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ABSTRACT

In numerous graph signal processing applications, data is of-
ten missing for a variety of reasons, and predicting the miss-
ing data is essential. In this paper, we consider data on graphs
modeled as bandlimited graph signals. Predicting or recon-
structing the unknown signal values for such a model requires
an estimate of the signal bandwidth. In this paper, we address
the problem of estimating the reconstruction errors, minimiz-
ing which would thereby provide an estimate of the signal
bandwidth. In doing so, we design a cross-validation ap-
proach needed for stable graph signal reconstruction and pro-
pose a method for estimating the reconstruction errors for dif-
ferent choices of signal bandwidth. Using this technique, we
are able to estimate the reconstruction error on a variety of
real-world graphs.

Index Terms— Graph, signal, bandwidth, reconstruction,
estimation.

1. INTRODUCTION

Graphs naturally arise in a number of applications such as
data analysis in various types of networks (e.g., sensor, traffic
or social networks). Information related to the nodes in the
network constitutes a graph signal [1]. Graph signals in prac-
tical scenarios are often incomplete due to a variety of rea-
sons – sensor failure [2], occlusions [3], measurements out-
side range of sensors [4]. As a result, the values of a graph
signal on certain nodes may be unknown to us. In theory, we
can predict missing data on the graph provided that the sig-
nal is smooth. This prediction is perfect if signal values are
known on enough nodes and the underlying graph signal is
bandlimited [5], [6]. Given the bandwidth of the graph sig-
nal, the original signal can be predicted or reconstructed by
solving an inverse problem [7], [8].

Note that reconstructing the signal using the bandlimited
signal model requires knowledge of the bandwidth of the sig-
nal. Most papers in the graph signal processing literature
[5, 9, 7, 8] simply assume that this bandwidth is known. How-
ever, in many real scenarios, only the signal values on a lim-
ited number of nodes are known, while the bandwidth of the
signal is unknown. To add to this difficulty, in reality signals
are not bandlimited to a certain maximum frequency because
of either (i) noise in the signal, or (ii) a mismatch between the

chosen graph construction and a hypothetical graph construc-
tion for which observed signals would be bandlimited.

Even if the exact signal bandwidth is unknown (or if the
signal is not exactly bandlimited), reconstruction using the
bandlimited model of the signal remains useful because it
signifies signal smoothness which is a reasonable assump-
tion for many real-life signals like temperature. This means
that it is important to optimize the choice of the bandwidth of
the signal for reconstruction, regardless of whether the origi-
nal signal is bandlimited or not. Since the reconstruction er-
ror of the signal usually varies with the choice of the recon-
struction bandwidth, the bandwidth which gives us the small-
est error over a choice of different bandwidths would be the
right choice for reconstruction. To select a bandwidth in such
a way, we need the know reconstruction error for different
choices of bandwidth. However, we cannot calculate the over-
all reconstruction error since there are missing signal values.
Thus, we need an estimate of the actual reconstruction error.

Our main contribution is to formulate the problem of se-
lecting a reconstruction bandwidth from data, without knowl-
edge of the actual graph signal bandwidth, a problem as yet
not considered in the graph signal sampling and reconstruc-
tion literature (see [6] for a review). We propose a solu-
tion that uses a novel cross-validation methodology based on
graph signal sampling concepts. Specifically, we solve the
problem of estimating the reconstruction error which is es-
sential to select a reconstruction bandwidth.

In a standard cross-validation setting [10], multiple ran-
dom subsets are used to validate parameter choices. We show
that using random subsets for our problem can result in ill-
conditioned reconstruction operators and propose a technique
that mitigates the effects of ill-conditioning by giving differ-
ent importance to each random subset. This approach sig-
nificantly improves the error estimation, and our proposed
method estimates the squared reconstruction error with good
accuracy for a wide variety of both synthetic and real-life
graphs and signals.

