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Origami-inspired systems are attractive for creating structures and devices with tunable
properties, multiple functionalities, high-ratio packaging capabilities, easy fabrication,
and many other advantageous properties. Over the past decades, the community has
developed a variety of simulation techniques to analyze the kinematic motions, mechani-
cal properties, and multiphysics characteristics of origami systems. These various simu-
lation techniques are formulated with different assumptions and are often tailored to
specific origami designs. Thus, it is valuable to systematically review the state-of-the-art
in origami simulation techniques. This review presents the formulations of different ori-
gami simulations, discusses their strengths and weaknesses, and identifies the potential
application scenarios of different simulation techniques. The material presented in this
work aims to help origami researchers better appreciate the formulations and underlying
assumptions within different origami simulation techniques, and thereby enable the selec-
tion and development of appropriate origami simulations. Finally, we look ahead at
future challenges in the field of origami simulation. [DOI: 10.1115/1.4055031]
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1 Introduction, History, and Organization

Folding has generated numerous inspiring phenomena in nature
and our daily lives; for example, some insects have wings that
include folded edges to help resist loads during flight [1] and pro-
teins require accurately folded three-dimensional (3D) configura-
tions to function properly [2]. Origami artists have long been
fascinated by the rich geometries obtained from repeatedly and
strategically folding sheets of paper. Inspired by these origami
artists, researchers and engineers have explored the potential of
building structures and mechanisms with origami principles over
the past decades. For example, origami has been used to create
metamaterials [3–10], robotic systems [11–18], active microdevi-
ces [19–22], biomedical tools [23–27], deployable building struc-
tures [28–31], reconfigurable space structures [32–34], packaging
systems for engineering devices [35–37], and more [38–43].
Recent review articles have summarized developments in origami
including applications in micro- and nanoscale systems [44],
architected materials [45], biomedical applications [46], origami
robots [47], designs and applications of engineering origami [48],
architectural applications [49], and mathematical approaches for
design and kinematic folding [50].

Alongside developments in origami designs and applications,
many dedicated simulation techniques have been developed to
analyze the kinematics, mechanics, and multiphysics properties of
these thin sheet systems. Simulating the physical behavior of ori-
gami forms the basis for understanding, analyzing, designing, and
optimizing origami-inspired systems. In light of this, we believe
that it is beneficial to review the simulation of origami to catego-
rize different simulation techniques, to summarize the underlying
mathematical models and solution methods involved, and to pres-
ent the strengths and weaknesses of different techniques.
Although origami simulation borrows widely from analyses and
techniques in other disciplines in science and engineering, there
are unique challenges; for example, the pattern geometry and

localized crease behavior can significantly impact the global
response, and efficient simulations require careful consideration
of the degrees-of-freedom of the origami system. The presented
material aims to help future origami scientists and engineers to
select and develop appropriate simulation techniques for specific
projects. Moreover, because different simulation techniques were
developed to answer different questions regarding origami sys-
tems, learning about the underlying principles for simulation tech-
niques can also help origami researchers to ask the right
questions.

Figure 1 depicts the history of origami simulations in broad
brush strokes. Of course, no histories are complete and technical
developments are not necessarily sequential; moreover, related
simulations can be found in advance of the specific development
related to origami. The simulation of origami starts with the anal-
ysis of their kinematics, dating back to the early 1970s. The pio-
neering works by Huffman [51] and by Resch [52] demonstrate
such early efforts to simulate origami folding in a virtual environ-
ment. In the 1990s and 2000s, a number of studies proposed
approaches and concepts to simulate the kinematic folding
motions of origami [53–57]. These studies pinned down many
fundamental ideas for the kinematic simulation techniques of ori-
gami. During this period, there were also early works studying the
mechanical behavior of origami [58,59]. Starting around 2010,
researchers began exploring origami for creating mechanical
metamaterials, crash boxes, and other engineering structures
[4,5,60]. To capture the mechanical properties of origami systems
for these application scenarios, various mechanics-based simula-
tion techniques were created [61–63]. More recently, researchers
have started exploring active origami systems that can fold auton-
omously in response to environmental stimuli and can generate
unique nonmechanical behaviors [19,21,24]. In response to the
need for capturing the folding behaviors and the nonmechanical
properties of active origami systems, researchers have started
building multiphysics-based simulation platforms to capture
advanced behaviors of origami systems [39,64,65].

The history of origami simulation also gives us a rationale for
separating the simulation techniques into three major groups:

Manuscript received October 16, 2021; final manuscript received July 7, 2022;
published online August 16, 2022. Assoc. Editor: Yaoyao Fiona Zhao.

Applied Mechanics Reviews MAY 2022, Vol. 74 / 030801-1CopyrightVC 2022 by ASME

D
ow

nloaded from
 http://asm

edigitalcollection.asm
e.org/appliedm

echanicsreview
s/article-pdf/74/3/030801/6909525/am

r_074_03_030801.pdf by U
niversity of M

ichigan, Evgueni Filipov on 21 July 2023

https://crossmark.crossref.org/dialog/?doi=10.1115/1.4055031&domain=pdf&date_stamp=2022-08-16


kinematics-based simulations, mechanics-based simulations, and
multiphysics simulations. These three groups form the three major
sections of this review; within each section, we will categorize the
simulations based on their formulation rather than their chrono-
logical order. First, we will briefly discuss the scope of this work
and the terminology, before expanding on each of the three identi-
fied categories. Following these three sections, we will summarize
existing simulation packages, discuss how to select appropriate
simulation techniques, and discuss future challenges in the field.

2 Scope and Terminology

This section outlines the scope of the paper and introduces
important terminologies related to origami simulations. The focus
of this work is the simulation of origami systems, which answers
the question of how to simulate the folding motions and the corre-
sponding property changes in origami systems. This paper will
therefore not focus on the design of origami systems, which
includes problems such as how to generate new origami patterns,
solve mountain-valley assignments, and adjust existing patterns
for certain applications. Nonetheless, we expect that this paper
will provide useful information for origami designers to select and
build suitable simulation techniques for their specific problems.

Moreover, we will focus on the simulation of origami with
straight creases. Simulating the behavior of curved creases often
requires drastically different formulations [66]. For example,
defining a straight crease only requires specifying two nodes at
the end of the crease and the folding can be represented with a sin-
gle scalar variable. In contrast, defining a curve crease requires
using mathematical tools such as spline or polynomial functions,
and the fold angle can vary along the length of the crease. The
simulation techniques covered in this review will also be applica-
ble to the analysis of a wide range of kirigami systems, where cuts
are introduced, provided that the folding creases remain straight.

2.1 Model, Solution Method, Simulation. Before introduc-
ing specific origami terminologies, we first discuss three funda-
mental terms used in the simulation of physical systems: model,
solution method, and simulation. In many situations, these three
terms are used interchangeably; however, we believe it is best to
define and use these terms more carefully.

Model: In this work, we define a model as a mathematical rep-
resentation of physical objects. This primarily includes variables
to describe the state of the system and governing relationships
between these variables. The number of independent variables
within the system is referred to as the degrees-of-freedom or DOF.
For example, the configuration of a single-degree-of-freedom

(SDOF) system can be determined using just one scalar variable;
a multidegrees-of-freedom (MDOF) system needs to be defined
using multiple scalar variables. In addition, a model gives mathe-
matical equations to describe the governing relationships between
these variables. For example, we can use constitutive relationships
to correlate fold angles and crease moments or use kinematic con-
straining equations to coordinate folding angles between different
creases. We are usually interested in how these variables evolve
over “time” (or loading step) without violating the governing
equations. However, a model alone cannot tell us how these varia-
bles evolve as it only formulates a mathematical problem to be
solved. To further solve the evolution problem, solution methods
are needed.

Solution method: We define solution methods as ways of solv-
ing mathematical problems. For sufficiently simple origami mod-
els, analytical solutions can be found for the folding motion. More
complicated origami models, however, require the solution of par-
tial differential equations or ordinary differential equations
(ODEs) with no analytical solution. In such cases, numerical solu-
tion methods are used to analyze the problem.

Simulation: In general, simulation refers to imitating the behav-
iors of physical systems over time in virtual environments. More
specifically, a simulation includes a model to represent a physical
system and a solution method to solve how the system evolves
over time (or loading step). A suitable origami model is developed
based on the characteristics of the physical origami system and a
solution method is chosen based on the characteristics of the
mathematical problem embedded in the origami model.

2.2 Origami Terminology. Next, we introduce common ori-
gami terminologies, which will be used throughout the remainder
of this paper.

Crease: The creases (or folds) of an origami pattern are the
lines about which the folding occurs; see Figs. 2(a) and 2(b).
Common origami models idealize creases as one-dimensional
(1D) fold lines with zero width and the adjacent panels rotate
about these creases. The terms “creases” and “folds” are often
used interchangeably.

Compliant crease: Unlike creases that provide rotation about a
1D axis (like a door hinge), the folding motion of compliant creases
relies on a distributed bending deformation over the width of a
crease. The non-negligible width of these compliant creases requires
additional considerations when building models for origami sys-
tems. Compliant membranes often serve as origami creases for
actuation [19,21] or for panel thickness accommodation [67].

Vertex: The vertex is a “point” where multiple creases meet;
see Fig. 2(b). In most origami models, the vertex is indeed a point

Fig. 1 The history of simulation of origami systems in a broad brush stroke (left) and related analysis methods and techni-
ques from other engineering disciplines (right)
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in 3D space. However, when modeling origami with thick panels
or with compliant creases, the intersection of creases is no longer
a defined point—nonetheless, a vertex can still be identified
intuitively.

Panel: The panel is the facet of an origami pattern; see Fig.
2(b). For straight-crease origami, it is the polygon enclosed by ori-
gami creases and boundary lines.

Origami crease pattern: The crease pattern is the geometry
formed by the vertices and creases of an origami in the flat config-
uration; see Fig. 2(a). In combination with the mountain/valley
assignment of each of the folds, the crease pattern determines the
folding motion of an origami pattern and has significant influence
on the properties of an origami.

Mountain fold and valley fold: The mountain/valley fold con-
vention denotes the direction of folding in origami. For example,
the Miura-ori unit cell shown in Figs. 2(c) and 2(d) has three
mountain folds, indicated with red solid lines, and one valley fold,
indicated with blue dashed lines.

Sector angles: The sector angles are the in-plane angles around
vertices used to describe origami patterns; see Fig. 2(c). In this
work, we use h to represent sector angles.

Dihedral angles: The dihedral angle is the crease angle between
two adjacent origami panels; see Fig. 2(d). It can be calculated
using the normal vectors of the two adjacent panels. In this work,
we use / to denote dihedral angles.

Fold angles: The fold angle is similar to the dihedral angle, but
it measures how much a crease folds from its initial configuration.
In general, the sum of the fold angle and the corresponding dihe-
dral angle is 180 deg as indicated in Fig. 2(d). In this work, we use
q to denote the fold angles.

Thick origami: Thick origami models integrate thickness into
the model formulations for applications where the thickness of
panels cannot be neglected.

Rigid foldable origami: An origami system is rigid foldable if
the folding process can happen without panel deformation. That
is, all deformations occur in the form of crease folding.

Developable origami: An origami pattern is developable if it
forms a flat surface after all creases are unfolded (to flat). Equiva-
lently, a developable origami pattern has all sector angles at each
vertex adding to 2p.

Flat foldable origami: An origami is flat foldable if it forms a
flat surface after all creases are folded (to 180 deg). We will
revisit developable origami and flat foldable origami in Sec. 3.

3 Kinematics-Based Simulations

This section introduces kinematics-based simulations of ori-
gami systems. First, we briefly review how to perform kinematic

simulations for a generic mechanism. Consider the analysis of the
simple linkage shown in Fig. 3. The first step is to select the varia-
bles to describe its current configuration; here, we use the Carte-
sian coordinates (x, y) of the free moving end. Next, a kinematic
constraining equation is established for the variables; here, the
constraint is the fixed length l of the rigid member. After deriving
this constraint, the kinematically admissible motion can be solved
analytically or numerically. For an analytical solution, coordinate
y can be directly calculated from coordinate x through rearranging
the kinematic constraint. For a numerical solution, the constrain-
ing equations are first linearized with respect to time. Then, we
find the kinematically admissible infinitesimal solution (the veloc-
ity solution of _x and _y) which does not violate the linearized con-
straints. In this simple example, the velocity vector needs to be
perpendicular to the rigid bar. Finally, an ODE solver can be used
to solve how x and y vary over time. This simple example also
illustrates how the selection of the variables can affect the solution
process of the problem significantly; using polar coordinates here
would have been more straightforward.

The remainder of this section addresses how to pick variables
to represent an origami, how to form the constraining equations,
and how to solve folding trajectories based on the constraining
equations.

A key assumption in the kinematics-based simulations of ori-
gami is that the origami panels are assumed to be rigid throughout
the folding process, meaning that the origami panels (or facets) do
not change shape and remain planar. Usually, a kinematics-based
origami model represents an origami structure using crease fold-
ing angles as variables. Based on the folding angles, kinematic
constraining equations can be derived. Additional constraints can
be added for enforcing developability and flat foldability of the
origami pattern if necessary. These kinematic constraints will be
relaxed when using mechanics-based simulations of origami sys-
tems where panel deformations are allowed. For sufficiently sim-
ple systems, the embedded mathematical problem can be solved
directly and the evolution of the folding angles is found analyti-
cally. However, for more complicated systems, we often rely on
numerical methods to solve for the folding trajectory.

