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Abstract

We consider stability of nonrotating gaseous stars modeled by the Euler-Poisson
system. Under general assumptions on the equation of states, we proved a turn-
ing point principle (TPP) that the stability of the stars is entirely determined by
the mass–radius curve parametrized by the center density. In particular, the sta-
bility can only change at extrema (i.e., local maximum or minimum points) of
the total mass. For a very general equations of state, TPP implies that for increas-
ing center density the stars are stable up to the first mass maximum and unstable
beyond this point until the next mass extremum (a minimum). Moreover, we get
a precise counting of unstable modes and exponential trichotomy estimates for
the linearized Euler-Poisson system. To prove these results, we develop a general
framework of separable Hamiltonian PDEs. The general approach is flexible and
can be used for many other problems, including stability of rotating and magnetic
stars, relativistic stars, and galaxies. © 2021 Wiley Periodicals LLC.

Contents

1. Introduction 2511
2. Separable Linear Hamiltonian PDE 2518
3. Stability of Nonrotating Stars 2536
Appendix: Lagrangian Formulation and Hamiltonian Structure 2568
Bibliography 2570

1 Introduction
Consider a self-gravitating gaseous star satisfying the 3D Euler-Poisson system

�t Cr � .�u/ D 0;(1.1)

�.vt C u � ru/ D �rp � �rV;(1.2)

�V D 4��; lim
jxj!1

V .t; x/ D 0;(1.3)
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2512 Z. LIN AND C. ZENG

where � � 0 is the density, u.t; x/ 2 R3 is the velocity, p D P .�/ is the pressure,
and V is the self-consistent gravitational potential. Assume P .�/ satisfies

(1.4) P .s/ 2 C 1.0;1/; P 0 > 0;
and there exists 
0 2 .65 ; 2/ such that

(1.5) lim
s!0C

s1�
0P 0.s/ D K > 0:

The assumptions (1.5) implies that the pressure P.�/ Ð K�
0 for � near 0.
We consider the stability of nonrotating stars. Throughout the paper, nonrotating

stars refer to static equilibria of (1.2)–(1.3) with u D E0. Note that any traveling
solution of (1.2)–(1.3) with u to be a constant vector Ec becomes static under the
Galilean transformation

.�.x; t/; u.x; t//! �
.�.x C Ect; t/; u.x C Ect; t/ � Ec/�:

The density function of a compactly supported nonrotating star can be shown to be
radially symmetric [14].

By Lemma 3.2, there exists �max 2 .0;C1� such that for any center density
��.0/ D � 2 .0; �max/, there exists a unique nonrotating star with the density
��.jxj/ supported inside a ball with radius R� D R.�/ < 1. In particular,
�max D 1 when 
0 � 4

3
[19] (see also [34, 36, 38] for the proof when 
0 > 4

3
).

Denote
M.�/ D

Z
R3

�� dx D
Z
S�

�� dx

to be the total mass of the star, where S� D
�jxj < R�	 is the support of ��. We

consider the linear stability of this family of nonrotating gaseous stars ��.jxj/ for
� 2 .0; �max/. Our main result is the following turning point principle.

THEOREM 1.1. The linear stability of �� is fully determined by the mass–radius
curve parametrized by �. Let nu.�/ be the number of unstable modes, namely the
total algebraic multiplicities of unstable eigenvalues. For small �, we have

(1.6) nu.�/ D
(
1 (linear instability) when 
0 2

�
6
5
; 4
3

�
;

0 (linear stability) when 
0 2
�
4
3
; 2
�
:

The number nu.�/ can only change at mass extrema. For increasing �, at a mass
extrema point where M 0.�/ changes sign, nu.�/ increases by 1 if M 0.�/R0.�/
changes from � to C (i.e., the mass–radius curve bends counterclockwise) and
nu.�/ decreases by 1 if M 0.�/R0.�/ changes from C to � (i.e., the mass–radius
curve bends clockwise).

Here, the mass–radius curve is oriented in a coordinate plane where the horizon-
tal and vertical axes correspond to the support radius and mass of the star, respec-
tively. Theorem 1.1 shows that the stability of nonrotating stars and the number of
unstable modes are entirely determined by the mass–radius curve parametrized by
the center density �. In particular, the stability can only change at a center density
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TPP FOR STABILITY OF GASEOUS STARS 2513

with extremal mass (i.e., maxima or minima of M.�/). The change of stability at
mass extrema is called the turning point principle (TPP) in the astrophysical liter-
ature for both Newtonian and relativistic stars. It was usually based on heuristic
arguments. As an example, we quote the following arguments in [40] for rela-
tivistic stars: “Suppose that for a given equilibrium configuration a radial mode
changes its stability property; i.e., the frequency ! of this mode passes through
zero. This implies that there exist infinitesimally nearby equilibrium configura-
tions into which the given 1 can be transformed, without changing the total mass.
Hence if ! passes trough zero we haveM 0.�/ D 0.” The same arguments can also
be found in other astrophysical textbooks such as [15, 39, 44]. In Theorem 1.1, we
give a rigorous justification of TPP for Newtonian stars. Moreover, we obtain the
precise counting of unstable modes from the mass–radius curve. For relativistic
stars, similar results can also be obtained [16].

Besides the above stability criteria, we obtain more detailed information about
the spectra of the linearized Euler-Poisson operator and exponential trichotomy
estimates for the linearized Euler-Poisson system, which will be useful for the
future study of nonlinear dynamics near the nonrotating stars. To state these results,
first we introduce some notations. LetX�; Y� be the weighted spacesL2

�00.��/
.S�/

and .L2��.S�//
3, where the enthalpy �.�/ > 0 is defined by

(1.7) �.0/ D �0.0/ D 0; �00.�/ D P 0.�/
�

:

Denote X D X� � Y�. The linearized Euler-Poisson system at .��; E0/ is

�t D �r � .��v/;(1.8)

vt D �r
�
�00.��/� C V

�
;(1.9)

with �V D 4��. Here, .�; v/ 2 X are the density and velocity perturbations.
Define the operators

(1.10) L� D �00.��/ � 4�.��/�1 W X� ! X�
�; A� D �� W Y� ! Y ��

and

(1.11) B� D �r� D � div W Y �� ! X�; B 0� D r W X�
� ! Y�:

Here, for � 2 X�, we denote

.��/�1� D
Z
S�

1

4�jx � yj�.y/dy jS� .

Then (1.8)-(1.9) can be written in the Hamiltonian form

(1.12) @t

�
�

v

�
D
�

0 B�
�B 0� 0

��
L� 0

0 A�

��
�

v

�
D J�L�

�
�

v

�
;

where the operators

(1.13) J� D
�

0 B�
�B 0� 0

�
W X�! X; L� D

�
L� 0

0 A�

�
W X! X�;
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2514 Z. LIN AND C. ZENG

are off-diagonal anti-self-dual and diagonal self-dual, respectively. We call systems
like (1.12) “separable Hamiltonian systems.”

In the following theorems and throughout this paper, we follow the tradition
in the astrophysics literature that “nonradial" perturbations refer to those modes
corresponding to nonconstant spherical harmonics. See the more precise Definition
3.16 of the subspaces Xr and Xnr of radial and nonradial perturbations in Section
3.4.

THEOREM 1.2.

(i) The steady state ��, which is parametrized by the C 1 parameter �, is
spectrally stable to nonradial perturbations in Xnr with isolated purely imaginary
eigenvalues. The zero eigenvalue is isolated with an infinite-dimensional kernel
space

ker.J�L�/ D
��
0

u

� ���� Z ��juj2dx <1; r �
�
��u

� D 0�
� span

��
@xi��
0

�
; i D 1; 2; 3

�
;

and the only generalized eigenvectors of 0 are given by .0; @xirz�/T with

J�L�
�

0

@xirz�
�
D
�
@xi��
0

�
; i D 1; 2; 3;

where z� is defined in (3.47) and (3.48).

(ii) Under radial perturbations in Xr , the spectra of the linearized system
(1.8)–(1.9) are isolated eigenvalues with finite multiplicity,

ker.J�L�/ \ Xr D span
�
.@���; 0/

T
	
;

and the steady state �� is spectrally stable to radial perturbations if and only if
n�.D0

�/ D 1 and i� D 1. Here, the self-adjoint operator D0
� is defined in (3.27)

and

(1.14) i� D
8<:1 if M 0.�/ d

d�

�M.�/
R�

�
> 0 or M 0.�/ D 0;

0 if M 0.�/ d
d�

�M.�/
R�

�
< 0 or d

d�

�M.�/
R�

� D 0: :
Moreover, the number of growing modes is

(1.15) nu.�/ D n��D0
�

� � i�:
The index i� in (1.14) is well-defined, since M 0.�/ and d

d�

�M.�/
R�

�
cannot be

zero at the same point (Lemma 3.13). The stability of nonrotating stars under
nonradial perturbations was known in the astrophysics literature as the Antonov-
Lebowitz theorem [2, 25]. Theorem 1.2 implies that the spectra of the linearized
Euler-Poisson equation at �� are contained in the imaginary axis except finitely
many unstable (stable) eigenvalues with finite algebraic multiplicity.
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TPP FOR STABILITY OF GASEOUS STARS 2515

THEOREM 1.3. The operator J�L� generates a C 0 group etJ�L� of bounded
linear operators on X, and there exists a decomposition

X D Eu �Ec �Es;

with the following properties:
(i) Eu.Es/ consists only of eigenvectors corresponding to negative (positive)

eigenvalues of J�L� and

(1.16) dimEu D dimEs D n��D0
�

� � i�:
(ii) The quadratic form .L� � ; �/X vanishes on Eu;s , but is nondegenerate on

Eu �Es , and

Ec D
��
�

v

�
2 X

���� �L���v
�
;

�
�1
v1

��
D 0 8

�
�1
v1

�
2 Es �Eu

�
:

(iii) Ec ; Eu; Es are invariant under etJ�L� . Let

�u D minf� j � 2 �.J�L�jEu/g > 0:
Then there exist C0 > 0 such that��etJ�L� jEs

�� � C0e��ut ; t � 0;��etJ�L� jEu

�� � C0e�ut ; t � 0;(1.17)

(1.18)
��etJ�L� jEc

�� � C0.1C jt j/; t 2 R if M 0.�/ ¤ 0;
and

(1.19)
��etJ�L� jEc

�� � C0.1C jt j/2; t 2 R if M 0.�/ D 0:
(iv) Suppose that M 0.�/ ¤ 0. Then

(1.20)
��etJ�L���

Ec\Xr
j � C

for some constant C . In particular, when n�
�
D0
�

� D 1 andM 0.�/ d
d�

�M.�/
R�

�
> 0,

Lyapunov stability is true for radial perturbations in the sense that

(1.21)
��etJ�L���Xr

j � C:
Above linear estimates will be useful for the future study of nonlinear dynamics,

particularly, the construction of invariant (stable, unstable, and center) manifolds
for the nonlinear Euler-Poisson system. The O.jt j/ growth in (1.18) is due to the
nonradial generalized kernel associated to the translation modes given in Theorem
1.2 i). At the mass extrema points, the O.jt j2/ growth in (1.19) is due to the
radial generalized kernel associated to the mode of varying center density given
in Theorem 1.2(ii). Lyapunov stability on the radial center space Ec \ Xr (under
the nondegeneracy condition M 0.�/ ¤ 0) hints that the steady state might be
nonlinearly stable on the center manifold once constructed.

Theorems 1.2–1.3 are applied to various examples of equations of state. For
polytropic stars with P .�/ D K�
 .
 2 .6

5
; 2//, we recover the classical sharp
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2516 Z. LIN AND C. ZENG

instability criterion [26, 27] that 
 2 .6
5
; 4
3
/. Even for this case, our results give

some new information not found in the literature that there is only one unstable
mode and Lyapunov stability is true on the center space. Next, we consider more
practical white dwarf stars with P.�/ D Af .B1=3�1=3/, where A;B are two con-
stants and f .x/ is defined in (3.70). It is proved in Corollary 3.26 that white dwarf
stars ��.jxj/ are linearly Lyapunov stable for any center density � > 0. For stars
with a general equations of state, we prove in Corollary 3.28 that they are stable
up to the first mass maximum and unstable beyond this point until the next mass
extrema (a minimum). Examples for which the first mass maximum is obtained
at a finite center density including the asymptotically polytropic equations of state
satisfying that P.�/ Ð �
1 (for � large) with 
1 2 .0; 65/ or .6

5
; 4
3
/. We refer to

Corollary 3.29 for more details.
There exist huge astrophysical literature on the stability of gaseous stars (e.g.,

[7,10,23,26,39,43] and references therein). We briefly mention some more recent
mathematical works. Linear instability of polytropic stars was studied in [27].
Nonlinear instability for polytropic stars was proved in [20] for 
 2 .6

5
; 4
3
/ and

in [11] for 
 D 4
3

. Nonlinear conditional stability was shown in [37] for polytropic
stars with 
 > 4

3
, and for white dwarf stars in [32]. In these works, stable stars

were constructed by solving variational problems, for example, by minimizing the
energy functional subject to the mass constraint. In a work under preparation [29],
we will show that the linear stability criteria in Theorems 1.2 and 1.1 are also true
on the nonlinear level.

In the rest of this introduction, we discuss the methods in our proof of Theorems
1.2 and 1.3. Since the nonrotating stars are spherically symmetric, radial and non-
radial perturbations are decoupled for the linearized Euler-Poisson equation. The
stability for nonradial perturbations was obtained in the astrophysical literature
in 1960s [2, 25]. The radial perturbations were usually studied by the Eddington
equation (3.67)–(3.68), which is a singular Sturm-Liouville problem.

In this paper, we study stability of nonrotating stars in a Hamiltonian framework.
The linearized Euler-Poisson system can be written as a separable Hamiltonian
form (1.12). In Section 2, we first study general linear Hamiltonian PDEs of the
separable form

(1.22) @t

�
u

v

�
D
�
0 B

�B 0 0

��
L 0

0 A

��
u

v

�
D JL

�
u

v

�
;

where u 2 X , v 2 Y , and X; Y are real Hilbert spaces. The triple .L;A;B/ is
assumed to satisfy assumptions (G1)–(G4) in Section 2, which roughly speaking
require that B W Y � � D.B/! X is a densely defined closed operator, L W X !
X� is bounded and self-dual with finitely many negative modes, and A W Y ! Y �
is bounded, self-dual, and nonnegative. Those assumptions qualify (1.22) as a
special case of the general linear Hamiltonian systems studied in [30]. However,
the special form of such systems ensures certain more specific structure in the
linear dynamics, in particular a more explicit formula for unstable dimensions, all
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TPP FOR STABILITY OF GASEOUS STARS 2517

nonzero eigenvalues being semisimple, a more detailed block decomposition, and
at most cubic bound of the degree of the algebraic growth in Ec .

Adapting the above framework to the linearized Euler-Poisson system (3.51)
for radial perturbations, we obtain that the number of unstable modes is equal to
n�.L�;r jR.B�;r //, where L�;r and B�;r are the restriction of operators L� and
B� to radial functions. The quadratic form hL�;r � ; � i is exactly the second varia-
tion of the energy functional E�.�/ defined in (3.49), and R.B�;r/ is the space of
radial perturbations preserving the total mass. The unstable index formula (1.15)
follows from these structures. In particular, the index i� (defined in (1.14)) mea-
sures if the mass constraint can reduce the negative modes of L�;r by one or not.
The stability condition L�;r jR.B�;r/ � 0 amounts to Chandrasekhar’s variational
principle [6, 8] that the stable states should be energy minimizers under the con-
straint of constant mass. Moreover, the separable Hamiltonian formulation yields
that the Sturm-Liouville operator in (3.67) can be written in a factorized form
B 0�;rL�;rB�;rA�;r , where A�;r D �� is a positive operator on Y�;r . Compared
with the traditional way of treating the singular Sturm-Liouville operator (3.67),
this factorized form is more convenient to prove self-adjointness and discreteness
of eigenvalues (Lemma 2.9) without relying on ODE techniques. We refer to Re-
mark 3.24 for more details.

To get TPP from Theorem 1.2, it is reduced to find n�.L�;r/ D n�.D0
�/, where

D0
� is a second-order ODE operator from the linearization of the steady state equa-

tion. We use a continuity argument to find n�.D0
�/. First, for small �, n�.D0

�/ is
shown to be equal to the corresponding negative index for the Lane-Emden stars
with polytropic index 
0 (defined in (1.5)). For Lane-Emden stars with 
 2 �6

5
; 2
�
,

we show that the negative index is always 1. For general equations of state, it
can be shown that n�.D0

�/ D 1 for small �. For increasing � , we determine
n�.D0

�/ by keeping track of its changes. A key observation is that D0
� has a

one-dimensional kernel only at critical points of the mass–radius ratio M.�/=R�.
Therefore, n�.D0

�/ can only change at critical points of M.�/=R�. The jump of
n�.D0

�/ at such critical points is shown to be exactly the jump of i�. This not only
gives us a way to find n�.D0

�/ for any � > 0, but also implies that the number of
unstable modes nu.�/ does not change when crossing a critical point ofM.�/=R�.
At extrema points of total mass M.�/, n�.D0

�/ remains unchanged but i� must
change from 0 to 1 (or from 1 to 0) if the bending of the mass–radius curve is coun-
terclockwise (or clockwise). This proves TPP that the number of unstable modes
can only change at extrema mass and also gives an explicit way to determine nu.�/
from the mass–radius curve. The exponential trichotomy estimates in Theorem 1.3
follow from the general Theorems 2.3 and 2.6.

The general framework of separable Hamiltonian PDEs in Section 2 is flexible
and can be used for many other problems. Hamiltonian systems in the separable
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2518 Z. LIN AND C. ZENG

form of (1.22) appear in many other problems, which include nonlinear Klein-
Gordon equations, nonlinear Schrödinger equations, and 3D Vlasov-Maxwell sys-
tems for collisionless plasmas. This framework was also used in the recent study of
stability of neutron stars modeled by the Euler-Einstein equation [16] and relativis-
tic globular clusters modeled by Vlasov-Einstein equation [17]. In particular, for
the Euler-Einstein equation, a similar TPP can be proved [16] for relativistic stars
as in Theorem 2.6. More recently the stability of rotating stars of the Euler-Poisson
system was studied [28] by the separable Hamiltonian approach.

