2]
©
=
2]
T
o B
T
o
/)]
O
2]
>
e
Q.

RESEARCH ARTICLE | JULY 06 2023
Accurate simulation of direct laser acceleration in a laser

wakefield accelerator @3

Kyle G. Miller & © ; John P. Palastro © ; Jessica L. Shaw @ ; Fei Li © ; Frank S. Tsung © ; Viktor K. Decyk
C. Joshi @ ; Warren B. Mori

‘ '.) Check for updates ‘

Physics of Plasmas 30, 073902 (2023)
https://doi.org/10.1063/5.0152383

X CrossMark
@

View Export
Online  Citation

Physics of Plasmas

Features in Plasma Physics Webinars

AlIP
Register Today! _é/_ Publishing

12:1€:60 £20Z AInr L2


https://pubs.aip.org/aip/pop/article/30/7/073902/2901213/Accurate-simulation-of-direct-laser-acceleration
https://pubs.aip.org/aip/pop/article/30/7/073902/2901213/Accurate-simulation-of-direct-laser-acceleration?pdfCoverIconEvent=cite
https://pubs.aip.org/aip/pop/article/30/7/073902/2901213/Accurate-simulation-of-direct-laser-acceleration?pdfCoverIconEvent=crossmark
javascript:;
https://orcid.org/0000-0003-4826-9001
javascript:;
https://orcid.org/0000-0002-6721-1924
javascript:;
https://orcid.org/0000-0002-1118-8921
javascript:;
https://orcid.org/0000-0001-8627-910X
javascript:;
https://orcid.org/0000-0001-9257-7920
javascript:;
https://orcid.org/0000-0003-1280-5001
javascript:;
https://orcid.org/0000-0002-1696-9751
javascript:;
https://orcid.org/0000-0002-6394-5082
javascript:;
https://doi.org/10.1063/5.0152383
https://servedbyadbutler.com/redirect.spark?MID=176720&plid=2063252&setID=592934&channelID=0&CID=754913&banID=520996573&PID=0&textadID=0&tc=1&adSize=1640x440&data_keys=%7B%22%22%3A%22%22%7D&matches=%5B%22inurl%3A%5C%2Fpop%22%5D&mt=1689917487506540&spr=1&referrer=http%3A%2F%2Fpubs.aip.org%2Faip%2Fpop%2Farticle-pdf%2Fdoi%2F10.1063%2F5.0152383%2F18029910%2F073902_1_5.0152383.pdf&hc=3efe70aac75b9a2cf89c94a7fef02db407a58630&location=

Physics of Plasmas ARTICLE

pubs.aip.org/aip/pop

Accurate simulation of direct laser acceleration
in a laser wakefield accelerator

Cite as: Phys. Plasmas 30, 073902 (2023); doi: 10.1063/5.0152383 @ 1 @
Submitted: 29 March 2023 - Accepted: 12 June 2023 - O
Published online: 6 July 2023 View Online Export Citatior CrossMark

Kyle G. Miller,"® (%) John P. Palastro,' () Jessica L. Shaw,' (%) Fei Li,” (%) Frank S. Tsung,? (®) Viktor K. Decyk,”

C. Joshi,” ® and Warren B. Mori**

AFFILIATIONS

Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623-1299, USA
“Department of Physics and Astronomy, University of California, Los Angeles, California 90095, USA
*Department of Electrical and Computer Engineering, University of California, Los Angeles, California 90095, USA

3 Author to whom correspondence should be addressed: kmill@lle.rochester.edu

ABSTRACT

In a laser wakefield accelerator (LWFA), an intense laser pulse excites a plasma wave that traps and accelerates electrons to relativistic
energies. When the pulse overlaps the accelerated electrons, it can enhance the energy gain through direct laser acceleration (DLA) by
resonantly driving the betatron oscillations of the electrons in the plasma wave. The traditional particle-in-cell (PIC) algorithm, although
often the tool of choice to study DLA, contains inherent errors due to numerical dispersion and the time staggering of the electric and
magnetic fields. Furthermore, conventional PIC implementations cannot reliably disentangle the fields of the plasma wave and laser pulse,
which obscures interpretation of the dominant acceleration mechanism. Here, a customized field solver that reduces errors from both
numerical dispersion and time staggering is used in conjunction with a field decomposition into azimuthal modes to perform PIC
simulations of DLA in an LWFA. Comparisons with traditional PIC methods, model equations, and experimental data show improved
accuracy with the customized solver and convergence with an order-of-magnitude fewer cells. The azimuthal-mode decomposition reveals

that the most energetic electrons receive comparable energy from DLA and LWFA.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0152383

I. INTRODUCTION

Laser wakefield accelerators (LWFAs) use intense laser pulses to
excite plasma waves that can trap and accelerate electrons to relativis-
tic energies over short distances." While the acceleration is predomi-
nantly in the longitudinal direction, the trapped electrons also
undergo transverse, ie., betatron, oscillations in the fields of the
plasma wave. In an idealized LWFA, an ultrashort laser pulse drives
the plasma wave but does not overlap or interact with the trailing
trapped or externally injected electrons.”” There are, however, a num-
ber of situations in which this simple picture breaks down. For
instance, the accelerated electrons can travel faster than the group
velocity of the laser pulse and move forward in the plasma wave into
the laser light. The laser light can also slide backward into the acceler-
ated electrons when the pulse depletes and locally decelerates.
Experimentally, the laser bandwidth places a lower bound on the dura-
tion of the pulse that can be comparable to or longer than the
plasma period. As an example, a laser pulse with a duration longer
than the plasma wave period can drive a self-modulated LWFA
(SM-LWFA)."” Here, the pulse inherently overlaps the accelerated

electrons and can even create an ion channel in which electron acceler-
ation arises purely from betatron motion within the laser fields.
Finally, some proposed ionization injection and enhanced acceleration
schemes for LWFAs employ two laser pulses, with the trailing pulse
colocated with the trapped electrons.'”""

