Ghost Point Diffusion Maps for Solving Elliptic PDEs
on Manifolds with Classical Boundary Conditions

SHIXTAO WILLING JIANG
ShanghaiTech University

JOHN HARLIM

The Pennsylvania State University

Abstract

In this paper, we extend the class of kernel methods, the so-called diffusion
maps (DM) and its local kernel variants to approximate second-order differential
operators defined on smooth manifolds with boundaries that naturally arise in
elliptic PDE models. To achieve this goal, we introduce the ghost point diffusion
maps (GPDM) estimator on an extended manifold, identified by the set of point
clouds on the unknown original manifold together with a set of ghost points,
specified along the estimated tangential direction at the sampled points on the
boundary. The resulting GPDM estimator restricts the standard DM matrix to
a set of extrapolation equations that estimates the function values at the ghost
points. This adjustment is analogous to the classical ghost point method in a finite-
difference scheme for solving PDEs on flat domains. As opposed to the classical
DM, which diverges near the boundary, the proposed GPDM estimator converges
pointwise even near the boundary. Applying the consistent GPDM estimator
to solve well-posed elliptic PDEs with classical boundary conditions (Dirichlet,
Neumann, and Robin), we establish the convergence of the approximate solution
under appropriate smoothness assumptions. We numerically validate the proposed
mesh-free PDE solver on various problems defined on simple submanifolds
embedded in Euclidean spaces as well as on an unknown manifold. Numerically,
we also found that the GPDM is more accurate compared to DM in solving elliptic
eigenvalue problems on bounded smooth manifolds. © 2021 Wiley Periodicals
LLC.

1 Introduction

Elliptic partial differential equations (PDEs) [27] arise naturally in modeling
of physical phenomena, including groundwater flow [39], heat conduction [21],
neutron diffusion [53], and probability theory [41]. In the manifold setting solving
the PDE formulation arises in modeling of granular flow [45], liquid crystal [52],
and biomembranes [20]. In computer graphics [9], PDEs on surfaces have been
used to restore damaged patterns on a surface [38] and brain imaging [40], among
other applications.
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Many numerical methods have been proposed to approximate the solution of
PDE on the manifold setting, especially on two-dimensional surfaces. Most of these
methods, however, require a parametrization of the surface, which is subsequently
used to approximate the tangential derivatives along the surface. For example, the
finite element method (FEM) represents the surface [11, 14, 19] using a triangular
mesh. Subsequently, the PDE is solved by a Galerkin truncation on the finite-element
space of functions defined on a triangular mesh. While this classical approach is
popular and has been widely used in applications, it relies on the accuracy of the
generated mesh. In addition to the computational task in the mesh generation, given
an arbitrary set of point cloud data that lie on the manifold, constructing a regular
mesh that avoids inconsistent tangential triangulation [10] can be challenging.

An alternative approach is to embed the surface PDE problem to the ambient
space R” such that the solution of the embedded PDE problem is consistent with the
original problem when restricted to M . One realization of such an approach is to use
a level set representation [9] for the surface, and subsequently, solve the embedded
PDE equation in R” using any standard method that is applicable on the Euclidean
domain. The level set representation, unfortunately, can lead to degenerate diffusion
equations, in addition to many other limitations pointed out in [46]. To combat
the limitations of the level set representation, the authors in [46] introduced the
closest-point representation of the surface M. We should point out that it is unclear
how this method will perform if we are only given randomly sampled point cloud
data since these points may not be the closest point. In their papers [43,46], they
tested their scheme on examples where either the analytical formula for the closest
point is given or the surface has a triangular representation. Besides this minor
technical issue, a more important problem with this class of approaches is that
the computational cost scales with respect to the ambient dimension-n. This is
because the embedded PDE is solved in the ambient space R”, which is at least one
dimension more than, for example, the two-dimensional surface M.

Another class of approaches is the mesh-free radial basis function (RBF) method.
While several versions of RBF solvers have been proposed [23,44], they all require
one to identify normal vectors at each point cloud and approximate the tangential
derivative at each point cloud using the radial basis function interpolation method.
In [23], the tangential derivatives are defined by projecting the gradient in R” to the
tangent space. One of the key issues with this approach is that the shape parameter
of the radial basis function can be difficult to tune for high codimensional problems
as pointed out in [23]. Another issue that is directly related to the work in the present
paper is the erratic behavior near the boundary. As far as we know, the issue near
boundary has only been studied on flat domains in R” [3]. That work concluded
that one can achieve highly accurate solutions by an appropriate choice of radial
basis functions with sufficiently large data. However, it is unclear how to extend
their approach in the context of unknown manifolds since we cannot sample more
data, let alone control the size of the data. In the same paper [3], the authors also
numerically demonstrated that their approach can be as effective as using the ghost
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points extension. While the ghost point method is computationally straightforward
on flat domains, an extension to unknown nonflat geometry is a nontrivial task. The
present work will introduce a numerical scheme to realize this nontrivial task and
study the convergence of the approximation when it is used with the following PDE
solver.

In this paper, we consider approximating the intrinsic second-order elliptic
differential operators directly on the point clouds that lie on the manifold. Our
approach rests on the fact that away from the boundary, these differential operators
can be approximated by integral operators defined with appropriate Gaussian kernels,
which is the theoretical underpinning of a popular nonlinear manifold learning
algorithm known as the diffusion maps [15] and its local kernel variants [6]. The
main advantages of this approach are that it is a consistent estimator of the intrinsic
PDE problem even for a submanifold of arbitrary codimension, and it can naturally
handle randomly distributed point cloud data. Computationally, this mesh-free
algorithm does not require a parametrization of the manifold and/or an estimation
of the normal vectors at each point cloud, one of which is essential in the existing
approaches discussed in the previous paragraphs. To the authors’ knowledge, the
idea of using such a kind of integral operator for solving PDEs was first numerically
realized by the point integral method (PIM) for solving Poisson problems [35] and
isotropic elliptic equations [34]. In separate works, the same idea was realized
with the diffusion maps (DM) algorithm [6] for solving elliptic PDEs associated
to nonsymmetric advection-diffusion (Kolmogorov) operators associated with Itd
diffusion [25] and anisotropic diffusion [29]. We should point out that despite
having the same vein, DM and PIM approaches are not identical, as pointed out
in [25].

On manifolds with boundaries, however, the homogeneous Neumann problem is
the only natural boundary condition for the Gaussian kernel integral approximation,
as noted in [15]. Furthermore, as we shall see in this paper, even if the function
satisfies the homogeneous Neumann boundary condition, the diffusion maps integral
approximation does not converge in the pointwise sense at interior points close to
the boundary. For other types of boundary conditions, several approaches have
been proposed. For example, the PIM approximates the Dirichlet problem with
an artificial Robin boundary condition with a small first-order derivative term [35].
Another approach is to use a volume constraint [47], which is a simple version
of the ghost point method that is proposed in the present paper, by setting the
function values at the ghost points to be zero. In [49], they proposed an empirical
approach for the Dirichlet problem by appending the discrete representation of
the integral approximation at the interior points with a discrete representation of
the Dirichlet boundary condition. Recent work in [51] suggests that the diffusion
maps asymptotic expansion is a consistent estimator of the Laplacian of a bounded
manifold in a weak sense, and the authors devised a boundary integral estimator
to specify the desired boundary conditions. All of these approaches, however, do
not improve the integral approximation on the interior points near the boundary in
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the pointwise sense, and it is unclear whether they can be extended to the Robin
boundary condition.

In this paper, we introduce the ghost point diffusion maps (GPDM) as a consistent
estimator in the sense of pointwise, complementary to the weak sense result in
[51]. The GPDM modifies the DM algorithm by a novel ghost points extension
scheme, generalizing the classical ghost point method on flat domains to unknown
submanifolds of R”. For the reader’s convenience, let us recall the basic idea of
the ghost point method in the finite-difference setting for solving the Neumann
boundary value problem: u”(x) = f(x), x € (0,1), u’(0) = u’(1) = g. Suppose
the domain is discretized as follows: {x; = jh:j =0,...,N, h = 1/N}. Let U;
denotes the finite-difference approximation to the solution, u(x;). Instead of using
the one-side first-order finite difference, consider a center-difference approximation
for the boundary condition

here we have introduced a new unknown, U_1 ~ u(x_j) at a ghost point, x_; :=
—h ¢ [0, 1]. The standard ghost point method (see, e.g., [33]) specifies this function
value by an additional equation that effectively imposes the PDE at the boundary
point:

1
(L.1) ﬁ(U—l —2Up + Uy) ~ u"(x0) = f(xo).

Notice that the two key steps in this method, the specification of the ghost point x_1
and the extrapolation of the function value U_1, are not immediately trivial when
the manifold is not a flat geometry and unknown. In the present work, we devise an
algorithm to estimate normal vectors at the boundary, which in turn, allows one to
carry the two key steps above along the estimated normal vectors on each point at
the boundary. The proposed method uses no information of the geometry other than
the available point cloud data that are possibly randomly distributed. We show that
the proposed GPDM is a pointwise convergent estimator even for points close to the
boundary when the function values at the ghost points are extrapolated with a set
of equations that resemble matching the second-order derivatives in addition to an
equation that resembles the condition in (1.1). Subsequently, we apply the GPDM
to solve elliptic PDEs with Dirichlet, Neumann, and Robin boundary conditions.
Through theoretical analysis and numerical studies, we show that the proposed
solver is a uniform convergent scheme. We also numerically show that GPDM is
more accurate compared to DM in solving eigenvalue problems.

The paper will be organized as follows. In Section 2, we provide a short review of
diffusion maps and their local kernel variants to approximate various types of linear
second-order elliptic differential operators defined on smooth manifolds embedded
in R”. We end the section with an example, illustrating the problem of DM near the
boundary. In Section 3, we present the GPDM method, which overcomes the issue
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near the boundary. We close this section with numerical examples to support the
theoretical results. In Section 4, we discuss the application of GPDM for solving
elliptic PDEs with various boundaries. In Section 5, we discuss the application of
GPDM for solving eigenvalue problems corresponding to the elliptic PDEs. We
close the paper with a summary and a list of open problems in Section 6. To improve
the readability, we report the detailed proofs in several appendices.

2 Diffusion Maps and Its Extension with Local Kernels

In this section, we provide a short review of the diffusion maps algorithm [15] as a
method to approximate the Laplacian, a class of second-order, self-adjoint, positive-
definite, differential operators that acts on functions defined on smooth compact
Riemannian manifolds. In addition, we also review the variant of diffusion maps
to approximate the second-order elliptic diffusion operator with a given diffusion
coefficient [29] and the nonsymmetric drifted diffusions via the local kernels [6].

Let M be a C®°, d-dimensional compact Riemannian manifold embedded in
R”, possibly with boundary dM . Let u € C3(M) and € > 0 for all x € M whose
distance from the boundary is larger than €”, where 0 < r < 1/2. The integral
operator,

Geu(x) := e 4/2 /M exp(—%)u(y)dl/(ﬂ

2
2.1 = e_d/Z/ exp(—|x4—y|)u(y)dV(y) + 0(62)
Mf,x E

is effectively a local integral operator over the €” -ball around x,
Mex:=1{yeM,|x—y|l< €}

In (2.1). The notation | - | denotes the standard Euclidean norm for vectors in R”.
The key idea of the diffusion maps algorithm lies on the following asymptotic
expansion. For any points x € M whose distance from the boundary is larger than
€",where 0 <r < 1/2,

(2.2) Geu(x) = mou(x) + ema(0(x)u(x) + Agu(x)) + O(€?),

where mg and m, are constants that depend on the kernel, @ depends also on the
geometry of M, and A, denotes the negative-definite Laplace-Beltrami operator
defined with respect to the Riemannian metric g inherited by M from R”. We
should point out that with our choice of the exponential kernel, one can verify
that mg = my. Based on this asymptotic expansion, one can approximate the
Laplace-Beltrami operator as
-1
03 L= (Gel(x)) G:“(x) M) _ A gu(x) + 0(e)
= Liu(x) + O(e)
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for all x € M whose distance from the boundary is larger than €, where 0 <
r < 1/2. If one is given a strictly positive, smooth, diffusion coefficient x : M —
(0, o0), one can also approximate the anisotropic diffusion operator,

(Geve(®) ™ Ge(Vk@u(x)) — u(x)

€
(2.4) = divg (k(x)Vgu(x)) + O(€) := Lou(x) + O(e),

where we have used the notations divg and Vg for the divergence and gradient
operators, respectively, defined with respect to the Riemannian metric g. One can
also apply the equivalent diffusion operator using the symmetric version as reported
in [29].

Beyond these two self-adjoint operators, one can also approximate the backward
Kolmogorov operator,

Ly eu(x) := k(x)

1 ..
2.5) Lau:=Db-Veu + ECU ViVju,

where V; is the covariant derivative in the i " direction, and V; V; is the component
of the Hessian operator. Here, the differential operators and the dot product are
defined with respect to the Riemannian metric inherited by M from R”. The vector
field b : M — R4 is the drift and the symmetric positive-definite diffusion tensor
¢ M — R4 is a d x d matrix-valued function, where d is the dimension of
manifold M.

The operator in (2.5) can be accessed by employing the integral operator in (2.1)
with the following prototypical kernel [6]:

(x+eB&)—wTC&Y4@+1B&)—ﬁ)

(2.6) K(e,x,y) = eXP(‘ 2€

where B : M — R" and C : M — R™*" are related to b and ¢, respectively,
through a local parametrization ¢ : U C RY - M C R” of the manifold M as
follows:

2.7 B(x) = Diu(x)b(x), C(x)"! = (DL(X)C(X)DL(X)T)T.

Here, the set U € R? denotes a domain that contains ¢~ (xx). Here, the notation
denotes the pseudo-inverse and the differential map

Dux): T-1(yM CRY — T\R" CR"

is an n x d matrix that is usually known as the Jacobian (or pushforward) corre-
sponding to the map . Applying the integral operator in (2.1) with the prototypical
kernel K (e, x, y) on manifold without boundary, we obtain

Gk eu(x) = e_d/Z/ K(e,x, y)u(y)dVy
M

(2.8) = m(x)u(x) + e(@(x)u(x) + m(x)Lsu(x)) + O(€?),
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where m(x) = (271)‘1/2 det(C (x))l/2 can be approximated by Gg ¢ 1(x) = m(x)+
O(¢). Employing the same algebraic manipulation as in (2.3), we obtain

(Gke1(x) ™! Gk eu(x) — u(x)
€

= Lau(x) + O(e).

(29) L3cu(x):=

We note that the evaluation of the prototypical kernel in (2.6) requires the knowledge
of either the intrinsic representation » and ¢ together with the embedding function ¢
or the ambient representation B and C in (2.7).

Numerically, given a set of points in ambient coordinate {x; € M )}IN= 1» Which is
also referred to as the point cloud data, one can approximate the integral operator
Ly (or Ly ¢ or L3 ) via a Monte Carlo average, accounting for the sampling
density of the data x; ~ ¢(x) that are not necessarily uniformly distributed. In
particular, the function G¢ 4u := Geugq, where G is given in (2.1), can be approxi-
mated by the following Monte Carlo average,

. vl2
Geqntv) =907 [ exp( =225 Nutngnavie)

c—d/2 N

i — 2
~ N ZCXP(_14—61 u(xj).
=1

Jj=

Define also g¢ = G¢ 41 as an estimator for the unknown sampling density g. Based
on the asymptotic expansion in (2.2), one can deduce

Geg(ge)Gequge’) —u
€

= Agu + O(e).

Compare to (2.3), the algebraic expression above involves a “right normalization”
to overcome the bias induced by nonuniform sampling density ¢ (see [6, 15,28]
for the detailed discussion). For the nonsymmetric operator, L3, one can repeat the
same procedure as above using the nonsymmetric kernel in (2.6) but estimate the
sampling density ¢ using the symmetric Gaussian kernel to avoid estimating the
normalization factor m(x) in (2.8) (see [25] for the detailed discussion).

Now we discuss the discrete estimator for £, which involves an importance
sampling to debias the effect of the sampling density of the data. To compute
Ge+/k(x), we first construct an N x N matrix with entries

2
X; — X5
Kij :exp(——| ! 4€J| )

Then, the estimated unnormalized density evaluated at x; can be estimated by the ;™
component of vector q, that is, g(x;) ~ q; = e~d/2 N1 JI-VZI K;;. Subsequently,
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we have

2
€?2G ek (xi) / exp( y| )f(y)dV(y)
1 K(Xj)
~— Y Ky Y
N jgl / q;

d/2 NSeleTy = Cxi—yP
€ Ge(u(xi)Vr(x;)) = eXp e u(Y)Ve(y)dV(y)

1 K(x])u(xj)
Z q;

Defining W as an N x N matrix with entries W;; = K;;

¥ 'fy’ ) letDbea diagonal

matrix with diagonal entries D;; = Zjl-vzl W;; and S be a diagonal matrix with
diagonal entries S;; = k(x;); then the discrete estimator for £, is given by

1
(2.10) Lye~Ly= ES(D—lw —D.