This paper is organized as follows. Section 2 is about the abstract theory for the
separable linear Hamiltonian PDEs. Section 3 is about the stability of nonrotating
stars and is divided into several subsections. Section 3.1 is for the existence of
nonrotating stars. In Section 3.2 the Hamiltonian structures of linearized Euler-
Poisson is studied. Section 3.3 finds the negative index n�.D0

�/ for all � > 0.
In Section 3.4, we derive the equations for nonradial perturbations and prove the
Antonov-Lebowitz theorem. In Section 3.5, TPP is proved for radial perturba-
tions. In Section 3.6, more explicit stability criteria are given for several classes of
equations of state. In the appendix, we outline the Lagrangian formulation of the
Euler-Poisson system (1.1)–(1.3) and its linearization.

2 Separable Linear Hamiltonian PDE
Let X and Y be real Hilbert spaces. We make the following assumptions on

.L;A;B/ in the Hamiltonian PDE (1.22):

(G1) The operator B W Y � � D.B/ ! X and its dual operator B 0 W X� �
D.B 0/! Y are densely defined and closed (and thus B 00 D B).

(G2) The operator A W Y ! Y � is bounded and self-dual (i.e., A0 D A and thus
hAu; vi is a bounded symmetric bilinear form on Y ). Moreover, there exist
� > 0 and a closed subspace YC � Y such that

Y D kerA� YC; hAu; ui � �kuk2Y 8u 2 YC:
(G3) The operator L W X ! X� is bounded and self-dual (i.e., L0 D L) and

there exists a decomposition of X into the direct sum of three closed sub-
spaces

(2.1) X D X� � kerL�XC; n�.L/ , dimX� <1
satisfying

(G3.a) hLu; ui < 0 for all u 2 X�nf0g;
(G3.b) there exists � > 0 such that

hLu; ui � �kuk2 for any u 2 XC:
(G4) The above X� and YC satisfy

ker.iXC�X�/
0 � D.B 0/; ker.iYC/

0 � D.B/:
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TPP FOR STABILITY OF GASEOUS STARS 2519

Remark 2.1. We adopt the notations as in [46]. For a densely defined linear oper-
ator A W X ! Y between Hilbert spaces X; Y , we use A0 W Y � ! X� and A� W
Y ! X for the dual and adjoint operators of A, respectively. The operators A0 and
A� are related by

A� D IXA0I�1Y ;

where IX W X� ! X and IY W Y � ! Y are the isomorphisms defined by the
Riesz representation theorem. Given a closed subspace X1 of a Hilbert space X ,
iX1
W X1 ! X denotes the embedding and (iX1

/0 W X� ! X�
1 the dual operator

with
ker.iX1

/0 D �f 2 X� j hf; xi D 0; 8x 2 X1
	
:

Remark 2.2. The assumption (G4) for L (or for A) is satisfied automatically if
dim kerL <1 (or dim kerA <1). See Remark 2.3 in [30] for details.

In this paper, the above abstract framework will be applied to the linearized
Euler-Poisson system to be studied in detail, where A is actually positive definite.
The more general semipositive definiteness assumption on A is partially motivated
by the focusing nonlinear Schrödinger equation (NLS) with energy subcritical or
critical power nonlinearity,

(NLS) iut D �uC jujpu; u W R1Cd ! C D R2; p 2
�
1;

4

d � 2
�
;

with the Hamiltonian

H.u/ D
Z
Rd

1

2
jruj2 � 1

p C 2 juj
p dx:

There exist standing waves and steady waves in the subcritical and critical cases,
respectively,

U!.t; x/ D e�i!t�!.x/; ���! C !�! � �pC1! D 0:
For ground states, �!.x/ is always radially symmetric and positive, where ! > 0

if p < 4
d�2 and ! D 0 if p D 4

d�2 . The linearization of (NLS) in the rotation
frame u.t; x/ D e�i!tv.t; x/ at v! D �! with v viewed as a vector in R2 takes
the form of (1.22) where

B D I; L D ��C ! � .p C 1/�p! ; A D ��C ! � �p! ;
on the energy space H 1 in the subcritical case and PH 1 in the critical case. Clearly
�! > 0 spans kerA and thus A � 0. Viewing L and A as perturbations to ��C!,
a simple argument based on the compactness shows (G1-G4) are satisfied.

Equation (1.22) is of the Hamiltonian form

(2.2) @tw D JLw;

where u D .u; v/ 2 X D X � Y . Here, the operators

J D
�
0 B

�B 0 0

�
W X� � D.J/! X
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2520 Z. LIN AND C. ZENG

and

L D
�
L 0

0 A

�
W X! X�.

Under assumptions (G1-G4), we can check that:

(i) The operator J is anti-self-dual in the sense that

D.J/ D D.B 0/ �D.B/
is dense in X� and J0 D �J.

(ii) The operator L is bounded and self-dual (i.e., L0 D L) such that hLu; vi is
a bounded symmetric bilinear form on X. For any u D .u; v/ 2 X, note that

hLu;ui D hLu; ui C hAv; vi; ker L D kerL � kerA:

Let

(2.3) X� D X� � f0g; XC D XC � YC;
where X� and YC are as in (G2) and (G3). Then we have the decomposition

X D X� � ker L� XC; dim X� D n�.L/ D n�.L/;
satisfying: hLu;ui < 0 for all u 2 X�nf0g and there exists �0 > 0 such that

hLu;ui � �0kuk2 D �0
�kuk2X C kvk2Y � for any u 2 XC:

(iii) Assumption (G4) implies

ker.iXC�X�/
0 D ff 2 X� j hf;ui D 0; 8u 2 X��XCg
D ker.iXC�X�/

0 � ker.iYC/
0 � D.J/:

Therefore, .X; J;L/ satisfies the assumptions (H1–H3) in [30], and we can ap-
ply the general theory for linear Hamiltonian PDE [30] to study the solutions of
(1.22). In particular, the semigroup etJL is well-defined. Corollary 12.1 in [30]
also implies

(2.4) LJ D .JL/0; BA; .BA/0 D AB 0; B 0L; .B 0L/0 D LB densely defined, closed:

Moreover, by using the separable nature of (1.22), we obtain more precise estimates
on the instability index and the growth in the center space. Our main theorem
for (1.22) is the following, whose proof would be self-contained except for a few
technical lemmas in [30] that are cited. We adopt the same notations as in [30]. In
particular, for a closed subspace X1 � X , we denote

(2.5) LX1
D i 0X1

LiX1
W X1 ! X�

1 H) hLX1
u1; u2i D hLu1; u2i 8u1; u2 2 X1:

THEOREM 2.3. Assume (G1–G4) for (1.22). The operator JL generates a C 0

group etJL of bounded linear operators on X, and there exists a decomposition

X D Eu �Ec �Es

of closed subspaces Eu;s;c with the following properties:

(i) Ec ; Eu; Es are invariant under etJL.
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TPP FOR STABILITY OF GASEOUS STARS 2521

(ii) Eu.Es/ only consists of eigenvectors corresponding to negative (positive)
eigenvalues of JL and

(2.6) dimEu D dimEs D n��Lj
R.BA/

�
;

where n�.Lj
R.BA/

/ denotes the number of negative modes of Lj
R.BA/

as defined
in (2.1). If n�.Lj

R.BA/
/ > 0, then there exists M > 0 such that

jetJLjEs j �Me��ut ; t � 0I ��etJLjEu

�� �Me�ut ; t � 0;(2.7)

where �u D minf� j � 2 �.JLjEu/g > 0.

(iii) The quadratic form hL � ; � i vanishes on Eu;s , i.e., hLu;ui D 0 for all
u 2 Eu;s but is nondegenerate on Eu �Es , and

(2.8) Ec D fu 2 X j hLu; vi D 0; 8v 2 Es �Eug:
(iv) There exist closed subspaces Xj , j D 0; : : : ; 5; such that

Ec D kerL� kerA� .�5jD1Xj /; dim X1 D dim X5 � n�.L/ � dimEu;

X1;X4;X5 � X � f0g; X2 � f0g � Y:
In this decomposition, JLjEc and the quadratic form LEc take the block form

LEc  !

0BBBBBBBB@

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 L15

0 0 0 L2 0 0 0

0 0 0 0 L3 0 0

0 0 0 0 0 L4 0

0 0 L51 0 0 0 0

1CCCCCCCCA
;

JLjEc  !

0BBBBBBBB@

0 0 0 TX2 TX3 0 0

0 0 TY1 0 TY 3 TY 4 TY 5
0 0 0 T12 T13 0 0

0 0 0 0 0 0 T25
0 0 0 0 T3 0 T35
0 0 0 0 0 0 0

0 0 0 0 0 0 0

1CCCCCCCCA
:

All the nontrivial blocks of LEc are nondegenerate and

L2 � �; L3 � �;
for some � > 0. All the blocks of JL are bounded except T3, which is anti-self-
adjoint with respect to the equivalent inner product hL3 � ; � i satisfying kerT3 D
f0g. Consequently, there exists M > 0 such that

(2.9)
��etJLjEc

�� �M.1C jt j/3; t 2 R:
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2522 Z. LIN AND C. ZENG

(v) Denote Z to be the space D.BA/ with the graph norm

kykZ D kykY C kBAykX :

If the embedding Z ,! Y is compact, then the spectra of T3 are nonzero, isolated
with finite multiplicity, and have no accumulating point except forC1. Moreover,
the eigenfunctions of T3 form an orthonormal basis of X3 with respect to hL3 � ; � i.
Consequently, the spectra �.JL/nf0g are isolated with finite multiplicity, and have
no accumulating point except forC1.

Remark 2.4. Here the nondegeneracy of a bounded symmetric quadratic form
B.u; v/ W Z
Z ! R on a real Banach spaceZ is defined as the induced bounded
linear operator v �! f D B. � ; v/ 2 Z� is an isomorphism from X to X�.

The above theorem implies that the solutions of (1.22) are spectrally stable (i.e.,
nonexistence of exponentially growing solution) if and only ifLj

R.BA/
� 0. More-

over, n�.Lj
R.BA/

/ gives the dimension of the subspaces of exponentially growing
solutions. The exponential trichotomy estimates (2.7)–(2.9) are important in the
study of nonlinear dynamics near an unstable steady state for which the linearized
equation (1.22) is derived. If the spaces Eu;s have higher regularity, then the ex-
ponential trichotomy can be lifted to more regular spaces. We refer to theorem 2.2
in [30] for more precise statements.

Compared to [30], the separable Hamiltonian form of (1.22) yields a simpler
block form. In particular, the anti-self-adjointness of T3 ensures the semisimplic-
ity of any eigenvalue � 2 iRnf0g and the nondegeneracy of L restricted to its
subspace of generalized eigenvectors. This is not true for general linear Hamilton-
ian systems; see examples in [30]. The separable Hamiltonian form also implies
the order O.jt j3/ of the growth in the center direction, which is better than the
general cases in [30]. These properties hold essentially due to the second-order
equation (2.17) satisfied by v.

Remark 2.5. As the only nontrivial block T3 in the block decomposition of JL is
anti-self-adjoint with respect to an equivalent norm, it is clear that all the possible
algebraic growth of etJL must be associated to the possible zero eigenvalue. The
second-order equation (2.17) allows at most O.jt j/ growth as in the case of wave
equations. So it is natural to guess that the solutions of the first-order system (1.22)
may also grow no faster than O.jt j/. However, the possible degeneracy of B and
A indeed creates more growth and the above O.jt j3/ growth is optimal. Consider
the following example:

X D R2; Y D R3; A D
0@0 0 0

0 1 0

0 0 1

1A; L D
�
2 �1
�1 0

�
; B D

�
1 1 0

0 1 0

�
:
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TPP FOR STABILITY OF GASEOUS STARS 2523

One may compute

JL D

0BBBB@
0 0 0 1 0

0 0 0 1 0

�2 1 0 0 0

�1 1 0 0 0

0 0 0 0 0

1CCCCA; .JL/2 D

0BBBB@
�1 1 0 0 0

�1 1 0 0 0

0 0 0 �1 0

0 0 0 0 0

0 0 0 0 0

1CCCCA;

.JL/3 D

0BBBB@
0 0 0 0 0

0 0 0 0 0

1 �1 0 0 0

0 0 0 0 0

0 0 0 0 0

1CCCCA; .JL/4 D 0:

Therefore etJL exhibits O.jt j3/ growth.

In the following theorem, we given some conditions on .L;A;B/ that yield a
better growth estimate of etJL on the center subspace Ec .

THEOREM 2.6. Assume (G1-G4) for (1.22). The following hold under additional
assumptions:

(i) If A is injective on R.B 0LBA/, then jetJLjEc j � M.1 C t2/ for some
M > 0.

(ii) If R.BA/ D X , then jetJLjEc j �M.1C jt j/ for some M > 0.

(iii) Suppose hL � ; � i and hA � ; � i are nondegenerate on R.B/ and R.B 0/, re-
spectively. Then jetJLjEc j � M for some M > 0. Namely, there is Lyapunov
stability on the center space Ec .

Remark 2.7. Motivated by the second-order equation (2.17), when Lj
R.BA/

has a
negative mode, it is tempting to find the most unstable eigenvalue �0 > 0 of (1.22)
satisfying B 0LBAv D ��20v by solving the variational problem

(2.10) ��20 D min
hAv;viD1;v2D.A/

hB 0LBAv;Avi:
However, in many applications, particularly to kinetic models such as Vlasov-
Maxwell and Vlasov-Einstein systems, it is difficult to solve the variational prob-
lem (2.10) directly due to the lack of compactness. In Theorem 2.3, the existence
of unstable eigenvalues follows from the self-adjointness of the operator B 0LBA
and the assumption n�.L/ <1.

The proof of Theorem 2.3 will be split into several lemmas and propositions. We
start with a general functional analysis result that might be of independent interest.

PROPOSITION 2.8. Let X; Y be Hilbert spaces, L W X ! X a bounded self-
adjoint operator, and AWY � D.A/ ! X a densely defined and closed operator.
In addition, assume that:

(1) The adjoint operator A� W X � D.A�/! Y is also densely defined.
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2524 Z. LIN AND C. ZENG

(2) 9 � > 0 and a closed subspace XC � X such that .Lx; x/ � �kxk2
8x 2 XC and X?

C � D.A�/.
Then: (i) the operator A�LA is self-adjoint on Y with domain

D.A�LA/ � D.A/:
(ii) Denote Z to be the space D.A/ equipped with the graph norm

kykZ D kykY C kAykX :
If the embeddingZ ,! Y is compact, then the spectra of A�LA are purely
discrete, and have no accumulating point except for C1. Moreover, the
eigenfunctions of A�LA form a basis of Y .

PROOF. Let

X1 D fx 2 X j hLx; x0i D 0; 8x0 2 XCg:
The uniform positivity of L on XC and lemma 12.2 in [30] imply

X D XC �X1; P �
1 LPC D P �

CLP1 D 0;
where PC;1 are the associated projections. Therefore,

L D P �
CLPC C P �

1 LP1 , LC � L1
with symmetric bounded LC;1 and LC � 0. Since R.P �

1 / D X?
C � D.A�/,

the closed graph theorem implies that A�P �
1 is bounded. Therefore, P1A has a

continuous extension .A�P �
1 /

� D .P1A/
��; i.e., P1A is bounded. Thus PCA is

closed and densely defined. Let SC W X ! X be a bounded symmetric linear
operator such that

S�CSC D S2C D LC; SC � 0:
Moreover, for any x 2 XC,

kSCxk2X D .LCx; x/ D .Lx; x/ � �kxk2X ;
which implies that

(2.11) kSCxkX �
p
�kxkX 8x 2 XC:

This lower bound of SC implies that TC , SCPCA is also closed with the dense
domain D.TC/ D D.A/ and thus T �CTC is self-adjoint. We note that

A�LA D A�P �
CLCPCA � A�P �

1 L1P1A(2.12)

D .A�P �
CSC/.SCPCA/ � A�P �

1 L1P1A , T �CTC � B1:
Here, B1 is bounded and symmetric. Therefore, by the Kato-Rellich theorem
A�LA is self-adjoint with

D
�
A�LA

� � D.TC/ D D.A/:
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TPP FOR STABILITY OF GASEOUS STARS 2525

By theorem 4.2.9 in [13], to prove conclusions in (ii), it suffices to show that the
embedding Z1 ,! Y is compact. Here, the space Z1 is D.TC/ D D.A/ with the
graph norm

kykZ1
D kykY C kTCykX :

We show that k�kZ1
and k�kZ are equivalent. Indeed, since A and TC are closed

with the same domain, A W Z1 ! X and TC W Z ! X are also apparently
closed and thus bounded, which immediately implies the equivalence of k�kZ1

and
k�kZ . □

In the above proposition, we can allow n�.L/ D 1, but the condition X?
C �

D.A�/ need to be verified. The next lemma shows that this condition is implied by
our assumptions (G1–G4).

LEMMA 2.9. Suppose the operators L;B; B 0; A satisfy assumptions (G1–G4).
Then:

(1) zL D AB 0LBA W Y � D.zL/ ! Y � and zA D LBAB 0L W X � D. zA/ !
X� are self-dual, namely zL0 D zL and zA0 D zA.

(2) In addition to (G1–G4), assume kerA D f0g; then zL D B 0LBA is self-
adjoint on .Y; � � ; � �/ with the equivalent inner product � � ; � � D hA � ; � i.

(3) Denote Z to be the space D.BA/ with the graph norm

kykZ D kykY C kBAykX :
If the embedding Z ,! Y is compact and kerA D f0g, then the spectra
of zL are purely discrete with finite multiplicity, and have no accumulating
point except forC1. Moreover, the eigenfunctions of zL form a basis of Y .

PROOF. Recall that IX W X� ! X; IY W Y � ! Y are isomorphisms defined
by the Riesz representation theorem. Define the operators

A DBA W Y � D.A/! X; L1 D IXL W X ! X:

The adjoint operators are

L�1 D L1; A
� D IYAB 0I�1X :

According to (2.4), A� is densely defined and closed.
Since .XC �X�/? � X?

C is a closed subspace of codimension that is equal to
dimX� <1, we have

dimW D dimX� <1:
where

W D X?
C \ .XC �X�/; X?

