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Abstract. We study stationary capillary-gravity waves in a two-dimensional body of water that
rests above a flat ocean bed and below vacuum. This system is described by the Euler equations
with a free surface. A great deal of recent activity has focused on finding waves with nontrivial
vorticity !. There are now many results on the existence of solutions to this problem for which
the vorticity is non-vanishing at infinity, and several authors have constructed waves with ! having
compact support. Our main theorem states that there are large families of stationary capillary-gravity
waves that carry finite energy and exhibit an exponentially localized distribution of vorticity. They
are solitary waves in the sense that the free surface is asymptotically flat. Remarkably, while their
amplitude is small, the kinetic energy isO.1/. In this and other respects, they are strikingly different
from previously known rotational water waves.

To construct these solutions, we exploit a previously unobserved connection between the steady
water wave problem on the one hand and singularly perturbed elliptic PDE on the other. Indeed, our
result expands the study of spike-layer solutions to free boundary problems with physical relevance.
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1. Introduction

We consider waves in a two-dimensional body of water that has finite depth. Mathemat-
ically, they are modeled as solutions to the incompressible Euler equation

@tv C .v � r/v C rp C ge2 D 0 (1.1a)

on the evolving fluid domain

�.t/ D ¹.x1; x2/ 2 R2
W �1 < x2 < 1C �.t; x1/º: (1.1b)
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Here, the water density is assumed to be of constant value 1, vD v.t; � /W�.t/! R2 is the
velocity, p D p.t; � /W�.t/! R is the pressure, g > 0 is the constant gravitational accel-
eration, and e2 D .0; 1/. Notice that the water is bounded below by a rigid and perfectly
flat bed at ¹x2 D �1º. The upper boundary, given by the graph of 1C �, represents the
interface between the water and a region of air which is treated as vacuum. An important
feature of this problem is that � is one of the unknowns in the system. For solitary waves,
� vanishes as jx1j ! 1, and hence the asymptotic depth is normalized to be 2.

The kinematic boundary conditions state that the velocity field does not penetrate the
bed:

v2 D 0 on x2 D �1; (1.1c)

and, along the free surface, we have

@t� D �v1@x1
�C v2 on x2 D 1C �.t; x1/: (1.1d)

Lastly, on the surface we impose the dynamic condition according to the Young–Laplace
law that

p D ˛2� on x2 D 1C �.t; x1/; (1.1e)

where ˛ > 0 is a constant measuring the surface tension and

� D �
@2

x1
�

.1C .@x1
�/2/3=2

(1.2)

is the signed curvature. Because g; ˛ > 0, we always presume that surface tension is
present on the interface and that gravity acts in the bulk. Solutions of (1.1) are therefore
called capillary-gravity waves.

A stationary water wave is a solution to (1.1) that is independent of time. More gen-
erally, one can consider steady or traveling waves, which are solutions that become time
independent after shifting to a moving frame of reference. These are among the oldest and
most important examples of nonlinear wave phenomena studied in mathematics.

Perhaps the central object of interest for this paper is the vorticity

! WD r
?

� v D @x1
v2 � @x2

v1; (1.3)

which is the third component of r � .v1; v2; 0/. The earliest rigorous constructions of
steady water waves were given by Levi-Civita [29] and Nekrasov [32], who worked in
the irrotational regime where ! vanishes identically. This assumption permits several
elegant reformulations of the problem that are far more tractable; see, for example, the
survey [41]. However, beginning in the early 2000s, substantial inroads have been made
in the rigorous analysis of rotational water waves. With a few exceptions, these results
pertain to waves without interior stagnation, meaning that the streamlines (the integral
curves of v) are never closed, and hence the vorticity does not vanish at infinity.

In practice, though, many of the effects that generate vorticity are local – wind blow-
ing over a section of the water or a boundary layer caused by an immersed body, for
example. This naturally leads us to seek waves for which ! is concentrated in the near
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field. A completely different analytical approach is necessary to treat this situation, how-
ever. Consequently, there are comparatively very few rigorous results for waves with
localized vorticity, and those that are available concern either periodic waves or waves
with compactly supported vorticity; see the overview below.

Another important quantity associated to the system is the total energy E defined by

E D
1

2

Z
�

jvj
2 dx C

Z
R

�
1

2
g�2

C ˛2
�q
1C .@x1

�/2 � 1
��

dx1: (1.4)

The first term on the right-hand side represents the kinetic energy, while the second is
gravitational potential energy, and the third is the surface energy. It is well-known thatE is
conserved by sufficiently smooth solutions of the time-dependent problem. It is physically
desirable, therefore, to construct waves that carry a finite amount of total energy, which
in particular means that v must be in L2.�/.

As the main contribution of this paper, we prove the existence of large families of sol-
itary stationary water waves with a smooth, highly localized vorticity and a finite energy
E < 1: in a perturbed disk around the origin the vorticity is large and negative, and
outside it is positive and exponentially decaying. Qualitatively, this represents an entirely
novel species of water wave that we call a vortex spike. Our method establishes a con-
nection between singularly perturbed elliptic equations and physical problems with free
boundaries. This application to water waves is at once quite natural and yet completely
new.

1.1. Main theorem

We now state the result more precisely. In two dimensions, divergence free vector fields
can be represented through a stream function, namely,

v D r
?‰ WD .�@x2

‰; @x1
‰/:

One can easily confirm from (1.3) that ! D �‰.
As mentioned above, our interest is in smooth finite energy stationary waves with

spatially highly localized vorticity. For the momentum equation (1.1a), we see ! satisfies

@t! C v � r! D 0 in �.t/; (1.5)

and hence the vorticity is transported by the Lagrangian flow. In terms of the stream
function, for the stationary case this becomes

r
?‰ � r�‰ D v � r! D 0 in �: (1.6)

The kinematic boundary conditions (1.1c)–(1.1d) imply that ‰ is a constant along each
component of @�. Without loss of generality, we take

‰j@� D 0I (1.7)
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see Section 1.3 for more discussion about this. At the same time, the dynamic condition
(1.1e) can be expressed in terms of ‰ as the well-known Bernoulli equation

1
2
jr‰j

2
C gx2 C ˛2� D g on x2 D 1C �.x1/: (1.8)

Together, (1.6)–(1.8) are equivalent to the (stationary) Euler equations (1.1). We seek
to construct waves for which the stream function and the vorticity will have the leading
order forms

‰.x/ D U

�
x � x�

ı

�
C � � � 2 H k.�/ \H 1

0 .�/;

!.x/ D
1

ı2
�U

�
x � x�

ı

�
C � � � ;

(1.9)

where 0 < ı � 1, x� is roughly the location of the vorticity to be determined in the proof
which will turn out to be very close to the origin in our coordinate system, and U is a
smooth solution to (1.6) on the whole of R2, exponentially decaying as jxj ! 1. It is
well-known that (1.6) is satisfied provided that ! D 
.‰/ for some vorticity function 
 .
We therefore construct ‰ as the solution to

�‰ D
1

ı2

.‰/ in �; (1.10)

with U a solution to
�U D 
.U / in R2: (1.11)

We will assume that 
 satisfies the following:

(A) 
 2 C k0.R;R/, k0 � 2, 
.0/ D 0, 
 0.0/ D 1, and (1.11) has a nontrivial radial solu-
tion U 2 C k0C2.R2/ satisfying U.x/;rU.x/ ! 0 as jxj ! 1, and

(B) the kernel of ��C 
 0.U /WH 2.R2/ ! L2.R2/ is equal to span ¹@x1
U; @x2

U º.

We would like to point out that the asymptotic vanishing of U and rU at jxj D 1 can be
ensured by further asking that U 2L2.R2/\L1.R2/ or U 2H 1.R2/ (see Remark 3.4).
Also, as a consequence of Assumption (A), U and its derivatives up to order k0 C 1 decay
exponentially, and so in particular U 2 H k0C2.R2/ (see Proposition 3.1). Prototypical
functions 
 fulfilling Assumptions (A) and (B) are 
.t/ D t � jt jpt for integers p � 1,
but many others will do as well. Classical results for dimension n D 2 may be found in
for example [2,3,27], and a modern summary including the nondegeneracy results in [1].

Under the above assumptions, our main theorem is as follows.

Theorem 1.1. For any 
 as in Assumptions (A) and (B), there exists ı0 > 0 such that, for
each ı 2 .0; ı0/, there is a finite energy solution

.‰; �/ 2 .H 1
0 .�/ \H k0.�// �H k0.R/

to the stationary water wave problem (1.7), (1.8), and (1.10). Both‰ and � are even in x1.
Moreover, there exists a constant C > 0, independent of ı but depending on 
 , such that
for each ı 2 .0; ı0/ there exists � with j� j � Cı�7=2e�2=ı satisfying

j‰ �‰0jH k0 .�/ � Cı1�2k0e�2=ı ; (1.12)
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where

‰0.x/ D U

�
x1

ı
;
x2 � �

ı

�
� U

�
x1

ı
;
2 � x2 � �

ı

�
� U

�
x1

ı
;

�2 � x2 � �

ı

�
;

and

j�jH k0 .R/ � Cı1�k0e�2=ı ; j� � �0jH k0 .R/ � Cı3=4�2k0e�3=ı ; (1.13)

with

�0 D �2ı�2.g � ˛2@2
x1
/�1

��
@x2
U
�

�

ı
; 1

ı

��2�
D �

1

˛
p
g ı2

e�

p
g

˛ j � j
�
��
@x2
U
�

�

ı
; 1

ı

��2�
:

We first comment on the vorticity and the surface profile given in the above theorem.
On the one hand, from Proposition 3.1, Corollary 3.5 and (1.12), we see that the kinetic
energy is of O.1/. Roughly,

jvjL2.�/ D jr‰jL2.�/ D jrU jL2.R2/ C o.e� 1
2ı /;

while the corresponding vorticity is spiked in the sense that

!D
1

ı2 

�
U
�

�

ı

��
Co.e� 1

2ı /; j!jL1.�/ DO
�

1
ı2

�
; j!jL1.�/ D j�U jL1.R2/Co.e

� 1
2ı /:

On the other hand, the total vorticity is exponentially small in 0 < ı � 1:Z
�

! dx D

Z
�

�‰ dx D

Z
@�

N � r‰ dS D o.e� 1
2ı /:

By (1.12) and the definition of ‰0, ��.x/!.x/ ! 0 for any x ¤ 0 as ı & 0, where ��

is the characteristic function of �. Then from the above integral estimate we can readily
prove

R
R2 f��! dx ! 0 as ı & 0 for any continuous f compactly supported in R2.

Therefore, as a measure, ��! dx converges weakly to 0 as ı & 0. However, the vorticity
has a rich spatial structure in a domain on the scale of O.ı/ where its pointwise value
is O. 1

ı2 /. Moreover, as ! is O.1/ in L1.�/, these waves exhibit a highly localized but
strong rotational vector field with kinetic energy of order O.1/.

Since ! concentrates far away from @� and the total vorticity is exponentially small,
@� is only weakly impacted by the spike. This fact is reflected in the exponential small-
ness of � in (1.13). According to Proposition 3.1, the leading term �0 given in (1.13)
satisfies

��0.x1/ �
1

C
ı�1=2e�2=ı for jx1j < C�1

for someC >0 independent of ı, while its tail is much smaller. Therefore the concentrated
vorticity ! creates a surface depression in the near field with rapid decay as jx1j ! 1;
see Figure 1.
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Fig. 1. Schematic representation of the streamline pattern and free surface. Blue lines indicate posit-
ive vorticity, red is negative, and orange is zero. Note that there is a critical layer and all streamlines
are closed except the boundary components. For stationary waves, the fluid particles will move
exactly along these streamlines. The above configuration therefore differs rather dramatically from
that of a typical irrotational wave: in the absence of vorticity and surface tension, it is known that
none of the particle paths can be closed [10].

1.2. History and relation to our construction

Rotational steady water waves have been a very active area of research for nearly two
decades, beginning with the construction of large-amplitude periodic gravity waves by
Constantin and Strauss [11]. These authors used bifurcation theory starting from a fixed
shear flow, and their methodology has since been adapted and expanded upon in many
ways (see [9]). It is important to note that, while there do exist explicit rotational water
waves (for example, [6, 15, 21, 23, 25]), they are exceedingly rare. From that perspective,
the main contribution of [11] was its systematic treatment of a broad class of vorticity
distributions. However, Constantin–Strauss – and most of the works that followed them
– require both that ! is nonlocalized and that there are no interior stagnation points.
In particular, smooth perturbation of a shear flow could never yield decaying vorticity.
Interior stagnation and critical layers (regions of closed streamlines), however, can be
constructed using variants of this approach. Early papers of Simmem and Saffman [37]
and da Silva and Peregrine [39] considered this regime through formal asymptotic ana-
lysis and numerical bifurcation theory. In [17], it was rigorously shown that the nonlinear
particle paths in the linearized system can have closed orbits, and the behavior of small
waves with constant vorticity was studied. Based on it, Wahlén [44] constructed exact
periodic waves with one critical layer, and similar waves were subsequently constructed
using a harmonic-functions approach, globally, in [13]. These works all treat constant
vorticity and the situation where the linearized problem at the shear flow has a one-
dimensional kernel. One can also find steady waves with critical layers bifurcating from
two-dimensional [16], three-dimensional [18], and even arbitrarily high dimensional ker-
nels [26] of affine or near-affine vorticity functions, as well as from one-dimensional
kernels of constant vorticity with one discontinuity [31]. Very recently, a global theory
for analytic vorticity functions allowing for several critical layers has been presented in
[43] (one might note that even affine vorticity can yield arbitrarily many vertically aligned
stagnation points.) The waves built in this paper have vorticity functions of the next order
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in this development, as Assumption (A) implies that 
 is nonlinear with leading-order
linear term, although the method of proof is very different.

