Separable Hamiltonian PDEs and Turning Point Principle
for Stability of Gaseous Stars

ZHIWU LIN
Georgia Institute of Technology

CHONGCHUN ZENG
Georgia Institute of Technology

Abstract

We consider stability of nonrotating gaseous stars modeled by the Euler-Poisson
system. Under general assumptions on the equation of states, we proved a turn-
ing point principle (TPP) that the stability of the stars is entirely determined by
the mass—radius curve parametrized by the center density. In particular, the sta-
bility can only change at extrema (i.e., local maximum or minimum points) of
the total mass. For a very general equations of state, TPP implies that for increas-
ing center density the stars are stable up to the first mass maximum and unstable
beyond this point until the next mass extremum (a minimum). Moreover, we get
a precise counting of unstable modes and exponential trichotomy estimates for
the linearized Euler-Poisson system. To prove these results, we develop a general
framework of separable Hamiltonian PDEs. The general approach is flexible and
can be used for many other problems, including stability of rotating and magnetic
stars, relativistic stars, and galaxies. © 2021 Wiley Periodicals LLC.
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1 Introduction

Consider a self-gravitating gaseous star satisfying the 3D Euler-Poisson system

(L.1) pr + V- (pu) =0,

(1.2) p(vs +u-Vu) = —-Vp—pVV,

(1.3) AV =4np, lim V(t,x) =0,
|x|—=o00
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2512 Z.LIN AND C. ZENG

where p > 0 is the density, u(z, x) € R? is the velocity, p = P (p) is the pressure,
and V is the self-consistent gravitational potential. Assume P (p) satisfies

(1.4) P(s) € C1(0,00), P’ >0,

and there exists yg € ( g, 2) such that

(1.5) lim s'77P/(s) = K > 0.
s—>0+

The assumptions (1.5) implies that the pressure P(p) &~ Kp° for p near 0.

We consider the stability of nonrotating stars. Throughout the paper, nonrotating
stars refer to static equilibria of (1.2)—(1.3) with u = 0. Note that any traveling
solution of (1.2)—(1.3) with u to be a constant vector ¢ becomes static under the
Galilean transformation

(p(x. 1), u(x,1)) = ((p(x + ¢t.1),u(x + ¢t.t) — C)).

The density function of a compactly supported nonrotating star can be shown to be
radially symmetric [14].

By Lemma 3.2, there exists (max € (0, +00] such that for any center density
pu(0) = p € (0, wmax), there exists a unique nonrotating star with the density
pu(|x|) supported inside a ball with radius R;, = R(n) < oo. In particular,
Umax = 00 when yg > % [19] (see also [34, 36, 38] for the proof when yy > %).
Denote

Moo = [ pudx= [ puax
- 2

to be the total mass of the star, where S;, = {|x| <R M} is the support of p,,. We
consider the linear stability of this family of nonrotating gaseous stars p, (|x|) for
1 € (0, tmax). Our main result is the following turning point principle.

THEOREM 1.1. The linear stability of p, is fully determined by the mass—radius
curve parametrized by . Let n*(jL) be the number of unstable modes, namely the
total algebraic multiplicities of unstable eigenvalues. For small u, we have

1 (linear instability) when yg € (g %)

1.6 u =
(1.6) () {0 (linear stability) when yg € (% 2).

The number n*(j1) can only change at mass extrema. For increasing |, at a mass
extrema point where M'(u) changes sign, n% (i) increases by 1 if M'(uw)R’ (1)
changes from — to + (i.e., the mass—radius curve bends counterclockwise) and
n* () decreases by 1 if M’ ()R’ (1) changes from + to — (i.e., the mass—radius
curve bends clockwise).

Here, the mass—radius curve is oriented in a coordinate plane where the horizon-
tal and vertical axes correspond to the support radius and mass of the star, respec-
tively. Theorem 1.1 shows that the stability of nonrotating stars and the number of
unstable modes are entirely determined by the mass—radius curve parametrized by
the center density p. In particular, the stability can only change at a center density
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with extremal mass (i.e., maxima or minima of M (u)). The change of stability at
mass extrema is called the turning point principle (TPP) in the astrophysical liter-
ature for both Newtonian and relativistic stars. It was usually based on heuristic
arguments. As an example, we quote the following arguments in [40] for rela-
tivistic stars: “Suppose that for a given equilibrium configuration a radial mode
changes its stability property; i.e., the frequency w of this mode passes through
zero. This implies that there exist infinitesimally nearby equilibrium configura-
tions into which the given 1 can be transformed, without changing the total mass.
Hence if w passes trough zero we have M’ (1) = 0.” The same arguments can also
be found in other astrophysical textbooks such as [15,39,44]. In Theorem 1.1, we
give a rigorous justification of TPP for Newtonian stars. Moreover, we obtain the
precise counting of unstable modes from the mass—radius curve. For relativistic
stars, similar results can also be obtained [16].

Besides the above stability criteria, we obtain more detailed information about
the spectra of the linearized Euler-Poisson operator and exponential trichotomy
estimates for the linearized Euler-Poisson system, which will be useful for the
future study of nonlinear dynamics near the nonrotating stars. To state these results,
first we introduce some notations. Let X, ¥, be the weighted spaces Lé,, (0 )( Su)
and (L%M (S))3, where the enthalpy ®(p) > 0 is defined by g

P/
(1.7) (0) = @'(0) =0, @"(p) = (o)
P
Denote X = X, x Y. The linearized Euler-Poisson system at (o, 0) is
(1.8) or = —V-(puv),
(1.9) vy = =V(@"(pp)o + V),

with AV = 4mp. Here, (0, v) € X are the density and velocity perturbations.
Define the operators

(1.10) Ly =9"(pp) —4n(-D)"" 1 X > XS, Ap=pu: Y > Y]
and
(1.11) BM:—V.:—div:Y:—>XM, B/,L:V:X;_’YM-

Here, for o € X, we denote
_ 1
o= [ a0y s,
S, 4mlx =yl
Then (1.8)-(1.9) can be written in the Hamiltonian form

o 0 B L 0 o o
o a() = (G B 1)) =)

where the operators

0 B L, 0
(1.13) J, =( “):X*—>X, L =(” ):X—>X*,
H —B;, 0 H 0 A,
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2514 Z.LIN AND C. ZENG

are off-diagonal anti-self-dual and diagonal self-dual, respectively. We call systems
like (1.12) “separable Hamiltonian systems.”

In the following theorems and throughout this paper, we follow the tradition
in the astrophysics literature that “nonradial” perturbations refer to those modes
corresponding to nonconstant spherical harmonics. See the more precise Definition
3.16 of the subspaces X, and Xy, of radial and nonradial perturbations in Section
3.4.

THEOREM 1.2.

(i) The steady state py, which is parametrized by the C U parameter u, is
spectrally stable to nonradial perturbations in X, with isolated purely imaginary
eigenvalues. The zero eigenvalue is isolated with an infinite-dimensional kernel
space

ker(J, L) =§(2) ‘ /pu|u|2dx <o0, V. (Pu“) = O}

@span{(ax’bp”), i = 1,2,3},

and the only generalized eigenvectors of 0 are given by (0, 0y, VE)T with

0 _ [ 9xiPu P
jﬂﬁﬂ(8x1Vg) - ( 0 s 1= 1, 2737

where E is defined in (3.47) and (3.48).

(i1) Under radial perturbations in X,, the spectra of the linearized system
(1.8)—(1.9) are isolated eigenvalues with finite multiplicity,
ker(Ju, L) N X, = span{(f)upﬂ, O)T},
and the steady state p,, is spectrally stable to radial perturbations if and only if
n_(Dg) = land i, = 1. Here, the self-adjoint operator Dg is defined in (3.27)
and

Lif M (g (R2) > 00r M'(1) = 0,
(1.14) iy =

- d (M) d (MY _ ¢
0 sz’(u)m( R5)<00rm( Rl’j)_O.
Moreover, the number of growing modes is
(1.15) n*(p) =n= (D)) —iy.

The index iy, in (1.14) is well-defined, since M’(x) and f—u(%"j)) cannot be
zero at the same point (Lemma 3.13). The stability of nonrotating stars under
nonradial perturbations was known in the astrophysics literature as the Antonov-
Lebowitz theorem [2,25]. Theorem 1.2 implies that the spectra of the linearized
Euler-Poisson equation at p,, are contained in the imaginary axis except finitely
many unstable (stable) eigenvalues with finite algebraic multiplicity.
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THEOREM 1.3. The operator J, L, generates a CO group e'Iulu of bounded
linear operators on X, and there exists a decomposition
X=E"®E“DE",
with the following properties:
(1) E™(E®) consists only of eigenvectors corresponding to negative (positive)
eigenvalues of J, L, and

(1.16) dim E" = dim E* =n" (D)) — iy.

(ii) The quadratic form (L,,-,-)x vanishes on E*>5, but is nondegenerate on
E* @ E®, and

e (D) ex e () o () o)
v v U1 U1
(iii) E€, E", ES are invariant under ¢*JnLu. Let

Ay =min{A | A € o (T LylEn)} > 0.
Then there exist Cy > O such that

| Tnlu|ps| < Coe™, ¢ > 0,
(1.17) e"T4Eu | | < Coert, 1 <0,
(1.18) |e"Tnbu pe| < Co(L+Jt]). t € R if M'(n) # 0,
and
(1.19) | Tulu|ge| < Co(1 + [t)% t €R if M'(n) = 0.
(iv) Suppose that M' (1) # 0. Then
(1.20) e Tutn] pemx | < C

for some constant C. In particular, when n™ (Dg) =l and M/(M)% (Age(fj)) > 0,

Lyapunov stability is true for radial perturbations in the sense that
(1.21) |efTutu | | < C.

Above linear estimates will be useful for the future study of nonlinear dynamics,
particularly, the construction of invariant (stable, unstable, and center) manifolds
for the nonlinear Euler-Poisson system. The O(|¢]) growth in (1.18) is due to the
nonradial generalized kernel associated to the translation modes given in Theorem
1.2 1). At the mass extrema points, the O(|¢|?) growth in (1.19) is due to the
radial generalized kernel associated to the mode of varying center density given
in Theorem 1.2(ii). Lyapunov stability on the radial center space £¢ N X, (under
the nondegeneracy condition M’(i) # 0) hints that the steady state might be
nonlinearly stable on the center manifold once constructed.

Theorems 1.2-1.3 are applied to various examples of equations of state. For
polytropic stars with P(p) = Kp¥ (y € (£,2)), we recover the classical sharp
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2516 Z.LIN AND C. ZENG

instability criterion [26,27] that y € (g, %). Even for this case, our results give
some new information not found in the literature that there is only one unstable
mode and Lyapunov stability is true on the center space. Next, we consider more
practical white dwarf stars with P(p) = Af(BY/3p!/3), where A, B are two con-
stants and f (x) is defined in (3.70). It is proved in Corollary 3.26 that white dwarf
stars py(|x|) are linearly Lyapunov stable for any center density i > 0. For stars
with a general equations of state, we prove in Corollary 3.28 that they are stable
up to the first mass maximum and unstable beyond this point until the next mass
extrema (a minimum). Examples for which the first mass maximum is obtained
at a finite center density including the asymptotically polytropic equations of state
satisfying that P(p) & p"! (for p large) with y; € (0, %) or (g, %). We refer to
Corollary 3.29 for more details.

There exist huge astrophysical literature on the stability of gaseous stars (e.g.,
[7,10,23,26,39,43] and references therein). We briefly mention some more recent
mathematical works. Linear instability of polytropic stars was studied in [27].
Nonlinear instability for polytropic stars was proved in [20] for y € (g, %) and
in[11] fory = %. Nonlinear conditional stability was shown in [37] for polytropic
stars with y > %, and for white dwarf stars in [32]. In these works, stable stars
were constructed by solving variational problems, for example, by minimizing the
energy functional subject to the mass constraint. In a work under preparation [29],
we will show that the linear stability criteria in Theorems 1.2 and 1.1 are also true
on the nonlinear level.

In the rest of this introduction, we discuss the methods in our proof of Theorems
1.2 and 1.3. Since the nonrotating stars are spherically symmetric, radial and non-
radial perturbations are decoupled for the linearized Euler-Poisson equation. The
stability for nonradial perturbations was obtained in the astrophysical literature
in 1960s [2,25]. The radial perturbations were usually studied by the Eddington
equation (3.67)—(3.68), which is a singular Sturm-Liouville problem.

In this paper, we study stability of nonrotating stars in a Hamiltonian framework.
The linearized Euler-Poisson system can be written as a separable Hamiltonian
form (1.12). In Section 2, we first study general linear Hamiltonian PDEs of the
separable form

)= ( Dl ) ()

where u € X, v € Y, and X, Y are real Hilbert spaces. The triple (L, A, B) is
assumed to satisfy assumptions (G1)—(G4) in Section 2, which roughly speaking
require that B : Y* D D(B) — X is a densely defined closed operator, L : X —
X* is bounded and self-dual with finitely many negative modes, and A : ¥ — Y *
is bounded, self-dual, and nonnegative. Those assumptions qualify (1.22) as a
special case of the general linear Hamiltonian systems studied in [30]. However,
the special form of such systems ensures certain more specific structure in the
linear dynamics, in particular a more explicit formula for unstable dimensions, all
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nonzero eigenvalues being semisimple, a more detailed block decomposition, and
at most cubic bound of the degree of the algebraic growth in E€.

Adapting the above framework to the linearized Euler-Poisson system (3.51)
for radial perturbations, we obtain that the number of unstable modes is equal to
n~(L M»’|m)’ where L, and B, , are the restriction of operators L, and
By, to radial functions. The quadratic form (L , -,-) is exactly the second varia-
tion of the energy functional £, (p) defined in (3.49), and R(B,, ;) is the space of
radial perturbations preserving the total mass. The unstable index formula (1.15)
follows from these structures. In particular, the index i, (defined in (1.14)) mea-
sures if the mass constraint can reduce the negative modes of L, ; by one or not.
The stability condition L , |7 > (0 amounts to Chandrasekhar’s variational
principle [6, 8] that the stable states should be energy minimizers under the con-
straint of constant mass. Moreover, the separable Hamiltonian formulation yields
that the Sturm-Liouville operator in (3.67) can be written in a factorized form
Bj, » Ly BurAp,r, Where Ay » = py, is a positive operator on Y;, ,. Compared
with the traditional way of treating the singular Sturm-Liouville operator (3.67),
this factorized form is more convenient to prove self-adjointness and discreteness
of eigenvalues (Lemma 2.9) without relying on ODE techniques. We refer to Re-

mark 3.24 for more details.

To get TPP from Theorem 1.2, itis reduced to findn™ (L, ) = n (D ), where
DO is a second-order ODE operator from the linearization of the steady state equa-
tlon We use a continuity argument to find n (D ). First, for small u, n (D ) is
shown to be equal to the corresponding negative 1ndex for the Lane-Emden stars
with polytropic index yg (defined in (1.5)). For Lane-Emden stars with y € (g 2),
we show that the negative index is always 1. For general equations of state, it
can be shown that n (D ) = 1 for small . For increasing p, we determine
n (D ) by keeping track of its changes. A key observation is that Dg has a
one- dlmenswnal kernel only at critical points of the mass—radius ratio M(u)/Ry,.
Therefore, n_(DO) can only change at critical points of M(u)/R,,. The jump of
n (D ) at such critical points is shown to be exactly the jump of i;,. This not only
gives us a way to find n™ (D u) for any p > 0, but also implies that the number of
unstable modes n* (u) does not change when crossing a critical point of M (1)/ Ry,
At extrema points of total mass M(u), n_(Dg) remains unchanged but i, must
change from O to 1 (or from 1 to 0) if the bending of the mass—radius curve is coun-
terclockwise (or clockwise). This proves TPP that the number of unstable modes
can only change at extrema mass and also gives an explicit way to determine n* (1)
from the mass—radius curve. The exponential trichotomy estimates in Theorem 1.3
follow from the general Theorems 2.3 and 2.6.