In each of these examples, the electric field of the laser pulse can
resonantly drive the betatron oscillations of the accelerated electrons.
Specifically, betatron resonance occurs when the Doppler-shifted laser
frequency observed by an accelerated electron matches its betatron fre-
quency, wg, ie.,

p
V2y
where ) is the laser frequency, f3, is the longitudinal electron velocity,
w, is the plasma frequency, and y is the relativistic factor of the elec-
tron. When Eq. (1) is (approximately) satisfied, electrons can gain
energy directly from the laser pulse in a process known as direct laser
acceleration (DLA).”'”"'” The transverse momentum gained from the
electric field of the pulse is rotated into longitudinal momentum by
the magnetic field of the pulse.

(1= B oy = —= = wy, 1
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Particle-in-cell (PIC) simulations of DLA can guide experiments
and assist in interpretation of the results, but accurate simulations remain
a challenge. The phasespace and energy gain of electrons in betatron res-
onance are especially sensitive to the phase and group velocities of the
laser pulse as well as the relative amplitudes of the electric and magnetic
fields. This presents an issue for traditional PIC methods, which exhibit
numerical dispersion errors for light waves and field-amplitude errors
due to the time staggering of the electric and magnetic fields."*'” The
time-staggering error can be mitigated by subcycling and temporal inter-
polation of the fields, but dispersion errors would persist.'” Several spec-
tral methods feature a more-precise dispersion relation for light
waves,'**” but these methods are typically less amenable to massive par-
allelization. Vay et al.”' describe a pseudo-spectral analytic time-domain
algorithm that addresses the parallel scalability issue. To address the need
for accuracy when using finite-difference solvers, the concept of a cus-
tomized explicit Maxwell field solver was recently developed” and
applied to correct errors in the dispersion relation of light waves™ and
the combined errors of numerical dispersion and time-staggering in the
Lorentz force.”* Each customized solver is combined with corrections to
the current deposit to ensure charge conservation. Simulations employ-
ing a customized solver in Ref. 24 have produced electron motion in the
fields of a laser pulse that more-closely align with exact theoretical solu-
tions than simulations using the standard Yee solver.

Interpreting and optimizing the energy gain of electrons in DLA
requires disentangling the contributions from the laser pulse and the
plasma wave. These contributions are often calculated by attributing
the work done by the longitudinal and perpendicular electric fields to the
plasma wave and laser pulse, respectively.”'**** However, focused laser
pulses can have a non-negligible longitudinal electric field that has been
shown to reduce the energy gain of electrons in betatron resonance.”””"’
Alternatively, one can make use of the “quasi-3D” geometry, where a
cylindrical domain is decomposed into an arbitrary number of azimuthal
modes.”** When only the zeroth- and first-order modes are kept, the
cylindrically symmetric wakefields and fields of a linearly polarized laser
pulse are naturally split into separate quantities. Such a decomposition
enables accurate calculations of the work performed by the fields of the
laser pulse and plasma wave, including any contribution from the longi-
tudinal field of the pulse. In addition, the quasi-3D geometry provides
3D geometric effects at the computational cost of a 2D simulation, expe-
diting optimization and design scans in support of experiments.

In this work, we employ a recently developed customized solver”*
and a cylindrical decomposition into azimuthal modes™” to study elec-
tron motion and DLA in an LWFA. Comparisons with a reduced
physical model and experimental results show much better agreement
when using the customized solver compared to standard methods.
Convergence tests show that the customized solver produces reliable
results with an order-of-magnitude larger cell size than the standard
Yee solver. The azimuthal-mode expansion allows for a precise parti-
tioning of the work done on electrons into contributions from the laser
pulse and plasma wave. Specifically, two populations of accelerated
electrons are observed: one receiving energy purely from the wake-
fields and another attaining higher energies from the combined effects
of wakefield and direct laser acceleration. More generally, the com-
bined computational savings from the customized solver and the
quasi-3D decomposition enable simulation of larger and more-
complex physical problems and clearer analysis of acceleration mecha-
nisms in laser—plasma interactions.

pubs.aip.org/aip/pop

Il. PHYSICAL MODEL FOR DIRECT LASER
ACCELERATION

Electrons trapped in the plasma wave of an LWFA can be accel-
erated by the fields of both the plasma wave and the laser pulse. The
wakefields of the plasma wave accelerate the electrons longitudinally,
while also providing a transverse focusing force that causes the elec-
trons to undergo betatron oscillations. When the laser pulse overlaps
these electrons and the betatron resonance condition in Eq. (1) is satis-
fied, the transverse electric field of the laser pulse is in phase with the
electron betatron motion and can increase the transverse momentum.
The increased transverse momentum is then rotated into longitudinal
momentum by the magnetic field of the pulse, resulting in a steady
energy gain from the pulse that augments the energy gained from the
longitudinal wakefield.”””"" This section presents a model for the elec-
tron motion in the combined fields of the plasma wave and laser pulse,
which will be used to assess the impact of errors inherent to certain
PIC algorithms.