C D W � .XC �X�/?:
Assumption (G4) implies that D.A�/ \ .XC � X�/ is dense in XC � X�. Ap-
proximate W by �W � D.A�/\ .XC�X�/ such that dimW D dim �W , which is
possible since dimW <1. Let

zXC D fx 2 XC �X� j .x; y/ D 0; 8y 2 �W g:
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2526 Z. LIN AND C. ZENG

The quadratic form hL � ; � i is uniformly positive definite on the approximation zXC
of XC and

zX?
C D .XC �X�/? � �W � D.A�/:

Therefore, all conditions in Proposition 2.8 are satisfied by zXC, L1, and A and
thus A�L1A D IYAB

0LBA are self-adjoint. This implies that zL D AB 0LBA
satisfies zL0 D zL. It follows from the same argument that zA0 D zA.

Statement (ii) and (iii) are direct corollaries of (i) and Proposition 2.8. □

We shall start the proof of Theorem 2.3 with several steps of decomposition of
X and Y .

LEMMA 2.10. Assume (G1–G4). Suppose X1;2 are closed subspaces of X and
Y1;2 are closed subspaces of Y such that X D X1 � X2, Y D Y1 � Y2. Let
P1;2 W X ! X12 and Q1;2 W Y ! Y1;2 be the associated projections and, for
j; k D 1; 2,

Lj D .iXj /0LiXj ; Aj D .iYj /0AiYj ; Bjk D PjBQ0jk
k
D QjB

0P 0
k;

X1 D X1 � Y1; L1 D
�
L1 0

0 A1

�
; J1 D

�
0 B11
�B11 0

�
;

X2 D X2 � Y2; L2 D
�
L2 0

0 A2

�
; J2 D

�
0 B22
�B22 0

�
In addition, we assume

hLx1; x2i D 0 8x1 2 X1; x2 2 X2I hAy1; y2i D 0 8y1 2 Y1; y2 2 Y2I
P 0
1.X

�
1 / � D.B 0/; Q0

1.Y
�
1 / � D.B/:

Then we have
(1) In this decomposition, JL takes the form

JL !
�

J1L1 T12

T21 J2L2

�
;

where

T12 D
�

0 B12A2
�B12L2 0

�
; T21 D

�
0 B21A1

�B21L1 0

�
:

(2) We have that B22 and B22 are densely defined closed operators and Bjk
and Bjk , .j; k/ ¤ .2; 2/, and thus T12, T21, and J1L1 are all bounded.
Here, we abuse the notations slightly in using Bjk and Bjk for .j; k/ ¤
.2; 2/, to also denote their continuous extensions.

(3) Bjk D B 0
kj

for all j; k D 1; 2.
(4) .L1; A1; B11/ and .L2; A2; B22/ satisfy (G1–G4) and

n�.L/ D n�.L1/Cn�.L2/; kerL D kerL1�kerL2; kerA D kerA1�kerA2:
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TPP FOR STABILITY OF GASEOUS STARS 2527

PROOF. The assumptions P 0
1.X

�
1 / � D.B 0/ and Q0

1.Y
�
1 / � D.B/ imply that

B 0P 0
1 and BQ0

1 are closed operators defined on Hilbert spaces X�
1 and Y �1 . The

Closed Graph Theorem yields that B 0P 0
1 and BQ0

1 are bounded operators. There-
fore, P1B and Q1B

0 are also both bounded as they have continuous extensions
.P1B/

00 D .B 0P 0
1/
0 and .Q1B

0/00 D .BQ0
1/
0. Consequently the second statement,

as well as the closedness of P2B and B 0P 0
2 with dense domains, follows.

For .j; k/ ¤ .2; 2/, it is easy to verify Bjk D B 0
jk

as they are compositions of
bounded operators. To show B22 D B22, we notice that the closedness and the
density of the domains of P2B and B 0P 0

2 D .P2B/0 imply

P2B D .P2B/00 D .B 0P 0
2/
0;

.B22/0 D .Q2B
0P 0
2/
0 D .B 0P 0

2/
0Q0

2 D P2BQ0
2 D B22:

The closedness of B22 and B22 again yields B22 D .B22/00 D B 022. It completes
the proof of the third statement.

The L-orthogonality of the splitting X1 � X2 and the A-orthogonality of Y D
Y1� Y2 yield block diagonal forms of L and A in these splittings. The block form
of JL follows from straightforward calculations.

It has been proved in the above that B11 and B22 satisfy (G1), while (G2) for
A1 and A2 and (G3) for L1 and L2 are proved in lemma 12.3 in [30]. Apparently
(G4) is satisfied by .L1; A1; B11/ as B11 is a bounded operator. Finally, (G4) for
.L2; A2; B22/ also follows directly from the proof of lemma 12.3 in [30]. □

Remark 2.11. Even though the framework in [30] is slightly different, those prop-
erties of J and L used in the proof of Lemma 12.3 therein are all satisfied by L2,
A2, and B22 here. Therefore, the same proof works to show that (G4) is satisfied
by .L2; A2; B22/.

The following three lemmas focus on decomposing a subspace of the center
subspace.

LEMMA 2.12. Assume (G1–G3) and that L is nondegenerate (in the sense of Re-
mark 2.4). Let zX � X be a closed subspace such that ker.i zX /

0 � D.B 0/; then
there exist closed subspaces Xj , j D 1; 2; 3; 4, such that

zX D X1 �X2; zX?L , fx 2 X j hLx; zxi D 0 8zx 2 zXg D X1 �X3;
X D �4jD1Xj ; n1 , dimX1 D dimX4 � n�.L/:

Moreover, let Pj , j D 1; 2; 3; 4, be the associated projections and it holds that

P 0
1.X

�
1 /� P 0

3.X
�
3 /� P 0

4.X
�
4 / D ker.iX2

/0 � D.B 0/:
In this decomposition, the quadratic form L takes the block form

L !

0BB@
0 0 0 L14
0 L2 0 0

0 0 L3 0

L41 0 0 0

1CCA; Ljk D .i 0Xj /LiXk
W Xk ! X�

j ; Lj D Ljj ;
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2528 Z. LIN AND C. ZENG

with L14 D L041, L2, and L3 all nondegenerate.

As stated in Remark 2.2, assumption (G4) holds for nondegenerate L.

PROOF. Let
X1 D zX \ zX?L D � zX C zX?L�?L ;

where the nondegeneracy of L was used in the second equality. Since hLx; xi D 0
for all x 2 X1 � X ,

n1 D dimX1 D codim
� zX C zX?L� � n�.L/

is a direct consequence of the nondegeneracy assumption of L and theorem 5.1
in [30]. According to the density ofD.B 0/, there exist fj 2 D.B 0/, j D 1; : : : ; n1,
such that .iX1

/0fj 2 X�
1 , j D 1; : : : ; n1, form a basis of X�

1 . Let xj 2 X1,
j D 1; : : : ; n1, be the basis of X1 dual to f.iX1

/0fj gn1jD1, namely, hfj ; xki D �jk .
Let

X4 D span

(
L�1fj � 1

2

n1X
kD1
hfj ; L�1fkixk; j D 1; : : : ; n1

)
:

It is easy to verify that

dimX4 D n1; hLx; zxi D 0; 8x; zx 2 X4;
and L14 D L041 is nondegenerate. Let

X2 D
�
x 2 zX j hfj ; xi D 0; j D 1; : : : ; n1

	
;

and
X3 D

�
x 2 zX?L j hfj ; xi D 0; j D 1; : : : ; n1

	
:

The direct sum relations and the block form of L stated in the lemma follow
straightforwardly. The nondegeneracy ofL and the definitions ofX2 andX3 imply
that LX2

and LX3
(as defined in (2.5)) are injective. Therefore, lemma 12.2 in [30]

yields the nondegeneracy of L2 D LX2
and L3 D LX3

. Finally, observing

(2.13) L.X1/ D P 0
4.X

�
4 / � P 0

3.X
�
3 /� P 0

4.X
�
4 / D ker.i zX /

0 � D.B 0/
and

P 0
1.X

�
1 /� P 0

4.X
�
4 / D ker.iX2�X3

/0 D spanff1; : : : ; fn1g C L.X1/ � D.B 0/;
the proof of the lemma is complete. □

LEMMA 2.13. In addition to (G1–G4), assume kerA D f0g and n�.Lj
R.B/

/ D 0,

the latter of which implies Lj
R.B/

� 0 and A � � > 0. Let Y1 D ker zL and

Y2 D Y ?A1 D fy 2 Y j hAy; zyi D 0; 8zy 2 Y1g;
where zL D B 0LBA is defined as in Lemma 2.9. Then it holds that

Y1 D ker.L
R.B/

BA/; Y2 D R.zL/ D R.B 0LR.B//; Y D Y1 � Y2:
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TPP FOR STABILITY OF GASEOUS STARS 2529

In this decomposition, the quadratic form A takes the block form

A !
�
A1 0

0 A2

�
; Aj D .iYj /0AiYj W Yj ! Y �j :

Here L
R.B/

W R.B/! �
R.B/

�� is defined as in (2.5). In the following, we also

view B as a closed operator from Y � to R.B/.

PROOF. Observing that Y2 is defined as the orthogonal complement of Y1 in
YA and zL is self-adjoint on YA, it follows immediately that Y2 D R.zL/ and Y D
Y1 � Y2. We shall show the remaining alternative representations of Y1 and Y2 in
the rest of the proof.

On the one hand, since

(2.14) B D i
R.B/

B and B 0 D B 0.i
R.B/

/0 H) zL D B 0L
R.B/

BA;

clearly ker.L
R.B/

BA/ � Y1 according to their definitions. On the other hand, each
y 2 Y1 satisfies

hL
R.B/

BAy;BAyi D �zLy; y� D 0:
Due to the assumption Lj

R.B/
� 0, a standard variational argument implies that

L
R.B/

BAy D 0 and thus y 2 ker.L
R.B/

BA/. We obtain Y1 D ker.L
R.B/

BA/.
For any x 2 D.B 0L

R.B/
/ and y 2 Y1 D ker.L

R.B/
BA/, we have

�B 0L
R.B/

x; y� D hAy;B 0L
R.B/

xi D hL
R.B/

BAy; xi D 0;
which along with the closedness of Y2, implies R.B 0L

R.B/
/ � Y2. Obviously,

R.zL/ � R.B 0L
R.B/

/ and thus Y2 � R.B 0L
R.B/

/. Therefore, the equal sign
holds and this completes the proof of the lemma. □

Applying the above lemmas (Lemma 2.12 to zX D R.B/), we obtain the follow-
ing decomposition.

PROPOSITION 2.14. In addition to (G1–G4), assume (a) L is nondegenerate,
(b) n�.L

R.B/
/ D 0, and (c) A � � > 0. Let

(2.15)

(
X1 D X1 � f0g; X2 D f0g � Y1; X3 D X2 � Y2;
X4 D X3 � f0g; X5 D X4 � f0g

as defined in Lemmas 2.12 and 2.13. Then in the decomposition X D L5
jD1 Xj ,

JL and the quadratic form L take the form

L !

0BBBB@
0 0 0 0 L15

0 L2 0 0 0

0 0 L3 0 0

0 0 0 L4 0

L51 0 0 0 0

1CCCCA; JL !

0BBBB@
0 T12 T13 0 0

0 0 0 0 T25
0 0 T3 0 T35
0 0 0 0 0

0 0 0 0 0

1CCCCA:
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2530 Z. LIN AND C. ZENG

All the nontrivial blocks of L are nondegenerate:

L15 D L14; L51 D L41; L2 D A1 � �; L3 D
�
L2 0

0 A2

�
� �; L4 D L3;

for some � > 0. All the blocks of JL,

T12 D P1BQ0
1A1; T13

�
x

y

�
D P1BQ0

2A2y; T25 D �Q1B
0P 0
1L14;

T35 D
�

0

�Q2B
0P 0
1L14

�
; T3 D

�
0 P2BQ

0
2A2

�Q2B
0P 0
2L2 0

�
; kerT3 D f0g;

are bounded except for T3, which is anti-self-adjoint with respect to the equivalent
inner product hL3 � ; � i. Here P1;2;3;4 and Q1;2 are the projections associated to
the decomposition of X and Y given in Lemmas 2.12 and 2.13. Finally, denote Z
to be the space D.BA/ with the graph norm

kykZ D kykY C kBAykX :
If the embedding Z ,! Y is compact, then the spectra of T3 are nonzero, isolated
with finite multiplicity, and have no accumulating point except forC1. Moreover,
the eigenfunctions of T3 form an orthonormal basis of X3 with respect to hL3 � ; � i.
Remark 2.15. One should notice that P1 in T12 and Q2 in the lower left entry of
T3 are put there only to specify the target spaces, but do not change any values.

PROOF. Since Lemma 2.12 and 2.13 imply

(2.16) P 0
3.X

�
3 /� P 0

4.X
�
4 / D kerB 0 and X�

2 D R.LR.B// H) B 0P 0
2.X

�
2 / � Y2;

in such decompositions of X and Y , the operator

B 0 W
4M

jD1
P 0
j .X

�
j / D X� � D.B 0/! Y D Y1 � Y2

takes the form

B 0  !
�
Q1B

0P 0
1 0 0 0

Q2B
0P 0
1 Q2B

0P 0
2 0 0

�
:

The block forms of L and JL follow from those of L, A, B 0, and B through a
direct calculation. From Lemma 2.12, L2 is nondegenerate, which along with
R.B/ D X1 � X2, X1 D kerL

R.B/
, and the additional assumption L

R.B/
� 0,

we obtain the uniform positivity of L2, and thus that of L3.
The proof of the boundedness of Tjk and the anti-self-adjointness of T3 is

much like that in the proof of Lemma 2.10. In fact, according to Lemma 2.12,
B 0P 0

j W X�
j ! Y , j ¤ 2, is a closed operator on the domain X�

j , and the closed
graph theorem implies that it is also bounded. Since B 0P 0

j D .PjB/
0, j ¤ 2,

PjB also has a continuous extension given by .B 0P 0
j /
0; therefore PjB , j ¤ 2, is

also bounded. The boundedness of Tjk , and the closedness and the density of the
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TPP FOR STABILITY OF GASEOUS STARS 2531

domains of P2B and B 0P 0
2 follow immediately. Moreover, Q2B

0P 0
2 W X�

2 ! Y2
is also closed since B 0P 0

2.X
�
2 / � Y2 and thus Q2B

0P 0
2 D B 0P 0

2. Consequently,

P2B D .P2B/00 D .B 0P 0
2/
0; .Q2B

0P 0
2/
0 D .B 0P 0

2/
0Q0

2 D P2BQ0
2;

and
Q2B

0P 0
2 D .Q2B

0P 0
2/
00 D �.B 0P 0

2/
0Q0

2

�0 D .P2BQ0
2/
0:

Since A2 and L2 are isomorphisms satisfying A02 D A2 and L02 D L2, we obtain

.L2P2BQ
0
2A2/

0 D A2Q2B
0P 0
2L2 and .A2Q2B

0P 0
2L2/

0 D L2P2BQ0
2A2:

Thus, T3 is anti-self-adjoint with respect to the equivalent inner product hL3 � ; � i.
Finally, (2.16) imply that ker.Q2B

0P 0
2/ D ker.B 0P 0

2/ D f0g and thus Q2B
0P 0
2L2

is injective due to the nondegeneracy of L2. Moreover, R.L
R.B/

/ D P 0
2.X

�
2 /

and Y2 D R.B 0LR.B// also yield that R.Q2B
0P 0
2/ D R.B 0P 0

2/ � Y2 is dense.
Therefore, the dual operator P2BQ0

2 is injective and the injectivity of T3 follows.
Finally, let us make the additional assumption of the compact embedding of Z

into Y . Let Z2 D D.P2BQ0
2A2/ � Y2. Since

.BA � P2BQ0
2A2/jZ2

D P1BAjZ2
2 L.Y2; X/

is bounded due to the boundedness of P1B , we have that Z2 is also compactly
embedded in Y2. As A2 is uniformly positive definite, Lemma 2.10 and Lemma
2.9 imply that Q2B

0P 0
2L2P2BQ

0
2A2 is self-adjoint on .Y2; hA2; � ; � i/ with an or-

thonormal basis of eigenvectors fyng1nD1 associated to a sequence of eigenvalues
0 < �1 � �2 � � � � of finite multiplicity accumulating only at C1. Here the
eigenvalues are positive due to L2 � � > 0 and kerT3 D f0g. Let

u�n D
�hL2P2BQ0

2A2yn; P2BQ
0
2A2yni C �nhAyn; yni

�� 1
2

� .�P2BQ0
2A2yn; �nyn/:

It is easy to see that fu�n g form an orthonormal basis of X2 by using kerT3 D f0g
and T3u�n D ��nu�n . This completes the proof of the lemma. □

With these preparations, we are ready to prove Theorem 2.3.

PROOF OF THEOREM 2.3. We will prove the theorem largely based on Lemma
2.9 and the observation that solutions to (1.22) satisfy a second-order equation

(2.17) @t tv C B 0LBAv D 0:
� Step 1. Preliminary removal of kerL and kerA. Let

zX1 D kerL; zX2 D XC �X�; zY1 D kerA; zY2 D YC
zLj D .i zXj /

0Li zXj ;
zAj D .i zYj /

0Ai zYj ;
zBjk D zPjB zQ0

k;
zBjk D zQjB

0 zP 0
k;
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2532 Z. LIN AND C. ZENG

where j; k D 1; 2 and zP1;2 are projections associated to X D zX1 � zX2 and zQ1;2

to Y D zY1� zY2. Assumptions (G1–G4) imply that hypotheses of Lemma 2.10 are
satisfied. Therefore, in the splitting

X D . zX1 � zY1/� . zX2 � zY2/
the operator JL takes the form

(2.18) JL$
�
0 zT12

0 zJ2zL2

�
;

where

zJ2 $
�

0 zB22
� zB22 0

�
; zL2 $

�zL2 0

0 zA2

�
; zT12 $

�
0 zB12 zA2

� zB12 zL2 0

�
and .zL2; zJ2; zB22/ satisfy (G1–G4). Moreover, the same lemma also implies that
zT12 is bounded and both zL2 and zA2 are nondegenerate.

