

1 **Genome assembly of the chemosynthetic endosymbiont of the hydrothermal vent snail**
2 ***Alviniconcha adamantis* from the Mariana Arc**

3
4 Corinna Breusing¹, N. Hagen Klobusnik², Michelle A. Hauer¹, Roxanne A. Beinart¹
5
6 ¹Graduate School of Oceanography, University of Rhode Island, Narragansett, RI 02882, USA
7 ²Texas A&M University at Galveston, Galveston, TX 77554, USA

8
9 **Keywords:** Chemosynthetic symbiosis, hydrothermal vents, *Alviniconcha adamantis*, Mariana
10 Arc

11
12 **Corresponding author:** Corinna Breusing, corinnabreusing@gmail.com
13
14 **Running title:** *Alviniconcha adamantis* symbiont genome

15 **ABSTRACT**

16 Chemosynthetic animal-microbe symbioses sustain hydrothermal vent communities in the global
17 deep sea. In the Indo-Pacific Ocean, hydrothermal ecosystems are often dominated by gastropod
18 species of the genus *Alviniconcha*, which live in association with chemosynthetic
19 Gammaproteobacteria or Campylobacteria. While the symbiont genomes of most extant
20 *Alviniconcha* species have been sequenced, no genome information is currently available for the
21 gammaproteobacterial endosymbiont of *A. adamantis* – a comparatively shallow living species
22 that is thought to be the ancestor to all other present *Alviniconcha* lineages. Here, we report the
23 first genome sequence for the symbiont of *A. adamantis* from the Chamorro Seamount at the
24 Mariana Arc. Our phylogenomic analyses show that the *A. adamantis* symbiont is most closely
25 related to Chromatiaceae endosymbionts of the hydrothermal vent snails *A. strummeri* and
26 *Chrysomallon squamiferum*, but represents a distinct bacterial species or possibly genus. Overall,
27 functional capacity of the *A. adamantis* symbiont appeared to be similar to other chemosynthetic
28 Gammaproteobacteria, though several flagella and chemotaxis genes were detected, which are
29 absent in other gammaproteobacterial *Alviniconcha* symbionts. These differences might suggest
30 potential contrasts in symbiont transmission dynamics, host recognition or nutrient transfer.
31 Furthermore, an abundance of genes for ammonia transport and urea usage could indicate
32 adaptations to the oligotrophic waters of the Mariana region, possibly via recycling of host- and
33 environment-derived nitrogenous waste products. This genome assembly adds to the growing
34 genomic resources for chemosynthetic bacteria from hydrothermal vents and will be valuable for
35 future comparative genomic analyses assessing gene content evolution in relation to environment
36 and symbiotic lifestyle.

37

38 **INTRODUCTION**

39 While most areas of the deep sea depend on sinking organic particles originating from
40 photosynthetic primary production at the ocean's surface, ecosystems around deep-sea
41 hydrothermal vents are fueled by the biochemical processes carried out by chemosynthetic
42 microbes. These organisms are typically chemolitho- or chemoorganotrophic
43 Gammaproteobacteria or Campylobacteria that oxidize reduced hydrothermal fluid compounds,
44 such as sulfide, hydrogen or methane, to generate energy for carbon fixation (Sogin *et al.* 2020,
45 2021). Many chemosynthetic microbes are known to form symbiotic relationships with vent-

46 associated invertebrate animals, thereby supplying these hosts with the bulk of their nutritional
47 requirements and leading to the high animal biomass that is characteristic of hydrothermal vent
48 communities (Dubilier *et al.* 2008; Sogin *et al.* 2020, 2021).

49 A diversity of chemosynthetic symbioses has been discovered and described, including
50 that of the hydrothermal vent snail *Alviniconcha* (Suzuki *et al.* 2006; Johnson *et al.* 2015;
51 Breusing *et al.* 2020a, 2022a), a genus of endangered foundation fauna found at hydrothermal
52 vents across the Western Pacific and Indian oceans (<https://www.iucnredlist.org>). Most
53 *Alviniconcha* species foster symbiotic associations with chemosynthetic Gammaproteobacteria
54 that are assumed to be environmentally acquired and reside intracellularly within the snail's gill
55 tissue (Suzuki *et al.* 2006; Breusing *et al.* 2022a). Previous genome reports and physiological
56 experiments have shown that *Alviniconcha* symbionts primarily use reduced sulfur compounds
57 and, in some cases, hydrogen as energy sources for their chemosynthetic metabolism (Beinart *et*
58 *al.* 2015; Miyazaki *et al.* 2020; Breusing *et al.* 2020b), while likely additionally synthesizing
59 essential amino acids for their hosts (Beinart *et al.* 2019).

60 With the exception of *A. adamantis*, the dominant endosymbiont genomes of all known
61 *Alviniconcha* species have been sequenced (Beinart *et al.* 2019; Trembath-Reichert *et al.* 2019;
62 Yang *et al.* 2020; Breusing *et al.* 2022b; Hauer *et al.* in prep). *Alviniconcha adamantis* is
63 endemic to the Mariana Arc, where it inhabits relatively shallow seamounts in contrast to its
64 deeper living congeners. Due to its basal (though uncertain) phylogenetic position, recent studies
65 have hypothesized that *A. adamantis* might be the ancestor to all other extant *Alviniconcha*
66 species, supporting an evolutionary transition from shallow to deep water vent sites (Breusing *et*
67 *al.* 2020a). How the distinct ecological niche of *A. adamantis* might have shaped gene content
68 and functional potential of its gammaproteobacterial symbiont is currently unknown.
69 Understanding symbiont metabolic capacity can help us infer fundamental characteristics of
70 hydrothermal vent ecology and evolution, giving us insights into how chemosynthetic microbes
71 interact with and adapt to their biogeochemical environment.