Consider a laser pulse polarized in the X direction and propagat-
ing in the z direction with longitudinal wavenumber k, and phase
velocity vy = wp/k;. The pulse travels at its group velocity and exerts
a ponderomotive force that expels electrons from its path, creating a
bubble of net positive charge surrounded by a thin electron sheath.
The bubble travels at a velocity v, < c.

The vector potential of the laser pulse A; will be modeled using
the Coulomb gauge, i.e., V - A; = 0. The transverse vector potential of
the laser pulse A, satisfies the Helmholtz equation inside the bubble,
which acts like a cylindrical waveguide for the pulse. Specifically,

Ayl = AoJo(kyr)cos (k.€), (2)

where J, denotes the n™ cylindrical Bessel function, r = (x* + y2)"/2,
E=z—vyt, and k; = (w}/c* — )2 A value of ki =2.4/
(Fp + ¢/w,) ensures that the Bessel function vanishes at the edge of
the electron sheath outside the bubble, and 7, denotes the average
bubble radius in the region of the accelerated electron bunch. With Eq.
(2), the longitudinal vector potential of the laser pulse can be calcu-
lated exactly using A, ; = f 0:Ay dz,

kix
k,r

where the integration constant is chosen so that the potential vanishes
asr — 00.

The vector A, and scalar ¢, potentials associated with the bubble
are more-naturally modeled in the Lorenz gauge, ie,
AV - Ay + 0y, = 0. Following the analysis of Lu et al.,”" the poten-
tials within the bubble are given by

Ay =Ag—Ti(kyr)sin (k;&), (3)

2
v =22 [+ B3 - 7).
wpm
Py = do(0) RhyaLl (4)
Az,b :AZ,O(g)a
_rdby
Ar,b - 2% di )

where Y = ¢, — cA; is the wake potential, m is the electron mass, e
is the elementary charge, r,({) is the blowout or bubble radius as a
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function of { = z — ct, f(rp) is a function that depends on the details
of the electron sheath that surrounds the ion column,”*”” and for any
quantity S, let So({) = S({,r = 0). The trajectory r,({) is determined
by a nonlinear differential equation [see Eq. (46) and subsequent para-
graph in Ref. 34]. In the limit that @, /c > 1, this equation predicts
that the bubble has a near-spherical shape,””” and the resulting
expression for i approaches that described by Kostyukov et al.,”

wzm

R (i = O 1), ©)
where 7p max is the maximum blowout radius and { is defined such
that 7,({ = 0) = rpmax. A gauge transformation can then be made
such that A, = —¢,/cand A| , = 0.

With the potentials known, the electric and magnetic fields can
be calculated in the usual way: E = —0,(A;+ Ap) — V¢, and
B =V X (A; + Ap). The momenta of the accelerated electrons evolve
in response to the resulting Lorentz force,

dp

dt
where p = ymv and v is the electron velocity. Equation (6) can be re-
expressed as equations of motion for the coordinates of an electron,

e c—édzwo] Fui
X =—

—e(E+v x B), (6)

L7 2
z 14—
x+yx+w/; +a)§m c dCZ _Ymv

2
wﬁm c dC

Y= (7)

m

e céd2¢0] F

)

dc ¢ dz ym

m

TR [2%"’””“2%} B
y wym

where a dot denotes a full time derivative, F; = —e(E; + v x By), and
E; and B are the electric and magnetic fields of the laser pulse, respec-
tively. These equations are general and can describe motion in bubbles
or in pure ion channels with the appropriate expression for 1/,. Upon
taking the limit of a spherical bubble, using Egs. (2), (3), and (5) and
restricting motion to the x-z plane (i.e, y=0), the system in Eq. (7)
reduces to

P 1P
X+-=x+—|1+—|x

b 2 c

_ﬂoC 2

k
= [(600 —k.z)Jo(kLx) — k_gkzili (kix)} sin (k,&),

7
2
— kx| Jo(kox) + k—é]{ (ka)} sin (k,&) },
where J{(s) = dJi(s)/ds and ag =<2 is the normalized vector
potential of the laser pulse. For a cylindrically symmetric laser
pulse, an electron initialized at y = 0 will experience no force in
the y direction, justifying the consideration of motion in only the
x-z plane.

pubs.aip.org/aip/pop

In Egs. (4)-(8), the bubble velocity v, has been approximated as
c. More generally, the wake potentials have a weak dependence on vy,
Single-particle calculations that maintained this dependence exhibited
negligible differences from cases where v;, was set to the vacuum speed
of light. The results are, however, sensitive to the value of v4. Thus, the
more important effect is the phase slippage of electrons within the
fields of the laser pulse.

Nemeth et al.”” numerically solved different equations of motion
for electrons in the combined fields of a bubble and a plane wave laser
pulse and compared the results to a PIC simulation. The phase velocity
used in the equations of motion was extracted from the PIC simula-
tion. The calculations and PIC results agreed; however, the phase
velocity was artificially low due to dispersion errors in the PIC algo-
rithm used. In contrast, the study described here numerically solves
Eq. (8) with a physically accurate phase velocity extracted from a PIC
simulation that uses a customized, dispersion-free finite-difference
field solver that conserves charge. This solver is described in Sec. III,
and comparisons of the numerically integrated electron trajectories
with those from the PIC simulation are presented in Sec. IV A.

lll. NUMERICAL METHODS FOR THE PARTICLE-IN-CELL
ALGORITHM

Despite the utility and widespread adoption of the PIC algorithm
for studying laser-plasma interactions such as LWFA, many of the
standard numerical methods come with significant errors or can com-
plicate the analysis. In this section, recent techniques are described
that can more-accurately model and simplify the analysis of electron
dynamics in a laser pulse, such as DLA-assisted LWFA.

