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Abstract—The concept of stimulus feature tuning is 
fundamental to neuroscience. Cortical neurons acquire their 
feature-tuning properties by learning from experience and using 
proxy signs of tentative features’ potential usefulness that come 
from the spatial and/or temporal context in which these features 
occur. According to this idea, local but ultimately behaviorally 
useful features should be the ones that are predictably related to 
other such features either preceding them in time or taking 
place side-by-side with them. Inspired by this idea, in this paper, 
deep neural networks are combined with Canonical Correlation 
Analysis (CCA) for feature extraction and the power of the 
features is demonstrated using unsupervised cross-modal 
prediction tasks. CCA is a multi-view feature extraction method 
that finds correlated features across multiple datasets (usually 
referred to as views or modalities). CCA finds linear 
transformations of each view such that the extracted principal 
components, or features, have a maximal mutual correlation. 
CCA is a linear method, and the features are computed by a 
weighted sum of each view's variables. Once the weights are 
learned, CCA can be applied to new examples and used for 
cross-modal prediction by inferring the target-view features of 
an example from its given variables in a source (query) view. To 
test the proposed method, it was applied to the unstructured 
CIFAR-100 dataset of 60,000 images categorized into 100 
classes, which are further grouped into 20 superclasses and used 
to demonstrate the mining of image-tag correlations. CCA was 
performed on the outputs of three pre-trained CNNs: AlexNet, 
ResNet, and VGG. Taking advantage of the mutually correlated 
features extracted with CCA, a search for nearest neighbors was 
performed in the canonical subspace common to both the query 
and the target views to retrieve the most matching examples in 
the target view, which successfully predicted the superclass 
membership of the tested views without any supervised training.  

Keywords—Multi-view Feature Extraction, Dimensionality 
Reduction, Recommendation Systems, Deep Learning, Transfer 
Learning, Contextual Guidance.  

I. INTRODUCTION 

Cerebral cortex is a complex dynamical system dominated 
by feedback circuits and cross-modal interactions (e.g., among 
sensory and behavioral components such as visual, auditory, 
tactile, and motor system modalities). These modalities are 
organized in a modular and hierarchical architecture [1]. The 
central pathway in the feed-forward elaboration of cortical 
neurons’ properties in these multi-layered architectures 
typically proceeds through a repeating sequence of two 
cortical layers: the input Layer 4 and the output Layer 3. The 
operation of these layers resembles a convolutional block 
(convolution, rectification, and pooling) of deep convolutional 
neural networks [2]. Each column-shaped module in a higher-
level cortical area builds its more complex features using as 
input the features of a local set of modules in the lower-level 
cortical area. Thus, as we go into higher areas these features 

become increasingly more global and nonlinear, and thus 
more descriptive [1-5]. It has been proposed that interactions 
among the modules provide contextual guidance for feature 
tuning and cross-modal prediction (prediction of missing 
information using information available in other modules or 
modalities). Such interactions are akin to maximization of 
mutual information via Canonical Correlation Analysis 
(CCA) [2, 5]. In this paper, we propose a neural architecture 
inspired by the mutual information maximization model of 
this cross-modal cortical architecture.  

In artificial neural networks, cross-modal learning – akin 
to learning via contextual guidance in cerebral cortical 
networks described above – refers to learning to infer 
information in one view/modality from the information in 
another view/modality relying on mutual information among 
views/modalities [6-16]. Cross-modal learning is used in 
feature extraction and prediction in many real-world 
problems, where data are frequently multimodal.   Cross-
modally chosen features can enhance predictive models by 
helping to eliminate view-specific noisy distractors and 
emphasize dominant underlying causal factors. That is, 
extraction of mutual information between modalities can 
guide feature extraction towards modality-invariant but class-
specific features and creation of a common space of such 
features for all modalities/views. Such a common space of 
features for all modalities/views would allow one view’s 
samples to be predicted by projecting other views’ samples 
onto this space, which would be emphasizing the underlying 
sources of correlations and class-related features [8, 11].  