The first rigorous construction of traveling capillary-gravity waves with localized vor-
ticity in infinite depth is due to Shatah, Walsh, and Zeng [36]. In that paper, two classes
of compactly supported vorticity were studied: solitary and periodic waves with a sub-
merged point vortex, and solitary waves with a vortex patch. In the former case, ! is a
Dirac measure supported in the interior of �. This can be viewed as a solution to a suit-
ably weakened version of the Euler equations. The proof in [36] was based on a splitting
of the velocity field into a rotational and irrotational component, followed by a bifur-
cation argument beginning at the trivial solution .‰; �/ D .0; 0/ with the total vorticityR
! dx serving as the parameter. While the vortex patch solutions were small amplitude,

the authors obtained a global curve of periodic traveling waves with a point vortex. The
vortex patches have finite energy and the corresponding vorticity is C 0;1.�/ and smooth
on its support. Later, Varholm [42] extended the ideas in [36] to the finite-depth case with
arbitrarily many point vortices, and Le [28] studied the existence and orbital stability of
finite dipoles inside an infinite-depth capillary-gravity wave. Earlier work in the 50s and
60s that treated point vortices carried by gravity waves in finite depth include [19,20,40].
A vortex patch situated near a shoreline and such that the velocity vanishes completely
outside a ball has also been constructed in [8], using dynamical systems tools.

The capillary-gravity waves in the current work can be said to live between the above-
mentioned types. They can be viewed, for 0 < ı� 1, as smoothed vortex patches or as the
limit, as the period tends to infinity, of steady periodic waves with critical layers. We note
that in [36], (i) ! is single-signed and either a Dirac measure or in C 0;1.�/; and (ii) the
measure ! dx vanishes absolutely as one approaches the point of bifurcation. By contrast,
in the present paper, the vorticity changes sign and is smooth throughout �. Moreover,
! dx converges to 0 weakly as ı & 0, while the L1 norm of ! and the kinetic energy both
remain order O.1/. This surprising feature results from the fact that we do not perturb
from a shear flow, but singularly from U of (1.11) which has fixed, positive energy. In
all these respects, the vortex spikes constructed in Theorem 1.1 contrast starkly with the
literature described above.

When ! is not compactly supported, it is of little help to decompose the velocity field
into rotational and irrotational parts. We are also barred from using shear flows as a model
for the stream function. The main new idea is to instead look to the theory of spike and
spike-layer solutions to singular perturbations of semilinear elliptic PDE. These equations
typically have the form

ı2�u D u � up in D; (1.14)

whereD � Rn is a smooth bounded domain, p > 1, and Dirichlet or Neumann conditions
are prescribed on @D. Beginning in the late 80s, versions of (1.14) were investigated
intensively by the elliptic PDE community resulting in a vast literature; see, for example,
[30, 33–35].

Drawing inspiration from these works, we model our stream function as a rescaled
and translated U. � �x�

ı
/ on the unknown fluid domain represented by a conformal map-



M. Ehrnström, S. Walsh, C. Zeng 1052

ping � . The translation invariance of the problem leads to a degeneracy – as can be seen in
Assumption (B) – which is resolved through a Lyapunov–Schmidt reduction. We outline
heuristically how to solve the resulting highly degenerate bifurcation equation for x� in
the next subsection.

To the best of our knowledge, ours is the first work exploring singularly perturbed
elliptic equations in the hydrodynamical context. The method bears certain similarities
to Li and Nirenberg’s treatment of (1.14) in [30], in particular, the use of a Lyapunov–
Schmidt reduction, bundle coordinates in a tubular neighborhood of a family of trans-
lates, and boundary correction projections. However, we stress that the steady water wave
problem presents substantial new difficulties: the upper boundary is free, the Bernoulli
condition (1.8) imposed there is completely nonlinear, and the domain � is horizontally
unbounded.

1.3. Heuristic discussions

In this subsection, we discuss several issues related to the finite energy/spatial decaying
assumptions on smooth steady (stationary or traveling) solutions on fluid domains extend-
ing to horizontal infinity. We first observe that the support of the vorticity of such solutions
should be the whole of �. Otherwise, one expects that the vorticity will not be smooth
over the boundary of its support, as a consequence of the Hopf lemma for the elliptic
equation (1.10).

Traveling waves. While we focus on stationary capillary-gravity waves in the current
paper, by shifting to a moving reference frame, Theorem 1.1 immediately furnishes fam-
ilies of traveling capillary-gravity waves with exponentially localized vorticity. The velo-
city field for these waves will be an H k0�1 perturbation of a fixed uniform background
current ce1 ¤ 0, and the vorticity will be spiked in the same sense as before.

On the other hand, smooth finite-energy waves with a nonzero wavespeed are unlikely
to exist. In fact, the vorticity level curves for such waves would be closed loops Ca D

¹! D aº, which are transported by the velocity field v D .v1; v2/. Therefore

v � � D ce1 � � D c�1 along Ca;

where � D .�1; �2/ is the unit outward normal vector of Ca. This implies that jvj �
1
2
jcj if j�1j > 1

2
, which usually happens on an O.1/ proportion of most level curves.

Consequently, jvj is likely to be bounded from below on a set with infinite measure,
which is prevented by the finite energy assumption.

Fluid depth and the boundary condition of the stream function. In [36], traveling
capillary-gravity waves with compact vortex patches were constructed in fluids of infinite
depth. Slightly modifying the formula of the rotational part of the velocity fields, actu-
ally the same construction should also work with finite depth. However, we do not expect
smooth spatially localized stationary waves to exist in infinite depth unless the free surface
is overturned.
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In fact, let us temporarily not preclude the possibility of � with infinite depth. Let
a solution ‰ of (1.10) be given satisfying v D r?‰ 2 H 1.�/ and .v � N/j@� D 0 with
N D .N1;N2/ the outward unit normal to�. The latter condition implies that‰ is locally
constant on @�. Fix ‰ D 0 on S D graph.1C �/.

Much as in the proof of Proposition 3.1, ‰ and its derivatives decay exponentially as
jxj ! 1. Let � be the antiderivative of 
 with �.0/ D 0. We multiply (1.10) by @x2

‰

and integrate to find

1

ı2

Z
@�

�.‰/N2 dS D
1

ı2

Z
�

@x2
�.‰/ dx D

Z
�

@x2
‰�‰ dx

D �

Z
�

r@x2
‰ � r‰ dx C

Z
@�

@x2
‰r‰ �N dS

D �
1

2

Z
@�

jr‰j
2N2 dS C

Z
@�

@x2
‰N � r‰ dS

D
1

2

Z
@�

jr‰j
2N2 dS; (1.15)

where in the last step above we used the fact that ‰ is locally constant on @� and thus
r‰ D .N � r‰/N holds there.

The first implication of this equality is that if‰ is nontrivial, then S ¨ @�. Otherwise
we would have

R
S

jr‰j2N2 dS D 0 with N2 > 0, which is impossible. This argument
does not rely on anything but the regularity of 
 , in particular, we do not need the full
strength of Assumption (A) or (B). Nonexistence of deep water solitary waves in the
presence of algebraically localized vorticity has been more thoroughly investigated in the
recent paper [4]; see also [14, 24, 38, 45] for results on the irrotational case.

Now suppose instead that the domain is finite depth, and set @� D S [ B , with B D

¹x2 D �1º denoting the flat rigid lower boundary. Suppose also that S \ B D ;. The
properties (i) j�.x1/j ! 0 as jx1j ! 1; (ii) r‰ 2 L2.�/; and (iii) ‰ is locally constant
on @�, together imply that‰jB D‰jS D 0 based on a simple Hölder estimate on‰ along
vertical lines. Therefore, from (1.15), we infer that

1

2

Z
@�

jr‰j
2N2 dS D 0: (1.16)

The reduced (degenerate) equation from the Lyapunov–Schmidt reduction. Equation
(1.16) is the key to the proof of our main theorem. As mentioned above, we first carry out
a Lyapunov–Schmidt reduction argument to reduce the problem to a highly degenerate
one-dimensional “bifurcation” equation with the parameter � as in Theorem 1.1. One of
the usual techniques to handle those somewhat degenerate bifurcation equations is to first
use a blow-up argument to search for a nondegenerate direction of the linearized problem,
and then employ the implicit function theorem. Even though Proposition 4.5 does imply
such linear invertibility of the bifurcation equation, the nondegeneracy we find is far too
weak for an (obvious) application of the implicit function theorem to be effective.

Instead, in Section 5 we show that the bifurcation equation is equivalent to (1.16)
above. Now, on the free surface, N2 D .1 C .�0/2/�1=2 > 0, while N2 D �1 on the
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flat bed B . If r‰ is highly localized close to the surface, then the integral there should
dominate so that the left-hand side of (1.16) would be positive, and conversely for r‰

concentrated near the bed, it would be negative. This mandates a balancing between the
contributions on the surface and bed. That observation is at the heart of the analysis in the
last part of Section 5. It also reveals the importance of the translation parameter � .

Nonflat bottom and more. With some modifications, the approach of the current paper
should also apply when the bed has nontrivial topography.1 Indeed, suppose @�D S [B ,
where B is now a horizontally asymptotically flat rigid bottom, for simplicity taken even
in x1. Thus we expect the vorticity to be localized at �e2 D .0; �/ 2� for some � . We can
parametrize the unknown � by a conformal mapping defined on a fixed domain above B
and below ¹x2 D 1º. Based on Proposition 3.1, one may adjust the basic estimates in
Sections 3 and 4 accordingly to carry out the Lyapunov–Schmidt reduction and arrive at a
highly degenerate one-dimensional reduced bifurcation equation that would still turn out
to be equivalent to (1.16). As in the current paper, the distance from �e2 would again play
a crucial role. Let

d.�/ D dist.�e2; @�/:

Much as in [30], stationary solutions are expected to exist with a localized vorticity con-
centrated near strict local maximums of d.�/. However, when multiple localized vorticity
locations are considered or when B is not necessarily even in x1, a sphere packing prob-
lem arises. See, for example, [22].

Lastly, we remark that it would be very interesting, though quite difficult, to study
gravity water waves with a spike vortex. Surface tension allows us to treat the Bernoulli
condition (1.8) essentially as an elliptic problem on the boundary. In fact, the linear part
is invertible, which greatly simplifies the analysis; see the proof of Lemma 5.2. Perhaps
with much more careful estimates it would be possible to allow for � D 0.

1.4. Plan

We begin, in Section 2, by rewriting the stationary water wave problem into an analytically
more tractable form. Using a conformal mapping � , the fluid domain is pulled back to a
fixed slab �ı of width 2=ı; this mapping � becomes one of the unknowns, taking the place
of �. We impose the desired ansatz (1.9) on the stream function, thereby reformulating the
problem in terms of the deviation of‰ from a translated and rescaled solutionU to (1.11).

In Section 3, we obtain leading-order approximations of U and a boundary correction
operator as well as rather precise exponentially small bounds on the remainders.

Section 4 is devoted to the study of the linearized problem at an approximate solution.
Specifically, we prove that there is a small simple eigenvalue l D l.ı/ D O.e.2�j� j/=ı/

1This question was also raised by Shuangjie Peng and Shusen Yan during a talk given by the
third author.
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related to the direction of @x2
U . The linearized problem is uniformly nondegenerate in

the complementary codimension-1 directions.
All of these tools are used in Section 5 to prove Theorem 1.1. Adopting bundle-

type coordinates over � 2 .� 1
3
; 1

3
/, we carry out a Lyapunov–Schmidt reduction in the

non-degenerate codimension-1 directions to reduce the problem to a one-dimensional
bifurcation equation. As mentioned above, this bifurcation equation is equivalent to (1.16)
and the proof is completed by invoking the intermediate value theorem. Here the idea of
balancing the two surface integrals is made rigorous through careful estimates of all the
quantities involved. Indeed, while this analysis is quite delicate, the simple identity (1.16)
is the key to the argument.

Notation

Throughout the paper ., & and Å indicate relations that are valid up to a positive factor
which can be chosen uniformly in ı small enough and � 2 Œ� 1

3
; 1

3
�. Complex scalars are

sometimes viewed as 2-d real vectors, hence “�” between complex quantities denotes their
dot product. For a given L2 function f ¤ 0 defined on a certain domain, we often use f ?

to denote the L2-orthogonal complement of the one-dimensional subspace spanned by f .
We also use D D @x1

.

2. Reformulation

As the first step toward proving Theorem 1.1, the stationary water wave problem (1.10),
(1.7), and (1.8) will be reformulated on a fixed domain, and we will build in the spike
ansatz for the stream function mentioned in (1.9). The final product of these efforts is an
equivalent transformed problem (2.24) that is posed on an infinite strip.

2.1. Rescaling and parametrization

We start by introducing new coordinates that eliminate the free boundary. As mentioned
in the introduction, this can be achieved at little cost in the irrotational regime; see, for
example, [7,12]. With vorticity, however, one expect to pay a price in the form of increased
complexity of the equations. Given that the highest-order operator in the semilinear equa-
tion (1.10) is the Laplacian, it is natural to work with conformal mappings. With that in
mind, define the reference domain to be R � .�1; 1/, which we identify with the complex
strip

Cjz2j<1 D ¹z D z1 C iz2 2 C W jz2j < 1º:

We will look for fluid domains� that are expressed as the image of the reference domain
under a near-identity holomorphic mapping. Specifically, let � D �1 C i�2W Cjz2j<1 ! C
be holomorphic and satisfy

j�jH 5=2 � 1; �.�z/ D ��.z/; �2j¹z2D�1º D 0: (2.1)
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Note this implies that z1 7! �1 is odd and z1 7! �2 is even. Such a conformal mapping is
uniquely determined by �2jx2D1. In fact, since �2 is harmonic,

.@2
x2

� �2
1 /F x1

�2 D 0;

where F x1
denotes the Fourier transform in the x1 variable. By construction, �2 vanishes

on the bottom of the domain, and hence it depends analytically upon its trace on the upper
boundary, �2. � ; 1/. Explicitly,

.F x1
�2/.�1; x2/ D

sinh.j�1j.x2 C 1//

sinh.2j�1j/
.F x1

�2/.�1; 1/ for all �1 2 R; jx2j < 1;

so we have

�2 D
sinh.j@x1

j.x2 C 1//

sinh.2j@x1
j/

�2. � ; 1/ in Cjz2j<1; (2.2)

and
@x2
�2 D j@x1

j coth.2j@x1
j/�2 on ¹x2 D 1º: (2.3)

Observe that j@x1
j coth.2j@x1

j/ above is the Dirichlet–Neumann operator on the strip
¹jx2j < 1º with a homogeneous Dirichlet condition imposed on the lower boundary. The
real part �1 is a harmonic conjugate of �2 whose one degree of freedom is fixed by the
symmetry in x1.