A. Customized “dual” solver

The use of the finite-difference time-domain technique for updat-
ing the electromagnetic fields makes the PIC method susceptible to
numerical issues such as improper numerical dispersion,”* numerical
Cerenkov radiation,” ™’ and the finite-grid instability.""** These
errors often depend on the resolution but are not always eliminated
when the time step and/or cell sizes are decreased. A customized,
higher-order solver was recently developed™ to eliminate the dual
errors of improper numerical dispersion of light in vacuum and the
incorrect Lorentz force on particles within a laser field due to the time
staggering of electric and magnetic fields. The full details of the solver
are described in Ref. 24, but the algorithm is summarized here.

The electromagnetic field update in a typical PIC algorithm is
performed by solving Faraday’s and Ampere’s laws. Using the stan-
dard Yee discretization, © the electric and magnetic fields, E and B,
respectively, are staggered in space and time to allow for central finite-
difference approximations to the first-order derivatives that are accu-
rate to second order in space and time. However, the finite-differences
in space can be altered to obtain more-accurate solutions, and sepa-
rate, unique finite-difference operators can be applied to E and B.”*
Taking the Fourier transform of Faraday’s and Ampere’s laws in space
and time yields

[@],B = [k| x E,
[],E = —c*[k] x B, ©

where [-], represents the Fourier transform of finite-difference deriva-
tives with respect to time ¢ or with respect to space on E and B,
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respectively, and ~ indicates a quantity in the (®,k) domain. These
equations can be combined with Gauss’s law, i[k] - E = 0, to provide

(]!~ [k - k] = 0, (10)

which is the numerical dispersion relation for a given finite-difference
scheme. For the central finite-difference operator in time, [w],
= sin (241) /4!, where At is the time step. For a light wave traveling
along the Z direction with wavenumber k;, the [k;], and [k.]; opera-
tors are to be constructed such that w = ck,. With this requirement,
Eq. (10) can be rewritten as™

kol = { (%2 / % . an

which is the first condition on the finite-difference operators [k, and
[kz]p-

The second condition eliminates errors in the Lorentz force of a
laser pulse due to the time staggering of the E and B fields. The electro-
magnetic force computed on a particle is time-centered with E and the
particle position, meaning that the transverse Lorentz force from an
electromagnetic wave polarized in the direction is computed at time
step 1 as

F; = q(E} — cB,B}), (12)

where the superscript n denotes a quantity at time nAt, g is the particle
charge, ff, = v./c, and the overbar indicates an average in time, ie.,

o' =1 ((~)"7% + (~>"+%). The corresponding Fourier transform is

- - = At ~

F,= q(Ex—c,Bszcos wT)S, (13)
where S is the interpolation function.”* The magnetic field in Eq. (13)
can be eliminated by making use of Faraday’s law in Eq. (9) along with

Eq. (10) to give

Fy=qE.(1- P, F;Z}Eco wTAt S. (14)
z|B

Thus, the correct Lorentz force on a particle (assuming o = ck;)

requires

(k2] g (ckZAt>

cos =1, (15)
[kz] B 2

which is the second condition on the finite-difference operators [k;]
and [k;].

A customized solver can be created with finite-difference coeffi-
cients such that it satisfies Egs. (11) and (15) to desired precision, as
was done in Ref. 24. This new solver is referred to as the dual solver
because it simultaneously addresses the issues of inaccurate numerical
dispersion and time-staggering errors in the Lorentz force. An impor-
tant feature of the dual solver is that only the temporal resolution
appears in Egs. (11) and (15), as opposed to both the spatial and tem-
poral resolutions as is the case with the Yee solver.”*” This allows the
time step to be reduced independently of the spatial discretization to
obtain greater accuracy. In contrast, dispersion errors become more

pubs.aip.org/aip/pop

severe when using the Yee solver for time steps smaller than the
Courant-Friedrichs-Lewy (CFL) condition.

A correction to the current ensures that the dual solver conserves
charge and, in turn, satisfies Gauss’s law. Specifically, it is shown in
Refs. 22-24 that a charge-conserving current deposit is achieved by
correcting the current in the z direction as follows:

7 [kZ ] Yee
J z,corr —
[kz] B

Iz (16)

where L’cor, and J, are the corrected and uncorrected currents, respec-
tively, and [k.]y,, = sin (%22)/ 42 The magnetic field will remain
divergence-free, provided that V - B = 0 initially.

B. Azimuthal-mode expansion

Analyzing the acceleration and energy gain of an electron in
laser-plasma interactions requires differentiating the work done by
the laser pulse from the work done by the plasma waves. In studies of
DLA-assisted LWFA, this distinction is often made by attributing the
work done by the laser pulse and plasma wave to that done by the per-
pendicular and longitudinal fields, respectively.”'**>*” This approach,
however, misattributes work done by the longitudinal field of the laser
pulse to the plasma wave. Azimuthal decomposition of the fields pro-
vides a more-natural and physically accurate way to separate the con-
tributions from the laser pulse and plasma wave when the spot size of
the pulse is cylindrically symmetric.