One approach to reveal correlations between different 
views/modalities is Canonical Correlation Analysis (CCA), 
which maximizes correlation between modalities [9, 12, 13], 
enabling their representation using a common feature 
subspace. Although CCA is originally proposed to tune to 
features that maximize linear correlations between two views 
[12], other variations have been proposed for its application to 
more than two views [14] and for discovering discriminative 
and nonlinear relations among the views, such as kernel-CCA 
[8], discriminative CCA [9], and deep-CCA [15].  

Cross-modal prediction is a powerful application to 
demonstrate the usefulness of the CCA extracted features. For 
example, in [11], the pseudo inverse of the CCA features is 
used to achieve cross-modal prediction. In this paper, we 
propose a novel cross-modal recommendation framework that 
performs a search for nearest neighbors to recommend in the 
canonical subspace learned by CCA as a common subspace of 
the query and target views. We tested our method on a noisy-
labelled image dataset, in which the images formed one 
modality and the noisy labels yielded the superclass 
information that formed the other modality. To incorporate 
noisy labels into its feature tuning and image 
recommendations, CCA is applied to discover the common 
subspace between these two modalities. In other words, we This work is supported, in part, by NSF under Grant No. 2003740.



use image features extracted by deep networks and a set of 
noisy tags describing the class/superclass of the images to 
train our CCA-based algorithm [16]. 

II. MULTIVIEW DATASET CONSTRUCTION 

We used CIFAR-100 dataset [17] contains 60,000 images 
categorized into 100 classes and these classes are further 
grouped into 20 superclasses. We used the image as one view 
and a noisy representation of the superclass information as the 
second view. Thus, in this setup, we have each image with a 
tag that correlates to its superclass. If the superclass 
information was provided accurately in a 20-dimensional 
vector simply as a one-hot-encoding, then CCA would be 
equivalent to LDA (linear discriminant analysis) [18]. Instead 
we create a 100-dimensional noisy version of the superclass. 
Thus, we construct a binary 60,000x100 tag-view as the 
second view, where a 1-value in the dataset means that the 
image corresponding to that row may belong to the class 
corresponding to that column. The 100-dimensional encoding 
of the super-class information is probabilisticly defined as 
follows: the component corresponding to the true class has 
very high probability of being 1, components corresponding 
to classes in the same superclass has high probability of being 
1, and the rest of the components have very low probabilities 
of being 1. For example, if the class of an image was “beaver”, 
then the 100-dimensional tag would likely contain a 1 for the 
beaver class but also contain 1 for other classes under the 
“aquatic mammals” superclass (such as otter, seal, and 
dolphin). When using the proposed noisy encoding scheme 
that favors but not exactly identifies the class and the 
superclass, the demand on CCA would be to find the most 
matching linear combinations of image features with linear 
combinations of these noisy tags. As multiple 1’s are 
associated with an image (with more probability of being 1 for 
the classes that belong to the superclass of the image), CCA 
captures superclass information, and the proposed CCA-based 
cross-modal prediction learns to suggest which superclass the 
given query image belongs to. Note that this cross-modal 
prediction is achieved without explicitly training a supervised 
classifier for predicting the superclasses.  

The tag-related view is referred to as CIFAR-100-tag. 
Deep learning models were used as feature extractors for 
images in CIFAR-100. The CIFAR-100-tag data and the deep-
learning features were the two modalities fed to the proposed 
cross-modal prediction model. The image feature extractors 
used were pre-trained CNN models. Their abilities in 
discovering distinguishable patterns in images were 
compared. The application of pre-trained CNNs is part of 
transfer learning, a subfield of machine learning and artificial 
intelligence that exercises the knowledge gained from a source 
task to a different but similar target task, which is one of the 
benefits of deep learning systems (Fig. 1) [19, 20]. Pre-trained 
CNNs are models that are already built on very large datasets 
for image classification. Pre-trained CNN models provide a 
shortcut to training a CNN from scratch, which may take up 
time and resources depending on the size of the dataset. Three 
pre-trained CNNs were investigated: AlexNet, ResNet, and 
VGG [21]. All three models were trained on the ImageNet 
database, which has more than 14 million images grouped into 
about 22 thousand classes (according to statistics recorded on 
ImageNet’s homepage). AlexNet architecture includes eight 
layers, five of which are convolutional layers, and three are 
fully connected layers. The input to AlexNet must be RGB 
images of size 256×256 [22]. ResNet (short for Residual 

Network) was built and trained on one million 224x224 
colored images from ImageNet [23]. There have been multiple 
versions of ResNet depending on the number of layers; we 
used ResNet101 that has 101 layers. VGG requires RGB 
images of dimensions 224x224 [24]. Similar to ResNet, there 
are multiple versions of VGG; we used VGG11_bn.  