The general framework of separable Hamiltonian PDEs in Section 2 is flexible
and can be used for many other problems. Hamiltonian systems in the separable
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form of (1.22) appear in many other problems, which include nonlinear Klein-
Gordon equations, nonlinear Schrodinger equations, and 3D Vlasov-Maxwell sys-
tems for collisionless plasmas. This framework was also used in the recent study of
stability of neutron stars modeled by the Euler-Einstein equation [16] and relativis-
tic globular clusters modeled by Vlasov-Einstein equation [17]. In particular, for
the Euler-Einstein equation, a similar TPP can be proved [16] for relativistic stars
as in Theorem 2.6. More recently the stability of rotating stars of the Euler-Poisson
system was studied [28] by the separable Hamiltonian approach.

This paper is organized as follows. Section 2 is about the abstract theory for the
separable linear Hamiltonian PDEs. Section 3 is about the stability of nonrotating
stars and is divided into several subsections. Section 3.1 is for the existence of
nonrotating stars. In Section 3.2 the Hamiltonian structures of linearized Euler-
Poisson is studied. Section 3.3 finds the negative index n_(Dg) for all u > 0.
In Section 3.4, we derive the equations for nonradial perturbations and prove the
Antonov-Lebowitz theorem. In Section 3.5, TPP is proved for radial perturba-
tions. In Section 3.6, more explicit stability criteria are given for several classes of
equations of state. In the appendix, we outline the Lagrangian formulation of the
Euler-Poisson system (1.1)—(1.3) and its linearization.

2 Separable Linear Hamiltonian PDE
Let X and Y be real Hilbert spaces. We make the following assumptions on
(L, A, B) in the Hamiltonian PDE (1.22):

(G1) The operator B : Y* D D(B) — X and its dual operator B’ : X* >
D(B’) — Y are densely defined and closed (and thus B” = B).

(G2) The operator A : Y — Y * is bounded and self-dual (i.e., A’ = A and thus
(Au, v) is a bounded symmetric bilinear form on Y'). Moreover, there exist
8 > 0 and a closed subspace Y4 C Y such that

Y =kerA® Yy, (Au,u)>8|ully Yue Yy,

(G3) The operator L : X — X™ is bounded and self-dual (i.e., L’ = L) and
there exists a decomposition of X into the direct sum of three closed sub-
spaces

2.1) X=X_@®kerL® Xy, n (L)2dimX_ < oo

satisfying
(G3.a) (Lu,u) < 0forallu € X_\{0};
(G3.b) there exists § > 0 such that

(Lu,u) > §|ul|*> foranyu € X,.
(G4) The above X and Y satisfy
ker(ix,@x_) C D(B’), ker(iy,) C D(B).
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Remark 2.1. We adopt the notations as in [46]. For a densely defined linear oper-
ator A : X — Y between Hilbert spaces X,Y, weuse A’ : Y* — X™* and A* :
Y — X for the dual and adjoint operators of A, respectively. The operators A" and
A* are related by
A* = Iy A Iy,
where Iy : X* — X and Iy : Y* — Y are the isomorphisms defined by the
Riesz representation theorem. Given a closed subspace X; of a Hilbert space X,
ix, : X1 — X denotes the embedding and (ix,)’ : X* — X[ the dual operator
with
ker(ix,) = {f € X* | (f.x) =0, Vx € X1}.

Remark 2.2. The assumption (G4) for L (or for A) is satisfied automatically if
dimker L < oo (or dimker A < o0). See Remark 2.3 in [30] for details.

In this paper, the above abstract framework will be applied to the linearized
Euler-Poisson system to be studied in detail, where A is actually positive definite.
The more general semipositive definiteness assumption on A is partially motivated
by the focusing nonlinear Schrodinger equation (NLS) with energy subcritical or
critical power nonlinearity,

4
(NLS) iuy = Au + |u|Pu, u: R4 5 C =R2, p € (l’ﬁ]’

with the Hamiltonian
1 1
H(u) =/ —|Vul? - lu|? dx.
Rd 2 p+2

There exist standing waves and steady waves in the subcritical and critical cases,
respectively,

Uo(t,x) = ¢7'¢u(x), —Ado + 0o — 5" =0.
For ground states, ¢, (x) is always radially symmetric and positive, where @ > 0
if p < ﬁ andw =0if p = ﬁ. The linearization of (NLS) in the rotation
frame u(t, x) = e *®'v(¢t, x) at v, = ¢, with v viewed as a vector in R? takes
the form of (1.22) where
B=1 L=-Ato—(p+D¢). A=-A+tow-—¢)

on the energy space H ! in the subcritical case and H' in the critical case. Clearly

¢o > 0 spans ker A and thus A > 0. Viewing L and A as perturbations to —A + w,

a simple argument based on the compactness shows (G1-G4) are satisfied.
Equation (1.22) is of the Hamiltonian form

(2.2) drw = JLw,

where u = (u,v) € X = X x Y. Here, the operators

0 B *
JZ(_B, O):X >DDJ)—>X
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and

_ (L 0}, *
L—(O A).X—>X.

Under assumptions (G1-G4), we can check that:
(1) The operator J is anti-self-dual in the sense that
D(J) = D(B) x D(B)
is dense in X* and J/ = —J.

(ii) The operator L is bounded and self-dual (i.e., L’ = L) such that (Lu, v) is
a bounded symmetric bilinear form on X. For any u = (u, v) € X, note that

(Lu,u) = (Lu,u) 4+ (Av,v), kerL =kerL xker A.
Let
(2.3) X_ = X_x{0}, X;=X4xYg,
where X1 and Y, are as in (G2) and (G3). Then we have the decomposition
X=X_6GkerLdX;, dimX_ =n (L)=n" (L),
satisfying: (Lu,u) < 0 for all u € X_\{0} and there exists 5o > 0 such that
(Lu,u) > Sollul* = So(llullk + llvlly) foranyu e X,.
(iii) Assumption (G4) implies
ker(ix, @x ) = {fe€ X* | (f.u) =0, Vu e X_Xy}
= ker(iX+@X_)’ X ker(iy+)/ c D).

Therefore, (X, J,L) satisfies the assumptions (H1-H3) in [30], and we can ap-
ply the general theory for linear Hamiltonian PDE [30] to study the solutions of
(1.22). In particular, the semigroup e’ is well-defined. Corollary 12.1 in [30]
also implies

(24) LJ= (JL),BA,(BA)Y = AB’,B’'L,(B’L) = LB densely defined, closed.

Moreover, by using the separable nature of (1.22), we obtain more precise estimates
on the instability index and the growth in the center space. Our main theorem
for (1.22) is the following, whose proof would be self-contained except for a few
technical lemmas in [30] that are cited. We adopt the same notations as in [30]. In
particular, for a closed subspace X1 C X, we denote

(2.5) Lx, = i)/flLin : X1 —> X{ = (Lx,u1,u2) = (Luj,uz) Vui,uz € X.

THEOREM 2.3. Assume (G1-G4) for (1.22). The operator JL generates a C°

group e of bounded linear operators on X, and there exists a decomposition
X=E"@QE“®E’

of closed subspaces E%»5:¢ with the following properties:

(i) E€, E*, E* are invariant under e’
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TPP FOR STABILITY OF GASEOUS STARS 2521

(i) EY(E®) only consists of eigenvectors corresponding to negative (positive)
eigenvalues of JL and
(26) dim E¥ = dim E® = n_(L|m),
where n™ (L |m) denotes the number of negative modes of L |m as defined
in (2.1). If n_(L|m) > 0, then there exists M > 0 such that
2.7 e ps| < Me™ e 1 >0, | pu| < MeMt, 1 <0,
where A,, = min{A | A € 6(JL|gu)} > 0.

(iii) The quadratic form (L-,-) vanishes on E*%, i.e., (Lu,u) = 0 for all
u € E** but is nondegenerate on E* @ E*, and

(2.8) E¢={ueX|(Luv)=0, Vve E*® EY}.
(iv) There exist closed subspaces X;, j = 0,...,5, such that
E¢ =kerL @kerA® (&7_,X;), dimX; =dimXs <n~(L)—dim E*,
X1,X4,X5 C X x{0}, X, C{0}xY.

In this decomposition, JL|gc and the quadratic form L ge take the block form

(00 0 0 0 0 0)
00 0 0 0 0 0
00 0 0 0 0 L
Lge<— |00 0 L, 0 0 o0 |
00 0 0 Ly 0 0
00 0 0 0 Ly 0
\0 0 Ls; O 0 0 0

=

(

0 Tx2 Txz O 0\
Ty1 0 Tys Tya Tys
0 Ti, Ti1zs 0 0
0 0 0 Trs
0 0 Tz Tss
0 0 0 0
\0 0 0 0 0

All the nontrivial blocks of Lgc are nondegenerate and

JL|ge «—

SO O OO

0
0
0
0
0
0
0

0
0
0
0

Ly >e, L3>e,

for some € > 0. All the blocks of JL are bounded except T3, which is anti-self-
adjoint with respect to the equivalent inner product (L3 -,-) satisfying ker 73 =
{0}. Consequently, there exists M > 0 such that

(2.9) e ge| < M(1+ t])*, 1 € R.
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2522 Z.LIN AND C. ZENG

(v) Denote Z to be the space D(BA) with the graph norm

Iylz = Iyly + [I1BAyllx-

If the embedding Z < Y is compact, then the spectra of T3 are nonzero, isolated
with finite multiplicity, and have no accumulating point except for +o0o. Moreover,
the eigenfunctions of 73 form an orthonormal basis of X3 with respect to (L3 -, - ).
Consequently, the spectra o (JL)\{0} are isolated with finite multiplicity, and have
no accumulating point except for +oo0.

Remark 2.4. Here the nondegeneracy of a bounded symmetric quadratic form
B(u,v) : Z® Z — R on areal Banach space Z is defined as the induced bounded
linear operator v —> f = B(-,v) € Z™ is an isomorphism from X to X*.

The above theorem implies that the solutions of (1.22) are spectrally stable (i.e.,
nonexistence of exponentially growing solution) if and only if L |m > 0. More-
over, n~ (L |m) gives the dimension of the subspaces of exponentially growing
solutions. The exponential trichotomy estimates (2.7)—(2.9) are important in the
study of nonlinear dynamics near an unstable steady state for which the linearized
equation (1.22) is derived. If the spaces E** have higher regularity, then the ex-
ponential trichotomy can be lifted to more regular spaces. We refer to theorem 2.2
in [30] for more precise statements.

Compared to [30], the separable Hamiltonian form of (1.22) yields a simpler
block form. In particular, the anti-self-adjointness of 73 ensures the semisimplic-
ity of any eigenvalue A € iR\{0} and the nondegeneracy of L restricted to its
subspace of generalized eigenvectors. This is not true for general linear Hamilton-
ian systems; see examples in [30]. The separable Hamiltonian form also implies
the order O(|¢|3) of the growth in the center direction, which is better than the
general cases in [30]. These properties hold essentially due to the second-order
equation (2.17) satisfied by v.

Remark 2.5. As the only nontrivial block 773 in the block decomposition of JL is
anti-self-adjoint with respect to an equivalent norm, it is clear that all the possible
algebraic growth of eI must be associated to the possible zero eigenvalue. The
second-order equation (2.17) allows at most O(|¢|) growth as in the case of wave
equations. So it is natural to guess that the solutions of the first-order system (1.22)
may also grow no faster than O(|¢|). However, the possible degeneracy of B and
A indeed creates more growth and the above O(|¢|®) growth is optimal. Consider
the following example:
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One may compute

00010 110 00
00010 110 00
JL=[-2 10 0 0|, dqu?>=] 0 0 0 -1 0],
-1 1000 000 00
00000 000 00
0 0000
0 0000
JL?*=1]1 —1 0 0 0|, (JL)*=0.
0 0000
0 0000

Therefore e/ exhibits O(|¢|3) growth.

In the following theorem, we given some conditions on (L, A, B) that yield a
better growth estimate of e’ on the center subspace E€.

THEOREM 2.6. Assume (G1-G4) for (1.22). The following hold under additional
assumptions:

() If A is injective on R(B'LBA), then |e"|gc| < M(1 + t?) for some
M > 0.

(i) If R(BA) = X, then |e' W |gc| < M(1 + |t|) for some M > 0.

(iii) Suppose (L -,-) and (A-,-) are nondegenerate on R(B) and R(B’), re-
spectively. Then |e"V|gc| < M for some M > 0. Namely, there is Lyapunov
stability on the center space E€.

Remark 2."7. Motivated by the second-order equation (2.17), when L|m has a
negative mode, it is tempting to find the most unstable eigenvalue Ao > 0 of (1.22)
satisfying B'L BAv = —k%v by solving the variational problem
(2.10) A = min (B'LBAv, Av).

(Av,v)=1,veD(A)
However, in many applications, particularly to kinetic models such as Vlasov-
Maxwell and Vlasov-Einstein systems, it is difficult to solve the variational prob-
lem (2.10) directly due to the lack of compactness. In Theorem 2.3, the existence
of unstable eigenvalues follows from the self-adjointness of the operator B'L BA
and the assumption n~ (L) < co.

The proof of Theorem 2.3 will be split into several lemmas and propositions. We
start with a general functional analysis result that might be of independent interest.

PROPOSITION 2.8. Let X,Y be Hilbert spaces, L : X — X a bounded self-
adjoint operator, and A:Y D D(A) — X a densely defined and closed operator.
In addition, assume that:

(1) The adjoint operator A* : X D D(A*) — Y is also densely defined.
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2524 Z.LIN AND C. ZENG

(2) 38 > 0 and a closed subspace X+ C X such that (Lx,x) > §|x|?
Vx e X4 andXi‘ C D(A%).
Then: (i) the operator A* L A is self-adjoint on Y with domain

D(A*LA) C D(A).
(ii) Denote Z to be the space D (A) equipped with the graph norm

I¥liz = 1yly +4vlx-

If the embedding Z <> Y is compact, then the spectra of A* LA are purely
discrete, and have no accumulating point except for +00. Moreover, the
eigenfunctions of A* LA form a basis of Y.

PROOF. Let
Xi={xeX|(Lx,x')=0, Vx' € X}.
The uniform positivity of L on X4 and lemma 12.2 in [30] imply
X=Xy9X:, P/LPy{=P{LP =0,
where P ; are the associated projections. Therefore,
L=PILPy + PfLP 2 Li — L,

with symmetric bounded Ly and L4 > 0. Since R(P[") = Xi‘ C D(A™),
the closed graph theorem implies that A* P* is bounded. Therefore, P A has a
continuous extension (A* P;)* = (P1A)**;i.e., P1A is bounded. Thus P; A is
closed and densely defined. Let S+ : X — X be a bounded symmetric linear
operator such that

S¥Sy =81 =Ly, Sy>0.
Moreover, for any x € X4,
IS+xl% = (L4x,x) = (Lx.x) > §|x[%.
which implies that
@.11) IS+xlx = V8llxlly Vxe Xy

This lower bound of S implies that 7 2 S+ P4+ A is also closed with the dense
domain D(T+) = D(A) and thus T} T+ is self-adjoint. We note that

(2.12)  A*LA=A*PILiPLA— A*P}L i P1A
= (A*PXS;)(S+P+A)— A*P{LP{A 2 T} T} — B,.

Here, B; is bounded and symmetric. Therefore, by the Kato-Rellich theorem
A*L A is self-adjoint with

D(A*LA) C D(Ty) = D(A).
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By theorem 4.2.9 in [13], to prove conclusions in (ii), it suffices to show that the
embedding Z; < Y is compact. Here, the space Z1 is D(T+) = D(A) with the
graph norm

IYlz, = Iylly + 17+ ylx-
We show that ||-|| z, and [|-|| z are equivalent. Indeed, since A and 77 are closed
with the same domain, 4 : Z; — X and T4 : Z — X are also apparently
closed and thus bounded, which immediately implies the equivalence of [|-|| z, and

Il z- a

In the above proposition, we can allow n~ (L) = oo, but the condition X i‘ C
D(A*) need to be verified. The next lemma shows that this condition is implied by
our assumptions (G1-G4).

LEMMA 2.9. Suppose the operators L, B, B’, A satisfy assumptions (G1-G4).
Then:
(1) L=AB'LBA:Y > D(L) > Y*and A = LBAB'L : X D D(4) —
X* are self-dual, namely L' = L and A’ = A.
(2) In addition to (G1-G4), assume ker A = {0}; then L = B'LBA is self-
adjoint on (Y, [-,]) with the equivalent inner product [-,-] = (A-,-).
(3) Denote Z to be the space D(BA) with the graph norm

I¥lz = Iyly +1I1BAylx-

If the embedding Z — Y is compact and ker A = {0}, then the spectra
of I are purely discrete with finite multiplicity, and have no accumulating
point except for +00. Moreover, the eigenfunctions of IL form a basis of Y .

