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Abstract—In this work, we propose a passive radio frequency
(RF) front-end tailored for wake-up receivers (WuRx) to be
deployed in cellular Internet of Things (IoT) devices and wear-
ables networks, featuring a low radiation resistance antenna
and a high-Q matching network implemented with microacous-
tic resonators integrated to obtain a systematic higher node’s
sensitivity at no cost in terms of power consumption. We show
how these components can be co-designed to obtain high passive
voltage gain, hardware-level blocker immunity, and increased
resilience to integration parasitics, relaxing link budget for low-
power IoT nodes. We report experimental validation of a PCB
antenna with 2-dBi gain measured on an 11-� input resistance at
resonance, and an in-house fabricated micro-electro-mechanical
system (MEMS) thin-film aluminum nitride bulk acoustic res-
onator with a quality factor Q = 550 and a piezoelectric coupling
coefficient k2

t = 7 %, hybridly integrated with a commercial off-
the-shelf low-power WuRx circuit to benchmark the proposed
RF front-end design at 850 MHz. We demonstrate a passive volt-
age gain of 12 dB due to the MEMS resonator, and an additional
11 dB due to the proposed antenna design (for a total of an
unprecedented 2-dB passive gain in this frequency range) lead-
ing to an over the air −61-dBm minimum detectable input power
and 23-dB blocker rejection.

Index Terms—Internet of Things (IoT), micro-electro-
mechanical system (MEMS) resonators, radio frequency (RF)
antennas, RF envelope detectors, RF low-power receivers, RF
matching network, wake up receivers.

I. INTRODUCTION

THE FAST paced and worldwide evolution of wireless sen-
sor networks [1], commonly referred to as Internet of

Things (IoT) [2], has fostered research and development of
novel radio frequency (RF) transceivers capable of mitigating
power consumption and maintenance of IoT nodes, as well as
extending sensitivity and communication range. As the latest
trends confirm, billions of IoT devices [3] will be deployed all
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over the planet, tasked to collect data, often in remote areas
where little if any human intervention is possible.
For these applications, novel radio paradigms are being

investigated to reduce the power consumption of IoT nodes,
typically limited by recovery and decoding of RF signals,
so as to lower maintenance costs and ease deployment of a
large number of devices. In this framework, wake-up receivers
(WuRx) can be used to recover wake-up signals, that can ulti-
mately be used to query asynchronous information from an
IoT device with nW power consumption [4], [5], [6], [7].
WuRx s operate under completely different conditions and
constraints than conventional receiver (Rx) circuitry, therefore,
novel designs are needed to deploy RF front-ends that are
specific to WuRx.
Typical power consumption for cellular IoT devices in

IDLE mode, where they spend majority of their time wait-
ing for a paging message, is in order of 10s of mW [8].
These devices have to tradeoff increased paging latency for
reducing power consumption. On-demand, infrequent wake-
up event features are not only critical for enhancing the
battery life for IoT devices, but they also play an instrumen-
tal role in reducing paging latency [9], [10]. The vision to
deploy WuRx on a large-scale and marketable platform has
consolidated over the last two years with the emergence of
IEEE802.11ba [11] that defines and regulates the operation
of ultralow power architectures as part of the IEEE standard
802.11 (i.e., Wi-Fi®). Consequently, an increasing number of
works are being published to provide early stage performance
evaluation on event-driven networks [12], [13], [14] such as
the ones discussed in this work.
In the growing narrow-band (NB) IoT spectrum, the

frequency bands between 800 and 900MHz (NB-IoT Bands
18, 19, and 20) are of great interest, as up and downlink
segments are being allocated in the 3GPP release 13 [8],
[15] to enhance cellular communication services supporting
such low-power architectures. Even if the proposed tech-
nique is frequency agnostic, this work showcases devices
and radio performance for an RF front-end operating around
820MHz, demonstrating a systematic approach to obtain better
performance in relevant low-power NB-IoT bands.
Micro-acoustic micro-electro-mechanical system (MEMS)

