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Abstract

In this paper, we extend the class of kernel methods, the so-called diffusion
maps (DM) and its local kernel variants to approximate second-order differential
operators defined on smooth manifolds with boundaries that naturally arise in
elliptic PDE models. To achieve this goal, we introduce the ghost point diffusion
maps (GPDM) estimator on an extended manifold, identified by the set of point
clouds on the unknown original manifold together with a set of ghost points,
specified along the estimated tangential direction at the sampled points on the
boundary. The resulting GPDM estimator restricts the standard DM matrix to
a set of extrapolation equations that estimates the function values at the ghost
points. This adjustment is analogous to the classical ghost point method in a finite-
difference scheme for solving PDEs on flat domains. As opposed to the classical
DM, which diverges near the boundary, the proposed GPDM estimator converges
pointwise even near the boundary. Applying the consistent GPDM estimator
to solve well-posed elliptic PDEs with classical boundary conditions (Dirichlet,
Neumann, and Robin), we establish the convergence of the approximate solution
under appropriate smoothness assumptions. We numerically validate the proposed
mesh-free PDE solver on various problems defined on simple submanifolds
embedded in Euclidean spaces as well as on an unknown manifold. Numerically,
we also found that the GPDM is more accurate compared to DM in solving elliptic
eigenvalue problems on bounded smooth manifolds. © 2021 Wiley Periodicals
LLC.

1 Introduction
Elliptic partial differential equations (PDEs) [27] arise naturally in modeling

of physical phenomena, including groundwater flow [39], heat conduction [21],
neutron diffusion [53], and probability theory [41]. In the manifold setting solving
the PDE formulation arises in modeling of granular flow [45], liquid crystal [52],
and biomembranes [20]. In computer graphics [9], PDEs on surfaces have been
used to restore damaged patterns on a surface [38] and brain imaging [40], among
other applications.
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Many numerical methods have been proposed to approximate the solution of
PDE on the manifold setting, especially on two-dimensional surfaces. Most of these
methods, however, require a parametrization of the surface, which is subsequently
used to approximate the tangential derivatives along the surface. For example, the
finite element method (FEM) represents the surface [11, 14, 19] using a triangular
mesh. Subsequently, the PDE is solved by a Galerkin truncation on the finite-element
space of functions defined on a triangular mesh. While this classical approach is
popular and has been widely used in applications, it relies on the accuracy of the
generated mesh. In addition to the computational task in the mesh generation, given
an arbitrary set of point cloud data that lie on the manifold, constructing a regular
mesh that avoids inconsistent tangential triangulation [10] can be challenging.

An alternative approach is to embed the surface PDE problem to the ambient
space Rn such that the solution of the embedded PDE problem is consistent with the
original problem when restricted toM . One realization of such an approach is to use
a level set representation [9] for the surface, and subsequently, solve the embedded
PDE equation in Rn using any standard method that is applicable on the Euclidean
domain. The level set representation, unfortunately, can lead to degenerate diffusion
equations, in addition to many other limitations pointed out in [46]. To combat
the limitations of the level set representation, the authors in [46] introduced the
closest-point representation of the surface M . We should point out that it is unclear
how this method will perform if we are only given randomly sampled point cloud
data since these points may not be the closest point. In their papers [43, 46], they
tested their scheme on examples where either the analytical formula for the closest
point is given or the surface has a triangular representation. Besides this minor
technical issue, a more important problem with this class of approaches is that
the computational cost scales with respect to the ambient dimension-n. This is
because the embedded PDE is solved in the ambient space Rn, which is at least one
dimension more than, for example, the two-dimensional surface M .

Another class of approaches is the mesh-free radial basis function (RBF) method.
While several versions of RBF solvers have been proposed [23, 44], they all require
one to identify normal vectors at each point cloud and approximate the tangential
derivative at each point cloud using the radial basis function interpolation method.
In [23], the tangential derivatives are defined by projecting the gradient in Rn to the
tangent space. One of the key issues with this approach is that the shape parameter
of the radial basis function can be difficult to tune for high codimensional problems
as pointed out in [23]. Another issue that is directly related to the work in the present
paper is the erratic behavior near the boundary. As far as we know, the issue near
boundary has only been studied on flat domains in Rn [3]. That work concluded
that one can achieve highly accurate solutions by an appropriate choice of radial
basis functions with sufficiently large data. However, it is unclear how to extend
their approach in the context of unknown manifolds since we cannot sample more
data, let alone control the size of the data. In the same paper [3], the authors also
numerically demonstrated that their approach can be as effective as using the ghost
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points extension. While the ghost point method is computationally straightforward
on flat domains, an extension to unknown nonflat geometry is a nontrivial task. The
present work will introduce a numerical scheme to realize this nontrivial task and
study the convergence of the approximation when it is used with the following PDE
solver.

In this paper, we consider approximating the intrinsic second-order elliptic
differential operators directly on the point clouds that lie on the manifold. Our
approach rests on the fact that away from the boundary, these differential operators
can be approximated by integral operators defined with appropriate Gaussian kernels,
which is the theoretical underpinning of a popular nonlinear manifold learning
algorithm known as the diffusion maps [15] and its local kernel variants [6]. The
main advantages of this approach are that it is a consistent estimator of the intrinsic
PDE problem even for a submanifold of arbitrary codimension, and it can naturally
handle randomly distributed point cloud data. Computationally, this mesh-free
algorithm does not require a parametrization of the manifold and/or an estimation
of the normal vectors at each point cloud, one of which is essential in the existing
approaches discussed in the previous paragraphs. To the authors’ knowledge, the
idea of using such a kind of integral operator for solving PDEs was first numerically
realized by the point integral method (PIM) for solving Poisson problems [35] and
isotropic elliptic equations [34]. In separate works, the same idea was realized
with the diffusion maps (DM) algorithm [6] for solving elliptic PDEs associated
to nonsymmetric advection-diffusion (Kolmogorov) operators associated with Itô
diffusion [25] and anisotropic diffusion [29]. We should point out that despite
having the same vein, DM and PIM approaches are not identical, as pointed out
in [25].

On manifolds with boundaries, however, the homogeneous Neumann problem is
the only natural boundary condition for the Gaussian kernel integral approximation,
as noted in [15]. Furthermore, as we shall see in this paper, even if the function
satisfies the homogeneous Neumann boundary condition, the diffusion maps integral
approximation does not converge in the pointwise sense at interior points close to
the boundary. For other types of boundary conditions, several approaches have
been proposed. For example, the PIM approximates the Dirichlet problem with
an artificial Robin boundary condition with a small first-order derivative term [35].
Another approach is to use a volume constraint [47], which is a simple version
of the ghost point method that is proposed in the present paper, by setting the
function values at the ghost points to be zero. In [49], they proposed an empirical
approach for the Dirichlet problem by appending the discrete representation of
the integral approximation at the interior points with a discrete representation of
the Dirichlet boundary condition. Recent work in [51] suggests that the diffusion
maps asymptotic expansion is a consistent estimator of the Laplacian of a bounded
manifold in a weak sense, and the authors devised a boundary integral estimator
to specify the desired boundary conditions. All of these approaches, however, do
not improve the integral approximation on the interior points near the boundary in



4 S. W. JIANG AND J. HARLIM

the pointwise sense, and it is unclear whether they can be extended to the Robin
boundary condition.

In this paper, we introduce the ghost point diffusion maps (GPDM) as a consistent
estimator in the sense of pointwise, complementary to the weak sense result in
[51]. The GPDM modifies the DM algorithm by a novel ghost points extension
scheme, generalizing the classical ghost point method on flat domains to unknown
submanifolds of Rn. For the reader’s convenience, let us recall the basic idea of
the ghost point method in the finite-difference setting for solving the Neumann
boundary value problem: u00.x/ D f .x/, x 2 .0; 1/, u0.0/ D u0.1/ D g. Suppose
the domain is discretized as follows: fxj D jh W j D 0; : : : ; N; h D 1=N g. Let Uj
denotes the finite-difference approximation to the solution, u.xj /. Instead of using
the one-side first-order finite difference, consider a center-difference approximation
for the boundary condition

u0.0/ � U1 � U�1
h

D g;

here we have introduced a new unknown, U�1 � u.x�1/ at a ghost point, x�1 WD
�h � �0; 1�. The standard ghost point method (see, e.g., [33]) specifies this function
value by an additional equation that effectively imposes the PDE at the boundary
point:

1

h2
.U�1 � 2U0 C U1/ � u00.x0/ D f .x0/:(1.1)

Notice that the two key steps in this method, the specification of the ghost point x�1
and the extrapolation of the function value U�1, are not immediately trivial when
the manifold is not a flat geometry and unknown. In the present work, we devise an
algorithm to estimate normal vectors at the boundary, which in turn, allows one to
carry the two key steps above along the estimated normal vectors on each point at
the boundary. The proposed method uses no information of the geometry other than
the available point cloud data that are possibly randomly distributed. We show that
the proposed GPDM is a pointwise convergent estimator even for points close to the
boundary when the function values at the ghost points are extrapolated with a set
of equations that resemble matching the second-order derivatives in addition to an
equation that resembles the condition in (1.1). Subsequently, we apply the GPDM
to solve elliptic PDEs with Dirichlet, Neumann, and Robin boundary conditions.
Through theoretical analysis and numerical studies, we show that the proposed
solver is a uniform convergent scheme. We also numerically show that GPDM is
more accurate compared to DM in solving eigenvalue problems.

The paper will be organized as follows. In Section 2, we provide a short review of
diffusion maps and their local kernel variants to approximate various types of linear
second-order elliptic differential operators defined on smooth manifolds embedded
in Rn. We end the section with an example, illustrating the problem of DM near the
boundary. In Section 3, we present the GPDM method, which overcomes the issue
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near the boundary. We close this section with numerical examples to support the
theoretical results. In Section 4, we discuss the application of GPDM for solving
elliptic PDEs with various boundaries. In Section 5, we discuss the application of
GPDM for solving eigenvalue problems corresponding to the elliptic PDEs. We
close the paper with a summary and a list of open problems in Section 6. To improve
the readability, we report the detailed proofs in several appendices.

2 Diffusion Maps and Its Extension with Local Kernels
In this section, we provide a short review of the diffusion maps algorithm [15] as a

method to approximate the Laplacian, a class of second-order, self-adjoint, positive-
definite, differential operators that acts on functions defined on smooth compact
Riemannian manifolds. In addition, we also review the variant of diffusion maps
to approximate the second-order elliptic diffusion operator with a given diffusion
coefficient [29] and the nonsymmetric drifted diffusions via the local kernels [6].

Let M be a C1, d -dimensional compact Riemannian manifold embedded in
Rn, possibly with boundary @M . Let u 2 C 3.M/ and � > 0 for all x 2M whose
distance from the boundary is larger than �r , where 0 < r < 1=2. The integral
operator,

G�u.x/ WD ��d=2
Z
M

exp
�
�jx � yj

2

4�

�
u.y/dV.y/

D ��d=2
Z
M�;x

exp
�
�jx � yj

2

4�

�
u.y/dV.y/CO.�2/(2.1)

is effectively a local integral operator over the �r -ball around x,

M�;x WD fy 2M; jx � yj < �rg:
In (2.1). The notation j � j denotes the standard Euclidean norm for vectors in Rn.
The key idea of the diffusion maps algorithm lies on the following asymptotic
expansion. For any points x 2M whose distance from the boundary is larger than
�r , where 0 < r < 1=2,

(2.2) G�u.x/ D m0u.x/C �m2
�
!.x/u.x/C�gu.x/

�CO.�2/;

where m0 and m2 are constants that depend on the kernel, ! depends also on the
geometry of M , and �g denotes the negative-definite Laplace-Beltrami operator
defined with respect to the Riemannian metric g inherited by M from Rn. We
should point out that with our choice of the exponential kernel, one can verify
that m0 D m2. Based on this asymptotic expansion, one can approximate the
Laplace-Beltrami operator as

L1;�u.x/ WD .G�1.x//
�1G�u.x/ � u.x/

�
D �gu.x/CO.�/

WD L1u.x/CO.�/
(2.3)
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for all x 2 M whose distance from the boundary is larger than �r , where 0 <
r < 1=2. If one is given a strictly positive, smooth, diffusion coefficient � WM !
.0;1/, one can also approximate the anisotropic diffusion operator,

L2;�u.x/ WD �.x/

�
G�
p
�.x/

��1
G�.

p
�.x/u.x// � u.x/

�

D divg
�
�.x/rgu.x/

�CO.�/ WD L2u.x/CO.�/;(2.4)

where we have used the notations divg and rg for the divergence and gradient
operators, respectively, defined with respect to the Riemannian metric g. One can
also apply the equivalent diffusion operator using the symmetric version as reported
in [29].

Beyond these two self-adjoint operators, one can also approximate the backward
Kolmogorov operator,

L3u WD b � rguC 1

2
cijrirju;(2.5)

where ri is the covariant derivative in the i th direction, and rirj is the component
of the Hessian operator. Here, the differential operators and the dot product are
defined with respect to the Riemannian metric inherited by M from Rn. The vector
field b WM ! Rd is the drift and the symmetric positive-definite diffusion tensor
c W M ! Rd�d is a d � d matrix-valued function, where d is the dimension of
manifold M .

The operator in (2.5) can be accessed by employing the integral operator in (2.1)
with the following prototypical kernel [6]:

K.�; x; y/ WD exp

 
�.x C �B.x/ � y/>C.x/�1.x C �B.x/ � y/

2�

!
(2.6)

where B W M ! Rn and C W M ! Rn�n are related to b and c, respectively,
through a local parametrization � W U � Rd ! M � Rn of the manifold M as
follows:

(2.7) B.x/ D D�.x/b.x/; C.x/�1 D �
D�.x/c.x/D�.x/>

��
:

Here, the set U � Rd denotes a domain that contains ��1.x/. Here, the notation �

denotes the pseudo-inverse and the differential map

D�.x/ W T��1.x/M � Rd ! TxRn � Rn

is an n � d matrix that is usually known as the Jacobian (or pushforward) corre-
sponding to the map �. Applying the integral operator in (2.1) with the prototypical
kernel K.�; x; y/ on manifold without boundary, we obtain

GK;�u.x/ WD ��d=2
Z
M

K.�; x; y/u.y/dVy

D m.x/u.x/C �.!.x/u.x/Cm.x/L3u.x//CO
�
�2
�
;(2.8)
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wherem.x/ D .2�/d=2 det.C .x//1=2 can be approximated byGK;�1.x/ D m.x/C
O.�/. Employing the same algebraic manipulation as in (2.3), we obtain

L3;�u.x/ WD .GK;�1.x//
�1GK;�u.x/ � u.x/

�
D L3u.x/CO.�/:(2.9)

We note that the evaluation of the prototypical kernel in (2.6) requires the knowledge
of either the intrinsic representation b and c together with the embedding function �
or the ambient representation B and C in (2.7).

Numerically, given a set of points in ambient coordinate fxi 2M/gNiD1, which is
also referred to as the point cloud data, one can approximate the integral operator
L1;� (or L2;� or L3;�) via a Monte Carlo average, accounting for the sampling
density of the data xi � q.x/ that are not necessarily uniformly distributed. In
particular, the function G�;qu WD G�uq, where G� is given in (2.1), can be approxi-
mated by the following Monte Carlo average,

G�;qu.xi / D ��d=2
Z
M

exp
�
�jxi � yj

2

4�

�
u.y/q.y/dV.y/

� ��d=2

N

NX
jD1

exp
�
�jxi � xj j

2

4�

�
u.xj /:

Define also q� D G�;q1 as an estimator for the unknown sampling density q. Based
on the asymptotic expansion in (2.2), one can deduce

G�;q.q
�1
� /G�;q.uq

�1
� / � u

�
D �guCO.�/:

Compare to (2.3), the algebraic expression above involves a “right normalization”
to overcome the bias induced by nonuniform sampling density q (see [6, 15, 28]
for the detailed discussion). For the nonsymmetric operator, L3, one can repeat the
same procedure as above using the nonsymmetric kernel in (2.6) but estimate the
sampling density q using the symmetric Gaussian kernel to avoid estimating the
normalization factor m.x/ in (2.8) (see [25] for the detailed discussion).

Now we discuss the discrete estimator for L2, which involves an importance
sampling to debias the effect of the sampling density of the data. To compute
G�
p
�.x/, we first construct an N �N matrix with entries

Kij D exp

 
�jxi � xj j

2

4�

!
:

Then, the estimated unnormalized density evaluated at xi can be estimated by the i th

component of vector q, that is, q.xi / � qi D ��d=2N�1
PN
jD1 Kij . Subsequently,
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we have

�d=2G�
p
�.xi / D

Z
M

exp
�
�jxi � yj

2

4�

�p
�.y/dV.y/

� 1

N

NX
jD1

Kij

p
�.xj /

qj
;

�d=2G�.u.xi /
p
�.xi // D

Z
M

exp
�
� jxi � yj2

4�

�
u.y/

p
�.y/dV.y/

� 1

N

NX
jD1

Kij

p
�.xj /u.xj /

qj
:

Defining W as anN �N matrix with entries Wij D Kij
p
�.xj /

qj
, let D be a diagonal

matrix with diagonal entries Di i D
PN
jD1 Wij and S be a diagonal matrix with

diagonal entries Si i D �.xi /; then the discrete estimator for L2 is given by

L2;� � L2 D 1

�
S.D�1W � I/:(2.10)

We should point out that the discrete estimator converges pointwise, Lj ! Lj (for
each j D 1; 2; 3) in high probability [4, 25, 48]. For convenience, we state this
result in Lemma A.1. For the symmetric cases, L1 and L2, the spectral convergence
results are also available for closed manifolds [8, 12, 24] in L2-sense and [13, 18] in
L1-sense, all of which are valid in high probability.

2.1 Parameter specification
To achieve accurate estimations, one needs to specify the appropriate bandwidth

parameter, �. For efficient implementation, we also use k-nearest neighbor algorithm
to avoid computing the distances of pair of points that are sufficiently large.