In the azimuthal-mode decomposition or quasi-3D geometry,”
fields are expanded as a series in the azimuthal mode number m with
amplitudes that vary as e™?, where ¢ is the azimuthal angle.”” When
only modes 0 and 1 are kept, the axisymmetric m = 0 fields of the
plasma wave (both transverse and longitudinal) are completely distin-
guishable from the m = 1 fields of the laser pulse. The work done by
the plasma wave and laser pulse can then be calculated as

WLWFA = —EJEO . th,
17)
WDLA = *EJEI 'th7

where the superscript denotes the azimuthal mode. Note that a similar
separation was previously applied to the results of simulations based
on the quasistatic approximation with an envelope solver,””** but only
recently has this technique been applied to fully self-consistent PIC
models,”” which are required to model pump depletion distances and
processes such as self-injection.

Equation (17) provides a natural separation of the work done by
the laser pulse and plasma wave in the quasi-3D geometry. In
Cartesian geometries, a scale factor can be used to improve the accu-
racy of a separation in terms of the field components. The work done
by the longitudinal and transverse fields is given by

W, = —eJEZVZdt = —ez JE;"VZdt,
m

(18)
WL = —CJEL 'VLdt: —EZJET 'VLdt.

The transverse electric fields of the plasma wave do very little net
work, but the longitudinal electric field of the laser pulse can
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contribute substantially to W,. Near focus, the field components of a
linearly polarized laser pulse with a transverse Gaussian profile can be
approximated as"*

2
x-E = Ejexp <— %) sin (0),
0

z-E 2 Eye - cos (0)
. el X _——
! kow? P Wi ’

where E, is the peak electric-field amplitude, wy is the spot size, and 0
is the phase as seen by an electron. Suppose the electron is moving for-
ward with a velocity v, ~ ¢ and executing small-amplitude transverse
betatron oscillations, i.e., x(¢) = A cos wpt with [A| < wy. If the elec-
tron is in betatron resonance, the Doppler-shifted laser frequency
matches the betatron frequency: . The cycle-averaged work done by
the laser pulse due to its longitudinal and transverse components can
then be calculated from

(19)

"(2 - E))v.dt,
‘ (20)

2n

(W) =—e JTﬂ()Z - Ep)v.dt.
0
Taking the ratio of these two quantities yields®

(W) _ 223

<Wl> - CU()CUPW(Z) '

f= @1
Note that the ratio fis negative, indicating that when an electron is in
phase with the transverse component of a linearly polarized Gaussian
laser pulse, it is out of phase with the longitudinal component.

(a) Experimental (b) Quasi-3D dual
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TABLE 1. Physical parameters used for the PIC simulations. The simulations are
based on an experiment described in Ref. 27, in which significant DLA was observed
inan LWFA.

Laser wavelength (1) 815 nm
Pulse duration (FWHM) 45 fs

Spot size (wy) 6.7 um
Amplitude (ao) 2.03

1.43 x 10 cm ™
430 pm

Electron density (1)
Acceleration distance

If one does not have access to an azimuthal decomposition of the
fields, Eq. (21) can be used to estimate the work done by the LWFA
and DLA processes,

Wiwea = Wz - Wy,
Whia = (1 +f)WL~

This estimate was previously compared to Eq. (17) using results from
an SM-LWFA simulation in the quasi-3D geometry, and the agree-
ment was reasonable.”” However, the accuracy of Eq. (21) relies on the
assumptions that v, = ¢, and that the oscillation amplitude is much
less than the spot size. More generally, electrons can have large trans-
verse velocities, and the amplitude of oscillation can extend to the edge
of the bubble. In addition, the spot size can vary greatly with longitudi-
nal position, as can the local frequency due to photon acceleration.””*®
The accuracy of the approximation in Eq. (22) is compared with Eq.
(17)in Sec. IV C.

(22)

1.0

E

0.8

FIG. 1. The final electron energy and divergence angle from
(a) the experimental data presented in Ref. 27; PIC simula-
tions using (b) the dual solver in quasi-3D, (c) the 3D Yee
solver, (d) the 3D dual solver, and 3D solvers correcting only
for (e) dispersion or (f) time-staggering errors; and the
numerically integrated equations of motion (g) with and (h)
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0.4 without the time-staggering error. The simulations using the
dual solver are in much better agreement with the experiment
than those using the Yee solver.
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IV. SIMULATION RESULTS AND DISCUSSION

This section presents 3D and quasi-3D simulations of an LWFA,
where the laser pulse fills the first bubble. The simulations are moti-
vated by the experiments described in Refs. 27 and 28. In the experi-
ments, the plasma density was varied to generate electron spectra with
and without signatures of DLA, and tunneling ionization of nitrogen-
doped helium®** was used to inject electrons into the bubble. In one
case from Ref. 27, DLA was observed to contribute substantially to the
electron energy gain. The simulations presented here model this case
using a laser pulse polarized in the X direction that propagates in the
positive Z direction through a mixture of 99.9% He and 0.1% N, (see
Table I and Appendix for the physical and numerical parameters,
respectively). The vast majority of trapped electrons originate from the
innermost nitrogen states, which are only ionized near the peak of the
laser pulse intensity. These electrons then drift to the back of the bub-
ble and are accelerated forward by the joint LWFA and DLA pro-
cesses.é\ll PIC simulations presented in this work are performed using
Osris.”