72 In this study, we sequenced a draft genome of the endosymbiont of *Alviniconcha*
73 *adamantis* from the Mariana Arc. Using comparative genomic and phylogenomic analyses, we
74 determined its phylogenetic placement with respect to other chemosynthetic
75 Gammaproteobacteria and compared its metabolic potential with that of related vent-associated
76 symbionts.

77

78 **METHODS AND MATERIALS**

79 **Sample collection, nucleic acid extraction and sequencing**

80 Samples of *Alviniconcha adamantis* were collected from Chamorro Seamount (20°49'12.0"N
81 144°42'36.0"E, 920 m) at the Mariana Arc in 2016 during R/V *Falkor* cruise FK161129 with the
82 ROV *SubBastian* (Fig. 1). Symbiont-bearing gill tissue was excised and preserved in RNALater™
83 (Thermo Fisher Scientific, Inc., Waltham, MA, USA) at -80°C until further analysis. DNA was
84 extracted with the Zymo Quick DNA 96 Plus and ZR-96 Clean-up kits (Zymo Research, Inc.,
85 Irvine, CA, USA) and submitted for Illumina 150 bp paired-end library preparation and
86 sequencing at Novogene Corporation (Beijing, China). Raw reads were trimmed with
87 Trimmomatic v0.36 (Bolger *et al.* 2014) with the following parameters,
88 ILLUMINA_CLIP:illumina.fa:2:30:10 SLIDINGWINDOW:4:20 LEADING:5 TRAILING:5
89 MINLEN:75, and then filtered for sequence contaminants through mapping against the human
90 (GRCh38) and PhiX reference genomes. High molecular weight DNA for additional Nanopore
91 sequencing runs was extracted with Qiagen Genomic Tips (Qiagen, Inc., Hilden, Germany) and
92 enriched for fragments > 25 kb with the Circulomics Short Read Eliminator kit (PacBio, Menlo
93 Park, CA, USA). Nanopore libraries were constructed with the SQK-LSK109 ligation kit and
94 sequenced on two separate flow cells on a MinION device (Oxford Nanopore Technologies,
95 Oxford, UK). Basecalling of the Nanopore reads was done locally with MinKNOW v4.2.8 in
96 high accuracy mode and adapters were clipped with Porechop v0.2.4
97 (<https://github.com/rrwick/Porechop>).

98

99 **Genome assembly, binning and annotation**

100 Hybrid assemblies of Illumina and Nanopore reads were constructed with metaSPAdes v3.13.1
101 (Nurk *et al.* 2017) using kmers from 21 to 121 in 10 step increments, manually binned with
102 gbttools (Seah and Gruber-Vodicka 2015) and then re-assembled with SPAdes (Bankevich *et al.*
103 2012) in careful mode with automatic coverage cutoff using only symbiont reads that mapped
104 against the metaSPAdes bin (Table S1). The SPAdes assembly was scaffolded and gapfilled with
105 SSPACE v3.0 (Boetzer *et al.* 2011) and GapFiller v1.10 (Boetzer and Pirovano 2012),
106 respectively. Scaffolds smaller than 200 bp were excluded. The final assembly was polished with
107 Pilon v1.22 (Walker *et al.* 2014) with the “--fix-all --changes” options and assessed for

108 completeness and contamination with checkM v1.0.13 (Parks *et al.* 2015) based on 280
109 Gammaproteobacteria-specific marker genes. General assembly statistics were quantified with
110 QUAST v5.0.0 (Gurevich *et al.* 2013). Protein-coding genes were predicted with Prodigal v2.6.3
111 (Hyatt *et al.* 2010) and functionally annotated with the KEGG (Kanehisa *et al.* 2016) and COG
112 (Galperin *et al.* 2015) databases in Anvi'o v7.1 (Eren *et al.* 2015) using Blastp (Camacho *et al.*
113 2009) for protein sequence comparisons. Ribosomal and transfer RNAs were inferred with
114 Barrnap v0.9 (<https://github.com/tseemann/barrnap>) and tRNAscan-SE v2.0.9 (Chan *et al.* 2021),
115 respectively. Putative hydrogenase genes were classified with HydDB (Søndergaard *et al.* 2016).
116 Taxonomic assignment was done with GTDB-Tk v1.5.0 (Chaumeil *et al.* 2019). To evaluate the
117 diversity of the intra-host symbiont population we called single nucleotide polymorphisms
118 (SNPs), insertion-deletions (INDELs) and other variant types with FreeBayes v1.3.6 (Garrison
119 and Marth 2012) as in Breusing *et al.* (2022b). In addition, low frequency variants were
120 identified through LoFreq v2.1.5 (Wilm *et al.* 2012) with default filters for coverage and strand
121 bias, a minimum mapping quality of 30 and a minimum base quality of 20.

122

123 Comparative genomics and phylogenomics

124 A phylogeny of the *A. adamantis* symbiont and representatives of other chemosynthetic
125 Gammaproteobacteria (Table S2) was constructed with IQ-TREE v2.0.6 (Minh *et al.* 2020)
126 based on an amino acid alignment of concatenated single-copy core genes in the Anvi'o
127 "Bacteria_71" collection (Eren *et al.* 2015). Phylogenomic trees were inferred from 5
128 independent runs based on a gene-wise best-fit partition model identified with ModelFinder
129 using the relaxed hierarchical clustering method (Lanfear *et al.* 2014). Branch support was
130 calculated via ultrafast bootstrapping and Shimodaira-Hasegawa-like approximate likelihood
131 ratio tests, resampling partitions and sites within resampled partitions 1000 times. Bootstrap trees
132 were optimized through a hill-climbing nearest neighbor interchange search to minimize the
133 effect of model violations. The free-living SUP05 bacterium *Ca. Pseudothioglobus singularis*
134 was used as outgroup for tree rooting. The best maximum likelihood tree was displayed and
135 polished with FigTree v1.4.4 (<http://tree.bio.ed.ac.uk/software/figtree/>). Gene content differences
136 among the *A. adamantis* symbiont and related Gammaproteobacteria were assessed in Anvi'o by
137 determining presence and completeness of metabolic pathways via the "anvi-run-kegg-kofams"
138 and "anvi-estimate-metabolism" programs. Modules were considered as complete when at least

139 75% of participating genes were found. Core and unique protein-coding genes between the *A.*
140 *adamantis* symbiont and closest bacterial relatives were evaluated through the Anvi'o
141 pangenomics workflow. Principal coordinate plots and heatmaps were produced in R v4.1.2 with
142 the ggplot2, ComplexHeatmap and circlize packages (Gu *et al.* 2014, 2016; Wickham 2016; R
143 Core Team 2021) and polished in Inkscape v1.0.0b1 (<https://inkscape.org>).