PROOF. Recall that Iy : X* — X, Iy : Y* — Y are isomorphisms defined
by the Riesz representation theorem. Define the operators
A=BA:Y D>DDA)—> X, Li=IxL:X—>X.
The adjoint operators are
LY=Ly, A*=IyAB'I{"

According to (2.4), A* is densely defined and closed.

Since (X4 @ X)Lt c X i‘ is a closed subspace of codimension that is equal to
dim X_ < oo, we have

dim W = dim X_ < oc.
where
W=XINnX;®X), Xt=Wa Xy X)t.
+ + + +

Assumption (G4) implies that D(A*) N (X1 @ X_) is dense in X4 & X_. Ap-
proximate W by W C D(A*) N (X4 @ X_) such that dim W = dim W, which is
possible since dim W < oco. Let

Xi={xeXi®X_|(x,y)=0, Vy € W}.
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The quadratic form (L -, - ) is uniformly positive definite on the approximation X +
of X+ and

Xi =X+ ®X)t @ W CDAY).
Therefore, all conditions in Proposition 2.8 are satisfied by X +, L1, and A and
thus A*L;A = Iy AB’LBA are self-adjoint. This implies that L. = AB'LBA
satisfies L’ = L. It follows from the same argument that A" = A.
Statement (ii) and (iii) are direct corollaries of (i) and Proposition 2.8. Il

We shall start the proof of Theorem 2.3 with several steps of decomposition of
XandY.

LEMMA 2.10. Assume (G1-G4). Suppose X1, are closed subspaces of X and
Y2 are closed subspaces of Y such that X = X{ @ X5, Y = Y @ Y,. Let
Pip: X — Xipand Q12 : Y — Y12 be the associated projections and, for
J. k=12,

L;j = (ix,)'Lix,. Aj = (iy;)'Aiy,. Bjx = P;jBQ/" = Q;B'P],

L 0 0 B
X; = X1 xY1, Ll=(01 Al)’ J1=(_Bu Sl)v

L 0 0 B

In addition, we assume
(Lx1,x2) =0 Vx1 € X1, x2 € X2: (Ay1,y2) =0 Vyr €Y1, y2 € Vo
P{(Xf) C D(B), Q/1(Y1*) C D(B).
Then we have
(1) In this decomposition, JL takes the form

JiLi Ti2
L «—
] (T21 Jsz)’

where

0 312A2 0 BZlAl
Tz = _B2p, 0o | T = _p2lp, o |

(2) We have that B, and B?? are densely defined closed operators and B
and Bk, (j,k) # (2,2), and thus Tq3, T2y, and J;L; are all bounded.
Here, we abuse the notations slightly in using Bj; and B/ for (j. k) #
(2,2), to also denote their continuous extensions.

(3) B/* = By, forall jk = 1,2.

(4) (Ll , Al, Bll) and (Lz, Az, Bzz) satisfy (GI—G4) and

n (L)=n"(L1)+n (Ly), ker L =ker L1 @®ker L,, ker A = ker A; ®Kker A,.
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PROOF. The assumptions P{(X]) C D(B’) and Q' (Y{*) C D(B) imply that
B'P{ and BQ' are closed operators defined on Hilbert spaces X and Y;*. The
Closed Graph Theorem yields that B’ P{ and BQ/| are bounded operators. There-
fore, P1B and Q1 B’ are also both bounded as they have continuous extensions
(P1B)" = (B'P{) and (Q1B’)"” = (BQ)". Consequently the second statement,
as well as the closedness of P> B and B’ P2’ with dense domains, follows.

For (j,k) # (2,2), it is easy to verify B/% = Bj/.k as they are compositions of
bounded operators. To show B?2 = B,,, we notice that the closedness and the
density of the domains of P, B and B’ P; = (P, B)’ imply

P>,B = (P,B) = (B/Pé)/,
(B??) = (Q2B'P}) = (B'P;) Q5 = P,BQ) = Bp,.

The closedness of B>, and B?? again yields B?? = (B??)"” = B),. It completes
the proof of the third statement.

The L-orthogonality of the splitting X1 @ X, and the A-orthogonality of ¥ =
Y1 @ Y5 yield block diagonal forms of L and A in these splittings. The block form
of JL follows from straightforward calculations.

It has been proved in the above that By, and B, satisfy (G1), while (G2) for
A1 and A, and (G3) for L and L, are proved in lemma 12.3 in [30]. Apparently
(G4) is satisfied by (L1, A1, B11) as By is a bounded operator. Finally, (G4) for
(L2, As, B2») also follows directly from the proof of lemma 12.3 in [30]. Il

Remark 2.11. Even though the framework in [30] is slightly different, those prop-
erties of J and L used in the proof of Lemma 12.3 therein are all satisfied by L»,
A», and By, here. Therefore, the same proof works to show that (G4) is satisfied

by (L2, A2, B22).

The following three lemmas focus on decomposing a subspace of the center
subspace.

LEMMA 2.12. Aﬁsume (G1-G3) and that L is nondegenerate (in the sense of Re-
mark 2.4). Let X C X be a closed subspace such that ker(ig)' C D(B’); then
there exist closed subspaces X, j = 1,2,3,4, such that

X=X1®Xo, X" E2{xeX|(Lx.5)=0VXeX}=X & X,
X =a!_X;. ni2dimX; =dimXs <n"(L).
Moreover, let Pj, ] = 1,2,3,4, be the associated projections and it holds that
P{(X]) ® P{(X3) & Pi(X]) = ker(ix,) C D(B').
In this decomposition, the quadratic form L takes the block form

0 0 0 Lia
0 L, 0 0
0 0 Ly 0

Lyg 0 0 0

L <— , ij :(i)/(j)LiXk iXk—>X;<, Lj = Ljj,
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2528 Z.LIN AND C. ZENG

with L14 = Lﬁu, L», and L3 all nondegenerate.
As stated in Remark 2.2, assumption (G4) holds for nondegenerate L.
PROOF. Let
X; = X n Xt = (X + X4yt
where the nondegeneracy of L was used in the second equality. Since (Lx,x) = 0
forallx € X; C X,

np =dimX; = codim(f + flL) <n (L)

is a direct consequence of the nondegeneracy assumption of L and theorem 5.1
in [30]. According to the density of D(B’), there exist f; € D(B’), j = 1,....ny,
such that (ix,) f; € X{, j = 1....,n1, form a basis of X[. Let x; € Xy,
Jj = 1,...,n1, be the basis of X; dual to {(in)’ﬁ};”zl, namely, (fj,xx) = §jk.
Let

_ 1 _ .
X4 = spanq L 1f,~—§Z(fj,L Vidxe, j=1,....n1y.
k=1
It is easy to verify that
dim X4 =n;, (Lx,X)=0, Vx,X € X4,
and L4 = Lﬁu is nondegenerate. Let
Xo={xeX|(fj,x)=0,j=1,....n},

and
Xs={xe Xt | (f;,x)=0,j=1,...n}.

The direct sum relations and the block form of L stated in the lemma follow
straightforwardly. The nondegeneracy of L and the definitions of X5 and X3 imply
that Ly, and Ly, (as defined in (2.5)) are injective. Therefore, lemma 12.2 in [30]
yields the nondegeneracy of L = Ly, and L3 = Lx,. Finally, observing

(2.13) L(X1) = Py(X]) C Py(X3) ® Py(X]) = ker(i);;)/ C D(B')
and

P{(X}) ® Py(X]) = ketlix,ox2)’ = span{ fi..... fu,} + L(X1) C D(B').
the proof of the lemma is complete. O
LEMMA 2.13. In addition to (G1-G4), assume ker A = {0} and n_(L|@) =0,
the latter of which implies L|W >0and A > 6 > 0. Let Y1 = kerL and

Yo=Yt ={y €Y |(dy.5) =0 Vien}

where L = B'LBA is defined as in Lemma 2.9. Then it holds that

Y1 = ker(LpgyBA), Y2 = R(L) = R(B'Lygy). Y =Y1&Ya.
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In this decomposition, the quadratic form A takes the block form

A 0 . .
A<« (01 Az)’ Aj = (iy;) Aiy, 1 Yj — Y

Here LW :R(B) —> (R (B))>k is defined as in (2.5). In the following, we also

view B as a closed operator from Y * to R(B).

PROOF. Observing that Y, is defined as the orthogonal complement of Y7 in

Y4 and L is self-adjoint on Yy, it follows immediately that Y, = R(]i) and Y =
Y1 @ Y,. We shall show the remaining alternative representations of Y1 and Y5 in
the rest of the proof.

On the one hand, since

@14 B=iggB and B = Bligg) = L = B'Lgg;B4,

clearly ker(LWBA) C Y7 according to their definitions. On the other hand, each
y € Y] satisfies

(LWBAy,BAy) =Ly, y] = 0.
Due to the assumption L|W > 0, a standard variational argument implies that
LWBAy = 0and thus y € ker(LWBA). We obtain Y| = ker(LmBA).

For any x € D(B’ Lz and y € Y1 = ker(LggyBA), we have

[B/me,y] = (Ay, B,wa) = (LwBAy,X) =0,

which along with the closedness of Y», implies R(B’ LW) C Y5. Obviously,
R(IE) C R(B’ LTB)) and thus Y, C R(B’ LTB))‘ Therefore, the equal sign
holds and this completes the proof of the lemma. U

Applying the above lemmas (Lemma 2.12to X = R(B)), we obtain the follow-
ing decomposition.

PROPOSITION 2.14. In addition to (G1-G4), assume (a) L is nondegenerate,
(b) n_(LW) =0,and(c) A>6>0. Let

X1=X1X{0}, X2={0}XY1, X3=X2XY2,

2.15) Xy = X3 x {0}, Xs5=X4x{0}

as defined in Lemmas 2.12 and 2.13. Then in the decomposition X = @_]5-:1 Xj,
JL and the quadratic form L take the form

0 0 0 0 Lis
0O L, 0 O O

S OO OO
o
oo NeleNe
o
O

L«—]| O 0 L O 0] JL<«— 0
0 0 0 Lis O 0 0 0
Lsy; 0 0 O 0 0 0 0
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2530 Z.LIN AND C. ZENG
All the nontrivial blocks of L are nondegenerate:

L 0
Lis = Lia, Lsi=Ls1, L= 41>, L3=(02 A2)2€, L4 = L3,

for some € > 0. All the blocks of JL,

X
Ti, = P1BQ Ay, T13(y) = P1BQ, A2y, Tas =—Q1B P|La,

_ 0 _ 0 P,BQ Az _
T35 - (QZB,P{L14)’ T3 - (Q2BIP2/L2 0 ’ ker T3 - {0}’

are bounded except for T3, which is anti-self-adjoint with respect to the equivalent
inner product (L3 -,-). Here P1334 and Q1 are the projections associated to
the decomposition of X and Y given in Lemmas 2.12 and 2.13. Finally, denote Z
to be the space D (BA) with the graph norm

I¥lz = Iyly +11BAylx.

If the embedding Z — Y is compact, then the spectra of Tz are nonzero, isolated
with finite multiplicity, and have no accumulating point except for +00. Moreover,
the eigenfunctions of T form an orthonormal basis of X3 with respect to (Ls -, -).

Remark 2.15. One should notice that P; in 77, and Q5 in the lower left entry of
T3 are put there only to specify the target spaces, but do not change any values.

PROOF. Since Lemma 2.12 and 2.13 imply
(2.16) P5(X3)® Py(Xy) =ker B" and X5 = R(Lzm) = B'PJ(X}) C Ya,
in such decompositions of X and Y, the operator

4
B :@PP(XH=X*"DDB)>Y=YV0Y,
j=1

B (QlB’Pl’ 0 0 0)

takes the form

Q2B'P{ Q2B'P; 0 0
The block forms of L and JL follow from those of L, A, B’, and B through a
direct calculation. From Lemma 2.12, L, is nondegenerate, which along with
TB) = X1 b X», X1 = ker LW’ and the additional assumption LW > 0,
we obtain the uniform positivity of L,, and thus that of L.

The proof of the boundedness of T and the anti-self-adjointness of 73 is
much like that in the proof of Lemma 2.10. In fact, according to Lemma 2.12,
B’ Pj/ X ;‘ — Y, j # 2,is a closed operator on the domain X ]’.", and the closed
graph theorem implies that it is also bounded. Since B’ PJ./ = (P;B), j # 2,
P; B also has a continuous extension given by (B’ Pj’)’ ; therefore P B, j # 2,is
also bounded. The boundedness of T, and the closedness and the density of the
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TPP FOR STABILITY OF GASEOUS STARS 2531

domains of P, B and B’ P, follow immediately. Moreover, Q2 B’ P, : X5 — Y»
is also closed since B’ P;(X5) C Y» and thus Q, B’ P; = B’ P;. Consequently,

PyB = (P2B)" = (B'Py)", (Q2B'P;) = (B'P,)' Q) = P,BQ).
and
02B'P; = (Q2B'P;)" = ((B'P3)' Q%) = (P2BQY)'.
Since A5 and L, are isomorphisms satisfying A, = A, and L’2 = L, we obtain

(L2P2BQ%A2) = A202B"PjLy and (A202B'PyL,) = Ly P,BQ%As.

Thus, T3 is anti-self-adjoint with respect to the equivalent inner product (L3 -, -).
Finally, (2.16) imply that ker(Q2 B’ P;) = ker(B’P,) = {0} and thus Q2 B’ P;L,
is injective due to the nondegeneracy of L. Moreover, R(LW) = Py(X})
and Y2 = R(B'Lgg) also yield that R(Q2B'Pj) = R(B'Pj) C Y3 is dense.
Therefore, the dual operator P> BQY, is injective and the injectivity of T3 follows.

Finally, let us make the additional assumption of the compact embedding of Z
into Y. Let Z, = D(P,BQ,A3) C Y. Since

(BA— P2BQ%A5)|z, = P1BA|z, € L(Y2,X)

is bounded due to the boundedness of P, B, we have that Z, is also compactly
embedded in Y>. As A, is uniformly positive definite, Lemma 2.10 and Lemma
2.9 imply that Q» B’ Py L, P, BQ), A; is self-adjoint on (Y2, (A2, -.-)) with an or-
thonormal basis of eigenvectors {y,}oe ;
0 < A1 < Ay < -+ of finite multiplicity accumulating only at +oc. Here the

associated to a sequence of eigenvalues

eigenvalues are positive due to Lo > ¢ > 0 and ker 73 = {0}. Let

(S

ut = ((L2P2BQSAsyn, P2BOS Az yn) + An(Ayn, yu))~
: (iPZBQ/zAZJ’n,Anyn)-

It is easy to see that {u,jf} form an orthonormal basis of X, by using ker 75 = {0}
and Tg,uiE = FAnu, . This completes the proof of the lemma. U

With these preparations, we are ready to prove Theorem 2.3.

PROOF OF THEOREM 2.3. We will prove the theorem largely based on Lemma
2.9 and the observation that solutions to (1.22) satisfy a second-order equation

2.17) d;v + B'LBAv = 0.
e Step 1. Preliminary removal of ker L and ker A. Let
Xi=kerL, Xo=X,.®X_, Yi=kerd, Y,=Y,
T (i VT ;- o (oY A D _ D.RA nik _ A .n'p’
L; —(lXj) Lth, Aj _(le) Ale, Bjx = PiBQy,, B'*=0Q;B' P,
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2532 Z.LIN AND C. ZENG

where j,k = 1,2 and ﬁl,z are projections associated to X = )?1 ® )'(vz and Ql,z
to Y = Y1 @ Ya. Assumptions (G1-G4) imply that hypotheses of Lemma 2.10 are
satisfied. Therefore, in the splitting

=Moo e
the operator JL takes the form

(2.18) JL < (0 T )

where

T, o 0 B TR L 0 For o 0 Bi24,
27 \B22 o ) 2 0 A,) PT\BRL, o0

and (L2, Jz, B22) satisfy (Gl G4) Moreover, the same lemma also implies that
T12 is bounded and both L2 and A2 are nondegenerate.

o Step 2. Hyperbolzc subspaces As A, > ¢ for some € > 0, according to
Lemma 2.9, L = 322L2322A2 is self-adjoint on Yz with respect to the inner
product [-,-] = (A, -,-). Since for any v{,vs € D(L) C ¥>,

[]LUL vz] (gzgﬁzzzgzzgzvl, Uz) = (Zzgzzgzvl, Ezzzzfzvz),

and

By B\ (0 0) (0 Blez) oy 5
BA=\3, B 1 = R(BxA4,) = P,(R(BA)),
(321 322) (0 Az 0 ByAs ( 22 2) 2( ( ))

along with the definition of X1, we obtain the dimension of the eigenspace of
negative eigenvalues of the operator IL. given by

n En (@L)y=n" (L2|R(B 2)):n_(L|R(BA)) n~(L).