We should point out that the discrete estimator converges pointwise, L;j — L; (for
each j = 1,2,3) in high probability [4,25,48]. For convenience, we state this
result in Lemma A.1. For the symmetric cases, £; and £, the spectral convergence
results are also available for closed manifolds [8, 12,24] in L?-sense and [13, 18] in
L®°-sense, all of which are valid in high probability.

2.1 Parameter specification

To achieve accurate estimations, one needs to specify the appropriate bandwidth
parameter, €. For efficient implementation, we also use k-nearest neighbor algorithm
to avoid computing the distances of pair of points that are sufficiently large.

Our choice of € follows the method that was originally proposed in [16]. Basically,
the idea relies on the following observation:

B Ix—yl?
S(e) := Vol(M)Z/ /Tv exp( —e)dde(x)

d/
/ (4ne)d/2dV( ) = M

@.11) Vol

~ Vol M )2
Since S can be approximated by a Monte Carlo integral, for a fixed k, we approxi-
mate

N,k

1 lxi — xj|?
S it
©~ 3k eXp( de
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where {x; }k_1 are the k-nearest neighbors of each x;. We choose € from a domain

d log(S )
g€
cally, we found that the maximum slope of log(S) often com<:1des with d /2, which

allows one to use the maximum value as an estimate for the intrinsic dimension d
when it is not available and choose the corresponding €.

For well-sampled data, we choose k < N to be large enough (usually between
50 and 200, depending on the size of the data) such that € is smaller than the
distance between x; and its k-neighbor, for alli = 1,..., N. With this choice, we
numerically obtain € = O(N -2/ d), for d = 1,2, which shows accurate estimates
that converge. For randomly distributed data, we set k = O(N'/?) and obtain

€= (9(%)2/ - O(N~V4) which yields a much larger € compared to the choice

in the well-sampled data, that is, N-YVd 5 N=2/d for N > landd > 1. It
)Z/d

(e.g., [27'4, 10] in our numerical implementation) such that 5. Numeri-

is worthwhile to point out that the scaling € = O(% , which we empirically
found to produce convergence solutions in randomly distributed data (as we shall
show later), has also been documented as a condition for the pointwise convergence
estimate (see theorem 3.6 of [12]).

Now, let us illustrate the problem near the boundary of the asymptotic approxi-
mation of the weighted Laplacian in (2.4) with a simple example.

EXAMPLE 2.1. In this example, we compare the DM and GPDM estimates of the dif-
ferential operator L, on a one-dimensional ellipse x = (x1,x2) = (cos 8, asin 8),
defined with the Riemannian metric

(2.12) g = sin® 6 + a? cos? 6 for0 <6 <m,

where a = 3 > 1. The diffusion coefficient in the weighted Laplacian (2.4) is
chosen to be k ;= 1.1 + xa2/a = 1.1 + sin6. In local coordinates, the diffusion
operator acting on function u is given as

(2.13) Lou := div(kVu) = \/—ae (\/_ g —).

In Figure 2.1, we plot the explicit equation in (2.13) acting on a test function
u(x) = cos(36/2 — n/4), defined on a semi-ellipse with a = 3 and 6 € [0, ]
being the intrinsic coordinate. The discrete estimator Lo of L is constructed using
N = 400 data points distributed at an equal angle. Notice the agreement between
the DM estimate and the truth except near the boundaries. In the same figure, we
also show the improved estimate using the ghost point diffusion maps (GPDM) near
the boundaries that we will explain in the next section.

3 Ghost Point Diffusion Maps for 1D and 2D Manifolds

In this section, we introduce an improved method, the ghost point diffusion maps,
for approximating differential operators in (2.3), (2.4), (2.5) defined on one and
two-dimensional manifolds with boundaries. To facilitate the discussion, we use
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(a) Lou (b) FE of DM=13 (upper), FE of
GPDM=0.04 (bottom)
o - o
g 37T
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5X 10~
Wb, e
5 -x-GPDM
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FIGURE 2.1. Numerical approximations of L,u (the weighted Laplacian
in (2.4)) on a semi-ellipse example with N = 400. (a) Comparison of
the true £ou and its DM and GPDM estimates. (b) Absolute error of
DM (upper panel) and GPDM (bottom panel) near the boundary. One
can see that the forward error (FE), defined as || £ou — Lou||,, with the
uniform norm, using the standard DM, is relatively large up to 13 near
the boundary (red circles in upper panel of (b)). However, by applying
the GPDM, the FE reduces to 0.04 (green crosses in bottom panel of
(b)). Note that for GPDM, the FE does not reach its maximum near the
boundary but in the interior of the domain instead. In the bottom of (b),
one can see that the FE is very small near the boundary for GPDM.

the conventional notations dM and M° to denote the boundary and interior sets
of manifold M, respectively, that satisfy M = M° U M and M° N oM = @.
We assume that M is a C °°-smooth, compact domain such that the closed subset
oOM is also a compact set. For two-dimensional problems, we also assume that the
boundary dM is a smooth regular curve with additional conditions (which will be
clarified in Section 3.3) such that it is extendable along the boundary by a normal
collar with radius R = O(¢”) for 0 < r < 1/2.

The basic idea here is to follow the classical ghost point method [33] for solving
the Neumann boundary condition with the finite-difference method on flat domain,
as reviewed in Section 1. In our configuration, we supplement ghost points near
the boundary such that the diffusion maps asymptotic expansion for the estimation
of the diffusion operator is valid even for points near the boundary, where the
second-order differential operator is approximated with an appropriate affine linear
operator. In this work, we assume that we have sample points at the boundary. For
problems with unknown boundary points, one can use the tools developed in [7] to
estimate points at the boundary.

We now describe the proposed algorithm, the ghost point diffusion maps (GPDM).
Particularly, the construction of the GPDM requires the following technical tools. In
Section 3.1, we estimate the exterior normal vector v to the boundary. In Section 3.2,
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we estimate the normal derivative dyu at x € dM , which will be used for specifying
the boundary conditions. In Section 3.3, we describe the construction of the ghost
points along the normal direction v from boundary points. In Section 3.4, we
discuss how to extrapolate the unknown function values at the ghost points. Here,
we introduce a set of algebraic conditions on the ghost points, which ensures the
consistency of the affine estimator of £; in the limit of € — 0 after N — o0, as
reported in Section 3.5. Finally, we show numerical examples to validate the theory
in Section 3.6.

3.1 Estimation of the exterior normal direction at the boundaries

In this section, we provide numerical methods to estimate the exterior normal
direction using the point cloud data, assuming that the boundary points are given.
We split the discussion into two subsections, concerning the well-sampled and
randomly sampled data, as they require different algorithms.

Well-sampled data

We start our discussion on 1D manifolds. By well-sampled data, we mean that
the data points are well-ordered and all consecutive points have equal (intrinsic)
distance. For example, Figure 3.1(a) shows the dataset {x;};=1,...n, well-ordered
on a 1D semi-ellipse with x1 and x as the boundary points. Suppose that y : R —
M C R”" is a geodesic parametrization of the one-dimensional manifold M with
base point y(0) = x; € dM and y(s) = x» (see Figure 3.1(b)). The arclength
parametrization s = fOS |y’(t)|dt is defined such that |y/(¢)| = 1 for all ¢ € [0, s].
Then, the inward unit normal direction to the boundary is given by the unit tangent
vector —v; = y’(0) € R"”. When the parametrization y is unknown, we can use the
secant line (see Figure 3.1(c)) to estimate this normal direction v to the boundary.
Specifically, the secant line approximation for v is given by
X1 — X2

(3.1) v = ———.
|x1 — x2]

Likewise, one can approximate vy at the other boundary point, xy, with vy =
XN—XN_1
lxny—xn—1] ) o

Then, the error estimate for the normal direction v; to the boundary can be

formalized as follows. Here, we will focus on v, but this result is also valid for the
secant line approximation of the tangent vectors at any x; € M, including at x .,
with appropriately defined arclength parametrization.

PROPOSITION 3.1. Let y(s) be a geodesic curve parametrized with the arclength s,
connecting discrete points x1 € oM with xo € M (see Figure 3.1) such that
|x1 — x| = O(h), where | - | denotes the Euclidean R"™-norm. Then, the unit
tangent vector vi = —y’(0) at point x; = y(0) can be estimated by V1 in (3.1)
with error vy — V1| = O(h), where the constant in the error bound depends on the
local curvature w = |y”(0)| of the curve at x; = y(0).
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(a) secant line extension for ghost points (¢) secant line approximation vy
for 1D manifold
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FIGURE 3.1. (a) Sketch of a specification of ghost points {ijk} starting

from the boundary point x2, along the secant line, on a 1D manifold.
Here, v; and vy are two estimated exterior normal directions that are
along the secant lines connecting the boundary points and their nearest
neighbors on the manifold. (b) Ideal construction: ghost point extension
for xfo,xfl,xfb along true v;. Here, x, and x3 are points on the
manifold M, and xlB = X1 is a point on the boundary dM . (c) Secant
line extension for ghost points )?f’ , )7162 along the estimated v;. Here, ¥,
is along the secant line connecting x, and x;. (d) Secant line extension
for well-sampled data for the torus example. Blue line is the extension
of the secant line, connecting the black boundary point and the yellow
manifold point, and similarly for the other magenta lines.

PROOF. For small s, applying Taylor’s expansion on y, we get

52 53

y(s) = y(0) + sy’ (0) + ?)/”(O) + -

Since y”(s) L Ty M for any x € M (by geodesic curve), we obtain

" (0) + O(s*).

6 =y OF =52+ 5* (S OF + 370" 0)) + 06

This also means that,

6 =y O = s+ (G OF + {101 0)) + 06",
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Then, we have
s)— (0 52
YO ZrO (L o) sy (0) + S y7(0) + 06
¥ =y (0) 2

= 7/(0) + 57"(0) + O(s?).

By the definitions of v{ and v; and after some algebra, we have

~ )/(S) — V(O) Soon 2
v =% =y (0) — —————=1 = S [y"(0)] + Os7).
ly(s) =y 2
Since s = O(h), it is clear that |vy — V1| = O(h) with a constant that depends on
the curvature w = |y”(0)|. O

In higher dimensions, one can use the same approximation method as above for
well-sampled data. In the following example, we illustrate the secant line extension
on a 2D semitorus, embedded in R3.

EXAMPLE 3.2. Figure 3.1(d) displays the secant line extension along v (magenta
lines) for the well-sampled data on a semitorus. In this example, the semitorus is
defined with the standard parametrization:

(a + cos @) cos¢ 0<60<2m
(3.2) x=110,¢):=| (@a+cosO)sing | for| 0<¢p<m
sin 0 a=2

where (0, ¢) are the two intrinsic coordinates and a is the radius of the semitorus.
The induced Riemannian metric is given by

1 0
3.3) 8o,9) (. V) = uT(O (a +cos9)2)” Vu.v € T(p,g) M.

For well-sampled data, we notice that the two bases g—g and g—; are perpendicular
to each other. As shown in Figure 3.1(d), we can extend the secant line (red),
connecting the yellow and black dots to the blue line along this estimated v. We
apply the similar secant line extension to the other magenta lines. Then, we will add
ghost points along these magenta secant lines starting from the boundary points,
which will be discussed in Section 3.3.

Unfortunately, this method is not extendable for randomly distributed data on
problems of dimension d > 2 since for each boundary point we do not always
sample the corresponding interior point that allows us to construct a secant line
perpendicular to the boundary.

Randomly sampled data
For randomly sampled point clouds, {x;}, that lie on a d-dimensional mani-
fold, our basic idea here is to estimate the tangent vectors 1,2, . .., f7 that span
the tangent space at each boundary point, and also estimate the tangent vectors
Lt ,72_1 along the (d — 1)-dimensional boundary 0M . Then, we compute
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the normal direction v using the Gram—Schmidt process or QR decomposition from
these directions {f1, %5, ...,f;} and {7{’ - ,73_1}. Finally, we can determine the
sign of ¥ from the orientation of the manifold M.

To estimate these tangent vectors, we used a kernel-based weighted linear regres-
sion method as introduced in corollary 3.2 of [5]. Here, we give a quick review
of the algorithm for estimating the tangent vectors for an arbitrary point x on a
d-dimensional manifold M embedded in R”. For a point x, one defines X to be
the n x K, matrix with columns X; = D(x)" Y2 exp(—|x — xj|?/4€)(x; — x)
where D(x) = Zf;l exp(—|x —x;|?/2¢) withx; (j = 1,..., Kp,) being K, > d
nearest neighbors of the point x. Then, the leading largest d singular values of
matrix X will be of order-+/€ with the associated singular vectors parallel to the
tangent space of M. The remaining min{n, K, } — d smaller singular values will be
of order-e with the singular vectors orthogonal to the tangent space of M.

To simplify the discussion below, let us focus on 2D problems (while the same
algorithm is applicable for any d -dimensional problems with an appropriate choice
of € and number of boundary points, which we shall discuss in the Summary
section, Section 6). In the 2D case, we first estimate the two tangent vectors 11
and 7, for a boundary point x € dM using the kernel-based weighted regression
method. We empirically choose K, > d = 2 and find K}, nearest neighbors of x
from points on the 2D manifold M . Using these K, points, we then specify the
bandwidth of the kernel €; using the auto-tuned method discussed in Section 2.1.
The error estimates of the two leading singular vectors #1 and £, for approximating
the two tangent vectors are of order-,/€1 (see appendix A in [5] for a detailed
discussion). Since there are infinitely many two linearly independent vectors that
can span the 2D tangent space of M at x, numerically we can only guarantee that

Span{f;,f,} = Span{ g—g, g—;}, where the parametrization x = ((6, ¢) with 6 and ¢

being two intrinsic coordinates. This pair of linearly independent vectors 1 and 7,
can be different from the local bases g—g and g—; up to an orthonormal matrix (or a
rotation).

Similarly, we apply the weighted regression method to estimate the tangent
direction 7 := 7{7 that is parallel to the boundary dM for each boundary point
x € 0M. We empirically choose K, > d = 2 and find K, nearest neighbors
of x only from boundary points of the one-dimensional dM. Using these K,
points, we auto-tune the bandwidth of the kernel €;. We can compute 7 from the
first singular value of this X and the error estimate of 7 is of order-,/e;. Next, the
normal direction ¥ can be approximated by subtracting the orthogonal projection of
11 (or 1) onto 7 from the tangent vector 11 (or 1) using the Gram—Schmidt process
or QR decomposition,

5 =1 - ([(.71.

where (71 , f) denotes the inner product of vectors 71,1 € R”, and we notice that
|£| = 1 for a singular vector from SVD. Finally, the sign of ¥ can be determined
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by comparing with the k-nearest neighbors of x. The error estimate for the normal
direction v is thereafter O(, /€1, \/€2), thatis, [v — V| = O( /€1, J/€2).

Applying the € auto-tuning algorithm discussed in Section 2, we obtain an error
of order-N~1/4  which we have verified for problems of dimensions d = 1,2.
For 2D problems, if the number of points at the boundary is J = O(N/2), then
e~JL~N —1/2 and this error rate balances with the rate €1 ~N - 2 which
is also the rate of the error for the overall GPDM algorithm, as we show in the
following example.

EXAMPLE 3.3. Figure 3.2(b) displays a comparison of the true v and estimated
V for random data on a semitorus. The embedding function is given by (3.2) and
the Riemannian metric is given by (3.3). It can be seen from Figure 3.2(c) that the
error rate for |V — v| is as expected to be O(e'/?), where € = €1 is chosen to be
the same as that in the DM or GPDM method in Example 4.2.