144

145 **RESULTS AND DISCUSSION**

146 **Overview of the genome assembly**

147 The *A. adamantis* symbiont draft genome consists of 427 scaffolds comprising an approximate
148 total size of 3.3 Mb, an N50 value of 16,689 bp and a GC content of 62.04%, with an average
149 coverage of 931x (Table 1). Functional annotation analyses predicted 3821 protein-coding genes,
150 2 rRNAs and 45 tRNAs, with 833 (21.54%) genes having no designated function (Table 1, S3).
151 About 11.63% of the genome consisted of intergenic regions. Based on Gammaproteobacteria-
152 specific marker genes, the genome assembly is 98.88% complete with 2.06% contamination and
153 16.67% strain heterogeneity (Table 1). Read mapping against the *A. adamantis* symbiont genome
154 recovered 198 variant sites based on FreeBayes but 24,332 variant sites based on LoFreq, which
155 translates into a variant density of 7.44 variants/kbp. Given that LoFreq is optimized for
156 detecting low frequency variants, the discrepancy between the two programs suggests that the
157 symbiont population within *A. adamantis* individuals likely consists of one dominant strain (in
158 agreement with Breusing *et al.* 2022a) as well as several low abundance strains that are only
159 detectable with more sensitive methods.

160

161 **Comparative genomics and phylogenomics**

162 Phylogenomic analyses and taxonomic assignment indicated that the *A. adamantis* symbiont
163 represents a sister taxon to the Chromatiaceae endosymbionts of the hydrothermal vent snails
164 *Chrysomallon squamiferum* (from the Indian Ocean) and *Alviniconcha strummeri*
165 (“GammaLau”, from the Lau Basin) (Fig. 2, S1), despite the fact that these symbionts and their
166 hosts inhabit distant biogeographic provinces (Fig. 1). The *A. adamantis* symbiont shared on
167 average 76.75% and 77.88% nucleotide identity with the *A. strummeri* and *C. squamiferum*
168 symbionts, respectively, whereas the latter two taxa were less divergent, comprising an average
169 nucleotide identity of 89.02%. The present genome similarities indicate that all three symbionts

170 are representatives of distinct bacterial species (Konstantinidis and Tiedje 2005), with the *A.*
171 *adamantis* symbiont possibly representing a different genus. All symbionts shared 1325 core
172 protein-coding gene clusters, while the *A. adamantis* symbiont contained approximately the same
173 number of accessory gene clusters (1332; Fig. 2, Table S3), in accordance with the observed
174 genomic divergence. Core genes were mostly associated with translation, energy production, and
175 amino acid, cofactor and cell wall metabolism, whereas accessory genes were predominantly
176 involved in signal transduction, replication, mobilome and defense mechanisms or had unknown
177 functions (Table S3). Interestingly, the phylogenetic affiliations among these taxa were not
178 exactly mirrored in representations of functional potential, given that the *A. adamantis* and *C.*
179 *squamiferum* symbionts were more similar in metabolic pathways than either of these species to
180 the *A. strummeri* symbiont (Fig. 3, S2). Overall, the *A. adamantis* and *C. squamiferum* symbionts
181 exhibited functional proximity (i.e., overlap in gene content and metabolic pathways) to other
182 provannid snail, tubeworm and *Solemya* clam symbionts, while the *A. strummeri* symbiont
183 showed higher affinity to bacteria of the SUP05 group (Fig. 3, S2).

184

185 **Chemoautotrophic and heterotrophic metabolism**

186 Both hydrogen sulfide and thiosulfate oxidation pathways were detected within the *A. adamantis*
187 symbiont genome (Table S3, S4). Oxidation of hydrogen sulfide is likely facilitated through type
188 I and type VI sulfide:quinone oxidoreductases (*sqr*) and a flavocytochrome c-sulfide
189 dehydrogenase (*fccAB*), which are hypothesized to be used for growth in habitats with variable
190 sulfide concentrations (Han and Perner 2016; Beinart *et al.* 2019; Breusing *et al.* 2020b). Typical
191 for chemosynthetic Gammaproteobacteria (Nakagawa and Takai 2008; Gregersen *et al.* 2011),
192 the thiosulfate-oxidizing Sox multienzyme complex (*soxXYZABC*) without a complete *soxCD*
193 subunit was encoded, which likely promotes oxidation of sulfur compounds to elemental sulfur
194 as energy storage in the periplasm (Grimm *et al.* 2008; Ghosh and Dam 2009). Likewise, we
195 observed genes for the reverse dissimilatory sulfite reductase associated pathway, which
196 catalyzes the oxidation of sulfide to sulfate via sulfite and adenylylphosphosulfate (Nakagawa
197 and Takai 2008) and is characteristic for gammaproteobacterial sulfur-oxidizers (Gregersen *et al.*

198 2011). An alternative pathway for sulfite metabolism might be performed by sulfite
199 dehydrogenase (*soeABC*).