 
Fig. 1. An exemplary deep CNN application via transfer learning.  

 
 

 
 

Fig. 2. Proposed method for cross-modal prediction. 
 

III. PROPOSED METHOD 

The cross-modal prediction approach proposed in [11] 
worked by inverting the canonical weight matrix of the target 
view. This essentially means transforming the query view to 
the canonical subspace and then, using the inverted weights, 
converting the canonical subspace to obtain the most fitting 
(but artificial) representations in the target view. We propose 
that for cross-modal prediction, performing the search within 
the canonical subspace is better than generating artificial 
representations. Even if the sample reconstruction generates a 
realistic target-view example, it is not a real example in the 
target-view dataset. To find the real examples, a nearest 
neighbors search would be performed for the retrieval task of 
relevant items from the target view. Therefore, instead of 



inverting the CCA features of the query to obtain a reasonable 
representation in the target-view space, the proposed approach 
applies a nearest neighbors search within the canonical 
subspace. As the CCA features are generally much fewer than 
the original dimensionality, the proposed approach offers 
higher performance in the accuracy rate (due to the 
phenomenon known as curse-of-dimensionality) and also in 
the search time.  

Our method first projects the data on CCA dimensions (the 
numbers of dimensions is selected based on the elbow point 
of the canonical correlations on the validation set) and then 
applies an nearest neighbors model to acquire similar 
examples using the covariate space; that is, the feature vector 
obtained from the query (first) view is used to find nearest 
neighbors of the CCA transformations of the other (second) 
view. These best matching examples have representations in 
both views and the search can be used to return the first or the 
second views of these best matches. A flowchart of this cross-
modal prediction method is given in Fig. 2. 

IV. EXPERIMENTAL RESULTS 

As a quick demonstration of the proposed method, we first 
use the well-known optdigits dataset that contains 1797 
handwritten digits down-sampled to 8x8=64 pixels split into 
two sets (similar to [15]) as shown in Fig. 3. We also split the 
dataset randomly in a class-stratified way (thus preserving the 
class priors) into 10% for the training set and 90% for the test 
set. For each test example, we find k nearest neighbors in each 
view (note that each test example has two representations in 
these two views). We measure the percentage of the common 
nearest neighbors (for example, if all k were common to both 
sets, that would indicate 100% agreement; and if the two sets 
were disjoint, that would indicate 0% agreement). We 
compared the agreement when using the original pixels (32 
dimensions per view), CCA with 5 components, and principal 
component analysis (PCA) with 5 components. As shown in 
Fig. 4, using CCA’s covariate features lead to higher 
agreement in average.  

To demonstrate the power of CCA features for cross-
modal tasks on the CIFAR dataset, we used three pre-trained 
CNN models, AlexNet, ResNet, and VGG, as image feature 
extractors. This also allowed us to compare them with respect 
to their abilities in discovering distinguishable patterns in 
images, addressed by the corresponding CCA-based cross-
modal prediction performance. Both AlexNet and VGG 

extract 4,096 image features at its last layer and feeds them 
into the final classifier (softmax) layer, while ResNet extracts 
512 features. These features are highly descriptive and are 
suitable to be transferred to this CIFAR image-domain 
classification task. The features were transferred and used in 
the CCA-based cross-modal prediction. To help CCA’s 
convergence and to reduce its training runtime, principal 
component analysis (PCA) was applied to the features 
extracted by all three models to reduce the dimensionality and 
eliminate collinearities within these features: The number of 
PCA features was fixed at 500 for comparisons among 
models. 500 PCA features covered more than 80% of the total 
variance for all deep learning models. 

 
Fig. 3. Proposed method for cross-modal prediction. 

