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Abstract—The concept of stimulus feature tuning is
fundamental to neuroscience. Cortical neurons acquire their
feature-tuning properties by learning from experience and using
proxy signs of tentative features’ potential usefulness that come
from the spatial and/or temporal context in which these features
occur. According to this idea, local but ultimately behaviorally
useful features should be the ones that are predictably related to
other such features either preceding them in time or taking
place side-by-side with them. Inspired by this idea, in this paper,
deep neural networks are combined with Canonical Correlation
Analysis (CCA) for feature extraction and the power of the
features is demonstrated using unsupervised cross-modal
prediction tasks. CCA is a multi-view feature extraction method
that finds correlated features across multiple datasets (usually
referred to as views or modalities). CCA finds linear
transformations of each view such that the extracted principal
components, or features, have a maximal mutual correlation.
CCA is a linear method, and the features are computed by a
weighted sum of each view's variables. Once the weights are
learned, CCA can be applied to new examples and used for
cross-modal prediction by inferring the target-view features of
an example from its given variables in a source (query) view. To
test the proposed method, it was applied to the unstructured
CIFAR-100 dataset of 60,000 images categorized into 100
classes, which are further grouped into 20 superclasses and used
to demonstrate the mining of image-tag correlations. CCA was
performed on the outputs of three pre-trained CNNs: AlexNet,
ResNet, and VGG. Taking advantage of the mutually correlated
features extracted with CCA, a search for nearest neighbors was
performed in the canonical subspace common to both the query
and the target views to retrieve the most matching examples in
the target view, which successfully predicted the superclass
membership of the tested views without any supervised training.
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L INTRODUCTION

Cerebral cortex is a complex dynamical system dominated
by feedback circuits and cross-modal interactions (e.g., among
sensory and behavioral components such as visual, auditory,
tactile, and motor system modalities). These modalities are
organized in a modular and hierarchical architecture [1]. The
central pathway in the feed-forward elaboration of cortical
neurons’ properties in these multi-layered architectures
typically proceeds through a repeating sequence of two
cortical layers: the input Layer 4 and the output Layer 3. The
operation of these layers resembles a convolutional block
(convolution, rectification, and pooling) of deep convolutional
neural networks [2]. Each column-shaped module in a higher-
level cortical area builds its more complex features using as
input the features of a local set of modules in the lower-level
cortical area. Thus, as we go into higher areas these features
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become increasingly more global and nonlinear, and thus
more descriptive [1-5]. It has been proposed that interactions
among the modules provide contextual guidance for feature
tuning and cross-modal prediction (prediction of missing
information using information available in other modules or
modalities). Such interactions are akin to maximization of
mutual information via Canonical Correlation Analysis
(CCA) [2, 5]. In this paper, we propose a neural architecture
inspired by the mutual information maximization model of
this cross-modal cortical architecture.

In artificial neural networks, cross-modal learning — akin
to learning via contextual guidance in cerebral cortical
networks described above — refers to learning to infer
information in one view/modality from the information in
another view/modality relying on mutual information among
views/modalities [6-16]. Cross-modal learning is used in
feature extraction and prediction in many real-world
problems, where data are frequently multimodal.  Cross-
modally chosen features can enhance predictive models by
helping to eliminate view-specific noisy distractors and
emphasize dominant underlying causal factors. That is,
extraction of mutual information between modalities can
guide feature extraction towards modality-invariant but class-
specific features and creation of a common space of such
features for all modalities/views. Such a common space of
features for all modalities/views would allow one view’s
samples to be predicted by projecting other views’ samples
onto this space, which would be emphasizing the underlying
sources of correlations and class-related features [8, 11].

One approach to reveal correlations between different
views/modalities is Canonical Correlation Analysis (CCA),
which maximizes correlation between modalities [9, 12, 13],
enabling their representation using a common feature
subspace. Although CCA is originally proposed to tune to
features that maximize linear correlations between two views
[12], other variations have been proposed for its application to
more than two views [14] and for discovering discriminative
and nonlinear relations among the views, such as kernel-CCA
[8], discriminative CCA [9], and deep-CCA [15].