3.2 Estimation of the normal derivatives on the boundaries and distance &
among neighboring ghost points

For each point x2 at the boundary, we denote v := v «8 € R™ as the corre-
sponding normal unit vector that is pointing outward from the manifold M. We ap-
proximate the directional derivative of d,u(x®) with the following finite-difference

method,
u, p

where we have defined a ghost point along —v (see Figure 3.1(b)) as

u(@?) —u(x)
xB—xGo]

3.4)

3.5) xC0 .= xB _py,

where h characterizes the distance between neighboring ghost points as will be
specified below after Definition 3.4. Lety : R — M C R” be a geodesic,
parametrized with arclength A, such that y(0) = x® and y/(0) = —v. One can
see that y(h) — x%0 = y(h) — (y(0) + hy’(0)) = O(h?) (see Figure 3.2(a) for a
geometric illustration of the point, y(%)). For u € C! on a straight line connecting
xC0 and y(h) := exp,s(—hv) € R", we have u(y(h)) — u(x%0) = O(h?). This
yields the following error estimate:

By Go 1 1
M(Txlz _z(G)f)| ) = E(u(xB) - u(V(h))) + E(u()/(h)) — u(xGO))

(3.6) = —Vou(x8)-y'(0) + Oh) = Vou(xB)-v + O).

Since v is numerically estimated by ¥ with error of order-+/€ and (3.5) is esti-
mated by

(3.7) 500 .= xB _ 7,
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(a) (b)

(©)
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FIGURE 3.2. (a) Sketch for a ghost point extension along the estimated
v for random data. Here, x, and x3 are points on the manifold M, xf is
the point on the boundary dM , v, is the true exterior normal direction,
v, is estimated normal direction, )'EIG“ is the interior ghost point and
y(h) = exXp, 5 (—hvy) is a projected point on the manifold M, and SE?'
and X f2 are ghost points along ;. (b) Comparison between exact exterior
normal direction v (blue arrows) and estimated exterior normal direction ¥
(red arrows) for given random points on the semitorus (3.2) with unknown
parametrization for one trial when N = 642. (c) The expectation of the
error |v — V| as a function of €, where € = ¢ is chosen the same as that
in DM and GPDM methods in Example 4.2. The five points correspond
to N = 322,452,64%,902, 1282, and larger N corresponds to smaller
auto-tuned €. For each NV, we run 16 independent trials and then calculate
the mean of |[v — V| versus the mean of auto-tuned €’s as one point in
panel (c).

then it is immediately clear that |[¥90 — x| = h|¥ — v| = O(h/€). Ifu € C!
on a straight line connecting ¥¢¢ and x%0, we have u(x%0) — u(¥90) = O(h./e),
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and
B _ ~G()) 1 1 3
”("“xg _;Sf)‘ = 5 @ F) —u(x)) + - (u(x) —u(F)
(3.8) = Vou(xB)w + O(h, ) = g—:’(xB) O o).

where the first term follows directly from (3.6). Based on this observation, we
assume that ¥ € C! (in fact, C3 for the extrapolation scheme in Section 3.4) on the
set:

DEFINITION 3.4. Ber (M) := U ecgps Ber (x), where Ber(x) = {y € R" :
|x — y| < €"}isan€”-ball in R”.

With this assumption, for 1 < O(e"), it is clear that x90, ¥60_ y(h)eBer (xB) C
R”, which justifies the use of the Taylor expansions along straight paths between
these points.

Well-sampled data: In this case, since V is a secant-line approximation, the
estimated point 90 coincides with the interior point adjacent to the corresponding
boundary point (e.g., in Figure 3.1(c), ¥¢° is exactly x, when the boundary point
x8 = x1). In such a case, one can immediately set s := |¥¢0 — xB|, which is also

used in the first equality in (3.8). This specification scales as h = O(N ~1/9).

Randomly sampled data: In such a case, generally, ¥° does not coincide with
any other randomly sampled data (see Figure 3.2(a)). To use the estimator in (3.7),
one has to specify 4. In our implementation, / is estimated by the mean distance
from x & to its P (around 10 in our numerical examples) nearest neighbors. Let

B

X, € M denotes the p™ nearest neighbor of x2 for p = 1,..., P. Since the

distance to the nearest neighbor is a density estimator [36], that is, [x& — xf |
g(xB)~1/4 where g denotes the sampling density and d denotes the dimension of
the manifold M, then we specify

P
1 _1
he g X = Ol ),

for two-dimensional manifolds.

3.3 Ghost points

It is well known that the diffusion operators defined in (2.3)—(2.5) cannot be
approximated accurately near the boundary of the manifold using the standard
diffusion maps algorithm. This issue is because the asymptotic expansion (2.2)
is valid only for points x € M whose Euclidean distance from the boundary dM
is larger than €” for 0 < r < 1/2. For points y € M whose distance from dM
is smaller than €”, an order-/€ term appears in the asymptotic expansion (2.2).
Geometrically, the local integral is inaccessible if there are no available data beyond
M (see Figure 3.3).
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FIGURE 3.3. Sketch of the extended manifold M U AM.

To address this issue, our idea here is to supplement the original data points
on M with a set of ghost points. Since the integral in the diffusion maps asymptotic
expansion is effectively a local integral over a ball of radius €” as discussed in (2.1),
we will devise a numerical scheme to specify these new points such that one can
approximate the local integral over the ball of radius €” even when the integral
operator is evaluated at points in M whose distances are less than €” from the closest
point on the boundary, dM (e.g., y in Figure 3.3). Specifically, the ghost points will
be sampled from the outer normal collar that can be attached at the boundary such
that the extended manifold can be isometrically embedded in R” without changing
the embedding function of the original M. In the following lemma, we provide the
conditions for such a requirement to hold for two-dimensional manifolds.

LEMMA 3.5. Let M be a two-dimensional Riemannian manifold with nonempty,
smooth boundary 0M , isometrically embedded in R". Suppose that OM is a regular
curve with maximum curvature of 1/R and any two points x,y € 0M, whose
geodesic distance dg(x,y) > nR, have Euclidean distance |x — y| > 2R. Then
there exists a submanifold, AM (an outer normal collar of radius R), such that the
adjunction space, M Uijg AM, defined by attaching M and AM along the boundary
with an identity “gluing” function id : OM — 0(AM), can be isometrically
embedded in R" with an embedding function that is consistent with the original
embedding function when it is restricted to M .

PROOF. Our construction is to extend M with an exterior collar of radius R
along the boundary. By the collar neighborhood theorem (theorem 9.25 in [31]),
there exists a normal collar neighbor W C M, which is defined as the range of the
following map ¢ : [0, R) x 0IM — W C M,

d(t,x) = exp,(—tvy), te[0,R),

for some R > 0. Here, v, denotes the normal vector at x € dM that is pointing
outward from the manifold M, so ¢ maps the points in the inward normal collar to
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the collar neighbor W. Define a manifold corresponding to the pre-image of the
collar neighbor that points outward as

(3.9) AM = {(=t,x):t €[0,R),x € IM, $(t,x) € W},

which is the outer normal collar of radius R.

Next, we attach M and AM along the boundary by identifying x € oM with
the identity map id(x) € {0} x OM C AM. Let M Uy AM := (M UAM)/ ~
be the adjunction set defined as the quotient space of the disjoint sum induced by
attaching AM to M along the identity map, id. Since AM is the outward normal
collar and dM is a smooth boundary with bounded curvature, the adjunction set
is smooth along the attached boundary dM . To finish the proof, we need to show
that the adjunction set can be isometrically embedded in R” with an embedding
function that is consistent when restricted to the original manifold M.

Let £ C TR” denote the domain of the exponential map of R” and N(0M) de-
note the normal bundle of 0M in R”. Then we can define E : ENN(OM) — R” to
be the normal exponential map of dM in R”. By the tubular neighborhood theorem
(see theorem 5.25 in [32]), dM has a uniform tubular neighbor in R”. Specifically,
there exists a normal neighborhood of 0M, U C R”, that is diffeomorphic under E
to an open subset V € £ N N(dM). Since vy € Ny (dM) and dM has maximum
curvature 1/R and any two points with geodesic distance larger than one half of
the circumference of the osculating circle of radius R, that is, dg(x,y) > 7R,
have Euclidean distance |x — y| > 2R, then the open neighbor U is a tubular
neighborhood of radius R that is homeomorphic to AM C V. So, the tubular
neighbor theorem ensures that AM as defined in (3.9) can be smoothly embedded
in R™, In fact, one can define a Riemannian metric for AM to be the pullback of
the following embedding function,

(3.10) T(—t,x) := x + tvy,

for any (—¢, x) € AM. Since the induced metric of AM is consistent with that of
M at the attached boundary, that is, 7(0, x) = x € R”, then the extended manifold
M Uiq AM is isometrically embedded in R”. O

In the remainder of this paper, we will refer to the extended manifold M U;q AM
as the set M U AM to simplify the notation. We should also point out that for
the 1D manifold, since the boundary consists of only two points (e.g., as shown in
Figure 3.1), the assumption for dM in Lemma 3.5 is slightly different. In this case,
the extended manifold can be isometrically embedded as long as the two exterior
normal lines of length R > O from the boundary do not intersect. Next, we will use
the embedding function in (3.10) to specify the ghost points with R = O(€").

Numerically, for each boundary point x2 € 9M c R”, let 7 € R” be the
numerical estimate of the corresponding normal vector v € R” at xB. Then, the
ghost points,

(3.11) x0k = xB 4 khv,
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are approximated by
(3.12) X0k = xB 4 knv,

fork = 1,..., K, where K = O(e"h~!). Numerically, however, we specify K
empirically (usually K < 10). See Figures 3.1(b),(c) and 3.2(a) for a geometric
illustration.

By the construction above, the Euclidean distance between any point x € M?°
and (M U AM) is at least of order €”. This ensures the validity of the asymptotic
expansion in (2.2) for all points on M? (including points that are close to the
boundary dM). It is worthwhile to point out that the ghost points ¥%* do not
exactly lie on AM since the true normal vectors, v, are not available (ideal case as
illustrated in Figure 3.1(b)). In the next section, we will show how this error affects
the overall algorithm, especially when the data are randomly distributed.

3.4 Extrapolation of functions on the ghost points

We now address the extrapolation problem on the estimated ghost points. In
particular, we need to extrapolate the solution u on the estimated ghost points.
Popular extrapolation techniques include the linear and quadratic extrapolation
methods, the level set method, and the ghost fluid method [2]. One idea is to extend
the function of interest with a set of artificial boundary conditions, imposed on the
ghost points. This leads us to the problem of specifying the boundary conditions
on the ghost points. In particular, we will consider a discrete analogue of matching
the second-order derivatives of the function evaluated at the ghost points as the
extrapolation condition, which mimics the cubic spline condition proposed in [22].
In addition, we also include a condition that mimics the classical finite-difference
solution of Neumann (or Robin) boundary value problems with ghost points.

Letu € C3(M U Ber(0M)), where the set Ber(AM) C R” is stated in the
Definition 3.4. We note that the numerically estimated ghost points are components
of this set,

(ZOV_ U EITE € Ber (M),
Given the function values u(x;) at x; € M and u(f.GO) our goal is to extrapolate

le‘] K

u onto the set of ghost points, {x . In the PDE applications, the function

values at {X : 0} will be estimated in the same manner as the other data {x;} that lie
on the manifold, that is, by inverting the discrete approximation of the diffusion
operators. In particular, we define the matrix L" as the discrete approximation to one
of the diffusion operators in (2.3)—(2.5) with the following important modification.
ML uEy

{)"c'J-G" }J. k—1- In the case of well-sampled data, the normal vector v is estimated by a

We construct the matrix L” by evaluating the kernel on {x; }V

secant line, and, therefore, some of these ghost points coincide with some interior
points, that is, {x,}N ) {xG"‘J In the case of randomly sampled data, we
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define {xi}lNz J;J = {x; }IN_ L U {R’GO} for convenience of notation, even if these
interior ghost points do not lie on M

Since the argument below does not change whether the set {x;} has N or N + J
points, instead of using different notations for the well-sampled and randomly
sampled cases, we use the same set {xi}lNz 1 of N-points to denote points on the

manifold as well as the interior ghost points {)7].G° }jJ -1

Here, the discrete extrapolation problem is to extend the function u identified
by the function values only on x;, xJB to estimate the function values u()?J-Gk ) for
k =1,..., K by the estimated quantities uG With these notations, we define a
vector ¢ by

B13) e = (u(x1).... u(xen) Ao TSK TSy ~GK)e1R<N

where N = N + JK. Since {xGO}J 1 C {(x;} v the first N -components include

the function values u (x GO) Then, we estimate {u }] k 1> by solving the following
JK algebraic equatlons

1—1’

(Lhiie) 5, = S (7).

G ﬁfi —2i7G1. + u(xB) = uGl —2u( ) + u( °),

~G3 ~G> | ~G1 _ G2 ~G1 B
ey — 2% +ilg ;=% —2i +u(xy),
~Gg ~Gr—1 | 5Gr—2 _ Gk—l ~Gr— | ~Gik—3 _
ue,j—2u6 +u,J = —2uej —|—u€J , k=4,... K,
for j = 1,...,J. Here, we have used the subscript B; to denote the component

correspondmg to the boundary point x . The first equation in (3.14) is motivated by
the classical finite-difference approach for solving the Neumann problems in (1.1),
which imposes the discrete approximation of the elliptic PDE to be consistent at the
boundary. The last three equations in (3.14) are the discrete analogue of matching
the second-order derivatives along v; at the ghost points and the corresponding
boundary point xB

Now we report the error in approximating the function values u(x A) with 77° . J,
obtained from solving the algebraic conditions in (3.14).

PROPOSITION 3.6 (Extrapolation error rate for u). Let u € C3(M U Ber (0M)),
where the extended manifold M U AM is a submanifold of R", constructed by
Lemma 3.5 with R = O(e"), where 0 < r < 1/2. For each ijk € AM, let I'ZEG/}

be the extrapolated function value at the estimated ghost point ijk, obtained by
solving (3.14). For any fixed j = 1,...,J,

‘u(ijk) - ue,j

_ O(h3,h2€_1/2,€2, N—l/ze—(1+d/4)’N—l/zé(l/z—d/4))’

(3.15)
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in high probability, as € — 0 after N — 0o and h — 0.

PROOF. See Appendix A. g

Throughout the paper, we use the notation O( f, g, w) as a shorthand for O( f) +
O(g) + O(w) as f,g,w — 0. The first and second error bounds in the “big-
oh” notation in (3.15) correspond to the extrapolation estimates with ghost points
specified with distance & for a fixed € > 0, so they are defined as # — 0. The fourth
and fifth error bounds in the “big-oh” notation above in (3.15) correspond to the
Monte Carlo estimates of the integral operator for fixed € > 0 so they are defined as
N — co. Therefore, the “big-oh” notation in (3.15) (and in the remainder of this
paper) is defined as € — 0 after N — oo and & — 0.

Remark 3.7 (Randomly sampled data). In this case, the leading error term in (3.15)
is of order-h2e~1/2. This error rate is contributed by the estimated interior ghost
points that do not lie on M and the exterior ghost points that do not lie on AM . In
Appendix A, we shall see how the distances between the estimated ghost points and
the points on the extended manifold,

i) — 5% = 0(e).  |xFF — | = O(hve).
J J J

where yj(h) = eXP, 1 (_h"xf) € M and {ij

error rate.

k }ijKzl C AM, contribute to this

Remark 3.8 (Well-sampled data). In this case, since the secant line approximation
is used to approximate v, the estimated ghost points {)"c'JGO} coincide with some
components of {x; € M}. Since these interior ghost points lie on the manifold,
they do not contribute to the error rate-h2e~1/2. While the estimated exterior ghost
points, {fJ.G"' JJkKZI do not exactly lie on A M, we numerically also found that they
do not contribute to the error of order-h2e~1/2. We suspect that this is because the
diffusion maps algorithm, applied on the extended data, {x; € M }ZNZ Y {ij"’ }ijK: 1
is approximating the differential operator on a different smooth extended domain
MUAM that contains these points, and the error rate in Lemma A.1 is still valid
for the matrix L” under the assumption that u € C3(M U Ber (3M)). In light of
this, for well-sampled data, the leading error is the first error term of order-43 in
(3.19).

3.5 The ghost point diffusion maps estimator

Here, we continue using the notation i, as defined in (3.13), where the first N -
components contain  the  function  value at the  estimated
interior ghost points EJ.G” that may or may not lie exactly on M, depending on
the distribution of the data. For the discussion below, we also define the column
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vectors:
= (u(x1), ..., u(Z9), .. u(Z5°), ... u(xy)),
(3.16) ﬁf = (ﬁgi,...,ﬁg§),

e = (g, i),

where we emphasized that some of the components of #¥ € RV are u(ijO) in the
definition above. Similarly, we also define

= (u(x1),....u(yr(h),....u(yg(h)), ..., u(xn)).
(3.17) 0% = (u(x%),...,u(x%)),
i = @M, u%),

where ™ e RY contains u(y;(h)), replacing each component M(XJGO) of ﬁé"l
These definitions imply that

M

(3.18) oM _ uM + O(h/fe) if x; are randomly sampled,
. < luM if x; are well-sampled.

