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Abstract— A novel hyperspectral image classification
algorithm is proposed and demonstrated on benchmark
hyperspectral images. We also introduce a hyperspectral sky
imaging dataset that we are collecting for detecting the amount
and type of cloudiness. The algorithm is designed to be applied to
the Such systems could improve the spatial and temporal
resolution of cloud information vital to understanding Earth’s
climate. We discuss the nature of our HSI-Cloud dataset being
collected and an algorithm we propose for processing the dataset
using a categorical-boosting method. The proposed method
utilizes multiple clusterings to augment the dataset and achieves
higher pixel classification accuracy. Creating categorical features
via clustering enriches the data representation and improves
boosting ensembles. For the experimental datasets used in this
paper, gradient boosting methods performed favorably to the
benchmark algorithms.

Index Terms— Hyperspectral Imaging, Cloud Segmentation,
Categorical Boosting, Ensemble Learning, Clustering for Feature
Extraction.

I. INTRODUCTION

Compared to developing single models, ensemble
learning algorithms that utilize decision trees (DTs) and
boosting have received increasing interest due to many features
including but not limited to their fast and accurate predictions,
robustness to noise, ability to deal with diverse features such as
both numerical and categorical features, having fewer
parameters to optimize, and having a rule-based interpretability
using if-then-like rules [1]. Gradient/Adaptive boosting
methods based on decision trees, such as CatBoost and
AdaBoost, can handle diverse data types and solve a wide range
of machine learning problems involving categorical variables.
The thrust of this work is to develop machine learning
algorithms based on such boosting algorithms and test their
applicability and prediction performances on hyperspectral
image (HSI) datasets for pixel classification.

In Hyperspectral Imaging (HSI), a pixel is
characterized by a high number of spectral channels/bands, thus
allowing accurate and efficient classification of individual
pixels [1][2][3]. HSI cameras vary in the number of
wavelengths (bands) they have, but typically in an HSI dataset,
every pixel is represented by several hundreds of bands.
Typically, for every HSI image a ground truth image is
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provided that contains the class labels of individual pixels. The
spectral signature in those bands (reflectivity/irradiances in
different wavelengths) for a pixel can be used as a powerful
predictor of the class-label (i.e., for classification of that
individual pixel). Since different classes have different certain
hyperspectral signatures, HSI can serve as an important pattern
recognition goal, for example, for scanning a large field by
taking aerial pictures. An exemplary application could be
classification of individual pixels into various types of
vegetation/soils/fields/trees [2], and another application could
be classification of individual pixels into dark, regular, or thin
clouds versus clear sky [3]. In such HSI applications, single
pixel classification can help, for example, in monitoring the
state  of crops (wet/dry/rotten) or in  finding
irregularities/outliers such as a metal object camouflaged in the
field.

To be able to take full advantage of aforementioned
categorical boosting/ensemble methods in HSI images, we
propose to use clustering for feature extraction. Clustering
algorithms such as K-means can be used as a form of
preprocessing  (data  summarization/quantization)  tools
[4][5][6]. In general, HSI datasets do not contain any
categorical features (except some catalog information such as
when and where the image is captured and other auxiliary
information such as weather conditions). The proposed
boosting algorithm applies multiple clustering runs and use the
cluster memberships of HSI image pixels as super-features.
These additional categorical features improve classification
accuracy of the subsequent boosting classifier [7]. We propose
and demonstrate that creation of categorical features using
clustering algorithms proves very useful in enriching the data
representation for categorical-boosting ensembles. This work
presents a method that can be further developed for achieving
dimensionality = reduction, accurate classification, and
parallelism needed for easy implementation in high-
performance computing frameworks for hyperspectral image
classification [1][8].

II. BACKGROUND AND DATASETS

The dataset we are currently collecting as a publicly
available HSI dataset has 462 bands with the goal of cloud
detection, classification, and segmentation. The images



collected are recorded with the Resonon Pica XC2 camera,
which imaging system acts as a push-broom scanning
spectrometer with 462 narrow wavelength bands ranging from
400 nm to 1000 nm. Semi-supervised pixel classification can
be used to identify clear-sky pixels and different types of clouds
for segmenting these images. As can be seen in Figures 1 and
2, even a gray image obtained using a single wavelength
contains a wide variety of types of cloudy pixels. Therefore, we
have decided to develop a boosting-based classifier that can be
apply weak classifiers to various subsets of the bands. Once the
single pixel classification is done effectively, then some form
of postprocessing such as median filtering can be performed for
segmenting a hyperspectral image into regions according to
cloud type or clear sky.