A. Electron beam characteristics and impact of field
solver

Figure 1 compares the experimentally measured and predicted
energy-dependent divergence angles, 0, = atan (p,/p;), of accelerated
electrons. The simulations in (b) and (d) using the dual solver are in
much better agreement with the experiment than the simulation in (c)
using the Yee solver. While each case exhibits the “forking” character-
istic of DLA,”” ?”°! i.e., the absence of charge at small angles for ener-
gies greater than ~90 MeV, using the Yee solver results in far fewer
electrons with small divergence angles, especially at lower energies.
The 3D and quasi-3D simulations employing the dual solver show
general agreement, but the larger number of simulated particles within
the injection volume in 3D provides better injection statistics.
Furthermore, the exclusion of azimuthal modes greater than one in
quasi-3D precludes the modeling of hosing and other asymmetric pro-
cesses. Separate simulations employing field solvers that (e) correct
only numerical dispersion errors™ or (f) only the time-staggering error
indicate that the general shape of the electron phasespace is predomi-
nantly improved by removing the time-staggering error. However,
correcting numerical dispersion improves the final electron energy
due to the more-accurate phase and group velocities. All PIC simula-
tions use 30 points per A = 21/w, and a time step set close to the
CFL limit for each solver.

To validate and further explore the observed differences in the
PIC simulations, Eq. (8), which models electron motion in the com-
bined laser pulse and bubble fields, is numerically integrated. The
effect of time staggering that appears in Eq. (13) is included in Eq. (8)
by multiplying the magnetic field terms, i.e., the terms proportional to
vsin(k;£), by cos(woAt/2). Despite being close to unity
[cos (woAt/2) ~ 0.994 for the Yee-solver case], this factor results in a
substantial increase in the divergence angle of the highest-energy elec-
trons [cf. Figs. 1(g) and 1(h)]. Similar behavior is observed in the PIC
simulation employing the Yee solver [Fig. 1(c)], suggesting that the
time-staggering error artificially amplifies the transverse oscillations of
electrons in the fields of the laser pulse. Note that while the time-
staggering error is improved by decreasing At, numerical dispersion
errors for the Yee solver worsen if the longitudinal spatial step size is
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FIG. 2. The electron beam density predicted by 3D PIC simulations using (a) the
3D Yee solver, (b) the dual solver in quasi-3D, (c) the 3D solvers with corrections
only for dispersion (upper) or time-staggering (lower) errors, (d) the 3D dual solver,
and the numerically integrated equations of motion (e) with and (f) without the time-
staggering error. The profiles are shown near the end of the acceleration, just
before the density down ramp. The density of electrons originating from helium
appears in the background of (a)—(d), illustrating the structure of the bubble. The
time-staggering error produces unphysically large transverse oscillations that
extend well beyond the bubble.

not decreased in tandem. While the ODE model in Fig. 1(h) appears
to show the best agreement with the experimental data, this model
assumes simplified conditions based on the PIC simulations, only con-
siders particles within a single plane, and does not accurately represent
the physical injection mechanisms. There are many uncertainties in
the experiment, which, if known, could improve the agreement
between the experimental data and Fig. 1(b).

Figure 2 displays the spatial distribution of the ionization-
injected electrons predicted by the 3D PIC simulations and by Eq. (8).
In all cases, the electron beam density exhibits a sinusoidal modulation
at half the laser wavelength that results from resonantly driven beta-
tron oscillations. Consistent with the artificially enhanced angles
observed in Fig. 1(c), the Yee-solver simulation in Fig. 2(a) produces
transverse oscillations with an unphysically large amplitude, extending
well outside of the bubble (visible as the density contours of electrons
originating from He). Including the time-staggering factor in Eq. (8)
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FIG. 3. The root-mean-square divergence angle of the highest-energy electrons
from 3D PIC simulations using the Yee and dual field solvers as a function of longi-
tudinal resolution, together with the experimental data. The dual solver provides
convergence at a much lower resolution than the Yee solver.

produces similar behavior [Fig. 2(e)]. In contrast, the PIC simulations
using the dual solver [Figs. 2(b) and 2(d)] and Eq. (8) without the
time-staggering coefficient [Fig. 2(f)] produce a wedge-shaped struc-
ture with more of the electrons found near the axis. Finally, 3D PIC
simulations with solvers correcting only for dispersion or for the time-
staggering error are shown in the upper and lower panes of Fig. 2(c).
Correcting only for dispersion does not entirely reproduce the beam
shape observed when using the dual solver; in contrast, correcting only
the time-staggering error reproduces the beam shape but underesti-
mates the beam energy due to errors in both the group and phase
velocities of the laser pulse.

B. Convergence of the Yee and dual solvers

In order to eliminate the discrepancies between the simulations
using the dual solver and Yee solver, the spatial and temporal resolu-
tions used with the Yee solver must be increased by an order of magni-
tude. Figure 3 displays the results of a convergence test comparing the
root-mean-squared (RMS) divergence angle predicted by the dual-
and Yee-solver simulations. The RMS angle is nearly identical for all
simulations using the dual solver, whereas converged simulations
using the Yee solver require a much smaller longitudinal cell size. In
all cases, the simulations are run with a time step close to the CFL
limit, and the number of particles per cell is kept constant at 8 (except
the largest run with 120 points per wavelength, where 4 particles per
cell are used). For the example considered, a spatial resolution of 30
points per 4 is sufficient for convergence of the dual-solver simulations
but is insufficient for the Yee solver. The remaining discrepancy
between the converged PIC and experimental results can be attributed
to differences in the profile of the laser pulse and gas or plasma
conditions.

