

1 **Title:** Geography, not lifestyle, explains the population structure of free-living and host-
2 associated deep-sea hydrothermal vent snail symbionts

3

4 **Authors:** Michelle A. Hauer¹ (michellehauer@uri.edu), Corinna Breusing¹
5 (cbreusing@uri.edu), Elizabeth Trembath-Reichert² (e.t.r@asu.edu), Julie A. Huber³
6 (jhuber@whoi.edu), Roxanne A. Beinart^{1*} (rbeinart@uri.edu)

7

8 ¹University of Rhode Island, Graduate School of Oceanography, Narragansett, RI, USA

9 ²Arizona State University, School of Earth and Space Exploration, Tempe, AZ, USA

10 ³Woods Hole Oceanographic Institution, Department of Marine Chemistry and
11 Geochemistry, Woods Hole, MA, USA

12

13 ***Corresponding author:** Roxanne A. Beinart, rbeinart@uri.edu

14

15 **Keywords:** symbiosis; hydrothermal vents; population genomics; *Alviniconcha*; Mariana
16 Back-Arc; microbial biogeography

17

18

19

20

21

22

23

24 **Abstract**

25 Background: Marine symbioses are predominantly established through horizontal
26 acquisition of microbial symbionts from the environment. However, genetic and functional
27 comparisons of free-living populations of symbionts to their host-associated counterparts
28 are sparse. Here, we assembled the first genomes of the chemoautotrophic
29 gammaproteobacterial symbionts affiliated with the deep-sea snail *Alviniconcha hessleri*
30 from two separate hydrothermal vent fields of the Mariana Back-Arc Basin. We used
31 phylogenomic and population genomic methods to assess sequence and gene content
32 variation between free-living and host-associated symbionts.

33 Results: Our phylogenomic analyses show that the free-living and host-associated
34 symbionts of *A. hessleri* from both vent fields are populations of monophyletic strains from
35 a single species. Furthermore, genetic structure and gene content analyses indicate that
36 these symbiont populations are differentiated by vent field rather than by lifestyle.

37 Conclusion: Together, this work suggests that, despite the potential influence of host-
38 mediated acquisition and release processes on horizontally transmitted symbionts,
39 geographic isolation and/or adaptation to local habitat conditions are important
40 determinants of symbiont population structure and intra-host composition.

41

42 **Introduction**

43 Mutualistic animal-microbe associations are globally significant phenomena, shaping the
44 ecology and evolution of both host animals and microbial symbionts (1). These symbiotic
45 associations are maintained by transmission of symbionts from host parent to progeny
46 either 1) directly, for example via the germline (vertical transmission), 2) indirectly, for

47 example through an environmental population of symbionts (hereafter referred to as “free-
48 living” symbionts) (horizontal transmission); or, 3) via a combination of both vertical and
49 horizontal transmission (mixed mode transmission) (2).

50 Horizontal transmission is more commonly found in aquatic than terrestrial
51 habitats, likely due to the ease with which microbes can be transported in water compared
52 to air or soil (3). However, even for marine symbioses where horizontally transmitted
53 microbial symbionts are observed in the environment (4), it is not yet clear whether free-
54 living, environmental populations of symbionts represent host-associated populations at
55 the strain level, or whether their diversity and composition differs. Free-living symbiont
56 populations may be shaped by local environmental conditions as well as the dynamic
57 interactions with their host—for example, host animals may “seed” the environment by
58 the release of their symbionts into the water column only upon host death (5) or via
59 continuous release from live adults (6,7). In addition, ecological and evolutionary
60 processes, such as dispersal barriers, natural selection, and genetic drift, can contribute
61 to the diversity and biogeography of environmental symbionts (8,9).

62 Deep-sea hydrothermal vents are discontinuous, island-like habitats dominated by
63 vent-endemic invertebrates that host primarily horizontally transmitted chemoautotrophic
64 bacterial symbionts, making them opportune natural systems for understanding the
65 biogeography of free-living microbial symbionts. In these mutualisms, the symbiotic
66 bacteria are either obtained during a narrow competence window in early developmental
67 stages or throughout the lifetime of the host (10,11) and are, in most cases, housed
68 intracellularly within the host’s tissues, e.g., gill or trophosome. The symbionts oxidize
69 chemical reductants (e.g., H₂S, H₂, CH₄) in venting fluids to generate energy for the

70 production of organic matter, thereby providing the primary food source for the host in an
71 otherwise oligotrophic deep ocean (12) and accounting for the high ecosystem
72 productivity characteristic of hydrothermal vents (13–15).

73 Despite reliance on horizontal transmission, the majority of host species from
74 hydrothermal vents affiliate with only one or two specific endosymbiont phylotypes (i.e.,
75 species or genera based on 16S rRNA gene sequence similarity) (12), possibly as a
76 means to reduce the acquisition of cheaters (16). While a significant number of studies
77 have focused on the diversity, composition and structure of the host-associated symbiont
78 populations (e.g., 10,17–22), their free-living, environmental stages remain poorly
79 investigated (4), partly due to the difficulty of detecting low abundance free-living
80 symbionts in environmental samples. As a consequence, few free-living symbiont studies
81 exist. Most of these studies have so far relied on investigations of particular marker genes
82 (4,23); only one used an -omics approach but was limited to a single metagenome (24).

83 A recent shotgun metagenomic study found putative free-living symbiont
84 populations of the provannid snail *Alviniconcha hessleri* in low-temperature diffuse
85 venting fluids at two distinct vent fields of the Mariana Back-Arc, Northwest Pacific (15.5–
86 18°N), (25), providing a unique opportunity to compare free-living and host-associated
87 stages of chemosynthetic symbionts at hydrothermal vents. *Alviniconcha hessleri*
88 belongs to the dominant fauna at hydrothermal vents in the Mariana Back-Arc Basin,
89 where it lives in nutritional endosymbiosis with one species of sulfur-oxidizing,
90 environmentally acquired Gammaproteobacteria (26,27). Although patterns of host-
91 symbiont phylogenetic discordance strongly support a mode of horizontal transmission
92 for the *A. hessleri* symbiont (26,27), the exact dynamics of symbiont uptake and release

93 are unknown. As an endemic species to the Mariana region, *A. hessleri* is currently listed
94 as “Vulnerable” on the International Union for Conservation of Nature Red List of
95 Threatened Species (<https://www.iucnredlist.org>), highlighting the need to identify the
96 factors that contribute to its limited biogeographic range, including the population
97 structure of its obligate microbial symbiont.