Before moving into semisupervised setting, in this
paper, we first demonstrate the proposed machine learning
algorithm on two benchmark datasets for supervised HSI pixel
classification, Indian Pines and Salinas datasets. These two
datasets are well-known HSI datasets captured by the AVIRIS
(Airborne Visible Infrared Imaging Spectrometer) sensor. The
first dataset, called Indian Pines, is composed of images of
145x145 pixels in size, with each pixel of the image represented
with 204 spectral channels (bands) in the 400-2500 nm range of
wavelengths [2]. The dataset includes 17 classes (class-0 is
unlabeled and the other 16 classes are various crops, grass, and
woods). Table I lists the class names and the number of pixels
per class in the dataset.
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The second dataset, called Salinas, consists of images
of 512x217 pixels in size with 204 spectral bands [2]. It
includes 17 classes (class-0 is unlabeled and the other 16 classes
are different types of vegetation). Table II lists the class names
and the number of pixels per class in the dataset.
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Figure 1. (Left Panel) One of HSI images collected rendered as gray-scale.
This wavelength of 585 nm is selected to maximize the contrast between
cloudy and clear sky based on the analysis summarized in Figure 2. (Right
Panel) Ground-truth obtained by K-means clustering the image given in the
left panel and classify each pixel into cloudy, thin-clouds, and clear sky
classes.
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Figure 2. Signatures of clear sky (SKY), thin clouds (THIN), clouds (CLD), and dark clouds (DARK) in 462 bands of the HSI images being collected.

ITII. PROPOSED MACHINE LEARNING MODEL

While the high-resolution representation of an
individual pixel in HSI (having many narrow wavelengths
covering a large portion of the spectrum from near-ultraviolet

to near-infrared range) makes discrimination of many more
classes from each other using just a single pixel,
reflectivity/irradiances in nearby wavelength intervals are
generally very redundant and dimensionality reduction
methods [4] are needed for band selection for HSI systems [1].



Applying some feature selection algorithms with high
time complexity such as sequential backward selection (with
time complexity of O(n?)) is costly for such high dimensional
datasets. Moreover, feature selection algorithms need to be
further adapted to HSI domain, because the band selection for
the classification task should also help determine important
ranges of the spectrum. That is, feature selection process should
not necessarily treat each one of the hundreds of wavelengths
of the spectrum as separate or unrelated variables, because
selection of individual wavelengths of the spectrum may not be
justified and the task could be simplified by finding a few
wavelength ranges of greatest importance. We identified four
intervals to be the most useful for cloud classification (Figure 2
shows these intervals highlighted with red dashed vertical lines)
Representing each interval as one categorical variable (i.e.,
creating a categorical variable for that interval by representing
it with the index of clustering applied to the dataset using the
variables of that interval) is the approach taken to preprocess
the HSI dataset before applying categorical boosting.

TABLE I. INDIAN PINES DATA DISTRIBUTION

Class ID Class Name Number of Pixels
1 Alfalfa 54
2 Corn-notill 1434
3 Corn-mintill 834
4 Corn 234
5 Grass-pasture 497
6 Grass-trees 747
7 Grass-pasture-mowed 26
8 Hay-windrowed 489
9 Oats 20

10 Soybean-notill 968

11 Soybean-mintill 2468
12 Soybean-clean 614

13 Wheat 212

14 Woods 1294
15 Build.-Grass-Trees- 380

Drv.
16 Stone-Steel-Towers 95

TABLE II. SALINAS DATA DISTRIBUTION

Class ID Class Name Number of Pixels
1 Brocoli (green 1) 2009
2 Brocoli (green 2) 3726
3 Fallow 1976
4 Fallow (rough plow) 1394
5 Fallow (smooth) 2678
6 Stubble 3959
7 Celery 3579
8 Grapes (untrained) 11271
9 Soil (vinyard develop) 6203
10 Corn (senesced green 3278

weeds)
11 Lettuce (romaine 4wk) 1068

12 Lettuce (romaine 5wk) 1927
13 Lettuce (romaine 6wk) 916
14 Lettuce (romaine 7wk) 1070
15 Vinyard (untrained) 7268
16 Vinyard (vertical) 1807