The error in the Lorentz force due to time staggering is quadratic
in At,”" meaning that convergence is expected as the time step is
reduced. However, to ensure physically accurate dispersion for the Yee
solver, the spatial step must be reduced as well, as determined by the
CFL condition. This is in contrast to the dual solver, where the coeffi-
cients of the spatial derivatives can be customized to ensure accurate
dispersion for any time step, which allows for convergence by reducing
the time step alone. The trade-off is that the dual solver requires a
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larger stencil for the spatial derivatives and has a stricter CFL condi-
tion (about 70% that of the Yee solver for the same grid size).

In terms of overall simulation performance, the additional opera-
tions introduced by the larger stencil of the dual solver are more than
offset by the reduction in spatial grid points and time steps needed for
convergence. By requiring fewer spatial grid points, the dual solver
cuts down on the memory footprint and total number of particles
(and particle operations). As a result, the dual solver ultimately pro-
vides savings in total computation time. In the specific cases presented
here, the converged dual-solver simulations (30 points per 1) take
~6X less time to complete than the converged Yee-solver simulations
(120 points per ). For comparison, when the same longitudinal reso-
lution is used, the dual-solver simulations take 1.5-2.5x longer than
the Yee-solver simulations.

Notably, Fig. 3 suggests that many of the state-of-the-art simula-
tions that employ traditional solvers”””""*"*” may be using insufficient
resolution for convergence. While the dual solver can improve the
accuracy and performance of any PIC simulation of laser—particle
interactions,”* the benefits are most prominent when the particles
spend significant time within the fields of the laser pulse as in LWFA
and SM-LWFA.

C. Energy gain mechanisms and azimuthal-mode
decomposition

Quantifying the contributions of different acceleration mecha-
nisms to the electron energy gain allows for more-informed designs

(a) Quasi-3D dual (b) 3D dual
200 T T T
*** WLwra *** WLwra

_ 150 Heveo WpLA T He* WhLa -
o

s 100

E 50

]

3

-50 | |

(c) Quasi-3D dual
200 T
150 [ eee W

Work (MeV)

50 100 150 50 100 150

Energy (MeV) Energy (MeV)

FIG. 4. A comparison of the work done by DLA and LWFA calculated using different
methods: (a) quasi-3D decomposition [Eq. (17)], (b) 3D using the longitudinal and
transverse fields with an approximate correction for the longitudinal field of the laser
pulse [Eq. (22)], and using the longitudinal and transverse fields without the correc-
tion [Eq. (18)] for (c) quasi-3D and (d) 3D simulations. The dual solver is used for
each case, and 1500 particles are tracked to calculate the work. The agreement
between (c) and (d) gives confidence that the quasi-3D simulations produce the
correct physics. The quasi-3D decomposition in (a) is most accurate and reveals
that the highest-energy electrons receive comparable energy from LWFA and DLA.
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and optimization of an LWFA. The quasi-3D geometry enables unam-
biguous calculation of these contributions. More specifically, the
expansion of the electromagnetic fields into azimuthal modes
completely separates the fields of the plasma wave and the laser pulse.
As discussed in Sec. IIIB, the energy gain contributions from
DLA and LWFA are often calculated by attributing the work done by
the longitudinal fields to LWFA and the work done by the transverse
fields to DLA. This method can be inaccurate because finite-sized laser
pulses have a longitudinal electric field, which, in the case of linear
polarization, always decelerates electrons in betatron resonance.”"'
Thus, using only the transverse fields to approximate the work done
by DLA can overestimate the DLA contribution to the energy gain.
Alternatively, the energy loss due to the longitudinal field of the
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FIG. 5. (a) Density of the accelerated electron bunch near the end of the plasma,
just before the background density down ramp. (b) The final energy-dependent
divergence angle of the electron bunch. The top and bottom panels in (a) and (b)
show the work done by DLA and LWFA, respectively [Eq. (17)], while the middle
panel shows all accelerated electrons. The data are from the quasi-3D PIC simula-
tion using the dual solver. The highest-energy electrons, which receive comparable
energy from LWFA and DLA, tend to have larger divergence angles due to their
large-amplitude betatron oscillations.
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laser pulse can be approximated as in Egs. (21) and (22). Nevertheless,
neither of these methods is as accurate as using the quasi-3D
decomposition.

Figure 4 illustrates how each method gives a different prediction
for the work done by LWFA and DLA. The most accurate method,
based on the quasi-3D decomposition [Eq. (17)], demonstrates that
the highest-energy electrons receive comparable energy from LWFA
and DLA [Fig. 4(a)]. The least accurate method, which uses the trans-
verse and longitudinal fields [Eq. (18)], significantly over and underes-
timates the DLA and LWFA contributions, respectively [Figs. 4(c) and
4(d)]. Applying a correction to this method that accounts for the work
done by the longitudinal field of the laser pulse provides much better
agreement with the quasi-3D result but still over and underestimates
the DLA and LFWA contributions [Fig. 4(b)]. The work done by the
longitudinal field of the pulse is calculated using wy = 12w, and w,
= 2.53¢c/w, in Eqs. (21) and (22), which are average values near the
electron bunch. Generally, these quantities can be dynamic in nature
and difficult to estimate, which makes the correction method relatively
unreliable. In each simulation, 1500 particles are tracked, with about
1000 particles chosen at random from the electron population and the
remaining 500 chosen with equal number of particles in 30 MeV bins.