98 In this study, we applied phylogenomic and population genomic methods to
99 evaluate the evolutionary relationships as well as the genetic and functional variation of
100 *Alviniconcha hessleri* symbionts based on lifestyle by comparing free-living and host-
101 associated symbiont populations collected from the same habitats. In addition, we
102 addressed the effect of geography by comparing populations of both host-associated and
103 free-living symbionts between vent fields of the northern and central Mariana Back-Arc
104 Basin that are approximately 300 km apart and differ notably in their geochemistry: the
105 central vent sites are known to support both low-temperature diffuse flow and black
106 smokers that emit high temperature fluids, with high amounts of hydrogen sulfide (H₂S),
107 whereas the northern sites only harbor diffuse flow habitats with lower concentrations of
108 H₂S (25).

109

110 **Methods**

111 Host-associated symbiont collection, sequencing, and genome assemblies

112 Three *A. hessleri* specimens each were collected from snail beds at the Illium vent field
113 (3582 m) and the Voodoo Crater-2 (VC2) location within the Hafa Adai vent field (3277
114 m) in the Mariana Back-Arc Basin (Figure 1) using the remotely operated vehicle
115 *SuBastian* on board the R/V *Falkor* in 2016. Symbiont-bearing snail gill tissues were

116 dissected and stored in RNALater™ (Thermo Fisher Scientific, Inc.) at -80°C until DNA
117 extraction with the Zymo Quick DNA 96 Plus and ZR-96 Clean-up kits (Zymo Research,
118 Inc.). High-throughput Illumina 150-bp paired-end libraries for all six samples were
119 prepared and sequenced by Novogene Corporation, Inc. (Beijing, China) with an average
120 yield of 58 million total Illumina reads (Supplementary Table 1). In addition, one gill
121 sample from each vent field—Hafa Adai 172 (VC2) and Illium 13—was selected for long-
122 read Nanopore sequencing on 2–3 MinION flow cells (Oxford Nanopore Technologies,
123 Oxford, UK) using the SQK-LSK109 ligation kit (Supplementary Table 1). Financial
124 constraints prevented the ability to perform long-read sequencing on all host-associated
125 samples.

126 Raw Illumina reads were trimmed with Trimmomatic v0.36 (28) and common
127 sequence contaminants were removed by mapping against the PhiX and human
128 (GRCh38) reference genomes. Nanopore reads were base-called with Albacore (Oxford
129 Nanopore Technologies, Oxford, UK) and adapter-clipped with Porechop
130 (<https://github.com/rrwick/Porechop>). For Illium, symbiont Illumina and Nanopore reads
131 were extracted through mapping against a draft co-assembly constructed with MEGAHIT
132 (29) and reassembled with SPAdes v3.13.1 (30) using kmers between 21-91 in
133 increments of 10. The Hafa Adai 172 MEGAHIT assembly was low-quality; therefore, for
134 Hafa Adai 172, all trimmed Illumina and Nanopore reads were assembled with
135 metaSPAdes v3.13.1 (31) using the same parameters. Manual binning of the assemblies
136 was conducted with GBTools (32) and contigs <200 bp and <500 bp were excluded from
137 the Illium and Hafa Adai-VC2 assemblies, respectively. Assemblies were then scaffolded
138 with SSPACE-Standard v3.0 (33) and SLR (34) and gapfilled with GapFiller v1-10 (35)

139 and LR_GAPCLOSER (36). Final assemblies were polished with Pilon (37). Trimmed
140 Illumina reads for the remaining samples—Illium 11, Illium 17, Hafa Adai 60, and Hafa
141 Adai 64—were assembled with metaSPades v3.13.1 as described above and binned with
142 MaxBin (38). All metagenome-assembled genomes (MAGs) were quality checked with
143 Quast v5.0.2 (39) and CheckM v1.0.18 (40) and taxonomically assigned through the
144 Genome Taxonomy Database toolkit (41).

145

146 Free-living symbiont collection, sequencing, and genome assembly

147 All sequences from free-living samples used here were retrieved from a previous
148 study (25), including two high-quality MAGs of environmental *A. hessleri* symbionts from
149 the Illium (GCA_003972985.1) and Hafa Adai-VC2 (GCA_003973075.1) vent sites. The
150 fluid samples from which these MAGs were assembled were collected in direct vicinity of
151 snail beds where the *A. hessleri* specimens for host-associated analyses were obtained
152 (25). We further included a third previously assembled free-living symbiont MAG from
153 diffuse-venting fluids at the Voodoo Crater-1 (VC1) (GCA_003973045.1) location within
154 the Hafa Adai vent field, ~5 meters from Hafa Adai-VC2. Though symbiont MAGs were
155 not previously able to be assembled from the other vent sites sampled in ref. (25) —
156 Burke, Alice Springs, Perseverance and Hafa Adai-Alba — we attempted again to retrieve
157 symbiont MAGs from these samples by assembling and binning the raw reads from these
158 sites with our methods described above, but did not produce usable symbiont MAGs.

159 All details of the hydrothermal fluid collection, sample storage, sample processing,
160 sequencing, assembly, and binning of metagenome-assembled genomes can be found

161 in ref. (25). Information about raw sequencing reads is provided in Supplementary Table
162 1.

163

164 Genome similarity and phylogenomic analyses

165 To confirm that all symbiont MAGs belong to the same bacterial species, we calculated
166 average nucleotide identities (ANIs) via FastANI (42). A phylogenomic tree that included
167 the six host-associated and the three free-living symbiont MAGs as well as reference
168 genomes of other chemosynthetic Gammaproteobacteria (Supplementary Table 2) was
169 then constructed with IQ-TREE2 (43) based on 70 single copy core genes in the
170 Bacteria_71 collection (44). Parameter choice for phylogenomic reconstructions followed
171 ref. (18).

172

173 Population structure and gene content analysis

174 To determine symbiont population structure according to geography and lifestyle, we
175 inferred DNA sequence polymorphisms in the free-living and host-associated samples by
176 mapping metagenomic reads to a pangenome created with Panaroo (45) from all nine
177 symbiont MAGs. Variants were called and filtered following the pipeline in ref. (18). All
178 samples from Illium and Hafa Adai met our minimum 10x coverage threshold. Free-living
179 samples from Burke and Alice Springs mapped at 5.9x and 3.9x coverage, respectively.
180 The population structure and gene content analyses (see below) were repeated for these
181 lower-coverage samples. All other free-living metagenomic samples from the remaining
182 vent sites collected in ref. (25) (i.e., Perseverance, Hafa Adai-Alba) had an insufficient
183 number of reads mapped for further analyses. Principal coordinate analysis (PCoA) plots

184 were created based on nucleotide counts converted to Bray-Curtis dissimilarities with the
185 ggplot2 (46) and vegan (47) packages in Rstudio (48). To quantify the qualitative variant
186 calling results depicted in the PCoAs, fixation indices (F_{ST}) between individual
187 metagenomic samples (wherein each individual gill metagenome was treated as a
188 population) were calculated following ref. (49) and plotted with pheatmap (50). The
189 method from ref. (49) as well as scikit-allel (<https://github.com/cggh/scikit-allel>) were
190 further used to calculate pairwise F_{ST} values between samples pooled by lifestyle or vent
191 field.