In this section, we introduce different origami model formula-
tions and solution methods used to analyze the kinematic folding
motions of origami systems. The subsections are categorized
based on the characteristics of the origami systems: (1) develop-
able and flat-foldable origami; (2) thin and rigid origami; (3) com-
pliant crease origami; and (4) thick origami. Subsection 3.1
introduces the constraining equations for developability and flat-
foldability, and a simulation technique for solving this type of ori-
gami system. Subsections 3.2–3.5 introduce kinematic simulations
for thin and rigid origami models (with rigid panels that have
assumed zero thickness). More specifically, Subsecs. 3.2 and 3.3

Fig. 2 Definitions of common origami terminologies Fig. 3 An introduction to kinematics-based simulations
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Table 1 A summary of kinematics-based simulations for origami

Simulation technique Formulation Notes Reference

Flat-foldable origami

Reflection based simulation
Reflection operations are used to
capture the flat folding process of
origami systems. The simulation
checks if flat folding conditions are
met and gives the overlapping con-
ditions of panels.

The simulation technique does not
predict intermediate folding steps
and directly maps the developed
flat configuration to another flat
folded configuration.

References [57] and [68]. Left
figure from Ref. [68]. Figure repro-
duced with permission from the
authors.

Thin and rigid origami

Spherical trigonometry
The folding angle of the origami is
solved using spherical trigonome-
try directly (see Eqs. (4)–(7)).

This simulation is mostly used for
analyzing SDOF systems and the
origami kinematics are solved
analytically.

References [10,32,51], and
[69–80]. Left figure from Ref. [70].
Figure reproduced with permission
from American Physical Society
(2015).

Basic trigonometry The nodal coordinates and folding
angles of the origami are solved
using basic trigonometry, where
the nodal coordinates are included
as model variables to simplify the
derivation.

This simulation is usually applica-
ble to specific patterns with peri-
odically repeating unit cells.

References [5,41], and [81–83].
Left figure from Ref. [5]. Figure
reproduced with permission from
the authors.

Loop closure constraint This simulation technique repre-
sents the loop closure constraint
(Eq. (16)) using rotational matrix
and solves the folding motion that
complies with the constraining
equation.

This constraint is mathematically
equivalent to representing origami
vertices using spherical trigonome-
try. Numerical solution methods
can be used for MDOF systems.

References [53,55,56], and
[84–96]. Left figure from Ref. [97].
Figure reproduced with permission
from the authors.

Quaternions The loop closure constraint is
expressed using quaternions
instead of the rotation matrix.

Although using quaternions is less
popular, prior work suggests that
quaternions can be more efficient
and can capture the panel contact
[98].

References [98–101]. Left figure
from Ref. [98]. Figure reproduced
with permission from the Royal
Society (2010).

Geometric-graph-theory The graph product is used to repre-
sent the origami geometry with
periodic units, such as the (general-
ized) Miura-ori tessellation.

The simulation technique can cap-
ture the periodic folding motion in
origami.

Ref. [102]. Left figure from Ref.
[102]. Figure reproduced with per-
mission from American Society of
Mechanical Engineers ASME
(2019).

Compliant crease origami

Smooth fold model
The simulation technique is an
extension of the loop closure con-
straint. In addition to the rotational
constraint, a translational con-
straint is added to ensure compati-
bility at a vertex.

The formulation is similar to simu-
lating openings in origami using a
loop closure constraint. An exten-
sion of the model enables it to con-
sider mechanical loading behaviors
[103].

References [103–107]. Left figure
from Ref. [103]. Figure reproduced
with permission from American
Society of Mechanical Engineers
ASME (2017).

Thick origami

Spatial linkages
The simulation technique captures
the motion of degree-4, degree-5,
and degree-6 thick origami vertices
as spatial 4R, 5R, and 6R linkages.

This technique can capture thick
origami made with a hinge-shift
technique.

References [108] and [109]. Left
figure from Ref. [108]. Figure
reproduced with permission from
American Association for the
Advancement of Science AAAS
(2015).

Rolling hinges Kinematic constraining equations
can be derived based on the geom-
etry of the rolling surface and the
motion can be solved analytically.

This technique is designed specifi-
cally for thick origami with rolling
hinge connections.

References [110] and [111]. Left
figure from Ref. [110]. Figure
reproduced with permission from
American Society of Mechanical
Engineers ASME (2017).
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introduce simulations that are based on analytical solution meth-
ods while Subsecs. 3.4 and 3.5 focus on simulations that use
numerical solution methods. After introducing the thin and rigid
origami model, we will discuss how to extend this model to cap-
ture the behaviors of compliant crease origami (Subsec. 3.6) and
thick origami systems (Subsec. 3.7). Table 1 gives a summary of
kinematics-based simulations covered in this section.

3.1 Developable and Flat-Foldable Origami. The first simu-
lation technique we will introduce is the reflection-based simula-
tion for computing the folded configurations of developable and
flat-foldable origami systems. Before introducing the formulation
of this simulation technique, we further discuss developability and
flat-foldability of origami patterns. These two concepts can be
used to generate kinematic constraining equations for many ori-
gami models.

If an origami vertex is developable, it should form a flat surface
when there is no folding at all creases. Equivalently, a develop-
able origami vertex should have

XN
i¼1

hi ¼ 2p (1)

where hi are the sector angles within the vertex. Figure 4(a) pro-
vides an intuitive explanation of this equation. If the sum of all
sector angles is smaller than 2p, a cone is obtained. If the sum of
all sector angles is larger than 2p, the additional angles will pre-
vent the paper from reaching a flat configuration and a saddle-like
configuration is obtained. A more mathematically rigorous defini-
tion for developability can be found in the textbook by Demaine
and O’Rourke [113]. Developability is particularly valuable for
the fabrication of origami structures: planar fabrication techniques

like lithography [20,21,25] or laser cutting [13,14] can be used to
build the origami structure before folding it into a 3D shape.

Flat-foldability is another important characteristic of an origami
vertex. An origami vertex is flat-foldable if it forms a flat surface
after all creases are folded by 6180 deg. The flat foldability is
useful for densely packing engineering systems [28,35,114]. The
Kawasaki–Justin theorem [54, 115] provides one necessary condi-
tion for a degree-n vertex to be flat-foldable

h1 þ h3 þ � � � þ hn�1 ¼ h2 þ h4 þ � � � þ hn ¼ 180 deg (2)

where n needs to be even. In addition to these angular relation-
ships, the necessary mountain-valley assignment is given by the
Maekawa theorem [116], which states that the number of moun-
tain folds and valley folds should differ by 62. Figure 4(b) gives
a graphical explanation of these two theorems. The origami in
Fig. 4(b) is a degree-4 vertex and has four sector angles, h1 to h4.
If the vertex is cut from a unit circle, then the arc lengths associ-
ated with these four sector angles are also h1 to h4. For the vertex
to be folded flat, the sum of arc lengths from odd sector angles
should equal the sum of arc lengths from even sector angles, that
is: h1 � h2 þ h3 � h4 ¼ 0. If this condition is not satisfied, the ori-
gami will be torn apart and develop a “gap” if forced to fold flat,
as illustrated in Fig. 4(b). More rigorous mathematical proofs and
derivations for flat-foldability can be found in Ref. [113]. Both
developability and flat-foldability were discussed extensively in
the early works on kinematic simulations of origami, such as in
the work by Bern and Hayes [117], Hull [118], Kawasaki [54],
and Justin [115].

Finding the flat folded configuration of a developable and flat-
foldable origami can be done directly, as demonstrated in the
work by Mitani [57]. In his work, a reflection-based simulation is
used to generate the flat folded configuration of origami by using
seven reflection based operations summarized in Ref. [57]. After

Fig. 5 Simulating origami folding using spherical
trigonometry

Fig. 4 Developability and flat-foldability of an origami with a
single vertex

Table 1 (continued)

Simulation technique Formulation Notes Reference

4-bar linkage Kinematic constraining equations
can be derived based on the geom-
etry of a 4-bar linkage and the
motion can be solved analytically.

This technique is designed specifi-
cally for offset linkage based thick
origami systems.

Reference [112]. Left figure from
Ref. [112]. Figure reproduced with
permission from American Society
of Mechanical Engineers ASME
(2020).
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generating the flat-folded configuration, one can determine the
overlapping conditions of panels using a brute-force searching
approach. This simulation technique is implemented in a JAVA

software package called ORIPA and can be found at Ref. [68]. The
reflection-based simulation was later used to study the folding of
curved crease origami by Mitani and his coworkers [119].
Although the simulation was one of the early achievements in the
field of computational origami, it cannot reproduce the intermedi-
ate folding process.

3.2 Spherical Trigonometry and Analytical Methods. Not
all origami systems are developable or flat-foldable, and these
constraints can therefore be relaxed. For thin and rigid origami
system, the only assumption is that the panels of the origami are
rigid with zero thickness. In this section, we introduce the use of
spherical trigonometry to capture this thin and rigid origami
system.

Spherical trigonometry provides one direct way of simulating
the folding motions of a thin and rigid origami system [70,74].
We represent the relationship between crease dihedral angles at a
vertex using spherical trigonometry and solve how these dihedral
angles evolve analytically. Figure 5(a) shows a spherical triangle,
which is the intersection of a three-face box corner and a unit
sphere. Angles a, b, and c are the angles of the three-face box cor-
ner measured at the center of the sphere, while the angles A, B,
and C are the angles measured on the curved surface of the sphere
(using the tangent line of the great circle arc). For a unit sphere
the arc lengths corresponding to the center angles a, b, and c are
also a, b, and c. These angles (or arc lengths) can be related using
the cosine rule

cosðaÞ ¼ cosðbÞcosðcÞ þ sinðbÞsinðcÞcosðAÞ;
cosðbÞ ¼ cosðaÞcosðcÞ þ sinðaÞsinðcÞcosðBÞ;
cosðcÞ ¼ cosðaÞcosðbÞ þ sinðaÞsinðbÞcosðCÞ:

(3)

Using these relationships, we can directly solve for the dihedral
angles of creases. For the degree-4 vertex shown in Fig. 5(b),
applying the spherical trigonometry equations with added arc l2
(see Fig. 5(c)) allows us to relate the dihedral angles of these four
creases as

/1 ¼ /1;1 þ /1;2 ¼ cos�1 cos h2ð Þ � cos l2ð Þcos l3ð Þ
sin l2ð Þsin l3ð Þ

� �

þ cos�1 cos h3ð Þ � cos l1ð Þcos l2ð Þ
sin l1ð Þsin l2ð Þ

� � (4)

/2 ¼ cos�1 cos l2ð Þ � cos h1ð Þcos h2ð Þ
sin h1ð Þsin h2ð Þ

� �
(5)

/3 ¼ 2p� /3;1 � /3;2

¼ 2p� cos�1 cos l1ð Þ � cos l2ð Þcos h2ð Þ
sin l2ð Þsin h2ð Þ

� �

� cos�1 cos l3ð Þ � cos l2ð Þcos h3ð Þ
sin l2ð Þsin h3ð Þ

� � (6)

/4 ¼ cos�1 cos l2ð Þ � cos h3ð Þcos h4ð Þ
sin h3ð Þsin h4ð Þ

� �
(7)

These equations are obtained by applying the cosine rules to the
two spherical triangles marked with arc fh1; h2; l2g and
fh3; h4; l2g of the degree-4 vertex. Generic equations for an arbi-
trary degree-n vertex can be found in Refs. [70,75]. For simplicity,
we will focus on the degree-4 vertex. Assuming that all sector
angles are given, it can be seen from the above four equations that
the degree-4 vertex has a single degree-of-freedom.

Although this simulation is derived for more generic thin and
rigid origami systems, it can still be applied to developable

and flat-foldable origami systems. Substituting the developability
and flat-foldability constraints for a degree-4 vertex, h1 þ h3 ¼ p
and h2 þ h4 ¼ p, into Eqs. (4)–(7) will yield

/1 ¼ �/3

/2 ¼ /4

which shows that that the dihedral angles at the opposite sides of
such a degree-4 vertex are equal [32,51,69,72]. By convention,
folds 1 and 3 are referred to as minor folds and folds 2 and 4 as
major folds. The minor folds have opposite mountain-valley
assignments while the major folds have the same assignments.

For this developable and flat-foldable degree-4 vertex, we can
further express the relation between dihedral angles /1 and /2

using the fold angle multiplier l1;2 as

l1;2 ¼
tan

1

2
/1

� �

tan
1

2
/2

� � ¼
sin

1

2
h1 þ h2ð Þ

� �

sin
1

2
h1 � h2ð Þ

� � (8)

The general form of dihedral angle multiplier li;j and the calcula-
tion of the remaining three folding angle multipliers for the
degree-4 vertex are

li;j ¼
tan

1

2
/j

� �

tan
1

2
/i

� � (9)

l3;4 ¼ �l1;2; l2;3 ¼ � 1

l1;2
; l4;1 ¼

1

l1;2
(10)

This fold angle multiplier is thoroughly discussed in Ref. [72].
Different derivations (such as using Gaussian Sphere) of this
angular relationship on minor and major folds can be found in the
textbook by Hull [74] (Activities 29 and 30) and in the appendix
by Lang et al. [32].

The fold angle multiplier provides a useful technique to extend
the study of a single vertex to the study of an entire origami pat-
tern [72]. To further ensure that the vertices around a polygonal
panel are rigid foldable, we need to ensure that

Yn
i¼1

li ¼ 1 (11)

where li are the fold angle multiplier of the angles within a polyg-
onal panel. Figure 6 shows an example based on the Miura-ori tes-
sellation. Using Eqs. (8) and (10), the fold angle multipliers of the
Miura-ori unit cell are calculated. Next, we place these values at
the corresponding locations on the pattern. To ensure that the four
vertices around a quad panel can fold, we need to have
l1l2l3l4 ¼ 1. In this example, the Miura-ori pattern indeed satis-
fies the requirement and thus it is rigid foldable.