resonators [16], [17], [18] have led the RF filter market for
mobile radios throughout the 4G communication era, due to
achievable mechanical quality factors in the order of 1000 s
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in the VHF range [19], in a compact form factor (typically
few hundreds of µm2 area) and with processes compatible
with CMOS manufacturing, therefore, marketable when mass
produced.
When implementing such resonators as matching elements

at the WuRx interface, gains of 38 and 32 dB have been
recently demonstrated using MEMS resonators, respectively,
at 110 and 570MHz by Colombo et al. [20].
In this article, propose a different take on the WuRx

front end, highlighting the critical factors required to obtain
large passive voltage amplification by co-designing match-
ing networks and RF antennas to systematically improve
WuRx performance. Through this work, we show substantial
improvement of the front-end voltage amplification by lift-
ing the limiting factors of each component via component
co-design.
In Section II, we briefly cover the underlying assumptions

of WuRx applications from a system perspective and how a
novel approach to the RF front-end based on micro-acoustic
resonators and co-designed antennas can be exploited for high
voltage gain.
In Section III, we discussed to devise the proposed RF pas-

sives for the IoT node input stage on a PCB. The challenges
posed by a non-50� antenna measurements are discussed, as
well as circuit-level integration constraints posed by PCB inte-
gration of MEMS resonators via wire bonds. In Section IV,
we report the measurement results to validate the concepts
previously covered, including an 11-� antenna design oper-
ating at 850MHz and a thin-film bulk acoustic resonator
(FBAR) fabricated on a 3-μm sputtered AlN film. Following,
a simple WuRx circuit is built by integrating said com-
ponents with commercial off-the-shelf circuits on a PCB,
showcasing an 11-dB RF sensitivity improvement thanks to the
proposed techniques, and enhanced spectral selectivity with
23-dB blocker rejection immunity measured against digital
communication metrics.
Finally, Section V concludes this article with a summary of

the techniques and results shown in this article.

II. BACKGROUND

An extensive literature exists on ICs tailored for sub µW
RF signal detection [5], [22], [23] and on high-Q MEMS res-
onators [20], [24], [25], [26] deployed to provide large passive
voltage amplification. In this section, we analyze the RF input
stage to highlight the scope of passive voltage optimization.
Differently from previous works, we include the antenna resis-
tance as a variable in the system, leading to a more generalized
set of parameters required to maximize voltage gain at the
WuRx input.
A rudimentary electrical model of a WuRx passive front-end

is visualized in Fig. 1(a). This model is fundamentally dif-
ferent from conventional Rx equivalent circuits: conventional
input stages, such as low noise amplifiers (LNAs), are designed
with power-hungry transistor stages that typically exhibit a real
impedance, that needs to be power-matched to the antenna
impedance for maximum power transfer [27, Ch. 5]. The
techniques discussed as follow strictly apply to IoT WuRx

Fig. 1. WuRx RF front-end circuit-level schematic. (a) VRF voltage is picked
up by an antenna (yellow shaded), and it excites the nonlinearity of a rec-
tifier when the VEM amplitude exceeds a certain threshold Vth. When the
information is coded into an amplitude-modulated signal, the envelope of the
signal is reproduced as voltage on a load capacitor Cload, and it is, there-
fore, ready to be digitized. (b) Thin-film piezoelectric RF resonator deployed
to resonate Cj,0. The BVD [21] electrical resonator model highlights the
motional inductance Lm used to bring the circuit into resonance. (c) SPICE-
level simulated voltage gain Gv, mapped in the color bar, for typical MEMS
resonator FoM and external quality factors Qe (discussed in Section II),
MEMS capacitance C0 = Cj,0, and electro-mechanical coupling coefficient
k2t = 10%.