The corresponding fluid domain is taken to be

� WD .id C �/.¹jx2j < 1º/ D ¹.x1 C �1.x/; x2 C �2.x// W jx2j < 1º:

It follows that the free surface is parameterized by x1 7! .x1; 1/C�.x1; 1/, for x1 ranging
over R. This curve can also be written as the graph

x2 D 1C �.x1/; � D �2 ı .id C �1. � ; 1//�1: (2.4)

The stream function can be pulled back,

ˆ D ‰ ı .id C �/W ¹jx2j < 1º ! R; (2.5)

yielding a new unknown defined on the fixed reference domain. Then the water wave
problem (1.10), (1.7), and (1.8) become´

ı2�ˆ D j1C � 0j2
.ˆ/ in ¹jx2j < 1º;

ˆ D 0 on ¹jx2j D 1º;

together with the transformed Bernoulli condition

1

2

.@x2
ˆ/2

j1C � 0j2
� ˛2 Im.� 00.1C � 0//

j1C � 0j3
C g�2 D 0 on ¹x2 D 1º; (2.6)
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where we used the fact that jrˆj D j@x2
ˆj along x2 D 1 due to the boundary condition

on ˆ. Here � 0 D @z� D @x1
� in view of the fact that � is holomorphic, and

� D �
Im.� 00.1C � 0//

j1C � 0j3

is the signed curvature of the interface.
Recalling the scaling in (1.9), we define

' D ˆ.ı � /; (2.7)

which then solves a nondimensionalized version of the problem for ˆ set on the slab

�ı D
®
x 2 R2

W jx2j < 1
ı

¯
: (2.8)

It is important to realize that this domain is decreasing in ı, so that in particular �2ı � �ı .
Now it is easy to compute that ' satisfies the elliptic equation´

�' D j1C � 0.ı � /j2
.'/ in �ı ;

' D 0 on @�ı ;
(2.9)

and the Bernoulli condition translates to

1

2ı2

.@x2
'. � ; 1

ı
//2

j1C � 0.ı � ; 1/j2
� ˛2 Im.� 00.ı � ; 1/.1C � 0.ı � ; 1///

j1C � 0.ı � ; 1/j3
C g�2.ı � ; 1/ D 0: (2.10)

2.2. Boundary correction

Our overarching strategy is to model ‰, and by extension ', on a rescaled U of (1.11).
However, while U is exponentially localized, it does not satisfy the homogeneous bound-
ary conditions in (2.9). We therefore perform a boundary correction, modeled on Assump-
tion (A), subtracting a function from U that shares its trace but is exceedingly smaller in
the interior.

For any real-valued function f in a reasonable Sobolev space (see below) defined on
@�ı , we introduce the extension operator

bcWf 7! fbc;

defined uniquely by

.F x1
fbc/.�1; x2/ D

X
˙

˙
sinh.h�1i.x2 ˙

1
ı
//.F x1

f˙/.�1/

sinh.2h�1i

ı
/

; (2.11)

where f˙ is the restriction of f on ¹x2 D ˙
1
ı
º, and we are using the Japanese bracket

notation h�1i D .1C j�1j2/1=2. Provided that f˙ 2 H s.R/, s > 0, the function fbc is an
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H sC1=2.�ı/-solution2 of ´
.1 ��/fbc D 0 in �ı ;

fbc D f on @�ı :
(2.12)

Observe that, due to the localization of U and the assumption 
 0.0/ D 1, the above prob-
lem closely resembles the linearized operator 
 0.U /�� away from the origin. It is worth
noting that, for any s > 0,

jfbcjH sC1=2.�ı/ . jf jH s.@�ı/:

2.3. The perturbed problem

Let U be given by Assumption (A). As discussed in Section 1, it will be important to
consider vertical translates of this function. For each � 2 Œ�1=3; 1=3�, let

U. � ; �/ D U
�

� �
�
ı
e2

�
: (2.13)

With a slight abuse of notation we shall still writeU to denote the function U. � ; �/, except
when the precise value of � becomes important. At other times, it will be more convenient
to use the notation U.�/. � / rather than U. � ; �/. The value 1

3
is unimportant; we will find

waves for j� j exceedingly much smaller. What is important is that the center of vorticity
remains closer to the origin than to the boundary of the reference domain, but 1

3
has no

special significance.
We proceed with the ansatz

' D uC U � Ubc; (2.14)

where bc denotes the boundary correction from (2.12). Thus u measures the deviation of
' from the rescaled, translated, and boundary corrected U . Inserting this into (2.9), we
see that it solves the following elliptic PDE set on �ı :

�u D j1C � 0.ı � /j2
.uC U � Ubc/ � 
.U /C Ubc

D 
 0.U /uC j1C � 0.ı � /j2
.uC U � Ubc/

� 
.U / � 
 0.U /uC Ubc: (2.15)

Here, we have made use of the facts that �U D 
.U / and �Ubc D Ubc. Similarly, the
kinematic condition in (2.9) takes the form

u D 0 on @�ı ; (2.16)

since U D Ubc there.

2In general the solution of (2.12) need not be unique, as �ı is an infinite slab.
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Consider next the Bernoulli condition (2.10). Direct substitution yields

0 D
1

2ı2

.@x2
.uC U � Ubc/. � ; 1

ı
//2

j1C � 0.ı � ; 1/j2
� ˛2 Im.� 00.ı � ; 1/.1C � 0.ı � ; 1///

j1C � 0.ı � ; 1/j3

C g�2.ı � ; 1/: (2.17)

From the Cauchy–Riemann equations and

� 0
D @x1

� D @x2
�2 C i@x1

�2;

any derivatives involving � can be expressed in terms of derivatives of �2. Making this
replacement in (2.17) yields

0 D
1

2ı2

.@x2
.uC U � Ubc/.

�

ı
; 1

ı
//2

.1C @x2
�2/2 C .@x1

�2/2
� ˛2

.1C @x2
�2/@

2
x1
�2 � @x1

�2@x1x2
�2

..1C @x2
�2/2 C .@x1

�2/2/3=2
C g�2:

(2.18)

Here, all terms involving �2 are evaluated at .x1; 1/. The idea is that, to the leading order
in terms of �2, the right-hand side of (2.18) is determined by the operator g�˛2@2

x1
acting

on �2, which is invertible H s.R/ ! H s�2.R/ for all s 2 R. To make this rigorous, let

�s D �2. � ; 1/ (2.19)

be the trace of �2 on the top of the reference domain �ı . From (2.18) and (2.3) we have

1

2ı2

.@x2
.uC U � Ubc/.

�

ı
; 1

ı
//2

.1Cm.D/�s/2 C � 0
s
2

� ˛2 .1Cm.D/�s/�
00
s � � 0

sm.D/�
0
s

..1Cm.D/�s/2 C � 0
s
2/3=2

C g�s D 0;

(2.20)

where D D @x1
, m.D/ D jDj coth.2jDj/, and � 0

s D @x1
�s. Let A.�s/ be a linear operator

depending on �s acting on vW R ! R as

A.�s/ WD�
g � ˛2..1Cm.D/�s/

2
C � 0

s
2
/�3=2

�
.1Cm.D/�s/D2

� � 0
sm.D/D

��
.g � ˛2D2/�1:

Notice also that jDj preserves the even-odd parity. For a given smooth �s, A is a zero-
order operator on any Sobolev space H s

e .R/, s 2 R; here and elsewhere the subscript “e”
indicates that the functions are even in x1. More precisely, if �s 2 H s

e .R/ for s > 3=2,
then the map3

H s
e .R/ 3 �s 7! A.�s/ 2 L.H s0

e .R// is analytic, s0
2 Œ1 � s; s � 1�: (2.21)

3Note here that the lower right s used in �s stands for “surface”, while the italic s is a (general)
regularity index.



M. Ehrnström, S. Walsh, C. Zeng 1060

Recall here thatH�s.R/ is the continuous dual ofH s.R/, whence the lower bound 1� s

is needed to ensure that products can be made sense of when applying A.�s/ to H s0

.R/.
Now A.0/ D id and we have the bound

jA.�s/ � id jL.H s0
/ . j�sjH s :

Thus A.�s/ 2 L.H s0

/ is invertible for j�sjH s � 1. We can now isolate the leading-order
terms in (2.20) by applying A.�s/

�1 to it:

0 D .g � ˛2D2/�s C
1

2ı2
A.�s/

�1

�
.@x2

.uC U � Ubc/.
�

ı
; 1

ı
//2

.1Cm.D/�s/2 C � 0
s
2

�
; (2.22)

which is valid as long as j�sjH s � 1.
Now we are roughly in a position to make a rigorous statement of our problem. For

any ı > 0, we define

Xk
ı D H k

e .�ı/ \H 1
0 .�ı/; k � 1; X0

ı D L2
e .�ı/: (2.23)

Summarizing the analysis of this section, we see that if u, �s, and � satisfy

.��C 
 0.U //uC F.�; u; �s/ D 0 in �ı ; (2.24a)

.g � ˛2D2/�s CG.�; u; �s/ D 0 on R; (2.24b)

where F W Œ� 1
3
; 1

3
��Xk

ı
�H k

e .R/! Xk�2
ı

and GW Œ� 1
3
; 1

3
��Xk

ı
�H k

e .R/!H k�2
e .R/

are the mappings

F.�; � /W .u; �s/ 7! j1C � 0.ı � /j2
.uC U � Ubc/ � 
.U / � 
 0.U /uC Ubc; (2.25)

and

G.�; � /W .u; �s/ 7!
1

2ı2
A.�s/

�1

�
.@x2

.uC U � Ubc/.
�

ı
; 1

ı
//2

.1C jDj coth.2jDj/�s/2 C � 0
s
2

�
; (2.26)

then .‰; �/, reconstructed via (2.5), (2.7), (2.14), (2.1), (2.19), and the Cauchy–Riemann
equations, will solve the stationary water wave problem (1.10), (1.7), and (1.8). Recall
here thatU is a shorthand forU. � ; �/DU. � �

�
ı
e2/. For the class of 
 satisfying Assump-

tions (A) and (B), the mappings F andG are well defined and continuously differentiable
given some basic estimates on U and Ubc that are derived in the next section. For that
reason, we postpone making a precise statement, or offering a proof, until Lemma 3.8.

3. Estimates of U and its boundary corrections

This section is devoted to the estimates of U. � ; �/, its derivatives, and boundary cor-
rections of the same functions, assuming that Assumptions (A) and (B) from Section 1
hold. Finally, we give some estimates of the nonlinearities F andG, defined in (2.25) and
(2.26), in the elliptic system (2.24), which is equivalent to the original problem (1.10),
(1.7), and (1.8) of finding stationary water waves.
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Estimates for U , .@x2
U/bc, and @x2

.Ubc/

We start with some basic estimates on U . Recall from Assumption (A) that 
 2 C k0 , for
a fixed integer k0 � 2.

Proposition 3.1. Under Assumptions (A) and (B), there exists � ¤ 0 such that

lim
r!1

.�1/kr1=2er@k
rU.r/ D � for all 0 � k � k0 C 2: (3.1)

Remark 3.2. As

r D

 
cos � �

1
r

sin �

sin � 1
r

cos �

!�
@r

@�

�
;

and

@2
x2

D sin2 � @2
r C

2 cos � sin �
r

@r� C
cos2 �

r2
@2

� C
cos2 �

r
@r �

cos � sin �
r2

@� ;

when applied to radial functions, we have

@x2
U D sin � Ur ; @2

x2
U D sin2 � Urr C

cos2 �

r
Ur : (3.2)

Proposition 3.1 readily induces signs on the Cartesian derivatives of these functions. In
particular, sgn @x2

U D � sgn.�x2/ globally with

@x2
U Å ��x2r

�3=2e�r ; @2
x2
U Å �x2

2r
�5=2e�r

when r � 1. Note also that

j1 � 
 0.U /j . r�1=2e�r ; j
.U / � U j . r�1e�2r ; r � 1:

Remark 3.3. For j� j < 1
3

, the function U. � ; �/ from (2.13) is just a translation of the
center and global maximum of the radial function U from the origin to .0; �

ı
/. It follows

that Proposition 3.1 applies to U. � ; �/ with r changed accordingly.

Remark 3.4. The solution U to (1.11) is often obtained through a variational approach
carried out inH 1 space. In fact, for any 
 2 C 1.R2/ satisfying 
.0/D 0, any radial solu-
tion U 2 C 2.R2/ \H 1.R2/ automatically satisfies the decay assumption limr!1 U.r/

D limr!1 U 0.r/ D 0 in Assumption (A). This is due to the inequality, for r2 > r1 > 0,

jU.r2/
2

� U.r1/
2
j D 2

ˇ̌̌̌Z r2

r1

U 0.r/U.r/ dr
ˇ̌̌̌

�
2

r1

ˇ̌̌̌Z r2

r1

U 0.r/U.r/r dr
ˇ̌̌̌

�
2

r1
jU jL2.R2/jU

0
jL2.R2/;

which implies limr!1 U.r/ D 0, and hence U 2 L1. The boundedness of U yields
�U D 
.U / 2 L2.R2/, and thus U 2 H 2.R2/. The fact that limr!1U 0.r/ D 0 follows
from the same argument. Obviously one may also replace U 2 C 2.R2/ \ H 1.R2/ by
U 2 C 2.R2/ \ L2.R2/ \ L1.R2/.
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Proof of Proposition 3.1. The decay rate (3.1) is stated by Li and Nirenberg [30] for the
case 
.t/ D t � tp , with a reference to an earlier paper of Berestycki and P.-L. Lions [3].
However, while that work could be extended to our setting, as written it does not contain
the same sharp result and it is restricted to three or higher dimensions. Here we provide
a sketch of a proof that does cover the case of interest; it is based on invariant manifold
methods rather than variational techniques. For a reference, see for example [5].