Our choice of � follows the method that was originally proposed in [16]. Basically,
the idea relies on the following observation:

S.�/ WD 1

Vol.M/2

Z
M

Z
TxM

exp
�
�jx � yj

2

4�

�
dy dV.x/

D 1

VolM/2

Z
M

.4��/d=2dV.x/ D .4��/d=2

Vol.M/
:(2.11)

Since S can be approximated by a Monte Carlo integral, for a fixed k, we approxi-
mate

S.�/ � 1

Nk

N;kX
i;jD1

exp
�
�jxi � xj j

2

4�

�
;
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where fxj gkjD1 are the k-nearest neighbors of each xi . We choose � from a domain

(e.g., �2�14; 10� in our numerical implementation) such that d log.S/
d log � � d

2
. Numeri-

cally, we found that the maximum slope of log.S/ often coincides with d=2, which
allows one to use the maximum value as an estimate for the intrinsic dimension d
when it is not available and choose the corresponding �.

For well-sampled data, we choose k < N to be large enough (usually between
50 and 200, depending on the size of the data) such that � is smaller than the
distance between xi and its k-neighbor, for all i D 1; : : : ; N . With this choice, we
numerically obtain � D O.N�2=d /, for d D 1; 2, which shows accurate estimates
that converge. For randomly distributed data, we set k D O.N 1=2/ and obtain
� D O

�
k
N

�2=d D O.N�1=d /, which yields a much larger � compared to the choice
in the well-sampled data, that is, N�1=d > N�2=d for N � 1 and d � 1. It
is worthwhile to point out that the scaling � D O

�
k
N

�2=d , which we empirically
found to produce convergence solutions in randomly distributed data (as we shall
show later), has also been documented as a condition for the pointwise convergence
estimate (see theorem 3.6 of [12]).

Now, let us illustrate the problem near the boundary of the asymptotic approxi-
mation of the weighted Laplacian in (2.4) with a simple example.

EXAMPLE 2.1. In this example, we compare the DM and GPDM estimates of the dif-
ferential operator L2 on a one-dimensional ellipse x D .x1; x2/ D .cos �; a sin �/,
defined with the Riemannian metric

(2.12) g D sin2 � C a2 cos2 � for 0 � � � �;
where a D 3 > 1. The diffusion coefficient in the weighted Laplacian (2.4) is
chosen to be � WD 1:1C x2=a D 1:1C sin � . In local coordinates, the diffusion
operator acting on function u is given as

(2.13) L2u WD div.�ru/ D 1pjgj
@

@�

�p
jgj�g�1 @u

@�

�
:

In Figure 2.1, we plot the explicit equation in (2.13) acting on a test function
u.x/ D cos.3�=2 � �=4/, defined on a semi-ellipse with a D 3 and � 2 �0; ��
being the intrinsic coordinate. The discrete estimator L2 of L2 is constructed using
N D 400 data points distributed at an equal angle. Notice the agreement between
the DM estimate and the truth except near the boundaries. In the same figure, we
also show the improved estimate using the ghost point diffusion maps (GPDM) near
the boundaries that we will explain in the next section.

3 Ghost Point Diffusion Maps for 1D and 2D Manifolds
In this section, we introduce an improved method, the ghost point diffusion maps,

for approximating differential operators in (2.3), (2.4), (2.5) defined on one and
two-dimensional manifolds with boundaries. To facilitate the discussion, we use
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(a) L2u (b) FE of DM=13 (upper), FE of
GPDM=0.04 (bottom)

0 1 2 3
−5

0

5

 

 
True
DM
GPDM

−15
−10

−5
0
5

FE

 

 

xN−5 xN−4 xN−3 xN−2 xN−1 xN

DM

−5

0

5x 10−4

FE

 

 

xN−5 xN−4 xN−3 xN−2 xN−1 xN

GPDM

FIGURE 2.1. Numerical approximations of L2u (the weighted Laplacian
in (2.4)) on a semi-ellipse example with N D 400. (a) Comparison of
the true L2u and its DM and GPDM estimates. (b) Absolute error of
DM (upper panel) and GPDM (bottom panel) near the boundary. One
can see that the forward error (FE), defined as kL2u � L2uk1 with the
uniform norm, using the standard DM, is relatively large up to 13 near
the boundary (red circles in upper panel of (b)). However, by applying
the GPDM, the FE reduces to 0.04 (green crosses in bottom panel of
(b)). Note that for GPDM, the FE does not reach its maximum near the
boundary but in the interior of the domain instead. In the bottom of (b),
one can see that the FE is very small near the boundary for GPDM.

the conventional notations @M and M o to denote the boundary and interior sets
of manifold M , respectively, that satisfy M D M o [ @M and M o \ @M D ¿.
We assume that M is a C1-smooth, compact domain such that the closed subset
@M is also a compact set. For two-dimensional problems, we also assume that the
boundary @M is a smooth regular curve with additional conditions (which will be
clarified in Section 3.3) such that it is extendable along the boundary by a normal
collar with radius R D O.�r/ for 0 < r < 1=2.

The basic idea here is to follow the classical ghost point method [33] for solving
the Neumann boundary condition with the finite-difference method on flat domain,
as reviewed in Section 1. In our configuration, we supplement ghost points near
the boundary such that the diffusion maps asymptotic expansion for the estimation
of the diffusion operator is valid even for points near the boundary, where the
second-order differential operator is approximated with an appropriate affine linear
operator. In this work, we assume that we have sample points at the boundary. For
problems with unknown boundary points, one can use the tools developed in [7] to
estimate points at the boundary.

We now describe the proposed algorithm, the ghost point diffusion maps (GPDM).
Particularly, the construction of the GPDM requires the following technical tools. In
Section 3.1, we estimate the exterior normal vector � to the boundary. In Section 3.2,
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we estimate the normal derivative @�u at x 2 @M , which will be used for specifying
the boundary conditions. In Section 3.3, we describe the construction of the ghost
points along the normal direction � from boundary points. In Section 3.4, we
discuss how to extrapolate the unknown function values at the ghost points. Here,
we introduce a set of algebraic conditions on the ghost points, which ensures the
consistency of the affine estimator of Lj in the limit of � ! 0 after N ! 1, as
reported in Section 3.5. Finally, we show numerical examples to validate the theory
in Section 3.6.

3.1 Estimation of the exterior normal direction at the boundaries
In this section, we provide numerical methods to estimate the exterior normal

direction using the point cloud data, assuming that the boundary points are given.
We split the discussion into two subsections, concerning the well-sampled and
randomly sampled data, as they require different algorithms.

Well-sampled data
We start our discussion on 1D manifolds. By well-sampled data, we mean that

the data points are well-ordered and all consecutive points have equal (intrinsic)
distance. For example, Figure 3.1(a) shows the dataset fxigiD1;:::;N , well-ordered
on a 1D semi-ellipse with x1 and xN as the boundary points. Suppose that 
 W R!
M � Rn is a geodesic parametrization of the one-dimensional manifold M with
base point 
.0/ D x1 2 @M and 
.s/ D x2 (see Figure 3.1(b)). The arclength
parametrization s D R s

0 j
 0.t/jdt is defined such that j
 0.t/j D 1 for all t 2 �0; s�.
Then, the inward unit normal direction to the boundary is given by the unit tangent
vector ��1 D 
 0.0/ 2 Rn. When the parametrization 
 is unknown, we can use the
secant line (see Figure 3.1(c)) to estimate this normal direction �1 to the boundary.
Specifically, the secant line approximation for �1 is given by

(3.1) z�1 D x1 � x2
jx1 � x2j :

Likewise, one can approximate �N at the other boundary point, xN , with z�N D
xN�xN�1

jxN�xN�1j
.

Then, the error estimate for the normal direction �1 to the boundary can be
formalized as follows. Here, we will focus on �1, but this result is also valid for the
secant line approximation of the tangent vectors at any xi 2 M , including at xN ,
with appropriately defined arclength parametrization.

PROPOSITION 3.1. Let 
.s/ be a geodesic curve parametrized with the arclength s,
connecting discrete points x1 2 @M with x2 2 M (see Figure 3.1) such that
jx1 � x2j D O.h/, where j � j denotes the Euclidean Rn-norm. Then, the unit
tangent vector �1 D �
 0.0/ at point x1 D 
.0/ can be estimated by z�1 in (3.1)
with error j�1 � z�1j D O.h/, where the constant in the error bound depends on the
local curvature ! D j
 00.0/j of the curve at x1 D 
.0/.
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(a) secant line extension for ghost points
for 1D manifold

(b) ideal construction: ghost point
extension along true �1

(c) secant line approximation z�1

(d) exterior normal direction z� for
well-sampled data

−2
0

2
−0.5

0
0.5
−1

0

1

FIGURE 3.1. (a) Sketch of a specification of ghost points fxGkj g starting
from the boundary point xBj , along the secant line, on a 1D manifold.
Here, z�1 and z�N are two estimated exterior normal directions that are
along the secant lines connecting the boundary points and their nearest
neighbors on the manifold. (b) Ideal construction: ghost point extension
for x

G0
1 ; x

G1
1 ; x

G2
1 along true �1. Here, x2 and x3 are points on the

manifold M , and xB1 WD x1 is a point on the boundary @M . (c) Secant
line extension for ghost points zxG11 ; zxG21 along the estimated z�1. Here, z�1
is along the secant line connecting x2 and x1. (d) Secant line extension
for well-sampled data for the torus example. Blue line is the extension
of the secant line, connecting the black boundary point and the yellow
manifold point, and similarly for the other magenta lines.

PROOF. For small s, applying Taylor’s expansion on 
 , we get


.s/ D 
.0/C s
 0.0/C s2

2

 00.0/C s3

6

 000.0/CO.s4/:

Since 
 00.s/ ? TxM for any x 2M (by geodesic curve), we obtain

j
.s/ � 
.0/j2 D s2 C s4
�
1

4
j
 00.0/j2 C 1

3
h
 0.0/; 
 000.0/i

�
CO.s5/:

This also means that,

j
.s/ � 
.0/j D s C s3
�
1

8
j
 00.0/j2 C 1

6
h
 0.0/; 
 000.0/i

�
CO.s4/:
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Then, we have


.s/ � 
.0/
j
.s/ � 
.0/j D .s CO.s3//�1.s
 0.0/C s2

2

 00.0/CO.s3//

D 
 0.0/C s

2

 00.0/CO.s2/:

By the definitions of �1 and z�1 and after some algebra, we have

j� � z�j D
����
 0.0/ � 
.s/ � 
.0/

j
.s/ � 
.0/j
���� D s

2
j
 00.0/j CO.s2/:

Since s D O.h/, it is clear that j�1 � z�1j D O.h/ with a constant that depends on
the curvature ! D j
 00.0/j. �

In higher dimensions, one can use the same approximation method as above for
well-sampled data. In the following example, we illustrate the secant line extension
on a 2D semitorus, embedded in R3.

EXAMPLE 3.2. Figure 3.1(d) displays the secant line extension along z� (magenta
lines) for the well-sampled data on a semitorus. In this example, the semitorus is
defined with the standard parametrization:

(3.2) x D �.�; �/ WD
0
@.aC cos �/ cos�
.aC cos �/ sin�

sin �

1
A for

0
@0 � � � 2�0 � � � �

a D 2

1
A

where .�; �/ are the two intrinsic coordinates and a is the radius of the semitorus.
The induced Riemannian metric is given by

(3.3) g.�;�/.u; v/ D u>
�
1 0

0 .aC cos �/2

�
v 8u; v 2 T.�;�/M .

For well-sampled data, we notice that the two bases @x
@�

and @x
@�

are perpendicular
to each other. As shown in Figure 3.1(d), we can extend the secant line (red),
connecting the yellow and black dots to the blue line along this estimated z�. We
apply the similar secant line extension to the other magenta lines. Then, we will add
ghost points along these magenta secant lines starting from the boundary points,
which will be discussed in Section 3.3.

Unfortunately, this method is not extendable for randomly distributed data on
problems of dimension d � 2 since for each boundary point we do not always
sample the corresponding interior point that allows us to construct a secant line
perpendicular to the boundary.

Randomly sampled data
For randomly sampled point clouds, fxig, that lie on a d -dimensional mani-

fold, our basic idea here is to estimate the tangent vectors zt1; zt2; : : : ; ztd that span
the tangent space at each boundary point, and also estimate the tangent vectors
ztb1 ; zt

b
2 ; : : : ; zt

b
d�1

along the .d � 1/-dimensional boundary @M . Then, we compute
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the normal direction z� using the Gram–Schmidt process or QR decomposition from
these directions fzt1; zt2; : : : ; ztd g and fztb1 ; : : : ; ztbd�1g. Finally, we can determine the
sign of z� from the orientation of the manifold M .

To estimate these tangent vectors, we used a kernel-based weighted linear regres-
sion method as introduced in corollary 3.2 of [5]. Here, we give a quick review
of the algorithm for estimating the tangent vectors for an arbitrary point x on a
d -dimensional manifold M embedded in Rn. For a point x, one defines X to be
the n � Kn matrix with columns Xj D D.x/�1=2 exp.�jx � xj j2=4�/.xj � x/
whereD.x/ DPKn

jD1 exp.�jx�xj j2=2�/ with xj (j D 1; : : : ; Kn) beingKn > d
nearest neighbors of the point x. Then, the leading largest d singular values of
matrix X will be of order-

p
� with the associated singular vectors parallel to the

tangent space of M . The remaining minfn;Kng � d smaller singular values will be
of order-� with the singular vectors orthogonal to the tangent space of M .

To simplify the discussion below, let us focus on 2D problems (while the same
algorithm is applicable for any d -dimensional problems with an appropriate choice
of � and number of boundary points, which we shall discuss in the Summary
section, Section 6). In the 2D case, we first estimate the two tangent vectors zt1
and zt2 for a boundary point x 2 @M using the kernel-based weighted regression
method. We empirically choose Kn1 > d D 2 and find Kn1 nearest neighbors of x
from points on the 2D manifold M . Using these Kn1 points, we then specify the
bandwidth of the kernel �1 using the auto-tuned method discussed in Section 2.1.
The error estimates of the two leading singular vectors zt1 and zt2 for approximating
the two tangent vectors are of order-

p
�1 (see appendix A in [5] for a detailed

discussion). Since there are infinitely many two linearly independent vectors that
can span the 2D tangent space of M at x, numerically we can only guarantee that
Spanfzt1; zt2g D Spanf@x

@�
; @x
@�
g, where the parametrization x D �.�; �/ with � and �

being two intrinsic coordinates. This pair of linearly independent vectors zt1 and zt2

can be different from the local bases @x
@�

and @x
@�

up to an orthonormal matrix (or a
rotation).

Similarly, we apply the weighted regression method to estimate the tangent
direction zt WD ztb1 that is parallel to the boundary @M for each boundary point
x 2 @M . We empirically choose Kn2 > d D 2 and find Kn2 nearest neighbors
of x only from boundary points of the one-dimensional @M . Using these Kn2
points, we auto-tune the bandwidth of the kernel �2. We can compute zt from the
first singular value of this X and the error estimate of zt is of order-

p
�2. Next, the

normal direction z� can be approximated by subtracting the orthogonal projection of
zt1 (or zt2) onto zt from the tangent vector zt1 (or zt2) using the Gram–Schmidt process
or QR decomposition,

z� D zt1 �


zt1; zt

�
zt;

where


zt1; zt

�
denotes the inner product of vectors zt1; zt 2 Rn, and we notice that

jztj D 1 for a singular vector from SVD. Finally, the sign of z� can be determined
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by comparing with the k-nearest neighbors of x. The error estimate for the normal
direction z� is thereafter O.p�1;p�2/, that is, j� � z�j D O.p�1;p�2/.

Applying the � auto-tuning algorithm discussed in Section 2, we obtain an error
of order-N�1=d , which we have verified for problems of dimensions d D 1; 2.
For 2D problems, if the number of points at the boundary is J D O.N 1=2/, then
�2 � J�1 � N�1=2 and this error rate balances with the rate �1 � N�1=2, which
is also the rate of the error for the overall GPDM algorithm, as we show in the
following example.

EXAMPLE 3.3. Figure 3.2(b) displays a comparison of the true � and estimated
z� for random data on a semitorus. The embedding function is given by (3.2) and
the Riemannian metric is given by (3.3). It can be seen from Figure 3.2(c) that the
error rate for jz� � �j is as expected to be O.�1=2/, where � D �1 is chosen to be
the same as that in the DM or GPDM method in Example 4.2.