200 Apart from potential for sulfur oxidation, the *A. adamantis* symbiont genome showed
201 capacity for the usage of hydrogen as electron donor for chemosynthesis (Table S3). We found
202 evidence for the presence of two uptake Ni/Fe hydrogenases, an O₂-tolerant hydrogenase of type
203 1d (gene caller ID: 3368) and an O₂-sensitive hydrogenase of type 1e (gene caller ID: 165, 166),
204 which are likely employed for growth under aerobic and anaerobic conditions, respectively.
205 Expression and formation of these primary hydrogenases might be regulated by a sensory Group
206 2b Ni/Fe hydrogenase (gene caller ID: 3354).

207 As in other chemosynthetic Gammaproteobacteria (Hügler and Sievert 2011), the energy
208 generated through hydrogen or sulfur oxidation is likely transferred to Form II RuBisCO (*cbbM*)
209 for carbon assimilation via the Calvin-Benson-Bassham cycle, which was the only complete
210 carbon fixation pathway found in the *A. adamantis* symbiont genome (Table S3, S4). Similar to
211 what has been reported from other *Alviniconcha* symbionts, there is evidence that the *A.*
212 *adamantis* symbiont has the potential for heterotrophic metabolism. We found several
213 transporters for the uptake of four carbon compounds (TRAP transport system), sugars
214 (phosphotransferase system), lipids, amino acids and urea in the genome of the *A. adamantis*
215 symbiont. In addition, genes for the utilization of glycolate (glycolate oxidase), urea (urease),
216 glycogen (glycogen phosphorylase) and formate (formate hydrogenlyase) were observed.

217

218 **Respiration**

219 The *A. adamantis* symbiont genome encodes pathways for both aerobic and anaerobic
220 respiration. A full set of genes of the aerobic respiratory chain was detected, including NADH-
221 quinone oxidoreductase, succinate dehydrogenase, cytochrome bc1 complex, cytochrome cbb3-
222 type oxidase and an F-type ATPase (Table S3, S4). In addition, subunits I, II and X of a terminal
223 cytochrome bd-I ubiquinol oxidase were found, which is thought to be used for aerobic
224 respiration under microaerophilic conditions (Borisov *et al.* 2011; Beinart *et al.* 2019). The
225 symbiont's capacity to express different respiratory enzymes might be an adaptation to deal with
226 fluctuating oxygen concentrations at hydrothermal vents and to remedy interference with host
227 respiration (Beinart *et al.* 2019). Under complete anoxia, the *A. adamantis* symbiont appears to
228 be able to switch to multiple electron acceptors other than oxygen. For example, nitrate

229 respiration is likely supported by the presence of complete pathways for denitrification as well as
230 dissimilatory nitrate reduction (Table S3, S4). Furthermore, respiration of hydrogen and dimethyl
231 sulfoxide seems possible through genes coding for formate hydrogenlyase and anaerobic
232 dimethyl sulfoxide reductase.

233

234 **Nitrogen assimilation**

235 The *A. adamantis* symbiont appears to be able to use multiple nitrogen sources for the
236 incorporation of nitrogen into biomass. For example, we detected several genes for ammonia
237 transporters and urease in the *A. adamantis* symbiont genome (Table S3), which should allow
238 direct uptake of ammonia from the environment or host and disintegration of urea into two
239 ammonia molecules. Ammonia would subsequently be available for conversion into glutamine
240 by glutamine synthetase (GS) and further incorporation into glutamate by NADPH-dependent
241 glutamate synthase (GOGAT). Interestingly, the KEGG/COG annotation pipeline failed to
242 recover genes for assimilatory nitrate reductase (*nasA*), which is present in other provannid
243 symbionts (Beinart *et al.* 2019). This finding is likely an artifact of the annotation database or
244 gene prediction program, as further searches via RAST-Tk (Brettin *et al.* 2015) indicated the
245 presence of *nasA* in the genome of the *A. adamantis* symbiont. Nevertheless, given the
246 oligotrophic nature of the Mariana region (Morel *et al.* 2010), the abundance of genes for
247 ammonia transport and urea catabolism in the genome of the *A. adamantis* symbiont could
248 suggest scavenging of host and environmental waste products in adaptation to limited nutrient
249 availability at the Chamorro Seamount.

250

251 **Amino acid and cofactor biosynthesis**

252 In addition to the synthesis of glutamine and glutamate, the *A. adamantis* symbiont has the
253 potential for the generation of 13 other amino acids, including the essential amino acids histidine,
254 isoleucine, leucine, lysine, methionine, threonine, tryptophan and valine, which are critical for
255 host nutrition (Table S4). Pathways for the biosynthesis of cysteine, glycine, phenylalanine,
256 serine and tyrosine appeared incomplete, which might suggest reliance of the symbiont on
257 environmental provisioning of these amino acids or could be indicative of artifacts in the
258 assembly or functional annotations. For example, the terminal enzyme for serine biosynthesis,
259 phosphoserine phosphatase (*serB*), was missing from the KEGG pathway predictions, but was

260 present in the COG annotations. This could imply that the *A. adamantis* specific gene is too
261 divergent from reference sequences in the KEGG database to be correctly annotated and that this
262 symbiont is actually able to synthesize serine.

263 Apart from essential amino acid biosynthesis, pathways for the generation of diverse
264 enzyme cofactors were observed in the *A. adamantis* symbiont genome. Based on KEGG
265 metabolic reconstructions, the *A. adamantis* symbiont has the potential to *de novo* synthesize
266 NAD, heme, siroheme, ubiquinone, molybdenum, lipoic acid and the vitamins biotin, thiamine,
267 folate, and riboflavin (Table S4). By contrast, conventional pathways for the biosynthesis of
268 cobalamin, pantothenate, pyridoxal-5' phosphate, ascorbate and phylloquinone appeared
269 incomplete, but might in some cases be substituted by alternative routes. For example, the lack of
270 2-dehydropantoate-2-reductase for the conversion of 2-dehydropantoate to (R)-pantoate might be
271 compensated by ketol-acid reductoisomerase (*ilvC*) (Merkamm *et al.* 2003), thereby allowing
272 autonomous generation of pantothenate and coenzyme A. In the absence of complete
273 biosynthetic pathways, the respective cofactors will have to be acquired from an environmental
274 source, given that several vitamin-dependent enzymes, such as cobalamin-dependent methionine
275 synthase (*metH*) and pyridoxal-5' phosphate-dependent cysteine-S-conjugate beta-lyase, were
276 encoded in the *A. adamantis* symbiont genome.

