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Abstract— A novel hyperspectral image classification 

algorithm is proposed and demonstrated on benchmark 

hyperspectral images. We also introduce a hyperspectral sky 

imaging dataset that we are collecting for detecting the amount 

and type of cloudiness. The algorithm is designed to be applied to 

the Such systems could improve the spatial and temporal 

resolution of cloud information vital to understanding Earth’s 

climate. We discuss the nature of our HSI-Cloud dataset being 

collected and an algorithm we propose for processing the dataset 

using a categorical-boosting method. The proposed method 

utilizes multiple clusterings to augment the dataset and achieves 

higher pixel classification accuracy. Creating categorical features 

via clustering enriches the data representation and improves 

boosting ensembles. For the experimental datasets used in this 

paper, gradient boosting methods performed favorably to the 

benchmark algorithms.   

Index Terms— Hyperspectral Imaging, Cloud Segmentation, 

Categorical Boosting, Ensemble Learning, Clustering for Feature 

Extraction.  

 

I. INTRODUCTION 

Compared to developing single models, ensemble 

learning algorithms that utilize decision trees (DTs) and 

boosting have received increasing interest due to many features 

including but not limited to their fast and accurate predictions, 

robustness to noise, ability to deal with diverse features such as 

both numerical and categorical features, having fewer 

parameters to optimize, and having a rule-based interpretability 

using if-then-like rules [1]. Gradient/Adaptive boosting 

methods based on decision trees, such as CatBoost and 

AdaBoost, can handle diverse data types and solve a wide range 

of machine learning problems involving categorical variables. 

The thrust of this work is to develop machine learning 

algorithms based on such boosting algorithms and test their 

applicability and prediction performances on hyperspectral 

image (HSI) datasets for pixel classification.  

In Hyperspectral Imaging (HSI), a pixel is 

characterized by a high number of spectral channels/bands, thus 

allowing accurate and efficient classification of individual 

pixels [1][2][3]. HSI cameras vary in the number of 

wavelengths (bands) they have, but typically in an HSI dataset, 

every pixel is represented by several hundreds of bands. 

Typically, for every HSI image a ground truth image is 

provided that contains the class labels of individual pixels. The 

spectral signature in those bands (reflectivity/irradiances in 

different wavelengths) for a pixel can be used as a powerful 

predictor of the class-label (i.e., for classification of that 

individual pixel). Since different classes have different certain 

hyperspectral signatures, HSI can serve as an important pattern 

recognition goal, for example, for scanning a large field by 

taking aerial pictures. An exemplary application could be 

classification of individual pixels into various types of 

vegetation/soils/fields/trees [2], and another application could 

be classification of individual pixels into dark, regular, or thin 

clouds versus clear sky [3]. In such HSI applications, single 

pixel classification can help, for example, in monitoring the 

state of crops (wet/dry/rotten) or in finding 

irregularities/outliers such as a metal object camouflaged in the 

field.  

To be able to take full advantage of aforementioned 

categorical boosting/ensemble methods in HSI images, we 

propose to use clustering for feature extraction. Clustering 

algorithms such as K-means can be used as a form of 

preprocessing (data summarization/quantization) tools 

[4][5][6]. In general, HSI datasets do not contain any 

categorical features (except some catalog information such as 

when and where the image is captured and other auxiliary 

information such as weather conditions). The proposed 

boosting algorithm applies multiple clustering runs and use the 

cluster memberships of HSI image pixels as super-features. 

These additional categorical features improve classification 

accuracy of the subsequent boosting classifier [7]. We propose 

and demonstrate that creation of categorical features using 

clustering algorithms proves very useful in enriching the data 

representation for categorical-boosting ensembles. This work 

presents a method that can be further developed for achieving 

dimensionality reduction, accurate classification, and 

parallelism needed for easy implementation in high-

performance computing frameworks for hyperspectral image 

classification [1][8].  

 

II. BACKGROUND AND DATASETS 

The dataset we are currently collecting as a publicly 

available HSI dataset has 462 bands with the goal of cloud 

detection, classification, and segmentation. The images 



collected are recorded with the Resonon Pica XC2 camera, 

which imaging system acts as a push-broom scanning 

spectrometer with 462 narrow wavelength bands ranging from 

400 nm to 1000 nm. Semi-supervised pixel classification can 

be used to identify clear-sky pixels and different types of clouds 

for segmenting these images. As can be seen in Figures 1 and 

2, even a gray image obtained using a single wavelength 

contains a wide variety of types of cloudy pixels. Therefore, we 

have decided to develop a boosting-based classifier that can be 

apply weak classifiers to various subsets of the bands. Once the 

single pixel classification is done effectively, then some form 

of postprocessing such as median filtering can be performed for 

segmenting a hyperspectral image into regions according to 

cloud type or clear sky.  