2. PROBLEM FORMULATION

2.1. Notation

For a graph with n nodes, the ij entry wij of the n ⇥ n
weighted adjacency matrix A is edge weight between the ith



Table 1: Notation

Notation Description
AXY Submatrix of A indexed by X (rows)

and Y(columns)
AX A:,X , columns of A indexed by X

xX or x(X ) Subset of x indexed by X
|X | Cardinality of set X

and jth nodes, with wii = 0. The degree matrix D is a di-
agonal matrix with entries dii =

P
j wij . The combinatorial

Laplacian is given by L = D � A, with its corresponding
eigendecomposition defined as L = U⌃UT since the Lapla-
cian matrix is symmetric and positive semidefinite.

The column vectors of U provide a basis with frequency
interpretation for graph signals [11], and the operator UT is
usually called the graph Fourier transform (GFT). The eigen-
vectors ui of L associated with larger eigenvalues �i cor-
respond to higher frequencies, and the ones associated with
lower eigenvalues correspond to lower frequencies [1], with
the following convention for the indexing of the eigenvalues:
�1  �2  · · ·  �n. We denote x a vector, X a matrix, and
X a set. We also follow conventions from Table 1.

2.2. Graph signals and reconstruction

We consider n-dimensional scalar real-valued signal x on the
vertex set V . In line with the problem of missing data, we
assume that only a part of this signal is known, correspond-
ing to a subset of vertices, S ✓ V . We denote xS and xSc

the known and unknown signals, respectively, where Sc is the
complement of S . Estimating xSc from xS is the graph signal
reconstruction problem [12]. We denote the reconstructed un-
known signal as x̂Sc , and quantify its closeness with the orig-
inal signal, xSc , using the `2 norm kxSc � x̂Sck22. However,
for signal reconstruction a signal model needs to be chosen.
A popular choice for a smooth graph signal is the bandlimited
signal model [7].

2.3. Signal model

In this paper we consider bandlimited signals defined as
f = UR↵, where R is the set {1, · · · , r}, and ↵ is an r-
dimensional vector. We call r the bandwidth of the signal.
However, graph signals are rarely exactly bandlimited, so in
this paper we consider the following more realistic model of
a bandlimited signal with added noise:

x = UR↵+ n, (1)

where n is an n-dimensional noise vector.

2.4. Model selection for reconstruction

With the signal model in (1) and known signal values xS , the
signal on Sc can be reconstructed as:

x̂Sc = UScR(UT
SRUSR)�1UT

SRxS .

This is a least squares reconstruction and is typical [7] when
the size of the known signal set is larger than the signal band-
width used for reconstruction, |S| > r, which is the setting we
consider in this paper. Note that this reconstruction requires
the signal bandwidth r to be known, regardless of whether
the signal is bandlimited or bandlimited with additional noise.
Most reconstruction algorithms assume that this bandwidth is
known [5, 9, 13]. However, fundamentally this is a model
selection problem where an appropriate bandlimited signal
model with a fixed bandwidth r needs to be chosen.

2.5. Bandwidth selection through reconstruction errors

Although the goal of model selection for signal reconstruction
is to choose r, the signal itself might not be bandlimited. As a
result, there may not be any prior for signal bandwidth. How-
ever, our primary goal is to minimize the reconstruction error:
ESc = kxSc � x̂Sck2, where the estimate x̂Sc is a function
of r, and so is ESc . To select r we propose a minimization
of kx̂Sc � xSck2 over a set of possible values of r, so that
whichever bandwidth r minimized the error will be used as
the reconstruction bandwidth, r⇤ = minr ESc .

However, minimizing kx̂Sc � xSck2 is impossible with-
out knowing xSc . For that reason, we propose estimating the
error kx̂Sc � xSck2 for different values of r using the known
signal values, xS . We limit the scope of this paper to estimat-
ing this reconstruction error and leave the bandwidth selection
for future work. Towards that end, we want an estimate, ÊSc ,
of the reconstruction error ESc for different values of r, with
|ESc � ÊSc | as small as possible.