This fold angle multiplier is particularly useful for designing and
studying the kinematics of quad-based developable and flat-
foldable origami, which are origami patterns with degree-4 vertices
and quadrilateral panels [69,71]. Based on this fold angle multi-
plier, Evans et al. summarize various rigid-foldable quad-based ori-
gami patterns (such as the Miura pattern, Huffman grid pattern,
chicken wire pattern) and introduce multiple ways to adjust these
existing patterns for developing new patterns in Ref. [71]. Similar
but equivalent techniques for quad-based origami systems were
also developed by Tachi [73], Lang et al. [69], and Feng et al. [87].

3.3 Trigonometry and Analytical Methods. The simulation
techniques introduced in Subsec. 3.2 only use dihedral angles to
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describe the folded geometry of an origami structure. It is com-
mon to further include the nodal coordinates as model variables
for representing the configurations of origami structures when
working on simple patterns with repeating unit cells [5,10,62]. For
example, the folding motions of Miura-ori patterns can be calcu-
lated using standard trigonometry and the nodal coordinates of the
Miura unit are found using the following equations [5]:

H ¼ a � sinðwÞsinðhÞ (12)

S ¼ b � cos wð Þtan hð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ cos2 wð Þ tan2 hð Þ

p (13)

L ¼ a �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� sin2ðwÞ sin2ðhÞ

q
(14)

V ¼ b � 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ cos2 wð Þ tan2 hð Þ

p (15)

where the variables are depicted in Fig. 7. Solving the nodal coor-
dinates of an origami structure directly is useful in some situa-
tions. For example, the above equations relate the length 2L and
width 2S of the unit cell, so the Poisson’s ratio of Miura-ori meta-
materials can be found directly [5,10,62]. However, direct calcula-
tion of the nodal coordinates is usually only applicable to simple
patterns with repeating unit cells such as the Miura-ori and its var-
iations [81,82]. In special situations, this approach can also be
applied to study the folding motions of specific patterns such as
the shopping bag packing problem in Refs. [41] and [83].

The simulation techniques introduced in Subsecs. 3.2 and 3.3
are primarily suitable for analyzing the folding motion of SDOF
origami patterns because analytical solution methods are used.
Certain origami patterns with higher degree vertices (and there-
fore MDOF kinematics) can also be solved analytically by intro-
ducing additional symmetry constraints. Symmetry constraints
enforce the same folding angles in specific sets of creases, which
reduce the kinematics to SDOF. For instance, the waterbomb pat-
tern (which contains degree-6 or degree-8 vertices) has been stud-
ied by adding symmetry conditions [120], which have revealed

multistability [79] and the ability to program 3D surfaces [121].
Wang et al. have given a summary of various patterns with
degree-6 vertices [122].

3.4 Loop Closure Constraint and Numerical Methods. In
order to create a simulation technique for generic origami systems
with MDOF kinematics, a more scalable and compact formulation
of the kinematic constraints is required. Over the years, origami
researchers have realized that the study of origami systems shares
great similarities with the study of linkages [88–90,113]. More
specifically, a thin and rigid origami vertex can be represented by
an equivalent spherical linkage model (Fig. 8). This similarity
provides an approach to construct the loop closure constraint,
which can be solved using numerical methods. The mathematical
equation of loop closure constraint is first developed by Kawasaki
[53] and Belcastro and Hull [55] without highlighting the connec-
tion with spherical linkages.

Figure 8 demonstrates how the loop closure constraint for an
origami matches that of a spherical linkage. In this formulation,
the loop closure constraint can be represented using rotation mat-
rices as

Fðq1;…;qnÞ ¼ R3;nR1;n…R3;1R1;1 ¼ I333 (16)

where R1;i and R3;i are defined as

R1;i ¼
1 0 0

0 cosqi �sinqi
0 sinqi cosqi

2
4

3
5 (17)

R3;i ¼
coshi �sin hi 0

sin hi coshi 0

0 0 1

2
4

3
5 (18)

The two matrices describe the rotation around local coordinate
axis 1 and axis 3 of a folding crease as shown in Fig. 8 (counter-
clockwise). In addition to using the plain rotational matrix, it is
also popular to represent the same constraint using the
Denavit–Hartenberg transformation matrix (with additional dis-
placement variables) [88,90,108] or other mathematically equiva-
lent representations such as those demonstrated in Feng et al. [87].
For simplicity, we will use the simple rotational matrix based rep-
resentation here.

To understand this equation, imagine that we walk around the
vertex. Every time we cross the panel with sector angle hi we
rotate about axis 3 using R3;i, and every time we cross a crease /i,
we rotate by fold angle qi about axis 1 using R1;i. Thus, the rela-
tionship between the adjacent crease direction vectors ei and eiþ1

can be expressed as eiþ1 ¼ R3;iR1;iei. In this fashion, if we com-
bine all the rotations around a given vertex, we should have

Fig. 8 Simulating “thin and rigid” origami vertex as a spherical
linkage. (a) An origami system. The vectors n1;n2;n3 denote a
local coordinate system for the first panel (corresponding to
h1), where n1 k e1 and n3 is perpendicular to the panel. (b) The
corresponding sphericallinkage model.

Fig. 6 Applying the fold angle multiplier to analyze the folding
motion of an Miura origami pattern

Fig. 7 Geometry of Miura-ori using standard trigonometry
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R3;nR1;n…R3;1R1;1e1 ¼ e1, which is equivalent to saying that
R3;nR1;n…R3;1R1;1 equals the identity matrix. Or in terms of
walking, we return to the starting position.

There are a few properties worth mentioning regarding this
loop closure constraint. First, this constraining equation is applica-
ble to an arbitrary degree-n vertex (including nondevelopable ver-
tices). Second, the loop closure constraint is mathematically
equivalent to using spherical trigonometry, as pointed out in Refs.
[56] and [69]. Third, Eq. (16) gives three constraining equations
for a single vertex so a generic degree-n vertex will have n� 3
degrees-of-freedom. Finally, to extend this loop closure constraint
from a vertex to an entire pattern, we need to ensure that all inter-
nal vertices of the pattern satisfy the constraint.

Now that we have the loop closure constraint, we can follow
the process identified in Fig. 3(c) to solve for the folding motion
numerically. First, taking the derivative of the loop closure con-
straint with respect to time (Eq. (16)) will give a linearized con-
straining equation. This equation shows how the loop closure
constraint acts on the folding velocity of each fold. Next, we iden-
tify the nontrivial solution of the folding velocity that satisfies the
linearized constraint. Finally, we numerically integrate this fold-
ing velocity solution to solve for the folding motion.

With this general process in mind, the first task is to calculate
the derivative of this loop closure constraint to obtain the follow-
ing governing equation:

C _q ¼
½C1�
�

½CM�

2
4

3
5 _q1

�

_qN

2
4

3
5 ¼ 0 (19)

where the matrix C is the Jacobian of the loop closure constraint,
M is the number of vertices, N is the number of creases, the matrix
½Ck� is the derivative matrix for the kth vertex, and _qi is the fold-
ing velocity of the ith crease. Details of the calculation can be
found in Ref. [56].

The next task is to find the velocity vector _q that satisfies this
linearized constraining equation. Equation (19) shows that the
solution must lie in the null space of the Jacobian C to satisfy the
loop closure constraint. Following the work by Tachi, this nontri-
vial solution of _q is calculated using a trial velocity vector _q0 and
the pseudo-inverse of matrix C as

_q ¼ ½IN � CþC� _q0 (20)

where _q is the projection of the trial vector _q0 onto the null space
of the constraint matrix C. By selecting different trial vectors _q0,
one can also track different folding trajectories and study the
bifurcation of different folding paths.

Finally, to find the evolution of the folding angles over time,
we numerically integrate the folding velocity _q. There are numer-
ous solution methods available to handle this ODE. Tachi [56]
used Euler’s method to simulate the motion of rigid origami, and
many coding packages provide built-in ODE solvers such as the
ode45 function in MATLAB. In addition to these methods, Hu et al.
introduce a Lagrange multiplier-based method to calculate the

folding trajectory [85]. Xi and Lien give a solution method that
uses the pattern symmetry to speed up the algorithm when search-
ing for the folding trajectory [86].

This loop closure-based simulation has enabled numerous
works on the design of origami systems. In subsequent work by
Tachi and Demaine [91–93], they developed an approach to tuck
fold an origami pattern to fit arbitrary surfaces based on this simu-
lation. Feng et al. studied helical Miura origami [95] using an
equivalent loop closure formulation [87]. Their modified formula-
tion was also used in Ref. [123] to study the folding motion of an
origami-inspired shape memory alloy medical stent. Silverberg
et al. studied the mechanical behaviors of origami by adding rota-
tional springs to the kinematic relationships derived based on the
loop closure constraints [96].

It should be noted that the numerical integration of the loop clo-
sure conditions described here cannot be applied directly to quad-
based origami patterns with SDOF kinematics. This simulation
technique relies on the existence of a null space in the Jacobian
matrix C, to follow the folding motion. Due to the numerical
errors accumulated in the simulation, the constraining equation
may no longer be singular for quad-based origami systems. To
avoid this, Tachi suggests triangulating the quad panels by intro-
ducing additional crease lines [56,84]. In this way, the SDOF
quad-based origami is modeled as a MDOF system.

Finally, we wish to point out one fundamental limitation of the
trigonometry-based simulations and the loop closure-based simu-
lations. Both techniques cannot guarantee that the origami pattern
is folded to a valid configuration. This is because the mathemati-
cal theories behind both simulations do not consider the intersec-
tion of panels at a vertex and thus only provide necessary but
nonsufficient conditions for having a valid folding process
[55,113] (see Fig. 9). More difficulties emerge when considering
intersections between different parts of the origami that do not
share a single vertex. The search of a sufficient and necessary con-
dition for folding a thin and rigid origami remains an open
question [113].

3.5 Other Simulations for Thin and Rigid Origami. In
addition to the use of spherical trigonometry and loop closure con-
straints, other simulations have also been developed to study the
kinematics of rigid and thin origami structures. Although these
simulations utilize different mathematical representations for the
thin and rigid origami model, their formulations remain mathe-
matically equivalent.

Wu and You [98] first used quaternions to describe the kinemat-
ics of thin and rigid origami, replacing the rotation matrices when
expressing the loop closure constraint. Using quaternions offers a
number of advantages when compared to rotation matrices. For
example, quaternions give more compact representations of rigid
body rotations, are numerically more stable and allow users to
potentially determine panel intersection to rule out invalid origami
configurations [98]. The quaternion-based simulation was used to
study Miura-ori inspired structures and to demonstrate the
nonrigid-foldability of Kresling patterns in the works by Cai et al.
[100,101]. Despite their benefits, quaternions have not been popu-
lar among the origami community, likely because engineers and
scientists are less familiar with this mathematical tool.

More recently, a paper by Chen et al. [102] demonstrated a new
approach for representing the geometry of origami using an inte-
grated geometric-graph-theoretic approach. In this approach, the
graph product is used to generate the origami pattern with periodic
geometries. The paper applies this approach to study the folding
motion of the Miura-ori and Kresling patterns. However, the cur-
rent formulations have difficulties representing origami with non-
periodic characteristics (i.e., free-form origami patterns [91]). The
use of this graph product-based approach provides an efficient
technique for studying the uniform folding behavior (as well as
the corresponding loading behavior under uniform load), but
future studies are needed to extend the formulation to capture non-
periodic patterns.

Fig. 9 Loop closure based simulation techniques cannot cap-
ture situations where panels intersect
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3.6 Openings and Compliant Creases. If the origami has
internal openings or contains compliant creases, new constraints,
in addition to the loop closure constraint (Eq. (16)) are needed to
ensure valid folded configurations. In previous works on the simu-
lations of origami with internal openings and compliant creases,
the two topics are discussed separately. However, a closer look at
the formulations of these two techniques will reveal that they
share great similarities.

Figure 10(a) shows an origami loop with an opening. A loop
pattern like this can be modeled as a spatial linkage [88]. As
pointed out by Tachi [84], an additional constraint is required in
addition to the loop closure condition in Eq. (16). This extra con-
straint takes the form of

Xn
k¼1

�
Pk

i¼1

�
R1;iðqiÞR3;iðhiÞ

�
dk

�
¼ 0331 (21)

where dk is the edge vector following the internal loop boundary.
The edge vector dk is expressed in the local facet coordinate sys-
tem and can be zero, as illustrated in Fig. 10(a). The rotation
Pk

i¼1

�
R1;iðqlÞR3;iðhiÞ

�
is applied to dk to express it in the global

coordinate system. In effect, this additional Eq. (21) ensures that
we return to the location where we started after looping around
the opening and the original loop closure Eq. (16) ensures that we
recover a direction that is parallel to the starting orientation. A
single vertex discussed in Subsecs. 3.1–3.5 is a special case of the
loop pattern with an opening where all edge vectors dk are zero
and Eq. (21) is therefore automatically satisfied. This modeling
technique for origami patterns with openings enables the design
of “geometrically misaligned” patterns, which are origami pat-
terns with missing panels, proposed by Saito et al. [124].