192 Gene content variation among symbiont populations was determined via
193 Pangenome-based Phylogenomic Analysis (PanPhlAn) (51) and visualized through a
194 PCoA plot based on the Jaccard Similarity Coefficient. Genes that were uniquely
195 associated with lifestyle and vent field, respectively, were extracted from the PanPhlAn
196 gene presence/absence matrix. Functional predictions for these genes were either
197 obtained from the Prokka (52) annotations created during pangenome construction or
198 inferred by blasting the respective protein sequences against the NR database.
199 Hypothetical and unknown proteins were further annotated via KEGG (53) and Alphafold
200 (54). Differences in gene content between symbiont populations were visualized through
201 Likert plots with the HH package (55) in RStudio.

202

203 Validation of free-living symbiont populations

204 To gain confidence that the symbionts detected in our environmental samples
205 represented truly “free-living” symbiont stages as opposed to symbionts associated with
206 host larvae or shed gill cells, we calculated the ratio of symbiont 16S rRNA genes to host

207 mitochondrial CO1 genes in all nine samples by mapping raw metagenomic reads from
208 the snail gills to custom-generated *Alviniconcha* symbiont 16S rRNA and host mtCO1
209 gene databases. To account for false positive mappings, we created additional
210 background databases consisting of select bacterial (SUP05 clade bacteria,
211 *Thiomicrospira*, and *Marinomonas*) and mollusk gene sequences. Bacterial 16S rRNA
212 genes were downloaded from SILVA (56), while all *Alviniconcha* and mollusk mtCO1
213 genes were downloaded from BOLD (57). BBSplit
214 (<https://sourceforge.net/projects/bbmap/>) was then used to separate *Alviniconcha*
215 symbiont and host reads based on the taxon-specific and background 16S rRNA and
216 CO1 gene databases.

217

218 **Results**

219 Free-living and host-associated symbionts belong to the same bacterial species

220 Our analysis included nine *A. hessleri* symbiont MAGs from the Illium and Hafa Adai vent
221 fields: six host-associated symbiont genomes assembled in this study, and three
222 previously published, free-living symbiont genomes from the diffuse venting fluids around
223 *A. hessleri* beds (25) (Supplementary Table 3). All host-associated and two of the three
224 free-living MAGs were of very high quality, with >90% completeness and <3%
225 contamination. The third free-living MAG, Hafa Adai-VC1, had a medium quality (~67%
226 completeness). ANI values between all MAGs were >97.7% (Supplementary Table 4),
227 suggesting that the nine *A. hessleri* symbiont genomes belong to the same bacterial
228 species (42) within the genus *Thiopapillus* based on the Genome Taxonomy Database,
229 and confirming that the previously assembled free-living symbiont genomes were indeed

230 *A. hessleri* symbionts (Supplementary Table 3). Corroborating the ANI results, the nine
231 *A. hessleri* MAGs were monophyletic in our phylogenomic analysis relative to the
232 gammaproteobacterial symbionts of other vent invertebrates (Figure 2). In agreement
233 with phylogenetic analyses of the 16S rRNA gene (27), the nearest neighbors of the *A.*
234 *hessleri* symbionts were the *lfremeria nautillei* SOX symbiont, as well as *Thiopallillus*
235 *brandeum*, a microbe not known to be symbiotic (58).

236

237 Environmental samples contain free-living symbiont populations

238 To investigate whether the symbionts observed in the diffuse flow samples were true free-
239 living symbionts rather than symbionts associated with *A. hessleri* larvae or shed gill
240 tissue, we calculated the ratio of symbiont 16S rRNA gene to host mitochondrial CO1
241 gene reads in all nine environmental and host-associated samples (Table 1). If the
242 environmental symbiont samples were associated with larvae or host tissue debris/cells,
243 we expect the ratio in the environmental and host-associated samples to be similar to one
244 another. However, the 16S rRNA : mtCO1 ratio was consistently orders of magnitude
245 higher in environmental samples than in host-associated samples, indicating the
246 presence of a population of symbiont cells independent from host tissue. This finding
247 provides evidence that our environmental samples include truly free-living *A. hessleri*
248 symbiont populations.

249

250 *A. hessleri* symbiont populations are structured primarily by vent field, not lifestyle

251 Our genome assemblies from both host tissue and diffuse vent fluids likely represent the
252 dominant symbiont strain in each sample, but do not reveal the full extent of strain-level

253 population variation between samples. To determine whether *A. hessleri* symbionts form
254 subpopulations consistent with geography or lifestyle, we created a pangenome out of
255 the individual symbiont MAGs from the Illium and Hafa Adai vent fields that we used as
256 reference for variant calling (Supplementary Tables 5, 6). Our variant detection method
257 resulted in 2177 sequence polymorphisms for investigation of population genomic
258 structure based on F_{ST} and ordination analyses (Figure 3).

259 F_{ST} values were calculated pairwise between all nine populations (Figure 3a), as
260 well as between samples pooled by lifestyle and vent field. F_{ST} values range from 0 to 1,
261 where an F_{ST} value of 1 indicates that samples form genetically isolated subpopulations,
262 while an F_{ST} value of 0 indicates that the samples form a single, well-mixed population.
263 Between individual samples, pairwise F_{ST} s showed a moderate (0.2–0.5) to strong (>0.5)
264 differentiation, indicating that all samples represent distinct subpopulations with limited
265 genetic exchange among each other (Figure 3a, Supplementary Table 7). Genetic
266 isolation among individual samples was typically stronger between (0.54–0.76) than
267 within (0.21–0.46) vent fields (i.e., Illium vs Hafa Adai-VC2). Within vent sites, the degree
268 of differentiation was comparable among samples independent of lifestyle at Illium, while
269 host-associated samples were more similar to one another than to free-living samples at
270 Hafa Adai-VC2. When samples were pooled, overall pairwise F_{ST} values were markedly
271 higher by vent field (0.47 ± 0.03 s.d.) than by lifestyle (0.05 ± 0.01 s.d.). The dominant
272 effect of geography on symbiont population structure was supported by PCoAs where
273 both free-living and host-associated samples from Illium clustered distinctly from Hafa
274 Adai (VC1 and VC2) (Figure 3b). Despite the fact that Hafa Adai-VC1 and -VC2 differ
275 spatially by only ~5 meters, the free-living VC1 sample formed its own distinct

276 subpopulation from both host-associated and free-living populations at VC2 (F_{ST} : 0.58–
277 0.67), suggesting very fine-scale geographic or environmental structuring.