IV. EXPERIMENTAL RESULTS

Instead of working with data-specific intervals that
may require higher degrees of domain expertise and to
demonstrate the general applicability of the algorithm, the
procedures outlined in Figure 3 applies a shifting window with
a stride amount of s-bands and uses the bands in each interval
as input and clusters the dataset. Thus, each stride produces a
new categorical feature, which are then all stacked to augment
the original dataset.

As shown in Table 111, for each window, a single categorical
variable with K categories is learned by K-means and these are
stacked horizontally to create a dataset with categorical features
to train and test the boosting model. The window length, w, and
the stride amount, s, determines number of categorical features
(the number of window positions on the spectrum) created.
Also, the results report the average accuracy for 10 different
trials with the respective standard deviation using the Salinas
dataset (we obtained comparable results with the Indian Pines
dataset as well).

TABLE III. SENSITIVITY OF THE HYPERPARAMETERS FOR SALINAS DATASET

Stride =5 Stride = 10 Stride =5 Stride =10

Window ‘Window ‘Window length Window
length = 10 length =10 =20 length = 20
K=10 86.93 £0.32 85.39+0.21 86.74 £ 0.48 86.06 £ 0.58
K=20 88.06 £ 0.24 86.70 £ 0.16 88.73+0.17 87.89£0.28
K=30 88.36+0.13 86.95+0.15 89.13+0.13 88.5%£0.19

As the categorical dataset has fewer features, it is more
suitable for feature selection and classification using boosting,
which is the goal this work is trying to achieve. In the pixel
classification task of 16 target classes (various vegetations etc.)
on the test set, accuracies of the proposed boosting method
yields favorable results. For comparison with the use of the
original raw variables (i.e., 204 bands), various popular
benchmark classifiers [5][6] are also used. The results on the
Indian Pines and the Salinas datasets are reported in Table IV.

TABLE IV. COMPARISONS ON HSI CLASSIFICATION RESULTS

Indian Pines Salinas
K-NN (K=1) 63.49 +0.28 86.61 +0.11
K-NN (K=3) 65.87 +0.40 87.30+0.14
K-NN (K=5) 66.81 +0.32 87.40 +0.14
Boosting on the original features 71.88+0.55 88.38£0.12
Proposed K-means + Boosting 71.89 £ 0.60 89.13£0.13




Algorithm Clustered-Shifting-Window Boosting

Input
X[N,D]: Train-set of N samples and D features
y[N]: Class-labels of the N samples

X test[M,D]: Test-set of M samples and D features
y_test[M]: Class-labels of the M test samples

w: Window length

s: Stride of windows

Output
Model:
Test Accuracy:

Num Windows = 0

win end = win start + w
windowed data = X[:,
centers =

train centers =
test centers =

Num Windows = Num Windows + 1

end for

Model =
Test Accuracy =

Kmeans (windowed data,

K: Number of clusters in each window
Trained Boosting Classifier
Test accuracy of the trained classifier Model
for win start from 1 to D in steps of s

win start:win_end]

K)

Find Nearest Center (X,
Find Nearest Center (X test,
Categorical Trainset[:,Num Windows]
Categorical Testset[:, Num Windows]

Train Boost Classifier (Categorical Trainset, y)
Test Classifier (Model,

(and centroids used)

centers)

centers)
train centers

= test centers

Categorical Testset, y test)

Figure 4. The proposed Clustered-Shifting-Window Boosting Algorithm for a hyperspectral image dataset

V. CONCLUSION

We proposed a method for hyperspectral image pixel
classification using cluster-ensemble-based categorical feature
extractor and a categorical boosting classifier using those
features. Each run of clustering splits the dataset of pixels into
unsupervised categories of pixels. The resulting cluster indices
of each run are used as categorical features by a categorical-
boosting classifier. As the hyperspectral datasets come with
several hundreds of features corresponding to a sequence of
narrow wavelengths, we applied a sliding window to create
diverse set of clustering runs. The experimental results showed
that the proposed method improves the classification accuracy.
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