Recall that equation (3.14) consists of a system of JK equations and it has a
unique solution that can be written in compact form as

(3.19) 0% = AuM + b,

where one can see the detailed expression of A € R/K*N and b € RIK for the
1D case in Appendix B. Here, components of b depend on f ()c}9 ). To this end, we
denote the discrete approximation with a nonsquare matrix L = (L), L®) ¢
RN*N that maps vectors iie € RY into L, € RY, where the matrix L” is
constructed as discussed in Section 3.4. For the discussion below, we define the
matrix L € RV*N | as a discrete estimator of £ that is constructed in analogous
to L” except that the kernel is evaluated on yj(h) € M (and {x Gk ¢ AM }j pal 1)

in placed of X X; Go (and {EG"} e _1)- in addition to the evaluation at all sampled

points of M in the construction of L”. We should point out that each row of the
nonsquare matrices L and L” corresponds to the kernel evaluation at the components
of {x,} —,» Where the former includes {y; (h)} and the latter includes {xGO}

Since we are interested in approximating 1™ € RV with the constraint that ¢
is not available, we define the GPDM estimator L8 : RY — R as the following
affine operator,

(3.20) LE@M) .= (LW + LOA)M + L?p.
With this definition, we should point out that
LE(@M) = LOaM + L@ (AaM +b) = LOaM 4 L®C = Lt
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where we have used (3.19). We should also point out that clearly L& (ii™) # L
since (3.19) is not valid for the pair of ##¢ and ™, that is, ¥ # AuM + b. With
all these definitions, we now state the consistency of the GPDM estimator in (3.20).

THEOREM 3.9 (Consistency of the GPDM). Let u € C3(M U Ber (AM)), where
the extended manifold M U AM is a submanifold of R", constructed by Lemma 3.5
with R = O(e"), where 0 < r < 1/2, such that AM C Ber(0M). For each
X;i € M, where {xi}lN:l Dy (h)}le,
(L GiM)), — Cutr)
_ O(h3€_1,h2€_3/2,he_l/z,E,]\_/_1/26_(2+d/4),N_I/ZG_(1/2+d/4)),
in high probability as € — 0 after N — 0o and h — 0.
PROOF. Foreachi = 1,..., N, using the definitions in (3.16)—(3.18),
(L @M)), - Lutx)
= ‘(Lg(ﬁy))i — Lu(x;) + (Lg(ﬁM) - L8 (ﬁéu))z‘
= |LWaM + LPu%), - Lu(xi) + (LD + LOA) @M —aM)), |
= |@VaM); + @Pu%); - Lu(x)
-M =M -G -G
+ (L(Z)A(u — Ue ))z + (L(Z) (“e —u ))z‘
= | — Lu(xy) + (LEA@Y —al)), + (LD @f —u%)),|
< (W) — (L) | + |(Lai); — Lu(xy)]
+ |[(LPA@EY — M) | +|(LP@E —i9)),
— O(h2€_3/2) + O(E, ]\_/_1/26_(2+d/4),]\_]_1/26_(1/2+d/4)) + O(hé_l/z)
4 O(h3e_1,h26_3/2,6, N—1/2-C+d/4) 1\_/_1/26_(1/2+d/4)).

’

The first error term is a consequence of the diffusion matrices from two different
sets of points as seen in Lemma A.2, which is equation (A.9). The second error term
is the pointwise error bound of the standard diffusion maps in Lemma A.1. The
third error term results from the estimated interior ghost points and is bounded by
(3.18) multiplied by € ~! from the components of L®A. The last error term results
from the estimated exterior ghost points and is given by Proposition 3.6 multiplied
by €~ ! from the components of L®.

For the well-sampled data, the third error term also vanishes based on (3.18). The
first error bound and the second term 42e~3/2 in the fourth error bound are both
not applicable as discussed in Remark 3.8. Thus, the leading error term is h3e ™!
from the fourth error bound for well-sampled data. For the random only sampled
data, the leading error terms are h2¢~3/2 and he~1/2. OJ

We should point out that for the approximation of the operators £, and L3 in
(2.4) and (2.5), respectively, we assume that k, B, and C are well-defined functions
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of the domain M U B¢r (0M ). This is due to the fact that the associated asymptotic
expansion in equation (2.4) or the kernel in equation (2.6) require evaluations of the

associated kernel at the estimated ghost points {35?"' }leli k—o C Ber (0M). While
one can devise an extrapolation method to determine the function values at these
ghost points if the functions were only defined on M, we neglect it in the present
work to avoid the extra complication in the analysis above. In our numerics below,
we assume that we are given k, B, C that can be evaluated on any point cloud

X € M U Ber (M) C R”.

3.6 Numerical verification

In this section, we provide supporting numerical results of the GPDM method on
the semi-ellipse Example 2.1 and assess the error of the affine operator in (3.20) in
estimating Lou for functions u that satisfy various boundary conditions. For the
Robin boundary condition, 81dyu 4+ fou = g, we set B1(x) = 1, Ba(x) = 3/(2a)
with the homogeneous g = 0 at both boundary points, x; and xy. For this
numerical example, we set k = 1.1 + sinf. Choosing the true function to be
u = cos(360/2 — m/4), one can check that this function satisfies the above Robin
boundary condition. The analytic f = L>u can be calculated from (2.13). For
the Dirichlet and Neumann boundary conditions, we choose the appropriate u that
satisfies the boundary conditions and proceed in a similar fashion.

The components of u are evaluated at equally angle distributed points {6; =
O];—i)ln}i=l’“.’ ~- In the following numerical experiment, we set N = 400 and
k = 50 nearest neighbors (this is the same configuration that produces Figure 2.1).
Figure 3.4 shows the forward error (FE) defined as HLg @My — Lou HOO as a func-
tion of the bandwidth parameter € for various boundary conditions. One can see
from Figure 3.4 that with the GPDM, the uniform FE reduces substantially on a
wide range of € = 107> — 10~2. This indicates that the solution of the GPDM
becomes much more accurate for the € tuning compared to the standard DM, even
in the Neumann case.

In Figure 3.4, we also show the results obtained from the auto-tuning algorithm
discussed in Section 2. While this automated tuning strategy may not necessarily
give the best estimates on the resulting operator estimation (for example, notice that
the yellow and blue points in Figure 3.4 do not correspond to the minimum Forward
Error), it often gives a starting point for further tuning and is numerically cheap.
For a theoretically justifiable method, yet computationally more elaborate, one can
also use the local singular value decomposition technique in [5].

Figure 3.5 shows the FE as a function of the number of points V. For comparison,
we also show numerical results obtained from the standard DM without adding
ghost points. The GPDM FE ||L& (ii™) — Lou]| oo (green curve) is a uniform error
computed at all N points on manifold M. The DM FE |Lii™ — £5u/| o depicted by
the black dashed curve is computed at all N points, whereas the DM FE depicted by
the red dashed curve is computed only at points x19—xXxy—_g away from the boundary.
One can see from Figure 3.5 that the DM FE on the interior of M and the GPDM
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(a) Robin (b) Dirichlet

-5 -4 -3 -2

10 10 10 10

10° 10" 100 107

FIGURE 3.4. Forward error (FE) of the operator estimation as a function
of the bandwidth € for the semi-ellipse example with fixed N = 400
well-sampled data. The operator acts on a test function satisfying homo-
geneous: (a) Robin, (b) Dirichlet, and (c) Neumann boundary conditions.
The yellow point and blue point correspond to the auto-tuned € for DM
and GPDM, respectively.

error on all points of M decay on O(N ~2), whereas the DM FE on M increases
on O(N!) for both Robin and Dirichlet BC’s and of (1) for Neumann BC’s.
This indicates that for DM, the increasing FE comes from the boundary when N
increases. Incidentally, we notice that for the case of no boundary for manifold M,
FE decays as O(N ~2) (see [25]). However, in the presence of boundary conditions,
only the GPDM FE decays as O(N ~2).

4 Applications: Solving Linear Elliptic PDE’s

In this section, we consider solving the elliptic PDE’s problem on a smooth
manifold M,

Lu = f, x e MP?,
Bu := (B10y + f2)u =g, x € IM,

where 1, B2 are smooth real-valued functions such that 818> > 0 on dM . Here,
the differential operator £ is one of (2.3)—(2.5) and is assumed to be uniformly
elliptic with smooth coefficients (if any). Here, the smoothness will determine
the regularity of the solution. When ;1 = 0, we have the Dirichlet boundary
condition; when > = 0, we have the Neumann boundary condition; and when both
are nonzero, we have the Robin boundary condition. For the Neumann boundary
condition, we will consider the PDE (L—a)u = f witha(x) > ayp, >0 Vx e M

.1)
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(a) Robin (b) Dirichlet
107 1
T O(N)
10 -u-DM, z; ~ ay

-+-DM, z19 ~ zn_9
_.| =GPDM, z; ~ 2y

-+-DM, z1g ~ zn_9
-o-GPDM, z; ~ oy

N
(c¢) Neumann
b
10°
e
10
-A-O<Nv’2)
-+-DM, z19 ~ zn_9
.| =GPDM, z1 ~ zy
10
10° 10°
N

FIGURE 3.5. Comparisons of Forward Errors (FEs) of the estimated
operators as functions of the number of points N for the semi-ellipse
example. The operator acts on a test function satisfying homogeneous:
(a) Robin, (b) Dirichlet, and (c) Neumann boundary conditions. For
GPDM, the FE |L&(@M) — Lou| _ is computed on all points on the
manifold, M (green solid line). For DM, The FE |Lu™ — Lou|so is
computed on all points on M (black dashed line) and only on interior
points {x;}i—10,.. N—9 away from the boundary (red dashed line); i.e.,
neglecting nine closest points from each boundary point. The bandwidth
€ is auto-tuned for each N number of well-sampled data.

for a well-posed problem. For the Robin boundary condition, we also add —a for
convenience of the convergence study. For f € C1%(M), where 0 < a < 1, the
PDE problem with appropriate smoothness of the coefficients (if any) admits a
unique classical solution u € C3%(M), when

C3%(M) for Dirichlet boundary,

4.2) ) .
C=%(M) for both the Robin and Neumann.

We should point out that we impose one-order derivative higher than the usual
Schauder estimates (u € C?%) since the diffusion maps asymptotic expansion
(Lemma A.1) requires a C3-function. For the detailed statement of the Schauder
estimates, see theorem 6.11 of [27] or theorem 6.25 of [26] for the Dirichlet problem,
theorem 6.31 of [26] for the Robin problem, and [42] for the Neumann problem.
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We should also point out that since the convergence analysis will rely on the
consistency of the GPDM estimator, we require that ¥ be C> not only on M
but on the extended domain M U B¢r (M), which is assumed in Theorem 3.9.
The appropriate regularity for k, B, C on the extended domain is also implicitly
assumed for the consistent GPDM estimators to both differential operators £, and
L3. Likewise, the function values of f on the estimated interior ghost points 35J.G°
are also assumed to be well defined and that

4.3) f e CY(M U B (IM)).

In Section 4.1, we present and report the convergence of the proposed solver,
constructed using the GPDM discretization. In Section 4.2, we provide supporting
numerical examples on simple manifolds. In Section 4.3, we test the PDE solver on
problems defined on an “unknown’ manifold and compare the estimates with the
finite element method (FEM) solution.

4.1 The GPDM discretization method

Numerically we will approximate the PDE in (4.1) with the affine operator in
(3.20) for our GPDM method. To be concise, we define #™ = (iiy,....1y),
whose components are the numerical solution of the elliptic problem at {x; }lN: ; that
also include solutions at the estimated ghost points, {)’EJ.GO }jJ —1- Then, the PDE is
discretized as

(4.4) LE@M) = LD + L@OA)aM + L) = 7,

where f e R, with components f; = f(x;), x; € M, and x; = EJ.GO for some
i, j. In the analysis below, we will establish the convergence of the solution #™ of
the linear problem in (4.4) to the true solution, %™, as defined in (3.17), subjected
to boundary conditions.

As for the boundary condition, we discretize the boundary operator for each
X; € dM as follows,

8(x;) — 8(F7°)

B1(xi)dy + P2(x;) ~ ,31(xi)< ;

) + Ba(xi)é(xi) := By,

following equation (3.8). The Kronecker delta notation §(x), which is equal to 1
on x and O otherwise, is used to clarify that the row vector B; (of size 1 x N) has

nonzero components on entries associated to flG 9 and x; € dM . With this notation,
the estimated boundary condition can be written in a compact form as

(4.5) B =g,
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where g € RY, with components g; = g(x;) for all x; € dM. Then we have
BaM —BuM);

= g(xf) — BuM); = Bu(xf) — Bu™),

(4.6) = Bu(x/) — (B(@l + O(he'’?))),
B\ _ ,,(3Go
_ ’Bl(xJB)(avu(ij)_ u(xl ) hu(xj ) +O(61/2))
= O(h,€'/?),

forj =1,..., J. For the equality in the third line, we have used (3.18) such
that the error of order he'/2 only occurs for the randomly sampled data. As for
the equality in the fifth line, for well-sampled data, )’ZJ.GO coincides with one of the
interior points (due to the secant line approximation), and the error bound in the
approximation of the directional derivative is of order-4. For the randomly sampled
data, the error bound in the approximation of the directional derivative is given by
(3.9).

Dirichlet Problem: Numerically, we consider solving an (N — J) x (N — J) linear
problem that is obtained by asserting (4.5) to the first N — J row of (4.4). To clarify,
let us define the submatrices L € RV —)IXWV=J) [,B ¢ RW—I)XJ that satisfy,

(LW + LPA),
4.7) (L7 | LB) = : e RWV=IxN,
LW + L(2)A)N_J
and decompose the estimated solution #™ = (@, 78) to

al = @y, ....aN_)) for interior components,

B = (UN—F+1....,up) for the boundary components.

Similarly, we will decompose the true solution as #™ = (!, %) with

il = u(x). ..., u(yj(h)),....u(xy—y)) for the interior components,
il = (MUN—T+1+.-. UN) = (u(xlB), e u(xf)) for the boundary components.
For the Dirichlet boundary condition, u(xJB ) = g(xJB Yfor j =1,...,J, then

one can directly replace iy _j4; = u(ij ) = g(xJB ), applying the decomposition
in (4.7) on the first N — J rows of (4.4), we arrive at the following reduced system,

(4.8) Lig! = f1 _LBg
where we have also defined

1= (fx1) = @WPh)y, f(xa) — LPb),, ..., flxn—1) — LPb)y_).
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We now show that the solution of (4.8) converges to the solution of the PDE in (4.1)
with Dirichlet boundary condition.

THEOREM 4.1 (Convergence of the Dirichlet Problem). Let u be the solution of the
PDE in (4.1) with Dirichlet boundary condition, u(x]B) = g(xJB)for j=1...,J.
Assuming the regularity in (4.2) and (4.3) for g and f, let u; be the solution of
the linear system in (4.8), where the diffusion operator L is approximated by the
GPDM affine estimator in (3.20), constructed with N grid points on the manifold
and the estimated ghost points (3.12), whose consecutive distance is h > 0 such
that the consistency in Theorem 3.9 is valid. Assume that the differential operator L
satisfies the maximum principle; then for any x; € M°, ii; converges to u(x;) with
an error bound given as
| — u(xi)|
_ O(h36_1,h26_3/2,he_l/z,E,]\_/_1/26_(2+d/4),N_l/ze_(1/2+d/4))

in high probability, as € — 0 after N — 0o and h — 0.
PROOF. See Appendix B. U

Recall that some components of {u; }ZN= _1] correspond to the numerical solutions

at the ghost points {35].G0}].J=1. For these components, #; converges to the true
solution u, evaluated at the corresponding point y; (h) € M. We will elaborate this
case in the proof of the next Theorem 4.2 (see the discussion after (4.12)).

Robin and Neumann problems: Here, we consider

(—a + Lyu = f, xeM°,

Bu := (B10y + B2)u = g, x € M,

with a(x) > amin > 0 Vx € M such that —a + L is strictly negative definite. Here,
the additional —a term is to ensure the well-posedness of the Neumann problem
and for convenience of the convergence study of the Robin problem.

For the discussion below, we write the discrete approximation of the boundary
operator as B = (B{;B®), where B! € R/*(V=7) and BE ¢ R’/*/. Then, the
discrete approximation to the PDE problem in (4.9) is given by the following N x N
system,

~M ._ —3+LI LB 1:1\1 _ ]71
(4.10) Nii ._( g 5)az) =% )

where a denotes a diagonal matrix with diagonal components {a(x;)}. Numerically,
one can also solve the last J rows corresponding to the boundary conditions,
(4.11) a? = 85"z - Blal),
and insert this solution to the first (N — J) rows in problem (4.10) to obtain a
reduced (N — J) x (N — J) system.