� Step 2. Hyperbolic subspaces. As zA2 � � for some � > 0, according to
Lemma 2.9, zL D zB 022 zL2 zB22 zA2 is self-adjoint on zY2 with respect to the inner
product � � ; � � D h zA2 � ; � i. Since for any v1; v2 2 D.zL/ � zY2,�zLv1; v2� D 
 zA2 zB 022 zL2 zB22 zA2v1; v2� D 
zL2 zB22 zA2v1; zB22 zA2v2�;
and

BA D
� zB11 zB12
zB21 zB22

��
0 0

0 zA2

�
D
�
0 zB12 zA2
0 zB22 zA2

�
H) R. zB22 zA2/ D zP2.R.BA//;

along with the definition of zX1, we obtain the dimension of the eigenspace of
negative eigenvalues of the operator zL given by

n1 , n�.zL/ D n��zL2j
R. zB22

zA2/

� D n��Lj
R.BA/

� � n�.L/:
Let zvj be the eigenvectors of zL associate with eigenvalues��2j < 0, j D 1; : : : ; n1,
which might be repeated, such that

�zvj ; zvj 0 � D �jj 0 ; �zLzvj ; zvj 0 � D ��2j �jj 0 :
Let

zuj D ��1j zB22 zA2zvj ; zu�j D .zuj ;�zvj / H) zJ2zL2zu�j D ��j zu�j ;
h zL2zuj ; zuki D ��jk :

To return to JL, let

u�j D .uj ;�vj / , zu�j � ��1j zT12zu�j
D �zuj C ��1j zB12 zA2zvj ;��vj � ��1j zB12 zL2zuj

��
;

which are the eigenvectors of JL with eigenvalue��j satisfying

JLu�j D ��ju�j ; hLuj ; uki D ��jk; hAvj ; vki D �jk :
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TPP FOR STABILITY OF GASEOUS STARS 2533

Define the hyperbolic subspaces as

Eu D spanfuCj j j D 1; : : : ; n1g; Es D spanfu�j j j D 1; : : : ; n1g;
and statement (ii) follows.

� Step 3. Reduction to the center subspace. Let

Xh D spanfuj j j D 1; : : : ; n1g � R.B/; Xc D fu 2 X j hLu; zui; zu 2 Xhg;
Yh D spanfvj j j D 1; : : : ; n1g � R.B 0/; Yc D fv 2 Y j hAv; zvi; zv 2 Yhg;

and
Ec D Xc � Yc H) X D .Xh � Yh/�Ec D Es �Eu �Ec :

Due to the invariance of Es;u under etJL and that of Ec , the rest of statements (i)
and (iii) follow from standard arguments (see, e.g., [30], for more details). Appar-
ently kerL � Xc and kerA � Yc .

The above calculations show that LXh
and AYh are nondegenerate and thus

lemma 12.2 in [30] yields

X D Xh �Xc ; Y D Yh � Yc ;
with associated projections Ph;c and Qh;c . By their definitions we have

P 0
h.X

�
h / D ker.iXc

/0 D L.Xh/ � D.B 0/;
Q0
h.Y

�
h / D ker.iYc /

0 D A.Yh/ � D.B/:
Therefore, these decompositions satisfy the assumptions of Lemma 2.10 and thus
(1.22) restricted on the invariant Ec also has the separable Hamiltonian form with

.LXc
; AYc ; Bc D PcBQ0

c/

satisfying (G1–G4). The invariance of Ec and Xh � Yh and the block form in
Lemma 2.10 imply

R.BcAYc / D BA.Yc/ � Xc :
Due to the L-orthogonality between Xc and Xh, we also have the L-orthogonality
betweenXh andR.BcAc/ both of which are contained inR.BA/. AsL is negative
definite on Xh, we obtain

n�.Lj
R.BA/

/ � n�.L
R.BcAc/

/C dimXh D n�.LR.BcAc//C n
�.Lj

R.BA/
/;

which implies

(2.19) n�.LXc
j
R.BcAYc /

/ D 0:
Remark 2.16. Due to the invariance of Eu;s;c under etJL and the nondegeneracy
of JL and A on the finite-dimensional Eu;s and Yh, respectively, it follows that

(a) AY c is injective on R.B 0cLXc
BcAYc / D B 0LBA.Xc/ if A is injective on

R.B 0LBA/;
(b) R.BcAYc / D Xc if R.BA/ D X .
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2534 Z. LIN AND C. ZENG

� Step 4. Reduction (again) of kerLXc
and AYc in Ec . We shall basically redo

Step 1 in Ec D Xc � Yc . It would be a much cleaner exposition if we could find
a way to combine these two steps together. However, we were not able to manage
that as the positivity of A is required in Lemma 2.9 to identify the hyperbolic
directions, and meanwhile there is not a clear simple way to separate the kernels in
a decomposition invariant under etJL.

Let
X0L D kerLXc

� f0g D kerL � f0g;
X0A D f0g � kerAYc D f0g � kerA:

(2.20)

According to Lemma 2.10, Xc and Yc satisfies (G1–G4), so there exist closed
subspaces of zX � Xc and zY � Yc such that

Xc D zX � kerL; ker.i zX /
0 � D.B 0c/; Yc D kerA� zY ; ker.i zY /

0 � D.Bc/:
Let

zX D zX � zY :
Applying Lemma 2.10 again to the decomposition Ec D .X0L � X0A/� zX, we
obtain the block forms of (1.22) restricted on the invariant Ec and its energy LEc ,

LEc  !
�
0 0

0 zL
�
; JLjEc  !

�
0 T0�
0 zJzL

�
;

where T0� is bounded and zJzL has the separable Hamiltonian form with�
L zX ; A zY ; zB D zPBc zQ0�; L zX and A zY nondegenerate:

Here zP W Xc ! zX and zQ W Yc ! zY are the associated projections. Finally,
Lemma 2.10 implies zBA zY D zPBcAYc j zY , which along with the definition of
X0L;0A, the fact that A zY W zY ! zY � is isomorphic and (2.19) yield

n�.L zX jR. zB// D n
�.L zX jR. zBA zY

/
/ D n�.L zX j zPR.BcAYc //
D n�.L zX jR.BcAYc // D 0:

Therefore, .L zX ; A zY ; zB/ satisfy all the assumptions in Proposition 2.14.

Remark 2.17. Due to the upper triangular block form of JLjXc
and the remark at

the end of the last step, we have:
(a) X0A D f0g if A is injective on R.B 0LBA/;
(b) R. zBA zY / D R. zPBcAYc / D zX if R.BA/ D X .

� Step 5. Proof of statement (iv). The block form decomposition of L and JL
on Ec follows from the above splitting and Proposition 2.14. As in Lemma 2.12,
here X1 D X1 � f0g and X1 D L

R. zB/. Those zero blocks in the bounded operator

T0� W zX! kerL � kerA
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TPP FOR STABILITY OF GASEOUS STARS 2535

are due to the facts that JL maps X � f0g to f0g � Y and vice versa. The well-
posedness of etJL and its O.1 C jt j3/ growth estimate follow from direct com-
putation based on the block form of JL where the only unbounded operator T3
generates a unitary group etT3 .0

� Statement (v) follows directly from Proposition 2.14. □

In order to obtain the better estimates of etJL, we only need to refine or modify
the decomposition under various assumptions.

PROOF OF THEOREM 2.6. According to the remark at the end of the above Step
4, X0A D f0g under the assumption of (i) and thus the second row and column
in the block form of JLEc disappear, which immediately implies the O.1 C t2/
growth of etJLjEc . The same remark and Lemma 2.12 imply that, under the as-
sumption of (ii), X1 D X5 D f0g, the O.1C jt j/ growth of etJLjEc follows from
the reduced block form of JLEc readily.

� Proof of statement (iii). Under the nondegeneracy assumptions of L
R.B/

and
A
R.B 0/

, the decomposition ofX can be carried out in a different, but much simpler,
way. In fact, lemma 12.2 in [30] implies

X D X0 � zX; zX D R.B/; X0 D ker.B 0L/ D fu 2 X j hLu; zui D 0; zu 2 zXg;
Y D Y0 � zY ; zY D R.B 0/; Y0 D ker.BA/ D fu 2 Y j hAv; zvi D 0; zv 2 zY g;

associated with the projection zP on X and zQ on Y , respectively. In the decompo-
sition

X D X0 � zX; X0 D X0 � Y0; zX D zX � zY ;
which is invariant under JL, we have

JL�
�
0 0

0 zJzL
�
; zL D

�
L zX 0

0 A zY

�
; zJ D

�
0 zPB zQ0

� zQB 0 zP 0 0

�
;

where zJzL is also in the separable Hamiltonian form .L zX ; A zY ; zB D zPB zQ0/. In
particular, L zX and A zY are nondegenerate on zX and zY and zJzL is injective on zX,
the last of which implies

R. zBA zY / D zX:
From the above theorem, the system zJzL has the trichotomy decomposition

zX D zEu � zEs � zEc ; dim zEu;s D n�.L
R. zBA zY

/
/ D n�.L zX /:

Lemma 12.2 in [30] implies zL is uniformly positive definite on zEc , and thus we
obtain the Lyapunov stability on zEc . Clearly

Eu;s D zEu;s; Ec D X0 � zEc ;

give the trichotomy decomposition of JL and thus its Lyapunov stability on Ec

follows. □
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2536 Z. LIN AND C. ZENG

To end the section, we prove the following result on perturbations to L.

PROPOSITION 2.18. Suppose X is a Hilbert space and L W X ! X� satisfies
(G3) and n0 D dim kerL < 1. It holds that there exists C; � > 0 such that
any bounded zL W X ! X with zL� D zL and kzL � Lk < � also satisfies (G3).
Moreover, there exists zL0 W kerL! .kerL/� such that

dim ker zL D dim ker zL0; n�.zL/ � n�.L/ D n�.zL0/;

zL0 � .zL � L/kerL


 < CkzL � Lk2;

where the notation .zL � L/kerL is in the fashion of (2.5).

COROLLARY 2.19. If, in addition, L is nondegenerate, then zL is also nondegen-
erate and n�.zL/ D n�.L/.

PROOF OF PROPOSITION 2.18. Let X� � X be closed subspaces ensured by
(G3) for L. Denote

X0 D kerL; X1 D XC �X�; zX0 D X?zL

1 D fx 2 X j h zLx; x1i D 0; 8x1 2 X1g:
Clearly LX1

D i�X1
LiX1

W X1 ! X�
1 is an isomorphism. The closeness between

zL and L implies that zLX1
W X1 ! X�

1 is also an isomorphism and n�.zLX1
/ D

n�.LX1
/. Therefore, we have

dim ker zL D dim ker zL zX0
; n�.zL/ � n�.L/ D n�.zL zX0

/:

To analyze zL zX0
, a standard argument yields a unique bounded linear operator S W

X0 ! X1 such that

kSk � CkzL � Lk; zX0 D graph.S/ D fx0 C Sx0 j x0 2 X0g:
Using the isomorphism I C S W X0 ! zX0 as a conjugacy map, let

zL0 D .I C S�/zL.I C S/ W X0 ! X�
0 :

We have, for x0; x00 2 X0,
zL0x0; x00� D 
zL.x0 C Sx0/; .x00 C Sx00/�
D 
zLX0

x0; x
0
0

�C 
zLSx0; x00�C 
zLx0; Sx00�C 
zLSx0; Sx00�
D 
.zL � L/X0

x0; x
0
0

�C 
.zL � L/X0
x00; Sx0

�C 
.zL � L/X0
x0; Sx

0
0

�
C 
S� zLSx0; x00�

where we used LX0
D 0. Therefore, the estimate on zL0 follows from that on S .

□

3 Stability of Nonrotating Stars
In this section, we study stability of nonrotating stars. We divide it into several

steps.
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TPP FOR STABILITY OF GASEOUS STARS 2537

3.1 Existence of nonrotating stars
Nonrotating stars are steady solutions .�; u/ D .�0.jxj/; 0/ of (1.1)–(1.3), where

�0.r/ satisfies

(3.1) �rP .�0/ � �0rV0 D 0
with �V0 D 4��0. For the consideration of the existence of nonrotating stars, we
assume P .�/ satisfies assumption (1.4) and

(3.2) lim
s!0C

s1�
0P 0.s/ D K > 0 for some 
0 >
6

5
:

Note that the enthalpy function � defined by (1.7) is convex since P 0.�/ > 0 for
� > 0 by assumption (1.4). Let F .s/ D .�0/�1.s/ for s 2 .0; smax/, where

smax D
Z 1

0

P 0.�/
�

d� 2 .0;1�:

We extend F .s/ to s 2 .�1; 0/ by zero extension and denote the extended func-
tion by FC.s/ W R! �0;1/. We consider physically realistic nonrotating stars �0
with compact support

f�0 > 0g D fjxj < Rg , BR;

where R > 0 is the radius of the support. Then by (3.1), we have

(3.3) V0 C�0.�0/ D V0.R/
and �0 D F .V0.R/ � V0/ inside BR. Since V 00.r/ > 0 by the Poisson equation,
when r > R, we have

�0.r/ D 0 D FC.V0.R/ � V0.r//:
Therefore, the steady potential V0.jxj/ satisfying the nonlinear elliptic equation in
radial coordinates is

(3.4) �V0 D V 000 C
2

r
V 00 D 4�FC.V0.R/ � V0/:

Define y.r/ D V0.R/ � V0.r/ D �0.�0/. Then y satisfies the ODE

(3.5) y00 C 2

r
y0 D �4�FC.y/:

Let � D �0.0/ to be the center density. We solve (3.5) with the initial condition

(3.6) y.0/ D �0.�0.0// D �0.�/ > 0; y0.0/ D 0;
or equivalently the first-order equation

(3.7) y0.r/ D �4�
r2

Z r

0

s2FC.y.s//ds; y.0/ D �0.�/.
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2538 Z. LIN AND C. ZENG

It is easy to see that the unique solution y�.r/ of the above ODE exists for r 2
.0;C1/ and y0�.r/ < 0. If there exists a finite number R� > 0 such that
y�
�
R�
� D 0, define

(3.8) ��.jxj/ D
(
F
�
y�.jxj/

�
if jxj < R�;

0 if jxj � R�;
and V� D 4���1��. Then

�
��; 0

�
is a nonrotating steady solution of (1.1)–(1.3)

with compact support and R� is the support radius.

Remark 3.1. Since FC is actually a C 1 function for 
 2 .6
5
; 2/, the solution .y; y0/

to (3.5) and (3.6) is C 1 in both r and in � with y0 < 0. Therefore, the implicit
function theorem implies that R� is C 1 in � and thus so is ��.

Below we give some conditions to ensure that the ODE (3.5) has solutions with
compact support. Assume P .�/ satisfies (1.4)–(1.5). For polytropic stars with
P .�/ D K�


�

 > 6

5

�
, it is well-known [7] that for any center density � > 0,

there exists compact supported solutions. Let 
 D 1 C 1
n

; (3.5) becomes the
classical Lane-Emden equation

(3.9) y00 C 2

r
y0 D �4�

�

 � 1
K


�n
ynC D �C
ynC;

where 0 < n < 5; yC D maxfy; 0g; and

C
 D 4�
�

 � 1
K


� 1

�1

:

Let y�.r/ D �0.��.r// be the solution of (3.9) with

y�.0/ D �0.�/ D K



 � 1�

�1 DW �:

Denote the transformation

(3.10) y�.r/ D ��
�
�
n�1
2 r

�
; s D � n�1

2 r I
then �.s/ satisfies the same equation

(3.11) � 00 C 2

s
� 0 D �C
�nC; �.0/ D 1; � 0.0/ D 0:

The function �.s/ is called the Lane-Emden function.
The next lemma shows that under assumption (1.4)–(3.2), nonrotating stars with

compact support exist for small center density.

LEMMA 3.2. Assume (1.4) and (3.2). There exists �0 > 0 such that for any
� 2 .0; �0/, y�.R�/ D 0 for some R� > 0. Here, y�.r/ is the solution of (3.5)
with the initial condition (3.6). Then ��.jxj/ defined by (3.8) is a nonrotating star
with support radius R�.
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TPP FOR STABILITY OF GASEOUS STARS 2539

PROOF. It is equivalent to prove the statement for � D y�.0/ D �0.�/ suffi-
ciently small. Motivated by (3.2) and (3.10), we define

(3.12) y�.r/ D ���
�
�
n0�1

2 r
�
; s D � n0�1

2 r;

where n0 D 1

0�1 . Then ��.s/ satisfies the equation

(3.13) � 00� C
2

s
� 0� D �4�

1

�n0
FC.���/ D �g�.��/;

with the initial condition ��.0/ D 1, � 0�.0/ D 0. Denote

(3.14) g�.�/ D 4� 1

�n0
FC.��/; � 2 �0; 1�;

and

(3.15) g0.�/ D C
0�n0C ; C
0 D 4�
�

0 � 1
K
0

� 1

0�1

:

Then by assumption (3.2) and the definition of FC, it is easy to show that when
� ! 0C, g� ! g0 in C 1.�0; 1�/ and in C 0..�1; 1�/. Let �0.s/ be the Lane-
Emden function satisfying

(3.16) � 000 C
2

s
� 00 D �C
0.�0/n0C D g0.�0/; �0.0/ D 1; � 00.0/ D 0:

Then for any R > 0, we have �� ! �0 in C 1.0; R/. Define G.�; s/ D ��.s/

for � > 0, s > 0, and G.0; s/ D �0.s/ . Let R0 be the support radius of �0;
then G.0;R0/ D �0.R0/ D 0 and @

@s
G.0;R0/ D � 00.R0/ < 0. By the implicit

function theorem, there exists �0 > 0 such that when � 2 .0; �0/, G.�; s/ has a
unique zero S� near R0. Then S� is the support radius of ��. Therefore, for any
0 < � < �0 D F .�0/, there exists a unique nonrotating solution y�.r/ defined
by (3.12) with the support radius R� D ��.n0�1/=2S�. □

Let

�max D supf� j 9 solution ��0 is compactly supported; 8�0 2 .0; ��g 2 .0;C1�:
For any center density ��.0/ D � 2 .0; �max/, let R� D R.�/ < 1 be the
support radius of the density ��.jxj/ of the unique nonrotating stars and

M.�/ D
Z
R3

�� dx D
Z
jxj<R�

�� dx

to be the total mass of the star.