Figure 10(b) gives an illustration of a single vertex with com-
pliant creases. Similarly, in addition to the rotational constraint
expressed in Eq. (16) another translational constraint is needed.
This additional constraint was developed by Hernandez et al.
[103] and is referred to as the “smooth fold model.” This con-
straint has the form

Xn
k¼1

�
Pk�1

i¼1

�
R1;iðqiÞR3;iðhiÞ

�
R1;kðakqk

�erk
þPk�1

i¼1

�
R1;iðqiÞR3;iðhiÞ

�
R1;kðqk

�
Ik

�
¼ 0331

(22)

where erk is a reference vector in the creases and Ik is a reference
vector in the panels (both expressed in local coordinates). The
rotation matrices in front of the two vectors convert them back to
the same global coordinates. Setting the sum of all vectors to a
zero vector ensures that the loop around the compliant crease ver-
tex is not broken.

Detailed calculations of the reference vectors erk can be found
in the original work [103]. In a nutshell, a polynomial deformation
shape function is used to describe the compliant crease geometry,
and this shape function is used to calculate erk and ak based on the
crease rotation and the width of crease. Hernandez et al. have
enabled this model to further capture the strain energy stored
within compliant creases for capturing mechanical loading [104].
This simulation technique was used for designing 3D surfaces for
different engineering applications [105–107].

The above discussion shows that simulating the openings
within origami patterns and the compliant capturing requires add-
ing an additional vector-based constraining equation. The addi-
tional constraint is needed because the “vertex” has higher
degrees-of-freedom for both cases. Therefore, even if the rota-
tional constraint is satisfied, the linkage can still be broken due to
translational motions. If we think of these origami vertices as spa-
tial linkages, these additional translational constraints are related
to the translation terms in the Denavit–Hartenberg transformation
matrix, which is omitted when using the simple rotational matrix
representation of the loop closure constraint. Moreover, if we can
close the vertex by removing the opening [84] or by removing the
width of the creases [103], both models can be reduced to the loop
closure constraint shown in Eq. (16) and the constraints given in
Eqs. (21) and (22) will be satisfied automatically.

3.7 Thick Origami. In this subsection, we discuss techniques
for simulating thick origami structures. In general, different thick-
ness accommodation techniques need to be captured using differ-
ent approaches. Therefore, this subsection is organized based on
the classification of different techniques for accommodating panel
thickness (see Fig. 11) as provided in the review article by Lang
[125].

We begin with two simple thickness accommodation techni-
ques: the tapered panel technique [126] and the offset panel tech-
nique [127,128]. The thick origami systems generated using these
two techniques have the same kinematic folding motions as their
corresponding thin origami systems. Thus, any simulation tech-
nique for thin and rigid origami systems (those introduced in Sub-
secs. 3.2–3.5) can be used to solve the folding motion of these two
types of thick origami. One limitation to consider is that, the range
of the folding angle can no longer reach 180 deg when using the
tapered panel technique [126].

Next, the double crease technique is also used for creating thick
origami structures [129,130]. Here, the single crease is separated
into two creases to accommodate the thick panels. Although the
technique itself does not preserve the kinematics (because one
crease is separated into two), the generated new crease pattern
with double creases can still be analyzed with the loop closure
constraint as demonstrated in the paper by Ku and Demaine [129].
In this case, the incorporation of double creases will generate
openings within the origami pattern and thus the additional con-
straints for the openings (introduced in Subsec. 3.6) are required
to capture the behavior accurately.

The rolling contact technique and the offset linkage technique
are two approaches to build thick origami that have unique kine-
matics. Because of the special designs of these two thickness
accommodation techniques, both rotational and translational
motion occurs between adjacent panels during the folding process.

Fig. 10 Origami with openings (a), and those with compliant
creases (b) and (c) can be modeled similar to spherical link-
ages, but with additional constraints
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Thus, capturing the folding kinematics requires using a general-
ized crease model that can further consider the additional transla-
tional motion between adjacent panels. When using the rolling
contact technique, the two adjacent panels each have a curved
edge and can roll against each other [110]. The paper by Cai [111]
and the work by Lang et al. [110] provide kinematic models and
the analytical solutions for origami systems built with rolling con-
tact. When using the offset linkage technique, the two adjacent
panels are connected using a four bar linkage [112]. The work by
Lang et al. [112] provides an approach to capture the kinematics
of an offset linkage.

When using hinge-shift techniques, the hinges of the origami
structures are placed on the opposite side of the panels to accom-
modate the thickness [108,131]. When the origami pattern is suffi-
ciently simple (such as the Miura-ori pattern with symmetric bird
foot vertices), the technique can be applied directly to accommo-
date the thickness as demonstrated in Ref. [131]. In this case,
using the thin and rigid origami model to analyze the folding

kinematics is sufficient. However, when more complex vertices
are encountered, one needs to rely on more sophisticated models
to capture the folding kinematics. In the pioneering paper by Chen
et al., they showed that the folding motions of thick origami verti-
ces built with hinge-shift techniques can be captured using well-
established spatial linkage models [108]. In their work, the
degree-4, degree-5, and degree-6 thick origami vertices are mod-
eled as spatial 4R, 5R, and 6R linkages. In this case, using the
Denavit–Hartenberg transformation matrix with the additional
displacement variable is helpful for representing the offset in thick
panels [108]. With this modeling technique, the folding kinemat-
ics of these thick origami vertices can be solved using analytical
methods. A summary of existing mechanical linkages can be
found in Ref. [109].

Finally, we introduce the strained crease technique. Instead of
using a hinge to connect adjacent panels, this technique connects
two thick panels with a bendable soft plate to serve as a crease
[67,132]. A design like this is commonly seen in active origami

Fig. 12 An introduction to mechanics-based simulations of physical systems

Fig. 11 Design and modeling techniques for thick origami systems. The copyright information for the bottom row figures is
as follows. Spherical trigonometry figure [70] reproduced with permission from American Physical Society APS (2015); loop
closure condition figure [97] reproduced with permission from the authors; generalized crease model [110,112] reproduced
with permission from American Society of Mechanical Engineers ASME (2017) and (2020); spatial linkage figure [108] repro-
duced with permission from American Association for the Advancement of Science AAAS (2015); smooth fold model [103]
reproduced with permission from American Society of Mechanical Engineers ASME (2017).
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Table 2 A summary of mechanics-based simulations and models for origami

Models Formulation Note Reference

Rigid panel based models

Rigid bar based models
This technique uses rigid bars to
form triangulated origami panels
for solving the folding kinematics.

The technique represents a transi-
tion from kinematic to mechanic
models and is a precursor to the bar
and hinge model.

References [61], [141] and [142].
Figure on the left is from Ref.
[141]. Figure reproduced with per-
mission from Elsevier (2018).

Rigid frame based models This model represents rigid origami
panels using rigid frame elements
and captures creases as rotational
hinges.

Rigid frame elements are used to
preserve the folding kinematics.
Correlating frame deformations to
panel deformations is challenging
within the current model.

References [143] and [144]. Left
figure from Ref. [143]. Figure
reproduced with permission from
Elsevier (2021).

Bar and hinge models

Standard bar and hinge model
This model places bar elements
between vertices to capture panel
stretching and shearing and uses
rotational spring elements to cap-
ture crease folding and panel
bending.

Bar and hinge model based simula-
tions are computationally efficient
and can capture the global mechani-
cal behavior of origami.

References [43], [62], [63], and
[145–157]. Left figure from Ref.
[63]. Figure reproduced with per-
mission from the Royal Society
(2017).

Compliant crease bar and hinge model This model represents the geometry
of compliant creases by adding
additional bar elements and rota-
tional spring elements in the crease
region.

This model can capture the bistabil-
ity and multistability possible from
having compliant creases.

References [64], [135], [136], and
[158]. Left figure from Ref. [136].
Figure reproduced with permission
form the authors.

Particle bar and hinge model This model lumps the mass of the
origami onto the nodes for captur-
ing the dynamic behaviors of
origami.

Particle bar and hinge model based
simulations can analyze the tran-
sient dynamics of origami rapidly.

References [159–165]. Left figure
from Ref. [164]. Figure reproduced
with permission from Elsevier
(2021).

Plate theory based models

Plates models for creases
This technique represents the ori-
gami compliant crease as a plate.
Analytical solutions of the deforma-
tion and stiffness are found.

The technique can be used to calcu-
late spring stiffness for bar and
hinge models as shown in [166]

References [166] and [167]. Left
figure from Ref. [167]. Figure
reproduced with permission from
Elsevier (2021).

Plates models for panels This technique captures the small-
strain bending behavior of origami
panels using plate theory.

This formulation can be seen as a
coarse meshed FE model with lim-
ited capability for nonlinearity, but
with improved efficiency.

References [145], [168], and [169].
Left figure from Ref. [168]. Figure
reproduced with permission from
Springer Nature (2021).

Finite element models

Shell element panels and hinges
This formulation models origami
panels using shell elements and ori-
gami creases as rotational springs or
rotational hinges.

This formulation is suitable for
studying origami systems with
softer creases. The fold lines can
deform or buckle under applied
loading.

References [28], [145], [170], and
[171]. Left figure from Ref. [170].
Figure reproduced with permission
from the Royal Society (2016).

Shell element panels and rigid creases This formulation models origami
systems as shell elements connected
with rigid creases (that do not fold).

This formulation is widely used for
capturing origami unit cells and
sheets [172–175], metamaterials
[139,176–178], sandwich cores
[179–182], and crash boxes
[183–186] when the creases are rig-
idly connected.

References [139] and [172–188].
Left figure from Ref. [188]. Figure
reproduced with permission from
Elsevier (2018).

Shell elements for both panels
and creases

This formulation represents both
creases and panels using shell ele-
ments so that the compliant creases
can be captured.

This formulation is useful for cap-
turing active origami with compli-
ant creases as actuators.

References [104], [135], [136], and
[189]. Left figure from Ref. [189].
Figure reproduced with permission
from American Society of Mechan-
ical Engineers ASME (2016).
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structures and has been widely used in previous studies
[19,21,24,26]. These strained (compliant) creases can be made
with active materials such as shape memory polymers [133,134],
hydrogels [19,24], shape memory alloys [18], light activated poly-
mers, and others [25,26]. The smooth fold model can be used to
study the folding behavior of this type of thick origami [103,104]
because it can capture the widths of creases explicitly. Because
the mechanical characteristics of the compliant creases (e.g., their
bending stiffness) can affect the behavior of compliant crease ori-
gami systems significantly, it is more common to simulate these
systems with mechanics-based simulation techniques. For exam-
ple, both the compliant crease bar and hinge model [135,136] and
finite element (FE) model [4] were used to simulate origami of
this type. We will discuss these models when introducing
mechanics-based simulations in Sec. 4 and multiphysics simula-
tions in Sec. 5.

4 Mechanics-Based Simulations

In this section, we introduce mechanics-based simulations for
origami systems. The first step in creating a mechanics based sim-
ulation is to formulate a model that represents the origami struc-
ture and its internal properties. Figure 12(a) provides an
illustrative example, where the single fold origami is represented
using a point mass connected to an extensional spring (for panel
stretching) and a linear-elastic rotational spring (for crease
bending).

These mechanics-based models can then be used to simulate
the physical behaviors of the origami due to applied loading, self-
folding, or other external effects. The physical behaviors can be
broadly separated into static or dynamic responses. In a static pro-
cess, the kinetic energy of the system is assumed to be negligible.
The goal is to solve for the deformed configuration x under
applied loading (or self-folding) to where the system is in equilib-
rium. This case usually forms a boundary value problem (BVP)
where the internal forces (the Jacobian of the internal
strain energy U) are equal to the external applied loads:
rxUðxÞ ¼ Fext. These BVPs can be solved using various nonlin-
ear BVP solvers (implicit solvers). Figure 12(d) demonstrates how
typical nonlinear BVP solvers break the target load into small
increments of load (dFext). Within each increment, the deformed
state is iteratively updated to minimize error so that the solver can
find the real solution (following the zig-zag curves in Fig. 12(d) to
find the ground truth curve).

For dynamic behavior, the deformations occur rapidly, the
kinetic energy of the system is no longer negligible, and we solve
for the origami motions over time. Solving for the dynamic behav-
iors usually forms an initial value problem (IVP) (see Fig. 12(c)).
The numerical integration methods previously introduced for
kinematic simulations can also be used to solve these IVPs. These
are explicit solution methods because they do not have iterative
loops within their formulations (see Fig. 12(e)), which makes
them faster than implicit methods per incremental step. However,
because no iterative loops are used to minimize error, the numeri-
cal errors can accumulate over time. The accumulation of error
limits the step length (dt) of explicit methods, so these methods
need to take large number of small steps for convergence and for
achieving reasonable fidelity. Overall, this large number of steps
typically makes solving dynamic simulations with explicit solvers

more time consuming when compared to solving static problems
with implicit solvers. Technically, IVP can also be solved using
implicit methods [137,138]. However, we will skip implicit meth-
ods for IVPs because they are not used widely for origami
simulation.

A quasi-static simulation is a dynamic simulation with a slow
loading rate, so that the kinetic energy is insignificant and instead
the structural response is governed only by the static behaviors. A
quasi-static simulation is useful when simulating origami with
contact related behaviors such as the graded stiffness studied in
Ref. [139].

In the remainder of this section, we introduce mechanics-based
origami simulations and focus on the models to represent origami
structures (i.e., part (a) of Fig. 12). After constructing the origami
model, applying implicit or explicit solvers to run the simulation
follows common procedures of mechanical analysis. A summary
of different implicit solvers can be found in the work by Leon
et al. [140] and common explicit solvers for dynamics simulations
can be found in structural dynamics text books [137,138]. This
section is arranged as follows: First, we introduce rigid panel
models for kinematic analysis, which can be seen as the transition
from kinematics-based simulations to mechanics-based simula-
tions. Next, we present bar and hinge models and plate theory
based models, which are two popular reduced-order models for
origami structures. We then introduce FE models for origami
structures that can offer high fidelity results. Following the discus-
sion of these models, we proposed building hybrid reduced-order
models for origami systems, and discuss how contact behaviors
can be captured for origami systems. Table 2 summarizes the sim-
ulations and the models we cover in this section.