3.2 Estimation of the normal derivatives on the boundaries and distance h

among neighboring ghost points
For each point xB at the boundary, we denote � WD �xB 2 Rn as the corre-

sponding normal unit vector that is pointing outward from the manifold M . We ap-
proximate the directional derivative of @�u.xB/ with the following finite-difference
method,

@u

@�
.xB/ � u.xB/ � u.xG0/

jxB � xG0 j ;(3.4)

where we have defined a ghost point along �� (see Figure 3.1(b)) as

xG0 WD xB � h�;(3.5)

where h characterizes the distance between neighboring ghost points as will be
specified below after Definition 3.4. Let 
 W R ! M � Rn be a geodesic,
parametrized with arclength h, such that 
.0/ D xB and 
 0.0/ D ��. One can
see that 
.h/ � xG0 D 
.h/ � .
.0/C h
 0.0// D O.h2/ (see Figure 3.2(a) for a
geometric illustration of the point, 
.h/). For u 2 C 1 on a straight line connecting
xG0 and 
.h/ WD expxB .�h�/ 2 Rn, we have u.
.h// � u.xG0/ D O.h2/. This
yields the following error estimate:

u.xB/ � u.xG0/
jxB � xG0 j D 1

h

�
u.xB/ � u.
.h//�C 1

h

�
u.
.h// � u.xG0/�

D �rgu.xB/ � 
 0.0/CO.h/ D rgu.xB/ � � CO.h/:(3.6)

Since � is numerically estimated by z� with error of order-
p
� and (3.5) is esti-

mated by

zxG0 WD xB � hz�;(3.7)
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(a) (b)
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FIGURE 3.2. (a) Sketch for a ghost point extension along the estimated
z� for random data. Here, x2 and x3 are points on the manifold M , xB1 is
the point on the boundary @M , �1 is the true exterior normal direction,
z�1 is estimated normal direction, zxG01 is the interior ghost point and

.h/ WD expxB

1

.�h�1/ is a projected point on the manifold M , and zxG11

and zxG21 are ghost points along z�1. (b) Comparison between exact exterior
normal direction � (blue arrows) and estimated exterior normal direction z�

(red arrows) for given random points on the semitorus (3.2) with unknown
parametrization for one trial when N D 642. (c) The expectation of the
error j� � z�j as a function of �, where � D �1 is chosen the same as that
in DM and GPDM methods in Example 4.2. The five points correspond
to N D 322; 452; 642; 902; 1282, and larger N corresponds to smaller
auto-tuned �. For each N , we run 16 independent trials and then calculate
the mean of j� � z�j versus the mean of auto-tuned �’s as one point in
panel (c).

then it is immediately clear that jzxG0 � xG0 j D hjz� � �j D O.h
p
�/. If u 2 C 1

on a straight line connecting zxG0 and xG0 , we have u.xG0/ � u.zxG0/ D O.h
p
�/,
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and
u.xB/ � u.zxG0/��xB � zxG0�� D 1

h
.u.xB/ � u.xG0//C 1

h

�
u.xG0/ � u.zxG0/�

D rgu.xB/�� CO.h;
p
�/ D @u

@�
.xB/CO.h;

p
�/;(3.8)

where the first term follows directly from (3.6). Based on this observation, we
assume that u 2 C 1 (in fact, C 3 for the extrapolation scheme in Section 3.4) on the
set:

DEFINITION 3.4. B�r .@M/ WD S
x2@M B�r .x/, where B�r .x/ D fy 2 Rn W

jx � yj � �rg is an �r -ball in Rn.

With this assumption, for h . O.�r/, it is clear that xG0 ; zxG0 ; 
.h/2B�r .xB/ �
Rn, which justifies the use of the Taylor expansions along straight paths between
these points.

Well-sampled data: In this case, since z� is a secant-line approximation, the
estimated point zxG0 coincides with the interior point adjacent to the corresponding
boundary point (e.g., in Figure 3.1(c), zxG0 is exactly x2 when the boundary point
xB D x1). In such a case, one can immediately set h WD jzxG0 � xB j, which is also
used in the first equality in (3.8). This specification scales as h D O.N�1=d /.

Randomly sampled data: In such a case, generally, zxG0 does not coincide with
any other randomly sampled data (see Figure 3.2(a)). To use the estimator in (3.7),
one has to specify h. In our implementation, h is estimated by the mean distance
from xB to its P (around 10 in our numerical examples) nearest neighbors. Let
xBp 2 M denotes the pth nearest neighbor of xB for p D 1; : : : ; P . Since the
distance to the nearest neighbor is a density estimator [36], that is, jxB � xBp j /
q.xB/�1=d , where q denotes the sampling density and d denotes the dimension of
the manifold M , then we specify

h D 1

P

PX
pD1

��xB � xBp �� D O
�
q.xB/�

1
2

�
;

for two-dimensional manifolds.

3.3 Ghost points
It is well known that the diffusion operators defined in (2.3)–(2.5) cannot be

approximated accurately near the boundary of the manifold using the standard
diffusion maps algorithm. This issue is because the asymptotic expansion (2.2)
is valid only for points x 2 M whose Euclidean distance from the boundary @M
is larger than �r for 0 < r < 1=2. For points y 2 M whose distance from @M

is smaller than �r , an order-
p
� term appears in the asymptotic expansion (2.2).

Geometrically, the local integral is inaccessible if there are no available data beyond
M (see Figure 3.3).
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FIGURE 3.3. Sketch of the extended manifold M [�M .

To address this issue, our idea here is to supplement the original data points
on M with a set of ghost points. Since the integral in the diffusion maps asymptotic
expansion is effectively a local integral over a ball of radius �r as discussed in (2.1),
we will devise a numerical scheme to specify these new points such that one can
approximate the local integral over the ball of radius �r even when the integral
operator is evaluated at points inM whose distances are less than �r from the closest
point on the boundary, @M (e.g., y in Figure 3.3). Specifically, the ghost points will
be sampled from the outer normal collar that can be attached at the boundary such
that the extended manifold can be isometrically embedded in Rn without changing
the embedding function of the original M . In the following lemma, we provide the
conditions for such a requirement to hold for two-dimensional manifolds.

LEMMA 3.5. Let M be a two-dimensional Riemannian manifold with nonempty,
smooth boundary @M , isometrically embedded in Rn. Suppose that @M is a regular
curve with maximum curvature of 1=R and any two points x; y 2 @M , whose
geodesic distance dg.x; y/ > �R, have Euclidean distance jx � yj > 2R. Then
there exists a submanifold, �M (an outer normal collar of radius R), such that the
adjunction space,M [id�M , defined by attachingM and�M along the boundary
with an identity “gluing” function id W @M ! @.�M/, can be isometrically
embedded in Rn with an embedding function that is consistent with the original
embedding function when it is restricted to M .

PROOF. Our construction is to extend M with an exterior collar of radius R
along the boundary. By the collar neighborhood theorem (theorem 9.25 in [31]),
there exists a normal collar neighbor W �M , which is defined as the range of the
following map � W �0; R/ � @M ! W �M ,

�.t; x/ D expx.�t�x/; t 2 �0; R/;
for some R > 0. Here, �x denotes the normal vector at x 2 @M that is pointing
outward from the manifold M , so � maps the points in the inward normal collar to
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the collar neighbor W . Define a manifold corresponding to the pre-image of the
collar neighbor that points outward as

�M D �
.�t; x/ W t 2 �0; R/; x 2 @M; �.t; x/ 2 W 	

;(3.9)

which is the outer normal collar of radius R.
Next, we attach M and �M along the boundary by identifying x 2 @M with

the identity map id.x/ 2 f0g � @M � �M . Let M [id �M WD .M t�M/= �
be the adjunction set defined as the quotient space of the disjoint sum induced by
attaching �M to M along the identity map, id. Since �M is the outward normal
collar and @M is a smooth boundary with bounded curvature, the adjunction set
is smooth along the attached boundary @M . To finish the proof, we need to show
that the adjunction set can be isometrically embedded in Rn with an embedding
function that is consistent when restricted to the original manifold M .

Let E � TRn denote the domain of the exponential map of Rn and N.@M/ de-
note the normal bundle of @M in Rn. Then we can define E W E \N.@M/! Rn to
be the normal exponential map of @M in Rn. By the tubular neighborhood theorem
(see theorem 5.25 in [32]), @M has a uniform tubular neighbor in Rn. Specifically,
there exists a normal neighborhood of @M , U � Rn, that is diffeomorphic under E
to an open subset V � E \N.@M/. Since �x 2 Nx.@M/ and @M has maximum
curvature 1=R and any two points with geodesic distance larger than one half of
the circumference of the osculating circle of radius R, that is, dg.x; y/ > �R,
have Euclidean distance jx � yj > 2R, then the open neighbor U is a tubular
neighborhood of radius R that is homeomorphic to �M � V . So, the tubular
neighbor theorem ensures that �M as defined in (3.9) can be smoothly embedded
in Rn. In fact, one can define a Riemannian metric for �M to be the pullback of
the following embedding function,

z�.�t; x/ WD x C t�x;(3.10)

for any .�t; x/ 2 �M . Since the induced metric of �M is consistent with that of
M at the attached boundary, that is, z�.0; x/ D x 2 Rn, then the extended manifold
M [id �M is isometrically embedded in Rn. �

In the remainder of this paper, we will refer to the extended manifoldM [id�M

as the set M [ �M to simplify the notation. We should also point out that for
the 1D manifold, since the boundary consists of only two points (e.g., as shown in
Figure 3.1), the assumption for @M in Lemma 3.5 is slightly different. In this case,
the extended manifold can be isometrically embedded as long as the two exterior
normal lines of length R > 0 from the boundary do not intersect. Next, we will use
the embedding function in (3.10) to specify the ghost points with R D O.�r/.

Numerically, for each boundary point xB 2 @M � Rn, let z� 2 Rn be the
numerical estimate of the corresponding normal vector � 2 Rn at xB . Then, the
ghost points,

xGk WD xB C kh�;(3.11)
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are approximated by

zxGk WD xB C khz�;(3.12)

for k D 1; : : : ; K, where K D O.�rh�1/. Numerically, however, we specify K
empirically (usually K � 10). See Figures 3.1(b),(c) and 3.2(a) for a geometric
illustration.

By the construction above, the Euclidean distance between any point x 2 M o

and @.M [�M/ is at least of order �r . This ensures the validity of the asymptotic
expansion in (2.2) for all points on M o (including points that are close to the
boundary @M ). It is worthwhile to point out that the ghost points zxGk do not
exactly lie on �M since the true normal vectors, �, are not available (ideal case as
illustrated in Figure 3.1(b)). In the next section, we will show how this error affects
the overall algorithm, especially when the data are randomly distributed.

3.4 Extrapolation of functions on the ghost points
We now address the extrapolation problem on the estimated ghost points. In

particular, we need to extrapolate the solution u on the estimated ghost points.
Popular extrapolation techniques include the linear and quadratic extrapolation
methods, the level set method, and the ghost fluid method [2]. One idea is to extend
the function of interest with a set of artificial boundary conditions, imposed on the
ghost points. This leads us to the problem of specifying the boundary conditions
on the ghost points. In particular, we will consider a discrete analogue of matching
the second-order derivatives of the function evaluated at the ghost points as the
extrapolation condition, which mimics the cubic spline condition proposed in [22].
In addition, we also include a condition that mimics the classical finite-difference
solution of Neumann (or Robin) boundary value problems with ghost points.

Let u 2 C 3.M [ B�r .@M//, where the set B�r .@M/ � Rn is stated in the
Definition 3.4. We note that the numerically estimated ghost points are components
of this set, �zxG0j 	J

jD1
[ �zxGkj 	J;K

j;kD1
� B�r .@M/:

Given the function values u.xi / at xi 2M and u.zxG0j /, our goal is to extrapolate

u onto the set of ghost points, fzxGkj gJ;K
j;kD1

. In the PDE applications, the function

values at fzxG0j g will be estimated in the same manner as the other data fxig that lie
on the manifold, that is, by inverting the discrete approximation of the diffusion
operators. In particular, we define the matrix Lh as the discrete approximation to one
of the diffusion operators in (2.3)–(2.5) with the following important modification.
We construct the matrix Lh by evaluating the kernel on fxigNiD1 [ fzxG0j gJjD1 [
fzxGkj gJ;K

j;kD1
. In the case of well-sampled data, the normal vector � is estimated by a

secant line, and, therefore, some of these ghost points coincide with some interior
points, that is, fxigNiD1 � fzxG0j gJjD1. In the case of randomly sampled data, we
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define fxigNCJiD1 WD fxigNiD1 [ fzxG0j gJjD1 for convenience of notation, even if these
interior ghost points do not lie on M .

Since the argument below does not change whether the set fxig has N or N C J
points, instead of using different notations for the well-sampled and randomly
sampled cases, we use the same set fxigNiD1 of N -points to denote points on the
manifold as well as the interior ghost points fzxG0j gJjD1.

Here, the discrete extrapolation problem is to extend the function u identified
by the function values only on xi ; xBj to estimate the function values u.zxGkj / for

k D 1; : : : ; K by the estimated quantities zuGk�;j . With these notations, we define a
vector Eu� by

Eu� D .u.x1/; : : : ; u.xN /; zuG1�;1; : : : ; zuGK�;1 ; : : : ; zuG1�;J ; : : : ; zuGK�;J / 2 R xN ;(3.13)

where xN D N C JK. Since fzxG0j gJjD1 � fxigNiD1, the first N -components include

the function values u.zxG0j /. Then, we estimate fzuGk�;j gJ;Kj;kD1, by solving the following
JK algebraic equations,

(3.14)

�
Lh Eu�

�
Bj
D f

�
xBj
�
;

zuG2�;j � 2zuG1�;j C u
�
xBj
� D zuG1�;j � 2u

�
xBj
�C u

�zxG0j �
;

zuG3�;j � 2zuG2�;j C zuG1�;j D zuG2�;j � 2zuG1�;j C u
�
xBj
�
;

zuGk�;j � 2zuGk�1�;j C zuGk�2�;j D zuGk�1�;j � 2zuGk�2�;j C zuGk�3�;j ; k D 4; : : : K;

for j D 1; : : : ; J . Here, we have used the subscript Bj to denote the component
corresponding to the boundary point xBj . The first equation in (3.14) is motivated by
the classical finite-difference approach for solving the Neumann problems in (1.1),
which imposes the discrete approximation of the elliptic PDE to be consistent at the
boundary. The last three equations in (3.14) are the discrete analogue of matching
the second-order derivatives along z�j at the ghost points and the corresponding
boundary point xBj .

Now we report the error in approximating the function values u.xGkj / with zuGk�;j ,
obtained from solving the algebraic conditions in (3.14).

PROPOSITION 3.6 (Extrapolation error rate for u). Let u 2 C 3.M [ B�r .@M//,
where the extended manifold M [ �M is a submanifold of Rn, constructed by
Lemma 3.5 with R D O.�r/, where 0 < r < 1=2. For each xGkj 2 �M , let zuGk�;j
be the extrapolated function value at the estimated ghost point zxGkj , obtained by
solving (3.14). For any fixed j D 1; : : : ; J ,

(3.15)

��u�xGkj � � zuGk�;j
��

D O
�
h3; h2��1=2; �2; xN�1=2��.1Cd=4/; xN�1=2�.1=2�d=4/

�
;
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in high probability, as � ! 0 after xN !1 and h! 0.

PROOF. See Appendix A. �

Throughout the paper, we use the notation O.f; g;w/ as a shorthand for O.f /C
O.g/ C O.w/ as f; g;w ! 0. The first and second error bounds in the “big-
oh” notation in (3.15) correspond to the extrapolation estimates with ghost points
specified with distance h for a fixed � > 0, so they are defined as h! 0. The fourth
and fifth error bounds in the “big-oh” notation above in (3.15) correspond to the
Monte Carlo estimates of the integral operator for fixed � > 0 so they are defined as
xN !1. Therefore, the “big-oh” notation in (3.15) (and in the remainder of this

paper) is defined as � ! 0 after xN !1 and h! 0.

Remark 3.7 (Randomly sampled data). In this case, the leading error term in (3.15)
is of order-h2��1=2. This error rate is contributed by the estimated interior ghost
points that do not lie on M and the exterior ghost points that do not lie on �M . In
Appendix A, we shall see how the distances between the estimated ghost points and
the points on the extended manifold,

��
j .h/ � zxG0j
�� D O.h

p
�/;

��xGkj � zxGkj
�� D O.h

p
�/;

where 
j .h/ WD expxB
j
.�h�xB

j
/ 2 M and fxGkj gJ;K

j;kD1
� �M , contribute to this

error rate.

Remark 3.8 (Well-sampled data). In this case, since the secant line approximation
is used to approximate �, the estimated ghost points fzxG0j g coincide with some
components of fxi 2 M g. Since these interior ghost points lie on the manifold,
they do not contribute to the error rate-h2��1=2. While the estimated exterior ghost
points, fzxGkj gJ;K

j;kD1
, do not exactly lie on �M , we numerically also found that they

do not contribute to the error of order-h2��1=2. We suspect that this is because the
diffusion maps algorithm, applied on the extended data, fxi 2M gNiD1[fzxGkj gJ;K

j;kD1
,

is approximating the differential operator on a different smooth extended domain
DM [�M that contains these points, and the error rate in Lemma A.1 is still valid
for the matrix Lh under the assumption that u 2 C 3.M [ B�r .@M//. In light of
this, for well-sampled data, the leading error is the first error term of order-h3 in
(3.15).

3.5 The ghost point diffusion maps estimator
Here, we continue using the notation Eu� as defined in (3.13), where the first N -

components contain the function value at the estimated
interior ghost points zxG0j that may or may not lie exactly on M , depending on
the distribution of the data. For the discussion below, we also define the column
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vectors:

(3.16)

EuM� D .u.x1/; : : : ; u
�zxG01 �

; : : : ; u
�zxG0J �

; : : : ; u.xN //;

EuG� D �zuG1�;1; : : : ; zuGK�;J �;
Eu� D

�EuM� ; EuG� �;
where we emphasized that some of the components of EuM� 2 RN are u.zxG0j / in the
definition above. Similarly, we also define

(3.17)

EuM D .u.x1/; : : : ; u.
1.h//; : : : ; u.
J .h//; : : : ; u.xN //;

EuG D �
u
�
x
G1
1

�
; : : : ; u

�
x
GK
J

��
;

Eu D .EuM ; EuG/;
where EuM 2 RN contains u.
j .h//, replacing each component u.zxG0j / of EuM� .
These definitions imply that

EuM� D
(
EuM CO.h

p
�/ if xi are randomly sampled,

EuM if xi are well-sampled.
(3.18)

Recall that equation (3.14) consists of a system of JK equations and it has a
unique solution that can be written in compact form as

EuG� D AEuM� C Eb;(3.19)

where one can see the detailed expression of A 2 RJK�N and Eb 2 RJK for the
1D case in Appendix B. Here, components of Eb depend on f .xBj /. To this end, we
denote the discrete approximation with a nonsquare matrix Lh D .L.1/;L.2// 2
RN� xN that maps vectors Eu� 2 R xN into Lh Eu� 2 RN , where the matrix Lh is
constructed as discussed in Section 3.4. For the discussion below, we define the
matrix L 2 RN� xN , as a discrete estimator of L that is constructed in analogous
to Lh except that the kernel is evaluated on 
j .h/ 2 M (and fxGkj 2 �M gJ;K

j;kD1
)

in placed of zxG0j (and fzxGkj gJ;K
jk;D1

), in addition to the evaluation at all sampled

points of M in the construction of Lh. We should point out that each row of the
nonsquare matrices L and Lh corresponds to the kernel evaluation at the components
of fxigNiD1, where the former includes f
j .h/g and the latter includes fzxG0j g.