278 These patterns were consistent in analyses based on 1271 and 793 variant sites
279 that included the free-living, low coverage symbiont samples from Burke and Alice
280 Springs, respectively (Supplementary Figure 1, 4; Supplementary Tables 8, 9). Burke
281 represented the most divergent population, reaching F_{ST} values > 0.8 in all pairwise
282 comparisons. Although Alice Springs clustered closely with free-living and host-
283 associated symbionts from Illium in the PCoAs, F_{ST} values indicated a high degree of
284 genetic isolation for this population ($F_{ST} > 0.7$). Analyses with samples pooled by vent
285 field confirmed patterns of strong genetic differentiation between geographic locations
286 without evidence for isolation-by-distance (Supplementary Table 10).

287

288 *A. hessleri* symbiont gene content differs by vent field, not lifestyle

289 Gene content variation between symbiont populations was assessed based on lifestyle
290 and geography. Similar to the population structure analyses, PCoA plots based on gene
291 content variation across all nine host-associated and free-living populations revealed
292 clustering by vent field but not by lifestyle: symbiont populations from Hafa Adai-VC1 and
293 Hafa Adai-VC2 were more similar to one another than to Illium (Figure 4), although Hafa
294 Adai-VC1 clustered as an independent population from all other samples.

295 Gene content differed more substantially by geography than by lifestyle: the Illium
296 symbionts had 44 unique gene clusters, and the Hafa Adai (VC1 and VC2) symbionts
297 had 26 (Figure 5a, Supplementary Table 11), while only three total gene clusters were
298 unique by lifestyle (group_681 for host-associated; group_2104 and group_2131 for free-

299 living). However, these genes could not be characterized by any database we used for
300 functional annotations. For all unique gene clusters across both biogeography and
301 lifestyle, hypothetical and unknown proteins based on Prokka and the NR database were
302 also assessed via KEGG and AlphaFold, but yielded low confidence results. Of the
303 successfully annotated genes unique to the Illium symbionts, most were predicted to be
304 involved in the mobilome and DNA metabolism, followed by membrane transport,
305 virulence, disease, defense; RNA metabolism; sulfur metabolism; cell signaling and
306 regulation; conjugation; iron metabolism; glycolysis and gluconeogenesis; and
307 detoxification and stress response. Genes unique to the Hafa Adai (VC1 & VC2)
308 symbionts were predominantly associated with the mobilome, followed by membrane
309 transport; RNA metabolism; motility and chemotaxis; DNA metabolism; virulence, disease
310 and defense; and glycolysis and gluconeogenesis.

311 Given the small-scale geographic structuring found between VC1 and VC2 at Hafa
312 Adai, and given that VC2 has a larger sample size to represent its subpopulation, we also
313 compared the unique genes between Illium and Hafa-Adai VC2 symbionts alone (i.e.,
314 without VC1) (Supplementary Table 12, Figure 5b). In this case, there were 62 unique
315 gene clusters for symbionts from Illium and 28 unique gene clusters for symbionts from
316 Hafa Adai-VC2 (Figure 5b), i.e., two additional as compared to VC-1 & VC-2 combined.
317 Only one of the genes unique to the Hafa Adai symbionts could be annotated and fell
318 under the larger subcategory of “Virulence, Disease and Defense”, whereas unique genes
319 of the Illium symbionts spanned a variety of metabolic functions.

320 Analyses that included symbiont reads from Alice Springs and Burke
321 (Supplementary Figures 2, 3, 5; Supplementary Tables 13, 14) further supported the

322 effect of geography over lifestyle on gene content variation in the *A. hessleri* symbionts.
323 The population at Burke harbored a single unique, uncharacterized gene (Supplementary
324 Table 13). When pooled with Illium as a “northern site”, additional genes unique to DNA
325 metabolism and membrane transport were found, followed by genes involved in the
326 mobilome, RNA metabolism, virulence, glycolysis and gluconeogenesis, cell signaling,
327 conjugation and stress response (Supplementary Figure 3; Supplementary Table 13).

328 Alice Springs harbored three uncharacterized or hypothetical genes. When all
329 three northern sites (Alice Springs, Illium, and Burke) were pooled together, seven unique
330 genes were found. Four of these were related to DNA metabolism, virulence, conjugation
331 and transposition (Supplementary Table 14). Since Alice Springs and Illium are more
332 geochemically similar to one another than either vent is to Burke (25), we also
333 investigated the unique genes shared by these two vent fields alone: four unique genes
334 were found, one of which fell under the functional category of Virulence, Disease and
335 Defense.

336

337 **Discussion**

338 Here, we compared free-living and host-associated symbiont populations of *Alviniconcha*
339 *hessleri* from two vent fields in the Mariana Back-Arc. Based on ANI and taxonomic
340 assignments, our nine representative, medium- to high-quality MAGs can be considered
341 to represent a single species within the genus *Thiopapillus* (58). Our results provide strong
342 evidence that diffuse fluid flow microbial communities include populations of free-living
343 symbionts, further supporting an expected model of horizontal transmission in
344 *Alviniconcha* species (18,59).

345 Both population structure and gene content analyses suggest that *A. hessleri*
346 symbionts form subpopulations that segregate by geography more strongly than by
347 lifestyle. These patterns agree with previous studies of non-symbiotic hydrothermal vent
348 microbial communities, which show that microbes are shaped by their local environment
349 (60), as well as of host-associated *A. hessleri* symbiont biogeography at the 16S rRNA
350 gene level (27) and other horizontally-transmitted associations from hydrothermal vents,
351 such as bathymodiolin mussels (49,61,62) and provannid snails (18), that have been
352 shown to partner with habitat-specific symbiont strains. These results, therefore, provide
353 further evidence for horizontal transmission in the *A. hessleri* symbiont system. Such
354 uptake of environmental symbiont strains bears a risk of infection to the host by cheaters
355 (16), but also enhances an animal's ability to flexibly associate with locally available
356 symbiont strains and, therefore, to maximize the habitat range in which they can settle
357 (2,18). Furthermore, since hydrothermal vents are ephemeral and geochemically
358 dynamic habitats that harbor microbial communities shaped by local environmental
359 conditions (60), it may be ecologically and evolutionarily advantageous for vent animals
360 to acquire symbiont strains that are likely locally adapted (63).