4.1 Rigid Panel Models. The close connection between kine-
matic and mechanical simulations of origami can be illustrated by
considering the folding stiffness of a Miura-ori structure; see Fig.
13. After assigning rotational springs to the folding creases of this

Fig. 13 Using kinematic simulations to capture simple
mechanical responses

Table 2 (continued)

Models Formulation Note Reference

Solid elements This formulation captures origami
using solid type elements so that the
model can capture the non-
negligible thickness in origami

This technique is suitable for cap-
turing thick origami or origami-
inspired systems with blocked
volume.

References [4] and [190]. Left fig-
ure from Ref. [190]. Figure repro-
duced with permission from
American Society of Mechanical
Engineers ASME (2020).
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origami pattern, the internal hinge moments and total elastic
potential energy at any rigid-foldable configuration can be calcu-
lated using the kinematics given in Eqs. (12)–(15). From the elas-
tic potential energy, the force–displacement response (and thus
stiffness) of the fold pattern can be found using Castigliano’s the-
orem. This approach allows for rapid parametric studies, but is
only suitable for obtaining simple mechanical behavior of rigid-
foldable origami with known kinematics [60,62,78,79,82].

Next, we introduce rigid panel models for origami structures.
These models can be seen as transitional models that lie between
kinematic simulations and mechanical simulations. They usually
use rigid truss elements or frame elements to represent the panels
of origami structures and can capture the folding kinematics of
origami.

Figure 14(a) demonstrates a technique to represent rigid ori-
gami panels using rigid bar elements and pin-joints. To analyze
the kinematic folding motions of the origami system, one can
study the compatibility matrix Cbar of the rigid bar system

[61,141,142]. This compatibility matrix relates the nodal deforma-
tion of the structure u to the internal member strains e as

CbarðuÞu ¼ e (23)

We use the 1D bar shown on Fig. 14(a) to demonstrate how this
compatibility matrix can be calculated. The engineering strain of
this bar is expressed as e ¼ ðu2 � u1Þ=l. Reorganizing the equa-
tion gives e ¼ ½�1=l; 1=l�½u1; u2�T so the compatibility matrix is
½�1=l; 1=l�. More systematic ways of deriving the compatibility
matrix for complex structures can be found in structural analysis
textbooks [191] or in the following papers [61,141,142]. This
compatibility matrix also relates the velocity of bar strains with
respect to the velocity of nodal displacements

CbarðuÞ _u ¼ _e (24)

Assuming the panel is rigid, there would be no bar strains
throughout the kinematic motion which is equivalent to

Cbar _u ¼ 0 (25)

This Eq. (25) is similar to Eq. (19) introduced in Subsec. 3.4. Both
of these equations form an ODE and can be solved using the
numerical integration methods and explicit solvers. The Cbar

matrix demonstrated in Eq. (25) plays the same role as the C
matrix in Eq. (19). However, the derivation of Cbar is directly
obtained by solving the compatibility matrix rather than taking a
kinematic approach. On top of the rigid bar constraint, rotational
springs can be added to capture mechanical loading and other
stiffness properties [61].

In addition to capturing thin origami panels, rigid truss models
can also be used to capture the kinematic motion of thick origami
panels [142]. In this formulation, a set of truss-based pyramids are
used to represent the thick and rigid origami panels (see Fig.
14(b)). Although the current model has not been used to study
deformable thick panels, this model can be extended for such
studies in the future.

Hayakawa et al. introduced a related frame element based alter-
native for origami kinematic simulation [143,144] (Fig. 14(c)).
Here, triangulated panels of the origami are represented using
three frame elements that are rigidly connected at the panel center,
and the folding creases are represented by rotational hinges at the
crease line where two panels connect. If the frame elements
remain rigid during the deformation, the system will preserve the
kinematics of the rigid and thin origami. After deriving the com-
patibility matrix, numerical integration allows to track

Fig. 16 Using plate theory based models to capture origami
systems. (a) [167] reproduced with permission from Elsevier
(2021); and (b) right [168] reproduced with permission from
Springer Nature (2021).

Fig. 15 (a) The bar element and the rotational spring element;
(b) standard bar and hinge model for representing origami; and
(c) compliant crease bar and hinge model for representing
origami

Fig. 14 Rigid panel models for kinematic studies. (a) Rigid bar
models; (b) rigid truss model for thick origami; and (c) rigid
frame models.
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kinematically admissible motions. The work by Hayakawa et al.
also demonstrated that this model can be used for inverse design
of origami patterns that fit arbitrary surfaces [143,144].

4.2 Bar and Hinge Models. The bar and hinge model has
become a widely used reduced-order mechanical model for repre-
senting origami systems [28,62,151,152]. The model is sometimes
referred to as the truss-based mechanism model [149,150,155] or
the pin-jointed bar framework [61], but here, will use the name
bar and hinge model because it is an expressive name (directly
pointing to the two elements involved).

The model represents an origami using bar elements and rota-
tional spring elements (hinges with rotational stiffness) as shown
in Fig. 15(a). The bar elements are extensional springs in 3D
space that can capture the stretching and shearing of origami pan-
els (and creases). On the other hand, the rotational spring elements
are rotating hinges with stiffness that can capture the crease fold-
ing or panel bending. The strain energy stored within the entire
origami system can be expressed as

U ¼
XNbar

i¼1

Ubar;i þ
XNspr

j¼1

Uspr;j (26)

where Ubar;i represents the strain energy in bar i and the Uspr;j

gives the strain energy of rotational spring j. The simplest bar ele-
ment is a linear spring and can be expressed as

Ubar;i ¼
1

2

EiAi

l0;i
jx1 � x2j � l0;i
� �2

(27)

where Ei is the Young’s modulus, Ai is the bar area, x1 and x2 are
the nodal coordinates, and l0;i is the original length of the bar.
Many studies use this linear elastic bar formulation because it is
simple and easy to derive [43,136,149,150,152,156]. More
advanced hyper-elastic formulations are also available for deriv-
ing the total potential of the bar element [63,192,193]. Similarly,
the linear elastic rotational spring model is the simplest hinge ele-
ment and it can be expressed as

Uspr;i x1;x2;x3;x4ð Þ
¼ 1

2
Kspr;i / x1; x2; x3; x4ð Þ � /0

� �2 (28)

where Kspr;i is the spring stiffness, x1 to x4 are the nodal coordi-
nates, and /0 is the stress free dihedral angle of the fold. The cur-
rent dihedral angle can be calculated using the current nodal
coordinates of the four nodes adjacent to the fold (see Fig. 15(a)),
and detailed calculations of this function / can be found in
[63,149,168]. Most existing studies use this linear elastic rota-
tional spring formulation [43,136,149–153,156].

There are different ways of meshing an origami structure using
the bar elements and the rotational spring elements. The N4B5
model [61,63] and the N5B8 model [145,193] are two common
models for a quad origami panel. The N4B5 model represents a
quad panel with four nodes and 5 bar elements (see Fig. 15(b)).
This N4B5 model can capture the bending behavior across one
diagonal axis of the quad panel but produces a skewed deforma-
tion under in-plane axial loading. In order to avoid this skewed
deformation, the N5B8 model (see Fig. 15(c)) was proposed by
Filipov et al. in Ref. [145]. This panel model contains five nodes
and 8 bars. With the additional bars, it produces a more accurate
deformation under the applied axial loading and can capture bend-
ing across both diagonals of the panel. In addition to these models
for quad based origami, the generalized N4B5 and generalized
N5B8 models are also proposed for panels with arbitrary number
of edges by Liu and Paulino in Ref. [193]. Finally, explicit deriva-
tions for trapezoidal and hexagonal panels are provided by Redou-
tey et al. in Ref. [194].

In a standard bar and hinge model, the folding creases of the
origami structure are represented with individual rotational
springs [28,43,62,145–153]. In this formulation, the folding
creases are simplified as lines with no width (see Fig. 15(b)). This
type of model can capture the crease folding, panel bending, panel
stretching, and panel shearing deformations. However, the model
cannot capture possible extensional and torsional crease motions
in compliant creases.

More recently, the bar and hinge model has been extended to
capture compliant creases within active origami [135,136]. In this
formulation, the compliant creases are represented using seven
nodes, 12 bars, and eight rotational springs (see Fig. 15(c)). Using
compliant crease bar and hinge model can further capture the
extensional strain energy in folding creases, which is necessary
for capturing some bistable behaviors in origami structures
[135,136].

There are three main approaches to assigning stiffness parame-
ters (bar areas and rotational spring stiffness) when using bar and
hinge models. First, it is possible to assign fictitious values to the
bar area and the rotational spring stiffness [195]. This technique
can be used when studying the algorithmic properties of origami
simulations (such as studying parallel computation or conver-
gence properties), where we are less interested in predicting the
exact physical origami behaviors. Second, we can derive the stiff-
ness parameters by matching the stiffness of a bar and hinge
model to that of a theoretical plate model [136,145,193]. Because
these derivations tend to be based on a small-deformation assump-
tion, the generated stiffness parameters can produce mechanical
behaviors that are stiffer than physical experiments where large
deformations such as panel buckling occur. Finally, it is possible
to assign the bar area and the rotational spring stiffness by doing
curve fitting using experiments [196]. This approach tends to pro-
duce a more accurate prediction of the origami stiffness because
curve fitting can artificially account for large panel deformations.
In other words, using curve fitting is similar to using the secant
stiffness, while matching with theoretical plates is similar to using
the initial tangent stiffness.

Simulating origami mechanical behaviors using bar and hinge
models and static nonlinear solvers has become popular because
these models have a simple formulation and are computationally
efficient. This simulation technique can capture the global response
of origami structures and allows richer deformation to be simulated
when compared to kinematics-based simulations. So far, bar and
hinge model simulation techniques have been successfully used for
studying the bistability and multistability in origami hypars
[146,148] and Kresling patterns [63,153,154,156], capturing the
folding motions of tubular origami [28,152], studying the behaviors
of compliant crease origami [135,136], designing origami metama-
terials [62,197], optimizing the performance of origami patterns
[150,157], studying the influence of origami defects [147], and
more. However, the bar and hinge model cannot capture localized
behaviors such as crease buckling, panel buckling, stress concentra-
tion, and local material plasticity in the origami structures.

The bar and hinge model can also be used to study the dynam-
ics of origami systems. To do that, one needs to use a particle bar
and hinge formulation. This formulation captures the mass of ori-
gami by assigning “particle” mass to the nodes of the origami
models [159,161–163]. The velocity and acceleration of the ori-
gami are also stored at these mass nodes [159,161–163]. The
dynamic motions of the origami structure can be solved using
explicit solvers such as those introduced in Refs. [137,138, and
198]. This model is used to study the folding dynamics of various
origami structures including Miura tubes [159], Miura sheets
[165], waterbomb tubes [163], and Ron-Resch patterns [161].
This model can also be used to study “chaotic” type dynamic fold-
ing behaviors in origami [199–201].

4.3 Plate Theory-Based Models. Because origami tends to
have planar characteristics, plate theories can be used for
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representing both compliant creases and deformable origami pan-
els. In the work by Zhang et al., a theoretical plate model for cap-
turing the mechanics of compliant creases is proposed [167]. In
their work, additional rotational springs were added at the connec-
tion between the origami panels and the compliant creases so that
richer deformations could be enabled (Fig. 16(a)). In a more
recent work by Zhang [166], this advanced plate theory-based
model is incorporated into a bar and hinge model to capture the
behaviors of an entire origami pattern.

Plate theory-based models can also be used for capturing the
behavior of origami panels. Hu et al. [168] created a user defined
quad element in ABAQUS to capture the small-deformation behav-
iors of origami plates. In their approach, the quad element is
designed such that it can capture the panel bending using the sepa-
ration distance between the center points of the two straight lines
that connect opposite corners of the quad panel (Fig. 16(b)). The
potential of this quad element is calculated as

U ¼ De

2
Dwð Þ2 ¼ De

2
uP � uQð Þ2 (29)

This formulation is derived with assumed small curvature defor-
mation [168]. In the equation, the term De is a modified bending
rigidity of the plate and the subtraction uP � uQ obtains the dis-
tance between point P0 and Q0 (see Fig. 16(b)). Their work demon-
strates that if the panel deformation is governed by small-strain
bending, the model can capture the origami behaviors rapidly.
Similar approaches were also used by the authors to study the
inverse design of freeform origami systems [202]. In addition to
this formulation, the study by Soleimani et al. [169] derived a
plate theory-based panel model using the first order shear defor-
mation theory.

Using plate theory-based panel models and crease models can
be thought of as using FE models with coarse meshes. These plate
theory-based models can provide a lower fidelity but more compu-
tationally efficient approaches to capture the behaviors of origami
compared to the use of FE models. However, plate theory-based
origami models cannot capture extreme local buckling and kink-
ing because these models are derived with strict assumptions on
the deformation shapes.

4.4 Finite Element Models. Using FE models is another pop-
ular way for representing origami-inspired engineering structures.
FE models provide approaches to capture the complicated local
behaviors (such as local buckling and stress concentration

[174,180,181]) and material nonlinearity (such as plasticity
[177,178]) in origami structures. In addition, most commercial FE
packages also provide automated internal static and dynamic solv-
ers for users to choose from. In this subsection, we focus on how
FE models are used for studying the mechanical behaviors of ori-
gami systems such as stiffness under static loading and energy
absorption under dynamic loading. In addition to these purely
mechanical studies, FE models are also widely used for capturing
multiphysical behaviors of origami systems, and this topic will be
discuss in Sec. 5.