Since we are interested in approximating EuM 2 RN with the constraint that EuG
is not available, we define the GPDM estimator Lg W RN ! RN as the following
affine operator,

Lg.EuM / WD �
L.1/ C L.2/A

�EuM C L.2/ Eb:(3.20)

With this definition, we should point out that

Lg
�EuM� � D L.1/ EuM� C L.2/

�
AEuM� C Eb� D L.1/ EuM� C L.2/ EuG� D Lh Eu�;
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where we have used (3.19). We should also point out that clearly Lg.EuM / ¤ Lh Eu
since (3.19) is not valid for the pair of EuG and EuM , that is, EuG ¤ AEuM C Eb. With
all these definitions, we now state the consistency of the GPDM estimator in (3.20).

THEOREM 3.9 (Consistency of the GPDM). Let u 2 C 3.M [ B�r .@M//, where
the extended manifold M [�M is a submanifold of Rn, constructed by Lemma 3.5
with R D O.�r/, where 0 < r < 1=2, such that �M � B�r .@M/. For each
xi 2M , where fxigNiD1 � f
j .h/gJjD1,���Lg.EuM /�

i
� Lu.xi /

��
D O

�
h3��1; h2��3=2; h��1=2; �; xN�1=2��.2Cd=4/; xN�1=2��.1=2Cd=4/

�
;

in high probability as � ! 0 after xN !1 and h! 0.

PROOF. For each i D 1; : : : ; N , using the definitions in (3.16)–(3.18),���Lg.EuM /�
i
� Lu.xi /

��
D ���Lg�EuM� ��i � Lu.xi /C

�
Lg.EuM / � Lg

�EuM� ��i ��
D ���L.1/ EuM� C L.2/ EuG�

�
i
� Lu.xi /C

�
.L.1/ C L.2/A/

�EuM � EuM�
��
i

��
D ��.L.1/ EuM /i C .L.2/ EuG/i � Lu.xi /

C �
L.2/A

�EuM � EuM�
��
i
C �

L.2/
�EuG� � EuG��

i

��
D ��.Lh Eu/i � Lu.xi /C

�
L.2/A

�EuM � EuM�
��
i
C �

L.2/
�EuG� � EuG��

i

��
� ��.Lh Eu/i � .LEu/i ��C ��.LEu/i � Lu.xi /

��
C ���L.2/A.EuM� � EuM /�

i

��C ���L.2/.EuG� � EuG/�
i

��;
D O.h2��3=2/CO.�; xN�1=2��.2Cd=4/; xN�1=2��.1=2Cd=4//CO.h��1=2/

CO
�
h3��1; h2��3=2; �; xN�1=2��.2Cd=4/; xN�1=2��.1=2Cd=4/

�
:

The first error term is a consequence of the diffusion matrices from two different
sets of points as seen in Lemma A.2, which is equation (A.9). The second error term
is the pointwise error bound of the standard diffusion maps in Lemma A.1. The
third error term results from the estimated interior ghost points and is bounded by
(3.18) multiplied by ��1 from the components of L.2/A. The last error term results
from the estimated exterior ghost points and is given by Proposition 3.6 multiplied
by ��1 from the components of L.2/.

For the well-sampled data, the third error term also vanishes based on (3.18). The
first error bound and the second term h2��3=2 in the fourth error bound are both
not applicable as discussed in Remark 3.8. Thus, the leading error term is h3��1

from the fourth error bound for well-sampled data. For the random only sampled
data, the leading error terms are h2��3=2 and h��1=2. �

We should point out that for the approximation of the operators L2 and L3 in
(2.4) and (2.5), respectively, we assume that �; B; and C are well-defined functions



GPDM FOR ELLIPTIC PDES ON MANIFOLDS 25

of the domain M [ B�r .@M/. This is due to the fact that the associated asymptotic
expansion in equation (2.4) or the kernel in equation (2.6) require evaluations of the
associated kernel at the estimated ghost points fzxGkj gJ;K

jD1;kD0
� B�r .@M/. While

one can devise an extrapolation method to determine the function values at these
ghost points if the functions were only defined on M , we neglect it in the present
work to avoid the extra complication in the analysis above. In our numerics below,
we assume that we are given �; B; C that can be evaluated on any point cloud
x 2M [ B�r .@M/ � Rn.

3.6 Numerical verification
In this section, we provide supporting numerical results of the GPDM method on

the semi-ellipse Example 2.1 and assess the error of the affine operator in (3.20) in
estimating L2u for functions u that satisfy various boundary conditions. For the
Robin boundary condition, �1@�uC�2u D g, we set �1.x/ D 1, �2.x/ D 3=.2a/

with the homogeneous g D 0 at both boundary points, x1 and xN . For this
numerical example, we set � D 1:1 C sin � . Choosing the true function to be
u D cos.3�=2 � �=4/, one can check that this function satisfies the above Robin
boundary condition. The analytic f D L2u can be calculated from (2.13). For
the Dirichlet and Neumann boundary conditions, we choose the appropriate u that
satisfies the boundary conditions and proceed in a similar fashion.

The components of u are evaluated at equally angle distributed points f�i D
.i�1/�
N�1

giD1;:::;N . In the following numerical experiment, we set N D 400 and
k D 50 nearest neighbors (this is the same configuration that produces Figure 2.1).
Figure 3.4 shows the forward error (FE) defined as



Lg.EuM / � L2u



1

as a func-
tion of the bandwidth parameter � for various boundary conditions. One can see
from Figure 3.4 that with the GPDM, the uniform FE reduces substantially on a
wide range of � D 10�5 � 10�2. This indicates that the solution of the GPDM
becomes much more accurate for the � tuning compared to the standard DM, even
in the Neumann case.

In Figure 3.4, we also show the results obtained from the auto-tuning algorithm
discussed in Section 2. While this automated tuning strategy may not necessarily
give the best estimates on the resulting operator estimation (for example, notice that
the yellow and blue points in Figure 3.4 do not correspond to the minimum Forward
Error), it often gives a starting point for further tuning and is numerically cheap.
For a theoretically justifiable method, yet computationally more elaborate, one can
also use the local singular value decomposition technique in [5].

Figure 3.5 shows the FE as a function of the number of pointsN . For comparison,
we also show numerical results obtained from the standard DM without adding
ghost points. The GPDM FE kLg.EuM / � L2uk1 (green curve) is a uniform error
computed at allN points on manifoldM . The DM FE kLEuM �L2uk1 depicted by
the black dashed curve is computed at all N points, whereas the DM FE depicted by
the red dashed curve is computed only at points x10�xN�9 away from the boundary.
One can see from Figure 3.5 that the DM FE on the interior of M and the GPDM
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(a) Robin (b) Dirichlet
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(c) Neumann
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FIGURE 3.4. Forward error (FE) of the operator estimation as a function
of the bandwidth � for the semi-ellipse example with fixed N D 400

well-sampled data. The operator acts on a test function satisfying homo-
geneous: (a) Robin, (b) Dirichlet, and (c) Neumann boundary conditions.
The yellow point and blue point correspond to the auto-tuned � for DM
and GPDM, respectively.

error on all points of M decay on O.N�2/, whereas the DM FE on M increases
on O.N 1/ for both Robin and Dirichlet BC’s and of O.1/ for Neumann BC’s.
This indicates that for DM, the increasing FE comes from the boundary when N
increases. Incidentally, we notice that for the case of no boundary for manifold M ,
FE decays as O.N�2/ (see [25]). However, in the presence of boundary conditions,
only the GPDM FE decays as O.N�2/.

4 Applications: Solving Linear Elliptic PDE’s
In this section, we consider solving the elliptic PDE’s problem on a smooth

manifold M ,

(4.1)
Lu D f; x 2M o;

Bu WD .�1@� C �2/u D g; x 2 @M;
where �1; �2 are smooth real-valued functions such that �1�2 > 0 on @M . Here,
the differential operator L is one of (2.3)–(2.5) and is assumed to be uniformly
elliptic with smooth coefficients (if any). Here, the smoothness will determine
the regularity of the solution. When �1 D 0, we have the Dirichlet boundary
condition; when �2 D 0, we have the Neumann boundary condition; and when both
are nonzero, we have the Robin boundary condition. For the Neumann boundary
condition, we will consider the PDE .L�a/u D f with a.x/ � amin > 0 8x 2M
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(a) Robin (b) Dirichlet
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(c) Neumann
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FIGURE 3.5. Comparisons of Forward Errors (FEs) of the estimated
operators as functions of the number of points N for the semi-ellipse
example. The operator acts on a test function satisfying homogeneous:
(a) Robin, (b) Dirichlet, and (c) Neumann boundary conditions. For
GPDM, the FE




Lg.EuM / � L2u





1

is computed on all points on the
manifold, M (green solid line). For DM, The FE kLEuM � L2uk1 is
computed on all points on M (black dashed line) and only on interior
points fxigiD10;:::;N�9 away from the boundary (red dashed line); i.e.,
neglecting nine closest points from each boundary point. The bandwidth
� is auto-tuned for each N number of well-sampled data.

for a well-posed problem. For the Robin boundary condition, we also add �a for
convenience of the convergence study. For f 2 C 1;�.M/, where 0 < � < 1, the
PDE problem with appropriate smoothness of the coefficients (if any) admits a
unique classical solution u 2 C 3;�.M/, when

g 2
(
C 3;�.@M/ for Dirichlet boundary,
C 2;�.@M/ for both the Robin and Neumann.

(4.2)

We should point out that we impose one-order derivative higher than the usual
Schauder estimates (u 2 C 2;�) since the diffusion maps asymptotic expansion
(Lemma A.1) requires a C 3-function. For the detailed statement of the Schauder
estimates, see theorem 6.11 of [27] or theorem 6.25 of [26] for the Dirichlet problem,
theorem 6.31 of [26] for the Robin problem, and [42] for the Neumann problem.
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We should also point out that since the convergence analysis will rely on the
consistency of the GPDM estimator, we require that u be C 3 not only on M
but on the extended domain M [ B�r .@M/, which is assumed in Theorem 3.9.
The appropriate regularity for �; B; C on the extended domain is also implicitly
assumed for the consistent GPDM estimators to both differential operators L2 and
L3. Likewise, the function values of f on the estimated interior ghost points zxG0j
are also assumed to be well defined and that

f 2 C 1.M [ B�r .@M//:(4.3)

In Section 4.1, we present and report the convergence of the proposed solver,
constructed using the GPDM discretization. In Section 4.2, we provide supporting
numerical examples on simple manifolds. In Section 4.3, we test the PDE solver on
problems defined on an “unknown” manifold and compare the estimates with the
finite element method (FEM) solution.

4.1 The GPDM discretization method
Numerically we will approximate the PDE in (4.1) with the affine operator in

(3.20) for our GPDM method. To be concise, we define yuM D .yu1; : : : ; yuN /,
whose components are the numerical solution of the elliptic problem at fxigNiD1 that
also include solutions at the estimated ghost points, fzxG0j gJjD1. Then, the PDE is
discretized as

Lg.yuM / D .L.1/ C L.2/A/yuM C L.2/ Eb D Ef ;(4.4)

where Ef 2 RN , with components fi D f .xi /, xi 2 M , and xi D zxG0j for some
i; j . In the analysis below, we will establish the convergence of the solution yuM of
the linear problem in (4.4) to the true solution, EuM , as defined in (3.17), subjected
to boundary conditions.

As for the boundary condition, we discretize the boundary operator for each
xi 2 @M as follows,

�1.xi /@� C �2.xi / � �1.xi /

 
�.xi / � �.zxG0i /

h

!
C �2.xi /�.xi / WD Bi ;

following equation (3.8). The Kronecker delta notation �.x/, which is equal to 1
on x and 0 otherwise, is used to clarify that the row vector Bi (of size 1 �N ) has
nonzero components on entries associated to zxG0i and xi 2 @M . With this notation,
the estimated boundary condition can be written in a compact form as

ByuM D Eg;(4.5)
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where Eg 2 RJ , with components gi D g.xi / for all xi 2 @M . Then we have

.ByuM � BEuM /j
D g

�
xBj
� � .BEuM /j D Bu

�
xBj
� � .BEuM /j

D Bu
�
xBj
� � �B�EuM� CO.h�1=2/

��
j

D �1
�
xBj
��
@�u

�
xBj
� � u

�
xBj
� � u�zxG0j �
h

CO.�1=2/
�

D O.h; �1=2/;

(4.6)

for j D 1; : : : ; J . For the equality in the third line, we have used (3.18) such
that the error of order h�1=2 only occurs for the randomly sampled data. As for
the equality in the fifth line, for well-sampled data, zxG0j coincides with one of the
interior points (due to the secant line approximation), and the error bound in the
approximation of the directional derivative is of order-h. For the randomly sampled
data, the error bound in the approximation of the directional derivative is given by
(3.8).

Dirichlet Problem: Numerically, we consider solving an .N �J /� .N �J / linear
problem that is obtained by asserting (4.5) to the firstN �J row of (4.4). To clarify,
let us define the submatrices LI 2 R.N�J/�.N�J/;LB 2 R.N�J/�J that satisfy,

�
LI j LB

� D
0
B@

.L.1/ C L.2/A/1
:::

.L.1/ C L.2/A/N�J

1
CA 2 R.N�J/�N :(4.7)

and decompose the estimated solution yuM D .yuI ; yuB/ to

yuI D .yu1; : : : ; yuN�J / for interior components;

yuB D .yuN�JC1; : : : ; yuN / for the boundary components.

Similarly, we will decompose the true solution as EuM D .EuI ; EuB/ with

EuI D .u.x1/; : : : ; u.
j .h//; : : : ; u.xN�J // for the interior components,

EuB D .uN�JC1; : : : ; uN / D .u.xB1 /; : : : ; u.x
B
J // for the boundary components.

For the Dirichlet boundary condition, u.xBj / D g.xBj / for j D 1; : : : ; J , then
one can directly replace yuN�JCj D u.xBj / D g.xBj /, applying the decomposition
in (4.7) on the first N � J rows of (4.4), we arrive at the following reduced system,

LI yuI D Ef I � LB Eg(4.8)

where we have also defined
Ef I D .f .x1/ � .L.2/ Eb/1; f .x2/ � .L.2/ Eb/2; : : : ; f .xN�J / � .L.2/ Eb/N�J /:
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We now show that the solution of (4.8) converges to the solution of the PDE in (4.1)
with Dirichlet boundary condition.

THEOREM 4.1 (Convergence of the Dirichlet Problem). Let u be the solution of the
PDE in (4.1) with Dirichlet boundary condition, u.xBj / D g.xBj / for j D 1; : : : ; J .
Assuming the regularity in (4.2) and (4.3) for g and f , let yui be the solution of
the linear system in (4.8), where the diffusion operator L is approximated by the
GPDM affine estimator in (3.20), constructed with N grid points on the manifold
and the estimated ghost points (3.12), whose consecutive distance is h > 0 such
that the consistency in Theorem 3.9 is valid. Assume that the differential operator L
satisfies the maximum principle; then for any xi 2M o, yui converges to u.xi / with
an error bound given as
jyui � u.xi /j
D O

�
h3��1; h2��3=2; h��1=2; �; xN�1=2��.2Cd=4/; xN�1=2��.1=2Cd=4/

�
;

in high probability, as � ! 0 after xN !1 and h! 0.

PROOF. See Appendix B. �

Recall that some components of fyuigN�JiD1 correspond to the numerical solutions
at the ghost points fzxG0j gJjD1. For these components, yui converges to the true
solution u, evaluated at the corresponding point 
j .h/ 2M . We will elaborate this
case in the proof of the next Theorem 4.2 (see the discussion after (4.12)).

Robin and Neumann problems: Here, we consider

(4.9)
.�aC L/u D f; x 2M o;

Bu WD .�1@� C �2/u D g; x 2 @M;
with a.x/ � amin > 0 8x 2M such that �aCL is strictly negative definite. Here,
the additional �a term is to ensure the well-posedness of the Neumann problem
and for convenience of the convergence study of the Robin problem.

For the discussion below, we write the discrete approximation of the boundary
operator as B D .BI IBB/, where BI 2 RJ�.N�J/ and BB 2 RJ�J . Then, the
discrete approximation to the PDE problem in (4.9) is given by the followingN �N
system,

NyuM WD
��aC LI LB

BI BB

��yuI
yuB
�
D
� Ef I
Eg
�
;(4.10)

where a denotes a diagonal matrix with diagonal components fa.xi /g. Numerically,
one can also solve the last J rows corresponding to the boundary conditions,

yuB D .BB/�1.Eg � BI yuI /;(4.11)

and insert this solution to the first .N � J / rows in problem (4.10) to obtain a
reduced .N � J / � .N � J / system.

For the Robin problem, we have the following convergence result.
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THEOREM 4.2 (Convergence of the Robin problem). Let u be the solution of PDE in
(4.9) with Robin boundary condition and �1; �2 > 0. Let the corresponding GPDM
estimator be constructed as in Theorem 4.1 and assume that a 2 C 1.M [B�.@M//.
Assuming the regularity in (4.2) and (4.3) for g and f , for any xi 2M o, the solution
yui of the linear system in (4.10) converges to u.xi / with error bound given as

jyui � u.xi /j D O
�
h3��1; h2��3=2; h��1=2; �1=2;

xN�1=2��.2Cd=4/; xN�1=2��.1=2Cd=4/
�
;

in high probability, as � ! 0 after xN !1 and h! 0.