Remark 3.3. For polytropic stars with P .�/ D K�

�

 > 6

5

�
, we have �max D

C1. The scaling relation (3.10) implies the classical formulae ( [7])

(3.17) M.�/ D C1� 1
2
.3
�4/; R� D C2� 1

2
.
�2/:

for positive constants C1; C2 depending only on 
 .
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2540 Z. LIN AND C. ZENG

For the general equations of state satisfying (1.4) and (3.2) with 
0 � 4
3

, it was
shown in [19] that �max D C1. See also [34, 36, 38] for the case 
0 > 4

3
. On

the other hand, for 
0 2 .65 ; 43/, counterexamples of P .�/ with �max < 1 were
constructed in [38]. For physically realistic equations of state such as white dwarf
stars, 
0 D 5

3
(see [7, 39]).

3.2 Linearized Euler-Poisson equation
We assume P.�/ satisfies (1.4)–(1.5). Near a nonrotating star

�
��; 0

�
with cen-

ter density �, the linearized Euler-Poisson system is

�t D �r � .��v/;(3.18)

vt D �r.�00.��/� C V /;(3.19)

with�V D 4��. Here, �; v are the density and velocity perturbations, respectively.
In the linear approximation, we take the density perturbation � and the velocity
perturbation v with the same support as ��, that is,

supp.�/; supp.v/ � S� D
�jxj � R�	:

This is reasonable in view of the underlying Lagrangian formulation of the prob-
lem. See the Appendix for more details. Formally, the above linearized system has
an invariant energy functional

(3.20) H�.�; v/ D 1

2

Z
S�

�
��jvj2 C�00.��/�2

�
dx � 1

8�

Z
R3

jrV j2 dx:

To ensure H�.�; v/ < 1, we consider the natural energy space X� D L2
�00.��/

for � and Y� D .L2��/
3 for v. Here, L2

�00.��/
; L2�� are the �00.��/; ��-weighted

L2 spaces in S� and thus (3.18)–(3.19) form a linear evolution system onX��Y�.
For � 2 L2

�00.��/
, we have

(3.21)

Z
R3

jrV j2 dx D �4�
Z
S�

�V dx � 4�k�kL2
�00.��/

�Z
S�

V 2

�00
�
��
� dx� 1

2

. k�kL2
�00.��/

kV kL6.R3/ . k�kL2
�00.��/

krV kL2.R3/

and thus krV kL2.R3/ . k�kL2
�00.��/

. In above estimates, we use the fact that

1
�00.��/

is bounded in S� since 1

�00.��/
Ð �

2�
0
� .
0 < 2/ for �� � 1. The

notation P . Q means P � C�Q for some constant C� depending only on �.

Remark 3.4. Since 
0 2 .65 ; 2/ and

�� D O
�
.R� � r/

1

0�1

�
; �00

�
��.r/

� D O�.R� � r/
0�2
0�1
�
;

in such weighted spaces, as r ! R��, v 2 Y� allows v to approach infinity, while
� 2 X� may approach infinity for 
0 2 .32 ; 2/ or must satisfy lim infr!R�� �.r/ D
0 for 
0 2 .65 ; 32 �. Recalling that supp.�/ is the domain occupied by the fluid, the
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TPP FOR STABILITY OF GASEOUS STARS 2541

vanishing of �.R��/ in the latter case does not mean that the domain does not
evolve, but is only not reflected in the linear order of the density perturbation due
to its degeneracy near the boundary for 
0 2 .65 ; 32 �. In fact, the variation of the
domain is clearly indicated in that v does not have to vanish near r D R�.

Define the operators

L� D �00.��/ � 4�.��/�1 W X� ! X�
�; A� D �� W Y� ! Y �� ;

and
B� D �r� D � div W Y �� ! X�; B 0� D r W X�

� ! Y�:

Here, for � 2 X�, we denote

.��/�1� D
Z
S�

1

4�jx � yj�.y/dy
����
S�

:

Then the linearized system (3.18)–(3.19) can be written in a separable Hamiltonian
form

@t

�
�

v

�
D
�

0 B�
�B 0� 0

��
L� 0

0 A�

��
�

v

�
D J�L�

�
�

v

�
;

which will be checked to satisfy assumptions (G1–G4) in the general framework
of Section 2. First, (G2) is obvious for the operator A� defined in (1.10) with
kerA� D f0g. We note that

S1 D p�� W
�
L2.S�/

�3 ! Y �� D
�
L21=��

�3
; S2 D

q
�00.��/ W X� ! L2.S�/;

are isomorphisms. Therefore, to show B� W Y �� ! X� is densely defined and
closed, it is equivalent to check

zB� D S2BS1 D �
q
�00.��/ div

�p
���
� W �L2.S�/�3 ! L2.S�/

is densely defined and closed. The domain of zB� is

D
� zB�� D nu 2 �L2.S�/�3��� q�00.��/r � .p��u/ 2 L2 in the distribution sense

o
:

It is clear that any C 1 function with compact support inside S� is in D. zB�/; thus
D. zB�/ is dense in .L2.S�//3. Define

zC� D p�� r
�q

�00.��/�
�
W L2.S�/!

�
L2.S�/

�3
;

with

D
� zC�� D n� 2 L2.S�/j p�� r�q�00.��/�� 2 �L2.S�/�3o:

Then zC� is also densely defined.

LEMMA 3.5. The above-defined operators satisfy zC� D zB�� and zB� D . zC�/� D
. zB�/��. Thus zB� and zB�� are both closed.
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2542 Z. LIN AND C. ZENG

PROOF. We start the proof of the lemma with a basic property of functions in
D. zC�/. Namely, for any f 2 D. zC�/, there exists M > 0 such that for any
r 2 .1

2
R�; R�/, it holds that

(3.22)



q���00.��/f 




L2.@S.r//
�M.R� � r/ 12 ;

where @S.r/ is the sphere with radius r . In fact, by the definition of D. zC�/, the
trace of f on any sphere @S.r/ with radius r < R� belongs to L2.@S.r// and

g ,
p
��@r

�q
�00.��/f

�
2 L2.S�/:

Since for any � 2 S2,�q
�00.��/f

�
.r�/ D

�q
�00.��/f

��1
2
R��

�
C
Z r

1
2
R�

.��1=2� g/.r 0�/dr 0;

it follows that


q�00.��/f 



L2.@S.r//

�M
�
1C kgkL2.S�/

�Z r

1
2
R�

�
R� � r 0

� 1
1�
0 dr 0

� 1
2
�

�M �
1C .R� � r/

2�
0
2.1�
0/

�
and thus (3.22) follows.

By the definition of adjoint operators, f 2 D. zB��/ � L2.S�/ and w D zB��f if
and only if, for any v 2 D. zB�/,
(3.23)

Z
S�

w � v dx D hf; zB�vi D �
Z
S�

q
�00.��/f r �

�p
��v

�
dx:

By taking compacted supported v and integrating by parts, we obtain that f 2
D. zC �

�/ and w D zC�f is necessary. To show this is also sufficient, for any v 2
D. zB�/, we integrate on smaller balls and take the limit,

�
Z
S�

q
�00.��/f r �

�p
��v

�
dx

D � lim
n!1

Z
S.R���n/

q
�00
�
��
�
f r � .p��v/dx

D hf; zC�vi � lim
n!1

Z
@S.R���n/

q
�00.��/�� f v � x

R� � �n dS;

where �n ! 0C. According to (3.22),����Z
@S.R���n/

q
�00
�
��
�
�� f v � x

R� � �n dS
���� �M�1=2n kvkL2.@S.R���n//:

Since v 2 L2.S�/, there exists a sequence �n ! 0C such that

�1=2n kvkL2.@S.R���n// ! 0;
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TPP FOR STABILITY OF GASEOUS STARS 2543

and thus (3.23) holds, which implies zB�� D zC�.
By a similar argument to that above, zC �

� D zB�, and this completes the proof of
the lemma. □

We now check that L� defined by (1.10) satisfies (G3). Let

IX�
D 1

�00.��/
W X�

� ! X�

be the isomorphism from Riesz representation theorem, and define the operator

(3.24) L�DIX�
L� D Id � 1

4��00.��/
.��/�1 W X� ! X�:

LEMMA 3.6. L is bounded and self-adjoint on X� and L��Id is compact.

PROOF. Let

K D L��Id D � 1

4��00.��/
.��/�1 W X� ! X�:

We first show that K is compact. Indeed, for any � 2 X�, we have

kK�kX�
D
�Z

S�

V 2

�00.��/
dx

� 1
2

.
�Z

S�

V 2 dx

� 1
2

;

where �V D 4��. By the previously established estimate kV k PH1 . k�kX�
and

the compactness of PH 1
�
R
3
�

to L2.S�/, the compactness of K follows. Since
K is symmetric on X�, the self-adjointness of L� follows from the Kato-Rellich
theorem. □

Assumption (G3) follows from the above lemma. To compute n�.L�jX�
/, we

define the elliptic operator

D� D �� � 4�F 0C
�
V�.R�/ � V�

� W PH 1.R3/! PH�1.R3/:

Then for � 2 PH 1.R3/,

D��; �

� D Z
R3

jr�j2dx � 4�
Z
S�

F 0
�
V�.R�/ � V�

�j�j2 dx
defines a bounded bilinear symmetric form on PH 1.R3/. The next lemma shows
that the study of the quadratic form


L��; �
� D Z

S�

�00.��/�2 � 1

4�

Z
R3

jrV j2dx; � 2 X�;

can be reduced to study D� on PH 1.R3/.

LEMMA 3.7. It holds that n�.L�jX�
/ D n�.L�/ D n�.D�/ and dim kerL� D

dim kerL� D dim kerD�.
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2544 Z. LIN AND C. ZENG

PROOF. The proof of the lemma is largely based on the observation D� D
F 0L�.��/ in S�.

First, for any � 2 X�, we can show that

hL��; �i � 1

4�
.D�V; V /; �V D 4��:

Indeed, inside S� we have F 0.V�.R�/ � V�/ D 1
�00.��/

. Then

hL��; �i D
Z
S�

1

F 0
�2 dx � 1

4�

Z
R3

jrV j2 dx

D
Z
R3

1

4�
jrV j2 dx C

Z
S�

�
2V�C 1

F 0
�2
�
dx

�
Z �

1

4�
jrV j2 � F 0V 2

�
dx D 1

4�
hD�V; V i:

Denote by n�0.L�/ and n�0.D�/ the maximal dimensions of nonpositive sub-
spaces of L� and D�, respectively. Then the above inequality implies that

n�0.L�/ � n�0.D�/:

Second, for any � 2 PH 1.R3/, let �� D F 0C� 2 X� and �V� D 4��� . Then

hD��; �i D
Z
R3

jr�j2 dx � 4�
Z
S�

F 0j�j2 dx

D 4�
�Z

S�

j�� j2
F 0

dx C 1

4�

Z
R3

jr�j2 dx � 2
Z
S�

�� x� dx
�

D 4�
�Z

S�

j�� j2
F 0

dx C 1

4�

Z
R3

jr�j2 dx � 1

2�

Z
R3

rV� � r x� dx
�

� 4�
�Z

S�

j�� j2
F 0

dx � 1

4�

Z
R3

jrV� j2 dx
�
D 4� 
L��� ; �� �:

Thus n�0.L�/ � n�0.D�/ and a combination with the previous inequality yields

(3.25) n�0.L�/ D n�0.D�/:

We note that L�� D 0 for � 2 X� is equivalent to D�V D 0 where �V D 4��,
andD�� D 0 for � 2 PH 1 is equivalent to L��� D 0 .�� D F 0C�/. Thus we have
dim kerL� D dim kerD� and consequently n�.L�/ D n�.D�/ follows from
(3.25). □

In the rest of this subsection, we study some basic properties of the operator
D�. Since the potential term in D� is radially symmetric, we can use spheri-
cal harmonic functions to decompose D� into operators on radially symmetric
spaces. Let Ylm.�/ be the standard spherical harmonics on S2 where l D 0; 1; : : : I
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TPP FOR STABILITY OF GASEOUS STARS 2545

m D �l; : : : ; l . Then �S2Ylm D �l.l C 1/Ylm. For any function u.x/ 2 PH 1, we
decompose

u.x/ D
1X
lD0

lX
mD�l

ulm.r/Ylm.�/; ulm.r/ D
Z
S2
u.r�/Ylm.�/dS� .

Then we have

D�u D
1X
lD0

lX
mD�l

Dl
�ulm.r/ Ylm.�/;

where

(3.26) Dl
� D ��r C l.l C 1/

r2
� 4�F 0C

�
V�.R�/ � V�.r/

�
;

and �r D d2

dr2
C 2

r
d
dr

. In particular, the operator

(3.27) D0
� D ��r � 4�F 0C

�
V�.R�/ � V�.r/

�
is D� restricted to radial functions.

The study of D� is reduced to the study of operators Dl
� .l � 0/ for radial

functions.

LEMMA 3.8.
(i) kerD1

� D
�
V 0�.r/

	
and D1

� � 0:
(ii) For l � 2; Dl

� > 0.
(iii) n�.D�/ D n�

�
D0
�

� � 1:
PROOF. The arguments are rather standard. Taking @xi of the steady equation

(3.28) �V� D V 00� C
2

r
V 0� D 4�FC

�
V�.R�/ � V�.r/

�
;

we get D�@xiV� D 0; i D 1; 2; 3. Thus D1
�V

0
�.r/ D 0. Since V 0�.r/ > 0 for

r > 0, (i) follows from the Sturm-Liouville theory for the ODE operatorD1
�. Then

for l � 2,

Dl
� D D1

� C
l.l C 1/ � 2

r2
> 0:

By (i) and (ii), we have n�.D�/ D n�.D0
�/. Since D�@xiV� D 0 and @xiV�

changes sign, 0 cannot be the first eigenvalue of D�. Thus n�.D�/ � 1: This
proves (iii). □

3.3 The negative index ofD�
We find the negative index n�.D�/ D n�.D0

�/ in this subsection. AlthoughD�

is defined as an operator PH 1 ! PH�1, the eigenfunctions with negative eigenvalues
of D� decay exponentially fast at infinity and are in H 2. Thus, when computing
n�.D�/ below, we can treat D� as an operator H 2 ! L2 and D0

� W H 2
r ! L2r .

The following formula for the surface potential V�
�
R�
�

will be used later.
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2546 Z. LIN AND C. ZENG

LEMMA 3.9. It holds that

(3.29) V�.R�/ D �M.�/
R�

:

PROOF. Since

V 00� C
2

r
V 0� D

1

r2
d

dr

�
r2V 0�.r/

� D 4���;
we have

(3.30) V 0�.r/ D
4�

r2

Z r

0

��.r/r
2 dr D M.�/

r2
for r � R�:

Thus

V�.r/ D �M.�/
r

for r � R�;
and formula (3.29) follows. □

To find n�.D0
�/, our key observation is that D0

� has a kernel only at critical
points of the surface potential V�.R�/ or, equivalently, at points where

d

d�

�
M.�/

R�

�
D 0

by the above lemma.

LEMMA 3.10. When d
d�

�M.�/
R�

� ¤ 0, kerD0
� D f0g; when d

d�

�M.�/
R�

� D 0,

kerD0
� D

n
@
@�
V�

o
.

PROOF. Let y�.r/ D V�.R�/ � V�.r/; then

�ry� D y00� C
2

r
y0� D �4�FC

�
y�.r/

�
:

Observing that FC is actually a C 1 function for 
 2 .6
5
; 2/, denote u�.r/ D

@
@�
y�.r/, and by taking @

@�
of above equation for y�, we get

(3.31) u00� C
2

r
u0� D �4�F 0C.y�.r//u�:

Suppose D0
�v.r/ D 0 with v.jxj/ 2 PH 1.R3/. Then

(3.32) v00 C 2

r
v0 D 1

r2
d

dr

�
r2v0.r/

� D �4�F 0C�y�.r/�v.r/
and

v0.r/ D �4�
r2

Z r

0

s2F 0C
�
y�.s/

�
v.s/ds;

which implies that v 2 C 1.0;C1/. Since both u�.r/ and v.r/ satisfy the same
second-order ODE (3.31) and (3.32) with zero derivative at r D 0, we have v.r/ D
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TPP FOR STABILITY OF GASEOUS STARS 2547

Cu�.r/ for some constant C ¤ 0. This implies u� 2 PH 1.R3/ harmonic outside
S�. Along with limr!1 V.r/ D 0 we obtain

0 D lim
r!C1

u�.r/ D d

d�

�
M.�/

R�

�
:

Therefore, D0
� has a kernel only when d

d�

�M.�/
R�

� D 0, and in this case it follows

from the above analysis that kerD0
� D

�
@
@�
V�
	
. □

To find n�.D0
�/, we use a continuity approach to follow its changes when �

is increased from 0 to �max. First, we find n�.D0
�/ for small �. By the above

lemma, for increasing �, the negative index n�.D0
�/ can only change at critical

points of M.�/
R.�/

. Then we find the jump formula of n�.D0
�/ at those critical points.

Combining these steps, we get n�.D0
�/ for any � > 0.

By the proof of Lemma 3.2, for small � the steady state �� is close (up to a
scaling) to the Lane-Emden stars. So we first find n�.D0

�/ for Lane-Emden stars.
We treat the cases 
 2 .6

5
; 4
3
/ and 
 2 �4

3
; 2/ separately.

LEMMA 3.11. Let P .�/ D K�
 , 
 2 .6
5
; 2/; then n�.D0

�/ D 1 for any � > 0.