One way to capture origami using FE is to represent the panels
using shell elements and connect the panels using rotational
springs or hinges [28,145,170,171] (see Fig. 17(a)). This approach
is commonly used for studying the mechanical properties of ori-
gami sheet and tubular structures because it can capture the rela-
tively soft creases in such systems. Filipov et al. have used this
approach to study a reconfigurable tubular origami structure [170]
and a stiff zig-zag origami tube [28]. Both the load bearing
capacity and the eigen properties of origami tubes are investigated
[28,170]. A similar approach was used in work by Grey et al.
[171] to study the deployment process of Miura-ori tubes with
crease actuation.

Another way of capturing origami structures using FE models
is to connect the shell element panels with fixed and rigid fold
lines (see Fig. 17(b)). This formulation is suitable for studying the
behaviors of origami-inspired devices such as metamaterials,
crash boxes, and sandwich cores. These origami-inspired devices
are not fabricated for deployment. Instead, these devices are over-
constrained and used as a single block of material with fixed
creases. First, this FE model setup was used for exploring the
static response [176,178] and the dynamic response [177] of ori-
gami metamaterials. For example, Yuan et al. show one origami
inspired metamaterial that can produce programmable stiffness
for various engineering applications [176]. In addition, this FE
model setup has been used for analyzing origami crash boxes for
energy absorption applications [183–186]. For instance, Wang
and Zhou [184] use this approach to study the influence of imper-
fection sensitivity of origami crash boxes, and Xiang et al. [182]
provide a detailed review on using origami-inspired structures for
energy absorption. Finally, this FE setup can study the behaviors
of origami sandwich cores. Heimbs et al. [180,181] use this FE
formulation to capture the complex material failures such as
delamination in origami cores, and Schenk et al. [179] used this
approach to study the behavior of stacked Miura-ori sandwich
beams for blast-resistance. In all of the above studies, the deploy-
ment of the origami structure is restricted and the systems are

Fig. 17 Different types of FE models for origami structures. (a) Bottom [170] reproduced with permission from the Royal
Society (2016); (b) bottom [181] reproduced with permission from Elsevier (2010); (c) bottom [189] reproduced with permis-
sion from American Society of Mechanical Engineers ASME (2016); and (d) bottom [4] reproduced with permission from John
Wiley and Sons (2018).
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kinematically over constrained. Typical deformation of these sys-
tems includes panel buckling and stretching, and the local crease
deformations are not considered to be important for the global
behaviors.

Compliant origami creases can also be captured using shell ele-
ments as shown in Fig. 17(c) [104,135,136,189]. In this approach,
the geometry and stiffness of the compliant creases can be accu-
rately captured using shell elements with fine meshes. Capturing
the compliant creases explicitly can be important for many rea-
sons. For example, it allows users to consider the active folding
from plate-based bending actuators [189].

Finally, solid elements can also be used for representing
origami-inspired systems [4,190]. In these cases, solid elements
are used to properly capture the full system geometry of origami-
inspired structures because the panel thickness is important. Using
this approach is computationally expensive because fine meshes
across the thickness of origami panels are needed to capture the
accurate panel bending behavior. Thus, solid elements are usually
not used for representing origami systems unless explicitly captur-
ing the thickness is of essential importance.

One major reason behind the popularity of using FE models for
origami structures is the existence of commercially available
software programs such as ABAQUS [139,176,183], ANSYS [180,187],
and LS-DYNA [180,181]. These commercially available programs
provide a wide variety of material models and element types, and
allow researchers to perform static loading, quasi-static loading,
or dynamic loading using standardized procedures through con-
venient user interfaces. The FE models also capture local struc-
tural responses such as stress concentration and local buckling
[173,174,180,181], which is otherwise difficult to capture with
reduced-order models. However, building FE models and running
the analyses is time-consuming, especially if the origami is made
with nonrepetitive base patterns. Because of those difficulties,
most of the studies covered in this subsection were based on sim-
ple patterns such as the Miura-ori pattern. Transforming
“freeform” origami designs into executable FE software programs
in a stream-lined manner is still a difficult task to be resolved.
Another limitation of using FE model is that an FE model acts
like a black box. Many scientific explorations and theoretical
developments still favor the use of reduced-order models because
they can reveal the underlying theoretical behaviors (as will be
discussed further in Sec. 7).

4.5 Rethinking Reduced-Order Mechanical Models for
Origami: Hybrid Formulations. In this subsection, we take a
step back and provide a holistic discussion on the formulation of
reduced-order mechanical models for origami systems. Unlike
kinematics-based simulations for origami systems, mechanics-
based simulations allow users to combine different panel models
and crease models to assemble new “element-based” formula-
tions. We can think of the formulation of a mechanical model as
“gluing” different “elements” at the nodes of the origami struc-
ture. These different elements will generate the relationships
between internal forces and nodal deformations needed to capture
the folding and loading behaviors of origami systems. When FE
models are used for representing origami systems, we are already
modeling the origami by grouping different panel models and dif-
ferent crease models. The same perspective can be applied to the
reduced-order origami models for creating new hybrid formula-
tions. Figure 18 demonstrates how combining different simplified
origami panel models and crease models can potentially create
new reduced-order models. The key of achieving this combination
is to ensure that the panel models have identical boundary setups
(number of nodes and number of DOF per node) as the crease
models.

All models demonstrated in Fig. 18 were discussed previously
except the spring-based models for creases, which we will now
briefly discuss. The simplest way of capturing the mechanical
behavior of origami creases is to use a single spring element. In
addition to the common rotational springs for capturing crease
folding motions [28,63,149,150], other deformations between the
two panels can also be captured using spring elements with differ-
ent forms. In general, there are six different forms of relative
deformations between the two panels as shown in the bottom left
box of Fig. 18. In many situations, we do not need all six forms of
deformations to capture the accurate global mechanical behaviors
of origami systems. For example, studying the Poisson’s effects or
the stretching stiffness of Miura sheet only requires using rota-
tional springs for the folding motion [61,62] and capturing a bista-
ble origami cone can be accomplished with rotational springs and
extensional springs [203]. There are also models including all six
forms of springs such as the one proposed by Soleimani et al.
[169]. These six forms of springs provide a useful tool to model
the behaviors of lamina emergent mechanism (LEM) type joints
for origami, which is a novel technique for building thick origami

Fig. 18 Different types of mechanical models for origami panels and creases could be combined to create hybrid models
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systems (introduced in Sec. 3.7). The work by Delimont et al. pro-
vides a summary of different LEM joints and equations for calcu-
lating the corresponding spring stiffness [132]. Spring-based
models are appropriate for capturing linear origami crease behav-
iors or behaviors with small deformations. However, the models
are not suitable for capturing the distributed width of compliant
creases or for capturing localized behaviors such as buckling of
creases.

Considering the variety of different panel and crease models,
one can create new origami models tailored for specific origami
systems by combining appropriate models (Fig. 18). In this way,
one can create a hybrid origami model that inherits both the capa-
bilities from the selected crease model and the selected panel
model. For example, the truss-based thick panel model [142] can
be grouped with the bar and hinge compliant crease model
[135,136] to capture the behaviors of origami systems with
strained creases and thick panels. Alternatively, the plate theory
based panels [168,169] could be grouped with spring based
creases to capture deformable origami with small-strain plate
bending and linear crease deformations.

Some of the current implementation packages for origami simu-
lation already allow users to choose between different combina-
tions. For example, the bar and hinge MERLIN package allows users
to switch between the N4B5 and N5B8 panel models [193,204]
and the bar and hinge SWOMPS package allows users to switch
between the spring based creases and compliant creases [64,205].
However, the variability provided with current packages is still
limited. Future studies on reduced-order mechanical models for
origami systems can explore the potential of generating a more
unified formulation to incorporate different panel models and
crease models. In addition, future implementations can expand
built-in panel models and crease models so that users can create
more on-demand combinations for the specific origami that they
are working with.

4.6 Capturing Panel Contact. One fundamental limitation in
the kinematics-based simulations of origami is that panel contact

within origami systems cannot be easily captured (see Fig. 9).
However, capturing the occurrence and behavior of panel contact
can be important for studying origami-inspired metamaterials or
crash boxes as shown in Refs. [176], [178], and [183]. Thus, in
this subsection, we briefly discuss how mechanics-based simula-
tion techniques can capture the panel contact within origami sys-
tems. We discuss panel contact models for static simulations and
dynamic simulations separately because they tend to have differ-
ent formulations and characteristics.

To prevent the origami panels from penetrating each other in a
static simulation, the internal strain energy (potential) of the ori-
gami structure needs to be adjusted. This can be achieved by
changing the strain energy formulation of the rotational springs.
In the work by Liu and Paulino [63,192], a piecewise penalty
function is added to the strain energy of the rotational springs.
This additional penalty function gives a large stiffness when the
crease folds toward 180 deg so that the crease is prevented from
over-folding (see Fig. 19(a)). Similarly, a slightly different but
continuous strain energy formulation of rotational springs is pro-
vided by Gillman et al. [149,150] (see Fig. 19(b)). This continuous
form can also avoid local penetration.

However, these formulations only prevent panels from penetrat-
ing each other locally (the two panels need to share a common
hinge). A more thorough penetration prevention technique was
developed in Ref. [158]. In their work, the penalty function for
panel contact is developed based on the distance between a con-
tacting triangle panel and a contacting node. This technique can
prevent panel penetration globally and the contacting panels do
not need to share a common crease. Figure 19(c) demonstrates a
sample application of this model, where contact results in a stiff-
ness jump between two separate but interlocked origami strips.
This model also provides the capability to capture thickness in ori-
gami within a mechanical simulation [158] (see Fig. 19(d)).

Both the local and the global panel contact models introduced
above have a potential based formulation. That is to say, the panel
contact forces can be determined based on the current configura-
tion of the origami (without the history of prior configurations).

Fig. 19 Panel contact and prevention of panel penetration in origami simulation. (a) [63] reproduced with permission from
the Royal Society (2017); (b) [149] reproduced with permission from Elsevier (2018); (c) and (d) [158] reproduced with permis-
sion from the authors; and (e) [164] reproduced with permission from Elsevier (2021).
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Because these are potential-based formulations, the contact forces
within these models are conservative (there is no energy dissipa-
tion). One advantage of using these contact models is that they are
fast to solve. This is because these static contact models form a
BVP that can be solved statically using implicit solution methods.
However, these potential based contact models cannot capture
frictional forces. To resolve this limitation, one needs to construct
IVPs and use dynamic-based (or quasi-static based) simulation
techniques such as those proposed in the work by Dong and Yu
[164] (see Fig. 19(e)). In their model, the panel contact forces are
not only calculated using the current origami configuration, but
are also calculated using the velocity of origami motion (see Eq.
(14) in Ref. [164]). This panel contact model forms an IVP
because calculating the velocity of origami motion needs to use
the origami configurations from previous steps. Solving these
dynamic contact models are more time-consuming because they
need to use the explicit dynamic solution methods.

In addition to using the above-mentioned reduced-order models
for capturing contact, commercial FE simulation programs can
also be used to study contact-related origami behaviors. For exam-
ple, Ma et al. studied the quasi-static loading of an origami-
inspired structure with graded stiffness [139] and an origami crash
box for energy absorption [206]. Similarly, Heimbs et al. studied
dynamic impact loading [181] and quasi-static loading [180] of
origami sandwich fold cores using FE simulations. Usually, even
when exploring static contact behaviors in origami, a dynamic
simulation (in a quasi-static manner) is performed
[139,183–185,188]. The reasoning is that explicit solvers in FE
simulation packages often provide better contact models and con-
tact searching algorithms [207–209].

5 Multi-Physics-Based Simulations

Recently, there has been an increased need to analyze the
multiphysics-based active folding and other nonmechanical

properties of origami-inspired systems such as thermally active
folding [21], magnetic active folding [210], electromagnetic prop-
erties of origami-inspired systems [38], drag force of origami
surfaces in submerged environments [107], and thermal expansion
properties of origami [9]. Figure 20 (a) gives a general flowchart
for analyzing origami using multiphysics-based simulations. Gen-
erally speaking, there are two processes that involve the use of
multiphysics simulations and they are: simulation of the actuation
for active folding and the simulation of nonmechanical properties.
In this section, we discuss these two aspects of origami
multiphysics.

Traditionally, origami artists fold an origami using their hands
and their craftsmanship. But nowadays, origami engineers take
other approaches and fold origami-inspired engineering systems
using active materials or responsive systems. For example,
origami-inspired systems can be folded using active hydrogels
[19,20,24], metallic morphs with residual stresses [25,26,211,212],
shape memory polymers [13,14,134], shape memory alloys
[18,189,213], electrothermal actuators [21,64], active magnetic sys-
tems [210,214–216]. The folding motions generated using these
actuation mechanisms have a multiphysical nature, and thus,
multiphysics-based simulations are needed.