For the Robin problem, we have the following convergence result.

4.9)
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THEOREM 4.2 (Convergence of the Robin problem). Let u be the solution of PDE in
(4.9) with Robin boundary condition and 1, B> > 0. Let the corresponding GPDM
estimator be constructed as in Theorem 4.1 and assume thata € C'(M U B¢(OM)).
Assuming the regularity in (4.2) and (4.3) for g and f, for any x; € M?, the solution
; of the linear system in (4.10) converges to u(x;) with error bound given as

i —u(x)| = O3t h2e ™32 he /2 €12,
N—l/ze—(2+d/4)’N—l/ze—(1/2+d/4))’
in high probability, as € — 0 after N — 0o and h — 0.

PROOF. Using the definition of f/ and the decomposition in (4.7), one can
immediately see the consistency. Multiplying the matrix N in (4.10) with a vector
consists of the difference between the estimated and the true solutions, we obtain

((—a+LhH@! —al) + LE@% —u?)),
= (f = (-a+ LNy —LPip),
= f(x) +a(xu(x) — (LPb + LTi; + LPiip),
= Lu(x;) — (L @M));

fori =1,...,N — J. For the randomly sampled case, some of the elements of
{x;} are fJGO that do not lie on M. For such components, we have

(—a+LH@" —a"y + LE@B - u®)),
= f(E7°) + a(F)uE) - (L 6i*))
= Luy; () — (L GiM)),
+ (£ (FF) = £l ) + a(ZFFWu(EF) — aly; ()u(y; ()
= Luly; () — (LE M), + O(he!/?),

where the last term is valid under the assumption that a, f,u € C'(B¢r(dM)). The
last J rows corresponding to the boundary points are nothing but (4.6).

From equation (B.6) in Appendix B, the column sum of each row of the matrix
M = e(L® + L®A) is zero and that M;; <0OandM; ; > Oforall j #i. Since
the first N — J rows of N is nothing but —a(x;) + (LD + L@A);, we have

4.12)

i

N N
INLil = D INijl = [—a(xi) + e "My —e ' ) My |
j=1 j=1
J# N J#
=a(x;)—e 'Y M = a(x;) = amin > 0.
j=1

fori =1,...,N — J. Also, the last J rows of the matrix N are strictly diagonal
dominant as long as B > 0. For example, in 1D case where J = 2, the last two
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rows of (4.10) is given as

BBﬁB + Blﬁj

— W-Fﬂz(xl) 0 (ﬁl)
: 0 ,31(;:N) + Ba(xn) ) N

i
N | [ M
0 ... 0 -BEMJ g(xn)
UN-—1
In this case, |N; ;| — Z;V:l,j#i IN;,j| = Ba(x;) > O fori > N — J. Therefore,

the matrix N is strictly diagonal dominant and nonsingular. By the Ahlberg-Nilson-
Varah bound [1, 50], the inverse matrix is uniformly bounded,

1 1

min; (N | — X0 N min{amin. B2}
J#i

IN"Hoo <

Thus, multiplying N~! to a vector where the first N — J components consist of
(4.12) and the last J components consist of (4.6), we have

il

s = u(i)] < IN oo max|((—a+LN@ ") + L @" i),

i=1,...,

max |(B@" ), ),

j=1,..,J
— IN"! ( Lu(xi) — (LE@M)Y).|,
IN"!loo izlf?f%_]\ u(x;) — (LE@™M)),

~M -M
__ma>.( ‘(B(u —u )j ),
for all x; € M. Since the GPDM is consistent, |Lu(x;) — (L& (ﬁM))i‘ — 0 as
€ — 0 after N — oo and i — 0 with error rate given in Theorem 3.9. Together
with the error bound in (4.6), the proof is completed. U

For the Neumann problem, the last J components of N are not strictly diagonal
dominant, since 8, = 0. To achieve the convergence, one can consider (without
loss of generality) the homogeneous Neumann problem g = 0 such that (4.11)
simplifies to iig = —(BB)"!B/%i/. For example, in a well-sampled case, the
discrete approximation in (3.4) yields iy = #iy—; and #; = ;. Substituting
these solutions (J equations in general) to the first N — J rows of (4.10), one can
verify that the reduced N — J problem is nonsingular and has an inverse that is
uniformly bounded by 1/api,. Thus, the convergence can be achieved using the
similar argument as in the proof above.
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4.2 Numerical examples on simple manifolds

In this section, we discuss three examples of problems defined on simple mani-
folds. First, we verify the convergence rate with the 1D example in Example 2.1.
In the second example, we test the solver on a semitorus embedded in R with a
mixed-type Dirichlet-Neumann boundary condition. In the third example, we verify
the effectiveness of the proposed method on the randomly sampled data for the
semitorus PDE problem.

Numerically, we will compare GPDM with the standard DM. To account for other
than homogeneous Neumann boundary conditions, we modify the standard DM as
follows. We consider the N — J rows corresponding to the interior points x; € M?

of the equation, Lyt M — f , where Lpy is the standard diffusion maps operator.
To approximate boundary conditions that involve normal derivatives, we use the
algorithm in Appendix C that requires no interior ghost points. Then the inverse
problem consists of solving the reduced linear system (arising from imposing the
appropriate boundary conditions), analogous to the reduced linear problem with
GPDM.

Anisotropic diffusion on a semi-ellipse with well-sampled data
First, let us present the results of the 1D problem in Example 2.1 in solving

4.13) Lou = f,

with the three boundary conditions. In this numerical experiment, the configuration
is the same as in Section 3.6. In particular, Figure 4.1 demonstrates the error of the
solutions ||i™ — i || o, which we refer to as the inverse error (IE) as a function
of € for fixed N = 400, k = 50. Compared to the standard diffusion maps, notice
that GPDM is more robust for the case of Robin and Dirichlet boundary conditions,
as expected. The advantage of GPDM over DM on Robin and Dirichlet boundary
conditions is more apparent in Figure 4.2. Particularly, for the Robin BC, one can
see that the GPDM IE decays on O(N ~1), whereas the DM IE does not decay
and is nearly constant. For the Dirichlet BC, GPDM IE decays faster compared to
the DM IE. For the Neumann BC, we see comparable IEs as functions of N, as
expected.

Nonsymmetric backward Kolmogorov elliptic PDE on a semitorus with well-
sampled data

In the next example, we consider solving £3u = f, with a mixed Dirichlet-
Neumann boundary condition on a semitorus M C R3. The parametrization of
the torus is given in (3.2) and the corresponding Riemannian metric is defined in
(3.3) with (0, ¢) being the two intrinsic coordinates. The differential operator L3 is
defined as in (2.5) with

b (x)\ . 24+ x3 _ (2 +sinf
p2(x)) "~ \(x? +x2)1/2) ~ \2+ cos b
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FIGURE 4.1. Pointwise inverse error (IE) of the solution of (4.13) as
a function of the bandwidth € for the semi-ellipse example with fixed
N = 400 well-sampled data. The yellow point and blue point correspond
to the auto-tuned € for DM and GPDM, respectively.
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FIGURE 4.2. Comparisons of the inverse errors (IEs) of the solutions of
(4.13) as functions of N for the semi-ellipse example. The bandwidth €
is auto-tuned for each N number of well-sampled data.
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0
FIGURE 4.3. Absolute errors in the estimated solutions for the semitorus
example with well-sampled data: (a) DM for N = 64 x 64 with ||a™ —
M0 = 0.88, (b) GPDM for N = 64 x 64 with ||i™ —ii™ || oo = 0.095,
(c) DM for N = 128 x 128 with ||u™ —uM ||, = 0.91, (d) GPDM for
N = 128 x 128 with |7 — ii™ || o = 0.042.
(a)IEvs. N (b) DM, IE vs. € (c) GPDM, IE vs. €
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FIGURE 4.4. The semitorus example with the well-sampled data. (a) IEs
of DM and GPDM methods as functions of N. For each N, the IE is
obtained from the minimal inverse error for different €. IEs of (b) DM
and (c) GPDM methods as functions of bandwidth ¢ for different N.
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") ) 3+ x/(2+xHY2 1/10) _ (3 +cos¢ 1/10
2 (x) ®(x)) 1/10 2 ) 1/10 2

The semitorus is defined with the standard parametrization function as in (3.2) so
that the induced Riemannian metric is given in (3.3). We set an analytic solution of
this problem to be

2 cos 2¢
4.14 ={sin2¢ - ———— 0,
4.14) u(x) (sm ¢ 3 cose) cos
where
cosf = (x2 +xH)1/2 -2, sinf = xs,
4.1
(“.15) cos¢ = all sing = 2

(x? + x2)1/2° (x? + x3)1/2’
with sin 2¢p = 2sin¢ cos ¢ and cos2¢ = 2cos? ¢ — 1. Next, we calculate f :=
Lau and g := B1dyu + Pru at ¢ = 0 and ¢ = x. In this semitorus example, the
explicit expression for f is given by
1. d 1
fi=Lu=b-Vu+ EC’JViVju R R
0%u ou 1 0%u ou
12 2 22 1
: —I'f— = — =,
e (aeaqs 123¢) T3¢ (a¢2 2239)

where I‘lz2 and F212 are the only nontrivial Christoffel symbols of the second kind,

2 _ sin 0

127 24 cosf’
with the trigonometric functions defined in (4.15). At one boundary ¢ = 0, the
parameters are B; = 0 and B> = 1 (Dirichlet boundary condition) so that g :=
u(¢ = 0), where u is the analytic solution in (4.14). At the other boundary ¢ = 7,
the parameters are f; = | and B> = 1 (Robin boundary condition) so that the
expression for g at ¢ =  is

ou

= 10 = ——
g Brdvu + pou (2+cos08¢

where the analytic u in (4.14) and ¢ = 7 have been used. Then, we approximate
the solution in (4.14) for the PDE problem in (4.1), subjected to the manufactured f
and g. Numerically, the grid points {6;, ¢;} are uniformly distributed on [0, 2] x
[0, 7], withi,j =1,...,64o0ri,j =1,...,128 points in each direction, resulting
in atotal of N = 4096 or N = 16384 grid points. To apply the local kernel in
(2.6), we use k = 200 nearest neighbors for all N and manually tune the kernel
bandwidth as € = 0.0032 for N = 4096 and € = 8 x 10™* for N = 16384. We
found that the auto-tuned method discussed in Section 2 is not so robust for the
estimation of £3, and we suspect that this is because the covariance in the Gaussian
kernel is not constant such that the scaling used in (2.11) may not be appropriate.

Ty, = sinf(2 + cos h),

+u)(¢=ﬂ) =0,
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FIGURE 4.5. Absolute errors in the estimated solutions for the semi-
torus example with random data: (a) DM for N = 64 x 64 with
luM — M| o = 0.203, (b) GPDM for N = 64 x 64 with ||uM —
M| = 0.146, (c) DM for N = 128x128 with ||u™ -1 || o, = 0.186,
(d) GPDM for N = 128 x 128 with |u™ — M ||, = 0.074.

In Figure 4.3, we show the absolute errors between the true and the estimated
solutions obtained using DM and GPDM for N = 64 x 64 and N = 128 x 128.
For DM, the IE [|u™ — 1M ||, = 0.9 is relatively large and IE does not decrease
even as N increases. On the other hand, the inverse error (IE) of GPDM is one
magnitude order smaller than the IE of DM and decreases from 0.095 to 0.042 as
N is increased from 64 x 64 to 128 x 128.

Figure 4.4(a) shows the IEs as functions of N for DM and GPDM methods.
One can see that GPDM solutions converge whereas DM solutions do not converge.
Figure 4.4(b) and (c) show IEs of DM and GPDM methods, respectively, as functions
of bandwidth ¢ for different N. One can see that as N increases, IE of GPDM
decreases (at the rate of O(N ~1/2)) whereas IE of DM does not decrease.

Anisotropic diffusion on a semitorus with random data
In this example, we consider solving £Lou = f, with a mixed Dirichlet-Neumann
boundary conditions on a semitorus M C R3. The differential operator L5 is
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FIGURE 4.6. The semitorus example with random data in Section 4.2. A
total of 16 independent trials are run. (a) The auto-tuned bandwidth € as
a function of the number of points N. Each red cross corresponds to an
auto-tuned € of one trial, and each black square corresponds to the mean
of these auto-tuned €. (b) IEs of DM and GPDM methods as functions
of N. Each red cross is the IE for one trial. For one independent trial,

plotted are (c) IEs of DM and (d) IEs of GPDM as functions of bandwidth
€ for different N. Squares correspond to the auto-tuned €.

defined as in (2.5) with

Kk(x) = 1.1 + sin? § cos® ¢,

where the trigonometric functions for (8, ¢) as functions x are still given in (4.15).

The semitorus is still defined with the embedding function as in (3.2). We set the
analytic solution of this problem to be

u(x) = sin¢ sin 6,
and calculate

1 g
f = Lou= \/ﬁai(/c\/@gljaju).
g




GPDM FOR ELLIPTIC PDES ON MANIFOLDS 39

(a) e vs. N (b)IEvs. N

10" 107"

-4-O(N7Y b - .- .o -

A -m-cx O(N7Y) ~ O(h?)

102 Ttw.

..

w :a‘a'
107 e
107
10° 10°
N

FIGURE 4.7. The semitorus example with the well-sampled data in
Section 4.2. (a) The auto-tuned bandwidth € as a function of number of
points N. (b) IEs of DM and GPDM methods as functions of N.

The boundary conditions g := Bidyu + Pou at ¢ = 0 and ¢ = m are given
the same as those in Section 4.2. Then, we approximate the solution for the PDE
problem, subjected to the manufactured f and g.

Randomly sampled data: Numerically, the grid points {6;, ¢;} are randomly
uniformly distributed on [0, 27] x [0, ]. For N = 322,452, 642,902, 1282 grid
points, we set k ~ +/N and apply the e-auto-tuning method discussed in Section 2.1.
For each N, we show results for 16 independent trials. In Figure 4.5, we show the
absolute errors in 8 and ¢ between the true and the estimated solutions obtained
for DM and GPDM methods for N = 642 and N = 1282. For DM, the IEs
are relatively large and do not follow a clear decreasing pattern as N increases
(|i#M — 1M || oo = 0.203 for N = 642 and ||iM — 1M ||oo = 0.186 for N = 1282).
On the other hand, the inverse error (IE) of GPDM is smaller than that of DM and
decreases from 0.146 to 0.074 as N is increased from 64 to 1282,

Figure 4.6(a) shows the auto-tuned bandwidth € as a function of N. Figure 4.6(b)
shows IEs as functions of N for both DM and GPDM. One can see that GPDM
solutions converge, whereas DM solutions do not converge. Figure 4.6(c) and (d)
show IEs of DM and GPDM methods, respectively, as functions of bandwidth € for
different N for one independent trial. One can see that as N increases, IE of GPDM
decreases, whereas IE of DM does not decrease. For completeness, we depict the
results of auto-tuned epsilon in squared symbols as shown in Figure 4.6(c)(d). Note
that for the GPDM, the auto-tuned € seems to correspond to the lowest IE.

For comparison, we also show numerical results with well-sampled data.

Well-sampled data: The grid points {Gi ) j} are well uniformly distributed on
[0,27] x [0, x], with i, j, both equal to 32, 45, 64, 90, 128 points in each direction,
which is the same as those in Section 4.2. For different N grid points, we fix
k = 121 nearest neighbors and then apply the e-auto tuning method discussed in
Section 2.1. One can see from Figure 4.7(a) that the auto-tuned bandwidth € is on
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order of N™!. This rate for the well-sampled data is faster than that for random
data, as shown in Figure 4.6(a). Figure 4.7(b) shows that IE of GPDM decays on
the order of N ™!, whereas IE of DM does not decay for different N.

Other choices of k nearest neighbors and auto-tuned ¢ for GPDM: For well-
sampled data, we also examined the auto-tuned € under variable k nearest neighbors,
that is, we choose k ~ ~/N. We found that for well-sampled data, the rates preserve
as in Figure 4.7, that is, the bandwidth e = O(N ') and IE is O(N ") as well (not
shown here).

For random data, we also examined the auto-tuned € under fixed £k = 200
nearest neighbors. However, we found that the results are different between using
fixed k and variable k. For variable k, the bandwidth € = O(N~1/2) and IE is
O(N~1/2) as shown in Figure 4.6. For fixed k, the bandwidth e = O(N~!) and
IE is (’)(N_l/“) (not shown here).