Let v; be the eigenvectors of IL associate with eigenvalues —)sz. <0,j=1,...,ny,
which might be repeated, such that

[V7. V] = éjjr. [LUI’UJ )= /\ 511

Let
U = A7 B do®;, WF = (i, £7)) = JLo0iF = 4,17,
(Laflj, fix) = =Sk
To return to JL, let
ujE (uj, £v;) = ujE + A 1T12u
= (i1; + AJ- Bleva-, (v — A7 1512Z2L7j)),
which are the eigenvectors of JL with eigenvalue £A; satisfying

JLuf = £0uf,  (Lujug) = =8, (Avj.ve) = 8z
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Define the hyperbolic subspaces as
EY = span{u;-r |j=1...,m}, E°=spanf{u; |j=1,....m},
and statement (ii) follows.

e Step 3. Reduction to the center subspace. Let
Xp=spanf{u; | j =1,....,n1} CR(B), Xe={ueX|(Luu), uelXp},
Yp=span{v; | j =1,...,n1} CR(B'), Y.={veY |(Av,7), Ve Y},
and
EC=XxYe=X=XxY)®E =E°®E"® E°.

Due to the invariance of E** under e’ and that of E€, the rest of statements (i)
and (iii) follow from standard arguments (see, e.g., [30], for more details). Appar-
ently ker L C X, andker A C Y.

The above calculations show that Ly, and Ay, are nondegenerate and thus
lemma 12.2 in [30] yields

X=Xp0X,, Y=Y,0Y,,
with associated projections Py, . and Qp .. By their definitions we have
P/ (X)) = ker(ix,)’ = L(Xp) C D(B').
Q;l(Yh*) = ker(iy,) = A(Y) C D(B).

Therefore, these decompositions satisfy the assumptions of Lemma 2.10 and thus
(1.22) restricted on the invariant E€ also has the separable Hamiltonian form with

(LXC’ AY‘,, Bc = PcBQé)

satisfying (G1-G4). The invariance of E¢ and X} x Y} and the block form in
Lemma 2.10 imply
Due to the L-orthogonality between X, and X}, we also have the L-orthogonality

between X}, and R(B. A.) both of which are contained in R(BA). As L is negative
definite on X}, we obtain

n~ (L] ) Zn_(Lm)+dith :n_(Lm)+n_(L|

m)’

R(BA)
which implies
(2.19) I’l_(LXC|m) =0.
Remark 2.16. Due to the invariance of E%*¢ under /I and the nondegeneracy
of JL and A on the finite-dimensional E*** and Y}, respectively, it follows that
(a) Ayec is injective on R(B/.Lx.B:Ay.) = B'LBA(X,) if A is injective on
R(B'LBA);
(b) R(B.Ay,) = X, if R(BA) = X.
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2534 Z.LIN AND C. ZENG

e Step 4. Reduction (again) of ker Ly, and Ay, in E€. We shall basically redo
Step 1 in E€ = X, x Y. It would be a much cleaner exposition if we could find
a way to combine these two steps together. However, we were not able to manage
that as the positivity of A is required in Lemma 2.9 to identify the hyperbolic
directions, and meanwhile there is not a clear simple way to separate the kernels in

a decomposition invariant under e’JL.
Let
Xoz = ker Ly, x {0} = ker L x {0},
(2.20)

Xoa = {0} x ker Ay, = {0} x ker A.
According to Lemma 2.10, X, and Y, satisfies (G1-G4), so there exist closed
subspaces of X C X, and Y C Y, such that
Xe=X@@kerL, ker(ig) CD(B.), Y.=kerA®Y, ker(iz) C D(Bc).
Let

X=XxY.
Applying Lemma 2.10 again to the decomposition E¢ = (Xor @ Xg4) D X, we
obtain the block forms of (1.22) restricted on the invariant E€ and its energy Lge,

0 0 0 To~
LEc<—>(0 E)’ JL|Ec<—>( ~~),

where Ty~ is bounded and JL has the separable Hamiltonian form with
(Lg.Ag. B = PB, Q’) L g and Ay nondegenerate.
Here P : X, — X and Q Y, — Y are the associated projections. Finally,

Lemma 2.10 implies EAf =P B¢ Ay, |y, which along with the definition of
XoL,04, the fact that Ay : Y - Y*is isomorphic and (2.19) yield

T (Lglzg) = Ll = Lilrg i)

= n_(LXv|7R(BCAYC)) = 0.

Therefore, (L g, Ay, E) satisfy all the assumptions in Proposition 2.14.

Remark 2.17. Due to the upper triangular block form of JL|x,. and the remark at
the end of the last step, we have:

(a) Xp4 = {0} if A is injective on R(B’L BA);

(b) R(BAy) = R(PB.Ay,) = X if R(BA) = X.

e Step 5. Proof of statement (iv). The block form decomposition of L. and JL
on E€ follows from the above splitting and Proposition 2.14. As in Lemma 2.12,
here X; = X; x {0} and X = Lﬁ' Those zero blocks in the bounded operator

To~ : X — ker L x ker A
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TPP FOR STABILITY OF GASEOUS STARS 2535

are due to the facts that JL maps X x {0} to {0} x Y and vice versa. The well-
posedness of e’ and its O(1 + |t|?) growth estimate follow from direct com-
putation based on the block form of JL where the only unbounded operator 73
generates a unitary group e!73.0
o Statement (v) follows directly from Proposition 2.14. 0
In order to obtain the better estimates of eI
the decomposition under various assumptions.

, we only need to refine or modify

PROOF OF THEOREM 2.6. According to the remark at the end of the above Step
4, Xo4 = {0} under the assumption of (i) and thus the second row and column
in the block form of JLgc disappear, which immediately implies the O(1 + 2)
growth of eV|gc. The same remark and Lemma 2.12 imply that, under the as-
sumption of (ii), X1 = X5 = {0}, the O(1 + |¢|) growth of e!JL| g follows from
the reduced block form of JLgc readily.

e Proof of statement (iii). Under the nondegeneracy assumptions of LW and

Am, the decomposition of X can be carried out in a different, but much simpler,
way. In fact, lemma 12.2 in [30] implies

X =X X, )’Z:R(B) Xo=ker(B'L)y={ue X | (Lu,ii)=0,1¢eX}

Y =Yo®Y, Y =R(B), Yo=ker(BA)={u€cY |{Av,T)=0,7 €Y},
associated with the projection P on X and Q on Y, respectively. In the decompo-
sition _ _ o

X=X X, Xo=XoxYy, X=XxY,
which is invariant under JL, we have

0 0 ~ (L O ~ 0 PBQ’
JL‘:)(O JL)’ L_(o A?)’ J—(_QB,};, 0 )

where JL is also in the separable Hamiltonian form (L 5. Ay ,B = PB Q’ ). In

particular, L  and Ay are nondegenerate on X and Y and JL is injective on X,
the last of which implies

R(BAg) =X
From the above theorem, the system JL has the trichotomy decomposition

v _ u =S =c ~Uu,s — ~
X=FE®E ®E‘, dmE"® =n (LR(BA )) n (Lg).

Lemma 12.2 in [30] implies L is uniformly positive definite on E€, and thus we
obtain the Lyapunov stability on E€. Clearly

E%S — Eu,s’ E€ = XO @ E’c’

give the trichotomy decomposition of JL and thus its Lyapunov stability on E°
follows. U
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2536 Z.LIN AND C. ZENG

To end the section, we prove the following result on perturbations to L.

PROPOSITION 2.18. Suppose X is a Hilbert space and L : X — X™ satisfies
(G3) and ng = dimker L < oo. It holds that there exists C,§ > 0 such that
any bounded L:X —> XwithlL* =L and ||Z — L| < § also satisfies (G3).
Moreover, there exists Lg : ker L — (ker L)* such that

dimker L = dimker Ly, n (L) —n"(L) = n"(Lo).
|ILo — (L — L)erz|| < CIL = LI,
where the notation (L — L)yer 1, is in the Sfashion of (2.5).

COROLLARY 2.19. If, in addition, L is nondegenerate, then L is also nondegen-
erate and n~ (L) = n™ (L).

PROOF OF PROPOSITION 2.18. Let X+ C X be closed subspaces ensured by
(G3) for L. Denote

Xo=kerL, Xi =X ®X_. Ko=X;T={xeX|(Lx.x1)=0, ¥x; € Xi}.
Clearly Ly, = i;lLin X1 = X i“ is an isomorphism. The closeness between

L and L implies that ZXl X1 — Xi" is also an isomorphism and n_(le) =
n~(Lx,). Therefore, we have

dimker L = dimkerzfo, n~(L)—n"(L) = n_(zfo).
To analyze L 7, 4 standard argument yields a unique bounded linear operator S :
Xo — Xj such that
ISI < CIIL—L|. Xo= graph(S) = {xo + Sxo | xo € Xo}.
Using the isomorphism / + S : X9 — Xo as a conjugacy map, let
Lo= (I +S*LU +S): Xo— Xg.
We have, for xo, x( € Xo,
(Loxo, xp) = (L(xo + Sxo), (xf + Sxp))
= (Zxoxo, xo) + (Zng, xo) + (Zxo, Sxg) + (ZSxo, Sxg)
= ((L — L)xyx0, x5) + ((L — L)xyx4, Sxo) + (L — L)x,x0, Sx{)
+ (S*ZSxo, )
where we used Ly, = 0. Therefore, the estimate on Z() follows from that on S.
O
3 Stability of Nonrotating Stars

In this section, we study stability of nonrotating stars. We divide it into several
steps.
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3.1 Existence of nonrotating stars

Nonrotating stars are steady solutions (p, u) = (pg(|x]), 0) of (1.1)—(1.3), where
po(r) satisfies
(3.1 =V P(po) —poVVo =0

with AVy = 4mpg. For the consideration of the existence of nonrotating stars, we
assume P (p) satisfies assumption (1.4) and

6
(3.2) m s1770pP/(s) = K >0 for some yo > 3

li
s—>0+
Note that the enthalpy function ® defined by (1.7) is convex since P’(p) > 0 for
p > 0 by assumption (1.4). Let F(s) = (@’)_1(3") for s € (0, Smax), Where

o0 P/
Smax = / (p) dp € (0, OO]
0 P

We extend F(s) to s € (—oo, 0) by zero extension and denote the extended func-
tion by F4(s) : R — [0, c0). We consider physically realistic nonrotating stars pg
with compact support

{oo > 0} = {|x| < R} £ Bg.
where R > 0 is the radius of the support. Then by (3.1), we have
(3.3) Vo + ®'(po) = Vo(R)

and po = F(Vo(R) — Vp) inside Bg. Since Vj(r) > 0 by the Poisson equation,
when r > R, we have

po(r) =0 = FL(Vo(R) — Vo(r)).

Therefore, the steady potential Vo (|x|) satisfying the nonlinear elliptic equation in
radial coordinates is

2

(3.4) AVo = V{ + 2V} = 4nF (Vo(R) — Vo).
r

Define y(r) = Vo(R) — Vo(r) = ®(po). Then y satisfies the ODE
2

(3.5) Vi oy = A FL ().

Let i = po(0) to be the center density. We solve (3.5) with the initial condition
(3.6) y(0) = @'(po(0)) = @'() >0, y'(0) =0,

or equivalently the first-order equation

@) Y0 == [ LEds 30 = o,
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2538 Z.LIN AND C. ZENG

It is easy to see that the unique solution y, (r) of the above ODE exists for r €
(0, +00) and )’;/L(’”) < 0. If there exists a finite number R, > 0 such that

Yu (RM) = 0, define

F(yu(xD) if x| < Ry,

3.8 =
(3.8) Pr(lXD) = if]x] > Ry,

and V), = 47[A_1pu. Then (pM, O) is a nonrotating steady solution of (1.1)—(1.3)
with compact support and R, is the support radius.

Remark 3.1. Since F. is actually a C! function for y € (g, 2), the solution (y, y’)
to (3.5) and (3.6) is C! in both r and in i with y’ < 0. Therefore, the implicit
function theorem implies that R, is C! in y and thus so is p.

Below we give some conditions to ensure that the ODE (3.5) has solutions with
compact support. Assume P (p) satisfies (1.4)—(1.5). For polytropic stars with
P(p) = Kp” (y > 2), it is well-known [7] that for any center density u > 0,
there exists compact supported solutions. Let y = 1 + %; (3.5) becomes the
classical Lane-Emden equation

2 —1\"
(3.9) v+ ;)’/ = —4n ()/_) Vi =-Cyyh,

where 0 < n < 5, y;+ = max{y, 0}, and

1
— 1\ 1
Cy:4ﬂ(y—)y .
Ky

Let y,.(r) = ®'(p,(r)) be the solution of (3.9) with

yu(0) = &' (u) = yK_Vl,ﬂ—l = a.
Denote the transformation
(3.10) yu(r) = a@(cx%r), s=a"7r
then 6 (s) satisfies the same equation
(3.11) 0" + %0’ =-C,0%, 6(0) =1, 6'(0) =0.

The function 6(s) is called the Lane-Emden function.
The next lemma shows that under assumption (1.4)—(3.2), nonrotating stars with
compact support exist for small center density.

LEMMA 3.2. Assume (1.4) and (3.2). There exists g > 0 such that for any
w € (0, o), yu(Ry) = 0 for some R, > 0. Here, y,(r) is the solution of (3.5)
with the initial condition (3.6). Then p,,(|x|) defined by (3.8) is a nonrotating star
with support radius Ry,.
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PROOF. It is equivalent to prove the statement for @ = y,(0) = ®'(n) suffi-
ciently small. Motivated by (3.2) and (3.10), we define

nop—1 nop—1
(3.12) yu(r) = a@a(aoTr), s=a 2 r,
where ng = ﬁ. Then 6 (s) satisfies the equation
(3.13) 0! + 29’ = —47rLF (aBy) = —g0(6y)
. o s o ano =+ o) — ga o)
with the initial condition 6, (0) = 1, 6, (0) = 0. Denote
1
(3.14) ga(0) = 4w ——Fi(ab), 0 €]0.1],
oo
and
1
yo — 1) 70!
(3.15) g0(0) = C),07°, C,, = 471( ) .
YooY+ Yo K)/O

Then by assumption (3.2) and the definition of F, it is easy to show that when
o — 0+, go — go in C1([0,1]) and in CO((—o0,1]). Let y(s) be the Lane-
Emden function satisfying

2
(3.16) 0y + E% = —Cy,(60)"° = go(60). 60(0) = 1, 65(0) = 0.

Then for any R > 0, we have 6, — 6y in C1(0, R). Define G(a,s) = 6u(s)
fora > 0,s > 0, and G(0,s) = Op(s) . Let Rg be the support radius of 6y;
then G(0, Ro) = 6p(Ro) = 0 and £G(0, Rg) = 6)(Ro) < 0. By the implicit
function theorem, there exists g > 0 such that when o € (0, «p), G(«, s) has a
unique zero Sy, near Rg. Then S, is the support radius of 8,. Therefore, for any
0 < pu < po = F(ap), there exists a unique nonrotating solution y, (r) defined

by (3.12) with the support radius R, = o~ (o=D/2g O
Let
Umax = sup{u | 3 solution p,, is compactly supported, V' € (0, u]} € (0, +00].

For any center density p,(0) = p € (0, tmax), let R, = R(n) < oo be the
support radius of the density p, (|x|) of the unique nonrotating stars and

M = [ pudx= [ pax
R3 |x|<Ry

to be the total mass of the star.