The multiphysics-based actuation can act on the origami
through two major types of action: by triggering crease folding or
by triggering globally applied forces. In the first type, the applied
stimuli first trigger the material in the crease region to develop
strains and stresses. The strains and stresses then force the crease
to bend and transform the origami into a folded geometry. Most
active origami systems achieve shape morphing using this form of
actuation. When determining the relationship between the applied
stimuli and the crease folding, both experiment-based and
simulation-based approaches can be used. For example, in the
work by Leong et al. [26,211], experiments were used to deter-
mine the folding angle given the heating or other applied stimuli.
On the other hand, in the work by Zhu and Filipov [64], a bar and

Fig. 20 Multiphysics simulation of origami captures the actuation, the resultant properties, and the potential coupling (indi-
cated with dashed lines) between these behaviors. (b) [13] reproduced with permission from the Institute of Electrical and
Electronics Engineers IEEE (2018); (c) [64] reproduced with permission from the authors; (d) [65] reproduced with permission
from AIP Publishing; and (e) [39] reproduced under CC BY-NC-ND license.
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Table 3 A summary of available simulation packages for origami structures

Package Formulation Reference and links

Flat-foldable origami
ORIPA If the input pattern is rigidly flat foldable, the pro-

gram will use reflection based simulation to directly
generate the folded geometry of the origami. The
program then calculates the panel sequence using a
brute-force approach.

References [57], [68], and [119]. Package found in
Ref. [68]. Left figure from Ref. [68]. Figure repro-
duced with permission from the authors.

Loop closure constraint

Rigid folding simulator and Origamizer
and Freeform origami

The Rigid folding simulator use Euler’s integration
to track the folding trajectory that complies with the
loop closure constraint. The Origamizer can fit any
triangulated 3D surface using origami with a tuck-
folding technique. The Freeform origami is based
on the Rigid folding simulator and allows users to
drag vertices of an origami for creating new origami
designs.

References [56], [91], [93], [97], [230], and [231]
Packages found in Refs. [97], [230], and [231]. Left
figures from Refs. [97,230]. Figures reproduced
with permission from the authors.

Kinematic compliant crease simulation

Smooth fold simulation This is a MATLAB based implementation of the
smooth fold simulation. This kinematics-based sim-
ulation can capture the compliant crease geometry
in origami structures.

References [103] and [104] Package found in Ref.
[103] Left figure from Ref. [103]. Figure reproduced
with permission from American Society of Mechan-
ical Engineers ASME.

Bar and hinge simulations

MERLIN MERLIN is a MATLAB based implementation of the
standard bar and hinge model. MERLIN implements
the N4B5 panel formulation and solves the mechan-
ical behavior using a modified generalized displace-
ment control method. A newer version of the code
provides the generalized N4B5 and N5B8 panel
models.

References [63], [192], [193], and [204] Package
found in Ref. [204]. Left figure from Ref. [204].
Figure reproduced with permission from the
authors.

Origami Simulator This is a GPU accelerated version of the standard
bar and hinge models. The simulation is based on
the formulation demonstrated in Ref. [61] and the
pattern editing is based on Ref. [91].

References [195] and [232]. Package found in Ref.
[232]. Left figure from Ref. [232]. Figure repro-
duced with permission from the authors.

OMTO and nonlinear truss These two packages implement the standard bar and
hinge model proposed in Refs. [149] and [150], and
can perform topological optimization to generate
origami patterns for certain functions.

Reference [149,150,233,234] Package found in
[233,234]. Left figures from Refs. [233,234]. Fig-
ures reproduced with permissions from the authors.

SWOMPS This is an object oriented MATLAB implementation of
the bar and hinge simulation capable of simulating
compliant creases, global interpanel contact, and
electrothermal actuation in active origami. The pro-
gram supports five loading solvers and can treat the
origami with an arbitrary number and sequence of
loading steps.

References [64], [135], [136], [158], and [205]
Package found in Ref. [205]. Left figure from Ref.
[205]. Figure reproduced with permission from the
authors.

Add-on and commercial tools

Kangaroo
This a physics engine developed for Rhino and
Grasshopper. The package can be used to simulate
origami system and was used for capturing mag-
netic active origami in Ref. [210].

References [210], [219], and [220] Package found
in Ref. [219]. Left figure from Ref. [219]. Figure
reproduced with permission from the authors.

Crane This is a Grasshopper plugin for Rhino. The folding
simulation and form finding is based on the Free-
form Origami. The package can also simulate thick-
ness in origami systems.

References [91] and [235] Package found in Ref.
[235]. Left figure from Ref. [235]. Figure repro-
duced with permissions from the authors.
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hinge model with heat transfer and a Timoshenko’s bimaterial
morph model are used to solve the crease temperature and the
folding motion from the applied heating power [217]. Similarly,
the work by Deng et al. developed a simplified model to capture
the active folding in a prestressed polystyrene film crease actuator
[218]. In general, active material-based crease folding tends to
rely on using compliant creases with distributed crease regions
and bimaterial layers. Therefore, the behavior of this active ori-
gami can be better captured using models such as the smooth fold
model, the compliant crease bar and hinge model, or with FE
models. The analysis of the bimaterial morph by Timoshenko
[217] also provides a direct analytical solution to correlate mate-
rial strains and the crease folding of active compliant creases.

Stimuli can also generate globally applied forces onto the ori-
gami to achieve the folding motion. Magnetically activated ori-
gami is one major genre of active origami using this form of
actuation [210,214–216]. Magnetic forces acting on the origami
structure can be calculated based on the orientation of the embed-
ded magnets and the applied magnetic field. After calculating the
magnetic forces, the folded configuration can be tracked using
mechanics-based origami simulations. The work by Swaminathan
et al. [210] provides a simulation technique that can capture these
magnetic forces using the Kangaroo solver in Rhino [219,220].
Apart from magnetic systems, the forces could also be applied
directly by connecting the passive origami system to an active
supporting mechanism [221]. With such a system, the connected
origami is deployed with forces from the supporting mechanism.

In addition to the actuation of active origami, multiphysics sim-
ulations are also needed to capture the nonmechanical properties
of origami-inspired structures for design and for optimization. For
example, origami-inspired structures have been used to create fre-
quency selective surface (FSS) for filtering electromagnetic waves
[38,39,222–225]. To analyze and design the performance of these
FSS devices, electromagnetic simulation through commercial FE
software programs such as ANSYS HFSS can be used [39]. Similar
multiphysics-based simulations have been used to analyze
origami-inspired engineering systems for acoustic wave manipula-
tion [40,65,226–228], as thermal metamaterials [9], and for their
drag forces in submerged environments [107].

Capturing variable multiphysics properties of origami systems
usually requires using one simulation environment to capture the
origami folding and another separate environment to capture the
nonmechanical properties. In light of this complexity, it is impor-
tant for future work on origami simulation to generate easy to use
output formats that can easily interface with multiphysics-based
simulation environments. A unified format such as the FOLD
structure [229] could be useful for achieving trouble-free data
transfer between different environments. However, additional
information regarding the active folding systems, the compliant
crease geometry, the material properties, the localized circuit

designs, and other origami properties of interest would need to be
included. Another challenge of multiphysics simulation of origami
is the coupling between the origami folding, the multiphysics
actuation, and the nonmechanical performance (red dashed lines
in Fig. 20). Simulating these coupled behavior and interactions
requires passing information between different environments,
which is still difficult to accomplish effectively. An alternative
way to solve the coupling problem is to build reduced-order simu-
lations within the same environment such as the simulation of
electrothermal crease folding in Ref. [64] or the simulation of
magnetically actuated origami in Ref. [210]. However, the capa-
bilities of current reduced-order simulations are still limited so
future work is needed.

6 Available Simulation Packages

In this section, we introduce existing implementation packages
for simulating origami systems and discuss their capabilities and
potential application scenarios. Table 3 summarizes these
packages.

First, Mitani’s ORIPA [57,68] implements a reflection-based sim-
ulation for flat-foldable origami systems. The package directly
solves the folded configuration using reflection-based theories and
calculates the panel sequence using brute force enumeration. This
package is one of the early computational tools developed for ori-
gami engineers. However, ORIPA cannot simulate the intermediate
folding states, the folding process, or physical behaviors, which
are all important for the analysis and design of engineering ori-
gami systems.

Next, the Rigid Folding Simulator, the Origamizer, and the
Freeform Origami developed by Tachi share some similarities
[97,230,231]. The Rigid Folding Simulator can capture the folding
motion of origami systems-based on the loop closure constraint
(Eq. (16)). Kinematically feasible folding motion is solved using
numerical integration such as Euler’s method (see Subsec. 3.4).
The simulation package provides a rapid and effective implemen-
tation to study the kinematic folding of thin and rigid origami,
providing one popular computational tools for simulating origami
folding. Based on the rigid folding simulator, Origamizer [231]
and Freeform Origami [97] were developed. Origamizer can
design an origami to fit arbitrary 3D surfaces using a tuck folding
technique, and Freeform origami allows users to design new ori-
gami patterns by directly editing existing tessellations. However,
these three packages cannot capture compliant creases, panel
deformations, mechanical properties, and other multiphysics-
based properties of origami.

The smooth fold simulation developed by Hernandez and his
coworkers [103,104] is one of the first kinematic simulations to
explicitly consider compliant creases within origami systems (see
Subsec. 3.6). A MATLAB implementation was published as

Table 3 (continued)

Package Formulation Reference and links

Commercial FE programs Commonly used commercial FE software programs
include ANSYS, ABAQUS, LS-DYNA, COMSOL, and many
others.

See Sec. 4.4 for details. Figure from Ref. [170]
reproduced with permission from the Royal Society
(2016)

Small strain plate This model is implemented using user defined ele-
ments in ABAQUS for capturing origami panels. This
plate model can capture the small-strain bending of
panels.

Reference [168] Code found in the appendix of
[168]. Figure from Ref. [168] reproduced with per-
mission from Springer Nature (2021)
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electronic supplementary material in Ref. [103]. This package can
capture the geometry and mechanics of compliant creases within
active origami. However, because the simulation was developed
based on rigid panel assumptions, this package cannot simulate
behaviors related to panel deformations.

We further give a short description of existing implementations
of the bar and hinge simulation. MERLIN [63,192,204] is a public
implementation of the bar and hinge simulation that can track
origami folding and mechanical deformations using a modified
generalized displacement control method. The package is imple-
mented in MATLAB and is based on the standard bar and hinge
model formulation with the N4B5 panel model and the linear rota-
tional spring based crease model. A newer version of the MERLIN

package (MERLIN 2) [193] can further support the use of N5B8,
generalized N4B5, and generalized N5B8 panel models, and pro-
vides useful functions to read OBJ format. These two packages
are rapid and powerful tools for simulating origami folding and
exploring mechanical properties such as stiffness, bistability, and
multistability. The Origami Simulator [195,232] is a parallelized
GPU-accelerated version of the bar and hinge simulation. It is
based on a standard bar and hinge model with N4B5 panels and
linear elastic rotational springs. This package uses an explicit
solver so that it can parallelize its computation. With paralleliza-
tion, the package can compute one loading step orders of magni-
tude faster than the MERLIN package (measured using wall clock
time). However, the package does require manually softening the
material stiffness (from its actual value) and using a much shorter
loading step to obtain converging results. OMTO by Kazuko Fuchi
and the nonlinear truss package by Andrew Gillman
[149,150,233,234] are two other bar and hinge-type implementa-
tion specially designed for topological optimization applications.
The underlying folding simulation of this nonlinear truss package
is similar to MERLIN but is designed to perform topological optimi-
zation of origami systems. Both the MERLIN package [204] and the
nonlinear truss package [233,234] can capture localized panel
contact and prevent creases from folding more than 180 deg (see
Fig. 19(a) and 19(b)). SWOMPS [64] is a MATLAB-based implemen-
tation of the bar and hinge simulation. The package uses a gener-
alized N5B8 panel model and allows users to choose between a
simple rotational spring crease model and a compliant crease
model. SWOMPS can simulate global panel contact (see Fig. 19(c)),
can approximate panel thickness, can capture electrothermal-
mechanically coupled actuation within active origami, and can
allow for sequential and arbitrary loading of the origami.

In general, these bar and hinge simulation implementations are
suitable for studying the kinematics, capturing the mechanical and
nonmechanical properties, simulating the active folding, and per-
forming pattern optimization of origami systems. The simulations
have the capability of real-time simulation [195], and can be
updated for rapid simulations of origami with multiphysics [64].
However, because these bar and hinge simulations use coarse
meshes for the origami systems, these packages are only suitable
for capturing global behaviors. Localized nonlinear behaviors

such as panel buckling, kinking, and stress concentrations are
beyond the capabilities of these packages.

Finally, a number of commercial software programs and the
associated extension packages can also be used to simulate ori-
gami systems. Rhino and Grasshopper-based physics-engine Kan-
garoo [219] can be used to capture origami systems. The Crane
package [235] is an extension that implements the Freeform ori-
gami algorithm within the Rhino and Grasshopper environment.
The Rhino and Grasshopper environment is suitable for paramet-
ric design of origami systems and is widely used by designers and
architects. When high-accuracy simulations are needed, commer-
cial FE software programs tend to be used. A variety of different
FE software programs have been used for simulating the behav-
iors of origami systems such as ABAQUS [139,172–174,176–179,
182–186], ANSYS [39,180,187], LS-DYNA [175,180,181], and COMSOL

[65,228]. These packages also support origami researchers to cre-
ate user-defined elements. For example, the work by Hu et al.
[168] created a small-strain plate model for simulating origami
panels with small curvature deformation that are more computa-
tionally efficient than using the fine meshed FE models. Using
commercial FE software programs can achieve high fidelity solu-
tions and capture localized nonlinear behaviors in origami sys-
tems. However, using FE simulations requires longer computation
time and an extended model building schedule. In addition, FE
simulations can act like “black boxes” in some situations, which
make them not suitable for developing fundamental theories of
origami structures.

7 Selecting and Developing Appropriate Simulations

In this section, we discuss how to select or develop a simulation
technique for capturing the behavior of origami systems. After
evaluating the challenges in selecting and developing appropriate
techniques, we present a flowchart to help guide the process, along
with a number of accompanying case studies.