PROOF. Using the definition of Ef I and the decomposition in (4.7), one can
immediately see the consistency. Multiplying the matrix N in (4.10) with a vector
consists of the difference between the estimated and the true solutions, we obtain

(4.12)

�
.�aC LI /.yuI � EuI /C LB.yuB � EuB/�

i

D � Ef I � .�aC LI /EuI � LB EuB
�
i

D f .xi /C a.xi /u.xi / �
�
L.2/ Eb C LI EuI C LB EuB

�
i

D Lu.xi / � .Lg.EuM //i
for i D 1; : : : ; N � J . For the randomly sampled case, some of the elements of
fxig are zxG0j that do not lie on M . For such components, we have�

.�aC LI /.yuI � EuI /C LB.yuB � EuB/�
i

D f
�zxG0j �C a

�zxG0j �
u.zxG0j / � �Lg.EuM /�

i

D Lu.
j .h// �
�
Lg.EuM /�

i

C �
f
�zxG0j � � f .
j .h//C a

�zxG0j �
u
�zxG0j � � a.
j .h//u.
j .h//�

D Lu.
j .h// �
�
Lg.EuM /�

i
CO.h�1=2/;

where the last term is valid under the assumption that a; f; u 2 C 1.B�r .@M//. The
last J rows corresponding to the boundary points are nothing but (4.6).

From equation (B.6) in Appendix B, the column sum of each row of the matrix
M D �.L.1/ C L.2/A/ is zero and that Mi;i < 0 and Mi;j > 0 for all j ¤ i . Since
the first N � J rows of N is nothing but �a.xi /C .L.1/ C L.2/A/i , we have

jNi;i j �
NX
jD1
j¤i

jNi;j j D j � a.xi /C ��1Mi;i j � ��1
NX
jD1
j¤i

jMi;j j

D a.xi / � ��1
NX
jD1

Mi;j D a.xi / � amin > 0;

for i D 1; : : : ; N � J . Also, the last J rows of the matrix N are strictly diagonal
dominant as long as �2 > 0. For example, in 1D case where J D 2, the last two
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rows of (4.10) is given as

BB yuB C BI yuI

WD
 
�1.x1/
h

C �2.x1/ 0

0 �1.xN /
h

C �2.xN /

!� yu1
yuN
�

C
 
��1.x1/

h
0 � � � 0

0 � � � 0 ��1.xN /
h

!0BBB@
yu2
yu3
:::

yuN�1

1
CCCA D

�
g.x1/

g.xN /

�
WD Eg:

In this case, jNi;i j �
PN
jD1;j¤i jNi;j j D �2.xi / > 0 for i > N � J . Therefore,

the matrix N is strictly diagonal dominant and nonsingular. By the Ahlberg-Nilson-
Varah bound [1, 50], the inverse matrix is uniformly bounded,

kN�1k1 � 1

mini .jNi i j �
PN
jD1
j¤i

jNij j/
D 1

minfamin; �2g :

Thus, multiplying N�1 to a vector where the first N � J components consist of
(4.12) and the last J components consist of (4.6), we have

jyui � u.xi /j � kN�1k1
�

max
iD1;:::;N�J

���.�aC LI /.yuI � EuI /C LB.yuB � EuB/�
i

��;
max

jD1;:::;J

���B.yuM � EuM /j
����

j

D kN�1k1
�

max
iD1;:::;N�J

��Lu.xi / � �Lg.EuM /�i ��;
max

jD1;:::;J

���B�yuM � EuM �
j

���;
for all xi 2 M . Since the GPDM is consistent,

��Lu.xi / � ..Lg.EuM //i �� ! 0 as
� ! 0 after N ! 1 and h ! 0 with error rate given in Theorem 3.9. Together
with the error bound in (4.6), the proof is completed. �

For the Neumann problem, the last J components of N are not strictly diagonal
dominant, since �2 D 0. To achieve the convergence, one can consider (without
loss of generality) the homogeneous Neumann problem g D 0 such that (4.11)
simplifies to yuB D �.BB/�1BI yuI . For example, in a well-sampled case, the
discrete approximation in (3.4) yields yuN D yuN�1 and yu1 D yu2. Substituting
these solutions (J equations in general) to the first N � J rows of (4.10), one can
verify that the reduced N � J problem is nonsingular and has an inverse that is
uniformly bounded by 1=amin. Thus, the convergence can be achieved using the
similar argument as in the proof above.
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4.2 Numerical examples on simple manifolds
In this section, we discuss three examples of problems defined on simple mani-

folds. First, we verify the convergence rate with the 1D example in Example 2.1.
In the second example, we test the solver on a semitorus embedded in R3 with a
mixed-type Dirichlet-Neumann boundary condition. In the third example, we verify
the effectiveness of the proposed method on the randomly sampled data for the
semitorus PDE problem.

Numerically, we will compare GPDM with the standard DM. To account for other
than homogeneous Neumann boundary conditions, we modify the standard DM as
follows. We consider the N � J rows corresponding to the interior points xi 2M o

of the equation, LDMyuM D Ef , where LDM is the standard diffusion maps operator.
To approximate boundary conditions that involve normal derivatives, we use the
algorithm in Appendix C that requires no interior ghost points. Then the inverse
problem consists of solving the reduced linear system (arising from imposing the
appropriate boundary conditions), analogous to the reduced linear problem with
GPDM.

Anisotropic diffusion on a semi-ellipse with well-sampled data
First, let us present the results of the 1D problem in Example 2.1 in solving

L2u D f;(4.13)

with the three boundary conditions. In this numerical experiment, the configuration
is the same as in Section 3.6. In particular, Figure 4.1 demonstrates the error of the
solutions kyuM � EuMk1, which we refer to as the inverse error (IE) as a function
of � for fixed N D 400, k D 50. Compared to the standard diffusion maps, notice
that GPDM is more robust for the case of Robin and Dirichlet boundary conditions,
as expected. The advantage of GPDM over DM on Robin and Dirichlet boundary
conditions is more apparent in Figure 4.2. Particularly, for the Robin BC, one can
see that the GPDM IE decays on O.N�1/, whereas the DM IE does not decay
and is nearly constant. For the Dirichlet BC, GPDM IE decays faster compared to
the DM IE. For the Neumann BC, we see comparable IEs as functions of N , as
expected.

Nonsymmetric backward Kolmogorov elliptic PDE on a semitorus with well-
sampled data

In the next example, we consider solving L3u D f , with a mixed Dirichlet-
Neumann boundary condition on a semitorus M � R3. The parametrization of
the torus is given in (3.2) and the corresponding Riemannian metric is defined in
(3.3) with .�; �/ being the two intrinsic coordinates. The differential operator L3 is
defined as in (2.5) with�

b1.x/

b2.x/

�
WD
�

2C x3
.x21 C x22/

1=2

�
D
�
2C sin �
2C cos �

�



34 S. W. JIANG AND J. HARLIM
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FIGURE 4.1. Pointwise inverse error (IE) of the solution of (4.13) as
a function of the bandwidth � for the semi-ellipse example with fixed
N D 400 well-sampled data. The yellow point and blue point correspond
to the auto-tuned � for DM and GPDM, respectively.
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FIGURE 4.2. Comparisons of the inverse errors (IEs) of the solutions of
(4.13) as functions of N for the semi-ellipse example. The bandwidth �

is auto-tuned for each N number of well-sampled data.
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FIGURE 4.3. Absolute errors in the estimated solutions for the semitorus
example with well-sampled data: (a) DM for N D 64 � 64 with kyuM �
EuMk1 D 0:88, (b) GPDM for N D 64�64 with kyuM�EuMk1 D 0:095,
(c) DM for N D 128 � 128 with kyuM � EuMk1 D 0:91, (d) GPDM for
N D 128 � 128 with kyuM � EuMk1 D 0:042.
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FIGURE 4.4. The semitorus example with the well-sampled data. (a) IEs
of DM and GPDM methods as functions of N . For each N , the IE is
obtained from the minimal inverse error for different �. IEs of (b) DM
and (c) GPDM methods as functions of bandwidth � for different N .
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c11.x/ c12.x/

c21.x/ c22.x/

�
WD
�
3C x1=.x

2
1 C x22/

1=2 1=10

1=10 2

�
D
�
3C cos� 1=10

1=10 2

�
The semitorus is defined with the standard parametrization function as in (3.2) so
that the induced Riemannian metric is given in (3.3). We set an analytic solution of
this problem to be

(4.14) u.x/ D
�

sin 2� � 2 cos 2�
2C cos �

�
cos �;

where

(4.15)
cos � D .x21 C x22/

1=2 � 2; sin � D x3;

cos� D x1

.x21 C x22/
1=2
; sin� D x2

.x21 C x22/
1=2
;

with sin 2� D 2 sin� cos� and cos 2� D 2 cos2 � � 1. Next, we calculate f WD
L3u and g WD �1@�uC �2u at � D 0 and � D � . In this semitorus example, the
explicit expression for f is given by

f WD L3u D b � ruC 1

2
cijrirju D b1

@u

@�
C b2

@u

@�
C 1

2
c11

@2u

@�2

C c12
�
@2u

@�@�
� �212

@u

@�

�
C 1

2
c22

�
@2u

@�2
� �122

@u

@�

�
;

where �212 and �122 are the only nontrivial Christoffel symbols of the second kind,

�212 D � sin �
2C cos �

; �122 D sin �.2C cos �/;

with the trigonometric functions defined in (4.15). At one boundary � D 0, the
parameters are �1 D 0 and �2 D 1 (Dirichlet boundary condition) so that g WD
u.� D 0/, where u is the analytic solution in (4.14). At the other boundary � D � ,
the parameters are �1 D 1 and �2 D 1 (Robin boundary condition) so that the
expression for g at � D � is

g WD �1@�uC �2u D
�

1

2C cos �
@u

@�
C u

�
.� D �/ D 0;

where the analytic u in (4.14) and � D � have been used. Then, we approximate
the solution in (4.14) for the PDE problem in (4.1), subjected to the manufactured f
and g. Numerically, the grid points

�
�i ; �j

	
are uniformly distributed on �0; 2�� �

�0; ��; with i; j D 1; : : : ; 64 or i; j D 1; : : : ; 128 points in each direction, resulting
in a total of N D 4096 or N D 16384 grid points. To apply the local kernel in
(2.6), we use k D 200 nearest neighbors for all N and manually tune the kernel
bandwidth as � D 0:0032 for N D 4096 and � D 8 � 10�4 for N D 16384. We
found that the auto-tuned method discussed in Section 2 is not so robust for the
estimation of L3, and we suspect that this is because the covariance in the Gaussian
kernel is not constant such that the scaling used in (2.11) may not be appropriate.
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FIGURE 4.5. Absolute errors in the estimated solutions for the semi-
torus example with random data: (a) DM for N D 64 � 64 with
kEuM � yuMk1 D 0:203, (b) GPDM for N D 64 � 64 with kEuM �
yuMk1 D 0:146, (c) DM for N D 128�128 with kEuM�yuMk1 D 0:186,
(d) GPDM for N D 128 � 128 with kEuM � yuMk1 D 0:074.

In Figure 4.3, we show the absolute errors between the true and the estimated
solutions obtained using DM and GPDM for N D 64 � 64 and N D 128 � 128.
For DM, the IE kEuM � yuMk1 D 0:9 is relatively large and IE does not decrease
even as N increases. On the other hand, the inverse error (IE) of GPDM is one
magnitude order smaller than the IE of DM and decreases from 0:095 to 0:042 as
N is increased from 64 � 64 to 128 � 128.

Figure 4.4(a) shows the IEs as functions of N for DM and GPDM methods.
One can see that GPDM solutions converge whereas DM solutions do not converge.
Figure 4.4(b) and (c) show IEs of DM and GPDM methods, respectively, as functions
of bandwidth � for different N . One can see that as N increases, IE of GPDM
decreases (at the rate of O.N�1=2/) whereas IE of DM does not decrease.

Anisotropic diffusion on a semitorus with random data
In this example, we consider solving L2u D f , with a mixed Dirichlet-Neumann

boundary conditions on a semitorus M � R3. The differential operator L2 is
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FIGURE 4.6. The semitorus example with random data in Section 4.2. A
total of 16 independent trials are run. (a) The auto-tuned bandwidth � as
a function of the number of points N . Each red cross corresponds to an
auto-tuned � of one trial, and each black square corresponds to the mean
of these auto-tuned �. (b) IEs of DM and GPDM methods as functions
of N . Each red cross is the IE for one trial. For one independent trial,
plotted are (c) IEs of DM and (d) IEs of GPDM as functions of bandwidth
� for different N . Squares correspond to the auto-tuned �.

defined as in (2.5) with

�.x/ D 1:1C sin2 � cos2 �;

where the trigonometric functions for .�; �/ as functions x are still given in (4.15).
The semitorus is still defined with the embedding function as in (3.2). We set the
analytic solution of this problem to be

u.x/ D sin� sin �;

and calculate

f WD L2u D 1q��g��@i
�
�

q��g��gij @ju�:
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(a) � vs. N (b) IE vs. N
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FIGURE 4.7. The semitorus example with the well-sampled data in
Section 4.2. (a) The auto-tuned bandwidth � as a function of number of
points N . (b) IEs of DM and GPDM methods as functions of N .

The boundary conditions g WD �1@�u C �2u at � D 0 and � D � are given
the same as those in Section 4.2. Then, we approximate the solution for the PDE
problem, subjected to the manufactured f and g.

Randomly sampled data: Numerically, the grid points
�
�i ; �j

	
are randomly

uniformly distributed on �0; 2�� � �0; ��. For N D 322; 452; 642; 902; 1282 grid
points, we set k � p

N and apply the �-auto-tuning method discussed in Section 2.1.
For each N , we show results for 16 independent trials. In Figure 4.5, we show the
absolute errors in � and � between the true and the estimated solutions obtained
for DM and GPDM methods for N D 642 and N D 1282. For DM, the IEs
are relatively large and do not follow a clear decreasing pattern as N increases
(kEuM � yuMk1 D 0:203 forN D 642 and kEuM � yuMk1 D 0:186 forN D 1282).
On the other hand, the inverse error (IE) of GPDM is smaller than that of DM and
decreases from 0:146 to 0:074 as N is increased from 642 to 1282.

Figure 4.6(a) shows the auto-tuned bandwidth � as a function of N . Figure 4.6(b)
shows IEs as functions of N for both DM and GPDM. One can see that GPDM
solutions converge, whereas DM solutions do not converge. Figure 4.6(c) and (d)
show IEs of DM and GPDM methods, respectively, as functions of bandwidth � for
different N for one independent trial. One can see that as N increases, IE of GPDM
decreases, whereas IE of DM does not decrease. For completeness, we depict the
results of auto-tuned epsilon in squared symbols as shown in Figure 4.6(c)(d). Note
that for the GPDM, the auto-tuned � seems to correspond to the lowest IE.

For comparison, we also show numerical results with well-sampled data.

Well-sampled data: The grid points
�
�i ; �j

	
are well uniformly distributed on

�0; 2�� � �0; ��; with i; j , both equal to 32; 45; 64; 90; 128 points in each direction,
which is the same as those in Section 4.2. For different N grid points, we fix
k D 121 nearest neighbors and then apply the �-auto tuning method discussed in
Section 2.1. One can see from Figure 4.7(a) that the auto-tuned bandwidth � is on
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order of N�1. This rate for the well-sampled data is faster than that for random
data, as shown in Figure 4.6(a). Figure 4.7(b) shows that IE of GPDM decays on
the order of N�1, whereas IE of DM does not decay for different N .

Other choices of k nearest neighbors and auto-tuned � for GPDM: For well-
sampled data, we also examined the auto-tuned � under variable k nearest neighbors,
that is, we choose k � p

N . We found that for well-sampled data, the rates preserve
as in Figure 4.7, that is, the bandwidth � D O.N�1/ and IE is O.N�1/ as well (not
shown here).

For random data, we also examined the auto-tuned � under fixed k D 200

nearest neighbors. However, we found that the results are different between using
fixed k and variable k. For variable k, the bandwidth � D O.N�1=2/ and IE is
O.N�1=2/ as shown in Figure 4.6. For fixed k, the bandwidth � D O.N�1/ and
IE is O.N�1=4/ (not shown here).

4.3 Anisotropic diffusion on an unknown “face” manifold
In this section, we consider solving the boundary value problem in (4.13) with

� D 1:1C sin2.10x1/ and f D cos.10x2/ on an unknown manifold example of
a two-dimensional “face” x D .x1; x2; x3/ 2 M � R3. We consider the Robin
boundary condition on the one-dimensional, closed boundary curve of the face. The
surface used in this section is from Keenan Crane’s 3D repository [17]. Notice that
we have no access to the analytic solution since we do not know the embedding of
the face surface. For comparisons, we numerically solve the problem with the finite
element method (FEM) using the FELICITY FEM Matlab toolbox [54].

Figure 4.8 shows the comparison of the solutions among FEM, DM, and GPDM
methods corresponding to the Robin boundary condition (@�uC 10u D 0 on @M ).
To compute the FEM solution as a benchmark, we applied FELICITY toolbox in
Matlab using the triangulated mesh of the surface, which consisted of 17157 points
and a connectivity matrix for the triangle elements. We use a linear finite element
space in the FEM algorithm. We used k D 512 nearest neighbors and tuned the
kernel bandwidth parameter as � D 3 � 10�6. For GPDM, we used K D 6 layers
of ghost points for 168 boundary points so that we used 168 � 6 ghost points in
total. In Figure 4.8, we found that the inverse error (IE) between GPDM and FEM
solutions (about 3:2 � 10�4) is smaller than that between DM and FEM solutions
(about 4:3 � 10�4); here the scaling of the true solution is on the order of 10�3.
In this case, one can see that larger errors of GPDM are locally concentrated near
the nose and the mouth, whereas the larger errors for DM are evenly distributed on
the lower face. Thus, for the Robin boundary condition, one can see that GPDM
exhibits better performance than the standard DM.