277

278 **Host-symbiont interactions**

279 Aside from chemosynthesis genes, the genome of the *A. adamantis* symbiont encodes multiple
280 loci that are likely relevant for interactions with its host, including genes for flagella (*motAB*,
281 *flgABC*, *flgJKLMN*, *flgZ*, *fliA*, *fliCDEFGHIJKLMNOPQRST*), pili (*pilABC*, *pilEFGHIJ*,
282 *pilMNOPQ*, *pilSTUVW*, *pilZ*, *fimT*, *fimV*, *cpaBC*, *cpaF*, *tadBCD*, *tadG*), chemotaxis (*MCP*,
283 *cheAB*, *cheD*, *cheR*, *cheVW*, *cheYZ*), toxin-antitoxin and two-component systems (e.g., *fitAB*,
284 *higAB*, *vapBC*, *algRZ*) as well as outer membrane porins (*ompA-F*) (Table S3). The discovery of
285 flagella genes in the *A. adamantis* symbiont genome is surprising as these genes are typically
286 abundant in campylobacterial, but not gammaproteobacterial *Alviniconcha* symbiont genomes
287 (Beinart *et al.* 2019), though are observed in some other symbiotic Gammaproteobacteria,
288 including those of tubeworms and mussels (Robidart *et al.* 2008; Egas *et al.* 2012; Gardebrecht
289 *et al.* 2012; De Oliveira *et al.* 2022). The presence of flagella-encoding loci could suggest that
290 the biology of the *A. adamantis* symbiosis is markedly different from other

291 gammaproteobacterial associations in *Alviniconcha* and has closer resemblance to
292 Campylobacteria-dominated systems, where flagella have been implicated in host specificity,
293 nutrient transfer and/or continuous symbiont transmission (Sanders *et al.* 2013). Host specificity
294 might further be promoted by outer membrane porins, which have been shown to play a role in
295 host recognition in both terrestrial and aquatic symbioses (Weiss *et al.* 2008; Nyholm *et al.* 2009;
296 Zvi-Kedem *et al.* 2021). Host colonization and subsequent maintenance of the intra-host
297 symbiont population involves a delicate interplay between host and symbiont molecular factors.
298 Many of the detected toxin-antitoxin and two-component systems are known to be important for
299 virulence regulation, host invasion and intracellular growth control in a variety of pathogenic
300 bacteria (Lobato-Márquez *et al.* 2016), which could indicate that the *A. adamantis* symbiont
301 employs comparable strategies for beneficial interactions with its hosts, similar to what has been
302 proposed for mutualistic symbionts of deep-sea mussels (Sayavedra *et al.* 2015).

303

304 CONCLUSIONS

305 Using a combination of Illumina and Nanopore sequencing at an average coverage of 931x, in
306 this study we generated the first draft endosymbiont genome of the endemic hydrothermal vent
307 snail *Alviniconcha adamantis* from the Mariana Arc. The presented genome assembly closes a
308 gap in the genomic resources currently available for symbionts of deep-sea provannid snails and
309 will be useful for further analyses of host-symbiont dynamics and symbiont genome evolution
310 according to host and environmental factors. While gene content of the *A. adamantis* symbiont
311 appeared overall characteristic of chemosynthetic Gammaproteobacteria and related
312 *Alviniconcha* symbionts, notable exceptions were observed, in particular the presence of flagella-
313 encoding loci and an abundance of genes for ammonia transport and urea usage. These
314 differences might suggest specific adaptations to local habitat conditions at the Chamorro
315 Seamount and possible contrasts in host-symbiont interactions relative to other
316 gammaproteobacterial *Alviniconcha* symbioses. Future physiological and transcriptomic data
317 paired with geochemical measurements will be helpful to address these hypotheses and
318 determine the molecular basis underlying establishment, homeostasis and niche adaptation of
319 *Alviniconcha* symbioses at deep-sea hydrothermal vents.

320

321 DATA AVAILABILITY STATEMENT

322 Raw Illumina and Nanopore reads and the final genome assembly have been deposited in the
323 National Center for Biotechnology Information under BioProject number PRJNA806158. The
324 genome assembly is available under accession number JAKRWE0000000000.

325

326 **ACKNOWLEDGEMENTS**

327 We thank the captain, crew and ROV pilots of the R/V *Falkor* (ROV *SubSebastian*) as well as Bill
328 Chadwick, David Butterfield, Julie Huber, Verena Tunnicliffe and Amanda Bates for supporting
329 the sample collections that have made this project possible.

330

331 **CONFLICT OF INTEREST**

332 The authors declare no conflict of interest.

333

334 **FUNDER INFORMATION**

335 This work was funded by the National Science Foundation (grant number OCE-1736932 to
336 RAB, Graduate Research Fellowship to MAH, and Summer Undergraduate Research Fellowship
337 in Oceanography to NHK through REU-Site award #1950586). The genome assembly reported
338 in this study was conducted using computational resources and services of the Center for
339 Computation and Visualization at Brown University through the National Science Foundation
340 EPSCoR Cooperative Agreement OIA-#1655221.

341

342 **LITERATURE CITED**

343 Bankevich, A., S. Nurk, D. Antipov, A. A. Gurevich, M. Dvorkin *et al.*, 2012 SPAdes: a new
344 genome assembly algorithm and its applications to single-cell sequencing. *J. Comput.*
345 *Biol.* 19: 455–477.

346 Beinart, R. A., A. Gartman, J. G. Sanders, G. W. Luther, and P. R. Girguis, 2015 The uptake and
347 excretion of partially oxidized sulfur expands the repertoire of energy resources
348 metabolized by hydrothermal vent symbioses. *Proc. R. Soc. B.* 282: 20142811.