Appropriate Models: What constitutes an appropriate
model for a particular origami system demands a significant ele-
ment of judgment from the engineer or scientist investigating the
problem. A common guiding scientific principle (Occam’s Razor)
is to use the simplest model that still captures the observed behav-
ior of interest. This model might be called a “minimal model.” In
many cases, lower fidelity models with a greater number of
assumptions provide greater insight into the behavior of origami
systems. Consider, for instance, the analysis of rigid-foldable ori-
gami systems; these systems can be modeled using high-fidelity
FE models, but this approach will not provide an understanding of
the mathematical conditions for rigid-foldability that could be
obtained from kinematics-based modeling [55]. Moreover,
reduced-order bar and hinge models can provide insight into the
mechanics of an origami system, not offered by detailed FE mod-
els with continuum elements. For example, in the study of bistable
origami hypars [146], comparing different bar and hinge meshes

Fig. 21 A universal origami modeling approach is not achievable; instead, there is an exponential growth in tai-
lored models that can capture distinct properties and characteristics for individual origami problems
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(i.e., with different panel bending direction) provides insight into
which deformations are most significant to the bistability of ori-
gami hypars. Similarly, in the analysis of origami tubes [171], the
bar and hinge models provide a method to independently change
the in-plane, bending, and folding stiffness to gain insight into the
dominant contributors. These types of comparative studies are dif-
ficult to execute in FE models. Finally, such minimal models can
reveal theoretical connections between origami and other disci-
plines, which helps origami engineers develop new models. For
example, the development of thick and rigid origami models has
revealed the close connection between origami and linkage mech-
anisms [108].

From an engineering perspective, an appropriate origami mod-
els should also consider the balance between the computation
time and the model fidelity. Solving high fidelity models not only
requires longer computation time but also requires more sophisti-
cated solution methods. Here, computation time could refer to the
number of floating point operations (not affected by the program-
ing language that is used), the wall-clock run time (affected by the
programing language), or even the duration of developing and
implementing a simulation. An illustrative example where compu-
tation time and model simplicity are traded off against fidelity is
the analysis of tubular origami structures such as the Kresling pat-
tern; their nonrigid foldable properties require the use of a
mechanics-based model. In various works, the behavior of the
Kresling pattern is captured using a bar and hinge model
[63,156,236] because it captures the panel deformation, is compu-
tationally efficient, and rapid to setup for different geometries.
However, bar and hinge models cannot capture the buckling of
crease lines, which are observed in some physical experiments
[196]. Masana and Daqaq therefore modified their formulation of
the bar and hinge model by introducing additional nodes and
springs along the fold lines [196]. These additional nodes and
springs allow the creases to buckle so that the model can better
capture the global physical behavior. An alternative to capture
this local crease buckling in the Kresling pattern is to use FE mod-
els as shown in the work by Hwang [237]. Another consideration
is the time required to formulate the model and setup the simula-
tion for a specific problem. In this case, human factors can play a
large role. A researcher familiar with reduced-order models may
choose the bar and hinge approach as in Ref. [196] and a
researcher familiar with commercial FE packages may choose the
FE models as in Ref. [237]. These cases illustrate that finding a
“balanced” model is subjective, and in addition to the features of
the different model options, people should also consider their
prior knowledge and experience.

Finally, as the community continues to design increasingly
sophisticated origami structures for engineering applications,
selecting and developing origami models becomes more complex
due to the exponentially growing number of origami characteris-
tics that need to be captured; see Fig. 21. This exponential growth
makes it challenging to find a minimal model that satisfies the
desire for simplicity or a balanced model that trades optimum
speed and fidelity.

Flowchart: To help navigate the complexity of selecting and
developing origami simulation techniques, we offer a nonexhaus-
tive flowchart, shown in Fig. 22, to aid the selection and develop-
ment process. The three aspects to consider when selecting and
building simulation techniques are: the origami characteristics,
objectives of the simulation, and other factors. To select an appro-
priate simulation for origami, the left flowchart identifies potential
simulations that can capture the target characteristics of the ori-
gami systems, and the right flowchart helps find a simulation that
fits the given objectives. Once a potential simulation technique is
identified, other factors such as available facilities and capabilities
can be taken into consideration. In developing a new or modified
simulation technique, the flowchart can help users select a base
simulation technique. The following text discusses the flowchart
and presents a number of examples.

Starting with the flowchart for origami characteristics in box 1
of Fig. 22, one of the most fundamental features of an origami
system is whether it is rigid-foldable or not. If the origami is
rigid-foldable, their folding motions can be captured using kine-
matic simulations or rigid panel based mechanical simulations
(item 1.1). However, if the origami is nonrigid-foldable, simpli-
fied mechanical simulations like the bar and hinge simulations
[63,145] and the plate theory-based simulations [168,169] or more
advanced options like FE simulations are needed (item 1.2). Next,
more detailed features of the origami system can be considered.
For example, studying rigid-foldable origami with non-negligible
compliant creases can be accomplished using the smooth fold sim-
ulations [103,104,106] (item 1.1.1), while studying the nonrigid-
foldable origami with non-negligible compliant creases can use
compliant crease bar and hinge simulations [136], plate theory-
based simulations [167], or FE simulations [189] (item 1.2.1).

In addition to the properties of the origami, the objectives of
the simulation should also be considered, as shown in box 2 of
Fig. 22. Broadly, there are three types of objectives that may be of
interest: to study the origami folding motion, to study the change
in origami properties, and to achieve pattern design and shape fit-
ting. For the simulation of origami folding motions, the primary
factor to consider is its means of actuation; if no actuation mecha-
nisms are considered, conventional kinematic and mechanical ori-
gami simulation techniques can be used (item 2.1.1). On the other
hand, if multiphysics actuation is intended (item 2.1.2), building
new origami simulations may be necessary. For example, Swami-
nathan et al. [210] introduce a magnetic actuation module into a
physics-based origami simulation program. Capturing the prop-
erty changes in origami is a common objective in origami simula-
tion. For changes in the kinematic and mechanical properties,
using existing origami simulations tends to be sufficient (item
2.2.1 to 2.2.3), but analyzing multiphysical properties may require
combining different simulation environments, as discussed in Sec.
5. In this case, finding an origami simulation technique that inte-
grates with other multiphysics simulation environments can
become crucial (item 2.2.4). Finally, selecting simulations for pat-
tern design and origami shape fitting focuses more on the balance
between the computational speed and the model fidelity (item
2.3). In general, kinematics simulations and reduced-order
mechanical simulations are preferred for such objectives.

Case Studies: Finally, we present a number of case studies on
selecting and developing origami simulations. The first example is
to design an origami that fits a desired target surface (item 2.3 in
Fig. 22). Research efforts have mainly focused on using rigid-
foldable patterns for shape fitting [87,106,121], with potential
applications as deployable structures. As indicated in item 1.1 and
item 2.3, kinematic simulations are popular for this objective
because they are computationally efficient [13,87,106,121,238].
Moreover, some of these kinematic simulations can be extended
such that origami structures with thick panels [126] or those with
compliant creases [106] can also be designed in a similar fashion
(item 1.1.2). Alternatively, reduced-ordered mechanical simula-
tions for origami could be used because they can capture nonrigid
foldable origami [149,150] while also remaining computationally
efficient (item 1.1).

The second example is the analysis of origami FSS. A number
of publications have studied the performance of origami FSS,
often using the Miura-ori pattern [38,39,222–225]. Because the
Miura-ori tessellation is rigid-foldable, a simulation technique
from item 1.1 on Fig. 22 can be employed to capture the geome-
try. However, capturing the electromagnetic properties of the ori-
gami FSS requires more sophisticated electromagnetic
simulations and is thus performed using separate simulation pack-
ages (item 2.2.4). In this case, it is important to build an origami
simulation that can output and transfer the origami geometry to
the separate simulation package smoothly.

Finally, consider origami for use as an energy absorption system
or as a metamaterial with graded stiffness. The objective of such
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simulations is to find the mechanical properties of the origami (item
2.2.2 or item 2.2.3 in Fig. 22). Usually, the origami structure will
experience large panel deformations with potential panel contact, as
listed in item 1.2.3. Here, FE simulations can be the preferred choice
because they are capable of capturing nonlinear and plastic deforma-
tions [139,186]. However, if the origami is rigid-foldable and does
not experience large panel deformations, a reduced-order mechanical
simulation may also be suitable [4,158,239].

8 Future Challenges and Conclusions

Despite the significant advances in the field of origami simula-
tions, there remains a range of open challenges. Here, we offer
our view on key themes within the future challenges: simulation
validation, enhancement of simulation capabilities, and integra-
tion with design.

Simulation Validation: A large number of different simula-
tion techniques have been proposed for capturing the behavior of
origami-inspired structures. What are the limits of these simula-
tions? How accurate are these simulations when applied to differ-
ent origami patterns, across different scales and manufactured
from different materials? These are open questions that have not
been systematically addressed in existing research. To resolve the
problem, we propose the development of a high-quality open-
access library of experimental benchmarks of origami. This
approach is inspired by experimental benchmark libraries created
for other engineering problems (e.g., radar cross section [240]).

What patterns should be chosen for these high quality experi-
ments? At the very least, the selection should include both rigid
foldable patterns (such as the Miura-ori) and nonrigid foldable
patterns (such as the Kresling pattern). However, as demonstrated
by Pinson et al. [241], the strain energy from origami folding can
span orders of magnitude depending on how well the pattern com-
plies with the rigid-foldability conditions; this makes it challeng-
ing to select representative patterns that sufficiently capture this
energy landscape. In addition, the physical length scale of origami
needs to be considered. For example, origami systems at meter
and millimeter scale show different responses, because gravity
has a greater impact at larger scales. Moreover, what materials
should the library contain? The use of paper would seem to be a
straightforward answer because of its ubiquitous use in origami
prototyping. However, as pointed out by Grey et al. [242], paper
is not suitable for validation because of its nonlinear and pseudo-
plastic behavior. Thus, future benchmarks should consider multi-
ple materials with different elasto-plastic behaviors. Finally, these
benchmark experiments should also reflect information on the var-
iability in material properties and dimensions because origami
structures can be significantly affected by even small imperfec-
tions [147].

Enhancement of Simulation Capabilities: Future research
needs to enhance the capabilities of current simulation techniques
and packages. These enhancements include but are not limited to
supporting more elaborate material models, developing advanced
multiscale simulations, building multiphysics interaction models,

Fig. 22 Considerations for selecting and developing simulation techniques for origami systems
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and capturing interaction between origami modules. For instance,
current reduced-order origami simulation capabilities have been
mostly limited to linear-elastic material models, whereas materials
used for origami prototyping and applications are generally non-
linear elasto-plastic [242] and can be further affected by the ambi-
ent environment such as temperature and humidity (especially for
active folding).

Simulating the global response of origami systems requires
accurately capturing local details such as the properties at creases
and small manufacturing imperfections [147]. In order to develop
origami-inspired systems with increased numbers of unit cells, as
might be needed for shape-adaptive surfaces, multiscale simula-
tion techniques should be developed. High-fidelity simulations of
local features and unit cell geometry would feed into larger-scale,
reduced-order simulations of the behavior of origami systems.
Further, in order to better capture the coupling between actuation,
response to external stimuli, origami folding, and the nonmechani-
cal properties of origami devices, more comprehensive multiphy-
sics simulations must be developed. Another less visited topic in
the simulation of origami is the interaction between origami mod-
ules. Many origami-inspired metamaterials are constructed by
integrating repeating origami unit cells [7]. These unit cells are
often fabricated individually and then assembled to form an ori-
gami metamaterial. The interaction between individual origami
modules can affect the bulk behavior of the metamaterial, and
developing reliable simulations to capture such interactions is also
an important task for the future.

Integration of Simulation and Design: Finally, the effective
integration of origami simulation with different origami design
methodologies remains an open challenge. Currently, many ori-
gami simulation techniques and tools are developed without con-
sidering how these tools can be systematically integrated into
origami design methodologies. A unified workflow, data format,
and parameterization of the origami design space would be impor-
tant for connecting simulation to design. A standardized data for-
mat can help origami researchers to develop computational tools
more efficiently and the FOLD format [229] demonstrates a first
attempt to accomplish this goal. However, further developments
are needed to include additional origami properties related to
active folding, mechanical behavior, and nonmechanical perform-
ance. In addition, improving the accessibility of the simulation
package is also important. Many new users of origami simulation
software programs may not have prior background in computa-
tional mechanics or even general programming. Therefore, future
origami simulation packages will need to enhance their accessibil-
ity to researchers from noncomputational disciplines and the gen-
eral public. For example, the Crane package [235] for Rhino/
Grasshopper demonstrates one successful attempt to bring origami
design and simulation techniques [91] to the architecture and
design community.

In conclusion, in this work we reviewed the state-of-the-art in
origami simulations, and broadly categorized origami simulation
techniques into kinematics-based, mechanics-based, and multi-
physics simulations. We analyzed the underlying origami models
and solution methods, discussed the theoretical background of
these techniques, evaluated the advantages and disadvantages of
different simulations, and demonstrated the connection between
origami simulations and other engineering disciplines. Based on
the overview of available simulations techniques, we discussed
why developing origami simulations is challenging and how to
select and develop appropriate origami simulation techniques for
specific applications. Finally, we identified promising directions
of future research, focusing on simulation validation, enhanced
simulation capabilities, and improved integration of simulation
and design. Origami simulation is a rapidly evolving field of
research and we believe that future developments will yield faster,
more robust, and easier-to-use simulation techniques and pack-
ages for researchers and designers from different disciplines.
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