5 Applications: Solving Elliptic Eigenvalue Problems
In this section, we apply the GPDM algorithm for solving the eigenvalue problem

L k D �k k on a manifold with boundary, where L is either the Laplace-Beltrami
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(a) FEM Solution (b) Difference between FEM & DM

(c) Difference between FEM & GPDM

FIGURE 4.8. Comparison of the PDE solutions among FEM, DM, and
GPDM on the “face” example with the Robin boundary condition. (a)
FEM solution. (b) Absolute difference between FEM and DM solutions.
(c) Absolute difference between FEM and GPDM solutions.

in (2.3) or the weighted Laplacian operator in (2.4). Since there is no f in this
problem, we cannot use the quadratic extrapolation formula in (3.14). Instead, we
extrapolate u using the linear extrapolation formula defined as follows:

(5.1)

zuG1�;j � 2u
�
xBj
�C u

�zxG0j � D 0;

zuG2�;j � 2zuG1�;j C u
�
xBj
� D 0;

zuGk�;j � 2zuGk�1�;j C zuGk�2�;j D 0; k D 3; : : : ; K;

where zuGk�;j are the function values to be specified. It is worth noting that if we
replace the quadratic extrapolation in (3.14) with (5.1), one can deduce the error
rate analogous to Proposition 3.6 except that the first error bound h3 is replaced with
h2. With this linear extrapolation formula, we consider the following algorithm.

ALGORITHM 5.1. GPDM algorithm for eigenvalue problems:
(1) Supplement the ghost points as in Section 3.3 and construct the augmented

xN � xN matrix using DM based on all points on manifold and ghost points.
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(2) Construct the GPDM estimator, an .N �J /� .N �J / matrix, based on the
homogeneous extrapolation formula (5.1) for u at the ghost points and the
homogeneous boundary condition (4.5). Here, J is the number of boundary
points. The homogeneous equations (5.1) and (4.5) have a unique solution
that can be written in a compact form as a the column vector,�yuB ; EuG� � D CyuI ;
where EuG� , yuB , and yuI are column vectors with components consisting of
the estimated function values of u at the estimated ghost points, boundary
points, and interior points, respectively, as defined in (3.16)–(3.17). Here,
C is a .JK C J / � .N � J / matrix. Denoting the column vector yu WD
.yuI ; yuB ; EuG� / 2 R xN , the diffusion operator L is approximated with the
following matrix:

Lhyu WD L.1/yuI C L.2/
�yuB ; EuG� � D L.1/yuI C L.2/CyuI

D �
L.1/ C L.2/C

�yuI :
Here, we have defined the submatrices L.1/ 2 R.N�J/�.N�J/ and L.2/ 2
R.N�J/�.JKCJ/ of the augmented .N � J /� xN matrix Lh � .L.1/;L.2//,
and we should point out that these submatrices are different than those
defined in (3.20).

(3) Solve the eigenvalue problem of the diffusion matrix L.1/ C L.2/C.

For comparison, we also apply the standard DM algorithm for solving the eigen-
value problem L k D �k k with the following modification to incorporate bound-
ary conditions other than homogeneous Neumann.

ALGORITHM 5.2. DM algorithm for eigenvalue problems with non-Neumann bound-
ary conditions:

(1) Construct the DM estimator, an .N � J / � .N � J / matrix, based on the
homogeneous boundary condition (4.5). Here, J is the number of boundary
points. The homogeneous boundary condition (4.5) has a unique solution
that can be written in a compact form as

yuB D CDMyuI ;
where yuB and yuI are vectors with components consisting of the estimated
function values of u evaluated at the boundary points and interior points,
respectively. For boundary conditions that involve normal derivatives, we
used the algorithm in Appendix C to approximate the normal derivatives
without adding ghost points. Here, CDM is a .J / � .N � J / matrix. For
the formula below, we define a column vector yu D .yuI ; yuB/. Then, the
diffusion operator L can be approximated with the following matrix:

LDMyu D L.1/DMyuI C L.2/DMyuB D L.1/DMyuI C L.2/DMCDMyuI

� �
L.1/DM C L.2/DMCDM

�yuI :
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Here, we have defined the submatrices L.1/DM 2 R.N�J/�.N�J/ and L.2/DM 2
R.N�J/�.J / of the .N � J / �N DM matrix LDM � .L.1/DM;L

.2/
DM/.

(2) Solve the eigenvalue problem of the diffusion matrix L.1/DM C L.2/DMCDM.

Next, we compare the numerical performance of the DM and GPDM in solving
the eigenvalue problems L k D �k k on manifolds with boundary for various
test examples. We begin with the singular Sturm-Liouville eigenvalue problem of
Legendre polynomials on a flat domain ��1; 1�. Next, we show numerical results
of the Laplace-Beltrami operator on various embedded smooth manifolds, such
as a 1D semicircle in R2 with Dirichlet and Robin boundary conditions and a 2D
semitorus in R2 with mixed boundary conditions.

5.1 A singular Sturm-Liouville problem
First, we consider solving the Legendre differential equation on the flat domain

��1; 1�;

(5.2) L k WD
d

dx

��
1 � x2�d k

dx

�
D �k.k C 1/ k;

where the eigenvalues are �k D �k.k C 1/with k D 0; 1; 2; : : : , and the eigenfunc-
tions  k are Legendre polynomials. The Legendre polynomials are orthogonal with
respect to a uniformly distributed weight over the domain ��1; 1�. The complete-
ness of the set of eigenfunctions follows from the framework of Sturm-Liouville
theory. It is well-known that the differential equation (5.2) has singular points at
the boundary x D �1, so that the eigenfunctions  k are required to be regular at
x D �1.

Numerically, the operator L in (5.2) is estimated by choosing � D 1 � x2 in the
weighted Laplacian operator L2 in (2.4) using the GPDM method. At the boundaries
x D �1, L reduces to a first-order differential operator L k D �2x d k

dx
, so

that it can be treated as a boundary condition that is estimated using a finite-
difference method. In particular, we construct an N � N diffusion matrix on N
equally spaced discrete grids fxi D 2.i � 1/=.N � 1/ � 1giD1;:::;N on ��1; 1�. For
efficient computation, the sparse diffusion matrix is represented using the kernel
generated from k D 50 nearest neighbors based on the Euclidean distance of xi [28].
The bandwidth � D 1:5�10�5 is chosen forN D 400 by the auto-tuning algorithm
discussed in Section 2.

Figure 5.1 shows the comparison of the eigenvalues and eigenfunctions between
the analytic Legendre polynomials and the numerical results from DM and GPDM.
It can be seen from Figure 5.1 that both eigenvalues and eigenfunctions can be
well approximated within numerical accuracy. For a detailed inspection, we show
the errors of the eigenvalues and the eigenfunctions as functions of the mode-k,
respectively, for the different number of points N in Figure 5.2. It can be seen
that both DM and GPDM provide convergent eigenvalues and eigenfunctions as N
increases. The errors of GPDM are slightly smaller than those of DM.
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FIGURE 5.1. DM and GPDM estimation of eigenvalues and eigenfunc-
tions for the Legendre polynomials on flat domain ��1; 1�.
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FIGURE 5.2. Sturm-Liouville problem: Error of (a) eigenvalues and
(b) eigenfunctions as functions of the mode-k for different numbers of
points.

5.2 Laplace-Beltrami operator on a semicircle
In this example, we consider solving the eigenvalue problem � k D �k k on a

1D semicircle with Dirichlet and Robin boundary conditions. We neglect to show
results with the Neumann boundary condition since the performances of GPDM
and DM are identical. The Riemannian metric of the semicircle is given by (2.12)
with a D 1. For the Dirichlet boundary condition  k D 0 at both ends � D 0 and
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� , one can check that the eigenvalues and eigenfunctions are

�k D �k2;  k D sin.kx/; for k D 1; 2; 3; : : : :

For the Robin boundary condition �@� k C  k D 0 at � D 0 and @� k C
 k D 0 at � D �; we can find the explicit expression of both the eigenvalues and
eigenfunctions,

�k D
(
1 for k D 1;

�.k � 1/2 for k D 2; 3; : : : ;

 k D
(

exp.�x/ for k D 1;

sin..k � 1/x/ � .k � 1/ cos..k � 1/x/ for k D 2; 3; : : : :

We should point out that the Robin boundary condition at � D 0 corresponds to
unphysical problems.

The Laplace-Beltrami operator L1 is numerically estimated using DM and GPDM
from formula (2.3). We construct an N �N matrix on N equally spaced discrete
grids fxi D .cos..i � 1/�=.N � 1//; sin..i � 1/�=.N � 1///giD1;:::;N . The ker-
nel uses k D 50 nearest neighbors and the bandwidth � D 2:1 � 10�5 that is
auto-tuned using a fixed (for N D 400) grid points for all types of boundary condi-
tions. The numerical results are shown in Figure 5.3. In these two problems, the
eigenvalues and eigenfunctions can be well approximated by both DM and GPDM,
although DM is less accurate for the Robin boundary condition (as seen in the
estimation of mode-1).

Figures 5.4(a),(b) show errors of the eigenvalues and eigenfunctions, respectively,
as functions of mode-k for a different number of points N on a semicircle example
with the Robin boundary condition. Figures 5.4(c),(d) show the errors of the
eigenvalues and eigenfunctions as functions of N , respectively. It can be seen that
for DM, there is no convergence in the estimation of the leading eigenvalues and
eigenfunctions as N increases. In comparison, for GPDM, there is convergence in
the estimation of the leading eigenvalues and eigenfunctions.

5.3 Laplace-Beltrami operator on a semitorus
In this example, we consider solving the eigenvalue problems � k D �k k

on a 2D semitorus embedded in R3 with Dirichlet and Dirichlet-Neumann mixed
boundary conditions. Here, the torus is defined with the standard embedding
function (3.2) with the Riemannian metric (3.3), the parameter a D 2, and the
intrinsic coordinates .�; �/ on �0; 2��� �0; ��. Then, we can check that the Laplace-
Beltrami operator in the intrinsic coordinates .�; �/ can be written as:

(5.3) � k D
1

.aC cos �/2
@2 k

@�2
C @2 k

@�2
� sin �
aC cos �

@ k

@�
D �k k :

We can use the method of separation of variables to solve this eigenvalue problem
(5.3), satisfying Dirichlet and the mixed boundary conditions. That is, we set
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FIGURE 5.3. Comparisons of eigenvalues and eigenfunctions between
DM and GPDM for semicircle example with (a) Dirichlet and (b) Robin
boundary conditions. The Riemannian metric is given by (2.12) with
a D 1.
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FIGURE 5.4. Error of (a) eigenvalues and (b) eigenfunctions as functions
of k for different number of points N for the semicircle example with the
Robin boundary condition.Error of (c) eigenvalues and (d) eigenfunctions
vs. N . Note that for DM, there is no convergence for the leading eigen-
values and eigenfunctions.

 k D �k.�/�k.�/ and substitute  k back into (5.3) to deduce the eigenvalue
problems for �k and �k:

�00k Cm2k�k D 0;(5.4)

�00k �
sin �

aC cos �
�0k �

m2
k

.aC cos �/2
�k D �k�k;(5.5)

where the derivatives in (5.4) and (5.5) are taken with respect to � and � , respectively.
The discrete values of mk are chosen such that �k satisfies (5.4) with two types
of boundary conditions. In particular, type (a) is the Dirichlet boundary condition
at both sides (�k.0/ D �k.�/ D 0) and type (b) is the Dirichlet-Neumann mixed
boundary condition (�k.0/ D 0 and �0

k
.�/ D 0). Then, the eigenvalue problem

(5.5) can be numerically solved for �k with high-order accuracy. The eigenvalue
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�k associated with the eigenfunction  k obtained by the approach above are treated
as the exact solutions of the eigenvalue problem (5.3).

In our numerical implementation, the grid points
�
�i ; �j

	
are uniformly dis-

tributed on �0; 2�� � �0; �� with i; j D 1; : : : ; 64 points in each direction resulting
in a total of N D 4096 grid points. We assume that we do not know the embedding
function (3.2) when solving the eigenvalue problem using DM and GPDM. For the
GPDM method, we estimate normal direction � to the boundary, add ghost points
along �, construct an augmented matrix using standard DM, and finally construct
the N �N diffusion matrix based on the extrapolation formula and boundary con-
ditions. We use k D 200 nearest neighbors to construct a sparse matrix Lh for
computational efficiency. The kernel bandwidth � D 0:004 is auto-tuned for all
types of boundary conditions.

Figure 5.5 shows the numerical estimates of the first 20 eigenvalues and the
eighth eigenfunction for (a) Dirichlet and (b) the mixed boundary conditions. One
can see from Figure 5.5 that the eigenvalues and the eighth eigenfunction can be
approximated well by both DM and GPDM. For the Dirichlet boundary condition,
the largest errors of the first 20 eigenvalues are comparable as 0:08 and 0:12 using
the standard DM and GPDM, respectively. The largest `1-norm error of the first 20
eigenfunctions using GPDM (D 0:01) is much smaller than that using DM (D 0:31).
For the mixed boundary condition, the largest errors of the first 20 eigenvalues
are comparable as 0:06 and 0:04 using the standard DM and GPDM, respectively.
The largest `1-norm error of the first 20 eigenfunctions using GPDM (D 0:99)
is comparable to that using DM (D 1:03). However, a close inspection, e.g., the
eighth eigenfunctions, suggests that the GPDM errors occur on smaller regions of
the domain compared to those of DM.

6 Summary
In this paper, we introduced the ghost points diffusion maps (GPDM) to esti-

mate second-order elliptic differential operators defined on smooth manifolds with
boundaries. The proposed method overcomes the inconsistency of the diffusion
maps (DM) algorithm in estimating these differential operators near the boundaries.
We provided a theoretical convergence study as well as numerical verification on
test problems with tractable solutions and on the unknown “face” manifold to vali-
date our claim. The key idea of GPDM is motivated by the standard ghost points
approach that is used to obtain a higher-order finite-difference approximation of
Neumann/Robin-type boundary conditions on the flat domain. Our key contribution
is to realize this idea with a concrete numerical algorithm on unknown manifolds,
identified only by the point clouds, that is guaranteed to be consistent.

We considered solving elliptic PDEs (4.1) with the GPDM operator estimation
method. We showed that the PDE solver, which is a mesh-free technique, is a
convergent method under the standard assumption of the well-posedness of the
PDE problem. Numerically, we validated the solver on a series of 1D and 2D test
examples with and without explicit solutions. On a problem with an unknown
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manifold where the explicit solution is unknown, we compare the result against the
FEM solution. Overall, GPDM is much more accurate and robust relative to DM
except on the Neumann boundary, for which DM is expected to work well as shown
in [25]. Numerically, we also found that GPDM is more accurate compared to DM
in solving eigenvalue problems associated to the operators (2.3)–(2.4).

While the proposed approach is encouraging, it also poses many open questions,
namely:

� The ghost points are constructed by extending points along the exterior
normal direction from the boundary. Since the errors in estimating the
directional derivatives and normal vectors depend on Hessian (second-order
derivatives), the error can be significant if the curvature is very large at the
boundary. This suggests that the method can be improved by specifying
ghost points that account for the curvature at the boundary. In our context,
where the manifold is unknown, this requires an estimation of the boundary
curvature from the point clouds, which is a problem that we are not currently
familiar with.

� In this work, we have verified the proposed method on 1D and 2D manifolds.
For higher-dimensional manifolds, while the numerical method can be used,
the conditions to achieve the conclusion in the Lemma 3.5 require further
studies.

� The proposed technique assumed that the boundary points are given. In
the case of well-sampled data, the number of points at the boundary is
specified explicitly, J D N 1=d . For the randomly sampled data, when we
employ the local kernel, the auto-tuned � yields error rates of �1 � N�1=2

and �2 � J�1. To have a balanced error, �1 � �2, we require J D N 1=2,
as we numerically verified on 2D examples. If this scaling is valid for
arbitrary dimensions, that is, �1 � N�1=d and �2 � J�1=.d�1/, then the
number of points at the boundary required to achieve balanced error rates
of order N�1=d is J D N .d�1/=d . While this estimate seems to indicate
a severe limitation of this method, intuitively this is consistent with the
well-known fact that the distribution of high-dimensional random variables
on a bounded domain tends to lie near the boundary. Further investigation
is required to understand this thoroughly.

� While the numerical demonstration showed convincing results in solving
eigenvalue problems, spectral convergence and the error estimate of the
eigenfunctions are not known. One possible avenue is to extend the result
in [8, 12, 13, 18, 24] to manifolds with general boundary conditions. In
this direction, a result for the Neumann boundary condition was recently
reported in [37].
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Appendix A Proof of Proposition 3.6
Before proving the main result (Proposition 3.6), we state the pointwise error

estimates that are known from the literature. Subsequently, we deduce several
lemmas before proving the main result.

From previous results [6, 15, 28, 29, 48], we have the pointwise error estimation
under these three situations: (1) on manifolds without boundary, (2) for the test
function u with Neumann boundary condition on manifold with boundary, or (3)
for any u on manifold with boundary but only for points away from the boundary
with distance at least O.�r/, 0 < r < 1=2. For the reader’s convenience, we quote
the following error estimation based on the third situation.

LEMMA A.1 (Pointwise forward error estimate). Let M [ �M be a smooth d -
dimensional manifold embedded in Rn: Let the assumptions in Proposition 3.6 for
the extended manifold M [�M and x 2 M hold. Let xi 2 M for i D 1; : : : ; N

and xGkj 2 �M for j D 1; : : : ; J , k D 1; : : : ; K, be i.i.d. samples with sampling
density q 2 C 3.M [�M/ defined with respect to the volume form inherited by
the d -dimensional smooth augmented manifold M [�M from the ambient space
Rn. For any u 2 C 3.M [�M/, define a vector

Eu D .u.x1/; : : : ; u.xN /; u.x
G1
1 /; : : : ; u

�
x
GK
J /

�> 2 R xN :

Then for i D 1; : : : ; N and j 0 D 1; 3,

��.Lj 0 Eu/i � Lj 0u.xi /
�� D O

 
�;

q.xi /
1=2

p xN�2Cd=4
;
jru.xi /jq.xi /�1=2p xN�1=2Cd=4

!(A.1)

��.L2 Eu/i � L2u.xi /
�� D O

 
�;

q.xi /
1=2

p xN�2Cd=4
;

��r.p�.xi /u.xi //��q.xi /�1=2p xN�1=2Cd=4

!(A.2)

in high probability as � ! 0 after xN !1. For L1 and L2, the gradient operator is
defined with respect to the Riemannian metric g.u; v/ for all u; v 2 Tx.M [�M/,
inherited by M from the ambient space. For L3, the gradient operator is de-
fined with respect to a new metric, zg.u; v/ WD g.c�1=2u; c�1=2v/ for all u; v 2
Tx.M [�M/, where c denotes the symmetric positive definite diffusion tensor.