Cross-modal prediction is a powerful application to
demonstrate the usefulness of the CCA extracted features. For
example, in [11], the pseudo inverse of the CCA features is
used to achieve cross-modal prediction. In this paper, we
propose a novel cross-modal recommendation framework that
performs a search for nearest neighbors to recommend in the
canonical subspace learned by CCA as a common subspace of
the query and target views. We tested our method on a noisy-
labelled image dataset, in which the images formed one
modality and the noisy labels yielded the superclass
information that formed the other modality. To incorporate
noisy labels into its feature tuning and image
recommendations, CCA 1is applied to discover the common
subspace between these two modalities. In other words, we



use image features extracted by deep networks and a set of
noisy tags describing the class/superclass of the images to
train our CCA-based algorithm [16].

II. MULTIVIEW DATASET CONSTRUCTION

We used CIFAR-100 dataset [17] contains 60,000 images
categorized into 100 classes and these classes are further
grouped into 20 superclasses. We used the image as one view
and a noisy representation of the superclass information as the
second view. Thus, in this setup, we have each image with a
tag that correlates to its superclass. If the superclass
information was provided accurately in a 20-dimensional
vector simply as a one-hot-encoding, then CCA would be
equivalent to LDA (linear discriminant analysis) [18]. Instead
we create a 100-dimensional noisy version of the superclass.
Thus, we construct a binary 60,000x100 tag-view as the
second view, where a 1-value in the dataset means that the
image corresponding to that row may belong to the class
corresponding to that column. The 100-dimensional encoding
of the super-class information is probabilisticly defined as
follows: the component corresponding to the true class has
very high probability of being 1, components corresponding
to classes in the same superclass has high probability of being
1, and the rest of the components have very low probabilities
of being 1. For example, if the class of an image was “beaver”,
then the 100-dimensional tag would likely contain a 1 for the
beaver class but also contain 1 for other classes under the
“aquatic mammals” superclass (such as otter, seal, and
dolphin). When using the proposed noisy encoding scheme
that favors but not exactly identifies the class and the
superclass, the demand on CCA would be to find the most
matching linear combinations of image features with linear
combinations of these noisy tags. As multiple 1’s are
associated with an image (with more probability of being 1 for
the classes that belong to the superclass of the image), CCA
captures superclass information, and the proposed CCA-based
cross-modal prediction learns to suggest which superclass the
given query image belongs to. Note that this cross-modal
prediction is achieved without explicitly training a supervised
classifier for predicting the superclasses.

The tag-related view is referred to as CIFAR-100-tag.
Deep learning models were used as feature extractors for
images in CIFAR-100. The CIFAR-100-tag data and the deep-
learning features were the two modalities fed to the proposed
cross-modal prediction model. The image feature extractors
used were pre-trained CNN models. Their abilities in
discovering distinguishable patterns in images were
compared. The application of pre-trained CNNs is part of
transfer learning, a subfield of machine learning and artificial
intelligence that exercises the knowledge gained from a source
task to a different but similar target task, which is one of the
benefits of deep learning systems (Fig. 1) [19, 20]. Pre-trained
CNNs are models that are already built on very large datasets
for image classification. Pre-trained CNN models provide a
shortcut to training a CNN from scratch, which may take up
time and resources depending on the size of the dataset. Three
pre-trained CNNs were investigated: AlexNet, ResNet, and
VGG [21]. All three models were trained on the ImageNet
database, which has more than 14 million images grouped into
about 22 thousand classes (according to statistics recorded on
ImageNet’s homepage). AlexNet architecture includes eight
layers, five of which are convolutional layers, and three are
fully connected layers. The input to AlexNet must be RGB
images of size 256x256 [22]. ResNet (short for Residual

Network) was built and trained on one million 224x224
colored images from ImageNet [23]. There have been multiple
versions of ResNet depending on the number of layers; we
used ResNetl01 that has 101 layers. VGG requires RGB
images of dimensions 224x224 [24]. Similar to ResNet, there
are multiple versions of VGG; we used VGG11_bn.
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Fig. 1. An exemplary deep CNN application via transfer learning.
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Fig. 2. Proposed method for cross-modal prediction.