 

 
Fig. 4. Agreement between two sets of nearest neighbors 

 

The number of CCA components used in the cross-modal 
prediction process with the CIFAR-100 datasets was chosen 
empirically to be 20. The highest correlation learned between 
the modalities’ 20 components for the testing data was 0.5279, 
0.5355, and 0.5350, respectively for AlexNet, ResNet, and 
VGG. The cross-modal prediction aimed at recommending 
100 most fitting examples with the deep-learning image 
features and tags representations taking turns to be the 
query/target modality. Table I compares the test errors 
produced by the prediction process using canonical variates 
and those output by the pseudoinverse method. 

 
TABLE I. CROSS-MODAL PREDICTION TEST ERRORS PRODUCED BY THE PROPOSED AND THE PSEUDOINVERSE METHODS  

Query-
View 

Target-
View 

CNN 
Architecture 

Cross-modal 
classification 

error 

Cross-modal-top-3 
classification error 

Proposed 
Method 

Pseudoinverse 
Method 

Proposed 
Method 

Pseudoinverse 
Method 

Images Tags 
AlexNet 0.3465 0.3553 0.1664 0.1793 
ResNet 0.2925 0.3015 0.1336 0.1469 

VGG 0.2989 0.3039 0.1271 0.1359 

Tags Images 

AlexNet 0.2438 0.5045 0.1106 0.2914 

ResNet 0.2437 0.4459 0.1027 0.244 

VGG 0.2495 0.4861 0.1040 0.2688 

 



With the query and target views as images and tags, 
respectively, the cross-modal prediction task was analogous to 
finding the tag representations that might label a given image. 
The proposed method was more accurate in the superclasses 
of the recommended tag representations. With AlexNet image 
features as the query, the proposed method output a cross-
modal classification error of 0.3465, which means that about 
65 out of 100 tag representations recommended were correct. 
This error was comparable to the pseudoinverse method. 
However, the proposed method was more beneficial in the 
way that it performed its search in a low dimensional space: It 
eliminated the additional computation to reconstruct the 500-
dimensional image features. Moreover, the search in a low 
dimensional space was slightly more accurate than the 
pseudoinverse method. When considering the top-3 
classification error, the proposed method had much smaller 
error. Furthermore, for both the proposed and pseudoinverse 
methods, cross-modal prediction using image features 
extracted by ResNet and VGG produced better results than 
those by AlexNet. With ResNet and VGG, the top-3 tag 
representations contained the true superclass approximately 
87% of the time (the top-3 error of VGG was slightly lower). 
Overall, when comparing the pre-trained CNNs based on the 
corresponding CCA-based cross-modal prediction 
performance, ResNet and VGG were comparable in their 
ability to extract discriminative image features, and they were 
better than AlexNet. 

When the tag representations were used as the query view, 
the cross-modal recommendation aimed at retrieving the most 
fitting images associated with the given noisy tag vector. For 
this cross-modal prediction task, the improvement in accuracy 
using the proposed method was more apparent. The proposed 
method performed significantly better than the pseudoinverse 
method, cutting the classification errors down by almost half. 
All three pre-trained CNNs worked well, with ResNet 
yielding the best performance.  

V. CONCLUSION 

In this paper, we propose a novel CCA-based cross-modal 
prediction method, which is built on using CCA to extract 
canonical features and find a common (canonical) subspace 
between the two views of the training examples. During the 
test phase, one of the views is chosen to be the query view and 
the other one to be the target view. The cross-modal prediction 
is performed by computing the canonical variates using the 
data in the query view, and then applying a nearest-neighbors 
search in the canonical space of the target view to retrieve the 
most matching examples in the target view. The proposed 
method was compared with an alternative method referred to 
as the pseudoinverse method [11], which reconstructs the 
representations in the target view from the canonical space and 
then performs a nearest-neighbors search in a much higher 
dimensional space. The two alternative methods were applied 
to CIFAR-100 dataset of 60,000 images categorized into 100 
classes and further into 20 superclasses. The experimental 
results showed that the proposed nearest-neighbor search in 
the canonical space is more effective than the pseudoinverse 
method. 

More generally, this study offers an experimental support 
to the neuroscientific conjecture that neurons on the cerebral 
cortex acquire their feature tuning properties under the 
contextual guidance from neighboring processing modules in 
the same cortical area or from other cortical areas. 
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