Remark 3.3. For polytropic stars with P(p) = KpV (y > g), we have iy =
+o00. The scaling relation (3.10) implies the classical formulae ( [7])

(3.17) M(p) = Cpz®"=9 R, = Copuz2.

for positive constants Cy, C» depending only on .
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For the general equations of state satisfying (1.4) and (3.2) with yy > %, it was
shown in [19] that um.x = +00. See also [34, 36, 38] for the case yog > %. On
the other hand, for yg € (g, %), counterexamples of P (p) with pmax < 0o were
constructed in [38]. For physically realistic equations of state such as white dwarf
stars, Yo = % (see [7,39)).

3.2 Linearized Euler-Poisson equation

We assume P(p) satisfies (1.4)—(1.5). Near a nonrotating star (Pu’ O) with cen-
ter density pu, the linearized Euler-Poisson system is

(3.18) or = =V (ppv),
(3.19) vy = =V(®"(pp)o + V),
with AV = 4mp. Here, 0, v are the density and velocity perturbations, respectively.
In the linear approximation, we take the density perturbation o and the velocity
perturbation v with the same support as p,,, that is,

supp(c). supp(v) C Sy = {|x| < Ry }.
This is reasonable in view of the underlying Lagrangian formulation of the prob-

lem. See the Appendix for more details. Formally, the above linearized system has
an invariant energy functional

1 1
(3.20) Hy(o,v) = 5/ (,oM|v|2 + CD”(pM)Uz)dx — g/RS|VV|2dx.

"

To ensure H,,(o,v) < oo, we consider the natural energy space X, = Lfb,,(pu)

foro and Y, = (L%M)Z’ for v. Here, Lé”(pu)’ L%,M are the ®”(p,,), p,,-weighted
L? spaces in Sy, and thus (3.18)—(3.19) form a linear evolution system on X, x Y,.

Foro € L%D,,(pu), we have
2 %% 2
/ [VV] dx=—471/ pVdx < 4n|o] ;2 (/ —dx)
(3.21) Jr3 Sy " (pw) S, CI)”(pM)
< <
p IIGIILé,,(pM)IIVIILﬁ(Ra) < ”G”Lé”mw IVVIlL2(m3)

and thus |VV|| 12(R?) < llollg2 o)’ In above estimates, we use the fact that
d>// p’u
1 . . -~ . 1 ~ 2—
(o) 18 bounded in S, since o) P Y0 (yp < 2) for pu <K 1. The
notation P < Q means P < C, Q for some constant C;, depending only on /.
Remark 3.4. Since yg € (g, 2) and
1 vo—2
Pu = O((Ru_r)y°71)7 q)”(PpL(r)) = O((Ru—r)yo*l)’
in such weighted spaces, asr — R, —, v € Y, allows v to approach infinity, while

o € Xy, may approach infinity for yp € ( % 2) or must satisfy liminf, . g, — o (r) =
0 for yg € ( g, %] Recalling that supp(p) is the domain occupied by the fluid, the
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vanishing of o (R, —) in the latter case does not mean that the domain does not
evolve, but is only not reflected in the linear order of the density perturbation due
to its degeneracy near the boundary for yy € (g, %]. In fact, the variation of the
domain is clearly indicated in that v does not have to vanish near r = R;,.

Define the operators
Ly=®" (o) —dn(—0)"" 1 X > X5 A =pu: Y, —> Y7
and
BM=—V-=—diV:Y:—>XM, B;L=V:X;:—>YM.
Here, for o € X, we denote

8= [ oty

Then the linearized system (3.18)—(3.19) can be written in a separable Hamiltonian

form
o 0 B L 0 o o
n(7) = (y B)(s 4)(0) = 9e()

which will be checked to satisfy assumptions (G1-G4) in the general framework
of Section 2. First, (G2) is obvious for the operator A, defined in (1.10) with
ker A;, = {0}. We note that

S1=ou (LPS) = V5= (L],,)° S2= /" (o) : Xy > L2(Sp).

are isomorphisms. Therefore, to show B, : 7Y, J — X, is densely defined and
closed, it is equivalent to check

~ . 3
By = $2BS1 = —/¥"(pu) div(y/pp-) - (L*(Sw)” — L*(Sw)
is densely defined and closed. The domain of B wis
D(EM) = {u € (LZ(SM))3‘ V()Y - (/ppu) € L? in the distribution sense}.

It is clear that any C! function with compact support inside S w isin D(EM); thus
D(B,,) is dense in (L.2(S,,))3. Define

C, = MV(,/CD”(,OM)-) L L2(S,) = (L2(Sw)’

Su

with
D(C,) = {0 e L2(S,)| \/mv(,/qw(pu)a) e (LZ(SM))3}.
Then C « 1s also densely defined.

LEMMA 3.5. The above-defined operators satisfy C W= El’: and EM = (éu)* =
(B,,)**. Thus B,, and El’j are both closed.
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PROOF. We start the proof of the lemma with a basic property of functions in
D(Cy). Namely, for any f € D(Cy), there exists M > 0 such that for any
r € (3Ry. Ry, it holds that

(3.22) H VP (pp) f ‘

where 0S(r) is the sphere with radius r. In fact, by the definition of D(C ), the
trace of f on any sphere d5(r) with radius r < R, belongs to L?(3S(r)) and

g2 vt (o (o) ) € LA(S,).

Since for any 6 € S2,

(Vo@nf)eo) = (Yoo ) (sr8) + [ @i 2o onr

m

(RM _r)%’

<M
L2(0S(r) —

it follows that

|o ]

1
r 1 2

<Mm(1 Ry —r') T dr
L2GSG) — ( +”g”L2(S“)(/;R (Ru=r) r) )

yva
2—yo
< M(1+ (R —r)20)
and thus (3.22) follows. _ _
By the definition of adjoint operators, f € D(BZ‘L) - LZ(SM) and w = Bl’j fif
and only if, for any v € D(EM),

(3.23) /S w-vdx = (f, Euv) = _[S D" (pu) fV - ( va)dx.

By taking compacted supported v and integrating by parts, we obtain that f €
D(Cj) and w = Cy, f is necessary. To show this is also sufficient, for any v €

D(EM), we integrate on smaller balls and take the limit,

- @V (P

= —nlggo ,/dD”(pM)fV-(\/Ev)dx

S(Ru_en)
~ X
= (f.Cuv) — lim " (pp)pp fv - ——4dS,
M 00 Jas(ry—en) ST Ry — e
where €, — 0+. According to (3.22),

X
" (pu)py fv - ———dS
/aS(Ru—e,» (e ) Ry —én

Since v € L?(S,,), there exists a sequence €, — 0+ such that

< Mey?|vll 28 (Ru—en))-

6;/2||U||L2(8S(RM—611)) — 0,
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and thus (3.23) holds, which implies B = C,..
By a similar argument to that above, C ; =B w» and this completes the proof of
the lemma. O

We now check that L, defined by (1.10) satisfies (G3). Let
! XX
@ ( pM) 2 H
be the isomorphism from Riesz representation theorem, and define the operator

1
 4m 0 (py)

LEMMA 3.6. L is bounded and self-adjoint on X, and IL;,—1Id is compact.

Ix, =

(3.24) Ly=Ix, L, =1d CTNED = ¢

PROOF. Let

1
K=L,~Ild=—-———(-A)"!:X X,
” 47[<I>”(/0u)( ) A

We first show that K is compact. Indeed, for any o € X, we have

1 1
V2 2 2
IKo|x, = (/ —dx) < (/ Vzdx) ,
a S, (o) Su

where AV = 4mp. By the previously established estimate [V || 51 < ||a||XM and

the compactness of H 1(R3) to LZ(SM), the compactness of K follows. Since
K is symmetric on X, the self-adjointness of I, follows from the Kato-Rellich
theorem. O

Assumption (G3) follows from the above lemma. To compute n™ (L |x,, ), we
define the elliptic operator

Dy =—A—4xF (Vu(Ry) — V) : H'(R?) - H™Y(R?).
Then for ¢ € H'(R3),
(Du¢.¢) = /R3|V¢|2dx — 47 /M F'(Vu(Ry) — Vi) || dx

defines a bounded bilinear symmetric form on H! (R3). The next lemma shows
that the study of the quadratic form

1
(Lyo.0) =/ " (py)o? — —/ IVV|*dx., o€ X,

Su 4 R3
can be reduced to study D,, on H(R3).

LEMMA 3.7. It holds that n~ (L, |x,) = n~ (L) = n~(Dy) and dimker L, =
dimkerL;, = dimker D,.
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2544 Z.LIN AND C. ZENG
PROOF. The proof of the lemma is largely based on the observation D, =

F/LM(—A) inS,.
First, for any p € X, we can show that

1
(Lup,p) = E(D"“V’ V), AV = dnp.

Indeed, inside S, we have F'(V,(R,) — V) = m. Then

1 1
Lup.p)= | —p*d ——/ VV|*d
up.p) = [ oot dx = [ VP

1 2 1 2
= —|VV|®d 2Vp + —p2 |d
/Rs4n' | ”/su( ”F’p) g
1 1
z/ —|VV* = F'V?)dx = —(D,V.V).
4 4

Denote by n=<%(L,,) and n=°(D,,) the maximal dimensions of nonpositive sub-
spaces of L, and D, respectively. Then the above inequality implies that

n=*(L,) <n=%(Dy).

Second, for any ¢ € H'(R3), let pp = FL ¢ € X, and AVy = 4mpy. Then

(Do, $) :/RS|V¢|2dx—47r/ F'|¢p|* dx

Su

|P¢|2 1 / 2 / —
=4 d — Vo|“dx —2 d
”(/S s g [ VP ax =2 [ pudax
4 / de—i—L/ |V¢|2dx—L/ VVy - Vé dx
s, F’ 4 Jr3 21 JR3

>4n/ Ipqslzdx_L/ IVVel2dx ) = 47(Lupg. py).
=z S, F’ 4 R3

Thus n=<9(L,) > n=%(D,,) and a combination with the previous inequality yields

(3.25) n=%(L,) =n=0(D,).

We note that L, p = 0 for p € X, is equivalent to D,V = 0 where AV = 4mp,
and D¢ = 0 for¢ € H' is equivalentto L, pp = 0 (pgp = F’_ ¢). Thus we have
dimker L,, = dimker D;, and consequently n~ (L) = n~ (D) follows from
(3.25). O

In the rest of this subsection, we study some basic properties of the operator
D,,. Since the potential term in D, is radially symmetric, we can use spheri-
cal harmonic functions to decompose D, into operators on radially symmetric
spaces. Let Y7,,(8) be the standard spherical harmonics on S?2 wherel =0, 1,...;
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m=—I[,...,1. Then Ag2Y;,, = —I(l + 1)Y},,. For any function u(x) € H! we
decompose

co I
ux) =Y > wm(Yim(®).  uim(r) = / L u(r0)Y, (0)dSp.
1=0m=—1 S
Then we have

00 [
D;Lu = Z Z D/lLulm(r) Ylm(g)’
1=0m=-—I]
where
I(I+1
(3.26) D! =—A, + ( > ) _ A Fy (Vi(Rw) — V().

and A, = j—rzz + %% In particular, the operator
(3.27) DY) = —Ar —4xFy (Vu(Ry) — Viu(r))

is D, restricted to radial functions.
The study of D, is reduced to the study of operators D/{L (I = 0) for radial
functions.

LEMMA 3.8.
(i) ker D), = {V,(r)} and D}, > 0.
(i) For! >2, D! > 0.
(i) n=(Dy) = n~(Dy) = 1.
PROOF. The arguments are rather standard. Taking dy; of the steady equation
2
(3.28) AV =V + =V, = 4nF1 (Vu(Rp) — V().
r

we get Dydy; Vy = 0. i = 1,2,3. Thus DV, (r) = 0. Since V,,(r) > 0 for
r > 0, () follows from the Sturm-Liouville theory for the ODE operator D plb Then
for/ > 2,

I+1n-2

2

By (i) and (ii), we have n™(D,) = n_(Dg). Since Dy 0y, V,, = 0 and dy,; V),
changes sign, 0 cannot be the first eigenvalue of D;,. Thus n=(D,) > 1. This
proves (iii). Il

D! =D} + > 0.

3.3 The negative index of D,
We find the negative index n™ (D) =n"— (D/(D in this subsection. Although D,

is defined as an operator H! — H ™1, the eigenfunctions with negative eigenvalues

of D, decay exponentially fast at infinity and are in H 2. Thus, when computing

n~(D,,) below, we can treat D, as an operator H? — L? and Dg cHZ? — L2
The following formula for the surface potential V), (R M) will be used later.
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2546 Z.LIN AND C. ZENG

LEMMA 3.9. It holds that

M
(3.29) Vi(Ry) = — R(“).
m

PROOF. Since

2 1 d
Vi + ;Vli = —2—(r2V/;(r)) = 4dmpy,

redr
we have
4w [T M(w)
3.30 Vi) = — 2dr = forr > R,.
( ) M(r) 7'2 /(; pll«(r)r r I"2 orr = Ky
Thus
M
Viu(r) = —l) for r > Ry,
r
and formula (3.29) follows. O

To find n_(Dg), our key observation is that Dg has a kernel only at critical
points of the surface potential V,,(R,,) or, equivalently, at points where

o (M
du\ Ry N

LEMMA 3.10. When j—u(ﬂfe(l‘j)) # 0, ker D), = {0}; when f—u(ﬂé@(f)) =0,
d
kerD/?L = {WVM}'

by the above lemma.

PROOF. Let y,(r) = V,,(Ry) — V,,(r); then

2
Aryu = Yu + -y = =47 F (1 ().

Observing that F. is actually a C! function for y € (g, 2), denote u,(r) =
% yu(r), and by taking % of above equation for y,, we get

2
(3.31) uy, + ;u’ﬂ = —47F (yu(r)uy.
Suppose ng(r) = 0 with v(|x]) € H'(R3). Then
(3.32) v’ + gv/ = ii(;’21)/(1*)) = —4nF’ (y (r))v(r)
’ r r2dr T

and
4 r
V'(r) = _r_Z/o s2F (yu(s))v(s)ds,

which implies that v € C1(0, +00). Since both u w(r) and v(r) satisfy the same
second-order ODE (3.31) and (3.32) with zero derivative at r = 0, we have v(r) =
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Cu,(r) for some constant C # 0. This implies u,, € H'(R3) harmonic outside
S,.. Along with lim, s V(r) = 0 we obtain

0= lim wuu(r) d (M(M)).

r—-+o00 - @ Ry

Therefore, Dg has a kernel only when j—ﬂ(%ﬁb)) = 0, and in this case it follows
from the above analysis that ker D, = {% Vi) O

To find n_(Dg), we use a continuity approach to follow its changes when u
is increased from O to pmax. First, we find n_(Dg) for small ;. By the above

lemma, for increasing u, the negative index n_(Dg) can only change at critical

points of 1;1(%) . Then we find the jump formula of n_(Dg) at those critical points.

Combining these steps, we get n_(Dg) for any u > 0.
By the proof of Lemma 3.2, for small p the steady state p,, is close (up to a
scaling) to the Lane-Emden stars. So we first find n_(DB) for Lane-Emden stars.

We treat the cases y € (g, %) and y € [%, 2) separately.
LEMMA 3.11. Let P(p) = Kp?, y € (£,2); then n_(Dg) = 1 forany u > 0.

PROOF. Let y,(r) be the solution of (3.9) with y,,(0) = o = ®'(u). Recall
that y, (r) = af(a"=D/2p) where 6(s) is the Lane-Emden function satisfying
(3.11). Then

_ 1

Dg = —Ar — Cyl’l(yu)ﬁ_ 1, n = ﬁ

Let 1/ (r) be an eigenfunction satisfying Dgw = Ay with A < 0. Define ¥ (r) =
¢ (@@ V/2r)y and s = «™=D/2y Then ¢(s) satisfies the equation

(—As — Cynf g = a= Vg
Thus n_(Dg) =n"(By), where
(3.33) By, = —As — Cynoit.