receivers that typically exhibit high capacitive impedance, and
are not meant to be generalized to conventional RF receivers.
For low-power RF signals, the rectifier network is repre-

sented as the unbiased junction capacitance Cj,0 of a diode, as
shown in Fig. 1, which is the most simple representation of a
passive RF rectifier [28]. Above a voltage threshold Vth, the
envelope of the RF output voltage VEM in Fig. 1(a) is demod-
ulated at the circuit output (VDC), where it is held by Cload
and it is, therefore, available for further low-power signal pro-
cessing. The threshold Vth is limited by the chosen rectifier
architecture and technology. Note that despite a diode rectifier
being shown in the schematic in Fig. 1, various alternatives
have been proposed [29] which are all functionally equiva-
lent to the linearized Cj,0 model. The nonlinear dynamics of
this network depend on the rectifier technology in use and a
detailed circuit analysis is reported in [30] for diode rectifiers.
The linearized capacitor model does not take into account

the rectifiers nonlinearity, therefore, it cannot predict demodu-
lation efficiency and it is, therefore, valid for the input RF
voltage VRF � Vth. Despite its simplicity, this linearized
model conveys enough information to determine the resonant
small signal voltage gain, which is the focus of this work.
A strategy to boost VEM in a WuRx with passive com-

ponents is based on resonance: for this class of Rx circuits,
components, such as inductors or MEMS resonators [Fig. 1(b)]
are referred to as matching networks, even though there is
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no power matching involved and they are effectively used to
resonate out a capacitive impedance rather than transforming
it in a classical sense. When using a one-port matching com-
ponent, the voltage gain at resonance at the IC input Gv can
be written as follows:

Gv = ∣
∣
VEM

VRF

∣
∣ ≈ Xc

Rant + Rmatch + Rdiss
(1)

where Xc is the reactance associated to Cj,0, Rmatch the ohmic
loss due to the matching network, and Rdiss the ohmic loss due
to the antenna. Equation (1) holds as long as Cload � Cj,0.

When an MEMS resonator is used as a series matching
network [25] [Fig. 1(c)], the MEMS equivalent inductance is
used to resonate Cj,0.
Starting from the equivalent electrical model for the MEMS

resonator, known as Butterworth–Van–Dyke (BVD) model [in
the inset of Fig. 1(b)], it is possible to derive Gv as a func-
tion Figure of Merit (FoM), FoM = k2t Qm [31] of the MEMS
resonator, where k2t is the resonator coupling coefficient (rep-
resenting the electro-acoustic energy transduction) and Qm is
the mechanical quality factor (representing the ratio between
energy loss and energy stored per cycle at resonance).
For this network, an external quality factor Qe can be written

as follows:

Qe = Xc

Rant
. (2)

So that, for a sufficiently high Qm, Gv can be simplified as
follows:

Gv ≈ Qe

1 + kp
Qe

FoM
+ 1 − ηant

ηant

(3)

where ηant represents the antenna efficiency, and kp is a
dimensionless parameter, function of Cj,0, k2t and the MEMS
resonator actuation capacitance C0. kp is a dimensionless fac-
tor ranging between 1 and 4, and it can be minimized by
proper MEMS resonator sizing. In general, it is not possible
to express kp in closed form, so a more thorough discussion
on kp is found in [32].
Projected gain Gv achieved with MEMS technology is

obtained via SPICE simulations in Fig. 1(c), confirming the
trends analytically derived in Fig. 1.
From this discussion, Gv ≈ Qe as long as FoM/kp � Qe.