361 The dynamics of microbial interaction with the host during acquisition and release
362 processes can have significant impacts on the population structure and composition of
363 horizontally transmitted symbionts. It is not known whether *A. hessleri* can replenish or
364 recycle its symbionts, or if symbiont acquisition occurs only once upon settlement. For
365 example, hydrothermal vent tubeworms seed the environment with their symbionts only
366 upon death (5), *Bathymodiolus* mussels can acquire and release their symbionts
367 throughout their lifetime (11,64), and *Vibrio fischeri* symbionts are expelled every morning

368 by their sepiolid squid host (65). In *V. fischeri*, it is well established that evolution in the
369 free-living stage—for example, via horizontal gene transfer—impacts the evolution of
370 host-microbe interactions, though the role of novel mutations remains unclear (65).
371 Although *A. hessleri* symbionts were overall more strongly partitioned by geography than
372 by lifestyle, all symbiont samples were genetically distinct from each other and formed
373 separate free-living or host-associated subpopulations. These findings suggest that
374 symbiont exchanges between host and environment throughout the lifetime of the host
375 are limited but might occur occasionally via symbiont uptake or release (49), thereby
376 leading to mixing of host-associated and free-living symbiont pools. Periodic switching of
377 symbiont strains could increase shared genetic variation among intra- and extra-host
378 symbiont populations, while maintaining geographic differentiation in the presence of
379 dispersal barriers and/or environmental selection. All samples from Illium showed a
380 comparably small degree of differentiation from each other, while samples from Hafa Adai
381 were notably divergent between free-living and host-associated lifestyles. These patterns
382 could arise from differences in the sampling locations of the free-living symbiont
383 populations (e.g., distance from the snail beds) and/or the age of the *Alviniconcha* host
384 individuals. Although we do not have size-related data for the collected specimens, it is
385 possible that the snail individuals from Hafa Adai were older than those from Illium, giving
386 host-associated symbiont populations more time to diverge from their free-living
387 counterparts. Strong genetic differentiation between host-associated and free-living
388 symbiont populations can be expected if hosts take up similar symbiont strains that have
389 limited exchange with the environment post-infection, while the free-living symbiont
390 population experiences more turnover.

391 The high genetic isolation of symbiont populations observed between vent fields
392 may reflect the influence of both neutral (e.g., dispersal barriers and isolation by distance)
393 and selective processes (e.g., adaptation to habitat differences between vent fields) on
394 symbiont biogeography. Illium, Burke, and Alice Springs are all northern vent fields within
395 the Mariana Back-Arc Basin that are characterized by sites of low-temperature diffuse
396 fluid flow, while Hafa Adai is located further south and contains high-temperature black
397 smokers (25). Illium and Alice Springs are similar geochemically, notably in that they are
398 both low in H₂S concentrations, while Burke and Hafa Adai exhibit elevated H₂S
399 concentrations (25). The close proximity (~360 m) and overlap in geochemical
400 characteristics between Alice Springs and Illium may explain why these vent fields
401 clustered together in our population structure analyses. By contrast, Burke's distinct
402 geochemical signature might contribute to the high genetic isolation seen for this vent
403 field, despite its relative proximity to Alice Springs and Illium (~4km). Overall, however,
404 no clear pattern of isolation-by-distance was observed, indicating that ecological factors
405 might play a more important role than dispersal barriers in shaping symbiont population
406 structure, in agreement with the oceanographic connectivity between the northern and
407 central Mariana Back-Arc Basin (66).

408 Interestingly, Hafa Adai-VC1 — while more similar to Hafa Adai-VC2 than any
409 other vent site — represented its own symbiont sub-population, suggesting small scale
410 population structuring of symbionts within vent fields. Local patchiness of symbionts, as
411 observed in our study, mirrors patterns found for host-associated symbionts of cold-seep
412 vestimentiferan tubeworms (67) and *Acropora* corals (68). Although Hafa Adai-VC1 and
413 -VC2 were only ~5 meters apart, it is possible that *Alviniconcha hessleri* symbionts have

414 extremely low dispersal potential that could be further reduced by small-scale circulation
415 within vent sites due to physical structuring in the subseafloor (69,70). Alternatively,
416 micro-niche adaptation driven by locally fluctuating environmental conditions might
417 contribute to these patterns.

418 Among the identified differences in gene content, symbionts from Illium uniquely
419 harbored genes related to iron and sulfur metabolism. As iron and sulfur concentrations
420 appear to be reduced at northern Mariana Back-Arc vents (25,71) and are typically lower
421 in diffuse flow than black smoker fluids such as those found at Hafa Adai, it is possible
422 that symbionts at Illium harbor high affinity sulfur and Fe²⁺ transporters to efficiently obtain
423 this essential element for their metabolism. All symbiont populations, including the low
424 coverage samples from Alice Springs and Burke, showed differences in the presence of
425 genes related to the mobilome and virulence, disease and defense. This suggests that
426 each vent field supports distinct viral communities that may uniquely infect and interact
427 with the symbionts, as hydrothermal vent viruses have restricted bacterial and archaeal
428 host ranges, and viral communities are typically endemic to a given vent site due to limited
429 dispersal or environmental selection (72,73). The high number of unique genes related to
430 the mobilome may be a consequence of integrated phage-derived genetic material that
431 reflect the local, free-living viral communities.

432

433 **Conclusions**

434 Our research demonstrates that *Alviniconcha hessleri* symbiont populations are primarily
435 structured by geography rather than by their host-associated or free-living lifestyle. Future
436 work using population genomic approaches should help clarify the predominant force(s)

437 shaping the geographic population structure, as recent analyses of the symbionts
438 associated with other *Alviniconcha* species suggests that both genetic drift and local
439 adaptation play a role in symbiont biogeography (18). Although our analyses indicate a
440 weak effect of lifestyle on symbiont genetic structure, it is possible that free-living and
441 host-associated populations are characterized by differences in gene expression. A
442 comparison of gene expression between lifestyles may provide additional clarity on the
443 extent to which these symbiont sub-populations differ functionally. Our work also
444 strengthens previous evidence for horizontal symbiont transmission in *Alviniconcha*
445 species (18,59), despite the fact that almost nothing is currently known about the
446 dynamics of symbiont acquisition and release in these species. Given that *A. hessleri* has
447 been classified as “Vulnerable” on the IUCN Red List (<https://www.iucnredlist.org>) and is
448 a dominant species at vents that are part of the Marianas Trench Marine National
449 Monument, it is critical for future conservation and management that we understand the
450 genetic connectivity of the symbiotic microbes that support this foundation species.