3. CROSS-VALIDATION THEORY FOR GRAPH
SIGNALS

In order to accurately estimate the reconstruction error as a
function of the signal bandwidth r, it is essential to analyze
in more detail the error with respect to subset selection on the
set of graph vertices.

3.1. Conventional error estimation and shortcomings

The reconstruction error, e(Sc), measured over the unknown
nodes is the following:

e(Sc) = xSc � x̂Sc = xSc �UScR(UT
SRUSR)�1UT

SRxS .

To estimate this error we could split the set S further into
the sets {S1,Sc

1},· · · , {Sk,Sc
k} such that Si [ Sc

i = S for



Fig. 1: Ill-conditioning scenario for a cross-validation subset.

i 2 {1, · · · , k} and estimate

e(Sc
i ) = xSc

i
�USc

i R(UT
SiRUSiR)�1UT

SiRxSi

and use the estimate ÊSc =
P

i2{1,··· ,k} ke(Sc
i )k

2 /k. This
would be equivalent to using the standard cross-validation ap-
proach that is typical in linear model selection [14].

The bandlimited component of the signal has no effect
on either e(Sc) or e(Sc

i ). Suppose that the noise vector has
some representation, n = UR� + URc�, we can conve-
niently separate the bandlimited and non-bandlimited com-
ponents of the signal using the following representation: x =
UR↵0 +URc�, where ↵0 = ↵+ �.

Using the new representation of the signal, with the fol-
lowing simplification of notation,

M = UScRc �UScR(UT
SRUSR)�1UT

SRUSRc

Mi = USc
i Rc �USc

i R(UT
SiRUSiR)�1UT

SiRUSiRc

our errors are

e(Sc) = M�, e(Sc
i ) = Mi� i 2 {1, · · · , k}.

The matrices M and Mi are what mainly differentiate the er-
rors e(Sc) and e(Sc

i ). Because the subsets Si are selected
randomly, Mi can be ill-conditioned although M is well-
conditioned. This ill-conditioning often causes the estimate
of the cross-validation error to be orders of magnitude higher
than the actual error.

Intuitively, this can happen in cases where S is well con-
nected to Sc but Si is poorly connected to Sc

i . See Fig. 1 for
a toy example where all vertices in the graph are within one
hop of S , but Si is disconnected from Sc

i . Trying to recon-
struct the signal on Sc

i using the known signal values on Si is
impossible, and that would be reflected as an ill-conditioned
Mi. Although this is a corner case example, it can be general-
ized to similar situations, either less or more extreme, arising
when using random graphs subsets for reconstruction.

3.2. Proposed error estimation

As we noted in Section 3.1, averaging of the error over ran-
dom subsets may lead to blowing up of the error estimate due
to ill-conditioning of the reconstruction matrices. To miti-
gate this, we want to assign different importance to the errors

over different random subsets. Consider the following singu-
lar value decomposition and the resulting expression for the
reconstruction error on the set Sc

i :

Mi = Vi⌃iW
T
i , e(Sc

i ) = Vi⌃iW
T
i �.

Since Vi and Wi are orthogonal matrices, the primary scal-
ing of the magnitude of � is due to ⌃i.