III. METHODS

Fig. 1 reveals that to provide large passive voltage not only
a high FoM is required from the matching component, but
also a large Qe is required for the overall system, which can
be obtained either by resonating a large load reactance Xc

and/or by reducing antenna impedance Rant. In this section,
we discuss methodologies to tackle the implementation of RF
input stages with high Qe, targeting both axes of the design
spaces. Therefore, we explore the co-design of: 1) low Rant
antennas (LRA) and 2) MEMS matching networks suitable
to resonate out large Xc, with a focus on the impact of their
integration with RF PCBs.
In the following, we show that simple modifications of well-

known antenna designs can be used to achieve the required

(a) (b)

(c) (d)

Fig. 2. Simulated response of a meandered RF antenna. (a) Drawing
of meander antenna geometry, highlighting its excitation port and the arm
length Lant. In (a), for a fixed arm length Lant, as the number of turns
Nturns increases, overall antenna width increases and antenna length decreases.
(b) Obtained Rant (in red) and Fres (in blue) versus Nturns, showing that
Rant decreases monotonically with Nturns. (c) and (d) Magnitude of input
impedance frequency response for various Larm(c) and Nturns(d), for a
reference width of 5 and a 2 mm gap.

antenna impedance. The discussion is limited to conventional
substrates and planar designs, to comply with the low cost and
mass-scalable technologies required in IoT.

A. Antenna Design

ADS Momentum®engine is used to evaluate the WuRx
antenna’s input impedance and radiation parameters. A ref-
erence substrate composed of a 16-mm thick FR4 layer with
εr = 4.3 sandwiched between two 17-μm thick Cu layers rep-
resenting top (red colored) and bottom (blue colored) PCB
metal layers, is used in Figs. 2 and 3.
A meander antenna [33] [shown in Fig. 2(a)] is often

proposed for its ease of realization on PCB. When compared
to a conventional dipole antenna, a meander antenna makes
inherently more efficient use of the top metal layer, resulting
in smaller form-factors. Simulation results in Fig. 2(c) show
that the antenna resonance Fres scales inversely with respect
to the arm length Larm as expected for a dipole-like antenna.
The radiation resistance Rant is mostly independent of Larm

at the resonance frequency, and instead, it decreases monoton-
ically with Nturns as highlighted in Fig. 2(b). The minimum
radiation resistance, Rant ≈ 10� realized in Fig. 2(c) is
obtained for Nturns = 3, sufficient for this work. For more
formal discussion, an investigation of the antenna response
as a function of the number of meanders Nturns is discussed
in [33].
A single-ended version of the meander antenna, shown in

Fig. 3(a), is ultimately chosen for this application, leveraging
the bottom metal ground pour as a path for return RF currents,
resulting in an antenna excitation that can include a ground
connection, breaking the symmetry of the differential dipole
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(a) (b)

(c) (d)

Fig. 3. Overview of the proposed WuRx monopole antenna, derived from
the meander in Fig. 2. (a) Drawing of antenna geometry and antenna excita-
tion port. (b) Magnitude of input impedance frequency response for various
Larm. (c) and (d) Rant and Fres for combinations of Larm and Nturns, showing
analogue trends as in the meander antenna of Fig. 2.

and compatible with the single-ended grounded meander
antenna.
The single-ended grounded meander antenna, shows similar

trends as the differential one, as evident in Fig. 3. In particular,
Nturns has a similar impact on Rant [shown in Fig. 2(b) and (d)]
providing an easy way to obtain low Rant. Similarly, Fres is
mainly dependent on both Larm and only weakly dependent
on Nturns as shown in Fig. 3(c) and (d).

While efficiency ηant in the differential meander results in
about 80% due to the ohmic path required to implement a
λ/4 stub, for the single-ended meandered design, an ηant above
85% is obtained in simulations, since only one arm contributes
to the ohmic losses, i.e., due to being half of the differential
counterpart.