451

452

453 **Declarations**

454 Ethics approval and Consent to Participate

455 Not applicable

456

457 Consent for Publication

458 Not applicable

459

460 Availability of data and materials
461 The datasets supporting the conclusions of this article are available in the National Center
462 for Biotechnology Information repository, under BioProject number [PRJNA763533](#). The
463 previously published, free-living raw sequencing reads and corresponding MAGs are
464 available at the National Center for Biotechnology Information under BioProject
465 [PRJNA454888](#).

466

467 Competing Interests

468 The authors declare that they have no competing financial interests.

469

470 Funding

471 This work was funded by the National Science Foundation (grant number OCE-1736932
472 to RAB and Graduate Research Fellowship award number 1747454 to MAH). JAH was
473 funded by the NOAA Ocean Exploration and Research (OER) Program and the NSF
474 Center for Dark Energy Biosphere Investigations (C-DEBI) (OCE-0939564). ETR was
475 supported by the NASA Postdoctoral Fellowship with the NASA Astrobiology Institute and
476 the L'Oréal USA For Women in Science Fellowship. This is C-DEBI Contribution XXX.

477

478 Authors contributions

479 M.H., C.B., R.A.B., and J.H. designed the study. J.H. collected the samples. E.T.R. and
480 R.A.B. did laboratory work for the free-living and host-associated metagenomic samples,
481 respectively. M.H., C.B., and E.T.R. performed bioinformatic analyses. M.H. drafted the
482 manuscript. All authors edited, reviewed, and approved the text.

483

484 Acknowledgements

485 We thank the Schmidt Ocean Institute, the captain, crew and pilots of the R/V *Falkor* and
486 ROV *SubSebastian*, as well as Bill Chadwick, David Butterfield, Verena Tunnicliffe, and
487 Amanda Bates for their support in the sample collections. The data collected in this study
488 includes work supported by the Schmidt Ocean Institute during the R/V *Falkor* cruise
489 FK161129.

490

491 **References**

- 492 1. McFall-Ngai M, Hadfield MG, Bosch TCG, Carey H V., Domazet-Lošo T, Douglas
493 AE, et al. Animals in a bacterial world, a new imperative for the life sciences. Proc
494 Natl Acad Sci U S A. 2013;110(9):3229–3236.
- 495 2. Vrijenhoek RC. Genetics and evolution of deep-sea chemosynthetic bacteria and
496 their invertebrate hosts. In: S. Kiel, editor. The Vent and Seep Biota: Aspects from
497 Microbes to Ecosystems. Dordrecht, Netherlands: Springer; 2010. p. 15–49.
- 498 3. Russell SL. Transmission mode is associated with environment type and taxa
499 across bacteria-eukaryote symbioses: A systematic review and meta-analysis.
500 FEMS Microbiol Lett. 2019;366(3):1–13.
- 501 4. Harmer TL, Rotjan RD, Nussbaumer AD, Bright M, Ng AW, DeChaine EG, et al.
502 Free-living tubeworm endosymbionts found at deep-sea vents. Appl Environ
503 Microbiol. 2008;74(12):3895–3898.
- 504 5. Klose J, Polz MF, Wagner M, Schimak MP, Gollner S, Bright M. Endosymbionts
505 escape dead hydrothermal vent tubeworms to enrich the free-living population.

506 Proc Natl Acad Sci. 2015;112(36):11300–11305.

507 6. Doino JA, McFall-Ngai MJ. A transient exposure to symbiosis-competent bacteria
508 induces light organ morphogenesis in the host squid. Biol Bull. 1995;189(3):347–
509 355.

510 7. Nyholm SV, McFall-Ngai MJ. Sampling the light-organ microenvironment of
511 *Euprymna scolopes*: description of a population of host cells in association with the
512 bacterial symbiont *Vibrio fischeri*. Biol Bull. 1998;195(2):89–97.

513 8. Martiny JBH, Bohannan BJM, Brown JH, Colwell RK, Fuhrman JA, Green JL, et al.
514 Microbial biogeography: Putting microorganisms on the map. Nat Rev Microbiol.
515 2006;4(2):102–112.

516 9. Dickey JR, Swenie RA, Turner SC, Winfrey CC, Yaffar D, Padukone A, et al. The
517 utility of macroecological rules for microbial biogeography. Front Ecol Evol.
518 2021;9:633155.

519 10. Nussbaumer AD, Fisher CR, Bright M. Horizontal endosymbiont transmission in
520 hydrothermal vent tubeworms. Nature. 2006;441(7091):345–348.

521 11. Wentrup C, Wendeberg A, Schimak M, Borowski C, Dubilier N. Forever competent:
522 Deep-sea bivalves are colonized by their chemosynthetic symbionts throughout
523 their lifetime. Environ Microbiol. 2014;16(12):3699–3713.

524 12. Dubilier N, Bergin C, Lott C. Symbiotic diversity in marine animals: the art of
525 harnessing chemosynthesis. Nat Rev Microbiol. 2008;6:725–740.

526 13. Olins HC, Rogers DR, Frank KL, Vidoudez C, Girguis PR. Assessing the influence
527 of physical, geochemical and biological factors on anaerobic microbial primary
528 productivity within hydrothermal vent chimneys. Geobiology. 2013;11(3):279–293.

529 14. McNichol J, Stryhanyuk H, Sylva SP, Thomas F, Musat N, Seewald JS, et al.
530 Primary productivity below the seafloor at deep-sea hot springs. Proc Natl Acad Sci
531 U S A. 2018;115(26):6756–6761.

532 15. Beinart RA, Gartman A, Sanders JG, Luther GW, Girguis PR. The uptake and
533 excretion of partially oxidized sulfur expands the repertoire of energy resources
534 metabolized by hydrothermal vent symbioses. Proc R Soc B Biol Sci.
535 2015;282:20142811.

536 16. Douglas AE. Conflict, cheats and the persistence of symbioses. New Phytol.
537 2008;177(4):849–858.

538 17. Lan Y, Sun J, Chen C, Sun Y, Zhou Y, Yang Y, et al. Hologenome analysis reveals
539 dual symbiosis in the deep-sea hydrothermal vent snail *Gigantopelta aegis*. Nat
540 Commun. 2021;12(1):1–15.

541 18. Breusing C, Genetti M, Russell SL, Corbett-Detig RB, Beinart RA. Horizontal
542 transmission enables flexible associations with locally adapted symbiont strains in
543 deep-sea hydrothermal vent symbioses. Proc Natl Acad Sci USA. 2022;119(14):1–
544 11.