349 Beinart, R. A., C. Luo, K. T. Konstantinidis, F. J. Stewart, and P. R. Girguis, 2019 The bacterial
350 symbionts of closely related hydrothermal vent snails with distinct geochemical habitats
351 show broad similarity in chemoautotrophic gene content. *Front. Microbiol.* 10: 1818.

352 Boetzer, M., C. V. Henkel, H. J. Jansen, D. Butler, and W. Pirovano, 2011 Scaffolding pre-
353 assembled contigs using SSPACE. *Bioinformatics* 27: 578–579.

354 Boetzer, M., and W. Pirovano, 2012 Toward almost closed genomes with GapFiller. *Genome*
355 *Biol* 13: R56.

356 Bolger, A. M., M. Lohse, and B. Usadel, 2014 Trimmomatic: a flexible trimmer for Illumina
357 sequence data. *Bioinformatics* 30: 2114–2120.

358 Borisov, V. B., R. B. Gennis, J. Hemp, and M. I. Verkhovsky, 2011 The cytochrome bd
359 respiratory oxygen reductases. *Biochim. Biophys. Acta* 1807: 1398–1413.

360 Brettin, T., J. J. Davis, T. Disz, R. A. Edwards, S. Gerdes *et al.*, 2015 RASTtk: a modular and
361 extensible implementation of the RAST algorithm for building custom annotation
362 pipelines and annotating batches of genomes. *Sci. Rep.* 5: 8365.

363 Breusing, C., J. Castel, Y. Yang, T. Broquet, J. Sun *et al.*, 2022a Global 16S rRNA diversity of
364 provannid snail endosymbionts from Indo-Pacific deep-sea hydrothermal vents. *Environ.*
365 *Microbiol. Rep.* 14: 299–307.

366 Breusing, C., M. Genetti, S. L. Russell, R. B. Corbett-Detig, and R. A. Beinart, 2022b Horizontal
367 transmission enables flexible associations with locally adapted symbiont strains in deep-
368 sea hydrothermal vent symbioses. *Proc. Natl. Acad. Sci. U.S.A.* 119: e2115608119.

369 Breusing, C., S. B. Johnson, V. Tunnicliffe, D. A. Clague, R. C. Vrijenhoek *et al.*, 2020a
370 Allopatric and sympatric drivers of speciation in *Alviniconcha* hydrothermal vent snails.
371 *Mol. Biol. Evol.* 37: 3469–3484.

372 Breusing, C., J. Mitchell, J. Delaney, S. P. Sylva, J. S. Seewald *et al.*, 2020b Physiological
373 dynamics of chemosynthetic symbionts in hydrothermal vent snails. *ISME J.* 14: 2568–
374 2579.

375 Camacho, C., G. Coulouris, V. Avagyan, N. Ma, J. Papadopoulos *et al.*, 2009 BLAST+:
376 architecture and applications. *BMC Bioinformatics* 10: 421.

377 Chan, P. P., B. Y. Lin, A. J. Mak, and T. M. Lowe, 2021 tRNAscan-SE 2.0: improved detection
378 and functional classification of transfer RNA genes. *Nucleic Acids Res.* 49: 9077–9096.

379 Chaumeil, P.-A., A. J. Mussig, P. Hugenholtz, and D. H. Parks, 2019 GTDB-Tk: a toolkit to
380 classify genomes with the Genome Taxonomy Database. *Bioinformatics* 36: 1925–1927.

381 De Oliveira, A. L., A. Srivastava, S. Espada-Hinojosa, and M. Bright, 2022 The complete and
382 closed genome of the facultative generalist *Candidatus Endoriftia persephone* from deep-
383 sea hydrothermal vents. *Mol. Ecol. Resour.* doi: 10.1111/1755-0998.13668.

384 Dubilier, N., C. Bergin, and C. Lott, 2008 Symbiotic diversity in marine animals: the art of
385 harnessing chemosynthesis. *Nat. Rev. Microbiol.* 6(10): 725–740.

386 Egas, C., M. Pinheiro, P. Gomes, C. Barroso, and R. Bettencourt, 2012 The transcriptome of
387 *Bathymodiolus azoricus* gill reveals expression of genes from endosymbionts and free-
388 living deep-sea bacteria. *Mar. Drugs.* 10(8): 1765–1783.

389 Eren, A. M., Ö. C. Esen, C. Quince, J. H. Vineis, H. G. Morrison *et al.*, 2015 Anvi'o: an
390 advanced analysis and visualization platform for 'omics data. *PeerJ* 3: e1319.

391 Galperin, M. Y., K. S. Makarova, Y. I. Wolf, and E. V. Koonin, 2015 Expanded microbial
392 genome coverage and improved protein family annotation in the COG database. *Nucleic
393 Acids Res.* 43: D261–D269.

394 Gardebrecht, A., S. Markert, S. M. Sievert, H. Felbeck, A. Thürmer *et al.*, 2012 Physiological
395 homogeneity among the endosymbionts of *Riftia pachyptila* and *Tevnia jerichonana*
396 revealed by proteogenomics. *ISME J.* 6(4): 766–776.

397 Garrison, E., and G. Marth, 2012 Haplotype-based variant detection from short-read sequencing.
398 arXiv:1207.3907v2 [q-bio], doi: 10.48550/arXiv.1207.3907.

399 Ghosh, W., and B. Dam, 2009 Biochemistry and molecular biology of lithotrophic sulfur
400 oxidation by taxonomically and ecologically diverse bacteria and archaea. *FEMS
401 Microbiol. Rev.* 33: 999–1043.

402 Gregersen, L. H., D. A. Bryant, and N.-U. Frigaard, 2011 Mechanisms and evolution of
403 oxidative sulfur metabolism in green sulfur bacteria. *Front. Microbio.* 2: 116.