4.3 Anisotropic diffusion on an unknown “face’” manifold

In this section, we consider solving the boundary value problem in (4.13) with
k = 1.1 + sin?(10x;) and f = cos(10x7) on an unknown manifold example of
a two-dimensional “face” x = (x1,x2,x3) € M C R3. We consider the Robin
boundary condition on the one-dimensional, closed boundary curve of the face. The
surface used in this section is from Keenan Crane’s 3D repository [17]. Notice that
we have no access to the analytic solution since we do not know the embedding of
the face surface. For comparisons, we numerically solve the problem with the finite
element method (FEM) using the FELICITY FEM Matlab toolbox [54].

Figure 4.8 shows the comparison of the solutions among FEM, DM, and GPDM
methods corresponding to the Robin boundary condition (d,u + 10u = 0 on dM).
To compute the FEM solution as a benchmark, we applied FELICITY toolbox in
Matlab using the triangulated mesh of the surface, which consisted of 17157 points
and a connectivity matrix for the triangle elements. We use a linear finite element
space in the FEM algorithm. We used k = 512 nearest neighbors and tuned the
kernel bandwidth parameter as € = 3 x 107, For GPDM, we used K = 6 layers
of ghost points for 168 boundary points so that we used 168 x 6 ghost points in
total. In Figure 4.8, we found that the inverse error (IE) between GPDM and FEM
solutions (about 3.2 x 10™%) is smaller than that between DM and FEM solutions
(about 4.3 x 10™%); here the scaling of the true solution is on the order of 1073.
In this case, one can see that larger errors of GPDM are locally concentrated near
the nose and the mouth, whereas the larger errors for DM are evenly distributed on
the lower face. Thus, for the Robin boundary condition, one can see that GPDM
exhibits better performance than the standard DM.

S Applications: Solving Elliptic Eigenvalue Problems

In this section, we apply the GPDM algorithm for solving the eigenvalue problem
LY = Ay on a manifold with boundary, where L is either the Laplace-Beltrami
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(a) FEM Solution (b) Difference between FEM & DM

4
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FIGURE 4.8. Comparison of the PDE solutions among FEM, DM, and
GPDM on the “face” example with the Robin boundary condition. (a)
FEM solution. (b) Absolute difference between FEM and DM solutions.
(c) Absolute difference between FEM and GPDM solutions.

in (2.3) or the weighted Laplacian operator in (2.4). Since there is no f in this
problem, we cannot use the quadratic extrapolation formula in (3.14). Instead, we
extrapolate u using the linear extrapolation formula defined as follows:

7oL _ 2u(ij) + u(fJG") =0,

€,J
~G2o ~G By _
(5.1 oo —2ug )k +u(x)) =0,
~G ~Gr—1 | ~Gr— _ —
Ug —2u€,j + i =0, k=3,...,K,
where ﬁEG’]‘ are the function values to be specified. It is worth noting that if we

replace the quadratic extrapolation in (3.14) with (5.1), one can deduce the error
rate analogous to Proposition 3.6 except that the first error bound /3 is replaced with
h?. With this linear extrapolation formula, we consider the following algorithm.

ALGORITHM 5.1. GPDM algorithm for eigenvalue problems:

(1) Supplement the ghost points as in Section 3.3 and construct the augmented
N x N matrix using DM based on all points on manifold and ghost points.
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(2) Construct the GPDM estimator, an (N — J) X (N — J) matrix, based on the
homogeneous extrapolation formula (5.1) for u at the ghost points and the
homogeneous boundary condition (4.5). Here, J is the number of boundary
points. The homogeneous equations (5.1) and (4.5) have a unique solution
that can be written in a compact form as a the column vector,

@8,u%) = cal,
=G B

where u;, u”, and al are column vectors with components consisting of
the estimated function values of u at the estimated ghost points, boundary
points, and interior points, respectively, as defined in (3.16)—(3.17). Here,
Cisa (JK + J) x (N — J) matrix. Denoting the column vector u :=
@!,uB,u%) e RV, the diffusion operator L is approximated with the
following matrix:

L' = LW + L@ @8 68) = LOa + L@ ca!
= LW +L@0)al.

Here, we have defined the submatrices LW ¢ RV=IDxN=9) 5,4 1.3 ¢
RWV=DXUKHT) ot the augmented (N — J) x N matrix LP = (LMW, L®),
and we should point out that these submatrices are different than those
defined in (3.20).

(3) Solve the eigenvalue problem of the diffusion matrix LM + L@,

For comparison, we also apply the standard DM algorithm for solving the eigen-
value problem L, = A1 with the following modification to incorporate bound-
ary conditions other than homogeneous Neumann.

ALGORITHM 5.2. DM algorithm for eigenvalue problems with non-Neumann bound-
ary conditions:

(1) Construct the DM estimator, an (N — J) x (N — J) matrix, based on the
homogeneous boundary condition (4.5). Here, J is the number of boundary
points. The homogeneous boundary condition (4.5) has a unique solution
that can be written in a compact form as

a8 = Ccpmit!,

where 18 and i1 are vectors with components consisting of the estimated
Sfunction values of u evaluated at the boundary points and interior points,
respectively. For boundary conditions that involve normal derivatives, we
used the algorithm in Appendix C to approximate the normal derivatives
without adding ghost points. Here, Cpy is a (J) x (N — J) matrix. For
the formula below, we define a column vector it = (1!, 118). Then, the
diffusion operator L can be approximated with the following matrix:

Lomii = Lya! + Liya®? = LiJa! + L3 Comit!

= (Loy + LswCom)it!.



GPDM FOR ELLIPTIC PDES ON MANIFOLDS 43

Here, we have defined the submatrices Lg& e RWV=Ix(N=J) 4nd L1(321\)/1 €

RN of the (N — J) x N DM matrix Lpy = Loy L&),

(2) Solve the eigenvalue problem of the diffusion matrix L](Dll\),I + L]()zl\),,CDM.

Next, we compare the numerical performance of the DM and GPDM in solving
the eigenvalue problems Ly = A ¥ on manifolds with boundary for various
test examples. We begin with the singular Sturm-Liouville eigenvalue problem of
Legendre polynomials on a flat domain [—1, 1]. Next, we show numerical results
of the Laplace-Beltrami operator on various embedded smooth manifolds, such
as a 1D semicircle in R? with Dirichlet and Robin boundary conditions and a 2D
semitorus in R? with mixed boundary conditions.

5.1 A singular Sturm-Liouville problem

First, we consider solving the Legendre differential equation on the flat domain
[_1 ’ 1] ’

o d 2 dy
(5.2) Ly = [(1 x%) -
where the eigenvalues are Ay, = —k(k + 1) withk = 0, 1,2, ..., and the eigenfunc-
tions v are Legendre polynomials. The Legendre polynomials are orthogonal with
respect to a uniformly distributed weight over the domain [—1, 1]. The complete-
ness of the set of eigenfunctions follows from the framework of Sturm-Liouville
theory. It is well-known that the differential equation (5.2) has singular points at
the boundary x = %1, so that the eigenfunctions 1 are required to be regular at
x = =£1.

Numerically, the operator £ in (5.2) is estimated by choosing k = 1 — x? in the
weighted Laplacian operator £ in (2.4) using the GPDM method. At the boundaries
x = =1, L reduces to a first-order differential operator Ly = —Zx%, SO
that it can be treated as a boundary condition that is estimated using a finite-
difference method. In particular, we construct an N x N diffusion matrix on N
equally spaced discrete grids {x; = 2({ —1)/(N — 1) — 1}, _y on[—1, 1]. For
efficient computation, the sparse diffusion matrix is represented using the kernel
generated from k = 50 nearest neighbors based on the Euclidean distance of x; [28].
The bandwidth € = 1.5x 107> is chosen for N = 400 by the auto-tuning algorithm
discussed in Section 2.

Figure 5.1 shows the comparison of the eigenvalues and eigenfunctions between
the analytic Legendre polynomials and the numerical results from DM and GPDM.
It can be seen from Figure 5.1 that both eigenvalues and eigenfunctions can be
well approximated within numerical accuracy. For a detailed inspection, we show
the errors of the eigenvalues and the eigenfunctions as functions of the mode-k,
respectively, for the different number of points N in Figure 5.2. It can be seen
that both DM and GPDM provide convergent eigenvalues and eigenfunctions as N
increases. The errors of GPDM are slightly smaller than those of DM.

} — _k(k + s
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FIGURE 5.1. DM and GPDM estimation of eigenvalues and eigenfunc-
tions for the Legendre polynomials on flat domain [—1, 1].
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FIGURE 5.2. Sturm-Liouville problem: Error of (a) eigenvalues and
(b) eigenfunctions as functions of the mode-k for different numbers of

points.

5.2 Laplace-Beltrami operator on a semicircle

In this example, we consider solving the eigenvalue problem Ay, = AgY ona
1D semicircle with Dirichlet and Robin boundary conditions. We neglect to show
results with the Neumann boundary condition since the performances of GPDM
and DM are identical. The Riemannian metric of the semicircle is given by (2.12)
with @ = 1. For the Dirichlet boundary condition 3 = 0 at both ends 6§ = 0 and
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7, one can check that the eigenvalues and eigenfunctions are
A = —k2, Y =sin(kx), fork =1,2,3,....

For the Robin boundary condition —d,¥x + ¥, = 0 at§ = 0 and 9,y +
Y = 0at 6 = m, we can find the explicit expression of both the eigenvalues and
eigenfunctions,

1 fork =1,
A = 2
—(k—1)* fork =2,3,...,

_)exp(—x) fork =1,
Vi = sin((k — 1)x) — (k — 1) cos((k — 1)x) fork =2,3,....

We should point out that the Robin boundary condition at 6 = 0 corresponds to
unphysical problems.

The Laplace-Beltrami operator £ is numerically estimated using DM and GPDM
from formula (2.3). We construct an N x N matrix on N equally spaced discrete
grids {x; = (cos((i — Dx/(N —1)),sin((i — /(N —1)))};=1,. - The ker-
nel uses k = 50 nearest neighbors and the bandwidth € = 2.1 x 107 that is
auto-tuned using a fixed (for N = 400) grid points for all types of boundary condi-
tions. The numerical results are shown in Figure 5.3. In these two problems, the
eigenvalues and eigenfunctions can be well approximated by both DM and GPDM,
although DM is less accurate for the Robin boundary condition (as seen in the
estimation of mode-1).

Figures 5.4(a),(b) show errors of the eigenvalues and eigenfunctions, respectively,
as functions of mode-k for a different number of points N on a semicircle example
with the Robin boundary condition. Figures 5.4(c),(d) show the errors of the
eigenvalues and eigenfunctions as functions of N, respectively. It can be seen that
for DM, there is no convergence in the estimation of the leading eigenvalues and
eigenfunctions as N increases. In comparison, for GPDM, there is convergence in
the estimation of the leading eigenvalues and eigenfunctions.

5.3 Laplace-Beltrami operator on a semitorus

In this example, we consider solving the eigenvalue problems Ay, = Ap Yy
on a 2D semitorus embedded in R® with Dirichlet and Dirichlet-Neumann mixed
boundary conditions. Here, the torus is defined with the standard embedding
function (3.2) with the Riemannian metric (3.3), the parameter a = 2, and the
intrinsic coordinates (6, ¢) on [0, 27r] x [0, ]. Then, we can check that the Laplace-
Beltrami operator in the intrinsic coordinates (6, ¢) can be written as:

1 02 Y 02 Yy _ sinf 0y

5.3 Ay =
©- Vi (a + cos )% 092 HFTR a+cosf 96

= A Yk

We can use the method of separation of variables to solve this eigenvalue problem
(5.3), satisfying Dirichlet and the mixed boundary conditions. That is, we set
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FIGURE 5.3. Comparisons of eigenvalues and eigenfunctions between
DM and GPDM for semicircle example with (a) Dirichlet and (b) Robin
boundary conditions. The Riemannian metric is given by (2.12) with
a=1
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vs. N. Note that for DM, there is no convergence for the leading eigen-
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Y = DPr(¢)Or(0) and substitute ¥, back into (5.3) to deduce the eigenvalue
problems for ®; and O :

(5.4) P +mid, =0,
sin 6 m2
(5.5 O -—" @, -———k @ = A, O,
k' a+4cosh K (a + cos 6)? « ok

where the derivatives in (5.4) and (5.5) are taken with respect to ¢ and 8, respectively.
The discrete values of my, are chosen such that @ satisfies (5.4) with two types
of boundary conditions. In particular, type (a) is the Dirichlet boundary condition
at both sides (®f (0) = &, (;r) = 0) and type (b) is the Dirichlet-Neumann mixed
boundary condition (®4(0) = 0 and CI>;c () = 0). Then, the eigenvalue problem
(5.5) can be numerically solved for A; with high-order accuracy. The eigenvalue
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Ak associated with the eigenfunction 1 obtained by the approach above are treated
as the exact solutions of the eigenvalue problem (5.3).

In our numerical implementation, the grid points {9,-,¢j} are uniformly dis-
tributed on [0, 27r] x [0, 7] with i, j = 1,..., 64 points in each direction resulting
in a total of N = 4096 grid points. We assume that we do not know the embedding
function (3.2) when solving the eigenvalue problem using DM and GPDM. For the
GPDM method, we estimate normal direction v to the boundary, add ghost points
along v, construct an augmented matrix using standard DM, and finally construct
the N x N diffusion matrix based on the extrapolation formula and boundary con-
ditions. We use k = 200 nearest neighbors to construct a sparse matrix L” for
computational efficiency. The kernel bandwidth € = 0.004 is auto-tuned for all
types of boundary conditions.

Figure 5.5 shows the numerical estimates of the first 20 eigenvalues and the
eighth eigenfunction for (a) Dirichlet and (b) the mixed boundary conditions. One
can see from Figure 5.5 that the eigenvalues and the eighth eigenfunction can be
approximated well by both DM and GPDM. For the Dirichlet boundary condition,
the largest errors of the first 20 eigenvalues are comparable as 0.08 and 0.12 using
the standard DM and GPDM, respectively. The largest £°°-norm error of the first 20
eigenfunctions using GPDM (= 0.01) is much smaller than that using DM (= 0.31).
For the mixed boundary condition, the largest errors of the first 20 eigenvalues
are comparable as 0.06 and 0.04 using the standard DM and GPDM, respectively.
The largest £°°-norm error of the first 20 eigenfunctions using GPDM (= 0.99)
is comparable to that using DM (= 1.03). However, a close inspection, e.g., the
eighth eigenfunctions, suggests that the GPDM errors occur on smaller regions of
the domain compared to those of DM.

6 Summary

In this paper, we introduced the ghost points diffusion maps (GPDM) to esti-
mate second-order elliptic differential operators defined on smooth manifolds with
boundaries. The proposed method overcomes the inconsistency of the diffusion
maps (DM) algorithm in estimating these differential operators near the boundaries.
We provided a theoretical convergence study as well as numerical verification on
test problems with tractable solutions and on the unknown ““face” manifold to vali-
date our claim. The key idea of GPDM is motivated by the standard ghost points
approach that is used to obtain a higher-order finite-difference approximation of
Neumann/Robin-type boundary conditions on the flat domain. Our key contribution
is to realize this idea with a concrete numerical algorithm on unknown manifolds,
identified only by the point clouds, that is guaranteed to be consistent.

We considered solving elliptic PDEs (4.1) with the GPDM operator estimation
method. We showed that the PDE solver, which is a mesh-free technique, is a
convergent method under the standard assumption of the well-posedness of the
PDE problem. Numerically, we validated the solver on a series of 1D and 2D test
examples with and without explicit solutions. On a problem with an unknown
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manifold where the explicit solution is unknown, we compare the result against the
FEM solution. Overall, GPDM is much more accurate and robust relative to DM
except on the Neumann boundary, for which DM is expected to work well as shown
in [25]. Numerically, we also found that GPDM is more accurate compared to DM
in solving eigenvalue problems associated to the operators (2.3)—(2.4).