In polar coordinates the semilinear problem for U is

@2
rU D �

1

r
@rU C 
.U / (3.3)

and thus it suffices to obtain the estimate for k D 0; 1, due to the fact that 
 0.0/ D 1.
Letting

w1 D
1

2
.U C @rU/; w2 D

1

2
.U � @rU/; s D

1

r
; 
1.U / D 
.U / � U D O.U 2/;

we rewrite (3.3) as8̂̂<̂
:̂
@rw1 D

�
1 �

s
2

�
w1 C

s
2
w2 C

1
2

1.w1 C w2/;

@rw2 D
s
2
w1 �

�
1C

s
2

�
w2 �

1
2

1.w1 C w2/;

@rs D �s2:

(3.4)

Clearly .0; 0; 0/ is an unstable equilibrium of the ODE system withw1,w2, and s being in
the unstable, stable, and the center directions, respectively. Therefore there exists a C k0

center-stable manifold W cs in a neighborhood of .0; 0; 0/ given by a graph

w1 D �.w2; s/ with � 2 C k0 and �.0; 0/ D 0; r�.0; 0/ D 0:

Even though the center-stable manifold W cs is usually not unique, the subset W cs \

¹s � 0º is indeed unique because of its positive invariance under the ODE flow. Due
to Assumption (A), both the orbit corresponding to U and the trivial state .0; 0; s D

1
r
/

converge to .0; 0; 0/ as r ! C1. Hence they both belong to W cs. This implies

�.0; s/ D 0; and thus w1 D �.w2; s/ D O.jw2j.jsj C jw2j//; jw2j; jsj � 1:

Therefore the only orbit on W cs intersecting ¹w2 D 0º is the one corresponding to the
trivial solution. On W cs, the w2 equation in (3.4) and the above properties of � yieldˇ̌̌̌

@rw2 C

�
1C

s

2
�
s

2
�w2

.0; s/

�
w2

ˇ̌̌̌
D O.w2

2/; jw2j; jsj � 1:

Using this, we first calculate that

d

dr
.erw2

2/ D

�
1 � 2

�
1C

s

2
�
s

2
�w2

.0; s/

�
CO.jw2j/

�
erw2

2 � 0; jw2j; jsj � 1:
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Therefore er=2jw2j is decreasing in r for 1 � r and thus
R1

r0
w2 dr converges absolutely.

Moreover, the above estimate of @rw2 on W cs further implies

w2.r/D

�
r0

r

�1=2

er0�re Qw.r/w2.r0/; Qw.r/D

Z r

r0

�
1

2r 0
�w2

�
0;
1

r 0

�
CO.jw2.r

0/j/

�
dr 0:

Since �w2
.0; s/ D O.s/, the above estimate implies that limr!C1 r1=2erw2.r/ exists

and belongs to .0;1/, which along with the fact that w1 D O.jw2j.j 1
r
j C jw2j// yields

(3.1) for k D 0; 1.

The following corollary will be used to analyze the boundary correction operator. For
this and the coming results, especially Corollary 3.7, it can be good to consult Figure 2.
Note, in particular, that the estimate below essentially concerns the behavior of U outside
of the slab �ı (on the slab reflected over its own boundaries, modulo the translation � ).

x2

U

Ubc

− 1
δ

1
δ

(a) � D 0

x2

U(τ)

U(τ)bc

− 1
δ

1
δ

(b) � 2 .0; 1
3 /

Fig. 2. Graphs of U and Ubc along the line x1 D 0. On the left, U.x/ is centered at the origin; on
the right, it is shifted closer to the free surface. See also Corollary 3.7.

Corollary 3.5. For any � 2 Œ� 1
3
; 1

3
�, 0 � k � k0 C 1, and 0 � k0 � k0 C 2, U.�/ and

@x2
U.�/ satisfyˇ̌

U
�

� ;˙ 2
ı

� � ; �
�ˇ̌

H k0
.�ı/

;
ˇ̌
@x2
U
�

� ;˙ 2
ı

� � ; �
�ˇ̌

H k.�ı/
Å ı1=4e�

1��
ı :

Proof. We shall focus on @x2
U. � ; 2

ı
� � ; �/ as the others can be handled similarly. Con-

sider the following subset S of �ı :

S D
®
x 2 �ı W x2

1 C
�

2��
ı

� x2

�2
<
�

3��
ı

�2¯
: (3.5)

Let .�; ˇ/ be the polar coordinates of .x1;
2��

ı
� x2/ so that

S D
®
.�; ˇ/ W � 2

�
1��

ı
; 3��

ı

�
; ˇ 2 .ˇ0.�/; � � ˇ0.�//

¯
; ˇ0.�/ D sin�1

�
1��
ı�

�
:

Since j� j �
1
3

, we have sinˇ Å 1 in S , and

�

2
� ˇ0.�/D sin�1

�
1�

�
1��
ı�

�2�1=2 Å .ı� � 1C �/1=2 for all � 2
�

1��
ı
; 3��

ı

�
: (3.6)
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Along with Proposition 3.1, this implies

I C II WD

�Z
S

C

Z
�ınS

��
x2

1 C
�

2��
ı

� x2

�2��1=2
e�2.x2

1
C. 2��

ı
�x2/2/1=2

dx

&
ˇ̌
@x2
U
�

� ; 2
ı

� � ; �
�ˇ̌2

H k0C1.�ı/
&
ˇ̌
@x2
U
�

� ; 2
ı

� � ; �
�ˇ̌2

L2.�ı/
& I:

Again, it follows from Proposition 3.1 and (3.6) that

I Å
Z 3��

ı

1��
ı

Z ��ˇ0.�/

ˇ0.�/

e�2� dˇ d� Å
Z 2=ı

0

.ı�0/1=2e�2.1��/=ı�2�0

d�0 Å ı1=2e�2.1��/=ı ;

while

II .
Z

jxj� 3��
ı

jxj
�1e�2jxj dx .

Z 1

3��
ı

e�2� d� Å e�2.3��/=ı :

This completes the proof of the corollary.

In order to estimate the boundary correction operator defined in (2.12), we will need
the following auxiliary lemma.

Lemma 3.6. Suppose k � 2 is an integer, j� j �
1
3

, and h 2 C k.R2;R/ satisfies

j@jh.x/j .
�
1C

ˇ̌
x �

�
ı
e2

ˇ̌��1=2
e�jx� �

ı
e2j for 0 � j � k;

and

j@j .1 ��/h.x/j .
�
1C

ˇ̌
x �

�
ı
e2

ˇ̌��1
e�2jx� �

ı
e2j for 0 � j � k � 2:

Then
v.x1; x2/ WD .hj@�ı

/bc.x1; x2/ � h
�
x1;

2
ı

� x2

�
� h

�
x1;�

2
ı

� x2

�
satisfies

jvjH k.�ı/ . ı3=4e�2.1�j� j/=ı :

Intuitively, this says that the boundary correction of h is, to leading order, found by
subtracting the reflections of h over the top and bottom boundaries of the slab.

Proof. From the definition of bc in (2.12), we see that v satisfies´
.1 ��/v.x1; x2/ D �.1 ��/h

�
x1;

2
ı

� x2

�
� .1 ��/h

�
x1;�

2
ı

� x2

�
in �ı ;

vjx2D˙1=ı D �h
�
x1;�

3
ı

�
:

One can immediately deduce the energy estimate

jvjH k.�ı/ .
X
˙

ˇ̌
.1 ��/h

�
� ;˙ 2

ı
� �

�ˇ̌
H k�2.�ı/

C jhjH k�1=2.¹jx2jD3=ıº/:

An upper bound of the first term on the right-hand side above can be obtained much as in
the proof of Corollary 3.5, and so we only provide a sketch and focus on the “C” case. Let
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S be given as in (3.5), and split the slab �ı D S [ .�ı n S/. From the properties assumed
on h, we see thatˇ̌

.1 ��/h
�

� ; 2
ı

� �
�ˇ̌2

H k�2.�ı/

.
�Z

S

C

Z
�ınS

��
x2

1 C
�

2��
ı

� x2

�2��1
e�4.x2

1
C. 2��

ı
�x2/2/1=2

dx

.
Z 3��

ı

1��
ı

Z ��ˇ0.�/

ˇ0.�/

��1e�4� dˇ d�C

Z
jxj� 3��

ı

jxj
�2e�4jxj dx

. ı1=2e�
4.1��/

ı

Z 2=ı

0

.�0/1=2
�

1��
ı

C �0
��1

e�4�0

d�0
C

Z 1

3��
ı

��1e�4� d�

. ı3=2e�4.1��/=ı :

The H k�1=2.@�3=ı/ norm can be estimated by interpolating it between H k and H k�1

and then appealing to the assumptions on h:

jhj
2
H k�1=2.¹jx2jD3=ıº/

.
�Z ı�1=2

0

C

Z 1

ı
� 1

2

��
x2

1 C
.3�j� j/2

ı2

��1=2
e

�2.x2
1

C
.3�j�j/2

ı2 /1=2

dx1

. ı1=2e�2.3�j� j/=ı
C

Z 1

. ıC.3�j�j/2

ı2 /1=2

x1.s/
�1e�2s ds . ı1=2e�2.3�j� j/=ı ; (3.7)

where the substitution x1.s/ D .s2 �
.3�j� j/2

ı2 /1=2 was used to evaluate the integral on
Œı�1=2;1/. Combining the above inequalities concludes the proof of the lemma.

Lemma 3.6 is mainly applied to Ubc and .@x2
U/bc for j� j �

1
3

. In fact, (1.11) yields

.1 ��/@x2
U D .1 � 
 0.U //@x2

U;

and so the assumption that 
 0.0/ D 1 together with Proposition 3.1 ensures that U and
@x2
U satisfy the hypotheses of Lemma 3.6. Therefore, in addition to Corollary 3.5 we

obtain the following estimates, which will be essential to us later.

Corollary 3.7. For any � 2 Œ� 1
3
; 1

3
�, U.�/bc and .@x2

U/.�/bc satisfyˇ̌
U.�/bc�U

�
� ; 2

ı
� � ; �

�
�U

�
� ;� 2

ı
� � ; �

�ˇ̌
H k0C2.�ı/

. ı3=4e�2.1�j� j/=ı ;ˇ̌
.@x2

U/.�/bc�.@x2
U/
�

� ; 2
ı

� � ; �
�
�.@x2

U/
�

� ;� 2
ı

� � ; �
�ˇ̌

H k0C1.�ı/
. ı3=4e�2.1�j� j/=ı ;

jU.�/bcjH k0C2.�ı/ ; j.@x2
U/.�/bcjH k0C1.�ı/ Å ı1=4e�1�j� j=ı :

Proof. The first two inequalities follow directly from Proposition 3.1 and Lemma 3.6. To
obtained the estimate on U.�/bc based on the first inequality and Corollary 3.5, we only
need to show the almost orthogonalityˇ̌�

U
�

� ; 2
ı

� � ; �
�
; U
�

� ;� 2
ı

� � ; �
��

H k0C2.�ı/

ˇ̌
� ı1=2e�2.1�j� j/=ı : (3.8)
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In fact, consider

b1; b2 2 R; jb1j � 1 2
�

1
3
; 3
�
; x 2 �ı ; jx1j �

4
ı
I

we have jx1j j
b1

ı
� x2j�1 � 12. Observing that d2

dt2 hti D hti�3 > 0, it follows that t 7! hti

is convex and�
1C

ˇ̌
b1

ı
� x2

ˇ̌�2
x2

1

�1=2
� 1C 5�

ˇ̌
b1

ı
� x2

ˇ̌�2
x2

1 ; where � D
1

10

�
1

145

�3=2
:

Therefore, for small ı > 0,ˇ̌
b1

ı
e2 � x

ˇ̌
C
ˇ̌
x �

b2

ı
e2

ˇ̌
�
ˇ̌
x2 �

b2

ı

ˇ̌
C
ˇ̌

b1

ı
� x2

ˇ̌�
1C

ˇ̌
b1

ı
� x2

ˇ̌�2
x2

1

�1=2

�
ˇ̌
x2 �

b2

ı

ˇ̌
C
ˇ̌

b1

ı
� x2

ˇ̌
C 5�

ˇ̌
b1

ı
� x2

ˇ̌�1
x2

1 �
jb1�b2j

ı
C �ıx2

1 : (3.9)

It is also clear that

1C
ˇ̌

b1

ı
e2 � x

ˇ̌
Å ı�1; 1C

ˇ̌
x �

b2

ı
e2

ˇ̌
� 1C

ˇ̌
x2 �

b2

ı

ˇ̌
: (3.10)

Applying these inequalities to b1 D 2 � � and b2 D �.2C �/ we obtainZ
�ı

�
1C

ˇ̌
x �

2��
ı
e2

ˇ̌��1=2�
1C

ˇ̌
x C

2C�
ı
e2

ˇ̌��1=2
e�jxC

2C�
ı

e2j�jx� 2��
ı

e2j dx

. ı

�Z
jx1j�4=ı

C

Z
jx1j�4=ı

�Z 1=ı

�1=ı

e�jxC
2C�

ı
e2j�j 2��

ı
e2�xj dx2 dx1

.
Z

jx1j�4=ı

e�
4�2j�j

ı
��ıx2

1 dx1 C

Z 1

4=ı

e�2x1 dx1 . e�3=ı :

Together with Proposition 3.1, this immediately implies (3.8) and completes the proof of
the corollary.

Estimating the nonlinearity

Finally, we give some estimates of the nonlinearities F and G occurring in the reformu-
lated water wave problem (2.24).