Before moving into semisupervised setting, in this 

paper, we first demonstrate the proposed machine learning 

algorithm on two benchmark datasets for supervised HSI pixel 

classification, Indian Pines and Salinas datasets. These two 

datasets are well-known HSI datasets captured by the AVIRIS 

(Airborne Visible Infrared Imaging Spectrometer) sensor. The 

first dataset, called Indian Pines, is composed of images of 

145×145 pixels in size, with each pixel of the image represented 

with 204 spectral channels (bands) in the 400-2500 nm range of 

wavelengths [2]. The dataset includes 17 classes (class-0 is 

unlabeled and the other 16 classes are various crops, grass, and 

woods). Table I lists the class names and the number of pixels 

per class in the dataset. 

The second dataset, called Salinas, consists of images 

of 512×217 pixels in size with 204 spectral bands [2]. It 

includes 17 classes (class-0 is unlabeled and the other 16 classes 

are different types of vegetation). Table II lists the class names 

and the number of pixels per class in the dataset. 

 

Figure 1. (Left Panel) One of HSI images collected rendered as gray-scale. 
This wavelength of 585 nm is selected to maximize the contrast between 

cloudy and clear sky based on the analysis summarized in Figure 2.  (Right 

Panel) Ground-truth obtained by K-means clustering the image given in the 
left panel and classify each pixel into cloudy, thin-clouds, and clear sky 

classes.  

 

 

 
Figure 2. Signatures of clear sky (SKY), thin clouds (THIN), clouds (CLD), and dark clouds (DARK) in 462 bands of the HSI images being collected. 

 
 

III. PROPOSED MACHINE LEARNING MODEL 

While the high-resolution representation of an 

individual pixel in HSI (having many narrow wavelengths 

covering a large portion of the spectrum from near-ultraviolet 

to near-infrared range) makes discrimination of many more 

classes from each other using just a single pixel, 

reflectivity/irradiances in nearby wavelength intervals are 

generally very redundant and dimensionality reduction 

methods [4] are needed for band selection for HSI systems [1].  



Applying some feature selection algorithms with high 

time complexity such as sequential backward selection (with 

time complexity of O(n2)) is costly for such high dimensional 

datasets. Moreover, feature selection algorithms need to be 

further adapted to HSI domain, because the band selection for 

the classification task should also help determine important 

ranges of the spectrum. That is, feature selection process should 

not necessarily treat each one of the hundreds of wavelengths 

of the spectrum as separate or unrelated variables, because 

selection of individual wavelengths of the spectrum may not be 

justified and the task could be simplified by finding a few 

wavelength ranges of greatest importance. We identified four 

intervals to be the most useful for cloud classification (Figure 2 

shows these intervals highlighted with red dashed vertical lines) 

Representing each interval as one categorical variable (i.e., 

creating a categorical variable for that interval by representing 

it with the index of clustering applied to the dataset using the 

variables of that interval) is the approach taken to preprocess 

the HSI dataset before applying categorical boosting.  

 
TABLE I.  INDIAN PINES DATA DISTRIBUTION 

Class ID Class Name Number of Pixels 

1 Alfalfa 54 

2 Corn-notill 1434 

3 Corn-mintill 834 

4 Corn 234 

5 Grass-pasture 497 

6 Grass-trees 747 

7 Grass-pasture-mowed 26 

8 Hay-windrowed 489 

9 Oats 20 

10 Soybean-notill 968 

11 Soybean-mintill 2468 

12 Soybean-clean 614 

13 Wheat 212 

14 Woods 1294 

15 Build.-Grass-Trees-

Drv. 

380 

16 Stone-Steel-Towers 95 

 

TABLE II.  SALINAS DATA DISTRIBUTION 

Class ID Class Name Number of Pixels 

1 Brocoli (green 1) 2009 

2 Brocoli (green 2) 3726 

3 Fallow 1976 

4 Fallow (rough plow) 1394 

5 Fallow (smooth) 2678 

6 Stubble 3959 

7 Celery 3579 

8 Grapes (untrained) 11271 

9 Soil (vinyard develop) 6203 

10 Corn (senesced green 

weeds) 

3278 

11 Lettuce (romaine 4wk) 1068 

12 Lettuce (romaine 5wk) 1927 

13 Lettuce (romaine 6wk) 916 

14 Lettuce (romaine 7wk) 1070 

15 Vinyard (untrained) 7268 

16 Vinyard (vertical) 1807 

IV. EXPERIMENTAL RESULTS 

Instead of working with data-specific intervals that 

may require higher degrees of domain expertise and to 

demonstrate the general applicability of the algorithm, the 

procedures outlined in Figure 3 applies a shifting window with 

a stride amount of s-bands and uses the bands in each interval 

as input and clusters the dataset. Thus, each stride produces a 

new categorical feature, which are then all stacked to augment 

the original dataset.  