While the proposed approach is encouraging, it also poses many open questions,
namely:

e The ghost points are constructed by extending points along the exterior
normal direction from the boundary. Since the errors in estimating the
directional derivatives and normal vectors depend on Hessian (second-order
derivatives), the error can be significant if the curvature is very large at the
boundary. This suggests that the method can be improved by specifying
ghost points that account for the curvature at the boundary. In our context,
where the manifold is unknown, this requires an estimation of the boundary
curvature from the point clouds, which is a problem that we are not currently
familiar with.

e In this work, we have verified the proposed method on 1D and 2D manifolds.
For higher-dimensional manifolds, while the numerical method can be used,
the conditions to achieve the conclusion in the Lemma 3.5 require further
studies.

e The proposed technique assumed that the boundary points are given. In
the case of well-sampled data, the number of points at the boundary is
specified explicitly, / = N 1/d  For the randomly sampled data, when we
employ the local kernel, the auto-tuned € yields error rates of €1 ~ N —1/2
and €2 ~ J L. To have a balanced error, €; ~ €5, we require J = Nl/z,
as we numerically verified on 2D examples. If this scaling is valid for
arbitrary dimensions, that is, €; ~ N~1/4 and €y ~ J_l/(d_l), then the
number of points at the boundary required to achieve balanced error rates
of order N~14 js J = N@~D/d_while this estimate seems to indicate
a severe limitation of this method, intuitively this is consistent with the
well-known fact that the distribution of high-dimensional random variables
on a bounded domain tends to lie near the boundary. Further investigation
is required to understand this thoroughly.

e While the numerical demonstration showed convincing results in solving
eigenvalue problems, spectral convergence and the error estimate of the
eigenfunctions are not known. One possible avenue is to extend the result
in [8, 12, 13, 18, 24] to manifolds with general boundary conditions. In
this direction, a result for the Neumann boundary condition was recently
reported in [37].
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Appendix A Proof of Proposition 3.6

Before proving the main result (Proposition 3.6), we state the pointwise error
estimates that are known from the literature. Subsequently, we deduce several
lemmas before proving the main result.

From previous results [6, 15,28,29,48], we have the pointwise error estimation
under these three situations: (1) on manifolds without boundary, (2) for the test
function ¥ with Neumann boundary condition on manifold with boundary, or (3)
for any ¥ on manifold with boundary but only for points away from the boundary
with distance at least O(e"), 0 < r < 1/2. For the reader’s convenience, we quote
the following error estimation based on the third situation.

LEMMA A.1 (Pointwise forward error estimate). Let M U AM be a smooth d-
dimensional manifold embedded in R". Let the assumptions in Proposition 3.6 for
the extended manifold M U AM and x € M hold. Let x; € M fori =1,...,N
andij"' eAM forj=1,...,J,k=1,...,K, be i.id. samples with sampling
density ¢ € C3(M U AM) defined with respect to the volume form inherited by
the d -dimensional smooth augmented manifold M U AM from the ambient space
R”. Foranyu € C3(M U AM), define a vector

U= (u(xy),.. .,u(xN),u(xIGI), . .,u(x?’())T e RV,
Thenfori =1,...,Nand j' = 1,3,
(A1)
/2 . N—1/2
- —of 417, )
(A2)

1/2 . . N—1/2
Loty — Lou(e) :(9(6, ()" [V(/eGu)g(x) )

JNe2+d/4 VNel/2+d/4

in high probability as € — 0 after N — oo. For L1 and L», the gradient operator is
defined with respect to the Riemannian metric g(u,v) forallu,v € T,(M U AM),
inherited by M from the ambient space. For Ls, the gradient operator is de-
fined with respect to a new metric, (u,v) := g(c~Y2u,¢=Y2v) forall u,v €
Tx(M U AM), where ¢ denotes the symmetric positive definite diffusion tensor.

In (A.1)-(A.2), the first error term, which is valid as € — 0, is due to the
continuous asymptotic expansion in (2.3), (2.4), and (2.9). The second error term is
due to the estimation of the sampling density through (A.3), and the final error term
is the bias induced by the discrete estimator; both of these are valid as N — oo and
fixed € > 0.

PROOF. The proofs for the cases j' = 1 and 3 are readily available in [6, 15,28,
29,48]. For j' = 2, the proof follows directly the steps in appendix A of [29] with
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]2
the following modification. Define a matrix K;; = K (e, x;. x;) = exp (— %)
Let

cdi2 N
(A3) Ge(x)) = —= > Kiji.
N i
as an estimator to the sampling density of the data g(x;). With this definition, we
define

K(e, xi, xj)/k(xj)u(x;) and Gi(x;) = K(e, xi, xj)/Kk(x;)
ae(xj) P Z]\e(xj) '
Following exactly the steps in the proof in [29] with the asymptotic expansion in
(2.2), one obtains the error estimate in (A.2) for a discrete estimator that converges
to k1 L£,. Thus, the error for estimating £, is similar to that of k1L, since the
discrete estimator involves only a left multiplication by a diagonal matrix with
diagonal components k (x;) (which we denoted by S in (2.10)). O

Fi(xj) :=

Now, we will deduce several intermediate results that will simplify the proof of
Proposition 3.6. For the discussion below, we define the matrix,

(A4) L = é(ﬁ—l) = %((Dh)_lKh —),

obtained from the standard diffusion maps as a discrete approximation to one of the
diffusion operators in (2.13) with the entries of D denoted by 5,~, j- As we discussed
in Section 3.4, the matrix L” is a discrete approximation to one of the diffusion
operators in (2.3)—(2.5) with the following important modification. We construct
the matrix L by evaluating the kernel on

b AT

k=1
where the interior ghost points are denoted as components of {x;}, that is, {ijO} C

{xi}. To be consistent with the notation in Section 3.4, we emphasize that L" €
RN*N is a nonsquare matrix with N = N + JK, where the N' rows correspond to
the kernel evaluation at {x; }ZN= |- Based on the discussion in Remark 3.8, we will
only prove the next lemma for randomly sampled data, of which the error is mainly

due to
[y () = %7°] < [yj () = x7°] + [0 = %70
(A.5) = O(h?) + hlv — | = O(h/e).
X%, 39| = kh|v — ¥ = O(h/e),

i
forj = 1,...,J and k = 1,..., K, as pointed out in Remark 3.7. In (A.5),
we have used the fact that [v — | = O(y/€) for randomly sampled data. For
convenience, we recall that y; (h) := exp, s(—hv,5) € M (see Figure 3.2(a) for a
J J

geometric illustration).
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Let L be defined as in (A.4) such that the matrix is constructed by evaluating the
kernel on {x;} U {xJG"' }, where we replace the interior ghost points {56';;0} in the
construction of L” with the corresponding { yj(h)} € M. Basically L is constructed

based on points that lie on the extended manifold, M U A M. With this construction,
we have:

LEMMA A.2. Let L and L be constructed as in the discussion above. Suppose that
Xj := yj(h) such that |x; — xj| = O(h) foralli # j. Then for u € C(Ber (0M)),

N N
=1 i=1

as h — 0 and fixed € > 0. Here, iij and u; are different only on the ghost points,
particularly, when i = u(fJGO), we have uj = u(yj(h)) = u(x;). Also, when
uj = u(k“jG"'), then uj = u(ij"’)forallk =1,....K.

PROOF. Suppose we consider x; = y;(h) that satisfies (A.5). For |x; — x;| =
O(h), one can show that

~Go 2
[xi — X;7°|
Kflj = exp(—4—€J)
|xi — x;1? clxi —xjlh/€ + O(hZ%e)
= oxp( —— = | ep( - i

x|
= exp(——|x’ 4:" )(1 +O(h2e™12)),

Therefore,

N N
D! := Y K = Y Ki; + O(h%e2) := D; + O(h%e72),
j=1 j=1

where the constant in the big-oh notation absorbs the number of perturbed points,
which is much smaller than & when the k-nearest neighbor summand is used. This
means

(DX) ™" = D7 (1 - Dl Oh2e1?)).
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and

N
= ! ((Df’)_1 ZK?jﬁj — ﬁ,-)
j=1

N
11— DO 1/?)) Z K/ il — ﬁ,-)

-1

1 =1

= 1( F(1 =D Ok —1/2))(ZK,,u, —i—Zu O(h%e —1/2)) )

N
= !(Df 12Kijﬁj—ﬁi—{-Di_lZﬁjO(th_l/z)

Jj=1 Jj=1
N
-D;j' Y KijﬁjDi_lO(hze_l/z))

Jj=1

N N

= Z Lijil; +D;! (2(1 — D;lK,-,-)ﬁj)O(h%—3/2))
Jj=1 Jj=1
N

=" Lyjuj + Oh2e3/2, he™11?),

where in the last equality, we have used the fact u; —u; = O(he'/?) on the
estimated ghost points due to (A.5), u € CY(BeroM), and 1 — Di_lK,'j < 1 and
D; > 1 such that D71 (Y7, (1 — D7 'Ky)ii;) < [if], where i € RV is defined
below in (A.7). Il

The assumption that |x; — x;| = O(h), where x; := y;(h) is rather natural in
the numerical implementation with the k-nearest neighbor, even if there are many
other points x; that are further away with distance of order-./e. In particular, our
construction is such that the perturbed points {x 0} are defined to be of order-A
away from each boundary point and the correspondmg ghost points {x G } as defined
in (3.12). Therefore, when the k-nearest neighbor is used in constructing the matrix
L, then these estimated ghost points either belong to the k-nearest sets of other
points whose distance are of order-4 or they have a k-nearest neighbor of mostly
points of order-i away.
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Since i = O(e) for the randomly sampled data case, the two error bounds are
equivalent. Next, we define the column vector

= (@1,....75)

(A7) _
= (u(xl), .. .,u()?jGO), .. .,u(xN),u(flG‘), .. ,u()"c'?’()) e RV,

For 1 as defined in (3.17), the error rate in (A.6) can be written in a compact form
as

(A.8) L' = Lii + O(h2e73/?).
This error also implies
(A.9) L"i = Lii + O(h2e73/?),

since #f —ii = O(he'/?).
Next, we will deduce the consistency of the extrapolation formula (3.14). For
this purpose, we define e = (u(xy),.. u(xGO) Su(xy), iZEG,i, el ﬁf’j)T as

in (3.13). Here, u(?c'jG") replaces u(y;(h)) in the first N-terms of % as in (3.17).
LEMMA A.3 (Consistency of the extrapolation formula). Under the assumptions

of Proposition 3.6, for each boundary point ij € 0M, the truncation error for the
first equation in the extrapolation formula (3.14) is given by

J,K

> 5Bj,(N+(j’—1)K+k)(”(ijfk) ”Gﬁ)

Jjlk=1

= ¢|(L"7) , — (L) |
= O(e(hze 2 ¢ NTV2-@Hd/Y) §-1/2 —(1/2+d/4)))

(A.10)

in high probability as € — 0 after N — oo and h — 0. For the last three equations
in (3.14), we have

O(h?),
O3,

\(“(~,—G2)—3M(~-Gl)) (7 — 31
‘(u( X; )—3u( )+3u( ))—(uG3 —3uG2 +3u )
)
)

€,J
\(M(X,G") 3M(~GA ')+ 3u(F) —u (T
(~G;\ _3~GA l+3~GA -2 "GA 3

|
|
(A.11)
)
|

O(h

fork =4,..., K.

PROOF. First, let us proof (A.10). For this case, we only consider the B; th row
corresponding to the boundary point x JB. In the case of randomly sampled data, we
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have
|(L")p, — (LMiie), |
< |Whi)p, — (Lii)g, | + |(Lii)s, — (L"), |
= |(L"i)p, — (Lii)g, | + |(Lii)g, _zu(xB)\
_ (’)(h2 —3/2) —l—(’)(e N 1/2 —(2+d/4) —-1/2 —(1/2+d/4))

(A.12)

where we have used the fact that Lu (x )= f (xB ) and (L"ii¢) B = f (xJB ),
which is the first equation of the extrapolatlon formula in (3.14) in deducing the
third line above. To obtain the fourth line, we directly used (A.8) for the first
bound and Lemma A.1 for the second error bound, where we have suppressed the
dependence on q(xf), Vu(x]B), V(K1/2(xf)u(xf)) in (A.1) and (A.2) to simplify
the discussion.

For the well-sampled data, based on the discussion in Remark 3.8, the first error
term in (A.12) is not applicable and we treat L" as L. Since the first N components
of #; (see (A.7)) are equal to the components of u u deﬁned in (3.16) and the

identity I only contributes to the coefficient of u (x JB )=1u Ejj for the boundary point

xJB , we can simplify the left-hand side of (A.12) as

~ - 1, ~_ ~_
‘(Lh”)Bj - (Lhue)Bj‘ = E‘(DM)B./' - (Duf)Bj‘

J,K
I 5 ~Gr\ _ ~Gy
(A-13) =-| 2 Dswv+(r-vK+0 (u(E) —as,)|.
Jk=1
Thus, from (A.12) and (A.13), we obtain the result in (A.10).
The proof for (A.11) is straightforward. In particular, foreach j = 1,..., J, note
that {ff“, xB, ijl, s fJGK} are points that lie on a straight line in the direction

of ¥ where the distances between the consecutive points are identical, namely, 4.
Foru € C3(M U B (0M)), where Ber (M) D AM is as in Definition 3.4, then

one can deduce (A.11) by employing the standard Taylor’s expansion on the interval
[~G0 ~G 1(] O

Proof of Proposition 3.6. Notice that we can write (A.10) and (A.11) in Propo-
sition A.3 in a matrix form,

(A.14) ESiieG _ O(h3,h26_1/2,62,1\_/_1/2 (1+d/4) —1/2(1/2— d/4))

where §u¢ = (|i7€ — u(xG1)| |iZ€G’J< —u(X and the matrix E is of size
JK x JK. We first show the stablhty of E, namely E is invertible with uniformly
bounded inverse. To simplify the discussion, we set / = 1 to correspond to a

boundary point. One can use the same idea for the case of J > 1.

Gyt
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In this case, the matrix E in (A.14) is given by

531,(N+1) 531,(N+2) 531,(N+3) 531,(N+4)
— 1
3 -3 1
E =
—1 3 -3 1

-3

57

D, (n+K) )
0

0
1

We can obtain the uniform error between u and 1. in (A.14) once showing that
|E7! oo < C. We have the following decomposition for matrix E, E = Eq 4 v; V;'—,

(10
-3 1
3 -3
Eo =
-1 3
0

By induction, one can show that

0 «or en ()\ B
0 I Dpyv+1y— 1
| : 0 Dpi.(N+2)
, ovi=1: vo=| Dp,(v+3)
-3 1 )
- 0 Dp, N+ K
( 1 0 0 0\
3 1 0
6 3]
Eal = s
10 6 3 1
: 10 . e
KK(K+1)/2 0 6 3 1

so that HEE1 ”OO

= K(K + 1)(K + 2)/6 < C by noticing that K is always

fixed to be less than 10 even when N — o0o. One can calculate that Eo_lvl =

(1,3,6,....,K(K + 1)/2)T and 1 + vJ Eglvy = Y5 k(k + ) Dp, (v14)/2,
which is nonzero. Thus, according to the Sherman-Morrison formula, we have

B o = (o +viv]) o =

< C.

e.¢]

| Ealvlvg E—l
1+v]E;ly, ) °

Inverting E in (A.14), foreach j = 1,...,J, k= 1,..., K, we have

~Gg
ue,l

()

- (70)

Jsk

_ O(h3’h26—1/2’€2’N—l/zé—(1+d/4)’N—1/26(1/2—d/4))’
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and the proof is complete by comparing these error rates with |u (ij"') —u (EJ.G"’ )| =

O(h /o).

Appendix B Proof of Theorem 4.1

The proof here follows the standard approach for proving the convergence of the
finite-difference method presented in many numerical PDE texts (e.g., see [30]).
That is, we will show that L/ in (4.8) satisfies a discrete maximum principle.
Subsequently, a comparison function is chosen using the maximum principle of
the Dirichlet PDE problem to establish the stability condition. The convergence
is achieved with the consistency of the GPDM estimator in Theorem 3.9. Before
we proceed with these steps, let us first analyze the resulting GPDM estimator,
LE@M) ;= (LO + L@A)iM + L@}, as defined in (3.20).