To control the scaling of magnitude due to ⌃i we would
like to replace the singular values � in ⌃i with �, if � < 1,
and 1, if � � 1. This is essentially an operation that clips the
singular values to 1 from above. Although we decomposed
Mi, it is worth keeping in mind that we only have access to
e(Sc

i ), and in order to control the magnitude of this error, we
can pre-multiply with a matrix. To achieve the transformation
in the singular values, we multiply e(Sc

i ) as follows to get a
new error

enew(Sc
i ) = ⌃0

iV
T
i e(Sc

i ), (2)

where ⌃0
i is a |Sc

i |⇥|Sc
i | diagonal matrix with diagonal entries

1, if � < 1, and 1/�, if � � 1. The subset specific weighting
in (2) can be seen as giving more importance to certain ver-
tices while ignoring others. Although the weights in ⌃0

i do not
directly correspond to the weights on individual vertices, the
weights on individual vertices can be seen as combinations of
weights on multiplying by the matrix Vi⌃

0
iV

T
i . Finally, we

estimate the error using

ÊSc =

P
i2{1,··· ,k} kenew(Sc

i )k
2

k
. (3)

4. EXPERIMENTS

4.1. Graph construction

For the initial verification of our error estimation approach,
we construct random regular graphs with 1000 vertices ac-
cording to the model RandomRegular from [15]. We de-
fine noisy bandlimited signals with bandwidths {20, 50, 120}
and power 1 and noise power levels 0.1 and 0.2 according to
the model in (1). We call these graphs and signals as synthetic
graphs and signals for our experiments.

For the next experimental validation, we use publicly
available climate data from National Oceanic and Atmo-
spheric Administration [16] which has been measured by
sensors throughout the United States. The sensor data con-
sists of different weather measurements like average daily
temperature, daily precipitation along with the latitudes, lon-
gitudes, and altitudes of the corresponding sensors.

Using the locations, we construct graphs by connect-
ing the 5 nearest sensor locations to each sensor. The edge
weights of the graph are given by e�d2/2�2

where we experi-
mentally choose � = 50. We calculate the distance d between
the measurement locations using the latitude, longitude, and
altitude of the measuring station using

q
d2f + d2a. df is the
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Fig. 2: Squared reconstruction errors vs bandwidth for bandlimited signal model. Legend is common for all the plots.

flat distance computed using the distance package from
geopy library, and da is the altitude. While constructing
the graph we drop sensors whose measurements are missing,
because there is no way to verify our predictions for those
sensors. The measurements that we include as signals are day
averages measured on 3rd Jan 2020, and monthly normals
[17], which are average measurements for January 2010.

4.2. Set selection

In Section 2, we assume that the signal values on a ver-
tex set S are known. To select this set for the constructed
graphs on which we assume signal values are known, we
use the AVM algorithm [8] to sample 200 vertices from
each graph, and observe the reconstruction errors on the fre-
quencies {10, 20, · · · , 110}. The only exception is the Cal-
ifornia sensor network graph where we sample 100 vertices
and observe the reconstruction errors over the frequencies
{10, 20, · · · , 80}, because the graph itself contains only 300
vertices.

To estimate the reconstruction error using cross-validation,
we partition each sampling set S into 10 subsets using
RepeatedKFold function from model selection
package of sklearn. We measure the squared reconstruc-
tion error on each subset of the partition repeated 50 times,
and average over the squared reconstruction errors as per (3).

4.3. Results

We can see the results of our estimation in Fig. 2. The es-
timated cross-validation error tracks the actual error in the
wide variety of the graphs and graph signals that we exper-
iment with. We note that in Fig. 2a the actual error increases
slightly, however the estimated error does not increase with
it. This is due to the error weighting strategy proposed in
(2). Since for the problem of choosing the bandwidth we are
interested in correctly locating the lowest value of the actual
error, the ability of the error estimate to track the actual error
as it increases should be of lesser importance than its ability
to track the actual error as it decreases. A more accurate error
estimation could be achieved with different set selection or er-
ror weighting strategies for cross-validation which we reserve
for future work.

5. CONCLUSION

In this paper, we proposed a way to minimize graph signal re-
construction error without assuming the knowledge of the sig-
nal bandwidth. In the process, we tailored the cross-validation
method for the problem of reconstruction error estimation.
Our technique estimated the error accurately as a function of
the signal bandwidth on a variety of bandlimited signals with
noise and also for sensor networks measuring weather.
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