B. Integration of MEMS Resonator on WuRx PCBs

A circuit deploying a complementary RF Schottky diode
rectifier (SBX201C [34] from Onsemi) and a low-power com-
parator (TS391 [35] from Onsemi) are chosen to devise a
simple WuRx asynchronous architecture [Fig. 4(a)], follow-
ing the design proposed in [36], to down-convert and digitize
the RF signal.
This prototype WuRx is implemented via commercially

available components and it is intended to benchmark the ben-
efits introduced by the custom RF passives designed in this
work, and therefore, the obtained power consumption does not
exhibit ultralow power custom IC designs, such as in [7], [22],
and [23]. Rather, it is used as a proof-of-concept design of

Fig. 4. (a) Circuit schematic of the proposed WuRx, composed of an MEMS
resonator (modeled via its MBVD model) resonating a complementary actu-
ated diode rectifier, followed by a commercial comparator used to discriminate
bit stream. (b) EM simulation setup for RF voltage gain Gv of MEMS matched
WuRx integrated on PCB, with the modeling of integration parasitics via
wire bonding as shown in the inset. (c) Simulated Gv for various resonator
impedances Z0, obtained in Momentum engine, with SPICE-level modeling
of an SBX201C Onsemi®Schottky diode used as RF rectifier. For the res-
onator, k2t = 7%, Qm = 550 was assumed, to reflect the performance of the
in-house fabricated FBAR resonator in Fig. 6. Z0 represents the impedance
of the static MEMS resonator capacitance C0 at resonance.

how passives can augment node sensitivity and selectivity in
the presence of RF integration challenges.
One of the tuning knobs required to achieve a high Qe is

a high IC input reactance Xc. When operating at RF, every
parasitic potentially impacts Xc by either introducing shunt
capacitances to ground, or series stray inductance. To factor
them in, the effect of wire bonding the MEMS resonator, the
PCB traces, as well as packaging parasitics provided by man-
ufacturer are included in an ADS Momentum®co-simulation
platform [shown in Fig. 4(b) ‘and (c)], capable of capturing
EM effects induced by pads, traces, and wire bonds, as well
as discrete components simulated from packaged parts.
An operational frequency of 817MHz is set, falling within

the RF range currently covered in some of the most popular
IoT node applications, as discussed in Section I. A thin-film
bulk-acoustic resonator (FBAR) operating in this frequency
range is fabricated in-house and modeled in the EM setup as
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shown in Fig. 4(b) (resonator in the inset). Details of FBAR
fabrication are provided in [37].
Schematic and Gv simulation results obtained by using the

FBAR resonator as a matching network and a back-to-back
diode rectifier model are, respectively, shown in Fig. 4(a)
and (c). The low junction capacitance, rated at Cj0 = 40 fF in
the datasheet, would result in a Xc = 4.85 k�. However, more
than 100 and 85 fF are introduced by the packaging and SMD
pads, respectively, resulting in a Xc = 420� at 817MHz.
Considering that the simulation reflects conventional test

setup for RF components, and, therefore, obtained by driv-
ing the matched stage with a 50-� source, an achievable
Qe = 8.5 is estimated from Fig. 1, and, therefore, an achievable
gain Gv between 4 and 6, depending on kp.
Therefore, the EM simulation results in Fig. 4(b) ‘and (c)

show that in absence of a tight integration process, the
upper limit for Xc and, therefore, Gv is limited by packaging
and/or wire bond parasitics, regardless of the resonator FoM,
differently than for the ideal scenario discussed in Section II.

IV. MEASUREMENTS

A. RF Components Characterization

Based on the design guidelines discussed in Section III-A, a
PCB implementation of the proposed single-ended meandered
antenna dipole is designed and characterized targeting WuRx
communication bands, e.g., 800–900 MHz as in LoRa [38],
and a low Rant. The realized PCB antenna with results from an
experimental campaign is in Fig. 5, obtaining good agreement
between the EM model and the measured Zin, both in Rant,
Fres, and radiation pattern.