To simplify the discussion, we present the 1D case with J = 2 boundary points,
denoted by xfg = x1 and xZB = xy (see Figure 3.1(a)). The corresponding ghost

points are 351G° = Xxp and )72G 9 = xn—_1, using the secant line approximation.
Otherwise, the same analysis can be carried by relabeling ZJ.GO by other arbitrary Xx;.
The last three equations in (3.14) can be written as

_ k(k + 1) _ k(k —1

(B.1) G : 2 )”gi_(kz_'nul'% : 2 s k=2,....K

Ve ke + 1) k(k —1 - o
7 = M50 e+ M D

Using the same notation as in (A.4), we let Lh = (ﬁ—I) /e := (D")™'K"—1)/e be
the N x N matrix, where N = N + 2K, obtained from the standard diffusion maps
as a discrete approximation to one of the diffusion operators in (2.3)—(2.5) with the
entries of D denoted by D;, ;. To be consistent with the notation in Section 3.4, we
emphasize that L* € RY*N is a nonsquare matrix with N = N + 2K, where the

N -rows correspond to the kernel evaluation at the points {x; € M }ZN= .
Then, the i™ component of (D — I)ii. is given by

N+2K
(B.2) > Dijuj—u
=1

N-2
= Z Dij juj —uj + Djuy + Dipus + Di N—1UN—1
Jj=3
2.K

~ ~ ~G
+ Dinun + Z DiN+(i-1K+kile; =
Jk=1
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N-2 ~ K N ~ K pth—1) ~
=Y Dijuj—ui+(Din— Y (k* = D)Dinii Jur + [ Diz+ Y ————Dintk |u2
=3

2
k=2 k=2

K k(e —1) ~ K
+ (Di,N—l +) ?Dz N+K+k>uN 1+ ( Z - 1)Di,N+K+k>MN

k=2 )
K kk+1) k(k + 1)
- G -
+ (Z — D N+k> ey + (Z > zN+K+k>
k=1 k=1
N-—2
Dj juj —uj + ciur + ¢ipuz + ¢ N—1UN—1 + Ci, NUN
Jj=3 ~G
+ ¢ Oué 1 + ¢ N+1u€2

where we have defined

K K (k b5
cin = Din— Y (k* =)Dy k. cip=Dj Z DiN+k-
k=2 !
K
~ Ktk —1)
ciNo1=Din1+ Y —  Dinik+k. N = Din =Y (K> =)D nikir:
k=2 k=2
K K
k(k+1) ~ k(k + 1)
0= Z fDi,Njuk, Ci,N+1 Z Di,N+k+k-
k=1 =

for convenience. From the first equation in (3.14), we have
N—2
Z Dyjuj —uy +c11u1 + cr1pU2 + € N—1UN—1 + C|,NUN
=3 ~G ~G
J= c1olgy + 1 Nt1igy = €f(x1),
(B.3) N

ZDNjuj —uN +cnul + cypU2 + CNN—1UN—1 + CN.NUN

~G
>+ CNOM |t CN N1l = €f (xN).
Since ¢,y +1 = ¢n,0 ~ 0, we obtain

N—2

- 1

ueGi = O(Gf(xl) — E Dyjuj + (1 —cp)uy — c10uz
j=3

—CI,N—1UN—-1 — Cl,NMN),
(B.4)

| N—2

-G ~

Ugy = —(Gf(xN) — Z Dy, juj —cn, U1 — CN,2U2
CN,N+1 =3

—cNN—1UN—1 + (1 — CN,N)MN)-
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We should point out that equations (B.4) and (B.1) are components of (3.19). There-
fore, the i™ row in (B.2) becomes

N+2K
Z Dj juj —u;
i1
N-—2
Dj juj —u; +ciuy + ¢ipuz + ¢ N—1UN-1 + Ci NUN
j=3
N-2
(Gf(’cl) - Z Dy juj + (1 —ci)ur — iUz — cp N—1UN—1 — C1,NMN)
j=3
(BS) Ci,N+1 =
2L (ef (xn) — Y Dwjuj —enaur —enptiz — enN—1tun—1 + (1 — e n)uy
CN,N+1 i3
N—2
~ i0 ~ Ci,N+1 Ci,N+1
= (Di,j D 1,j — DN])"/_M1+(L11+7(1_C1 1) — LN,l)ul
i=3 Cl,o CN,N+1 CN,N+1
€i,0 Ci,N+1 Ci,N+1
+lci2———c12— CN,2)112+€( f(x1) f(\N))
C1,0 CN,N+1 CN,N

Ci,0 LN +1 C',o Ci,N+1
+ (Ci,N—l — ——CIN-1 — ———CNN- 1)"1\/—1 + <Ci.N ——ca,N+———( —cnnN)|un.

C1,0 CN,N+1 €1,0 CN,N+1

Itis clear that 0 < 20 SLNEL | forall,i = 2,..., N—1. Also, D; ; > D1 j
1.0  CN.N+1 ’ s

and D; j > Dy jfori =2,...,N —land j = 3,..., N — 2. This implies
€i,0

Ci,N+1 Ci,0 _ Ci,N+1

Di,j——’ Dl,j——DNJ>D,](1— ) > 0.
1,0 CN,N+1 1,0 CN,N+1
In fact, since ¢;» > c1pand ¢;» > cyp fori =2,..., N — 1, itis clear that
Ci,0 Ci,N+1 G0 Ci,N+1
Cip— ——Cp— ———CnN2 >Ci2| 1~ ——— ] >0.
€1,0 CN,N+1 €1,0 CN,N+1
Likewise, we have
Ci,0 Ci,N+1 €i,0 Ci,N+1
CiN—1— —C,N—-1—————CNN-1>CiN-1 1 — ———]>0.
C1,0 CN,N+1 1,0 CN,N+1

The coefficients on the boundary points,

¢i,0 Ci,N+1 Ci,N+1
ci1+—0—-c1,1))—————cni1>ci1|{1———"—] >0,
CN,N+1

1,0 CN,N+1
Ci,0 Ci,N+1
Ci,N__Cl,N+—(1_CNN)>CzN( ) > 0,
C1,0 CN,N+1 C1,0
are also strictly positive. Thus, all of the nondiagonal coefficients of (B.5) are
strictly positive.
We should point out that the expression on the right-hand-side of (B.5) is nothing
but the i ™ row of the affine operator in (3.20), that is,
N+2K R
> Dijuj—u; = (@Y + LPA)IM + L),
j=1
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Let us denote M = e(L(l) + L(2)A). Notice thatif u; = 1 foralli =1,...,N +
2K, then from (B.3) and the fact that ZJN:JEZK D; j = 1, one can verify that

f(x1) = f(xn) = 0, which means (L(Z)E),- = 0. Evaluating (B.5) at u; = 1, one
can see that

N+2K
0= Y Dj;—1
j=1
ey Ci,0 ~ Ci,N+1 &
= L (oGP o)
=3 1,0 CN,N +1
J#i

~ Ci o ~ Ci ~
+ (Di,i — 0Py - L DN,i) - 1)
(B.6) 1,0 CN,N+1

Ci,0 Ci,N+1 Ci,0 Ci,N+1
+ (Ci,l + p (I—c1,1)— 7CN,1) + (Ci,z e & 7CN,2)

1,0 CN,N+1 1,0~ CNN+1
Ci,N+1

€i,0 ¢i,0 Ci,N+1
Ci,N—1 — ——CLN—1 — 761\!,1\171) + (Ci,N ———anN+——(1- CN,N))
1,0 CN,N+1

€1,0 CN,N+1

B

N2
=Y Mij+M; +Mii+M+My 1 +My.

where M;; < 0and M; ; > O for all j # i are defined as in the brackets in the
previous equality, respectively.

Discrete Maximum Principle: Suppose v = (v(x3),...,v(xy—1) is such that
L!% > 0. Suppose the maximum occurs at the interior point x;, that is v(x;) >
v(x;) forall j # i. Then,

N-1 N—-1
—M; jv(x;) = Z M;,jv(x;) — e(L19); < Z M; jv(x;))
j=2 j=2
J#i J#i
(B.7)
<

N—-1
Z M;, j v(x;i).
=2

J#i
Here, we use the fact that the matrix €L! (as defined in (4.7)) is nothing but
the submatrix of M, ignoring the first and N th columns. From (B.6), -M;; =
Z}LL i Mij > ZJN;; ;i Mi_ j, which contradicts (B.7), so v cannot attain the
maximum at x;. Repeating the same argument on all interior points, it is clear that
the maximum has to occur at the boundary. That is,

(B.8) max_v(x;) = {v(x1), v(xw)}.
I<j=<N

Using the same argument, one can also show that the minimum occurs at the
boundaries.



62 S. W. JIANG AND J. HARLIM

Stability: By assumption, the PDE satisfies a maximum principle. Consider v €
C?%(M) that solves Lv(x) = C forall x € M°, v(x)| eanr = 0, and a constant
C > 0 to be determined. Here, the existence of the unique solution v follows from
the well-posedness assumption of the Dirichlet problem. By the maximum principle,
it is clear that v(x) < 0. Also, since M is compact, it attains the global minimum
on M. Define vg(x) := v(X) — Unin, Where vpnin = minyeeps v(x) < 0. Thus it is
clear that 0 < vg(x) < Ca = |Umin| solves Lvy = C and vs(x)|yegpyr = C2. In
this case, since GPDM is consistent (see Theorem 3. 9) it is clear that for the column
vector, T)ﬁ” (vs(x1), vs,vs(xN)) e RV, wherev = (vs(x2), ..., vs(xN=1)),
we have ‘(Lg(ﬁg’[))i .Cvs(x,)‘ < 16, where § := max{h3 —1 h2%e _3/2}. Notice
that

|Cvg(xi) — (LB (M), | = |Lustxi) — (LD + LOAM +1LPp) |
= |Lvs(xi) — (LPb); — (LB + L15]) |,

where we have used the decomposition in (4.7) and the affine estimator (3.20). This
means

(B.9)

(LT5]), = C — 18— L@b); — (L)
Choosing C = 2 + ||L(2)1;||oo + ||L2 2|00, We obtain

(L15]), = 2—c18 + (ILPb) oo — LPb);) + (ILEZlloc — LB 7))
>2—c16>0.

Basically 0 < vs(x;) < C5 is a comparison function that we have identified for

proving the stability of the solution. Let M = f I _ LB G| o be the maximum of
the right-hand-side in (4.8), then for i1/ that solves (4.8), we have

Li@! + Mol > fT—LBg+ 2—ci6)M >0
for small enough §, which depends on % and fixed 0 < € < 1. By the discrete

maximum principle in (B.8), it is clear that,

maxu1<max(u +Mv )< maxu + max Mv

xieM xi€EM xi €M x; €M

< @800 + C2l f T = LB g 0.

1

Using a similar argument on —#* , we obtain the stability of the approximate solution

(B.10) 17 oo < 172 oo + Call FT —LEZ 0.

Convergence: Applying (B.10) on 71! — !, where components of i/ are the true
solution of the PDE in (4.1) with Dirichlet boundary condition, we obtain

(B.11) ! — i ||oo < |08 =180 + Cal| fT — LB — 118 o.
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Using the same argument as in (B.9) and the error bound in Theorem 3.9, we
immediately see the consistency of the estimator, that is,

| f(xi) = (LPb); — LPg + LTul),|

(B.12) = |Cu(x;) — (L& @), |
. — O(h3€—1’h2€—3/2’hE—1/2’€’
]\_/_1/26_(2+d/4), ]\_/_1/26_(1/2+d/4)),
in high probability, where as € — 0 after N — oo and h — 0. Since i? = 18 = 3,
combining (B.11) and (B.12), the proof is completed.

Appendix C An Alternative Method
for Estimating the Normal Derivatives

In this appendix, we discuss a method for estimating normal derivatives at the
boundary of a 2D manifold that requires no specification of ghost points. This
scheme is used for estimating the directional derivatives of Neumann or Robin
boundary conditions used in the classical diffusion maps algorithm. Specifically,
the normal derivatives are estimated as follows.

ALGORITHM C.1. Assume that v is the exterior normal direction to the boundary
oM and v is its numerical estimate as defined in Section 3.1 at a boundary point
xB € OM. Then, the normal derivative dyu at xB is estimated as Sfollows:

(1) Find the “left” nearest neighbor x* and “right” nearest neighbor x® for
the boundary point xB € dM. Then, one can compute the normalized

vectors,
~ xL —xB ~ xR —xB
L ._ d R ._
= L_. B W4V = TR_ B
[x& —xB| [x%& —x5|
Here, xL is the nearest point to xB in the region such that the angle

between VL and —V satisfies @(¥L, V) < Og (in our implementation,
©®¢ = m/4). This basic argument also applies to xR. Moreover, the “left”
and “right” can be numerically distinguished by the negative inner product
(WL, WR) < 0 where WL and WR are components orthogonal to —%, that
is, 0t = 3L — (BL -P)(®) and wR =R — GR.D)(¥).

(2) Write =% as a linear combination of ¥ and ¥R using the linear regression

(C.1) —7 =alvl + @Rk,

where ' and @R are the regression coefficients.
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(3) Estimate the normal derivative —dyu numerically using the difference

method,
u g Au p
i YA
| ~L Au ~R Au B
(C.2) = Lz AGL AGR}(X )
_ ~Lu()cL) —u(xB) ~Ru(xR) —u(xB)
- |xL—xB| |xR—xB| ’

where we have used equation (C.1) and the fact that v, L, and 3R are
all unit vectors. Then, the normal derivative dyu term in the boundary
condition (4.1) in the following section can be numerically estimated using
equation (C.2) for all points on the boundary.

Next, we provide the error rate for estimating the directional derivative d,u with
equation (C.2) at the boundary points.

PROPOSITION C.2. Letu € C3(M) be a smooth function on a 2D manifold M with
1D boundary OM. Let {x1,...,xNy} C M be a set of data points, among which
some labeled points lie on the boundary OM. Let xB be a boundary point on the
1D smooth IM and v be the unit exterior normal direction to the boundary 0M at
xB. Let xL and xR € {x1,...,xn} be the "left" and "right" nearest neighbors,
respectively, for the boundary point xB. Then, the normal derivative d,u at xp
estimated by equation (C.2) in Algorithm C.1 has an error rate of

ou, g Au, g |
By = SL B = o),

v

where h characterizes the distance of the neighboring points and € characterizes
the bandwidth of the kernel. The constant depends on the local curvature and the
norm of the second-order derivative of u (that is, |V; Vju(xB) ‘ with V;V; being
the Hessian operator).

PROOF. The error has two parts, one from the regression coefficients aLl and
@R, and the other from estimation of the directional derivatives d,.u and 9, zu.
First, we estimate the error from the regression coefficients @~ and a®. Let yz (£)
be a geodesic parametrized with the arclength £, connecting the points xZ and
its “left” nearest neighbor x* such that y7(0) = x% and y7(£) = xL. Define
vl = ¥;(0) € Ty.s M as a unit tangent vector by noticing that |y; ()| = 1 for
0 <t < { due to the arclength parametrization. Following the proof in Proposition
3.1, we have the error estimate

vl —5L| = O).
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Similarly, we can define the geodesic yg(£) connecting x & and x® and the unit
tangent vector R .= V;e (0) € T, M. Then, we have the similar error estimate
R —5R| = o).

Smce -, v € T,s M and M is a 2D manifold, there exist unique coefficients
al and a® such that

L ,R
—v = alvl + a®v R,

By comparing equation (C.1) and noticing that [v —v| = O(h), we have the

estimation for coefficients,

la¥ —a% = O(h) and |a®—aR| = O®m).

Next, we estimate the error between the analytic directional derivative
the numerical estimation

ou

3, and

Au u(xL) —u(x8)

AL T |xL —xB|
LetZ = (z1,...,zq) denote the d-dimensional (d = 2) geodesic normal coordi-
nate of x, defined by an exponential map exp, s : T, M — M then Z satisfies

7 =Wl = ly;(0) and exp,s 0=x5, eXpyB Z = xL,

where (2 = £2|)/L(0)|2 1Z|? = Zl_lz We also define ##(Z) := u(expys 2) =

u(xL) such that u(O) = u(xB). With this definition, we have the following Taylor’s
expansion,

d d 924(0) X
i(z) = (0) +Zz, 5 > 2izj—o— + O,
.. 1 J

i=1 i,j=1

au(O)

which is equivalent to
2 !
u(rh) = ux®) + S (P4 SN THuP ) + 0(E),

by noticing that Z = £v’ is the normal coordinate. This is just a Taylor expansion
of function u along a geodesic yy (£). Here, H denotes the (d x d)-dimensional
Hessian matrix whose components are V; V; u(xB ), where V; denotes the covariant
derivative in the i direction. Following the proof in Proposition 3.1, we have
|xL —xB |71 = £71(1 + O(£?)). Then, we have the error between the analytic ai—“L

: Au .
and the numerical =7

u(xLy —u(xB)
|xL — xB|

_ (ai—“L(xB)e + %(VL)TH(WB))»L@Z + 0(€3>)£‘1(1 +0(%)

B
- %—”L(xB) +O(0).
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One can follow the same steps and deduce for the “right” x ¥,

u(x®) —u(x8) _O0u
|XR—XB| - aVR(x )—i—O(E),

where we have introduced an arclength £ for the geodesic distance between x & and
xB. Since £ = O(h), the remainder is of order-h.
Finally, we obtain the result:

e L R R
< aLi—uL(xB)—ﬁL% + aRi—uR(xB)—ﬁR%
< lat )| 4 g ) - M) D)
+ |a® — @R 38,,—MR(XB) + |ak| %(ﬂ)—% =0h). O
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