Lemma 3.8. For 
 as in Assumptions (A) and (B) and any integer 2 � k � k0, there
exists � 2 .0; 1/, depending only on g and ˛, such that the operators F and G given in
(2.25) and (2.26) satisfy

F W
�
�

1
3
; 1

3

�
�H k

e .�ı/ �H k
e .R/ ! H k�1

e .�ı/ is C k0�kC1 in u; �s; and C k0�k in � I

GW
�
�

1
3
; 1

3

�
�H k

e .�ı/ � B� .H
k
e .R// ! H k0

e .R/ is C1 in u; �s; and C k0�k0C1 in �;

where B� .H
k
e .R// is the ball in H k

e .R/ centered at 0 with radius � and k0 D k �
3
2

if
k > 2 and k0 can be any number smaller than k �

3
2

if kD 2. Moreover, for any �u 2 .0;1/,
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�� 2 .0; �/, � 2 .� 1
3
; 1

3
/, u 2 B�u

.H k
e .�ı// and �s 2 B��

.H k
e .R//, we have

jDuF jL.H k
e .�ı/;H k�2

e .�ı// . �u C ı�1�� C ı1=4e�.1�j� j/=ı ;

jD�sF jL.H k
e .R/;H k�2

e .�ı// . ı�1;

jF.�; 0; 0/jH k�2
e .�ı/ . ı1=4

jlog ıj1=2e�2.1�j� j/=ı ;

and
jDuGjL.H k

e .�ı/;H k�2
e .R// . ı1=2�k�u C ı3=4�ke�.1��/=ı ;

jD�sGjL.H k
e .R/;H k�2

e .R// . ı1=2�k.�2
u C ı1=2e�2.1��/=ı/;

jG.�; 0; 0/jH k�2
e .R/ . ı1�ke�2.1��/=ı :

Proof. Verifying the smoothness of F andG is tedious but straightforward. The argument
is based on (i) standard regularity results on products in Sobolev spaces, properties of the
harmonic extension, the trace theorem, and (ii) the C k0�l 0

smoothness of the mapping
H l 3 u 7! 
 ı u 2 H l 0

for a given 
 2 C k0 , which holds for l 0 � l and l > n
2

C 1 in n
dimensions. The limitation on the smoothness of F and G with respect to � is only due to
the C k0C2 dependence of Ubc in � . The small � > 0 is chosen such that the denominator
in the definition ofG is bounded away from zero and A.�s/ has a bounded inverse, which
can be done independent of j� j �

1
3

and small ı > 0. We omit the details and focus on the
quantitative estimates related to F and G. In what follows, let

� D �1 C i�2 2 H kC1=2
e .�ı/

be the conformal mapping determined by �s through (2.1) and (2.19). Note that this
involves just the harmonic extension (2.2) and harmonic conjugate operators.

From the definition of F ,

F.�; 0; 0/ D 
.U � Ubc/ � 
.U /C Ubc

D

Z 1

0

Z 1

0


 00.s2U � s1s2Ubc/.s1Ubc � U/Ubc ds2 ds1;

which, along with Corollary 3.7, implies that

jF.�; 0; 0/jH k�2
e .�ı/ . jUUbcjH k�2

e .�ı/ C jU 2
bcjH k�2

e .�ı/

.
ˇ̌̌X

˙

U
�

� ;˙ 2
ı

� �
�
U
ˇ̌̌
H k�2

e .�ı/
C ı1=2e�2.1�j� j/=ı : (3.11)

Without loss of generality, we only need to consider the “+” term in the summation.
According to Assumption (A) and Proposition 3.1, for any 0 � j � k � 2 and x 2 �ı ,ˇ̌

@j
�
U.x/U

�
x1;

2
ı

� x2

��ˇ̌
.
�
1C

ˇ̌
x �

�
ı
e2

ˇ̌��1=2 ˇ̌2��
ı
e2 � x

ˇ̌�1=2
e�.jx� �

ı
e2jCj 2��

ı
e2�xj/
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which can be estimated much as (3.8). Applying (3.9) and (3.10) to b1 D 2� � and b2 D � ,
we haveZ

�ı

�
1C

ˇ̌
x �

�
ı
e2

ˇ̌��1
j

2��
ı
e2 � xj

�1e�2.jx� �
ı

e2jCj 2��
ı

e2�xj/ dx

.
�Z

jx1j�4=ı

C

Z
jx1j�4=ı

�Z 1=ı

�1=ı

�
1C

ˇ̌
x �

�
ı
e2

ˇ̌��1 ˇ̌2��
ı
e2 � x

ˇ̌�1

� e�2.jx� �
ı

e2jCj 2��
ı

e2�xj/ dx2 dx1

.
Z

jx1j�4=ı

Z 1Cj�j
ı

0

ı.1C s/�1e�2. 2.1�j�j/
ı

C�ıx2
1

/ ds dx1 C

Z
jxj�4=ı

ı2e�2jxj dx;

and soZ
�ı

�
1C

ˇ̌
x �

�
ı
e2

ˇ̌��1 ˇ̌2��
ı
e2 � x

ˇ̌�1
je�2.jx� �

ı
e2jCj 2��

ı
e2�xj/ dx

. ı1=2
jlog ıje�4.1�j� j/=ı : (3.12)

This further impliesˇ̌
U
�

� ; 2
ı

� �
�
U
ˇ̌2
H k�2.�ı/

. ı1=2
jlog ıje�4.1�j� j/=ı ;

which, with (3.11), furnishes the desired estimate of F.�; 0; 0/.
Next, observe that, for any Qu 2 H k

e .�ı/ with k � 2,

DuF.�; u; �s/ Qu D
�
j1C� 0.ı � /j2
 0.uCU �Ubc/� 
 0.U /

�
Qu

D

��
2� 0

1.ı � /C j� 0.ı � /j2
�

 0.uCU �Ubc/C .u�Ubc/

Z 1

0


 00.U C s.u�Ubc// ds
�

Qu:

(3.13)

Now, for any s we have the the scaling identity

jf .ı � /j PH s.�ı/ D ıs�1
jf j PH s.�1/;

and, for k �
1
2

�
3
2

and j�sjH k < 1,ˇ̌
2� 0

1.ı � /C j� 0.ı � /j2
ˇ̌
H k�1=2.�ı/

. ı�1
j�sjH k.R/:

Thus, the H k�2.�ı/ norm of the last line of (3.13) has the upper bound

O.ı�1
j�sjH k.R/ C jujH k.�ı/ C jUbcjH k.�ı//j QujH k�2.�ı/:

Corollary 3.7 therefore gives the claimed estimate of DuF .
Regarding D�sF , we have, for any Q�s 2 H k

e .R/,

D�sF.�; u; �s/ Q�s D 2
�

Q� 0
1.ı � /C � 0.ı � / � Q� 0.ı � /

�

.uC U � Ubc/;
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where Q� D Q�1 C i Q�2 is the complex holomorphic function determined by Q�s. The estimate
on D�sF follows from this expression and the scaling of the Sobolev norms explained
above.

From the definition of G, one can directly compute

G.�; 0; 0/ D
1

2ı2
.@x2

.U � Ubc//
�

�

ı
; 1

ı

�2
: (3.14)

Recall the one-dimensional scaling property,

jf .ı�1
� /j PH s.R/ D ı�sC1=2

jf j PH s.R/;

which holds for all s 2 R. The term .@x2
.U �Ubc//

�
� ; 1

ı

�
can be estimated by approxim-

ating @x2
Ubc. � ; 1

ı
/ by �@x2

U. � ; 1
ı
/. From Corollary 3.7 and the trace theorem, we then

have, for any k0 C
1
2

� k � 0,ˇ̌
@x2
.U �Ubc/

�
� ; 1

ı

�
�2.@x2

U/
�
� ; 1

ı

�ˇ̌
H k.R/

.
ˇ̌
.@x2

U/
�
� ;� 3

ı

�ˇ̌
H k.R/

Cı3=4e�2.1�j� j/=ı :

(3.15)

Using Proposition 3.1 and the change of variables x1.�/ D .�2 � .1��
ı
/2/1=2 , we can

estimate .@x2
U/. � ; 1

ı
/ while the terms on the right-hand side are obviously much smaller,

ˇ̌
.@x2

U/
�

� ; 1
ı

�ˇ̌2
H k.R/

.
�Z ı�1=2

0

C

Z 1

ı�1=2

��
x2

1 C
�

1��
ı

�2��1=2
e�2.x2

1
C. 1��

ı
/2/1=2

dx1

. ı1=2e�2.1��/=ı
C

Z 1

..1��/2Cı/1=2

ı

d�
x1.�/e2�

. ı1=2e�2.1��/=ı : (3.16)

This implies that ˇ̌
.@x2

.U � Ubc//
�

� ; 1
ı

�ˇ̌
H k.R/

. ı1=4e�1��=ı : (3.17)

We therefore obtain the estimate on G.�; 0; 0/ from the scaling property as

jG.�;0; 0/jH k�2.R/ . ı1=2�.k�2/�2
ˇ̌�
.@x2

.U �Ubc//
�
� ; 1

ı

��2 ˇ̌
H k�2.R/

. ı1�ke�2.1��/=ı :

Consider next the bound on DuG. It is easy to see from the definition of G that

DuG.�; u; �s/ Qu D
1

ı2
A.�s/

�1

�
.@x2

.uC U � Ubc/@x2
Qu/. �

ı
; 1

ı
/

.1C jDj coth.2jDj/�s/2 C � 0
s
2

�
:

By the trace theorem and (3.17), we haveˇ̌
.@x2

.uC U � Ubc/@x2
Qu/
�

� ; 1
ı

�ˇ̌
H k�2.R/

.
ˇ̌
@x2
.uC U � Ubc/

�
� ; 1

ı

�ˇ̌
H k�3=2.R/

ˇ̌
@x2

Qu
�

� ; 1
ı

�ˇ̌
H k�3=2.R/

. .�u C ı1=4e�1��=ı/j QujH k.�ı/:

The desired bound on DuG then follows from the scaling property.
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Finally, for any Q�s 2 H k
e .R/,

2ı2D�sG.�; u; �s/ Q�s D
�
D�s.A.�s/

�1/ Q�s
�� .@x2

.uC U � Ubc//.
�

ı
; 1

ı
/2

.1C jDj coth.2jDj/�s/2 C � 0
s
2

�
� 2A.�s/

�1

�
.@x2

.uC U � Ubc//.
�

ı
; 1

ı
/2

..1C jDj coth.2jDj/�s/2 C � 0
s
2/2

� ..1C jDj coth.2jDj/�s/jDj coth.2jDj/ Q�s C � 0
s
Q� 0

s/

�
:

Since jujH k.�ı/ < �u and j�sjH k.R/ < �� < � < 1 with k � 2, straightforwardly we
obtain

jD�sG.�; u; �s/ Q�sjH k�2.R/ . ı�2
ˇ̌
.@x2

.uC U � Ubc//
�

�

ı
; 1

ı

�2 ˇ̌
H k�2.R/

j Q�sjH k.R/

. ı1=2�k
�
juj

2
H k.�ı/

C
ˇ̌
.@x2

.U � Ubc//
�

� ; 1
ı

�ˇ̌2
H k�1.R/

�
j Q�sjH k.R/;

where the scaling property and the trace theorem have been used. The estimate on D�sG

now follows immediately from (3.17).

One notices that jD�sF.�; u; �s/j is not small no matter how small u and �s are.
Fortunately this is an “off-diagonal term” in the linearization, which will be handled by a
simple rescaling argument in Section 5.

4. Spectral properties

Having the necessary estimates on U and the boundary correction operator bc now in
hand, we next consider the linear operator

L� D ��C 
 0.U.�//WX2
ı ! X0

ı ;

in the elliptic equation (2.24a). Recall that the Dirichlet boundary conditions on @�ı are
encoded in the definition of the space X2

ı
, and that we usually suppress the dependence

on the translation parameter � in the notation for U D U. � ; �/ D U.�/. � /.
The inherent difficulty here is that equation (1.11) implies

�@x2
U D 
 0.U /@x2

U;

so that @x2
U is in the kernel of ��C 
 0.U / viewed as an operator with domainH 2

e .R
2/.

Working in the strip �ı breaks the vertical translation symmetry and eliminates this kernel
direction. It is therefore expected that L� will be invertible X2

ı
! X0

ı
, and, indeed, this is

proved in Lemma 4.6. However, as ı & 0, heuristically the strip approximates R2, and so
we cannot hope to obtain bounds for L�1

� WX0
ı

! X2
ı

that are uniform in ı. Another way
to see this is to note that

L�@x2
U D 0 in �ı ; @x2

U Å ı1=2e�.1�j� j/=ı on @�ı ;
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asU and its derivatives decay exponentially. Thus,L� is nearly degenerate in the direction
close to @x2

U .
In order to proceed, it is therefore necessary to have detailed information about the

behavior of L� as ı & 0. We will prove that there is a positive (simple) eigenvalue
l D l.ı; �/ that is exponentially small in ı for fixed � , and whose eigenfunction U0

approaches @x2
U as ı & 0. In the orthogonal complement of U0, the inverse of L� is

bounded uniformly in ı. In the next section, we will make use of this fact to perform
a Lyapunov–Schmidt type reduction to (2.24a), first solving the problem on a codimen-
sion-1 subspace where L� is well-behaved, and then studying the reduced equation on the
near-degenerate direction.

4.1. An approximate eigenfunction

As a preparation for proving the existence of l and U0, we first study the function

U2. � ; �/ D @x2
U. � ; �/ � .@x2

U/. � ; �/bc 2 X2
ı ; (4.1)

which results from taking @x2
U and perturbing it slightly so that the homogeneous bound-

ary condition on @�ı is satisfied (see Figure 2). In what follows, the dependence of U2

on � will be suppressed when there is no risk of confusion. While U2 is not likely to
be an eigenfunction itself, we will see that it does help in identifying the asymptotically
degenerate direction. Observe that it solves the elliptic problem´

.��C 
 0.U //U2 D .1 � 
 0.U //.@x2
U/bc in �ı ;

U2 D 0 on @�ı ;
(4.2)

as .��C 
 0.U //@x2
U D 0 and�.@x2

U/bc D .@x2
U/bc by the definition of the boundary

correction operator. Recall also that 
 2 C k0 according to Assumption (A).