545 19. Beinart RA, Sanders JG, Faure B, Sylva SP, Lee RW, Becker EL, et al. Evidence
546 for the role of endosymbionts in regional-scale habitat partitioning by hydrothermal
547 vent symbioses. Proc Natl Acad Sci U S A. 2012;109(47):1–10.

548 20. Beinart RA, Luo C, Konstantinidis KT, Stewart FJ, Girguis PR. The bacterial
549 symbionts of closely related hydrothermal vent snails with distinct geochemical
550 habitats show broad similarity in chemoautotrophic gene content. Front Microbiol.
551 2019;10:1818.

552 21. Breusing C, Johnson SB, Tunnicliffe V, Vrijenhoek RC. Population structure and
553 connectivity in Indo-Pacific deep-sea mussels of the *Bathymodiolus septendierum*
554 complex. *Conserv Genet*. 2015;16(6):1415–1430.

555 22. Hinzke T, Kleiner M, Meister M, Schlüter R, Hentschker C, Pané-Farré J, et al.
556 Bacterial symbiont subpopulations have different roles in a deep-sea symbiosis.
557 *Elife*. 2021;10:1–45.

558 23. Ücker M. Metagenomic analyses of a deep-sea mussel symbiosis. Dissertation,
559 University of Bremen. 2021.

560 24. Polzin J, Arevalo P, Nussbaumer T, Polz MF, Bright M. Polyclonal symbiont
561 populations in hydrothermal vent tubeworms and the environment. *Proc R Soc B
562 Biol Sci*. 2019;286:20181281.

563 25. Trembath-Reichert E, Butterfield DA, Huber JA. Active subseafloor microbial
564 communities from Mariana back-arc venting fluids share metabolic strategies
565 across different thermal niches and taxa. *ISME J*. 2019;13(9):2264–2279.

566 26. Endow K, Ohta S. The symbiotic relationship between bacteria and a
567 mesogastropod snail, *Alviniconcha hessleri*, collected from hydrothermal vents of
568 the Mariana Back-Arc Basin. *Bull Japanese Soc Microb Ecol*. 1989;3(2):73–82.

569 27. Breusing C, Johnson SB, Tunnicliffe V, Clague DA, Vrijenhoek RC, Beinart RA.
570 Allopatric and sympatric drivers of speciation in *Alviniconcha* hydrothermal vent
571 snails. *Mol Biol Evol*. 2020;37(12):3469–3484.

572 28. Bolger AM, Lohse M, Usadel B. Trimmomatic: A flexible trimmer for Illumina
573 sequence data. *Bioinformatics*. 2014;30(15):2114–2120.

574 29. Li D, Liu CM, Luo R, Sadakane K, Lam TW. MEGAHIT: an ultra-fast single-node

575 solution for large and complex metagenomics assembly via succinct de Bruijn
576 graph. *Bioinformatics*. 2015;31(10):1674–1676.

577 30. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, et al.
578 SPAdes: A new genome assembly algorithm and its applications to single-cell
579 sequencing. *J Comput Biol*. 2012;19(5):455–477.

580 31. Nurk S, Meleshko D, Korobeynikov A, Pevzner PA. MetaSPAdes: A new versatile
581 metagenomic assembler. *Genome Res*. 2017;27(5):824–834.

582 32. Seah BKB, Gruber-Vodicka HR. gbttools: Interactive visualization of metagenome
583 bins in R. *Front Microbiol*. 2015;6:1451.

584 33. Boetzer M, Henkel C V., Jansen HJ, Butler D, Pirovano W. Scaffolding pre-
585 assembled contigs using SSPACE. *Bioinformatics*. 2011;27(4):578–579.

586 34. Luo J, Lyu M, Chen R, Zhang X, Luo H, Yan C. SLR: a scaffolding algorithm based
587 on long reads and contig classification. *BMC Bioinformatics*. 2019;20(1):1–11.

588 35. Boetzer M, Pirovano W. Toward almost closed genomes with GapFiller. *Genome*
589 *Biol*. 2012;13(6).

590 36. Xu GC, Xu TJ, Zhu R, Zhang Y, Li SQ, Wang HW, et al. LR-Gapcloser: A tiling
591 path-based gap closer that uses long reads to complete genome assembly.
592 *Gigascience*. 2018;8(1):1–14.

593 37. Walker BJ, Abeel T, Shea T, Priest M, Abouelliel A, Sakthikumar S, et al. Pilon: An
594 integrated tool for comprehensive microbial variant detection and genome
595 assembly improvement. *PLoS ONE*. 2014;9(11):e112963.

596 38. Wu Y-W, Tang Y-H, Tringe SG, Simmons BA, Singer SW. MaxBin: an automated
597 binning method to recover individual genomes from metagenomes using.

598 Microbiome. 2014;2(26):4904–4909.

599 39. Gurevich A, Saveliev V, Vyahhi N, Tesler G. QUAST: quality assessment tool for
600 genome assemblies. Bioinformatics. 2013;29(8):1072–1075.

601 40. Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. CheckM:
602 assessing the quality of microbial genomes recovered from isolates, single cells,
603 and metagenomes. Genome Res. 2015;25(7):1043–1055.

604 41. Chaumeil PA, Mussig AJ, Hugenholtz P, Parks DH. GTDB-Tk: A toolkit to classify
605 genomes with the genome taxonomy database. Bioinformatics. 2020;36(6):1925–
606 1927.

607 42. Jain C, Rodriguez-R LM, Phillip AM, Konstantinidis KT, Aluru S. High throughput
608 ANI analysis of 90K prokaryotic genomes reveals clear species boundaries. Nat
609 Commun. 2018;9(1):5114.

610 43. Minh BQ, Schmidt HA, Chernomor O, Schrempf D, Woodhams MD, Von Haeseler
611 A, et al. IQ-TREE 2: new models and efficient methods for phylogenetic inference
612 in the genomic era. Mol Biol Evol. 2020;37(5):1530–1534.

613 44. Eren AM, Esen OC, Quince C, Vineis JH, Morrison HG, Sogin ML, et al. Anvi'o: An
614 advanced analysis and visualization platform for 'omics' data. PeerJ.
615 2015;2015(10):1–29.

616 45. Tonkin-Hill G, MacAlasdair N, Ruis C, Weimann A, Horesh G, Lees JA, et al.
617 Producing polished prokaryotic pangenomes with the Panaroo pipeline. Genome
618 Biol. 2020;21(1):1–21.

619 46. Villanueva RAM, Chen ZJ. ggplot2: Elegant Graphics for Data Analysis (2nd ed.).
620 Meas Interdiscip Res Perspect. 2019;17(3):160–167.