In (A.1)–(A.2), the first error term, which is valid as � ! 0, is due to the
continuous asymptotic expansion in (2.3), (2.4), and (2.9). The second error term is
due to the estimation of the sampling density through (A.3), and the final error term
is the bias induced by the discrete estimator; both of these are valid as xN !1 and
fixed � > 0.

PROOF. The proofs for the cases j 0 D 1 and 3 are readily available in [6, 15, 28,
29, 48]. For j 0 D 2, the proof follows directly the steps in appendix A of [29] with
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the following modification. Define a matrix Kij D K.�; xi ; xj / D exp
�� jxi�xj j

2

4�

�
.

Let

yq�.xj / WD �d=2

xN

xNX
iD1

Kj i ;(A.3)

as an estimator to the sampling density of the data q.xj /. With this definition, we
define

Fi .xj / WD
K.�; xi ; xj /

p
�.xj /u.xj /

yq�.xj / and Gi .xj / WD
K.�; xi ; xj /

p
�.xj /

yq�.xj / :

Following exactly the steps in the proof in [29] with the asymptotic expansion in
(2.2), one obtains the error estimate in (A.2) for a discrete estimator that converges
to ��1L2. Thus, the error for estimating L2 is similar to that of ��1L2 since the
discrete estimator involves only a left multiplication by a diagonal matrix with
diagonal components �.xj / (which we denoted by S in (2.10)). �

Now, we will deduce several intermediate results that will simplify the proof of
Proposition 3.6. For the discussion below, we define the matrix,

Lh D 1

�
.zD � I/ WD 1

�
..Dh/�1Kh � I/;(A.4)

obtained from the standard diffusion maps as a discrete approximation to one of the
diffusion operators in (2.13) with the entries of zD denoted by zDi;j . As we discussed
in Section 3.4, the matrix Lh is a discrete approximation to one of the diffusion
operators in (2.3)–(2.5) with the following important modification. We construct
the matrix Lh by evaluating the kernel on

fxigNiD1 [
�zxGkj 	J;K

j;kD1
;

where the interior ghost points are denoted as components of fxig, that is, fzxG0j g �
fxig. To be consistent with the notation in Section 3.4, we emphasize that Lh 2
RN� xN is a nonsquare matrix with xN D N C JK, where the N rows correspond to
the kernel evaluation at fxigNiD1. Based on the discussion in Remark 3.8, we will
only prove the next lemma for randomly sampled data, of which the error is mainly
due to

(A.5)

��
j .h/ � zxG0j
�� � ��
j .h/ � xG0j ��C ��xG0j � zxG0j

��
D O.h2/C hj� � z�j D O.h

p
�/:��xGkj ; zxGkj

�� D khj� � z�j D O.h
p
�/;

for j D 1; : : : ; J and k D 1; : : : ; K, as pointed out in Remark 3.7. In (A.5),
we have used the fact that j� � z�j D O.

p
�/ for randomly sampled data. For

convenience, we recall that 
j .h/ WD exp
x
B
j
.�h�xB

j
/ 2M (see Figure 3.2(a) for a

geometric illustration).
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Let L be defined as in (A.4) such that the matrix is constructed by evaluating the
kernel on fxig [ fxGkj g, where we replace the interior ghost points fzxG0j g in the

construction of Lh with the corresponding f
j .h/g 2M . Basically L is constructed
based on points that lie on the extended manifold,M [�M . With this construction,
we have:

LEMMA A.2. Let Lh and L be constructed as in the discussion above. Suppose that
xj WD 
j .h/ such that jxi � xj j D O.h/ for all i ¤ j . Then for u 2 C.B�r .@M//,

xNX
jD1

Lhij zuj D
xNX

jD1

Lijuj CO.h2��3=2; h��1=2/;(A.6)

as h! 0 and fixed � > 0. Here, zuj and uj are different only on the ghost points,
particularly, when zuj D u.zxG0j /, we have uj D u.
j .h// D u.xj /. Also, when

zuj D u.zxGkj /, then uj D u.x
Gk
j / for all k D 1; : : : ; K.

PROOF. Suppose we consider xj D 
j .h/ that satisfies (A.5). For jxi � xj j D
O.h/, one can show that

Khij WD exp
�
�
jxi � zxG0j j2

4�

�

D exp
�
�jxi � xj j

2

4�

�
exp

�
�cjxi � xj jh

p
� CO.h2�/

4�

�

D exp
�
�jxi � xj j

2

4�

�
.1CO.h2��1=2//:

Therefore,

Dhi WD
xNX

jD1

Khij D
xNX

jD1

Kij CO.h2��
1
2 / WD Di CO.h2��

1
2 /;

where the constant in the big-oh notation absorbs the number of perturbed points,
which is much smaller than k when the k-nearest neighbor summand is used. This
means

�
Dhi
��1 WD D�1i

�
1 � D�1i O.h2��1=2/

�
:
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and
xNX

jD1

Lhij zuj

WD ��1
��

Dhi
��1 xNX

jD1

Khij zuj � zui
�

D ��1
�

D�1i .1 � D�1i O.h2��1=2//
xNX

jD1

Khij zuj � zui
�

D ��1
�

D�1i .1 � D�1i O.h2��1=2//
� xNX
jD1

Kij zuj C
xNX

jD1

zujO.h2��1=2/
�
� zui

�

D ��1
�

D�1i

xNX
jD1

Kij zuj � zui C D�1i

xNX
jD1

zujO.h2��1=2/

� D�1i

xNX
jD1

Kij zujD�1i O.h2��1=2/
�

D
xNX

jD1

Lij zuj C D�1i

� xNX
jD1

.1 � D�1i Kij /zuj
�
O.h2��3=2/

�

D
xNX

jD1

Lijuj CO.h2��3=2; h��1=2/;

where in the last equality, we have used the fact uj � zuj D O.h�1=2/ on the
estimated ghost points due to (A.5), u 2 C 1.B�r@M/, and 1 � D�1i Kij � 1 and

Di � 1 such that D�1i
�P xN

jD1.1 � D�1i Kij /zuj
� � jzuj, where zu 2 R xN is defined

below in (A.7). �

The assumption that jxi � xj j D O.h/, where xj WD 
j .h/ is rather natural in
the numerical implementation with the k-nearest neighbor, even if there are many
other points xi that are further away with distance of order-

p
�. In particular, our

construction is such that the perturbed points fzxG0j g are defined to be of order-h
away from each boundary point and the corresponding ghost points fzxGkj g as defined
in (3.12). Therefore, when the k-nearest neighbor is used in constructing the matrix
Lh, then these estimated ghost points either belong to the k-nearest sets of other
points whose distance are of order-h or they have a k-nearest neighbor of mostly
points of order-h away.
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Since h D O.�/ for the randomly sampled data case, the two error bounds are
equivalent. Next, we define the column vector

(A.7)
zu WD .zu1; : : : ; zu xN /
D �

u.x1/; : : : ; u
�zxG0j �

; : : : ; u.xN /; u
�zxG11 �

; : : : ; u
�zxGKJ �� 2 R xN :

For Eu as defined in (3.17), the error rate in (A.6) can be written in a compact form
as

Lhzu D LEuCO.h2��3=2/:(A.8)

This error also implies

Lh Eu D LEuCO.h2��3=2/;(A.9)

since zu � Eu D O.h�1=2/.
Next, we will deduce the consistency of the extrapolation formula (3.14). For

this purpose, we define Eu� D .u.x1/; : : : ; u.zxG0j /; : : : ; u.xN /; zuG1�;1; : : : ; zuGK�;J /> as

in (3.13). Here, u.zxG0j / replaces u.
j .h// in the first N -terms of Eu as in (3.17).

LEMMA A.3 (Consistency of the extrapolation formula). Under the assumptions
of Proposition 3.6, for each boundary point xBj 2 @M , the truncation error for the
first equation in the extrapolation formula (3.14) is given by

(A.10)

����
J;KX
j 0;kD1

zDBj ;.NC.j 0�1/KCk/
�
u
�zxGkj 0 � � zuGk�;j 0

�����
D �

���Lhzu�
Bj
� �Lh Eu��Bj ��

D O
�
�.h2��3=2; �; xN�1=2��.2Cd=4/; xN�1=2��.1=2Cd=4//

�
;

in high probability as � ! 0 after xN !1 and h! 0. For the last three equations
in (3.14), we have

(A.11)

���u�zxG2j � � 3u�zxG1j �� � �zuG2�;j � 3zuG1�;j ��� D O.h3/;���u�zxG3j � � 3u�zxG2j �C 3u
�zxG1j �� � �zuG3�;j � 3zuG2�;j C 3zuG1�;j

��� D O.h3/;���u�zxGkj � � 3u�zxGk�1j

�C 3u
�zxGk�2j

� � u�zxGk�3j

��
� �zuGk�;j � 3zuGk�1�;j C 3zuGk�2�;j � zuGk�3�;j

��� D O.h3/;

for k D 4; : : : ; K.

PROOF. First, let us proof (A.10). For this case, we only consider the Bj th row
corresponding to the boundary point xBj . In the case of randomly sampled data, we
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have

(A.12)

��.Lhzu/Bj � .Lh Eu�/Bj ��
� ��.Lhzu/Bj � .LEu/Bj ��C ��.LEu/Bj � .Lh Eu�/Bj ��
D ��.Lhzu/Bj � .LEu/Bj ��C ��.LEu/Bj � Lu.xBj /

��
D O.h2��3=2/CO

�
�; xN�1=2��.2Cd=4/; xN�1=2��.1=2Cd=4/

�
;

where we have used the fact that Lu.xBj / D f .xBj / and .Lh Eu�/Bj D f .xBj /,
which is the first equation of the extrapolation formula in (3.14) in deducing the
third line above. To obtain the fourth line, we directly used (A.8) for the first
bound and Lemma A.1 for the second error bound, where we have suppressed the
dependence on q.xBj /, ru.xBj /, r.�1=2.xBj /u.xBj // in (A.1) and (A.2) to simplify
the discussion.

For the well-sampled data, based on the discussion in Remark 3.8, the first error
term in (A.12) is not applicable and we treat Lh as L. Since the first N components
of zui (see (A.7)) are equal to the components of EuM� defined in (3.16) and the
identity I only contributes to the coefficient of u.xBj / D zuBj�;j for the boundary point
xBj , we can simplify the left-hand side of (A.12) as

��.Lhzu/Bj � .Lh Eu�/Bj �� D 1

�

��.zDzu/Bj � �zDEu��Bj ��
D 1

�

�����
J;KX
j 0;kD1

zDBj ;.NC.j 0�1/KCk/
�
u
�zxGkj 0 � � zuGk�;j 0

������:(A.13)

Thus, from (A.12) and (A.13), we obtain the result in (A.10).
The proof for (A.11) is straightforward. In particular, for each j D 1; : : : ; J , note

that fzxG0j ; xB ; zxG1j ; : : : ; zxGKj g are points that lie on a straight line in the direction
of z� where the distances between the consecutive points are identical, namely, h.
For u 2 C 3.M [ B�r .@M//, where B�r .@M/ � �M is as in Definition 3.4, then
one can deduce (A.11) by employing the standard Taylor’s expansion on the interval
�zxG0j ; zxGKj �. �

Proof of Proposition 3.6. Notice that we can write (A.10) and (A.11) in Propo-
sition A.3 in a matrix form,

(A.14) E� EuG� D O
�
h3; h2��1=2; �2; xN�1=2��.1Cd=4/; xN�1=2�.1=2�d=4/

�
;

where � EuG� D .jzuG1�;1�u.zxG11 /j; : : : ; jzuGK�;J �u.zxGKJ /j/> and the matrix E is of size
JK � JK. We first show the stability of E, namely E is invertible with uniformly
bounded inverse. To simplify the discussion, we set J D 1 to correspond to a
boundary point. One can use the same idea for the case of J > 1.
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In this case, the matrix E in (A.14) is given by

E D

0
BBBBBBBBB@

zDB1;.NC1/ zDB1;.NC2/ zDB1;.NC3/ zDB1;.NC4/ � � � zDB1;.NCK/
�3 1 0

3 �3 1
:::

�1 3 �3 1
:::

:::
: : : 0

0 � � � �1 3 �3 1

1
CCCCCCCCCA
:

We can obtain the uniform error between Eu and Eu� in (A.14) once showing that
kE�1k1 < C . We have the following decomposition for matrix E, E D E0Cv1v>2 ,

E0 D

0
BBBBBBBB@

1 0 0 � � � � � � 0

�3 1 0

3 �3 1
:::

�1 3 �3 1
:::

:::
: : : 0

0 � � � �1 3 �3 1

1
CCCCCCCCA
; v1 D

0
BBBBB@

1

0
:::
:::

0

1
CCCCCA; v2 D

0
BBBBB@

zDB1;.NC1/ � 1zDB1;.NC2/zDB1;.NC3/
:::

zDB1;.NCK/

1
CCCCCA:

By induction, one can show that

E�10 D

0
BBBBBBBB@

1 0 0 � � � � � � 0

3 1 0

6 3 1
:::

10 6 3 1
:::

::: 10
: : :

: : :
: : : 0

K.K C 1/=2 � � � 10 6 3 1

1
CCCCCCCCA
;

so that


E�10




1

D K.K C 1/.K C 2/=6 < C by noticing that K is always
fixed to be less than 10 even when N ! 1. One can calculate that E�10 v1 D
.1; 3; 6; : : : ; K.K C 1/=2/> and 1C v>2 E�10 v1 D

PK
kD1 k.k C 1/ zDB1;.NCk/=2;

which is nonzero. Thus, according to the Sherman-Morrison formula, we have



E�1



1
D 

�E0 C v1v>2

��1


1
D






 

I � E�10 v1v>2
1C v>2 E�10 v1

!
E�10







1

< C:

Inverting E in (A.14), for each j D 1; : : : ; J , k D 1; : : : ; K, we have���zuGk�;1 � u�zxGkj ����
D �

� EuG�
�
j;k

D O
�
h3; h2��1=2; �2; xN�1=2��.1Cd=4/; xN�1=2�.1=2�d=4/

�
;
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and the proof is complete by comparing these error rates with ju.xGkj /�u.zxGkj /j D
O.h

p
�/.

Appendix B Proof of Theorem 4.1
The proof here follows the standard approach for proving the convergence of the

finite-difference method presented in many numerical PDE texts (e.g., see [30]).
That is, we will show that LI in (4.8) satisfies a discrete maximum principle.
Subsequently, a comparison function is chosen using the maximum principle of
the Dirichlet PDE problem to establish the stability condition. The convergence
is achieved with the consistency of the GPDM estimator in Theorem 3.9. Before
we proceed with these steps, let us first analyze the resulting GPDM estimator,
Lg.EuM / WD .L.1/ C L.2/A/EuM C L.2/ Eb, as defined in (3.20).

To simplify the discussion, we present the 1D case with J D 2 boundary points,
denoted by xB1 D x1 and xB2 D xN (see Figure 3.1(a)). The corresponding ghost
points are zxG01 D x2 and zxG02 D xN�1, using the secant line approximation.
Otherwise, the same analysis can be carried by relabeling zxG0j by other arbitrary xi .
The last three equations in (3.14) can be written as

zuGk�;1 D
k.k C 1/

2
zuG1�;1 � .k2 � 1/u1 C

k.k � 1/
2

u2;

zuGk�;2 D
k.k C 1/

2
zuG1�;2 � .k2 � 1/uN C k.k � 1/

2
uN�1;

k D 2; : : : ; K:(B.1)

Using the same notation as in (A.4), we let Lh D .zD�I/=� WD ..Dh/�1Kh�I/=� be
the N � xN matrix, where xN D N C2K, obtained from the standard diffusion maps
as a discrete approximation to one of the diffusion operators in (2.3)–(2.5) with the
entries of zD denoted by zDi;j . To be consistent with the notation in Section 3.4, we
emphasize that Lh 2 RN� xN is a nonsquare matrix with xN D N C 2K, where the
N -rows correspond to the kernel evaluation at the points fxi 2M gNiD1.