Lemma 4.1. For j� j �
1
3

, we have jU2jH k0C1.�ı/ Å 1 and

jL�U2jH k0�1.�ı/ . ı1=4
jlog ıj1=2e�2.1�j� j/=ı ;

0 < .U2; L�U2/L2.�ı/ Å ı1=2e�2.1�j� j/=ı :

Proof. Simply from the exponential decay of U.x/ as jxj ! 1, Proposition 3.1, Corol-
lary 3.7, and its definition, it is clear that U2 D O.1/ in H k0C1 for j� j �

1
3

. On the other
hand, from (4.2) and Corollary 3.7, we obtain the estimateˇ̌̌

L�U2 � .1 � 
 0.U //
X
˙

@x2
U
�

� ;˙ 2
ı

� �
�ˇ̌̌

H k0�1.�ı/
. ı3=4e�2.1�j� j/=ı : (4.3)

Without loss of generality, we only need to consider the “+” case. According to Assump-
tion (A) and Proposition 3.1, for any 0 � k � k0 � 1 and .x1; x2/ 2 �ı ,

ˇ̌
@k
�
.1 � 
 0.U.x///@x2

U
�
x1;

2
ı

� x2

��ˇ̌
.

e
�.jx�

�
ı

e2jCj
2��

ı
e2�xj/

.1C jx �
�
ı
e2j/1=2j

2��
ı
e2 � xj1=2
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and thus the claimed bound on L�U2 follows from (3.12). Likewise, using the above
estimate on L�U2 in conjunction with Corollary 3.7, (4.1), and (4.2), one can estimate

.U2; L�U2/L2.�ı/ D
�
@x2
U � .@x2

U/bc; L�U2

�
L2.�ı/

D
�
.1 � 
 0.U //@x2

U; .@x2
U/bc

�
L2.�ı/

CO.e�3.1�j� j/=ı/:

We concentrate on the first term on the right-hand side, as it will clearly dominate as
ı & 0. Using the identities

.1 � 
 0.U //@x2
U D .1 ��/@x2

U; .1 ��/.@x2
U/bc D 0;

and integrating by parts twice yieldsZ
�ı

Œ.1 � 
 0.U //@x2
U �.@x2

U/bc dx D

Z
�ı

Œ.1 ��/@x2
U �.@x2

U/bc dx

D

Z
@�ı

�
�Œ@2

x2
U �.@x2

U/bc C @x2
U@x2

.@x2
U/bc

�
N2 dx1

D

Z
@�ı

�
.@x2

U/bc@x2
.@x2

U/bc � Œ@2
x2
U �@x2

U
�
N2 dx1:

The first of the boundary integrals we treat by integrating back to the interior domain �ı

and using the definition of the boundary correction operator:Z
@�ı

.@x2
U/bc@x2

.@x2
U/bcN2 dx1 D

Z
�ı

�
jr.@x2

U/bcj
2

C .@x2
U/2bc

�
dx

Å ı1=2e�2.1�j� j/=ı ;

where Corollary 3.5 and 3.7 are used in the last step above. The second boundary integral
is instead estimated by integrating into the outer domain �c

ı
, where U and its derivatives

are well defined and exponentially decaying in all radial directions. In analogy to the
above, we use the elliptic equation that @x2

U satisfies to find

�

Z
@�ı

.@2
x2
U/.@x2

U/N2 dx1 D

Z
�c

ı

�
jr.@x2

U/j2 C .@x2
U/�.@x2

U/
�

dx

D

Z
�c

ı

�
jr.@x2

U/j2 C 
 0.U /.@x2
U/2

�
dx

D

Z
jx2j2.1=ı;3=ı/

�
jr.@x2

U/j2 C .@x2
U/2

�
dx CO.e�3.1�j� j/=ı/ Å ı1=2e�2.1�j� j/=ı ;

where the last bound is from Corollary 3.5. Observe also that both boundary integrals are
positive. This implies the positivity of .U2; L�U2/L2.�ı/ for ı small enough, and so the
proof is complete.
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We wish to show that L� WX2
ı

! X0
ı

is well behaved as ı & 0 except in a one-
dimensional near-degenerate direction that anticipates the kernel of ��C 
 0.U / on R2.
To be more precise, define the function spaces

X D H 2
e .R

2/; Y D L2
e .R

2/:

Then under Assumption (B) we see that �� C 
 0.U /WX ! Y has a one-dimensional
kernel spanned by @x2

U . Note that here the even symmetry restriction eliminates the
kernel direction generated by @x1

U . Let P D P.�/ denote the orthogonal projection of Y
onto span ¹@x2

U º; abusing notation somewhat, we use the same symbol for the induced
projection X ! span ¹@x2

U º.
The following nondegeneracy result is a direct consequence of Assumption (B).

Lemma 4.2 (Nondegeneracy in R2). The operator ��C 
 0.U /W .I �P /X ! .I �P /Y

is an isomorphism with bounds uniform in j� j �
1
3

.

Next, we establish an estimate for L� WX2
ı

! X0
ı

. Let % 2 C1.R; Œ0; 1�/ be a smooth
cut-off function with

%.r/ D

´
1 for r < 1=3;

0 for r > 1=2:

Given a function hW �ı ! R we define its (odd) extension EhW R2 ! R by

.Eh/.x/ WD

´
h.x/ for x 2 �ı ;

�h
�
x1;˙

2
ı

� x2

�
%
��

jx2j �
1
ı

�
ı
�

for ˙x2 � 1=ı:
(4.4)

Notice that
jhjL2.�ı/ � jEhjL2.R2/ � 3jhjL2.�ı/; (4.5)

and hence h 2 L2.�ı/ if and only if Eh 2 L2.R2/. By a standard property of odd exten-
sions, we find in fact that h 2 X2

ı
if and only if Eh 2 X .

Now, let
U?

2 WD ¹u 2 X0
ı W .u; U2/L2.�ı/ D 0º: (4.6)

For any j� j �
1
3

and u 2 U?
2 , we see that Eu 2 Y andZ

R2

.Eu/@x2
U dx D

Z
�c

ı

.Eu/@x2
U dx C

Z
�ı

u.U2 C .@x2
U/bc/ dx

D �

X
˙

Z
¹ 1

ı
<˙x2< 3

2ı
º

u
�
x1;˙

2
ı

� x2

�
%.ıjx2j � 1/@x2

U dx

C

Z
�ı

u.@x2
U/bc dx:

Using the L2 bounds of @x2
U and .@x2

U/bc given in Corollaries 3.5 and 3.7, we estimate
that ˇ̌̌̌Z

R2

.Eu/@x2
U dx

ˇ̌̌̌
. ı1=4e�.1�j� j/=ı

jujL2.�ı/ for all u 2 U?
2 ; (4.7)
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uniformly for j� j �
1
3

and all small values of ı. In other words, the extensionEu is nearly
orthogonal to @x2

U in L2
e .R

2/. Combining these observations leads to the bound

jPEujL2.R2/ D
j
R

R2.Eu/@x2
U dxj

j@x2
U jL2.R2/

. ı1=4e�.1�j� j/=ı
jujL2.�ı/; (4.8)

which holds for all u 2 U?
2 .

Lemma 4.3 (Nondegeneracy in �ı ). (a) There exist ı0 > 0 and �0 > 0 such that, for all
ı 2 .0; ı0/ and j� j �

1
3

,

jL�ujL2.�ı/ � �0jujL2.�ı/ for all u 2 X2
ı \ U?

2 : (4.9)

(b) For every � 2 .0; 1/, there exist ı0 D ı0.�/ > 0 and �0 D �0.�/ > 0 such that, for
all ı 2 .0; ı0/, j� j �

1
3

, and u 2 X2
ı

satisfying

jPEujL2.R2/ � � jujL2.�ı/; (4.10)

we have
jL�ujL2.�ı/ � �0jujL2.�ı/: (4.11)

Proof. First observe that in light of (4.8), for any fixed � 2 .0;1/, any element u2U?
2 will

satisfy (4.10) for ı sufficiently small. It therefore suffices to prove part (b). Fix � 2 .0; 1/

as above and let u satisfy the near-orthogonality condition (4.10). By linearity, we can
assume jujL2.�ı/ � 1.

From the definition (4.4) of the extension E,

Œ��C 
 0.U /; E�u D 0 on �ı [ .�3ı=2/
c :

We compute that, for ˙x2 > 1=ı, one has

..��C 
 0.U //Eu/.x/

D �u
�
x1;˙

2
ı

� x2

�
%.˙ıx2 � 1/� 2ı%0.˙ıx2 � 1/@x2

u
�
x1;˙

2
ı

� x2

�
C ı2u

�
x1;˙

2
ı

� x2

�
%00.˙ıx2 � 1/ � 
 0.U /u

�
x1;˙

2
ı

� x2

�
%.˙ıx2 � 1/:

This leads directly to the following expression for the commutator on the set ¹˙x2>1=ıº:

.Œ��C 
 0.U /; E�u/.x/ D ..��C 
 0.U //Eu/.x/ � .E.��C 
 0.U //u/.x/

D �2ı%0.˙ıx2 � 1/@x2
u
�
x1;˙

2
ı

� x2

�
C ı2u

�
x1;˙

2
ı

� x2

�
%00.˙ıx2 � 1/

�
�

 0.U / � 
 0

�
U
�
x1;˙

2
ı

� x2

���
u.x1;˙

2
ı

� x2/%.˙ıx2 � 1/: (4.12)

Now, measuring the left- and right-hand sides of (4.12) in L2.R2/, taking into account
the estimates of 
 0.U / D 1CO.U / for small U and Proposition 3.1, we find that

jŒ��C 
 0.U /; E�ujL2.R2/ . ıj@x2
ujL2.�ı/ C ı2

jujL2.�ı/:
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w

U2U0

U⊥
2

U⊥
0

Fig. 3. We construct an eigenfunction U0 that is almost parallel to U2, and thus it will take the form
U0 Å U2 C w for some w 2 U?

2 with jwj � 1.

The @x2
u term above can be eliminated via interpolation:

j@x2
uj

2
L2.�ı/

. j�ujL2.�ı/jujL2.�ı/ . jL�ujL2.�ı/jujL2.�ı/ C juj
2
L2.�ı/

. jL�uj
2
L2.�ı/

C juj
2
L2.�ı/

:

Inserting this inequality into (4.12), we arrive at the commutator bound

jŒ��C 
 0.U /; E�ujL2.R2/ . ı.jL�ujL2.�ı/ C jujL2.�ı//; (4.13)

independent of ı, � , and u.
We are now prepared to prove the estimate (4.11). From Lemma 4.2 we have

j.��C 
 0.U //Euj
2
L2.R2/

D j.��C 
 0.U //.1 � P /Euj
2
L2.R2/

& j.1 � P /Euj
2
L2.R2/

D jEuj
2
L2.R2/

� jPEuj
2
L2.R2/

� .1 � �2/juj
2
L2.�ı/

; (4.14)

where the last inequality follows from hypothesis (4.10) and (4.5). On the other hand,
together (4.5) and the commutator estimate (4.13) reveal that

j.��C 
 0.U //EujL2.R2/ . jEL�ujL2.R2/ C ı.jL�ujL2.�ı/ C jujL2.�ı//

. jL�ujL2.�ı/ C ıjujL2.�ı/: (4.15)

Combined, (4.14) and (4.15) imply that (4.11) holds when ı is taken sufficiently small,
which completes the proof.

4.2. Construction of a near-degenerate eigenfunction

In Section 4.1, it was shown that the function U2 roughly aligns with the near-degenerate
direction of L� in the sense that the restriction L� WX2

ı
\ U?

2 ! X0
ı

is uniformly positive
according to (4.9), whereU?

2 is defined in (4.6). We now refine our analysis to find a (very
small) eigenvalue l and corresponding eigenfunction U0 near U2 that limits to @x2

U in
some sense as ı & 0. Similar to P above, denote by P2 the L2.�ı/ orthogonal projection
X0

ı
! span ¹U2º and also the projection it induces from X2

ı
to span ¹U2º.
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Lemma 4.4. Consider the operator

QL� WD. QL� / D U?
2 \X2

ı D .1 � P2/X
2
ı ! U?

2 D .1 � P2/X
0
ı

defined by
QL�u D .1 � P2/L�u for all u 2 .1 � P2/X

2
ı :

There exists ı0 > 0 such that, for all j� j �
1
3

and ı 2 .0; ı0/, QL� is an isomorphism and
is self-adjoint as an unbounded and densely defined operator on U?

2 with j QL�1
� j Å 1.

Proof. Throughout the proof, all norms and inner products are evaluated on �ı . By defin-
ition, u 2 D. QL�

� / � U?
2 and Qu D QL�

�u 2 U?
2 if and only if

. Qu; v/L2 � .u; QL�v/L2 D 0 for all v 2 U?
2 \X2

ı ;

which holds if and only if�
QuC

.u; L�U2/L2

jU2j2
L2

U2; aU2 C v

�
L2

� .u; L� .aU2 C v//L2 D 0

for all a 2 R and v 2 U?
2 \ X2

ı
. Since L�

� D L� on X0
ı

, we see that u 2 D. QL�
� / and

Qu D QL�
�u if and only if

u 2 U?
2 \X2

ı and QuC
.u; L�U2/L2

jU2j2
L2

U2 D L�u:

Thus D. QL�
� / D U?

2 \X2
ı

, and Qu D .I � P2/L�u D QL�u. This implies that QL� is indeed
self-adjoint on its domain in U?

2 .
Next, we slightly improve the bound of QL� in (4.9): observe that, for all u in

.1 � P2/X
2
ı

,

jujH 2.�ı/ . jujL2 C j�ujL2 . jujL2 C jL�ujL2 . jL�ujL2 . j QL�ujL2 C jP2L�ujL2 :

But, due to equation (4.2) satisfied by U2 and Lemma 4.1, we know that

jP2L�ujL2.�ı/ Å j.L�u; U2/L2.�ı/j D j.u; L�U2/L2.�ı/j . e�2.1�j� j/=ı
jujL2.�ı/;

and thus
jujH 2.�ı/ . j QL�ujL2.�ı/: (4.16)

This implies that QL� is an isomorphism from U?
2 \ X2

ı
to its range – a closed subspace

of U?
2 . It follows from the self-adjointness of QL� on U?

2 that it is an isomorphism from
U?

2 \X2
ı

to U?
2 .

Proposition 4.5 (Existence of U0). For each j� j �
1
3

and ı > 0 sufficiently small, there
exists an eigenfunction

U0 D a0.w C U2/ 2 X
k0C1

ı
; w 2 .I � P2/X

k0C1

ı
; jU0jL2.�ı/ D 1; (4.17)
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of L� with a real eigenvalue l D l.ı; �/:

L�U0 D lU0 in �ı :

They obey the estimates

jwjH k0C1.�ı/ . ı1=4
jlogıj1=2e�2.1�j� j/=ı ; 0 < l.ı; �/Å ı1=2e�2.1�j� j/=ı ; 0 < a0 Å 1:

Moreover, for fixed ı, l is C k0�1 in � and U0 2XkC2
ı

is C k0�k�1 in � for 0� k � k0 � 1,
respectively.