404 Grimm, F., B. Franz, and C. Dahl, 2008 Thiosulfate and Sulfur Oxidation in Purple Sulfur
405 Bacteria, pp. 101–116 in *Microbial Sulfur Metabolism*, edited by C. Dahl and C. G.
406 Friedrich. Springer Berlin Heidelberg, Berlin, Heidelberg.

407 Gu, Z., R. Eils, and M. Schlesner, 2016 Complex heatmaps reveal patterns and correlations in
408 multidimensional genomic data. *Bioinformatics* 32: 2847–2849.

409 Gu, Z., L. Gu, R. Eils, M. Schlesner, and B. Brors, 2014 circlize implements and enhances
410 circular visualization in R. *Bioinformatics* 30: 2811–2812.

411 Gurevich, A., V. Saveliev, N. Vyahhi, and G. Tesler, 2013 QUAST: quality assessment tool for
412 genome assemblies. *Bioinformatics* 29: 1072–1075.

413 Han, Y., and M. Perner, 2016 Sulfide consumption in *Sulfurimonas denitrificans* and
414 heterologous expression of its three sulfide-quinone reductase homologs. *J. Bacteriol.*
415 198: 1260–1267.

416 Hügler, M., and S. M. Sievert, 2011 Beyond the Calvin Cycle: autotrophic carbon fixation in the
417 ocean. *Annu. Rev. Mar. Sci.* 3: 261–289.

418 Hyatt, D., G.-L. Chen, P. F. LoCascio, M. L. Land, F. W. Larimer *et al.*, 2010 Prodigal:
419 prokaryotic gene recognition and translation initiation site identification. *BMC
420 Bioinformatics* 11: 119.

421 Johnson, S. B., A. Warén, V. Tunnicliffe, C. V. Dover, C. G. Wheat *et al.*, 2015 Molecular
422 taxonomy and naming of five cryptic species of *Alviniconcha* snails (Gastropoda:
423 Abyssochrysoidea) from hydrothermal vents. *Syst. Biodivers.* 13: 278–295.

424 Kanehisa, M., Y. Sato, M. Kawashima, M. Furumichi, and M. Tanabe, 2016 KEGG as a
425 reference resource for gene and protein annotation. *Nucleic Acids Res.* 44: D457–D462.

426 Konstantinidis, K. T., and J. M. Tiedje, 2005 Towards a genome-based taxonomy for
427 prokaryotes. *J. Bacteriol.* 187: 6258–6264.

428 Lanfear, R., B. Calcott, D. Kainer, C. Mayer, and A. Stamatakis, 2014 Selecting optimal
429 partitioning schemes for phylogenomic datasets. *BMC Evol. Biol.* 14: 82.

430 Lobato-Márquez, D., R. Díaz-Orejas, and F. García-del Portillo, 2016 Toxin-antitoxins and
431 bacterial virulence. *FEMS Microbiol. Rev.* 40: 592–609.

432 Merkamm, M., C. Chassagnole, N. D. Lindley, and A. Guyonvarch, 2003 Ketopantoate
433 reductase activity is only encoded by *ilvC* in *Corynebacterium glutamicum*. *J. Biotechnol.*
434 104: 253–260.

435 Minh, B. Q., H. A. Schmidt, O. Chernomor, D. Schrempf, M. D. Woodhams *et al.*, 2020 IQ-
436 TREE 2: new models and efficient methods for phylogenetic inference in the genomic
437 era. *Mol. Biol. Evol.* 37: 1530–1534.

438 Miyazaki, J., T. Ikuta, T. Watsuji, M. Abe, M. Yamamoto *et al.*, 2020 Dual energy metabolism
439 of the Campylobacterota endosymbiont in the chemosynthetic snail *Alviniconcha
440 marisindica*. *ISME J.* 14: 1273–1289.

441 Morel, A., H. Claustre, B. Gentili, 2010 The most oligotrophic subtropical zones of the global
442 ocean: similarities and differences in terms of chlorophyll and yellow substance.
443 Biogeosciences Discuss. 7: 5047–5079.

444 Nakagawa, S., and K. Takai, 2008 Deep-sea vent chemoautotrophs: diversity, biochemistry and
445 ecological significance. FEMS Microbiol. Ecol. 65: 1–14.

446 Nurk, S., D. Meleshko, A. Korobeynikov, and P. A. Pevzner, 2017 metaSPAdes: a new versatile
447 metagenomic assembler. Genome Res. 27: 824–834.

448 Nyholm, S. V., J. J. Stewart, E. G. Ruby, and M. J. McFall-Ngai, 2009 Recognition between
449 symbiotic *Vibrio fischeri* and the haemocytes of *Euprymna scolopes*. Environ. Microbiol.
450 11: 483–493.

451 Parks, D. H., M. Imelfort, C. T. Skennerton, P. Hugenholtz, and G. W. Tyson, 2015 CheckM:
452 assessing the quality of microbial genomes recovered from isolates, single cells, and
453 metagenomes. Genome Res. 25: 1043–1055.

454 R Core Team, 2021 *R: A language and environment for statistical computing*. R Foundation for
455 Statistical Computing, Vienna, Austria.

456 Robidart, J. C., S. R. Bench, R. A. Feldman, A. Novoradovsky, S. B. Podell *et al.*, 2008
457 Metabolic versatility of the *Riftia pachyptila* endosymbiont revealed through
458 metagenomics. Environ. Microbiol. 10(3): 727–737.

459 Sanders, J. G., R. A. Beinart, F. J. Stewart, E. F. Delong, and P. R. Girguis, 2013
460 Metatranscriptomics reveal differences in in situ energy and nitrogen metabolism among
461 hydrothermal vent snail symbionts. ISME J. 7: 1556–1567.

462 Sayavedra, L., M. Kleiner, R. Ponnudurai, S. Wetzel, E. Pelletier *et al.*, 2015 Abundant toxin-
463 related genes in the genomes of beneficial symbionts from deep-sea hydrothermal vent
464 mussels. eLife 4: e07966.