As shown in Table III, for each window, a single categorical 

variable with K categories is learned by K-means and these are 

stacked horizontally to create a dataset with categorical features 

to train and test the boosting model. The window length, w, and 

the stride amount, s, determines number of categorical features 

(the number of window positions on the spectrum) created. 

Also, the results report the average accuracy for 10 different 

trials with the respective standard deviation using the Salinas 

dataset (we obtained comparable results with the Indian Pines 

dataset as well). 

 

 
TABLE III.  SENSITIVITY OF THE HYPERPARAMETERS FOR SALINAS DATASET 

 Stride = 5 

Window 

length = 10 

Stride = 10 

Window 

length = 10 

Stride = 5 

Window length 

= 20 

Stride = 10 

Window 

length = 20 

K = 10 86.93 ± 0.32 85.39 ± 0.21 86.74 ± 0.48 86.06 ± 0.58 

K = 20 88.06 ± 0.24 86.70 ± 0.16 88.73 ± 0.17 87.89 ± 0.28 

K = 30 88.36 ± 0.13 86.95 ± 0.15 89.13 ± 0.13 88.5 ± 0.19 

 

As the categorical dataset has fewer features, it is more 

suitable for feature selection and classification using boosting, 

which is the goal this work is trying to achieve. In the pixel 

classification task of 16 target classes (various vegetations etc.) 

on the test set, accuracies of the proposed boosting method 

yields favorable results. For comparison with the use of the 

original raw variables (i.e., 204 bands), various popular 

benchmark classifiers [5][6] are also used. The results on the 

Indian Pines and the Salinas datasets are reported in Table IV. 
 

TABLE IV.  COMPARISONS ON HSI CLASSIFICATION RESULTS 

 Indian Pines Salinas 

K-NN (K=1) 63.49 ± 0.28 86.61 ± 0.11 

K-NN (K=3) 65.87 ± 0.40 87.30 ± 0.14 

K-NN (K=5) 66.81 ± 0.32 87.40 ± 0.14 

Boosting on the original features 71.88 ± 0.55 88.38 ± 0.12 

Proposed K-means + Boosting 71.89 ± 0.60 89.13 ± 0.13 



Algorithm Clustered-Shifting-Window Boosting 

 

Input  

X[N,D]: Train-set of N samples and D features 

y[N]: Class-labels of the N samples 

X_test[M,D]: Test-set of M samples and D features 

y_test[M]: Class-labels of the M test samples 

w: Window length 

s: Stride of windows 

K: Number of clusters in each window 

Output 

Model: Trained Boosting Classifier (and centroids used) 

Test_Accuracy: Test accuracy of the trained classifier Model  

 

Num_Windows = 0 

for win_start from 1 to D in steps of s 

   win_end = win_start + w 

   windowed_data = X[:, win_start:win_end] 

   centers = Kmeans(windowed_data, K) 

   train_centers = Find_Nearest_Center(X, centers)     

   test_centers = Find_Nearest_Center(X_test, centers) 

   Categorical_Trainset[:,Num_Windows] = train_centers 

   Categorical_Testset[:, Num_Windows] = test_centers 

   Num_Windows = Num_Windows + 1 

end for 

 

Model = Train_Boost_Classifier(Categorical_Trainset, y) 

Test_Accuracy = Test_Classifier(Model, Categorical_Testset, y_test) 

 

Figure 4. The proposed Clustered-Shifting-Window Boosting Algorithm for a hyperspectral image dataset 

V. CONCLUSION 

We proposed a method for hyperspectral image pixel 

classification using cluster-ensemble-based categorical feature 

extractor and a categorical boosting classifier using those 

features. Each run of clustering splits the dataset of pixels into 

unsupervised categories of pixels. The resulting cluster indices 

of each run are used as categorical features by a categorical-

boosting classifier. As the hyperspectral datasets come with 

several hundreds of features corresponding to a sequence of 

narrow wavelengths, we applied a sliding window to create 

diverse set of clustering runs. The experimental results showed 

that the proposed method improves the classification accuracy. 
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