Here a0 is simply a normalizing constant so that jU0jL2.�ı/ D 1.

Proof. From Lemma 4.4, we know that there exists ı0 > 0 such that, for any ı 2 .0; ı0/,
QL� is an isomorphism from .I � P2/X

2
ı

to .I � P2/X
0
ı

. By (4.16), its inverse satisfies

j QL�1
� jL..I�P2/X0

ı
I.I�P2/X2

ı
/ � ��1

0 for all j� j �
1
3
; (4.18)

for some �0 > 0 independent of j� j �
1
3

and small ı > 0. A function U2 C w with w in
.I � P2/X

2
ı

is an eigenfunction corresponding to l if

L� .U2 C w/ D l.U2 C w/:

Taking the inner product of the above equation with U2 yields

l D
.w C U2; L�U2/L2.�ı/

jU2j2
L2.�ı/

:

On the other hand, applying I � P2 to the eigenfunction equation and recalling that
P2w D 0, we see that

QL�w D lw � .I � P2/L�U2: (4.19)

This motivates us to consider the mapping ƒWU?
2 ! U?

2 defined by

ƒ.w/ D `.w/ QL�1
� w � QL�1

� .1 � P2/L�U2; (4.20)

where

`.w/ D
.w C U2; L�U2/L2.�ı/

jU2j2
L2.�ı/

(4.21)

is the presumptive eigenvalue. Clearly a small fixed point w 2 U?
2 of ƒ yields an eigen-

function w C U2 of L� close to U2 associated to the eigenvalue `.w/.
It is straightforward to estimate

j`.w/j . jL�U2jL2.�ı/jwjL2.�ı/ C .U2; L�U2/L2.�ı/; (4.22)

and

j`.w1/ � `.w2/j � jU2j
�2
L2.�ı/

jL�U2jL2.�ı/jw1 � w2jL2.�ı/:
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Likewise, we have

jƒ.w1/ �ƒ.w2/jL2.�ı/

� j`.w1/j j QL�1
� .w1 � w2/jL2.�ı/ C j`.w1/ � `.w2/j j QL�1

� w2jL2.�ı/

and
jƒ.0/jL2.�ı/ . jL�U2jL2.�ı/;

where all the above inequalities are uniform in j� j �
1
3

and small ı. Consequently, Lemma
4.1 and (4.18) imply ƒ is a contraction map that sends B1, the closed unit ball centered
at the origin in X0

ı
, to itself. It therefore has a unique fixed point w� D w�.ı; �/ in

.1�P2/X
2
ı

\B1. This yields the eigenvalue l D `.w�/ defined by (4.21) and the corres-
ponding eigenfunction w C U2 whose higher Sobolev regularity is due to the ellipticity
in (4.19). The normalizing constant a0 > 0 is chosen such that jU0jL2.�ı/ D 1. Since

 2 C k0 and U 2 C k0C2 with exponential decay, it is easy to see that L� WXkC2

ı
! Xk

ı
is

C k0�k�1 in � for k � 0. From standard spectral theory, the simple eigenvalue ` is C k0�1

in � and the unit eigenfunction U0 2 XkC2
ı

of L� is C k0�k�1 in � for 0 � k � k0 � 1.
As w� is a fixed point of the contractionƒ, its definition (4.20) and Lemma 4.1 imply

jw�
jL2.�ı/ . jƒ.0/jL2.�ı/ . ı1=4

jlog ıj1=2e�2.1�j� j/=ı :

The higher Sobolev norms satisfy similar estimates due to the elliptic regularity given in
(4.19). Finally, we conclude from (4.21), the above inequality, and Lemma 4.1, thatˇ̌̌̌

`.w�/ �
.U2; L�U2/L2.�ı/

jU2j2
L2.�ı/

ˇ̌̌̌
� e�4.1�j� j/=ı :

Along with Lemma 4.1, this yields the desired estimate on `. The positivity of ` is a
consequence of the sign of .U2; L�U2/L2.�ı/ proved in Lemma 4.1.

Using the estimates just obtained, we can now confirm thatL� is invertible (with near-
degeneracy in the U0 direction) and, more important, that the inverse of its restriction to
the orthogonal complement of the one-dimensional subspace spanned by U0 is bounded
independently of ı. That said, let U0 be given as in Proposition 4.5 and denote the ortho-
gonal complement in X0

ı
of span ¹U0º by U?

0 .

Lemma 4.6 (Invertibility of L� ). There exists ı0 > 0 such that, for all ı 2 .0; ı0/ and
j� j �

1
3

,
L� WX2

ı ! X0
ı is invertible: (4.23)

Moreover, there exists �0 D �0.ı0/ > 0 such that

jL�ujL2.�ı/ � �0jujL2.�ı/ for all u 2 U?
0 \X2

ı :

Proof. SinceL� is self-adjoint and U0 is an eigenfunction with eigenvalue l , it is standard
that U?

0 is invariant under L� in the sense that

L� .U
?
0 \X2

ı / � U?
0 :
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Because of l > 0 and again the self-adjointness ofL� , it suffices to prove thatL� jU ?
0

\X2
ı

W

U?
0 \X2

ı
!U?

0 has a lower bound independent of j� j �
1
3

and small ı > 0. In fact, recall

U0 D a0.U2 C w/ with w 2 U?
2 ; jwjL2.�ı/ . e�2.1�j� j/=ı :

Any v 2 U?
0 can be written as

v D v1 C bU2; where v1 D .I � P2/v 2 U?
2 :

We have

.v1; w/L2.�ı/ D .v;w/L2.�ı/ D

�
v;
U0

a0

� U2

�
L2.�ı/

D �.v; U2/L2.�ı/ D �bjU2j
2
L2.�ı/

and thus

b D �
.v1; w/L2.�ı/

jU2j2
L2.�ı/

D �
.v; w/L2.�ı/

jU2j2
L2.�ı/

:

It implies that U?
0 and U?

2 are isomorphic through

v1 D .I � P2/v with jv � v1jL2.�ı/ Å jbj . e�2.1�j� j/=ı
jvjL2.�ı/;

where a0 Å 1 was also used. Together with Lemmas 4.1 and 4.3 we obtain

jL�vjL2.�ı/ � jL�v1jL2.�ı/ � jbj jL�U2jL2.�ı/ �
�0

2
jv1jL2.�ı/ �

�0

4
jvjL2.�ı/;

which completes the proof.

The invertibility of L� also holds in higher Sobolev spaces due to elliptic theory.

Corollary 4.7. There exists ı0 > 0 such that, for all ı 2 .0; ı0/, j� j �
1
3

, and 0 � k �

k0 � 1,
L� WXkC2

ı
! Xk

ı is invertible: (4.24)

Moreover, there exists �0 D �0.ı0/ > 0 such that

jL�ujH k.�ı/ � �0jujH kC2.�ı/ for all u 2 U?
0 \XkC2

ı
: (4.25)

5. Proof of the main result

In this section we complete the argument leading to the proof of Theorem 1.1.

5.1. Normal bundle coordinates

Recall from Section 2 that the waves we study are represented by two quantities: the
boundary value �s of a conformal mapping, that determines the fluid domain, and a (re-
scaled) stationary stream function ' that gives the velocity field. Our basic approach is to
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construct waves for which j�sjH k0 � 1 and ' is a perturbation of U.�/ � U.�/bc, where
the parameter � 2 .� 1

3
; 1

3
/ selects the approximate altitude of the center of vorticity.

At this stage, we have obtained detailed information regarding the spectrum of the
linearized operator

L� D ��C 
 0.U.�//WXkC2
ı

! Xk
ı

and its dependence on � and ı. In particular, we proved in Proposition 4.5 that there
exists a unique simple eigenvalue l D l.ı; �/, associated to an eigenfunction U0.�/, that
converges to 0 exponentially fast as ı& 0. This presents an obvious obstruction to a naïve
fixed point scheme. We will see that � is the key to ameliorating the issue.

To see the connection, observe that the family

C WD
®
U.�/ � U.�/bc W � 2

�
�

1
3
; 1

3

�¯
can be viewed as a C k0C2�k curve in the ambient space Xk

ı
. At a fixed � , the tangent

vector to C is

T� C D @� .U.�/ � U.�/bc/

D �ı�1.@x2
U.�/ � .@x2

U.�//bc/

D �ı�1U2.�/ � �ı�1U0.�/;

where the second equality follows from the linearity of the boundary correction operator.
The above calculation shows that the tangent direction along the curve C is almost parallel
to the near-degenerate subspace.

Therefore, our strategy is to seek a (rescaled) stationary stream function of the form

' D U.�/ � U.�/bc C v; (5.1)

with the unknowns

.�; v/ 2 Xı;k WD
®
.�; v/ W � 2

�
�

1
3
; 1

3

�
; v 2 Xk

ı \ U0.�/
?
¯
; k � 2: (5.2)

This ensures that v avoids the near-degenerate direction of L� , while the linear part
g � ˛2D2 of the Bernoulli boundary condition (2.24b) is already invertible. We may then
perform a Lyapunov–Schmidt reduction: for each fixed � , we solve for v and �s, leav-
ing a one-dimensional problem of the form b.�/ D 0 for a certain bifurcation function b.
Finally, we will appeal to an intermediate value theorem argument to infer the existence
of solutions to this reduced problem, as anticipated by the model calculation carried out
in Section 1.

It is therefore imperative that the Lypanuov–Schmidt reduction be performed in such
a way that b.�/ is continuous (or even smooth). Because the near-degenerate and nonde-
generate subspaces vary as we change � , it is natural to view Xı;k as a smooth vector
bundle over the base .� 1

3
; 1

3
/, with the fibers being the nondegenerate subspaces

X�
ı;k WD Xk

ı \ U0.�/
?
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•

C

Nδ

U0(τ)v

Fig. 4. Schematic of the tubular neighborhood Nı of the curve Cı . At each � 2 .� 1
3 ;

1
3 /, we locally

decompose the space Xk
ı

into a component v in the nondegenerate direction U0.�/
?, and a com-

ponent in the near-degenerate direction U0.�/.

(see also Figure 4). According to Proposition 4.5, the C k0 -regularity of 
 ensures that
� 7! U0.�/ 2 XkC2

ı
is C k0�k�1 for 0 � k � k0 � 1, and hence the orthogonal projection

P0.�/ onto spanU0.�/ enjoys the same regularity with respect to � . It then follows that
each �0 2 .� 1

3
; 1

3
/ is contained in a neighborhood I0 such that the mapping

I0 � X
�0

ı;k
3 .�; v/ 7! .�; .I � P0.�//v/ 2 Xı;k for 2 � k � k0 C 1

is a C k0�kC1 local trivialization of Xı;k . Note that here and in what follows, we reserve
calligraphic script for bundles. In the Lyapunov–Schmidt reduction, we fix � , while track-
ing the continuous dependence on it.

Remark 5.1. While continuity in � is sufficient for our purpose, in differential geometry,
there are standard notions of smoothness of mappings related to vector bundles based on
the smoothness of the trivializations, which allow implicit function theorem type argu-
ments to be carried out as on flat spaces or manifolds. Moreover, it is standard to prove
that

�WXı;k 3 .�; v/ 7! v C U.�/ � U.�/bc 2 Xk
ı for 2 � k � k0

defines a C k0�kC1 local coordinate map (usually referred to as the transversal bundle
coordinates) near C .

To simplify notation, we introduce the set

Wı;k WD Xı;k �H k
e .R/

and endow it with the structure of a vector bundle over .� 1
3
; 1

3
/ having fibers

W�
ı;k WD X�

ı;k �H k
e .R/;

and locally trivialized in the obvious way.
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5.2. Lyapunov–Schmidt reduction

Let us now reconsider the elliptic system (2.24),´
.��C 
 0.U //v C F.�; v; �s/ D 0 in �ı ;

.g � ˛2D2/�s CG.�; v; �s/ D 0 on R;

from this geometrical standpoint. In the previous subsection, we argued that this system
is equivalent to finding �s together with a scaled stream function having the ansatz

' D v C U.�/ � U.�/bc; .�; v/ 2 Xı;k :

As before, we suppress the dependence of U and Ubc on � whenever there is no risk of
confusion. With a slight abuse of notation we also as above view

F.�; v; �s/ D j1C � 0.ı � /j2
.v C U � Ubc/ � 
.U / � 
 0.U /v C Ubc; (5.3)

G.�; v; �s/ D
1

2ı2
A.�s/

�1

�
.@x2

.v C U � Ubc/. � ; 1
ı
//2

.1C jDj coth.2jDj/�s/2 C � 0
s
2

�
; (5.4)

from (2.25) and (2.26) to be the bundle map from a subset (with �s small) of Wı;k to
Wı;k�2. It is easily seen that the slightly reinterpreted .F; G/ enjoy the same regularity
as in Lemma 3.8.

Projecting the semilinear elliptic problem into the near-degenerate and nondegenerate
subspaces (which are invariant under L� ), we can reconfigure the governing equations as
the following system:

P0F.�; v; �s/ D 0 in �ı ; (5.5a)

.��C 
 0.U //v C .I � P0/F.�; v; �s/ D 0 in �ı ; (5.5b)

.g � ˛2D2/�s CG.�; v; �s/ D 0 on R: (5.5c)

Notice that for a fixed � , (5.5b)–(5.5c) are solved on the fiber W�
ı;k

. In the next
lemma, we prove that one can always do this, and the solution depends smoothly on � .
We therefore reduce the system to the one-dimensional equation (5.5a) related to the near-
degenerate subspace.

Lemma 5.2 (Lyapunov–Schmidt reduction). There exist C; ı0 > 0 such that, for all ı 2

.0; ı0/ and � 2 .� 1
3
; 1

3
/, there exists a solution . Qv.�/; Q�s.�// 2 W�

ı;k0
to (5.5b)–(5.5c)

which is unique in the set

¹.v; �s/ 2 W�
ı;k0

W jvjH k0 .�ı/ C Cı�1
j�sjH k0 .R/ � ık0C1

º;

and satisfies

j QvjH k0 .�ı/ C Cı�1
j Q�sjH k0 .R/ . Cı�k0e�2.1�j� j/=ı ;

j Q�s � �0jH k0 .R/ . Cı3=4�2k0e�3.1�j� j/=ı ;
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where
�0 D �2ı�2.g � ˛2D2/�1

��
@x2
U
�

�

ı
; 1

ı

��2�
:

Moreover, . Qv; Q�s/ 2 H k0.�ı/ �H k0.R/ depends continuously on � .