Then, the i th component of .zD � I/Eu� is given by

NC2KX
jD1

zDi;juj � ui(B.2)

D
N�2X
jD3

zDi;juj � ui C zDi;1u1 C zDi;2u2 C zDi;N�1uN�1

C zDi;NuN C
2;KX
j;kD1

zDi;NC.j�1/KCkzuGk�;j D
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D
N�2X
jD3

zDi;juj � ui C
 
zDi;1 �

KX
kD2

.k2 � 1/ zDi;NCk
!
u1 C

 
zDi;2 C

KX
kD2

k.k � 1/
2

zDi;NCk
!
u2

C
 
zDi;N�1 C

KX
kD2

k.k � 1/
2

zDi;NCKCk
!
uN�1 C

 
zDi;N �

KX
kD2

.k2 � 1/ zDi;NCKCk
!
uN

C
 
KX
kD1

k.k C 1/

2
zDi;NCk

!
zuG1�;1 C

 
KX
kD1

k.k C 1/

2
zDi;NCKCk

!
zuG1�;2

D
N�2X
jD3

zDi;juj � ui C ci;1u1 C ci;2u2 C ci;N�1uN�1 C ci;NuN

C ci;0zuG1�;1 C ci;NC1zuG1�;2;

where we have defined

ci;1 D zDi;1 �
KX
kD2

.k2 � 1/ zDi;NCk; ci;2 D zDi;2 C
KX
kD2

k.k � 1/
2

zDi;NCk;

ci;N�1 D zDi;N�1 C
KX
kD2

k.k � 1/
2

zDi;NCKCk; ci;N D zDi;N �
KX
kD2

.k2 � 1/ zDi;NCKCk;

ci;0 D
KX
kD1

k.k C 1/

2
zDi;NCk; ci;NC1 D

KX
kD1

k.k C 1/

2
zDi;NCKCk;

for convenience. From the first equation in (3.14), we have

(B.3)

N�2X
jD3

zD1;juj � u1 C c1;1u1 C c1;2u2 C c1;N�1uN�1 C c1;NuN

C c1;0zuG1�;1 C c1;NC1zuG1�;2 D �f .x1/;

N�2X
jD3

zDN;juj � uN C cN;1u1 C cN;2u2 C cN;N�1uN�1 C cN;NuN

C cN;0zuG1�;1 C cN;NC1zuG1�;2 D �f .xN /:

Since c1;NC1 D cN;0 � 0, we obtain

(B.4)

zuG1�;1 D
1

c1;0

�
�f .x1/ �

N�2X
jD3

zD1;juj C .1 � c1;1/u1 � c1;2u2

� c1;N�1uN�1 � c1;NuN
�
;

zuG1�;2 D
1

cN;NC1

�
�f .xN / �

N�2X
jD3

zDN;juj � cN;1u1 � cN;2u2

� cN;N�1uN�1 C .1 � cN;N /uN
�
:
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We should point out that equations (B.4) and (B.1) are components of (3.19). There-
fore, the i th row in (B.2) becomes

(B.5)

NC2KX
jD1

zDi;juj � ui

D
N�2X
jD3

zDi;juj � ui C ci;1u1 C ci;2u2 C ci;N�1uN�1 C ci;NuN

C ci;0

c1;0

�
�f .x1/ �

N�2X
jD3

zD1;juj C .1 � c1;1/u1 � c1;2u2 � c1;N�1uN�1 � c1;NuN
�

C ci;NC1

cN;NC1

�
�f .xN / �

N�2X
jD3

zDN;juj � cN;1u1 � cN;2u2 � cN;N�1uN�1 C .1 � cN;N /uN
�

D
N�2X
jD3

�
zDi;j � ci;0

c1;0
zD1;j � ci;NC1

cN;NC1
zDN;j

�
uj � ui C

�
ci;1 C ci;0

c1;0
.1 � c1;1/ � ci;NC1

cN;NC1
cN;1

�
u1

C
�
ci;2 � ci;0

c1;0
c1;2 � ci;NC1

cN;NC1
cN;2

�
u2 C �

�
ci;0

c1;0
f .x1/C ci;NC1

cN;NC1
f .xN /

�

C
�
ci;N�1 � ci;0

c1;0
c1;N�1 � ci;NC1

cN;NC1
cN;N�1

�
uN�1 C

�
ci;N � ci;0

c1;0
c1;N C ci;NC1

cN;NC1
.1 � cN;N /

�
uN :

It is clear that 0 < ci;0
c1;0

;
ci;NC1

cN;NC1
< 1 for all, i D 2; : : : ; N�1. Also, zDi;j > zD1;j

and zDi;j > zDN;j for i D 2; : : : ; N � 1 and j D 3; : : : ; N � 2. This implies

zDi;j � ci;0

c1;0
zD1;j � ci;NC1

cN;NC1
zDN;j > zDi;j .1 � ci;0

c1;0
� ci;NC1

cN;NC1
/ > 0:

In fact, since ci;2 > c1;2 and ci;2 > cN;2 for i D 2; : : : ; N � 1, it is clear that

ci;2 � ci;0

c1;0
c1;2 � ci;NC1

cN;NC1
cN;2 > ci;2

�
1 � ci;0

c1;0
� ci;NC1

cN;NC1

�
> 0:

Likewise, we have

ci;N�1 � ci;0

c1;0
c1;N�1 � ci;NC1

cN;NC1
cN;N�1 > ci;N�1

�
1 � ci;0

c1;0
� ci;NC1

cN;NC1

�
> 0:

The coefficients on the boundary points,

ci;1 C ci;0

c1;0
.1 � c1;1/ � ci;NC1

cN;NC1
cN;1 > ci;1

�
1 � ci;NC1

cN;NC1

�
> 0;

ci;N � ci;0

c1;0
c1;N C ci;NC1

cN;NC1
.1 � cN;N / > ci;N

�
1 � ci;0

c1;0

�
> 0;

are also strictly positive. Thus, all of the nondiagonal coefficients of (B.5) are
strictly positive.

We should point out that the expression on the right-hand-side of (B.5) is nothing
but the i th row of the affine operator in (3.20), that is,

NC2KX
jD1

zDi;juj � ui D �
�
.L.1/ C L.2/A/EuM C L.2/ Eb�

i
:
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Let us denote M D �.L.1/ C L.2/A/. Notice that if ui D 1 for all i D 1; : : : ; N C
2K, then from (B.3) and the fact that

PNC2K
jD1

zDi;j D 1, one can verify that

f .x1/ D f .xN / D 0, which means .L.2/ Eb/i D 0. Evaluating (B.5) at ui D 1, one
can see that

(B.6)

0 D
NC2KX
jD1

zDi;j � 1

D
N�2X
jD3
j¤i

�
zDi;j � ci;0

c1;0
zD1;j � ci;NC1

cN;NC1
zDN;j

�

C
��

zDi;i � ci;0

c1;0
zD1;i � ci;NC1

cN;NC1
zDN;i

�
� 1

�

C
�
ci;1 C ci;0

c1;0
.1 � c1;1/ � ci;NC1

cN;NC1
cN;1

�
C
�
ci;2 � ci;0

c1;0
c1;2 � ci;NC1

cN;NC1
cN;2

�

C
�
ci;N�1 � ci;0

c1;0
c1;N�1 � ci;NC1

cN;NC1
cN;N�1

�
C
�
ci;N � ci;0

c1;0
c1;N C ci;NC1

cN;NC1
.1 � cN;N /

�

D
N�2X
jD3
j¤i

Mi;j CMi;i CMi;1 CMi;2 CMi;N�1 CMi;N ;

where Mi;i < 0 and Mi;j > 0 for all j ¤ i are defined as in the brackets in the
previous equality, respectively.

Discrete Maximum Principle: Suppose Ev D .v.x2/; : : : ; v.xN�1/ is such that
LI Ev > 0. Suppose the maximum occurs at the interior point xi , that is v.xi / �
v.xj / for all j ¤ i . Then,

(B.7)

�Mi;iv.xi / D
N�1X
jD2
j¤i

Mi;j v.xj / � �.LI Ev/i �
N�1X
jD2
j¤i

Mi;j v.xj /

�

0
BB@
N�1X
jD2
j¤i

Mi;j

1
CCAv.xi /:

Here, we use the fact that the matrix �LI (as defined in (4.7)) is nothing but
the submatrix of M, ignoring the first and N th columns. From (B.6), �Mi;i DPN
jD1;j¤i Mi;j >

PN�1
jD2;j¤i Mi;j , which contradicts (B.7), so v cannot attain the

maximum at xi . Repeating the same argument on all interior points, it is clear that
the maximum has to occur at the boundary. That is,

max
1�j�N

v.xj / D fv.x1/; v.xN /g:(B.8)

Using the same argument, one can also show that the minimum occurs at the
boundaries.
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Stability: By assumption, the PDE satisfies a maximum principle. Consider v 2
C 2.M/ that solves Lv.x/ D C for all x 2 M o, v.x/jx2@M D 0, and a constant
C > 0 to be determined. Here, the existence of the unique solution v follows from
the well-posedness assumption of the Dirichlet problem. By the maximum principle,
it is clear that v.x/ � 0. Also, since M is compact, it attains the global minimum
on M . Define vs.x/ WD v.x/ � vmin, where vmin D minx2M v.x/ � 0. Thus it is
clear that 0 � vs.x/ � C2 D jvminj solves Lvs D C and vs.x/jx2@M D C2. In
this case, since GPDM is consistent (see Theorem 3.9), it is clear that for the column
vector, EvMs WD .vs.x1/; EvIs ; vs.xN // 2 RN , where EvIs WD .vs.x2/; : : : ; vs.xN�1//,
we have

���Lg.EvMs /�i �Lvs.xi /
�� � c1�, where � WD maxfh3��1; h2��3=2g. Notice

that

(B.9)

��Lvs.xi / � �Lg�EvMs ��i �� D ��Lvs.xi / � �.L.1/ C L.2/A/EvMs C L.2/ Eb�
i

��
D ��Lvs.xi / � .L.2/ Eb/i � �LB Eg C LI EvIs

�
i

��;
where we have used the decomposition in (4.7) and the affine estimator (3.20). This
means �

LI EvIs
�
i
� C � c1� � .L.2/ Eb/i � .LB Eg/i :

Choosing C D 2C kL.2/ Ebk1 C kLB Egk1, we obtain�
LI EvIs

�
i
� 2 � c1� C

�kL.2/ Ebk1 � .L.2/ Eb/i
�C �kLB Egk1 � .LB Eg/i

�
� 2 � c1� � 0:

Basically 0 � vs.xi / � C2 is a comparison function that we have identified for
proving the stability of the solution. Let M D k Ef I � LB Egk1 be the maximum of
the right-hand-side in (4.8), then for yuI that solves (4.8), we have

LI
�yuI CM EvIs

� � Ef I � LB Eg C .2 � c1�/M � 0
for small enough �, which depends on h and fixed 0 < � � 1. By the discrete
maximum principle in (B.8), it is clear that,

max
xi2M

yuI � max
xi2M

�yuI CM EvIs
� � max

xi2@M
yuB C max

xi2@M
M EvIs

� kyuBk1 C C2k Ef I � LB Egk1:
Using a similar argument on�yuI , we obtain the stability of the approximate solution

kyuIk1 � kyuBk1 C C2k Ef I � LB Egk1:(B.10)

Convergence: Applying (B.10) on yuI � EuI , where components of EuI are the true
solution of the PDE in (4.1) with Dirichlet boundary condition, we obtain

kyuI � EuIk1 � kyuB � EuBk1 C C2k Ef I � LB Eg � LI EuBk1:(B.11)
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Using the same argument as in (B.9) and the error bound in Theorem 3.9, we
immediately see the consistency of the estimator, that is,

(B.12)

��f .xi / � .L.2/ Eb/i � .LB Eg C LI EuI /i
��

D ��Lu.xi / � �Lg.EuM /�i ��
D O

�
h3��1; h2��3=2; h��1=2; �;

xN�1=2��.2Cd=4/; xN�1=2��.1=2Cd=4/
�
;

in high probability, where as � ! 0 after xN !1 and h! 0. Since EuB D yuB D Eg,
combining (B.11) and (B.12), the proof is completed.

Appendix C An Alternative Method
for Estimating the Normal Derivatives

In this appendix, we discuss a method for estimating normal derivatives at the
boundary of a 2D manifold that requires no specification of ghost points. This
scheme is used for estimating the directional derivatives of Neumann or Robin
boundary conditions used in the classical diffusion maps algorithm. Specifically,
the normal derivatives are estimated as follows.

ALGORITHM C.1. Assume that � is the exterior normal direction to the boundary
@M and z� is its numerical estimate as defined in Section 3.1 at a boundary point
xB 2 @M . Then, the normal derivative @�u at xB is estimated as follows:

(1) Find the “left” nearest neighbor xL and “right” nearest neighbor xR for
the boundary point xB 2 @M . Then, one can compute the normalized
vectors,

z�L WD xL � xB
jxL � xB j and z�R WD xR � xB

jxR � xB j :

Here, xL is the nearest point to xB in the region such that the angle
between z�L and �z� satisfies �.z�L;�z�/ < �0 (in our implementation,
�0 D �=4). This basic argument also applies to xR. Moreover, the “left”
and “right” can be numerically distinguished by the negative inner product
h zwL; zwRi < 0 where zwL and zwR are components orthogonal to �z�, that
is, zwL D z�L � .z�L � z�/.z�/ and zwR D z�R � .z�R � z�//.z�/.

(2) Write �z� as a linear combination of z�L and z�R using the linear regression

(C.1) � z� D zaLz�L C zaRz�R;

where zaL and zaR are the regression coefficients.
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(3) Estimate the normal derivative �@�u numerically using the difference
method,

(C.2)

@u

@.��/.x
B/ � �u

�.�z�/.x
B/

WD
�
zaL �u

�z�L
C zaR �u

�z�R

�
.xB/

WD zaLu.x
L/ � u.xB/
jxL � xB j C zaRu.x

R/ � u.xB/
jxR � xB j ;

where we have used equation (C.1) and the fact that z�, z�L, and z�R are
all unit vectors. Then, the normal derivative @�u term in the boundary
condition (4.1) in the following section can be numerically estimated using
equation (C.2) for all points on the boundary.

Next, we provide the error rate for estimating the directional derivative @�u with
equation (C.2) at the boundary points.

PROPOSITION C.2. Let u 2 C 3.M/ be a smooth function on a 2D manifoldM with
1D boundary @M . Let fx1; : : : ; xN g � M be a set of data points, among which
some labeled points lie on the boundary @M . Let xB be a boundary point on the
1D smooth @M and � be the unit exterior normal direction to the boundary @M at
xB . Let xL and xR 2 fx1; : : : ; xN g be the "left" and "right" nearest neighbors,
respectively, for the boundary point xB . Then, the normal derivative @�u at xB
estimated by equation (C.2) in Algorithm C.1 has an error rate of����@u@� .xB/ � �u

�z�
.xB/

���� D O.h/;

where h characterizes the distance of the neighboring points and � characterizes
the bandwidth of the kernel. The constant depends on the local curvature and the
norm of the second-order derivative of u (that is,

��rirju�xB��� with rirj being
the Hessian operator).

PROOF. The error has two parts, one from the regression coefficients zaL and
zaR, and the other from estimation of the directional derivatives @

�
Lu and @

�
Ru.

First, we estimate the error from the regression coefficients zaL and zaR. Let 
L.`/
be a geodesic parametrized with the arclength `, connecting the points xB and
its “left” nearest neighbor xL such that 
L.0/ D xB and 
L.`/ D xL. Define
�L WD 
 0L.0/ 2 TxBM as a unit tangent vector by noticing that j
 0L.t/j � 1 for
0 � t � ` due to the arclength parametrization. Following the proof in Proposition
3.1, we have the error estimate

j�L � z�Lj D O.h/:
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Similarly, we can define the geodesic 
R.`/ connecting xB and xR and the unit
tangent vector �R WD 
 0R.0/ 2 TxBM . Then, we have the similar error estimate

j�R � z�Rj D O.h/:
Since ��; �L; �R 2 TxBM andM is a 2D manifold, there exist unique coefficients
aL and aR such that

�� D aL�L C aR�R:

By comparing equation (C.1) and noticing that j� � z�j D O.h/; we have the
estimation for coefficients,

jaL � zaLj D O.h/ and jaR � zaRj D O.h/:
Next, we estimate the error between the analytic directional derivative @u

@�L
and

the numerical estimation
�u

�z�L
WD u.xL/ � u.xB/

jxL � xB j :

Let É D .´1; : : : ; ´d / denote the d -dimensional (d D 2) geodesic normal coordi-
nate of xL defined by an exponential map expxB W TxBM !M ; then É satisfies

É D `�L D `
 0L.0/ and expxB E0 D xB ; expxB É D xL;

where `2 D `2j
 0L.0/j2 D jÉj2 DPd
iD1 ´

2
i . We also define yu.É/ WD u.expxB É/ D

u.xL/ such that yu.E0/ D u.xB/:With this definition, we have the following Taylor’s
expansion,

yu.É/ D yu.E0/C
dX
iD1

´i
@yu.E0/
@´i

C 1

2

dX
i;jD1

´i j́
@2yu.E0/
@´i@ j́

CO.`3/;

which is equivalent to

u.xL/ D u.xB/C @u

@�L
.xB/`C 1

2
.�L/>H.u.xB//�L`2 CO.`3/;

by noticing that É D `�L is the normal coordinate. This is just a Taylor expansion
of function u along a geodesic 
L.`/. Here, H denotes the .d � d/-dimensional
Hessian matrix whose components are rirju.xB/, where ri denotes the covariant
derivative in the i th direction. Following the proof in Proposition 3.1, we have
jxL�xB j�1 D `�1.1CO.`2//: Then, we have the error between the analytic @u

@�L

and the numerical �u
�z�

L :

u.xL/ � u.xB/
jxL � xB j
D
�
@u

@�L
.xB/`C 1

2

�
�L
�>
H.u.xB//�L`2 CO.`3/

�
`�1

�
1CO.`2/

�
D @u

@�L
.xB/CO.`/:
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One can follow the same steps and deduce for the “right” xR,

u.xR/ � u.xB/
jxR � xB j D @u

@�R
.xB/CO.`/;

where we have introduced an arclength ` for the geodesic distance between xR and
xB . Since ` D O.h/, the remainder is of order-h.

Finally, we obtain the result:����@u@� .xB/ � �u

�z�
.xB/

����.xB/C zaLu.x
L/ � u.xB/
jxL � xB j C zaRu.x

R/ � u.xB/��xR � xB ��
����

�
����aL @u

@�L
.xB/ � zaLu.x

L/ � u.xB/
jxL � xB j

����C
����aR @u

@�R
.xB/ � zaRu.x

R/ � u.xB/
jxR � xB j

����
� jaL � zaLj

���� @u@�L .xB/
����C jzaLj

���� @u@�L .xB/ � u.xL/ � u.xB/
jxL � xB j

����
C jaR � zaRj

���� @u@�R .xB/
����C jzaRj

����� @u@�R .xB/ � u
�
xR
� � u�xB���xR � xB ��

����� D O.h/: �
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