621 47. Oksanen AJ, Blanchet FG, Kindt R, Legendre P, Minchin PR, Hara RBO, et al. vegan:
622 Community Ecology Package. 2018. <https://CRAN.R-project.org/package=vegan>.

623 48. RStudio Team. RStudio: Integrated Development Environment for R. Boston, MA:
624 RStudio, PBC; 2021.

625 49. Romero Picazo D, Dagan T, Ansorge R, Petersen JM, Dubilier N, Kupczok A.
626 Horizontally transmitted symbiont populations in deep-sea mussels are genetically
627 isolated. ISME J. 2019;13(12):2954–2968.

628 50. Kolde R. pheatmap: Pretty Heatmaps. 2019. <https://CRAN.R-project.org/package=pheatmap>.

630 51. Beghini F, McIver LJ, Blanco-Míguez A, Dubois L, Asnicar F, Maharjan S, et al.
631 Integrating taxonomic, functional, and strain-level profiling of diverse microbial
632 communities with biobakery 3. Elife. 2021;10:1–42.

633 52. Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics
634 2014;30(14):2068–2069.

635 53. Kanehisa M, Sato Y, Kawashima M, Furumichi M, Tanabe M. KEGG as a reference
636 resource for gene and protein annotation. Nucleic Acids Res. 2016;44(D1):D457–
637 462.

638 54. Jumper J, Evans R, Pritzel A, Green T, Figurnov M, Ronneberger O, et al. Highly
639 accurate protein structure prediction with AlphaFold. Nature. 2021;596(7873):583–
640 589.

641 55. Heiberger RM, Holland B. Statistical Analysis and Data Display: An Intermediate
642 Course with Examples in R. 2nd edition. New York: Springer; 2015.

643 56. Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, et al. The SILVA

644 ribosomal RNA gene database project: improved data processing and web-based
645 tools. *Nucleic Acids Res.* 2013;41(D1):590–596.

646 57. Ratnasingham S, Hebert PDN. BOLD: The Barcode of Life Data System. *Mol Ecol*
647 Notes. 2007;7(3):355–364.

648 58. Nunoura T, Takaki Y, Kazama H, Kakuta J, Shimamura S, Makita H. Physiological
649 and genomic features of a novel sulfur-oxidizing Gammaproteobacterium belonging
650 to a previously uncultivated symbiotic lineage isolated from a hydrothermal vent.
651 *PLoS ONE.* 2014;9(8):e104959.

652

653 59. Suzuki Y, Kojima S, Sasaki T, Suzuki M, Utsumi T, Watanabe H, et al. Host-
654 symbiont relationships in hydrothermal vent gastropods of the genus *Alviniconcha*
655 from the Southwest Pacific. *Appl Environ Microbiol.* 2006;72(2):1388–1393.

656 60. Dick GJ. The microbiomes of deep-sea hydrothermal vents: distributed globally,
657 shaped locally. *Nat Rev Microbiol.* 2019;17(5):271–283.

658 61. Ücker M, Ansorge R, Sato Y, Sayavedra L, Breusing C, Dubilier N. Deep-sea
659 mussels from a hybrid zone on the Mid-Atlantic Ridge host genetically
660 indistinguishable symbionts. *ISME J.* 2021;15(10):3076–3083.

661 62. Brzechffa C, Goffredi SK. Contrasting influences on bacterial symbiont specificity
662 by co-occurring deep-sea mussels and tubeworms. *Environ Microbiol Rep.*
663 2021;13(2):104–111.

664 63. Vrijenhoek RC. Genetic diversity and connectivity of deep-sea hydrothermal vent
665 metapopulations. *Mol Ecol.* 2010;4391–4411.

666 64. Kádár E, Bettencourt R, Costa V, Santos RS, Lobo-da-Cunha A, Dando P.

690 71. Ishibashi J ichiro, Tsunogai U, Toki T, Ebina N, Gamo T, Sano Y, et al. Chemical
691 composition of hydrothermal fluids in the central and southern Mariana Trough
692 backarc basin. Deep Res Part II Top Stud Oceanogr. 2015;121:126–136.

693 72. Paez-Espino D, Eloe-Fadrosh EA, Pavlopoulos GA, Thomas AD, Huntemann M,
694 Mikhailova N, et al. Uncovering Earth's virome. Nature. 2016;536(7617):425–430.

695 73. Thomas E, Anderson RE, Li V, Rogan LJ, Huber JA. Diverse viruses in deep-sea
696 hydrothermal vent fluids have restricted dispersal across ocean basins. mSystems.
697 2021;6(3):1–18.

698

699 **Figure Legends**

700 **Figure 1.** Map of the Mariana Back-Arc Basin adapted from ref. (25), indicating the
701 locations of the two main hydrothermal vent fields sampled in this study, Illium and Hafa
702 Adai. Free-living symbiont samples were obtained at low coverage from two additional
703 vent sites investigated in ref. (25), Alice Springs and Burke. Colors associated with vent
704 fields are used consistently across samples. A light cyan and teal are used for Hafa Adai,
705 representing Voodoo Crater 1 and 2, respectively.

706

707 **Figure 2.** Cladogram branch transformed phylogenomic tree of chemosynthetic
708 Gammaproteobacteria based on 70 single copy core genes. Genome accession numbers
709 for all genomes included in the phylogenomic analysis can be found in Supplementary
710 Table 1. *A. hessleri* symbionts are colored by vent field (Hafa Adai VC2: teal, Hafa Adai
711 VC1: light cyan, Illium: yellow) with dots and triangles indicating free-living or host-

712 associated lifestyle. *Candidatus Pseudothioglobus singularis* was used as outgroup for
713 tree rooting.

714

715 **Figure 3.** Symbiont population structure based on single nucleotide polymorphisms. A.)
716 Heatmap of genome-wide, pairwise fixation indices (F_{ST}) created using the pheatmap
717 package in RStudio. F_{ST} values range from 0 to 1, where a value of 0 indicates no genetic
718 differentiation, while a value of 1 indicates complete isolation among populations. “FL”
719 and “HA” indicate free-living and host-associated symbionts, respectively. B.) PCoA plot
720 based on Bray-Curtis distances illustrating the population structure of *A. hessleri*
721 symbionts of different lifestyles and vent fields.

722

723 **Figure 4.** PCoA plot based on Jaccard distances illustrating the difference in gene content
724 between *A. hessleri* symbionts based on both lifestyle and vent field.

725

726 **Figure 5.** Likert plots showing A) number of unique genes between Illium and Hafa Adai
727 (including both VC1 and VC2), and B) number of unique genes between Illium and Hafa
728 Adai (VC2 only).