Remark 5.3. As a consequence, the system (5.5) is locally equivalent to the one-dimen-
sional problem

0 D b.�/ WD
�
U0.�/; F .�; Qv.�/; Q�s.�//

�
L2.�ı/

D .U0; L� Qv C F.�; Qv; Q�s//L2.�ı/: (5.6)

Also, it is worth noting that, since 
 2 C k for any 2 � k � k0, the above lemma holds for
all such k. The uniqueness property of . Qv.�/; Q�s.�// implies that it is independent of k.

Proof of Lemma 5.2. Let ı 2 .0;ı0/ be given, where ı0 will be determined over the course
of the proof, which is largely based on the estimates given in Lemma 3.8. To tame the
singular bound ı�1 of D�sF , we introduce the rescaled variable

L�s WD
C

ı
�s;

where C > 0 will be determined independent of � and ı, and the corresponding scaling
of the nonlinearities

LF.�; v; L�s/ WD F

�
�; v;

ı

C
L�s

�
; LG.�; v; L�s/ WD

C

ı
G

�
�; v;

ı

C
L�s

�
:

Denote

L�1
1 .�/ D

�
.��C 
 0.U.�///jX�

ı;k0

��1
WX�

ı;k0�2 ! X�
ı;k0

;

L�1
2 D .g � ˛2D2/�1

WH k0�2.R/ ! H k0.R/;

where we recall that the existence and boundedness of L�1
1 .�/ were established in Corol-

lary 4.7. In particular, notice that, because ��C 
 0.U /WX�
ı;k0

! X�
ı;k0�2

is self-adjoint
with respect to the L2.�ı/ inner product and U0 is an eigenfunction, the range of L�1

1 .�/

is contained in U0.�/
?. Then we see that .�; v; �s/ solves (5.5b) and (5.5c) if and only if

.�; v; L�s/ is a fixed point of the mapping

ƒ�
D
�
ƒ�

1.v;
L�s/;ƒ

�
2.v;

L�s/
�
WB ! W�

ı;k0

given by

ƒ�
1.v;

L�s/ D �L�1
1 .�/.I � P0.�// LF.�; v; L�s/;

ƒ�
2.v;

L�s/ D �L�1
2

LG.�; v; L�s/ (5.7)

on the set

B D ¹.v; L�s/ 2 W�
ı;k0

W jvjH k0 .�ı/ C j L�sjH k0 .R/ � ık0C1
º:
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From Lemma 3.8, we have

jƒ� .0; 0/jH k0 .�ı/�H k0 .R/ . Cı�k0e�2.1�j� j/=ı ; jDƒ�
jC 0.B;L.W�

ı;k0
// . C�1:

Therefore, for a sufficiently large C > 0, which can be chosen independently of ı and � ,
ƒ� is a contraction on B , and so it possesses a unique fixed point

. Qv.�/; L�s.�// D . Qv.�/; Cı�1 Q�s.�// 2 B:

Moreover, we have the estimate

j Qv.�/jH k0 .�ı/ C j L�s.�/jH k0 .R/ . jƒ� .0; 0/jH k0 .�ı/�H k0 .R/ . Cı�k0e�2.1�j� j/=ı :

The continuity of Qv.�/ and Q�s.�/ follows from the continuity of ƒ� in � , where we can
view it as a mapping defined on a smooth bundle.

Finally, we identify the leading-order term of Q�s.�/. Due to the fixed point property,
we have

.g � ˛2D2/ Q�s.�/ D �G.�; Qv; Q�s/:

Lemma 3.8 and the above upper bounds of . Qv; L�s/ imply

jG.�; Qv; Q�s/ �G.�; 0; 0/jH k0�2.R/ . Cı3=4�2k0e�3.1�j� j/=ı :

From (3.14)–(3.16) and the scaling property, we haveˇ̌
G.�; 0; 0/ � 2ı�2

�
@x2
U
�

�

ı
; 1

ı

��2 ˇ̌
H k0�2.R/

. ı�1=2�k0e�3.1�j� j/=ı ;

which along with the above inequality yields the desire estimate on Q�s.�/.

5.3. Proof of the main result

Proof of Theorem 1.1. The Lyapunov–Schmidt reduction carried out in Lemma 5.2 shows
that it suffices to find � 2 .� 1

3
; 1

3
/ with b.�/ D 0, where b.�/ is defined in (5.6). Our

strategy will be to relate the bifurcation equation to the model calculation (1.16).
With that in mind, fix � 2 .� 1

3
; 1

3
/ and recall

. Qv; Q�s/ D . Qv.�/; Q�s.�//; U D U.�/; U0.�/ D a0.U2 C w/; ' D U � Ubc C Qv;

remembering that U0, U2, a0, and w were obtained in Section 4. In particular, 1 Å a0 D

a0.�/ > 0 is a normalizing constant introduced to ensure that jU0jL2 D 1.
Since . Qv; Q�s/ solves (5.5b), we have

L� Qv C F.�; Qv; Q�s/ D b.�/U0.�/: (5.8)

Now, let
 .�/ D '.�/ ı .id C ı�1 Q�.ı � //�1;
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where Q� D Q�1 C i Q�2 is the holomorphic function constructed from Q�s through (2.19).
According to Lemma 5.2, the domain of  is the (slightly) perturbed strip

Q�.�/ D .id C ı�1 Q�.ı � //.�ı/ � �ı :

For clarity, we use y D .y1; y2/ as the coordinate variable in Q�.�/. It is easy to compute

@y2
 D

�
i

1C Q� 0.ı � /
� r'

�
ı .id C ı�1 Q�.ı � //�1;

where the complex number i.1C Q� 0.ı � //�1 is understood as a two-dimensional vector.
Corollary 3.7, Proposition 4.5, and Lemma 5.2 together imply thatˇ̌̌̌

U0.�/ � a0.�/
i

1C Q� 0.ı � /
� r'

ˇ̌̌̌
L2.�ı/

� 1 D jU0jL2.�ı/:

In view of (5.8), we see that (5.6) holds for .�; Qv; Q�s/ if and only if

Qb.�/ WD

�
i

1C Q� 0.ı � /
� r';L� Qv C F.�; Qv; Q�s/

�
L2.�ı/

D 0:

By the definitions of F and the boundary correction operator,

L� Qv C F.�; Qv; Q�s/ D ��'.�/C j1C Q� 0.ı � /j2
.'/;

which, along with the coordinate change y D x C ı�1 Q�.ıx/, gives

Qb.�/ D

Z
Q�.�/

.�� C 
. //@y2
 dy:

Following the same calculation leading to (1.16), we then find that

Qb.�/ D �
1

2

Z
@ Q�.�/

jr j
2N2 dSy

where

N D .N1; N2/ D ˙

�
i C i Q� 0.ı � /

j1C Q� 0.ı � /j

�
ı .id C ı�1 Q�.ı � //�1

is the outward unit normal vector on the upper/lower component of @ Q�.�/, and

dSy D j1C Q� 0.ı � /j ı .id C ı�1 Q�.ı � //�1 dx1

is the length element along @ Q�.�/. We can rewrite Qb.�/ as an integral on �ı by reversing
the coordinate change:

Qb.�/ D �
1

2

Z
R

1C @x1
Q�1.ıx1; 1/

j1C Q� 0.ıx1; 1/j2

ˇ̌
@x2
'
�
x1;

1
ı

�ˇ̌2 dx1

C
1

2

Z
R

1C @x1
Q�1.ıx1;�1/

j1C Q� 0.ıx1;�1/j2

ˇ̌
@x2
'
�
x1;�

1
ı

�ˇ̌2 dx1: (5.9)
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Notice that tangential derivatives do not appear because 'j@�ı
D 0. Without loss of gen-

erality, we just consider the first term. From the definition of ', (3.15), (3.16), Lemma 5.2
(taking k0 D 2), and the trace theorem, we obtainˇ̌
@x2
'
�

� ; 1
ı

�
� 2@x2

U
�

� ; 1��
ı

�ˇ̌
L2.R/

. j QvjH 2.�ı/ C ı3=4e�2.1�j� j/=ı . ı�2e�2.1�j� j/=ı ;

and ˇ̌
@x2
'
�

� ; 1
ı

�ˇ̌
L2.R/

. ı1=4e�.1�j� j/=ı :

Therefore, again Lemma 5.2 implies

j Qb.�/ � Qb1.�/j . ı�7=4e�3.1�j� j/=ı ;

where
Qb1.�/ WD �2

Z
R

��
@x2
U
�
x1;

1��
ı

��2
�
�
@x2
U
�
x1;

1C�
ı

��2� dx1:

Here we have used the radial symmetry of U to slightly simplify the expression. Clearly,
it also implies that Qb1 is odd.

Due to the exponential localization, Qb1 can be effectively determined by integrating
only over a ı-dependent but compact interval. Indeed, from Proposition 3.1, it is easy to
see ˇ̌̌

Qb.�/C Qb2.�/
ˇ̌̌

. ı�7=4e�3.1�j� j/=ı ; (5.10)

where
Qb2.�/ WD 2

Z 5=ı

�5=ı

��
@x2
U
�
x1;

1��
ı

��2
�
�
@x2
U
�
x1;

1C�
ı

��2� dx1:

Since Qb2 is also odd, we consider � 2 .0; 1
3
/. Using Proposition 3.1 once more, along with

(3.2), we compute that

Qb2.�/ D �4

Z 5=ı

�5=ı

Z 1C�
ı

1��
ı

.@x2
U@2

x2
U/ dx2 dx1

D �4

Z 5=ı

�5=ı

Z 1C�
ı

1��
ı

sin � Ur

�
sin2 � Urr C

cos2 �

r
Ur

�
dx2 dx1

Å
Z 5=ı

�5=ı

Z 1C�
ı

1��
ı

r�1e�2r dx2 dx1;

where we used the fact that 0 < sin � Å 1 in this integral region. Let

S D
®
x W jx1j < 5

ı
;
ˇ̌
x2 �

1
ı

ˇ̌
< �

ı
; jxj < 1C�

ı

¯
;

which has the polar coordinates representation

S D
®
.r; �/ W r 2

�
1��

ı
; 1C�

ı

�
; � 2 .ˇ.r/; � � ˇ.r//

¯
;

where, because we are restricting to � 2 .0; 1
3
/,

ˇ.r/ D arcsin
�

1��
ır

�
; �=2 � ˇ.r/ Å .ır � 1C �/1=2:
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Therefore we have

Qb2.�/ &
Z

S

r�1e�2r dx2 dx1 D

Z 1C�
ı

1��
ı

Z ��ˇ.r/

ˇ.r/

e�2r d� drD

Z 1C�
ı

1��
ı

.� � 2ˇ.r//e�2r dr

Å
Z 1C�

ı

1��
ı

.ır � .1 � �//1=2e�2r dr D ı1=2e�2.1��/=ı

Z 2�
ı

0

.r 0/1=2e�2r 0

dr 0:

This implies that, for �
ı

� 1,
Qb2.�/ & �1=2e�2=ı ;

and thus we deduce from (5.10) that there exists C > 0 independent of ı > 0 such that

Qb.�0/ < 0; �0 D Cı�7=2e�2=ı :

From the oddness of Qb2, we can then conclude that there exists Q� with j Q� j . ı�7=2e�2=ı

and such that . Q�; Qv. Q�/; Q�s. Q�// is a solution to (5.5), and thus corresponds to a solution to
the stationary capillary-gravity wave problem. The stream function is given by

‰ D
�
U
�

� �
Q�
ı
e2

�
� U

�
� �

Q�
ı
e2

�
bc C Qv. Q�/

�
ı
�

1
ı
.id C Q�. Q�//�1

�
; (5.11)

defined on
� D .id C Q�. Q�//.¹jx2j < 1º/:

From the estimate j Q� j . ı�7=2e�2=ı , Corollary 3.7, and Lemma 5.2, we haveˇ̌
Qv. Q�/ ı

�
1
ı
.id C Q�. Q�//�1

�ˇ̌
H k0 .�/

. ı1�k0 j Qv. Q�/jH k0 .�ı/ . ı1�2k0e�2=ı ;

andˇ̌�
U
�

� �
Q�
ı
e2

�
� U

�
� �

Q�
ı
e2

�
bc

�
ı
�

1
ı
.id C Q�. Q�//�1

�
� Q‰0

�
�

ı

�ˇ̌
H k0 .�/

�
ˇ̌�
U
�

� �
Q�
ı
e2

�
� U

�
� �

Q�
ı
e2

�
bc � Q‰0

�
ı
�

1
ı
.id C Q�. Q�//�1

�ˇ̌
H k0 .�/

C
ˇ̌

Q‰0 ı
�

1
ı
.id C Q�. Q�//�1

�
� Q‰0

�
�

ı

�ˇ̌
H k0 .�/

. ı7=4�k0e�2=ı
C
ˇ̌

Q‰0

�
�

ı

�ˇ̌
H k0C1.R2/

j Q�s. Q�/jH k0�1=2.R/ . ı1�2k0e�2=ı ;

where
Q‰0.x/ D U

�
x �

Q�
ı
e2

�
� U

�
x1;

2�Q�
ı

� x2

�
� U

�
x1;�

2CQ�
ı

� x2

�
:

The desired estimate on ‰ in Theorem 1.1 follows immediately.
Finally, the corresponding free surface profile � is given by

� D Q�s. Q�/ ı .id C Q�1. Q�; � ; 1//�1;

which clearly satisfies
j�jH k0 .R/ . ı1�k0e�2=ı :

Using (3.16) and Lemma 5.2, it is straightforward to identify the leading-order term of �
coinciding with that of Q�s. Q�/ and to obtain the same remainder estimate much as in the
above procedure for ‰. This completes the proof of the main theorem.
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