465 Seah, B. K. B., and H. R. Gruber-Vodicka, 2015 gbtools: interactive visualization of
466 metagenome bins in R. Front. Microbiol. 6: 1451.

467 Sogin, E. M., M. Kleiner, C. Borowski, H. R. Gruber-Vodicka, and N. Dubilier, 2021 Life in the
468 dark: phylogenetic and physiological diversity of chemosynthetic symbioses. Annu. Rev.
469 Microbiol. 75: 695–718.

470 Sogin, E. M., N. Leisch, and N. Dubilier, 2020 Chemosynthetic symbioses. Curr. Biol. 30:
471 R1137–R1142.

472 Søndergaard, D., C. N. S. Pedersen, and C. Greening, 2016 HydDB: A web tool for hydrogenase
473 classification and analysis. *Sci. Rep.* 6: 34212.

474 Suzuki, Y., S. Kojima, T. Sasaki, M. Suzuki, T. Utsumi *et al.*, 2006 Host-symbiont relationships
475 in hydrothermal vent gastropods of the genus *Alviniconcha* from the Southwest Pacific.
476 *Appl. Environ. Microbiol.* 72: 1388–1393.

477 Trembath-Reichert, E., D. A. Butterfield, J. A. Huber, 2019 Active subseafloor microbial
478 communities from Mariana back-arc venting fluids share metabolic strategies across
479 different thermal niches and taxa. *ISME J.* 13(9): 2264–2279.

480 Walker, B. J., T. Abeel, T. Shea, M. Priest, A. Abouelliel *et al.*, 2014 Pilon: an integrated tool for
481 comprehensive microbial variant detection and genome assembly improvement. *PLoS
482 ONE* 9: e112963.

483 Weiss, B. L., Y. Wu, J. J. Schwank, N. S. Tolwinski, and S. Aksoy, 2008 An insect symbiosis is
484 influenced by bacterium-specific polymorphisms in outer-membrane protein A. *Proc.
485 Natl. Acad. Sci. U.S.A.* 105: 15088–15093.

486 Wickham, H., 2016 *ggplot2: Elegant Graphics for Data Analysis*. Springer New York.

487 Wilm, A., P. P. Aw, D. Bertrand, G. H. Yeo, S. H. Ong *et al.*, 2012 LoFreq: a sequence-quality
488 aware, ultra-sensitive variant caller for uncovering cell-population heterogeneity from
489 high-throughput sequencing datasets. *Nucleic Acids Res.* 40(22): 11189–11201.

490 Yang, Y., J. Sun, C. Chen, Y. Zhou, Y. Lan *et al.*, 2020 Tripartite holobiont system in a vent
491 snail broadens the concept of chemosymbiosis. *bioRxiv* doi: 10.1101/2020.09.13.295170.

492 Zvi-Kedem, T., E. Shemesh, D. Tchernov, and M. Rubin-Blum, 2021 The worm affair: fidelity
493 and environmental adaptation in symbiont species that co-occur in vestimentiferan
494 tubeworms. *Environ. Microbiol. Rep.* 13: 744–752.

495

496 **FIGURE CAPTIONS**

497 **Fig. 1** Sampling location of *Alviniconcha adamantis* in the Mariana Arc, from which the
498 symbiont genome reported here was isolated. Habitats of other host species with closely related

499 symbionts are shown, *A. strummeri* in the Lau Basin and *Chrysomallon squamiferum* on the
500 Central Indian Ridge. The map was produced with the marmap package in R.

501

502 **Fig. 2** (A) Representative phylogeny of chemosynthetic Gammaproteobacteria, for which whole
503 genome sequences were available (Table S2). The *A. adamantis* symbiont forms a sister clade to
504 the Chromatiaceae symbionts of *A. strummeri* and *C. squamiferum* despite the vast geographic
505 distances among habitats of these species. Numbers on nodes indicate support values from
506 ultrafast bootstrapping and Shimodaira-Hasegawa-like approximate likelihood ratio tests. (B)
507 Pangenome of the *A. adamantis*, *A. strummeri* and *C. squamiferum* symbionts. Symbiont contigs
508 are shown as purple layers, while number of genes and combined homogeneity indices of gene
509 clusters are shown as blue layers. The homogeneity index is a measure of amino acid sequence
510 similarity within computed gene clusters, with higher values indicating more homogeneous
511 clusters. The three symbionts share 1325 core protein-coding gene clusters (containing 4167
512 genes), while approximately the same amount of gene clusters is exclusive to the *A. adamantis*
513 symbiont in agreement with the genomic and phylogenetic divergence among symbiont species.
514 The matrix on the right shows average nucleotide identities among symbiont genomes from 70%
515 to 100%, with darker grey tones indicating higher identities.

516

517 **Fig. 3** Completeness of KEGG metabolic pathways in the *A. adamantis* symbiont compared to its
518 closest bacterial relatives (left) and functional similarity to other chemosynthetic
519 Gammaproteobacteria (right). In contrast to phylogenetic proximity, the *A. adamantis* and *C.*
520 *squamiferum* symbionts are more similar to each other in terms of functional potential than either
521 of these species to the *A. strummeri* symbiont.

522

523 TABLES

524 **Table 1** Assembly statistics for the *Alviniconcha adamantis* endosymbiont genome.

525

Assembly metric

Genome size (bp)	3268514
------------------	---------

Number of scaffolds	427
Longest scaffold (bp)	90954
Scaffold N50	16689
Scaffold L50	61
GC (%)	62.04
Ns per 100 kbp	4.04
Average coverage (X)	931
Number of coding sequences	3821
Number of annotated CDS	2988
Number of hypothetical CDS	833
Number of rRNAs	2
Number of tRNAs	45
Completeness (%)	98.88
Contamination (%)	2.06
Strain heterogeneity (%)	16.67