It suffices to show that n™ (By) = 1.
We first consider the case y € (2,2) where n € (1,3]. Define ,(s) =

ab(@"=Y/2g) q > 0, and
n J—

1
3 s6'(s).

d
w(s) = %(Ga(s)) = 0(s) +

a=1

Note that 6, (s) satisfies the Lane-Emden equation

2
(3.34) 6, + 59‘/’ =—Cy0; 1. 64(0)=a. 6,(0)=0.
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2548 Z.LIN AND C. ZENG

Let R, be the support radius of 6(s), then 6(R,) = 0 and 6(s) > 0, 6'(s) < 0 for
s € (0, R,). By taking j—a of (3.34), we have

2
(3.35) w” + Zw' = —Cyndt w, s € (0,Ry),
S

with w(0) = 1,w’(0) = 0. We show that w(s) has a unique zero in (0, Ry).
Indeed, since w(0) = 1 and w(R,) = %RnQ’(Rn) < 0, by continuity of
w(s) there exists so € (0, Ry) such that w(sg) = 0. Moreover, for s € (0, Ry,) we
have

w'(s) = 9”(s)

1
=— 9’(s) + T(—29’(s) — Cys6(s)")

< 0.

Thus w(s) is monotone decreasing with exactly one zero sg in (0, R,). We extend
w(s) to be a C'(0, 0o) function by solving the ODE (3.35) in (R, c0). Noting
that the right-hand side of (3.35) is zero in (R,, 00), we get

w(s) = — —|— Cz, s € (Ry,+00),
where
2.7 Ci
C1=—Rnw(Rn)>O, Cz—w(R)—R—<O
n

Thus w(s) < 0in (R, 00) and w(s) \y Ca as s — +00. Therefore, w(s) only has
one zero in (0, +00). We show n™ (B,) = 1 by comparison arguments. Suppose
n~(By) > 2. Let A1 < 0 be the second negative eigenvalue of B, and £(s) € H!
be the corresponding eigenfunction, that is,

(3.36) (g” + %g’) = —Cyn0" e — ).

Then £(s) = esTle™VTAIS for 5 > R,. By Sturm-Liouville theory, £(s) has
exactly one zero s1 € (0, +00). We claim that this would lead to w(s) having two
zeros, one in (0, s1) and the other in (51, 00). We can assume £(s) > 0 in (0, 51);
then £’(s1) < 0. Suppose w(s) has no zero in (0, s1); then w(s) > 0in (0, s1) and
w’(s) < 01in [0, s1]. The integration of

/ K [(3.35)&(s) — (3.36)w(s)]s2 ds
0

and an integration by parts yield

_2E (s)w(st) = Ay / E(s)w(s)ds.
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TPP FOR STABILITY OF GASEOUS STARS 2549

This is a contradiction since the left-hand side is positive and the right-hand side is
negative. Thus w(s) must have one zero in (0, s1). By the same argument, w(s) has
another zero in (57, 00). This is in contradiction to the fact that w(s) has exactly
one zero in (0, 00). Thus n™ (B,) < 2, which together with Lemma 3.8(iii) shows
thatn™(B,) = 1.

We complete the proof of the lemma by a continuation argument. According
to Corollary 2.19, n_(Dﬂ) is locally constant in p and y on the set {(u,y) |

ker Dg = {0}}. For polytropic stars with P(p) = Kp” (g <y< 2), by (3.17) we

have
M C d (M
(1) = —1M7_1 and thus —( (M)) >0
for any u > 0 and y € (£,2). Therefore, by Lemma 3.10, ker Dg = {0} for any
y € (g, 2) and thus n_(Dg) = 1forall u > 0. O

For a general equations of state, by Corollary 2.19, Lemma 3.10, and Lemma
3.11, we have the following:

LEMMA 3.12. Assume (1.4)—(1.5) for P (p). There exists g > 0 such that for any
u € (0, no), n_(Dg) = 1. Moreover, as a function of i € (0, tmax), n_(Dg) is
locally constant.

PROOF. We use the notations in Lemma 3.2, where the nonrotating stars with
small center density p are constructed. Define the operator
Ba == _AS _g(/x(GOl) : Hrl —> Hr_l,

where 6, go are defined in (3.12) and (3.14). As in the proof of Lemma 3.11, we
have n_(Dg) = n"(By) where a = ®’(11). We also define

where 6 is the Lane-Emden function satisfying (3.16) and gy is defined in (3.15).
By the proof of Lemma 3.2, when o — 0+, g4 — go in C'(0, 1) and 6, — 6,
in C1(0, R) for any R > 0. By Lemma 3.11, we have n~(Bgy) = 1. Corollary
2.19 implies that there exists &g > 0 such that when o < a9 we have n™(By) = 1.
This proves the lemma by letting (g = (P’ )_1 (ag). Moreover, n_(Dg) changes

only at critical points of %ﬁ“) due to Corollary 2.19. U

We first prove the following lemma of the nondegeneracy of the mass—radius
curve of the nonrotating stars, which will be crucial in the analysis of the change
of the Morse index n_(Dg).

LEMMA 3.13. There exists no point i € (0, jimax) such that

d
- £(2) -
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2550 Z.LIN AND C. ZENG

PROOF. Suppose otherwise; then M’(u) = j_u(]‘{?(g)) = 0 at some y €

(0, ftmax)- Then by Lemma 3.10, D9 W 0,i.e.,

JIAr T
v\ 29V vV,
(3.37) (—M) —(—M) —47F! (y,.(r) “ r>0,
and 2% = 9 in 5, By (3.31) and py = Fy (7). we have
() (R0 =g [ Pampi o s =~ =0

Then (WM) (Ry.) = 0and by (3.37) it follows that (54)'(r) = 0 for any 7 > Ry
Therefore, ” (r) = 0 for any r > R;,. By (3.37), this implies that 2 ” (r) =0

for any r > 0. But this is impossible since
av, ad
SO = 2L 0) = —0" (1) #0. 0
ou o

Finally, we give the following proposition on the change of n_(Dg) at critical
points of %ﬁ).

PROPOSITION 3.14. Let u* be a critical point of %(5), then for | near Ly it holds
that

(3.38) n (DY) =n"(DY,) +iu
where the index i, is defined in (1.14). Therefore, the jump of n (D ) at u* equals
that of i.

PROOF. To prove (3.38), we need to study the perturbation of zero eigenvalue
of Dg* for p near p*. The idea is similar to the proof of Proposition 2.18, but with
a more concrete decomposition. For p near fty, let

Z(p) = {u e H'R?) | (FL(Vu(Ry) — Vi(r)). u) = 0}.
Using F(0) = 0, one may compute
(FL(Vi(Rw) = V(). 0, V)

- /S FL (ViR = V(1) Vi (r)dx

y23

= —auﬁ Fi(Viu(RL) — Vu(r))dx

+ BM(V,,,(RM))/S FiL(Viu(Ry) — Viu(r))dx

I
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M (u))
Ry

= —M'(n) — 3#( / FL(Vi(Rp) = Vu(r))dx.

Su

Lemma 3.13 yields that M/(u) # O for p near j14« and thus
(3.39) HY(R?) = Z(1) ® R{3,V,.}.

Moreover, differentiating (3.28) and using Lemma 3.9, we obtain

M
Do Vy = 4naM( R(M))FJ’F(V,L(RM) — Vu(r)).

“

Therefore, (3.39) is a Dg—orthogonal decomposition. From Lemma 3.10, Dg is
nondegenerate on Z () for u close to s and thus

—(n0 —(n0 —(n0
n=(Dp) =n(Dp,) = n™ (Dulris,v,)-
Using the above calculations, we have
(DD 3,V 0,4 Vi)

M
= 4”%( R(M))<FJIr(VM(Ru) - Vu(r))’ BMVM)
n

; 2
= —471M/(u)3“(1‘/g“)) — 4 (3,L(A/gm)) /S FL (Vi(Ry) — Vyu(r))dx.

i i

Therefore, (3.38) follows for  near pi«. U

3.4 Stability for nonradial perturbations

We study the linearized system (3.18)—(3.19) for nonradial and radial pertur-
bations separately. Here we follow the tradition in the astrophysics literature that
“nonradial” perturbations refer to those modes corresponding to nonconstant spher-
ical harmonics. See Definition 3.16 for the precise definition.

First, we give a Helmholtz-type decomposition of vector fields in ¥,.

LEMMA 3.15. There is a direct sum decompositionY;, = Y;, 1 ® Yy 2, where Y 3
is the closure of

fue(€'(s) NYu | V- (o) =0}
inY,, and Y,  is the closure of

{u €Y, |u=VpforsomepeC'(S,)
inY,.

PROOF. Define the space Z to be the closure of

pecl(su)‘/s pM|Vp|2dx<oo}
§o
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2552 Z.LIN AND C. ZENG

under the norm ||p||, = (fSu ,o,,¢|Vp|2 dx)l/z, modulo the constant functions.
The inner product on Z is defined as

(P1,p2)7 Z/ puVp1-Vpadx.

Su
For any fixed u € Y, we seek p,, € Z as a weak solution of the equation

V- (puVp) =V -(puu).

This is equivalent to
(3.40) / pMVpu-Vpdx=/ puu-Vpdx VpeZ.
Su Su

The right-hand side above defines a bounded linear functional on Z. Thus by the
Riesz representation theorem, there exists a unique p, € Z satisfying (3.40). Let
uy = Vpy, € Y. Thenuy = u —up € Y,,1. Moreover, it is clear that
Y;1 L Yy 5 in the inner product of Y. This finishes the proof of the lemma. [

The decomposition
Xy x Y, = {0} x Y1) ®(Xy xYy),

is clearly invariant for the linearized system (3.18)—(3.19). We shall call pertur-
bations in {0} x Y, 1 and X, x Y, » to be pseudo-divergence free and irrota-
tional, respectively. In particular, {0} x Y, 1 is a subspace of steady states for
(3.18)—(3.19), where 0O is the only eigenvalue. Thus, we restrict to initial data
(0(0),u(0)) € Xy, x Y, 2. Any solution (o (¢), u(f)) € X, x Y, » can be written
as

(3.41) o(x,t) =o01(r,t) + o2(x,1),
and
(3.42) u(x,1) = VE = v1 (r, r)% + VE (1),

where (01, v1) is the radial component defined by

o1(r1) = /§ o(r0)dSy. &) = /S EUA)dSy. vi(v0) = a%sl(m,

and (03, &) = (6 — 01, § — &1) are the nonradial components.
The radial component (o1, v1) will be studied in the next subsection. The non-
radial component (o2(x,t), £2(x, ¢)) satisfies the system

002 = =V - (PMVSZ)
R —((I)”(,OM)Gz + Vz) = —L,02, AV = 4mos.

This is of the Hamiltonian form

o 0o I L 0 o
(3.43) 3t(g§) = (_1 0)( 0 ZM) (Ez)
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TPP FOR STABILITY OF GASEOUS STARS 2553

where A, = =V - (0, V), (02, £2) € Xpn X Yy With

/ p(ré)dSg = 0}
SZ

Xun = {P € Xy
and
Yun= {5 € Yuo

1Elly,,., = IVElL2 -

We take this opportunity to define the following terminology.

/ pulVEI? dx < oo, / £(r0)dSy = o},
S, s2

DEFINITION 3.16. Define the subspaces of radial and nonradial perturbations for
the linearized Euler-Poisson system (3.18)—(3.19) as
X
X, = (ol oD% ) € 2 x v,
Xyr = ({0} X Yul) ®{(p,u =VE) e X xYy, | p € Xun. £ e Yu,n}-

Clearly we have that the decomposition X, x Y, = X, & X, is invariant under
tTuL
etJutu,

By using spherical harmonics, for any p € X, ,, we write

00 !
p() =" pim(r)Yim (6):

I=1m=-1
then
00 l
L/uo = Z Z L/L,lplm Ylm(e)s
I=1m=-1
where

I+ 1)\ !
(3.44) Lyi= (‘D"(PM) — 4 (—Ar + 2 ) Xy — X:Z,r-
By Lemma 3.8 and the proof of Lemma 3.7, we have
n(Lyalx,,) =n~(Dy) =0 Vi1

Therefore,
I

o0
n(Lulx,,) =Y > n (Lulx,,) =0.
I=1m=-I]

Since A, w > 0onY, », by Theorem 2.3, there is no unstable eigenvalue for the sys-
tem (3.43). Moreover, we shall show that all the eigenvalues of (3.43) are isolated
with finite multiplicity. Define the space

Zyun =€V | ZMS € Xy}
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2554 Z.LIN AND C. ZENG

with the norm
1€l z,,., = 18Iz, + [ Aut],2

D (pp)

Then by Theorem 2.3, it suffices to show that the embedding Z,, , — Y, 5 is
compact. This follows from proposition 12 in [21].

By using spherical harmonics, we can further decompose (3.43). For (02, &) €
Xyn X Yy, let

fole) ! o'} [
02(X) =D D o )Yim(0). &)=Y D Em(r.)Yim(6).

Foreach! > 1, =l < m < [, the component (0;,,(r,t), &1, (r, 1)) satisfies the
separable Hamiltonian system

Olm)\ _ 0 I Lu,l 0 Olm
(3.45) 3t(§lm) = (_1 ())( 0 Au,l)(glm)’

on the space X, , x Y, r, where

~ Ry
(3.46) Yur= %P(r) ‘ / Pu("z(arl’)z + Pz)dr < 00}7
0
the operator L, ; is defined in (3.44), and
1 oul(l+1) =~ ~
AM’I = —r—zar(purzar) + Mr—z . Yu/’r —> Y:’r.

By the properties of the operators L, ; (equivalently the operators D/{L) given in
Lemma 3.8, it is easy to see that, when [ > 1, all the eigenvalues of (3.45) are
nonzero and purely imaginary. When / = 1, (3.45) has a kernel space spanned
by (p;L (r),0)T corresponding to translation modes (Ox; Py 0)7 for the linearized
Euler-Poisson system (3.18)—(3.19). According to Theorem 2.3, all eigenvalues of
Ju Ly, restricted to the invariant subspace X, x Y} 2, and thus of (3.45), are semi-
simple except for possibly the zero eigenvalue. Since O is an isolated eigenvalue,
Theorem 2.3 applied to J,Lylx, ,xv, , implies that the eigenspace of 0 only
consists of generalized eigenvectors with finite multiplicity.

Indeed, (3.45) does have a nontrivial generalized eigenvector and thus nontrivial
Jordan blocks associated to 0. To see this, for any ¢ € ¥, ,, we have

1
2
‘/S pl.¢ dx 5||z||7u_r(/s (p;)zp,;ldx) < lellg,,
" Mn

where we used yg € (g, 2) and

1 1
pu = O(|Ry —r|?07T),  pj, = O(|Ry —r|70 Y, for Ry —r| < 1.
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Therefore, p;ﬁ 37 ;’r and thus the Lax-Milgram theorem imply that there exists a
unique ¢(r) € Y, w,r such that

| 2
(3.47) P = Al = =0 (pur9-0) + %f-

Therefore, (0, {Y1,,(6))T, m = 0, +1, belong to the generalized kernel of (3.45),
which corresponds to (0, dx; (§ %))T, j = 1,2,3, in the generalized kernel of
Ju Ly with

(3.48) Tl (0.9, VE(xD)" = (9x;00.0)" . =1
Moreover, these functions in the generalized kernel of 7, £, do not belong to
the range R(J, L,,). In fact, suppose

(Tl = (0,05,Y0)", (0.0)T € X, x Y.

Then one may compute

~ ~ 0 0
5,79, ,59)

ol ) G) (47 )

which is a contradiction. Therefore, we may conclude that the zero eigenvalue of
TIuLulx, .xv, , has a six-dimensional eigenspace with geometric multiplicity 3
and algebraic multiplicity 6.

The above discussions are summarized below.

PROPOSITION 3.17. Any nonrotating star p, is spectrally stable under nonra-
dial perturbations in Xy . All nonzero eigenvalues of (3.43) are isolated and of
finite multiplicity. The zero eigenvalue of the linearized Euler-Poisson operator
TuLylx,, is isolated with an infinite-dimensional space

({0} X Y1) @Span{(axij,O)T, (0. 9, (z%))T = 1,2,3}

where J, L, has three 2 x 2 Jordan blocks associated to (3.48) generated by the
translation symmetry.

Remark 3.18. For irrotational perturbations, the eigenvalues of (3.43) were shown
to be purely discrete in [21] by a different approach. In [3-5], the spectrum for non-
radial perturbations were shown to be countable, and it was conjectured in [3] that
zero is the only accumulation point. This is indeed true for barotropic equations of
states P(p) by the above proposition or results in [21].