A test setup is designed and implemented in the Kostas
Research Institute [39] anechoic chamber in Burlington, MA,
to investigate the radiation properties of the designed proto-
type. The DUT’s antenna is positioned on an ETS-Lindgren
automatic positioner and its yaw rotation axis is swept from
0° to 360°. A reference horn antenna with 10-dBi gain is ori-
ented with its maximum gain direction interjecting the normal
of the PCB plane, as shown in Fig. 5(c).
The experimental setup is run by exciting the horn antenna

at the de-embedded resonance frequency 850MHz so to iden-
tify the directivity on the XZ cut by rotating the antenna in the
yaw axis, as noted in the picture, and recording at the same
time the received power, properly scaled to take into account
the low radiation resistance Rant.
The antenna system is positioned at a distance of 13m and

using the Friis equation [40, Ch. 2] the realized antenna gain
of the DUT is recorded as a function of the angle. A peak
gain of 2 dBi, as shown in Fig. 5(d), closely resembles the
predicted directivity of 2.5 dBi and efficiency of 83%.
The frequency response at the antenna interface Fig. 5(b) is

represented via Zin rather than a more conventional S11 reflec-
tion. As the antenna is not matched to 50� by design, the
conventional S11 characterization does not capture meaning-
ful information. In contrast, |Zin| highlights a series resonant
peak at 850MHz, showing a 11.5-� resonant input resistance.
Given the complexity of directly measuring antenna efficiency
[41], [42], antenna efficiency is estimated via the simulated

Fig. 5. Overview of LRA measurements. (a) Picture of the prototyped PCB
Antenna with annotated critical dimensions, for an overall size of 33 cm2,
compared to the size of a credit card. (b) Antenna input impedance at the
interface with the WuRx circuit, closely matching with the simulated response,
with a resonance at 850MHz, an input resistance at resonance 11.5 �, a
radiation quality factor Qr = 10, and a simulated efficiency of 83%, leading
to 2-� ohmic resistance and 9.5-� radiation resistance. (c) Radiation pattern
test setup performed in the anechoic chamber. A reference horn antenna with
10-dBi gain is used in a two-port response characterization. The antenna under
test is excited at resonance and an automatic angle sweep on the yaw axis is
performed thanks to a motorized positioner. (d) Extrapolated antenna gain as
a function of yaw angle, reaching a maximum of 2 dBi in excellent agreement
with EM simulations.

Momentum results. Taking into account FR4 loss tangent and
copper finite resistivity, an efficiency of 83% is calculated, so
that the overall input resistance can be broken down into a 2
and 9.5 � ohmic and radiation resistance, respectively.
A piezoelectric thin-FBAR [43], [44], [45], based on the

vertical excitation of squeeze-film mode in a sputtered AlN
film sandwiched between a Pt bottom electrode and an Al top
electrode, has been fabricated in-house, and its fabrication pro-
cess has been described in [46] and its cross section and SEM
picture are represented in Fig. 6. This particular device showed
Q ≈ 550, coupling k2t = 7%, and a resonance frequency of
817MHz [Fig. 6(c)].

B. Wake-Up Receiver Measurement

To better highlight the impact of RF termination on the
measured Gv, two sets of experiments are presented: in the
first scenario (Fig. 7) the WuRx is tested with an excitation
coming from a 50-� coaxial cable. In the second one, in Fig. 8,
the LRA and WuRx are integrated on the same PCB.
For the first setup, tested in a laboratory environment, an

RF continuous wave () with variable frequency and power is
fed to the front-end via coaxial cable, and the rectified dc
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Fig. 6. Overview of MEMS resonator characterization. (a) 3-D model of the
resonator cavity, composed of a stack of 80-μm Pt bottom metal layer, a 1 µm
sputtered AlN film, and a 120 -μm Al top metal layer. Details of fabrication
in [37]. (b) Scanning Electrode Microscope picture of the fabricated device.
(c) RF measurement of input impedance of the FBAR resonator, showing the
fitted parameter according to the MBVD resonator model in Fig. 1(b).