The accurate partitioning of work afforded by the quasi-3D
method can reveal additional insights into the DLA and LWFA pro-
cesses. Figure 5 displays the work done by DLA (top panels) and
LWFA (bottom panels) overlayed on (a) the beam density near the
end of acceleration and (b) the energy-dependent divergence angle at
the end of the simulation for the same electrons shown in Fig. 4(a). As
observed in Fig. 5(a), LWFA accelerates all of the high-energy elec-
trons to some degree. In contrast, DLA only occurs for electrons exe-
cuting betatron motion with large transverse excursions from the
propagation axis. In both cases, the energy gain increases with longitu-
dinal position, correlating with time spent in the wake. Consistent
with the large transverse excursions, electrons that receive comparable
energy from DLA and LWFA generally have larger divergence angles
[Fig. 5(b)], while those that gain most of their energy from LWFA
have smaller divergence angles.

V. CONCLUSION

Two techniques have been presented that improve the predic-
tions of PIC simulations when modeling DLA-assisted LWFA. The
customized (dual) solver’* corrects for errors in the dispersion relation
of light waves and in the Lorentz force due to the time staggering of
electric and magnetic fields. The quasi-3D algorithm enables unambig-
uous analysis of the energy gain contributions from DLA and LWFA.
Together, these methods expedite analysis, optimization, and design of
LWFA experiments.

The benefits of these techniques were illustrated by simulations
of LWFA experiments in which DLA contributed significantly to the
energy gain of ionization-injected electrons. For typical resolutions,
the results of simulations employing the dual solver were in much bet-
ter agreement with the experimental data than those employing the
Yee solver. The Yee-solver simulations predicted artificially large
transverse momenta for electrons in betatron resonance. This is a
direct result of the time-staggering error, which was demonstrated
using the numerically integrated equations of motion with a factor
that accounted for this error. With an order-of-magnitude increase in
the spatial resolution, the Yee-solver simulations eventually converged,
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but at the cost of an ~6x increase in the run time compared to the
converged dual-solver simulations.

The quasi-3D decomposition revealed two distinct populations
of high-energy electrons. One population gained nearly all of its energy
from the wakefield, remained localized near the bubble axis, and had
small divergence angles. The other population received comparable
energy from the DLA and LWFA processes, was distributed in a
wedge-like, sinusoidal pattern in the bubble, and had larger divergence
angles. This observation is in stark contrast to the conclusion that one
would draw by attributing the energy gain from DLA and LWFA to
the transverse and longitudinal fields, respectively. Specifically, this
method would incorrectly predict that the highest-energy electrons
receive most of their energy from DLA.

Either individually or combined, the dual-solver and quasi-3D
geometry can facilitate further investigations of LFWA, DLA-assisted
LWFA, and SM-LWFA. Examples include enhancing DLA or sustain-
ing betatron resonance via tailored density or laser pulse profiles,
accelerating electrons to higher harmonics of the betatron resonance,
increasing the emitted betatron radiation, or decreasing the beam
emittance. More generally, the dual solver may increase performance
in any system where the particles interact with a laser pulse over long
durations and distances. In these cases, the quasi-3D algorithm may
provide the insight needed to fully understand the processes contribut-
ing to energy gain.
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APPENDIX: SIMULATION PARAMETERS

In this appendix, details are given for the PIC and numerical
integration simulations discussed in Sec. I'V. The plasma density in
the PIC simulation comprises a 100 ym density up ramp (the laser
is focused halfway through the up ramp), a 430 um constant-
density region, and a 150 um density down ramp. The grid is
1814 x 320 x 320 with eight particles per cell for each species
(1814 x 160 and 32 particles per cell per species in quasi-3D) with
30 points per laser wavelength in the longitudinal direction and 52
points per plasma period in the transverse directions. The time step
for each simulation is 0.018 75 w;l, 0.01295 w;l, and 0.0111 w;l
for the 3D Yee, 3D dual, and quasi-3D dual simulations, respec-
tively. Simulations employing the dual solver use 16 coefficients for
the finite-difference operators (the standard Yee solver uses one
coefficient).

The numerical integration of the ordinary differential equa-
tions in Eq. (8) is performed with an explicit fifth-order Runge—
Kutta method. Using the observed injection time from the PIC
simulation as a guide, particles are injected into the bubble over a time
of 200w, !. These particles are injected on-axis, with { chosen ran-
domly from the interval { € [-2R + 0.286¢/w,, —2R 4 0.836¢/w)]

and x from the interval x € [—7r,(),7,({)], where 7,({) = [R?

—(+ R e is the assumed bubble radius as a function of {. The ini-
tial particle energy is randomly selected from 7y € [yg,Zyg], where

e =[1— (vg/ c)z]l/z. The angle that the initial velocity makes with
respect to the x axis is randomly chosen with the constraint
that v, > v,. All cases use vy = 1.002562¢c,v, = 0.993583¢c, k.
= 12.14w,/c, R = 3¢/ w,, and ay = 2.8, which are measured from
the 3D PIC simulations. Note that the laser wavenumber and a, are
larger than those initialized in the PIC simulation due to photon accel-
eration and self-focusing, respectively.
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