Remark 3.19. In the astrophysics literature [1,2,25], the stability of nonrotating
stars under nonradial perturbations (the Antonov-Lebowitz theorem) was shown
by using the physical principle that the stable states should be energy minimizers
under the constraint of constant mass. We discuss such an energy principle below.
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2556 Z.LIN AND C. ZENG

The steady density p,, has the following variational structure. Define the func-
tional

(3.49) E,.(p) =/<D(p)dx—£/|VV|2dx— VM(RM)/pdx,

with AV = 4mp. Then p, is a critical point of Ey,(0), that is, E; (o) = O,
which is exactly the equation (3.57). The second-order variation of E, at p,, is

1
650 (Eiprnsl = [ (06 - 1 IVVE)dr = (Lup.p).

We note that the energy functional

1 1
E(p.u) = §/p|u|2dx—l—/@(p)dx—g/‘wwzdx

is conserved for the nonlinear Euler-Poisson equation (1.1)—(1.3). Let M(p) =
f 0 dx to be the total mass and define

u(p ) = Ep.w) — ViR M(p) = 3 f plol? dx + Epu(p).

Then (p. 0) is a critical point of 1, (p, u). The second-order variation of 1, (p, u)
at (py, 0) is given by the functional

1 1

i
as defined in (3.20), which is a conserved quantity of the linearized Euler-Poisson
system (3.18)—(3.19).

By the above variational structures, the physical principle that stable stars should
be energy minimizers under the constraint of constant mass is equivalent to the
statement that p, is stable only when (E Z(pu)a, o) > 0 for all perturbations
o supported in S, satisfying the mass constraint [ o dx = 0. This was also called
Chandrasekhar’s variational principle [8] in the astrophysical literature [6].

3.5 Turning point principle for radial perturbations
Denote X, » and Y, » to be the radially symmetric subspace of Lg(p,)(S)

and L%M (Sy), respectively. By (1.12), the radial component (o1, v1) of (o, v) as
defined in (3.41)—(3.42) satisfies

0 —53,(r2)\ (@ (o) —4n(=A)"" 0
8t(01v1)=(_8r r2 O(r ))( (Pu) 077( ) pu)(gi)

_ 0 BIAJ L/,”r 0 o1 _ J”LM 01
_B///,,r 0 0 AMJ‘ U1 U1 )
Here, 01 € X7, v1 € Y}, and the operators

(B.51) Ly, = 0" (pp) —4n(=A) 7" Xy > X
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(3.52) Au’r == pM . Yu’r —> Y*

wors
1 2 . * / . *
(3.53) Bu,r= —r—za,(r VY= X, Bur=0r X, > Yur,
and
(354) J'LL - (—BE);/L r Bg,r) : X:Z’r X Y:,r - X/J“ar x Yﬂar’
L 0
(3.55) L* = ( S’r Au’r) : X[L,r X Yu,r — XZ’,. X Y/f,r'

As the triple (L., Ay. By in (1.12) satisfies assumptions (G1-G4) in Section 2,
the above reduction procedure and Lemma 2.10 imply that the triple (L, Ay r,
B,,r) satisfies (G1-G4) as well. Thus, (3.51) is a separable Hamiltonian system,
for which Theorem 2.3 is applicable.

PROOF OF THEOREM 1.2 11). By Theorem 2.3, the linear stability/instability of
(3.51) is reduced to finding n*(u) = n~ (Ly,r |R(B ) By the proof of Lemma

3.7 restricted to radial spaces, we have n™ (Ly,,) = n (D ) where DO is defined
by (3.27). Moreover, it holds that
/ pdx = 0}.
Su

Therefore, to find n= (L, |R(37,”)) it is equivalent to determine the negative di-

(3.56) R(Byu,) = (ker B ,)" = (kerd,)* = %p € Xy

mensions of the quadratic form (L, ;- -) under the mass constraint |, s, pdx = 0.
We divide the argument into three cases.

Case 1. (Alg((;f)) ) # 0. By (3.3) and Lemma 3.9, the steady density p,

satisfies the equatlon

M)
Ry

(3.57) @' (pp) — 4m(=A) " pp = Vi(Ry) =

)

inside the support S,,. Applying d,, to the above equation, we get

dpu A _10p M)\ .
358) L =" — 4 (—A)TT 2R = S
( ) e 3,LL (o /L) g (—=4) g dﬂ( R/L m oy,

which implies that
- dp
R(B,”) = %P ‘ <Lu,r—:vl’> =0}

and

(3.59) <LM8”“ a/’“> _i(M(“))/ LN :—i(M(M))M/(pL).

o ou
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2558 Z.LIN AND C. ZENG

Case la. M'(u) # 0. The above properties immediately yield
n~(Ly)r— 1 if M/(M)%(%/j)) >0,
(L) M A (22) <o,
=n"(D}) — iy

n(Lurlgz, ) =

Case 1b. M’(u) = 0. In this case, we have
u W\
where Lemma 3.10 was used. There exists ¢ ¢ R(B,,-). Let

0 .
Zo = span{w, a%} Z1={pe€RBuy) | {Lur.p)} =0,

and we have

- 9
Xur=Z0®Z1. R(Bjy) =710 RBL:

We obtain from lemma 12.3 in [30] and (3.59) that
n_(LMvr|12(TM) = n_(L/L,r|Z1)’ n"(Ly,r) = n_(L;L,r|Z1) + n_(L/L,r|Z0)‘

It is straightforward to compute n™ (L »|z,) = 1 and thus

n_(LMJ|R(37,”)) = I’l_(LM,r) —1= I’l_(D/?L) — iM'

Case 2. (AI;I((S))) = 0. By Lemma 3.13, we have

e =m0 #£0— P4 ¢ KB,
S, o

Therefore,

Ipp

op

which implies n™ (L, , |R(TMJ)) =n"(Ly,r). O

Xu r—R(Bur)GBR

Remark 3.20. If u belongs to a stable interval, we must have dd ( ) # 0.
Indeed, when W(Ag(%)) = 0, by (1.16) and Lemma 3.8, we have n*(u) =
(D) = 1

To prove Theorem 1.2(iii), by Proposition 3.17 it remains to show that the eigen-
values of the operator J# L# defined in (3.51) are purely isolated and

(3.60) ker JML* = span{ (8”0’0”“) }
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We first prove (3.60) and leave the proof of the discreteness of eigenvalues of
JH L* to the end of this section. By (3.58) we have

e (%) =~ (e ) o):
0 ) du\ R )\0)

thus Span{(auéoﬂ)} C ker J#L*. To prove ker JAL¥ C span%(auop“)}, we

. o o
consider two cases. Suppose J*LH* o) = 0 for some nonzero (v) € Xpu,r X
Y, r. Itis easy to check that v = O and L, ;0 = ¢ for some constant c.

Case 1. i(M) # 0. Then

du\ R(w)
L R— B
u,r G+1(M(M)) uPu | =Y.
du\ Ry

This implies that
c

- ¢
o i(M(M)> wPus
du\ Ry

since by Lemma 3.10, dim L, , = dim ker Dg =0.

Case 2. d‘i—u(%) = 0. Then ker L, , = span{d,p,} and M'(n) # 0 by

Lemma 3.13. From L, ;0 = ¢ we have
0 - (Lu’raupu,o—) - (Lu’ra, 8#,0/1/) - CM/(//L).
Thus ¢ = 0 and L, 0 = 0, which again imply that o € span{d,, p,}. This proves
(3.60).
Next, we prove the turning point principle by using Theorem 1.2.

PROOF OF THEOREM 1.1. By Lemma 3.12, when u is small enough, n_(Dg) =
1. By the proof of Lemma 3.2, when p is small, we have

no—1 1
o = F+(a9a(aOTr)), a =), ng= ——.
Yo—1
Here, 6, — 6o in C'(0, R) for any R > 0, and fy is the Lane-Emden function
satisfying (3.16). The support radius of p, is

_ng—1 __2%0
RM = 2 Sa = 2(vo—1) SOl’

where Sy is C! in «, and when @ — 0, Sy — Ry, the support radius of 6. The

total mass is
RM np—1 2
M(u) =47r/ F+(oct9a(oc 2 r))r dr
0

1 (B3v0—4)

Su
=T [ gt ds,
0
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2560 Z.LIN AND C. ZENG

where go — go in C1(0, 1) with go. go defined in (3.14) and (3.15). So

Su Ry
/ 8o (g (s)s% ds — / 20(0p(s))s*>ds >0 whena — 0.
0 0

Thus for p small, we have: (i) Alg(%) ~ a = d'(u) and j—u(%fj)) > 0; (ii)

M'(p) > 0 when yo € (3.2) and M'(11) < 0 when yg € (2. 3). Thus when u is
small, the formula (1.6) for n*(u) follows from Theorem 1.2.

Next, we keep track of the changes of n% (i) along the mass—radius curve by
increasing . We consider four cases.

Case 1. No critical points of 1;1(%) or M(u) are met. Then dd_u(%f)) and

M’ (1) do not change sign. By Lemma 3.12 and (1.15), n*(u) is unchanged.

Case 2. At a critical point u* of %fj). The jump formula (3.38) implies that

n*(n*+) = n_(D/?L*Jr) — iy = n_(D/?L*_) — iy = n¥ (¥ ).
That is, the number of unstable modes remains unchanged when crossing u*.
Case 3. At an extremum (i.e., maximum or minimum) point it of M () where
M'(p) changes sign, then i(%ﬁf))m:ﬁ # 0 and n_(Dg) is the same in a

du
neighborhood of 1. But M’(i) changes sign when crossing jz; thus we have

()~ (7-) = (s — ium) = £1,

when M’(M);]—M(%f?) changes from = to F at ji. Since

o d (M(p)
M'(n) =0 and dM( Ru)‘u«

_#0,
n

when p is near ft, we have R’(ﬁ) # 0 and the sign of M’ () j—ﬂ (%ﬁb)) is the same
as —M'(w)R'(p). Thus n*(u+) — n*(u—) = £1 when M'(u)R'(n) changes
from F to £ at i or, equivalently the mass—radius curve bends counterclockwise
(clockwise) at .

Case 4. At a critical but nonextremum point of M (), it holds that
d (M
d ( (1) ) £0.
du\ Ry Ju=p
and n_(Dg) is the same for u near ji. Since [i is not an extremum point of M (u),

the sign of M’(1) does not change when crossing ft. Then by (1.15) n*(u) does
not change when crossing ji. However, we should note that if

d
i (4)

or equivalently M’ ()R’ (1) < 0 in a neighborhood of [i excluding ji, then n% ()
has a removable jump discontinuity at ;i where n% () is reduced by one.
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TPP FOR STABILITY OF GASEOUS STARS 2561

Summing up the above discussions, we finish the proof of Theorem 1.1. O
Below, we prove Theorem 1.3 about exponential trichotomy estimates of (3.51).

PROOF OF THEOREM 1.3. Conclusion (i) is by Theorems 1.2 and 2.3. Con-
clusion (ii) and (1.17) follow directly from Theorem 2.3. To prove (1.18) and
(1.19), we consider radial and nonradial perturbations separately. For nonradial
perturbations, Proposition 3.17 implies that all eigenvalues are discrete and on the
imaginary axis. Hence according to the block decomposition and the anti-self-
adjointness of T3 in Theorem 2.3, the algebraic growth can only arise from the
generalized kernel. By Theorem 1.2(i), we have

(3.61) e b perx,, < Co(1 + |t

For radial perturbations, when M’(u) = 0, by Theorem 2.6(i), we have

=< Co(1 + |1,

and (1.19) follows by combining it with (3.61). When M’(i) # 0, we check
that Ly,.r|gcg, ) is nondegenerate. Let Wy = span{%}. Since f{g’—:dx =
M'(p) # 0, there is an invariant decomposition X, = R(Bj, ;) & W;. When
M’(u)j—u(%fj)) # 0, by the proof of Theorem 1.2(ii), R(By,,r) is the L, ,-

L
= [e"TnEn]x,,

|e" T pep,

orthogonal complement space of W = span{%‘:}. The nondegeneracy of

Lywr I RE
follows since ker L, , = {0}, and L, ,|w, is nondegenerate by (3.59). When
j—ﬂ(%ﬁ) = 0, we have ker L, , = Wj and the nondegeneracy of L, » |R(T”)
also follows. Thus by Theorem 2.6(iii), we have |e/ufu|geqx | < Cp, which
implies Conclusion (iv) and (1.18). Il

It remains to prove that the eigenvalues of the linearized problem (3.51) for
radial perturbations are all discrete by Theorem 2.3. We need the following Hardy’s
inequality [20, 24].

LEMMA 3.21 (Hardy’s inequality). Let k be a real number and g be a function
satisfying

1
/ sk (g% + Ig/‘z)ds < o0.
0

(1) Ifk > 1, then we have

1 1

/ sk2g2 ds < / sk (g% + \g/\z)ds.
0 0
(i) Ifk < 1, then g has a trace at x = 0 and

1 1
(3.62) / sk72(g — g(0))% ds < c/ sk|1g')? ds.
0 0
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2562 Z.LIN AND C. ZENG

Define the function space Z,, , to be the closure of D(By, rAy,r) C Yy, under
Wiz, = Ivly,, + 1BusAusvlx,,

the graph norm
Ry 3 Ry 2 2
= (/ pu|v|2r2dr) + (/ " (o) rzdr) .
0 0

By Theorem 2.3, to show the discreteness of eigenvalues for radial perturbations,
it suffices to show the following compactness lemma.

1
r—28r (rzpﬂv)

LEMMA 3.22. The embedding Z,, , — Y, ; is compact.

PROOF. First, near the support radius R;, we have p, (r) ~ (R, — r)l/(”_l).
This is well-known for Lane-Emden stars. To be self-contained, we give a proof
for general equations of state. By (3.7), we have

, 4 (Ru 1
V(R = Rz s2Fi(yu(s))ds = —ﬁM(ﬂ) <0.
uJ0 7’
Thus for r near Ry, y,(r) ~ Ry, —r. Since p;(r) = Fy(yu(r)) and F1(y) ~
yl/(y_l) for 0 < y « 1, we deduce that for r near R,

1 1
(3.63) pu(r) ~ (yu(r)) v=Ux (Ry —r)vT.
Then for r near R,
(3.64) " (pu(r)) ~ pu(r)’ 2 ~ (R, — r)y%%.

Letr, < R, and R, — r be small enough so that (3.63) and (3.64) are valid in
(2, R;,). Then for any v € Z,, », we have
Ry 2
/ " (p,u)
-

1
r—23, (rzpuv) r2dr
2

R _
Z/ u(RM—r);*%‘Br(rszv)‘zdr
.

~

;9 .
z / (R, — r)%_z‘rzpuv ‘2 dr (by Hardy’s inequality (3.62))
-

Ry
z/ (R, — 1) ' pyv*dr (by (3.63))

2

> (R — 7)1 Ru 2

r

Thus,

Ru 22 2
(3.65) [ putoPrar 5 = 1) 1Bs ol
14

2

:sdny) suonipuoy) pue sud 1, oY) 23S "[£707/L0/1¢] uo Areiqry surjuQ Aofip ‘ASojounyoa jO amnsug eidioan £q £Lzozz edo/z001°01/10p/wod Ka[im AeIqiour[uoy/:sdny woly papeoumo( ‘11 ‘720T ‘TIE0L60T

23/W00" K[ 1mAreaqraur]

ASUSOIT SuoWWo)) dA1ear) d[qeatjdde oy Aq pauIdA0S oI SI[ONIE V() (2SN JO SI[NI 10] ATRIqIT UI[UQ) AS[IA UO (SUONIPUOD-PI



TPP FOR STABILITY OF GASEOUS STARS 2563

Let r1 € (0, R;,) be small enough so that

1
SH= pu(r) <p Vre(0,r1):

then
0 <8i1(n) < @"(pu) <8a2(u) Vre(0,r),

where 81 (1) = min,e (1, ;) ®”(p) and 83(n) = max (1, ) " (p). We have

/0 A " (pu)

}"1 1 2 }"1
> /O Lo (Pou) dr 2 /O (puv)? dr (by (3.62))

ri
> ”1_2[ v2r2dr.
0

2

,,Lzar (rzpuv) r2dr

Thus,
n 2.2 2 2
(3.66) /0 pulv[rdr SrillBurAprvly, -

Denote Bz = {v € Z, ;| |vllz,, < 1} to be the unit ball in Z,, . Then for any

e > 0, by estimates (3.65) and (3.66), we can choose 0 < r1 < r2 < R, such that

r1 RI»L
/ ,o/,¢|v|2r2 dr —|—/ ,o/,¢|v|2r2 dr <e Vv € Bz.
0 T

2
The compactness of Z,, , < Y, , follows from the above estimate and the com-
pactness of the embedding Z, , < Lz(rl, ). O

Remark 3.23. The stability criterion L, , |R(Tm > 0 has the following physical
meaning. By (3.50), the quadratic form (L, p, p) is the second-order variation
of the energy functional E,(p) defined in (3.49). By (3.56), the space R(By, ;)
consists of perturbations satisfying the mass constraint. Thus, our stability criterion
verifies Chandrasekhar’s variational principle that stable states should be energy
minimizers under the mass constraint (see also Remark 3.19).