Fig. 7. RF Measurements of MEMS-matched WuRx terminated by 50-�
source. (a) RF input impedance of the unmatched WuRx compared with the
one matched with the in-house fabricated FBAR resonator, in the blue and
green plot, respectively. The MEMS-matched WuRx PCB shows resonant-
antiresonant response, with an input resistance at resonance approaching the
Rm of the resonator (Fig. 6). (b) MEMS-matched WuRx shows a 12-dB higher
dc rectification sensitivity for the same circuitry when excited with a −36-dBm
continuous wave at resonance. (c) Picture of the designed PCB with discrete
SMD components and the MEMS chip wire bonded to the circuit interface.

voltage VDC is measured at the comparator input, so to com-
pare the rectification sensitivity between the MEMS-matched
circuit and the unmatched one. The results are plotted in Fig. 7.

Fig. 8. (a) WuRx prototype composed of the custom LRA, connected to the
WuRx board in Fig. 7 (in the inset, the hybridly integrated FBAR chip via
gold wire bonds). (b) Communication link set up in anechoic chamber, with
an ominidirectional TX antenna fed with the OOK signal, the WuRx placed
3.7-m away, and an auxiliary antenna to monitor Rx power. (c) DC rectified
voltage at resonance for various RF power, respectively, for the unmatched
WuRx, for the 50-� RF source WuRx of Fig. 7, and the one excited with the
LRA, resulting in 11-dB extra sensitivity with respect to the 50-� counterpart.
(d) PER for an OOK modulation at 817-MHz carrier with 1-kHz bitrate. The
three boards achieved PER = 0 for thresholds of −40, −48, and −61 dBm,
respectively. (e) PER sensitivity to blocker signals for the LRA WuRx. At
±20MHz from 817MHz 14 dB, and 23 dB rejection is measured.

The center frequency of the system, fres = 817MHz,
is found close to the selected MEMS resonant frequency
[Fig. 6(c)], confirming trends discussed in [47]. A board with-
out MEMS is used as a reference, to highlight the relative
gain measured on the board with MEMS. The measured gain
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Gv = 4 (12 dB) is in partial agreement with the simulated
performance. In this way, a moderate Gv is realized and the
other proposed benefits of MEMS matching are experimentally
validated. The sharp peak recorded in Fig. 7(b) is followed
by an anti-resonance peak that ensures higher rejection in
the near-band, in close agreement with the MBVD resonator
model and the measured input impedance [Fig. 7(a)], result-
ing in a 23 -dB rejection between in-band and out-of-band
response.
A second Rx experiment is designed to characterize the cus-

tom WuRx-Antenna PCB. The experiment is performed in the
KRI [39] anechoic chamber in Burlington, MA, see Fig. 8(b),
where the WuRx is placed at 3.7m from Tx and a reference
antenna is positioned at the same radial distance to monitor
propagation loss of the Tx signal (57 dB).
In this setup, the overall center frequency shifts from the

antenna resonance because of the high-Q MEMS resonator,
resulting in an overall 817-MHz center frequency. Fig. 8(c)
shows a direct comparison of the sensitivities when both
systems are excited by a CW at resonance.
The rectified voltage is plotted against input power at reso-

nance for a 50-� terminated WuRx and for the proposed LRA
WuRx in Fig. 8(c) and compared with the unmatched recti-
fier as well, to emphasize the increased sensitivity at lower
input powers. In this experiment, the limit of detection is set
by the experimental setup, as no visible dc signal is measured
below 50 dBm. The input thermal noise at the rectifier output
is limited by the WuRX inherent filtering (estimated 60μVrms
in SPICE simulation), but a pair of unshielded, untwisted dc
probes is used to connect the WuRx board to a DSOX400A
Keysight oscilloscope, limiting the detection at around 1mV
with 64 averaged measurements, showing linear-in-db voltage
rectification above −50-dBm input RF power.
A voltage gain of about 23 dB, 11 dB more than the gain