PROOF. Let y�.r/ be the solution of (3.9) with y�.0/ D � D �0.�/. Recall
that y�.r/ D ��.�.n�1/=2r/, where �.s/ is the Lane-Emden function satisfying
(3.11). Then

D0
� D ��r � C
n.y�/n�1C ; n D 1


 � 1:

Let  .r/ be an eigenfunction satisfying D0
� D � with � < 0. Define  .r/ D

�.�.n�1/=2r/ and s D �.n�1/=2r . Then �.s/ satisfies the equation���s � C
n�n�1C
�
� D ��.n�1/��:

Thus n�.D0
�/ D n�.Bn/, where

(3.33) Bn D ��s � C
n�n�1C :

It suffices to show that n�.Bn/ D 1.
We first consider the case 
 2 .4

3
; 2/ where n 2 .1; 3�. Define �a.s/ D

a�.a.n�1/=2s/, a > 0, and

w.s/ D d

da
.�a.s//

����
aD1
D �.s/C n � 1

2
s� 0.s/:

Note that �a.s/ satisfies the Lane-Emden equation

(3.34) � 00a C
2

s
� 0a D �C
�na;C; �a.0/ D a; � 0a.0/ D 0:
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2548 Z. LIN AND C. ZENG

Let Rn be the support radius of �.s/, then �.Rn/ D 0 and �.s/ > 0; � 0.s/ < 0 for
s 2 .0; Rn/. By taking d

d�
of (3.34), we have

(3.35) w00 C 2

s
w0 D �C
n�n�1C w; s 2 .0; Rn/;

with w.0/ D 1;w0.0/ D 0: We show that w.s/ has a unique zero in .0; Rn/.
Indeed, since w.0/ D 1 and w.Rn/ D n�1

2
Rn�

0.Rn/ < 0, by continuity of
w.s/ there exists s0 2 .0; Rn/ such that w.s0/ D 0. Moreover, for s 2 .0; Rn/ we
have

w0.s/ D nC 1
2

� 0.s/C n � 1
2

s� 00.s/

D nC 1
2

� 0.s/C n � 1
2

��2� 0.s/ � C
s�.s/n�
D 3 � n

2
� 0.s/ � n � 1

2
C
s�.s/

n < 0:

Thus w.s/ is monotone decreasing with exactly one zero s0 in .0; Rn/. We extend
w.s/ to be a C 1.0;1/ function by solving the ODE (3.35) in .Rn;1/. Noting
that the right-hand side of (3.35) is zero in .Rn;1/, we get

w.s/ D C1

s
C C2; s 2 .Rn;C1/;

where

C1 D �R2nw0.Rn/ > 0; C2 D w.Rn/ � C1
Rn

< 0:

Thusw.s/ < 0 in .Rn;1/ andw.s/& C2 as s !C1. Therefore,w.s/ only has
one zero in .0;C1/. We show n�.Bn/ D 1 by comparison arguments. Suppose
n�.Bn/ � 2. Let �1 < 0 be the second negative eigenvalue of Bn and �.s/ 2 H 1

r

be the corresponding eigenfunction, that is,

(3.36)
�
� 00 C 2

s
� 0
�
D �C
n�n�1C � � �1�:

Then �.s/ D cs�1e�
p��1s for s > Rn. By Sturm-Liouville theory, �.s/ has

exactly one zero s1 2 .0;C1/. We claim that this would lead to w.s/ having two
zeros, one in .0; s1/ and the other in .s1;1/. We can assume �.s/ > 0 in .0; s1/;
then � 0.s1/ < 0. Suppose w.s/ has no zero in .0; s1/; then w.s/ > 0 in .0; s1/ and
w0.s/ < 0 in �0; s1�. The integration ofZ s1

0

�(3.35)�.s/ � .3.36/w.s/�s2 ds

and an integration by parts yield

�s21� 0.s1/w.s1/ D �1
Z s1

0

�.s/w.s/ds:
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TPP FOR STABILITY OF GASEOUS STARS 2549

This is a contradiction since the left-hand side is positive and the right-hand side is
negative. Thusw.s/must have one zero in .0; s1/. By the same argument,w.s/ has
another zero in .s1;1/. This is in contradiction to the fact that w.s/ has exactly
one zero in .0;1/. Thus n�.Bn/ < 2, which together with Lemma 3.8(iii) shows
that n�.Bn/ D 1.

We complete the proof of the lemma by a continuation argument. According
to Corollary 2.19, n�.D0

�/ is locally constant in � and 
 on the set f.�; 
/ j
kerD0

� D f0gg. For polytropic stars with P .�/ D K�
 �6
5
< 
 < 2

�
, by (3.17) we

have
M.�/

R�
D C1

C2
�
�1 and thus

d

d�

�
M.�/

R�

�
> 0

for any � > 0 and 
 2 .6
5
; 2/. Therefore, by Lemma 3.10, kerD0

� D f0g for any

 2 �6

5
; 2
�

and thus n�.D0
�/ D 1 for all � > 0. □

For a general equations of state, by Corollary 2.19, Lemma 3.10, and Lemma
3.11, we have the following:

LEMMA 3.12. Assume (1.4)–(1.5) for P .�/. There exists �0 > 0 such that for any
� 2 .0; �0/, n�.D0

�/ D 1. Moreover, as a function of � 2 .0; �max/, n�.D0
�/ is

locally constant.

PROOF. We use the notations in Lemma 3.2, where the nonrotating stars with
small center density � are constructed. Define the operator

B� D ��s � g0�.��/ W PH 1
r ! PH�1

r ;

where ��; g� are defined in (3.12) and (3.14). As in the proof of Lemma 3.11, we
have n�.D0

�/ D n�.B�/ where � D �0.�/. We also define

B0 D ��s � g00.�0/ D ��s � C
0n0.�0/n0�1C ;

where �0 is the Lane-Emden function satisfying (3.16) and g0 is defined in (3.15).
By the proof of Lemma 3.2, when � ! 0C; g� ! g0 in C 1.0; 1/ and �� ! �0
in C 1.0; R/ for any R > 0. By Lemma 3.11, we have n�.B0/ D 1. Corollary
2.19 implies that there exists �0 > 0 such that when � < �0 we have n�.B�/ D 1.
This proves the lemma by letting �0 D .�0/�1.�0/: Moreover, n�.D0

�/ changes

only at critical points of M.�/
R�

due to Corollary 2.19. □

We first prove the following lemma of the nondegeneracy of the mass–radius
curve of the nonrotating stars, which will be crucial in the analysis of the change
of the Morse index n�.D0

�/.

LEMMA 3.13. There exists no point � 2 .0; �max/ such that

M 0.�/ D d

d�

�
M.�/

R�

�
D 0:
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2550 Z. LIN AND C. ZENG

PROOF. Suppose otherwise; then M 0.�/ D d
d�

�M.�/
R�

� D 0 at some � 2
.0; �max/. Then by Lemma 3.10, D0

�
@V�
@�
D 0, i.e.,

(3.37)
�
@V�

@�

�00
C 2

r

�
@V�

@�

�0
D �4�F 0C

�
y�.r/

�@V�
@�

; r > 0;

and @V�
@�
D �@y�

@�
in S�. By (3.31) and �� D FC.y�/, we have�

@y�

@�

�0�
R�
� D � 1

R2
�

Z R�

0

s24�F 0C
�
y�.s/

�@y�
@�

ds D � 1

R2
�

M 0.�/ D 0:

Then
�@V�
@�

�0
.R�/ D 0 and by (3.37) it follows that

�@V�
@�

�0
.r/ D 0 for any r > R�.

Therefore, @V�
@�
.r/ D 0 for any r � R�. By (3.37), this implies that @V�

@�
.r/ D 0

for any r > 0. But this is impossible since

@V�

@�
.0/ D �@y�

@�
.0/ D ��00.�/ ¤ 0: □

Finally, we give the following proposition on the change of n�.D0
�/ at critical

points of M.�/
R�

.

PROPOSITION 3.14. Let �� be a critical point of M.�/
R�

, then for � near �� it holds
that

(3.38) n�
�
D0
�

� D n��D0
��

�C i�
where the index i� is defined in (1.14). Therefore, the jump of n�.D0

�/ at�� equals
that of i�.

PROOF. To prove (3.38), we need to study the perturbation of zero eigenvalue
ofD0

�� for � near ��. The idea is similar to the proof of Proposition 2.18, but with
a more concrete decomposition. For � near ��, let

Z.�/ D �u 2 PH 1.R3/
�� 
F 0C�V�.R�/ � V�.r/�; u� D 0	:

Using FC.0/ D 0, one may compute

F 0C
�
V�.R�/ � V�.r/

�
; @�V�

�
D
Z
S�

F 0C
�
V�.R�/ � V�.r/

�
@�V�.r/dx

D �@�
Z
S�

FC
�
V�.R�/ � V�.r/

�
dx

C @�
�
V�.R�/

� Z
S�

F 0C
�
V�.R�/ � V�.r/

�
dx
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TPP FOR STABILITY OF GASEOUS STARS 2551

D �M 0.�/ � @�
�
M.�/

R�

�Z
S�

F 0C
�
V�.R�/ � V�.r/

�
dx:

Lemma 3.13 yields that M 0.�/ ¤ 0 for � near �� and thus

(3.39) PH 1.R3/ D Z.�/�Rf@�V�g:
Moreover, differentiating (3.28) and using Lemma 3.9, we obtain

D0
�@�V� D 4�@�

�
M.�/

R�

�
F 0C
�
V�.R�/ � V�.r/

�
:

Therefore, (3.39) is a D0
�-orthogonal decomposition. From Lemma 3.10, D0

� is
nondegenerate on Z.�/ for � close to �� and thus

n�
�
D0
�

� � n��D0
��

� D n��D0
�jRf@�V�g

�
:

Using the above calculations, we have

D0
�@�V�; @�V�

�
D 4�@�

�
M.�/

R�

�

F 0C
�
V�.R�/ � V�.r/

�
; @�V�

�
D �4�M 0.�/@�

�
M.�/

R�

�
� 4�

�
@�

�
M.�/

R�

��2 Z
S�

F 0C
�
V�.R�/ � V�.r/

�
dx:

Therefore, (3.38) follows for � near ��. □

3.4 Stability for nonradial perturbations
We study the linearized system (3.18)–(3.19) for nonradial and radial pertur-

bations separately. Here we follow the tradition in the astrophysics literature that
“nonradial” perturbations refer to those modes corresponding to nonconstant spher-
ical harmonics. See Definition 3.16 for the precise definition.

First, we give a Helmholtz-type decomposition of vector fields in Y�.

LEMMA 3.15. There is a direct sum decomposition Y� D Y�;1�Y�;2, where Y�;1
is the closure of n

u 2 �C 1.S�/
�3 \ Y� j r � ���u� D 0 o

in Y�, and Y�;2 is the closure of�
u 2 Y� j u D rp for some p 2 C 1.S�/

	
in Y�.

PROOF. Define the space Z to be the closure of(
p 2 C 1.S�/

���� Z
S�

��jrpj2 dx <1
)
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2552 Z. LIN AND C. ZENG

under the norm kpkZ D
�R
S�
��jrpj2 dx

�1=2, modulo the constant functions.
The inner product on Z is defined as

.p1; p2/Z D
Z
S�

��rp1 � rp2 dx:

For any fixed u 2 Y�, we seek pu 2 Z as a weak solution of the equation

r � .��rp/ D r � .��u/:
This is equivalent to

(3.40)
Z
S�

��rpu � rp dx D
Z
S�

��u � rp dx 8p 2 Z:

The right-hand side above defines a bounded linear functional on Z. Thus by the
Riesz representation theorem, there exists a unique pu 2 Z satisfying (3.40). Let
u2 D rpu 2 Y�;2. Then u1 D u � u2 2 Y�;1. Moreover, it is clear that
Y�;1 ? Y�;2 in the inner product of Y�. This finishes the proof of the lemma. □

The decomposition

X� � Y� D .f0g � Y�;1/� .X� � Y�;2/;
is clearly invariant for the linearized system (3.18)–(3.19). We shall call pertur-
bations in f0g � Y�;1 and X� � Y�;2 to be pseudo-divergence free and irrota-
tional, respectively. In particular, f0g � Y�;1 is a subspace of steady states for
(3.18)–(3.19), where 0 is the only eigenvalue. Thus, we restrict to initial data
.�.0/; u.0// 2 X� � Y�;2. Any solution .�.t/; u.t// 2 X� � Y�;2 can be written
as

(3.41) �.x; t/ D �1.r; t/C �2.x; t/;
and

(3.42) u.x; t/ D r� D v1.r; t/x
r
Cr�2.x; t/;

where .�1; v1/ is the radial component defined by

�1.r; t/ D
Z
S2
�.r�/dS� ; �1.r; t/ D

Z
S2
�.r�/dS� ; v1.x; t/ D @

@r
�1.r; t/;

and .�2; �2/ D .� � �1; � � �1/ are the nonradial components.
The radial component .�1; v1/ will be studied in the next subsection. The non-

radial component .�2.x; t/; �2.x; t// satisfies the system

@t�2 D �r �
�
��r�2

�
�2;t D �

�
�00.��/�2 C V2

� D �L��2; �V2 D 4��2:
This is of the Hamiltonian form

(3.43) @t

�
�2
�2

�
D
�
0 I

�I 0

��
L� 0

0 zA�

��
�2
�2

�
;
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TPP FOR STABILITY OF GASEOUS STARS 2553

where zA� D �r � .��r/, .�2; �2/ 2 X�;n � Y�;n with

X�;n D
�
� 2 X�

���� Z
S2
�.r�/dS� D 0

�
and

Y�;n D
�
� 2 Y�;2

���� Z
S�

��jr�j2 dx <1;
Z
S2
�.r�/dS� D 0

�
;

k�kY�;n D kr�kL2�� :
We take this opportunity to define the following terminology.

DEFINITION 3.16. Define the subspaces of radial and nonradial perturbations for
the linearized Euler-Poisson system (3.18)–(3.19) as

Xr D
��
�.jxj/; v.jxj/ xjxj

�
2 X� � Y�

�
;

Xnr D
�f0g � Y�1�� f.�; u D r�/ 2 X� � Y� j � 2 X�;n; � 2 Y�;ng:

Clearly we have that the decompositionX��Y� D Xr�Xnr is invariant under
etJ�L� .

By using spherical harmonics, for any � 2 X�;n, we write

�.x/ D
1X
lD1

lX
mD�l

�lm.r/Ylm.�/I

then

L�� D
1X
lD1

lX
mD�l

L�;l�lm Ylm.�/;

where

(3.44) L�;l D
�
�00.��/ � 4�

�
��r C l.l C 1/

r2

��1�
W X�;r ! X�

�;r :

By Lemma 3.8 and the proof of Lemma 3.7, we have

n�
�
L�;l jX�;r

� D n��Dl
�

� D 0 8l � 1:
Therefore,

n�.L�jX�;n
/ D

1X
lD1

lX
mD�l

n�.L�;l jX�;r
/ D 0:

Since zA� > 0 on Y�;n, by Theorem 2.3, there is no unstable eigenvalue for the sys-
tem (3.43). Moreover, we shall show that all the eigenvalues of (3.43) are isolated
with finite multiplicity. Define the space

Z�;n D
�
� 2 Y�;n j zA�� 2 X�;n
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2554 Z. LIN AND C. ZENG

with the norm

k�kZ�;n
D kr�kL2�� C



 zA��

L2
�00.��/

:

Then by Theorem 2.3, it suffices to show that the embedding Z�;n ,! Y�;n is
compact. This follows from proposition 12 in [21].

By using spherical harmonics, we can further decompose (3.43). For .�2; �2/ 2
X�;n � Y�;n, let

�2.x/ D
1X
lD1

lX
mD�l

�lm.r; t/Ylm.�/; �2.x; t/ D
1X
lD1

lX
mD�l

�lm.r; t/Ylm.�/:

For each l � 1; �l � m � l; the component .�lm.r; t/; �lm.r; t// satisfies the
separable Hamiltonian system

(3.45) @t

�
�lm
�lm

�
D
�
0 I

�I 0

��
L�;l 0

0 A�;l

��
�lm
�lm

�
;

on the space X�;r � zY�;r , where

(3.46) zY�;r D
�
p.r/

���� Z R�

0

��
�
r2.@rp/

2 C p2�dr <1�;
the operator L�;l is defined in (3.44), and

A�;l D �
1

r2
@r
�
��r

2@r
�C ��l.l C 1/

r2
W zY�;r ! zY ��;r :

By the properties of the operators L�;l (equivalently the operators Dl
�) given in

Lemma 3.8, it is easy to see that, when l > 1, all the eigenvalues of (3.45) are
nonzero and purely imaginary. When l D 1, (3.45) has a kernel space spanned
by .�0�.r/; 0/T corresponding to translation modes .@xi��; 0/

T for the linearized
Euler-Poisson system (3.18)–(3.19). According to Theorem 2.3, all eigenvalues of
J�L� restricted to the invariant subspace X� � Y�;2, and thus of (3.45), are semi-
simple except for possibly the zero eigenvalue. Since 0 is an isolated eigenvalue,
Theorem 2.3 applied to J�L�jX�;n�Y�;n implies that the eigenspace of 0 only
consists of generalized eigenvectors with finite multiplicity.

Indeed, (3.45) does have a nontrivial generalized eigenvector and thus nontrivial
Jordan blocks associated to 0. To see this, for any � 2 zY�;r , we have����Z

S�

�0�� dx
���� � k�k zY�;r

�Z
S�

�
�0�
�2
��1� dx

� 1
2

. k�k zY�;r

where we used 
0 2 .65 ; 2/ and

�� D O
�jR� � r j 1


0�1
�
; �0� D O.jR� � r j

1

0�1

�1
/; for jR� � r j � 1:
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TPP FOR STABILITY OF GASEOUS STARS 2555

Therefore, �0� 2 zY ��;r and thus the Lax-Milgram theorem imply that there exists a
unique �.r/ 2 zY�;r such that

(3.47) �0� D A�;1� D �
1

r2
@r
�
��r

2@r�
�C 2��

r2
�:

Therefore, .0; �Y1m.�//T , m D 0;�1, belong to the generalized kernel of (3.45),
which corresponds to .0; @xj .�

x
r
//T , j D 1; 2; 3, in the generalized kernel of

J�L� with

(3.48) J�L�
�
0; @xjrz�.jxj/

�T D �@xj ��; 0�T ; z�0 D �:
Moreover, these functions in the generalized kernel of J�L� do not belong to

the range R.J�L�/. In fact, suppose

.J�L�/.�; u/T D
�
0; @xjrz�

�T
; .�; u/T 2 X� � Y�:

Then one may compute

A�@xjrz�; @xjrz�

� D �L�� 0

@xjrz�
�
;

�
0

@xjrz�
��

D �
�
L�J�L�

�
0

@xjrz�
�
;

�
�

u

��
D �

�
L�

�
@xj ��
0

�
;

�
�

u

��
D 0;

which is a contradiction. Therefore, we may conclude that the zero eigenvalue of
J�L�jX�;n�Y�;n has a six-dimensional eigenspace with geometric multiplicity 3
and algebraic multiplicity 6.

The above discussions are summarized below.

