-all-time-scales
https://www.usenix.org/conference/nsdi11/efficiently-measuring-bandwidth-all-time-scales
https://www.usenix.org/conference/nsdi19/presentation/wu
https://www.usenix.org/conference/nsdi19/presentation/wu
https://doi.org/10.1145/3230543.3230552
https://www.usenix.org/conference/nsdi20/presentation/yaseen
https://doi.org/10.1145/3387514.3405870
https://doi.org/10.1145/3387514.3405870
https://doi.org/10.1145/3544216.3544240
https://doi.org/10.1145/3544216.3544240
https://doi.org/10.1145/3452296.3472887
https://doi.org/10.1109/TNET.2010.2066987

SIGCOMM ’22, August 22–26, 2022, Amsterdam, Netherlands Yiran Lei, Liangcheng Yu, Vincent Liu, and Mingwei Xu

New York, NY, USA, 78–85. https://doi.org/10.1145/3131365.3131375
[36] Wenchao Zhou, Suyog Mapara, Yiqing Ren, Yang Li, Andreas Haeberlen, Zachary

Ives, Boon Thau Loo, andMicah Sherr. 2012. Distributed Time-Aware Provenance.
Proc. VLDB Endow. 6, 2 (Dec. 2012), 49–60. https://doi.org/10.14778/2535568.
2448939

[37] Yibo Zhu, Nanxi Kang, Jiaxin Cao, Albert Greenberg, Guohan Lu, Ratul Mahajan,
Dave Maltz, Lihua Yuan, Ming Zhang, Ben Y. Zhao, and Haitao Zheng. 2015.
Packet-Level Telemetry in Large Datacenter Networks. In Proceedings of the 2015
ACM Conference on Special Interest Group on Data Communication (SIGCOMM
’15). Association for Computing Machinery, New York, NY, USA, 479–491.

A ARTIFACT APPENDIX
Abstract
PrintQueue’s artifact is publicly available, including the source code
and documents for all the mentioned components in the paper. The
artifact can reproduce the paper results. The detailed instructions to
build, deploy, and operate the system are introduced in the Github
repository.

Scope
The artifact is used to reproduce all the major results of PrintQueue.

Contents
The artifact includes the source code of PrintQueue, consisting of:
• P4 code running at Intel To�no programmable switch, including
the data-plane code (implementation of time windows and

queuemonitor) and control-plane code (read and �lter registers;
execute queries).

• DPDK code running at receiver server, extracting and storing
PrintQueue telemetry headers.

• Code to simulate traces modelled after DCTCP and VL2 �ow
distribution.

• Experiment data collected from our testing and script to repro-
duce the paper results.

Hosting
The aritifact is accessible via Github (please refer to the master
branch and the latest commit) and Zenodo.
• Github link: https://github.com/A-Dying-Pig/PrintQueue/tree/
master

• Zenodo DOI: 10.5281/zenodo.6789638

Requirements
PrintQueue requires speci�c hardware and software environments:
• The switch code functioned on the Intel To�no switch.
• The receiver code required DPDK-compatible NIC and DPDK
library.

• The packages required by Python scripts were listed in the
documents.

529

https://doi.org/10.1145/3131365.3131375
https://doi.org/10.14778/2535568.2448939
https://doi.org/10.14778/2535568.2448939
https://github.com/A-Dying-Pig/PrintQueue/tree/master
https://github.com/A-Dying-Pig/PrintQueue/tree/master

	Abstract
	1 Introduction
	2 Describing a Congestion Regime
	3 Design Overview
	4 Time Windows
	4.1 Physical Layout
	4.2 Per-packet Procedure
	4.3 Analysis and Proofs

	5 Queue Monitor
	6 Analysis Program
	6.1 Port Configuration
	6.2 Frozen Register Reads
	6.3 Query Execution

	7 Evaluation
	7.1 Time Windows Performance
	7.2 Queue Monitor Case Study

	8 Related Work
	9 Conclusion
	Acknowledgments
	References
	A Artifact Appendix