Remark 3.24. In the astrophysical literature, the linear radial oscillations were usu-
ally studied through the singular Sturm-Liouville equation

d 1 d 4dP
.67 2P, ——(r2 _ K 2 =0,
s (rin ) - 2k o
with the boundary conditions
(3.68) £(0)=0 and &(Ry) is finite.

Here, & is the linearized Lagrangian displacement in the radial direction, P, =

P(py), ' = %;)(5)“) is the local polytropic index, and i w is the eigenvalue. The

equation (3.67) was first derived by Eddington in 1918 [12] and had been widely
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2564 Z.LIN AND C. ZENG

used in later works (e.g., [10, 20, 26,27, 35]). For polytropic stars P(p) = Kp?,
I'y = y, (3.67) is greatly simplified and can be used to show y = % is the critical
index for stability [26,27]. However, for a general equation of states, it is difficult
to get explicit stability criteria such as TPP in Theorem 1.1 by (3.67). Moreover,
since the Sturm-Liouville problem (3.67) is singular near r = 0 and R, it is
highly nontrivial [3-5, 21, 27, 35]) to prove self-adjointness and discreteness of
eigenvalues, which were taken for granted in the astrophysical literature.

By the separable Hamiltonian formulation (3.51), the eigenvalue equation can
be written as (see (2.17))

(3.69) Bl LyurBurAu,rv =0,

which is equivalent to (3.67) by explicit calculations. There are several advantages
of the factorized form (3.69) over (3.67). First, each factor in (3.69) has a clear
physical meaning related to the variational structures of steady states or the physi-
cal constraint. Second, the form in (3.69) makes it convenient to prove properties
of the operator B, . L, r Byir Ay,r such as the self-adjointness and discreteness of
eigenvalues. This approach is rather flexible and has been used in recent works on
the stability of rotating stars [28] and relativistic stars [16, 17].

3.6 Examples

We apply the stability criteria for several examples of gaseous stars.

1. Polytropic stars

For polytropic stars, P(p) = Kp? with y € (£,2). Then by Lemma 3.11, we
have n_(Dg) = 1 forany u > 0. The functions M (p) and R, are given by (3.17).
For any y > 1, we have

i(M(“)) >0 forall u> 0.

dp\ Ry

When y € (g, %) we have M’(u) < 0 and thus i, = 0. Then it follows from
Theorems 1.2 and 1.3 that for any i > 0, p,, is unstable with n*(u) = 1 and
there is Lyapunov stability on the codim 2 center space. When y € ( %, 2), we have
M’(p) > 0 and thus i, = 1. By Theorems 1.3(iv), linear Lyapunov stability holds
for any p > 0. The case y = % is the critical index for stability. In this case, we
have M'(n) = 0. Thus, i;, = 1 and we have spectral stability. In [11], nonlinear
instability was shown for y = % in the sense that for any small perturbation with
positive total energy of stationary solutions, either the support of the density will
go to infinity or singularity forms in the solution in finite time.
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TPP FOR STABILITY OF GASEOUS STARS 2565

2. White dwarf stars
Next, we consider white dwarf stars [7] with Py (p) = Af(x) and p = Bx3,
where A, B are two constants and

f(x) =x(x? + 1)%(2)62 -3)+ 31n(x +V1+ x2)
(3.70) Xyt du
_ g / _widu
0 1+ u?
Then Py(p) satisfies (1.5) with yo = % Therefore, for any center density p €

(0, 00), there exists a unique nonrotating star p,(|x|) (see Remark 3.3). It was
shown in [42] (see also [19]) that M'(p) > O for any p > 0.

LEMMA 3.25. Assume P(p) satisfies (1.5) with yg € (%,2). Let gy € (0, +00] be
such that M'(w) > 0 on [0, po). Then

g(Mw)
du\ Ry

) >0 forany € (0, uo).

PROOF. By the proof of Theorem 1.1 we have

g(Mw>
du\ Ry

)>0 and M'(n) >0

when p is small enough. Suppose the conclusion of the lemma is not true. Let 17 €
(0, j0) be the first zero of j—u(%“?). Then %(%ﬁ)) > 0 forall u € (0, ;uy).
Consequently, by Lemma 3.12, n_(Dg) = 1forall u € (0,u1). At u = ug,
we have n_(Dgl) > 1 (by Lemma 3.8(iii)) and O is an eigenvalue of DI?CI . Since
M'(1) > 0 due to our assumption and Lemma 3.10, when < 1 and [0 — juq|
is small enough, we have j—ﬂ(%ﬁb))M '(w) > 0. Therefore i;, = 1 according to
(1.14) and thus Proposition 3.14 implies n_(Dg) = n_(Dgl) + 1 > 2. This is in

contradiction to the fact that n_(Dg) = 1for u € (0, uy1). O

COROLLARY 3.26. White dwarf stars p;,(|x|) are linearly stable for any center
density u > 0.

PROOF. Lemmas 3.25 and 3.12 imply that n_(Dg) = 1 for all u > 0. Since

M'(p) > 0 and j_u(%fj)) > 0 for u € (0, 00), linear Lyapunov stability of p,,
follows from Theorem 1.3(iv). O

Remark 3.27. The mass of white dwarf stars has a finite upper bound M, =
limy, o0 M (1), which is known as Chandrasekhar’s limit [7,9]. We note that for
white dwarf stars, Py(p) ~ 2AB~*4/3p*/3 when p is large. The Chandrasekhar
limit Mo, is exactly the mass of the polytropic star with P(p) = 24AB~4/3p%/3,
which is independent of u by (3.17).
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3. More general equations of state

Last, we consider general equations of state P (p) satisfying (1.4)—(1.5). Assume
Yo € (%, 2) in (1.5). Indeed, yo = % for most physical equations of state including
white dwarf stars. Then for & small, we have

d (M
n (DY) =1, M'(w)>0, @( R(Z)) > 0.

Let
po = inf{ze > 0| M'(1) < 0} € (0, +00].
If o < +ocand M'(u) < 0for0 < p — uo K 1, we denote

pr = sup{p > po | M'(1') <0 V' € (no, w)} € (o, +00].

COROLLARY 3.28. Assume P(p) satisfies (1.5) with yy € (%, 2). Then the non-
rotating star p,(|x|) is linearly stable for . € (0, o). If o < 400, then py, is
linearly unstable for u € ((o, 1) and n*(u) = 1.

PROOF. Linear stability of p;, (|x]) for i € (0, po) follows as in Corollary 3.26.
When (1o < oo, linear instability of p,, for u € (i, 1) and n*(u) = 1 follows
from Theorem 1.1. U

If M(w) has isolated extremum points, then po, (1 are the first maximum and
minimum points, respectively. Below we give examples of P(p) for which the
maximum of M (1) is obtained at a finite center density, which gives the first transi-
tion point of stability. As in [19], we consider asymptotically polytropic equations
of state satisfying that, for some positive constants ag, a1, ng,n1,C—, C+,

®

no+l1 agp
(3.71) P(p) =c—p " (1+ O(p"™)) whenp — 0;
(i1)
ntl _41
(3.72) P(p) =cyp ™ (1 + O(p n )) when p — +oc.
Denote yg = % and Yoo = % By theorem 5.5 in [19], when n; € (0, 5), to

first order, the mass—radius relation for high central pressures is approximated by
the mass—radius relation for an exact polytrope with polytropic index n1. That is,
when p is large enough,

3—nj 1—n 1

M(p) ocp 2 = M%(31’1—4)’ Ry o< 2 = Mz(y1—2)'

Therefore, when ny > 3 (e, Yoo < %), %(%5)) > 0 and M'(n) < 0 for
sufficiently large . Thus for large p, we have i, = 0 and p, is linearly unstable
by Theorem 1.2. When ny < 3 (i.e., yo > %), we have M'(u) > 0 for p small
enough. Thus, the transition of stability must occur at some @ > 0. the maximum
of M () is obtained at ;1o < oo which is the first transition of stability by Corollary
3.28.
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By theorem 5.4 in [19], when yo > % and Yoo < g (i.e., n1 > 5), the mass—
radius relation for high central pressures possesses a spiral structure, with the spiral
given by

Y1 Y1
(3.73) (MIEZ)) = (ﬁg) + (&) Bj(yzln é)b +o(($) ) w1,

where « = ®'(u), Ry and My are constants, BB is a nonsingular matrix, and b a
nonzero vector. The matrix 7 (¢) € SO(2) describes a rotation by an angle ¢, and
the constants y; and y, are given by

1 1
V1= Z(nl -5, y2= Z\/7n%—22n1 —1.

Thus, when @ — oo, the mass M (u) has infinitely many extremum points. We
claim that at each of these extremum points, the number of unstable modes n* (1)
must increase by 1, and in particular n*(u) — oo when u — oo. Indeed, for
large v the mass—radius curve must spiral counterclockwise, and then by Theorem
1.1 n¥(u) increases by 1 when crossing any mass extremum of M () on the spiral.
Suppose not, and the mass—radius curve spirals clockwise when ;& — oo. Then by
Theorem 1.1 n%(u) decreases by 1 when crossing each mass extremum of M (u)
on the spiral. Therefore, after crossing finitely many mass extrema in the spiral,
n* (@) must become zero. Let u* be the first mass extremum in the spiral such
that n%(u) = O for u slightly less than pu*. Then for u slightly less than u*, we
have n_(Dg) = 1 and i, = 1, which implies that M’(u)R’() < 0. Thus when
crossing ™, the sign of M’ (1) R'(;) must change from — to +, which contradicts
the assumption that the spiral is clockwise. This proves that the mass—radius spiral
can only be counterclockwise.
We summarize the above discussions in the following.

COROLLARY 3.29. Consider asymptotically polytropic P(p) satisfying (3.71)—
(3.72). Assume yg € (%,2) (i.e., ng € (1,3) in (3.71)). Then when ny € (3,5) or
n1 > 5 with ny defined in (3.72), there must be a transition point of stability in the
sense of Corollary 3.28. Moreover, p,, is unstable when (. is large enough. When
ny > 5, n*(u) — oo when . — oo.

Remark 3.30. White dwarf stars are supported by the pressure due to cold de-
generate electrons, as given by the equation of state (3.70). When the density is
high enough, the pressure due to cold degenerate neutrons should be taken into
account. For such modified equations of state, the maximal mass (Chandrasekhar’s
limit) is indeed achieved at a finite center density g < oo. Then by Corollary
3.28 g is the first transition point of stability and nonrotating stars with center
density slightly larger than po become unstable. We refer to figure 11.2 and sec-
tion 11.4 in [44] for such a mass—radius curve and physical explanations. If the
stars are much more compact than the one with a Chandrasekhar limit, then rela-
tivistic effects cannot be ignored and the Euler-Einstein model should be used. A
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similar turning point principle can be derived for stability of relativistic compact
stars modeled by the Euler-Einstein equation [16, 17].

Appendix: Lagrangian Formulation and Hamiltonian Structure

In this appendix we formally outline the Lagrangian formulation of the Euler-
Poisson system (1.1)—(1.3) and its linearization. Let (p,(|x|),u(x) = 0) be the
nonrotating star supported on the ball S, C R3 with radius R(u), where 1 =
pu(0). We simply take S, as the reference domain in the Lagrangian framework
and define the (abstract) configuration space of Lagrangian maps as

A = {diffeomorphism X : S, — X(S,,) C R?}.

For any reference density px : S;, — R U {0} and a path of Lagrangian maps
X(t) € A, the action functional A is given by

1 1
A= /(/ — X px dy—/ ®(p)dx + —/ |VV|2dx)dt,
Sy 2 X(t,5.) 81 Jr3

where the enthalpy ®(p) is defined in (1.7), the gravitational potential V(z, x) by
(1.3) (or equivalently V = |x|~! % p), and the physical density p in the Eulerian
coordinates is given by

_ Px -1, +
plt,-) = (m) oX(t,-)" 1 X(t,Su) — RT U {0}
and extended as 0 outside X (¢, S;,) C R3. Through a standard calculus of variation
procedure (with respect to X), it is straightforward to verify that X'(¢) is a critical
path of A if and only if (p, u = X; o X~ 1), which is supported on X (¢, S,), solves
the Euler-Poisson system (1.1)—(1.3). The reference density ps plays the role of a
parameter not evolved in 7. The conserved energy of this Lagrangian system is

1 1
E =/ —| X% px dy —i—/ dD(,o)dx——/ |VV|?dx
S, 2 X(t,5,) 87 JRr3

1 1
=[ Lol + ®(p) — Vv dx.
R3 2 87‘[

One observes that the potential energy consisting of the enthalpy and gravity de-
pends on X" only through the density p. Therefore the action functional is invariant
under the transformation X' (t) — X' (¢) o T, where T belongs to the group G of
diffeomorphisms on S, preserving p«, namely,

G = {diffeomorphism 7 : S;, = S, | (px 0 T)det DT = py}.

The Euler-Poisson system (1.1)—(1.3) in the Eulerian formulation is essentially a
reduction of the Lagrangian system due to this relabeling symmetry where p(z, -)
and u(¢, -) are supported on X (¢, S;,).

The nonrotating star (p,,, u = 0) corresponds to the stationary solution X' = id
along with px = p,(|x|), which is a critical point of the potential energy. Let
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X(t,x,€) be a family of solutions (parametrized by ¢) in the Lagrangian formu-
lation with the reference density p«(x,€) such that X(z, x,0) = x, p«(x,0) =
pu(x), for all x € S;,. The linearized system at X = id and p, governs the
dynamics of the leading-order variation X = 0¢ X |e=0, which also involves 0 =
deple=0. The corresponding quantities in the Eulerian formulation are

0 = Beple=o = (Bepr = V- (0u X)), v = dettle=o = Be(X; 0 X1 =0 = A,

which are supported on ;. The associated action of the linearized Lagrangian sys-
tem, which is simply the quadratic part of .4, can be expressed more conveniently
using o as

1 ~ 1

do=3 [ pulBP -0 oty + o [ VAT o)
2 Su 8 R3

Using the above formula of o, which also implies (1.8), one obtains the linearized

equation through the variation of .A, with respect to X,

~Xy — V- (" (pp)o + x| x0) =0,

which is equivalent to (1.9). The quadratic part

1 1
Ep = —/ pulv® + @"(pp)o® dx — —f IV(Ix|7! % 0)[>dx = Hy(o,v)
2 Js, 81 Jr3

of the nonlinear energy E, which is equal to the Hamiltonian H, (o, v) of the
linearized Euler-Poisson system defined in (3.20), is conserved by these linearized
solutions.

Through the Legendre transformation U = p4 X}, the Lagrangian structure with
the action A induces a natural Hamiltonian structure of the Euler-Poisson system
with the Hamiltonian A and the standard symplectic structure J:

H(X,U):/ ! |U|2dy+/

Su * X(,Su)

()

It might be possible to apply the general results in Section 2 to analyze the lin-
earized Euler-Poisson system at (p,,, 0) as a linear Hamiltonian system of the lin-
earized Lagrangian map d. X and momentum d¢U. As in the nonlinear case, one
could expect such a system to be reduced to (1.8)—(1.9) through a reduction due
to the relabeling symmetry. We carried out the analysis directly on (1.8)—(1.9)
with the different symplectic structure 7, where the large symmetry group (cor-
responding to additional infinite kernel dimensions) has been reduced and stabil-
ity/instability is directly on the linearized density and velocity.

1
®(p)dx — —/ |IVV |2 dx,
87'[ R3
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