PROPOSITION 3.17. Any nonrotating star �� is spectrally stable under nonra-
dial perturbations in Xnr . All nonzero eigenvalues of (3.43) are isolated and of
finite multiplicity. The zero eigenvalue of the linearized Euler-Poisson operator
J�L�jXnr

is isolated with an infinite-dimensional space

.f0g � Y�1/� span
��
@xj ��; 0

�T
;
�
0; @xj

�
�
x

r

��T ��� j D 1; 2; 3�
where J�L� has three 2 � 2 Jordan blocks associated to (3.48) generated by the
translation symmetry.

Remark 3.18. For irrotational perturbations, the eigenvalues of (3.43) were shown
to be purely discrete in [21] by a different approach. In [3–5], the spectrum for non-
radial perturbations were shown to be countable, and it was conjectured in [3] that
zero is the only accumulation point. This is indeed true for barotropic equations of
states P.�/ by the above proposition or results in [21].

Remark 3.19. In the astrophysics literature [1, 2, 25], the stability of nonrotating
stars under nonradial perturbations (the Antonov-Lebowitz theorem) was shown
by using the physical principle that the stable states should be energy minimizers
under the constraint of constant mass. We discuss such an energy principle below.
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2556 Z. LIN AND C. ZENG

The steady density �� has the following variational structure. Define the func-
tional

(3.49) E�.�/ D
Z
�.�/dx � 1

8�

Z
jrV j2 dx � V�.R�/

Z
� dx;

with �V D 4��. Then �� is a critical point of E�.�/, that is, E 0�
�
��
� D 0,

which is exactly the equation (3.57). The second-order variation of E� at �� is

(3.50)


E 00�.��/�; �

� D Z ��00.��/�2 � 1

4�
jrV j2

�
dx D hL��; �i:

We note that the energy functional

E.�; u/ D 1

2

Z
�juj2 dx C

Z
�.�/dx � 1

8�

Z
jrV j2 dx

is conserved for the nonlinear Euler-Poisson equation (1.1)–(1.3). Let M.�/ DR
� dx to be the total mass and define

I�.�; u/ D E.�; u/ � V�.R�/M.�/ D 1

2

Z
�jvj2 dx CE�.�/:

Then .��; 0/ is a critical point of I�.�; u/. The second-order variation of I�.�; u/
at .��; 0/ is given by the functional

H�.�; v/ D 1

2

Z
S�

��jvj2 dx C 1

2
hL��; �i

as defined in (3.20), which is a conserved quantity of the linearized Euler-Poisson
system (3.18)–(3.19).

By the above variational structures, the physical principle that stable stars should
be energy minimizers under the constraint of constant mass is equivalent to the
statement that �� is stable only when hE 00�.��/�; �i � 0 for all perturbations
� supported in S� satisfying the mass constraint

R
� dx D 0. This was also called

Chandrasekhar’s variational principle [8] in the astrophysical literature [6].

3.5 Turning point principle for radial perturbations
Denote X�;r and Y�;r to be the radially symmetric subspace of L�00.��/.S�/

and L2��.S�/, respectively. By (1.12), the radial component .�1; v1/ of .�; v/ as
defined in (3.41)–(3.42) satisfies

@t
�
�1v1

� D � 0 � 1
r2
@r
�
r2��

�@r 0

��
�00.��/ � 4�.��r/

�1 0

0 ��

��
�1
v1

�
D
�

0 B�;r
�B 0�;r 0

��
L�;r 0

0 A�;r

��
�1
v1

�
D J�L�

�
�1
v1

�
:

Here, �1 2 X�;r , v1 2 Y�;r , and the operators

L�;r D �00.��/ � 4�.��r/
�1 W X�;r ! X�

�;r ;(3.51)
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TPP FOR STABILITY OF GASEOUS STARS 2557

A�;r D �� W Y�;r ! Y ��;r ;(3.52)

B�;r D � 1
r2
@r.r

2�/ W Y ��;r ! X�;r ; B 0�;r D @r W X�
�;r ! Y�;r ;(3.53)

and

(3.54) J� D
�

0 B�;r
�B 0�;r 0

�
W X�

�;r � Y ��;r ! X�;r � Y�;r ;

(3.55) L� D
�
L�;r 0

0 A�;r

�
W X�;r � Y�;r ! X�

�;r � Y ��;r :

As the triple
�
L�; A�; B�

�
in (1.12) satisfies assumptions (G1–G4) in Section 2,

the above reduction procedure and Lemma 2.10 imply that the triple .L�;r ; A�;r ;
B�;r/ satisfies (G1–G4) as well. Thus, (3.51) is a separable Hamiltonian system,
for which Theorem 2.3 is applicable.

PROOF OF THEOREM 1.2 II). By Theorem 2.3, the linear stability/instability of
(3.51) is reduced to finding nu.�/ D n�.L�;r jR.B�;r //. By the proof of Lemma
3.7 restricted to radial spaces, we have n�.L�;r/ D n�.D0

�/ where D0
� is defined

by (3.27). Moreover, it holds that

(3.56) R
�
B�;r

� D �kerB 0�;r
�? D .ker @r/? D

�
� 2 X�;r

���� Z
S�

� dx D 0
�
:

Therefore, to find n�.L�;r jR.B�;r // it is equivalent to determine the negative di-
mensions of the quadratic form



L�;r �; �

�
under the mass constraint

R
S�
� dx D 0.

We divide the argument into three cases.

Case 1. d
d�

�
M.�/
R.�/

�
¤ 0. By (3.3) and Lemma 3.9, the steady density ��

satisfies the equation

(3.57) �0.��/ � 4�.��/�1�� D V�.R�/ D �M.�/
R�

;

inside the support S�. Applying @� to the above equation, we get

(3.58) L�
@��

@�
D �00.��/@��

@�
� 4�.��/�1 @��

@�
D � d

d�

�
M.�/

R�

�
in S�;

which implies that

R
�
B�;r

� D �� ���� �L�;r @��@� ; �
�
D 0g

and

(3.59)
�
L�;r

@��

@�
;
@��

@�

�
D � d

d�

�
M.�/

R�

�Z
S�

@��

@�
dx D � d

d�

�
M.�/

R�

�
M 0.�/:
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2558 Z. LIN AND C. ZENG

Case 1a. M 0.�/ ¤ 0. The above properties immediately yield

n�
�
L�;r jR.B�;r /

� D
8<:n

�.L�;r/r � 1 if M 0.�/ d
d�

�
M.�/
R�

�
> 0;

n�.L�;r/ if M 0.�/ d
d�

�
M.�/
R�

�
< 0;

D n��D0
�

� � i�:
Case 1b. M 0.�/ D 0. In this case, we have�

L�;r
@��

@�
;
@��

@�

�
D 0; @��

@�
2 R.B�;r/; kerL�;r D f0g;

where Lemma 3.10 was used. There exists  � R.B�;r/. Let

Z0 D span
�
 ;
@��

@�

�
; Z1 D f� 2 R.B�;r/ j hL�;r ; �ig D 0;

and we have

X�;r D Z0 �Z1; R.B�;r/ D Z1 �R@��
@�

:

We obtain from lemma 12.3 in [30] and (3.59) that

n�.L�;r jR.B�;r // D n
�.L�;r jZ1

/; n�.L�;r/ D n�.L�;r jZ1
/C n�.L�;r jZ0

/:

It is straightforward to compute n�.L�;r jZ0
/ D 1 and thus

n�.L�;r jR.B�;r // D n
�.L�;r/ � 1 D n�

�
D0
�

� � i�:
Case 2. d

d�

�
M.�/
R.�/

�
D 0. By Lemma 3.13, we haveZ

S�

@��

@�
dx DM 0.�/ ¤ 0 H) @��

@�
� R.B�;r/:

Therefore,

X�;r D R.B�;r/�R@��
@�

;

which implies n�.L�;r jR.B�;r // D n�.L�;r/. □

Remark 3.20. If � belongs to a stable interval, we must have d
d�

�
M.�/
R.�/

�
¤ 0.

Indeed, when d
d�

�
M.�/
R.�/

�
D 0, by (1.16) and Lemma 3.8, we have nu.�/ D

n�
�
D0
�

� � 1.

To prove Theorem 1.2(iii), by Proposition 3.17 it remains to show that the eigen-
values of the operator J �L� defined in (3.51) are purely isolated and

(3.60) kerJ�L� D span
��
@���
0

��
:
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TPP FOR STABILITY OF GASEOUS STARS 2559

We first prove (3.60) and leave the proof of the discreteness of eigenvalues of
J�L� to the end of this section. By (3.58) we have

L�
�
@���
0

�
D � d

d�

�
M.�/

R.�/

��
1

0

�
I

thus span
��
@���
0

��
� kerJ�L�. To prove kerJ�L� � span

��
@���
0

��
, we

consider two cases. Suppose J�L�
�
�

v

�
D 0 for some nonzero

�
�

v

�
2 X�;r �

Y�;r . It is easy to check that v D 0 and L�;r� D c for some constant c.

Case 1. d
d�

�M.�/
R.�/

� ¤ 0. Then

L�;r

 
� C c

d
d�

�
M.�/
R�

�@���
!
D 0:

This implies that
� D � c

d
d�

�
M.�/
R�

�@���;
since by Lemma 3.10, dimL�;r D dim kerD0

� D 0.

Case 2. d
d�

�M.�/
R.�/

� D 0. Then kerL�;r D spanf@���g and M 0.�/ ¤ 0 by
Lemma 3.13. From L�;r� D c we have

0 D hL�;r@���; �i D hL�;r�; @���i D cM 0.�/:
Thus c D 0 and L�;r� D 0, which again imply that � 2 spanf@���g. This proves
(3.60).

Next, we prove the turning point principle by using Theorem 1.2.

PROOF OF THEOREM 1.1. By Lemma 3.12, when� is small enough, n�.D0
�/ D

1. By the proof of Lemma 3.2, when � is small, we have

�� D FC
�
���

�
�
n0�1

2 r
��
; � D �0.�/; n0 D 1


0 � 1:

Here, �� ! �0 in C 1.0; R/ for any R > 0, and �0 is the Lane-Emden function
satisfying (3.16). The support radius of �� is

R� D ��
n0�1

2 S� D ��
2�
0

2.
0�1/S�;

where S� is C 1 in �, and when � ! 0; S� ! R0, the support radius of �0. The
total mass is

M.�/ D 4�
Z R�

0

FC
�
���

�
�
n0�1

2 r
��
r2 dr

D � 1
2

.3
0�4/

0�1

Z S�

0

g�.��.s//s
2 ds;
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2560 Z. LIN AND C. ZENG

where g� ! g0 in C 1.0; 1/ with g�; g0 defined in (3.14) and (3.15). SoZ S�

0

g�.��.s//s
2 ds !

Z R0

0

g0.�0.s//s
2 ds > 0 when � ! 0:

Thus for � small, we have: (i) M.�/
R.�/

Ð � D �0.�/ and d
d�

�M.�/
R�

�
> 0; (ii)

M 0.�/ > 0 when 
0 2
�
4
3
; 2
�

and M 0.�/ < 0 when 
0 2
�
6
5
; 4
3

�
. Thus when � is

small, the formula (1.6) for nu.�/ follows from Theorem 1.2.
Next, we keep track of the changes of nu.�/ along the mass–radius curve by

increasing �. We consider four cases.

Case 1. No critical points of M.�/
R.�/

or M.�/ are met. Then d
d�

�
M.�/
R�

�
and

M 0.�/ do not change sign. By Lemma 3.12 and (1.15), nu.�/ is unchanged.

Case 2. At a critical point �� of M.�/
R�

. The jump formula (3.38) implies that

nu.��C/ D n��D0
��C

� � i��C D n��D0
���

� � i��� D nu�����:
That is, the number of unstable modes remains unchanged when crossing ��.

Case 3. At an extremum (i.e., maximum or minimum) point x� of M.�/ where
M 0.�/ changes sign, then d

d�

�M.�/
R�

�j�Dx� ¤ 0 and n�.D0
�/ is the same in a

neighborhood of x�. But M 0.�/ changes sign when crossing x�; thus we have

nu.x�C/ � nu.x��/ D �.i�C � i��/ D �1;
when M 0.�/ d

d�

�M.�/
R�

�
changes from� to� at x�. Since

M 0.x�/ D 0 and
d

d�

�
M.�/

R�

� ���
�Dx�
¤ 0;

when� is near x�, we haveR0
�x�� ¤ 0 and the sign ofM 0.�/ d

d�

�M.�/
R�

�
is the same

as �M 0.�/R0.�/. Thus nu.x�C/ � nu.x��/ D �1 when M 0.�/R0.�/ changes
from � to � at x� or, equivalently the mass–radius curve bends counterclockwise
(clockwise) at x�.

Case 4. At a critical but nonextremum point of M.�/, it holds that

d

d�

�
M.�/

R�

�����
�Dz�

¤ 0;

and n�.D0
�/ is the same for � near z�. Since z� is not an extremum point of M.�/,

the sign of M 0.�/ does not change when crossing z�. Then by (1.15) nu.�/ does
not change when crossing z�. However, we should note that if

M 0.�/
d

d�

�
M.�/

R�

�
> 0

or equivalently M 0.�/R0.�/ < 0 in a neighborhood of z� excluding z�, then nu.�/
has a removable jump discontinuity at z� where nu.�/ is reduced by one.
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TPP FOR STABILITY OF GASEOUS STARS 2561

Summing up the above discussions, we finish the proof of Theorem 1.1. □

Below, we prove Theorem 1.3 about exponential trichotomy estimates of (3.51).

PROOF OF THEOREM 1.3. Conclusion (i) is by Theorems 1.2 and 2.3. Con-
clusion (ii) and (1.17) follow directly from Theorem 2.3. To prove (1.18) and
(1.19), we consider radial and nonradial perturbations separately. For nonradial
perturbations, Proposition 3.17 implies that all eigenvalues are discrete and on the
imaginary axis. Hence according to the block decomposition and the anti-self-
adjointness of T3 in Theorem 2.3, the algebraic growth can only arise from the
generalized kernel. By Theorem 1.2(i), we have

(3.61)
��etJ�L� jEc\Xnr

�� D ��etJ�L� jXnr

�� � C0.1C jt j/:
For radial perturbations, when M 0.�/ D 0, by Theorem 2.6(i), we have��etJ�L� jEc\Xr

�� � C0.1C jt j/2;
and (1.19) follows by combining it with (3.61). When M 0.�/ ¤ 0, we check
that L�;r jR.B�;r / is nondegenerate. Let W1 D span

�@��
@�

	
. Since

R @��
@�

dx D
M 0.�/ ¤ 0, there is an invariant decomposition Xr D R.B�;r/ � W1. When
M 0.�/ d

d�

�M.�/
R�

� ¤ 0, by the proof of Theorem 1.2(ii), R.B�;r/ is the L�;r -

orthogonal complement space of W1 D span
�@��
@�

	
. The nondegeneracy of

L�;r jR.B�;r /
follows since kerL�;r D f0g, and L�;r jW1

is nondegenerate by (3.59). When
d
d�

�M.�/
R�

� D 0, we have kerL�;r D W1 and the nondegeneracy of L�;r jR.B�;r /
also follows. Thus by Theorem 2.6(iii), we have jetJ�L� jEc\Xr

j � C0, which
implies Conclusion (iv) and (1.18). □

It remains to prove that the eigenvalues of the linearized problem (3.51) for
radial perturbations are all discrete by Theorem 2.3. We need the following Hardy’s
inequality [20, 24].

LEMMA 3.21 (Hardy’s inequality). Let k be a real number and g be a function
satisfying Z 1

0

sk.g2 C jg0��2�ds <1:
(i) If k > 1, then we haveZ 1

0

sk�2g2 ds .
Z 1

0

sk
�
g2 C ��g0��2�ds:

(ii) If k < 1, then g has a trace at x D 0 and

(3.62)
Z 1

0

sk�2.g � g.0//2 ds . C
Z 1

0

skjg0j2 ds:
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2562 Z. LIN AND C. ZENG

Define the function space Z�;r to be the closure of D.B�;rA�;r/ � Y�;r under
the graph norm

kvkZ�;r
D kvkY�;r C kB�;rA�;rvkX�;r

D
�Z R�

0

��jvj2r2 dr
� 1

2

C
�Z R�

0

�00.��/
���� 1r2 @r�r2��v�

����2r2 dr� 1
2

:

By Theorem 2.3, to show the discreteness of eigenvalues for radial perturbations,
it suffices to show the following compactness lemma.

LEMMA 3.22. The embedding Z�;r ,! Y�;r is compact.

PROOF. First, near the support radius R� we have ��.r/ � .R� � r/1=.
�1/.
This is well-known for Lane-Emden stars. To be self-contained, we give a proof
for general equations of state. By (3.7), we have

y0�.R�/ D �
4�

R2
�

Z R�

0

s2FC
�
y�.s/

�
ds D � 1

R2
�

M.�/ < 0:

Thus for r near R�, y�.r/ � R� � r . Since ��.r/ D FC.y�.r// and FC.y/ �
y1=.
�1/ for 0 < y � 1, we deduce that for r near R�,

(3.63) ��.r/ �
�
y�.r/

� 1

�1 � .R� � r/

1

�1 :

Then for r near R�;

(3.64) �00
�
��.r/

� � ��.r/
�2 � .R� � r/
�2
�1 :

Let r2 < R� and R� � r2 be small enough so that (3.63) and (3.64) are valid in
.r2; R�/. Then for any v 2 Z�;r , we haveZ R�

r2

�00.��/
���� 1r2 @r�r2��v�

����2r2 dr
&
Z R�

r2

.R� � r/

�2

�1

��@r�r2��v���2 dr
&
Z R�

r2

.R� � r/

�2

�1

�2��r2��v��2 dr (by Hardy’s inequality (3.62))

&
Z R�

r2

.R� � r/�1��v2 dr (by (3.63))

& .R� � r2/�1
Z R�

r2

��v
2 dr:

Thus,

(3.65)
Z R�

r2

��jvj2r2 dr . .R� � r2/kB�;rA�;rvk2X�;r
:
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TPP FOR STABILITY OF GASEOUS STARS 2563

Let r1 2 .0; R�/ be small enough so that

1

2
� � ��.r/ � � 8r 2 .0; r1/I

then
0 < �1.�/ � �00.��/ � �2.�/ 8r 2 .0; r1/;

where �1.�/ D min�2. 12�;�/ �
00.�/ and �2.�/ D max�2. 12�;�/ �

00.�/. We haveZ r1

0

�00.��/
���� 1r2 @r�r2��v�

����2r2 dr
&
Z r1

0

1

r2

��@r�r2��v���2 dr & Z r1

0

.��v/
2 dr (by (3.62))

& r�21
Z r1

0

v2r2 dr:

Thus,

(3.66)
Z r1

0

��jvj2r2 dr . r21kB�;rA�;rvk2X�;r
:

Denote BZ D fv 2 Z�;r j kvkZ�;r
� 1g to be the unit ball in Z�;r . Then for any

" > 0, by estimates (3.65) and (3.66), we can choose 0 < r1 < r2 < R� such thatZ r1

0

��jvj2r2 dr C
Z R�

r2

��jvj2r2 dr � " 8v 2 BZ :

The compactness of Z�;r ,! Y�;r follows from the above estimate and the com-
pactness of the embedding Z�;r ,! L2.r1; r2/. □

Remark 3.23. The stability criterion L�;r jR.B�;r / � 0 has the following physical
meaning. By (3.50), the quadratic form hL�;r�; �i is the second-order variation
of the energy functional E�.�/ defined in (3.49). By (3.56), the space R.B�;r/
consists of perturbations satisfying the mass constraint. Thus, our stability criterion
verifies Chandrasekhar’s variational principle that stable states should be energy
minimizers under the mass constraint (see also Remark 3.19).