obtained with a 50-� source, is measured for the LRA WuRx.
The measured gain is compatible with a Qe ≈ 20 and kp ≈ 2.
Note that Qe is approximately five times larger than one real-
ized on the 50-� source matched with the same resonator,
which is consistent with an Rant approximately five times
smaller than 50�. Fig. 8(d) ‘and (e) show measured results
for the digital packet recovery experiment, verified using actual
OOK modulated signals to send information over the air. A
MATLAB interface is programmed so that a random sequence
of 16 bits, independently generated at each experiment run, is
used to modulate the RF carrier as an OOK sequence. The RF
carrier is generated using a Tektronix TSG4104A signal gen-
erator, suitably amplified, and transmitted over the air in the
controlled environment of the anechoic chamber. The WuRx
comparator output is monitored by an oscilloscope, triggered
by the first-bit edge in the Tx section.
An algorithm is used to record the voltage signal recon-

structed by the WuRx and compare it with the input bit-stream
to determine a packet error rate (PER) for different levels of
input power. An input power threshold corresponding to the
WuRx sensitivity is then determined.
Because of the relatively high power consumption of the

commercial comparator (≈0.75mW, approximately 0.5mA at
1.5V), no bits are lost above the threshold in both setups and,

TABLE I
RF PASSIVE VOLTAGE AMPLIFICATION IN SELECTED WURX DESIGNS

therefore, PER dropped quickly from 1 to 0 with no error,
based on a statistic of 50 consecutive runs.
As shown in Fig. 8(d) ‘and (e), the LRA outperformed the

50-� source, confirming the 11-dB excess sensitivity mea-
sured in the dc rectification experiment, summing to a reported
minimum detectable signal of −48 and −61 dBm, respec-
tively, at 817MHz. Note that in this test, the rectifier output
is not monitored by the abovementioned dc probes, and at the
same time the lower antenna input resistance contributes to a
much lower noise floor at the comparator input—estimated to
be, respectively, 25μVrms in SPICE simulations.

Table I shows performance comparison with other exam-
ples in the literature of WuRx deploying MEMS resonators,
showing that while this work outperforms WuRx based on
AlN resonators thanks to the LRA, higher sensitivities can be
achieved by using LNB resonators, opening to very interesting
scenarios of high-gain WuRx when the antenna techniques dis-
cussed in this work are deployed in conjunction with such high
FoM resonators.
Moreover, with the integration-aware modeling proposed in

this work, the appropriated MEMS technology and RF inte-
gration platform can be selected so as to not limit the WuRx
performance with parasitic effects when higher and higher RF
carriers are considered.

V. CONCLUSION

A novel RF WuRx front-end for Narrow Band IoT is
proposed in this work. The novel methodology leverages
the co-design of PCB antennas with MEMS resonators to
obtain high passive voltage amplification and sharp frequency
selectivity, obtaining a scalable, inexpensive platform for
next-generation IoT devices.
A PCB antenna design methodology is discussed and exper-

imentally validated, and an in-house fabricated AlN FBAR
micro-acoustic resonator is deployed to realize a WuRx with
off-the-shelf diode rectifiers. The PCB platform is also used to
show that passive voltage gain in a WuRx front-end is limited
by parasitic effects rather than MEMS FoM in this frequency
range with conventional antenna designs.
We experimentally validate the proposed WuRx, showing

that the limits posed by integration parasitics can be lifted by
using the proposed methodologies. A highest-in-its-class RF
voltage gain of 23 dB is reported for an over-the-air prototype
at 850MHz, as the antenna and the MEMS are co-designed
for high passive voltage amplification, at no cost in terms of
power consumption, required antenna gain or improvements
in the resonator FoM.
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By leveraging the proposed approach, miniaturization,
energy awareness, and large volume production of IoT
node s can be made more and more attractive for next-
generation cellular IoT devices and wearables at reduced link
budgets.
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