Remark 3.24. In the astrophysical literature, the linear radial oscillations were usu-
ally studied through the singular Sturm-Liouville equation

(3.67)
d

dr

�
�1P�

1

r2
d

dr
.r2�/

�
� 4
r

dP�

dr
� C !2��� D 0;

with the boundary conditions

(3.68) �.0/ D 0 and �.R�/ is finite.

Here, � is the linearized Lagrangian displacement in the radial direction, P� D
P.��/, �1 D ��P

0.��/

P.��/
is the local polytropic index, and i! is the eigenvalue. The

equation (3.67) was first derived by Eddington in 1918 [12] and had been widely
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2564 Z. LIN AND C. ZENG

used in later works (e.g., [10, 20, 26, 27, 35]). For polytropic stars P .�/ D K�
 ,
�1 D 
 , (3.67) is greatly simplified and can be used to show 
 D 4

3
is the critical

index for stability [26, 27]. However, for a general equation of states, it is difficult
to get explicit stability criteria such as TPP in Theorem 1.1 by (3.67). Moreover,
since the Sturm-Liouville problem (3.67) is singular near r D 0 and R�, it is
highly nontrivial [3–5, 21, 27, 35]) to prove self-adjointness and discreteness of
eigenvalues, which were taken for granted in the astrophysical literature.

By the separable Hamiltonian formulation (3.51), the eigenvalue equation can
be written as (see (2.17))

(3.69) B 0�;rL�;rB�;rA�;rv D !2v;

which is equivalent to (3.67) by explicit calculations. There are several advantages
of the factorized form (3.69) over (3.67). First, each factor in (3.69) has a clear
physical meaning related to the variational structures of steady states or the physi-
cal constraint. Second, the form in (3.69) makes it convenient to prove properties
of the operator B 0�;rL�;rB�;rA�;r such as the self-adjointness and discreteness of
eigenvalues. This approach is rather flexible and has been used in recent works on
the stability of rotating stars [28] and relativistic stars [16, 17].

3.6 Examples
We apply the stability criteria for several examples of gaseous stars.

1. Polytropic stars
For polytropic stars, P.�/ D K�
 with 
 2 .6

5
; 2/. Then by Lemma 3.11, we

have n�.D0
�/ D 1 for any � > 0. The functionsM.�/ andR� are given by (3.17).

For any 
 > 1; we have

d

d�

�
M.�/

R�

�
> 0 for all � > 0.

When 
 2 .6
5
; 4
3
/ we have M 0.�/ < 0 and thus i� D 0. Then it follows from

Theorems 1.2 and 1.3 that for any � > 0; �� is unstable with nu.�/ D 1 and
there is Lyapunov stability on the codim 2 center space. When 
 2 .4

3
; 2/, we have

M 0.�/ > 0 and thus i� D 1. By Theorems 1.3(iv), linear Lyapunov stability holds
for any � > 0. The case 
 D 4

3
is the critical index for stability. In this case, we

have M 0.�/ D 0. Thus, i� D 1 and we have spectral stability. In [11], nonlinear
instability was shown for 
 D 4

3
in the sense that for any small perturbation with

positive total energy of stationary solutions, either the support of the density will
go to infinity or singularity forms in the solution in finite time.
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TPP FOR STABILITY OF GASEOUS STARS 2565

2. White dwarf stars
Next, we consider white dwarf stars [7] with Pw.�/ D Af .x/ and � D Bx3,

where A;B are two constants and

(3.70)
f .x/ D x.x2 C 1/ 12 .2x2 � 3/C 3 ln

�
x C

p
1C x2�

D 8
Z x

0

u4 dup
1C u2 :

Then Pw.�/ satisfies (1.5) with 
0 D 5
3

. Therefore, for any center density � 2
.0;1/, there exists a unique nonrotating star ��.jxj/ (see Remark 3.3). It was
shown in [42] (see also [19]) that M 0.�/ > 0 for any � > 0.

LEMMA 3.25. Assume P.�/ satisfies (1.5) with 
0 2 .43 ; 2/. Let �0 2 .0;C1� be
such that M 0.�/ � 0 on �0; �0/. Then

d

d�

�
M.�/

R�

�
> 0 for any � 2 .0; �0/.

PROOF. By the proof of Theorem 1.1 we have

d

d�

�
M.�/

R�

�
> 0 and M 0.�/ > 0

when� is small enough. Suppose the conclusion of the lemma is not true. Let�1 2
.0; �0/ be the first zero of d

d�

�M.�/
R�

�
. Then d

d�

�M.�/
R�

�
> 0 for all � 2 .0; �1/.

Consequently, by Lemma 3.12, n�.D0
�/ D 1 for all � 2 .0; �1/. At � D �1,

we have n�.D0
�1
/ � 1 (by Lemma 3.8(iii)) and 0 is an eigenvalue of D0

�1
. Since

M 0.�1/ > 0 due to our assumption and Lemma 3.10, when � < �1 and j� � �1j
is small enough, we have d

d�

�M.�/
R�

�
M 0.�/ > 0. Therefore i� D 1 according to

(1.14) and thus Proposition 3.14 implies n�.D0
�/ D n�.D0

�1
/C 1 � 2. This is in

contradiction to the fact that n�.D0
�/ D 1 for � 2 .0; �1/. □

COROLLARY 3.26. White dwarf stars ��.jxj/ are linearly stable for any center
density � > 0.

PROOF. Lemmas 3.25 and 3.12 imply that n�.D0
�/ D 1 for all � > 0. Since

M 0.�/ > 0 and d
d�

�M.�/
R�

�
> 0 for � 2 .0;1/, linear Lyapunov stability of ��

follows from Theorem 1.3(iv). □

Remark 3.27. The mass of white dwarf stars has a finite upper bound M1 D
lim�!1M.�/, which is known as Chandrasekhar’s limit [7, 9]. We note that for
white dwarf stars, Pw.�/ � 2AB�4=3�4=3 when � is large. The Chandrasekhar
limit M1 is exactly the mass of the polytropic star with P.�/ D 2AB�4=3�4=3,
which is independent of � by (3.17).
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2566 Z. LIN AND C. ZENG

3. More general equations of state
Last, we consider general equations of stateP.�/ satisfying (1.4)–(1.5). Assume


0 2 .43 ; 2/ in (1.5). Indeed, 
0 D 5
3

for most physical equations of state including
white dwarf stars. Then for � small, we have

n�
�
D0
�

� D 1; M 0.�/ > 0;
d

d�

�
M.�/

R�

�
> 0:

Let
�0 D inff� > 0 jM 0.�/ < 0g 2 .0;C1�:

If �0 < C1 and M 0.�/ < 0 for 0 < � � �0 � 1, we denote

�1 D supf� > �0 jM 0.�0/ < 0 8�0 2 .�0; �/g 2 .�0;C1�:
COROLLARY 3.28. Assume P.�/ satisfies (1.5) with 
0 2 .43 ; 2/. Then the non-
rotating star ��.jxj/ is linearly stable for � 2 .0; �0/. If �0 < C1, then �� is
linearly unstable for � 2 .�0; �1/ and nu.�/ D 1.

PROOF. Linear stability of ��.jxj/ for � 2 .0; �0/ follows as in Corollary 3.26.
When �0 < 1, linear instability of �� for � 2 .�0; �1/ and nu.�/ D 1 follows
from Theorem 1.1. □

If M.�/ has isolated extremum points, then �0; �1 are the first maximum and
minimum points, respectively. Below we give examples of P.�/ for which the
maximum ofM.�/ is obtained at a finite center density, which gives the first transi-
tion point of stability. As in [19], we consider asymptotically polytropic equations
of state satisfying that, for some positive constants a0; a1; n0; n1; c�; cC;

(i)

(3.71) P.�/ D c��
n0C1

n0

�
1CO�� a0n0 �� when �! 0I

(ii)

(3.72) P.�/ D cC�
n1C1

n1

�
1CO���a1

n1

��
when �!C1:

Denote 
0 D n0C1
n0

and 
1 D n1C1
n1

. By theorem 5.5 in [19], when n1 2 .0; 5/; to
first order, the mass–radius relation for high central pressures is approximated by
the mass–radius relation for an exact polytrope with polytropic index n1. That is,
when � is large enough,

M.�/ / �
3�n1
2n1 D � 1

2
.3
1�4/; R� / �

1�n1
2n1 D � 1

2
.
1�2/:

Therefore, when n1 > 3 (i.e., 
1 < 4
3

), d
d�

�M.�/
R�

�
> 0 and M 0.�/ < 0 for

sufficiently large �. Thus for large �, we have i� D 0 and �� is linearly unstable
by Theorem 1.2. When n0 < 3 (i.e., 
0 > 4

3
/, we have M 0.�/ > 0 for � small

enough. Thus, the transition of stability must occur at some � > 0. the maximum
ofM.�/ is obtained at�0 <1which is the first transition of stability by Corollary
3.28.
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TPP FOR STABILITY OF GASEOUS STARS 2567

By theorem 5.4 in [19], when 
0 > 4
3

and 
1 < 6
5

(i.e., n1 > 5), the mass–
radius relation for high central pressures possesses a spiral structure, with the spiral
given by

(3.73)
�
R�
M.�/

�
D
�
R0
M0

�
C
�
1

�

�
1
BJ

�

2 ln

1

�

�
b C o

��
1

�

�
1�
; �� 1;

where � D �0.�/, R0 and M0 are constants, B is a nonsingular matrix, and b a
nonzero vector. The matrix J .'/ 2 SO.2/ describes a rotation by an angle ', and
the constants 
1 and 
2 are given by


1 D 1

4
.n1 � 5/; 
2 D 1

4

q
7n21 � 22n1 � 1 :

Thus, when � ! 1, the mass M.�/ has infinitely many extremum points. We
claim that at each of these extremum points, the number of unstable modes nu.�/
must increase by 1, and in particular nu.�/ ! 1 when � ! 1. Indeed, for
large � the mass–radius curve must spiral counterclockwise, and then by Theorem
1.1 nu.�/ increases by 1when crossing any mass extremum ofM.�/ on the spiral.
Suppose not, and the mass–radius curve spirals clockwise when �!1. Then by
Theorem 1.1 nu.�/ decreases by 1 when crossing each mass extremum of M.�/
on the spiral. Therefore, after crossing finitely many mass extrema in the spiral,
nu.�/ must become zero. Let �� be the first mass extremum in the spiral such
that nu.�/ D 0 for � slightly less than ��. Then for � slightly less than ��, we
have n�.D0

�/ D 1 and i� D 1, which implies that M 0.�/R0.�/ < 0. Thus when
crossing ��, the sign ofM 0.�/R0.�/must change from � toC, which contradicts
the assumption that the spiral is clockwise. This proves that the mass–radius spiral
can only be counterclockwise.

We summarize the above discussions in the following.

COROLLARY 3.29. Consider asymptotically polytropic P.�/ satisfying (3.71)–
(3.72). Assume 
0 2 .43 ; 2/ (i.e., n0 2 .1; 3/ in (3.71)). Then when n1 2 .3; 5/ or
n1 > 5 with n1 defined in (3.72), there must be a transition point of stability in the
sense of Corollary 3.28. Moreover, �� is unstable when � is large enough. When
n1 > 5, nu.�/!1 when �!1.

Remark 3.30. White dwarf stars are supported by the pressure due to cold de-
generate electrons, as given by the equation of state (3.70). When the density is
high enough, the pressure due to cold degenerate neutrons should be taken into
account. For such modified equations of state, the maximal mass (Chandrasekhar’s
limit) is indeed achieved at a finite center density �0 < 1. Then by Corollary
3.28 �0 is the first transition point of stability and nonrotating stars with center
density slightly larger than �0 become unstable. We refer to figure 11.2 and sec-
tion 11.4 in [44] for such a mass–radius curve and physical explanations. If the
stars are much more compact than the one with a Chandrasekhar limit, then rela-
tivistic effects cannot be ignored and the Euler-Einstein model should be used. A
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similar turning point principle can be derived for stability of relativistic compact
stars modeled by the Euler-Einstein equation [16, 17].

Appendix: Lagrangian Formulation and Hamiltonian Structure
In this appendix we formally outline the Lagrangian formulation of the Euler-

Poisson system (1.1)–(1.3) and its linearization. Let .��.jxj/; u.x/ � 0/ be the
nonrotating star supported on the ball S� � R

3 with radius R.�/, where � D
��.0/. We simply take S� as the reference domain in the Lagrangian framework
and define the (abstract) configuration space of Lagrangian maps as

� D fdiffeomorphism X W S� ! X .S�/ � R3g:
For any reference density �� W S� ! R

C [ f0g and a path of Lagrangian maps
X .t/ 2 �, the action functional A is given by

A D
Z �Z

S�

1

2
jXt j2�� dy �

Z
X .t;S�/

�.�/dx C 1

8�

Z
R3

jrV j2 dx
�
dt;

where the enthalpy �.�/ is defined in (1.7), the gravitational potential V.t; x/ by
(1.3) (or equivalently V D jxj�1 � �), and the physical density � in the Eulerian
coordinates is given by

�.t; � / D
�

��
detDX .t; � /

�
� X .t; � /�1 W X .t; S�/! R

C [ f0g

and extended as 0 outside X .t; S�/ � R3. Through a standard calculus of variation
procedure (with respect to X ), it is straightforward to verify that X .t/ is a critical
path of A if and only if .�; u D Xt �X�1/, which is supported on X .t; S�/, solves
the Euler-Poisson system (1.1)–(1.3). The reference density �� plays the role of a
parameter not evolved in t . The conserved energy of this Lagrangian system is

E D
Z
S�

1

2
jXt j2�� dy C

Z
X .t;S�/

�.�/dx � 1

8�

Z
R3

jrV j2 dx

D
Z
R3

1

2
�juj2 C�.�/ � 1

8�
jrV j2 dx:

One observes that the potential energy consisting of the enthalpy and gravity de-
pends on X only through the density �. Therefore the action functional is invariant
under the transformation X .t/ ! X .t/ � T , where T belongs to the group G of
diffeomorphisms on S� preserving ��, namely,

G D fdiffeomorphism T W S� ! S� j .�� � T / detDT D ��g:
The Euler-Poisson system (1.1)–(1.3) in the Eulerian formulation is essentially a
reduction of the Lagrangian system due to this relabeling symmetry where �.t; �/
and u.t; �/ are supported on X .t; S�/.

The nonrotating star .��; u � 0/ corresponds to the stationary solution X � id
along with �� D ��.jxj/, which is a critical point of the potential energy. Let
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TPP FOR STABILITY OF GASEOUS STARS 2569

X .t; x; �/ be a family of solutions (parametrized by �) in the Lagrangian formu-
lation with the reference density ��.x; �/ such that X .t; x; 0/ D x, ��.x; 0/ D
��.x/, for all x 2 S�. The linearized system at X D id and �� governs the
dynamics of the leading-order variation zX D @�X j�D0, which also involves � D
@��j�D0. The corresponding quantities in the Eulerian formulation are

� D @��j�D0 D
�
@��� � r � .�� zX /

�
; v D @�uj�D0 D @�.Xt � X�1/j�D0 D zXt ;

which are supported on S�. The associated action of the linearized Lagrangian sys-
tem, which is simply the quadratic part of A, can be expressed more conveniently
using � as

A2 D 1

2

Z
S�

��j zXt j2 ��00.��/�2 dy C 1

8�

Z
R3

jr.jxj�1 � �/j2 dx:

Using the above formula of � , which also implies (1.8), one obtains the linearized
equation through the variation of A2 with respect to zX ,

� zXt t � r �
�
�00.��/� C jxj�1 � �

� D 0;
which is equivalent to (1.9). The quadratic part

E2 D 1

2

Z
S�

��jvj2 C�00.��/�2 dx � 1

8�

Z
R3

jr.jxj�1 � �/j2 dx D H�.�; v/

of the nonlinear energy E, which is equal to the Hamiltonian H�.�; v/ of the
linearized Euler-Poisson system defined in (3.20), is conserved by these linearized
solutions.

Through the Legendre transformation U D ��Xt , the Lagrangian structure with
the action A induces a natural Hamiltonian structure of the Euler-Poisson system
with the Hamiltonian H and the standard symplectic structure J :

H.X ; U / D
Z
S�

1

2��
jU j2 dy C

Z
X .t;S�/

�.�/dx � 1

8�

Z
R3

jrV j2 dx;

J D
�
0 1

�1 0

�
:

It might be possible to apply the general results in Section 2 to analyze the lin-
earized Euler-Poisson system at .��; 0/ as a linear Hamiltonian system of the lin-
earized Lagrangian map @�X and momentum @�U . As in the nonlinear case, one
could expect such a system to be reduced to (1.8)–(1.9) through a reduction due
to the relabeling symmetry. We carried out the analysis directly on (1.8)–(1.9)
with the different symplectic structure J�, where the large symmetry group (cor-
responding to additional infinite kernel dimensions) has been reduced and stabil-
ity/instability is directly on the linearized density and velocity.

Acknowledgments. This work is supported partly by National Science Foun-
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