III. PROPOSED METHOD

The cross-modal prediction approach proposed in [11]
worked by inverting the canonical weight matrix of the target
view. This essentially means transforming the query view to
the canonical subspace and then, using the inverted weights,
converting the canonical subspace to obtain the most fitting
(but artificial) representations in the target view. We propose
that for cross-modal prediction, performing the search within
the canonical subspace is better than generating artificial
representations. Even if the sample reconstruction generates a
realistic target-view example, it is not a real example in the
target-view dataset. To find the real examples, a nearest
neighbors search would be performed for the retrieval task of
relevant items from the target view. Therefore, instead of



inverting the CCA features of the query to obtain a reasonable
representation in the target-view space, the proposed approach
applies a nearest neighbors search within the canonical
subspace. As the CCA features are generally much fewer than
the original dimensionality, the proposed approach offers
higher performance in the accuracy rate (due to the
phenomenon known as curse-of-dimensionality) and also in
the search time.

Our method first projects the data on CCA dimensions (the
numbers of dimensions is selected based on the elbow point
of the canonical correlations on the validation set) and then
applies an nearest neighbors model to acquire similar
examples using the covariate space; that is, the feature vector
obtained from the query (first) view is used to find nearest
neighbors of the CCA transformations of the other (second)
view. These best matching examples have representations in
both views and the search can be used to return the first or the
second views of these best matches. A flowchart of this cross-
modal prediction method is given in Fig. 2.

IV. EXPERIMENTAL RESULTS

As a quick demonstration of the proposed method, we first
use the well-known optdigits dataset that contains 1797
handwritten digits down-sampled to 8x8=64 pixels split into
two sets (similar to [15]) as shown in Fig. 3. We also split the
dataset randomly in a class-stratified way (thus preserving the
class priors) into 10% for the training set and 90% for the test
set. For each test example, we find k nearest neighbors in each
view (note that each test example has two representations in
these two views). We measure the percentage of the common
nearest neighbors (for example, if all £ were common to both
sets, that would indicate 100% agreement; and if the two sets
were disjoint, that would indicate 0% agreement). We
compared the agreement when using the original pixels (32
dimensions per view), CCA with 5 components, and principal
component analysis (PCA) with 5 components. As shown in
Fig. 4, using CCA’s covariate features lead to higher
agreement in average.

To demonstrate the power of CCA features for cross-
modal tasks on the CIFAR dataset, we used three pre-trained
CNN models, AlexNet, ResNet, and VGG, as image feature
extractors. This also allowed us to compare them with respect
to their abilities in discovering distinguishable patterns in
images, addressed by the corresponding CCA-based cross-
modal prediction performance. Both AlexNet and VGG

extract 4,096 image features at its last layer and feeds them
into the final classifier (softmax) layer, while ResNet extracts
512 features. These features are highly descriptive and are
suitable to be transferred to this CIFAR image-domain
classification task. The features were transferred and used in
the CCA-based cross-modal prediction. To help CCA’s
convergence and to reduce its training runtime, principal
component analysis (PCA) was applied to the features
extracted by all three models to reduce the dimensionality and
eliminate collinearities within these features: The number of
PCA features was fixed at 500 for comparisons among
models. 500 PCA features covered more than 80% of the total
variance for all deep learning models.
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Fig. 3. Proposed method for cross-modal prediction.
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Fig. 4. Agreement between two sets of nearest neighbors

The number of CCA components used in the cross-modal
prediction process with the CIFAR-100 datasets was chosen
empirically to be 20. The highest correlation learned between
the modalities’ 20 components for the testing data was 0.5279,
0.5355, and 0.5350, respectively for AlexNet, ResNet, and
VGG. The cross-modal prediction aimed at recommending
100 most fitting examples with the deep-learning image
features and tags representations taking turns to be the
query/target modality. Table I compares the test errors
produced by the prediction process using canonical variates
and those output by the pseudoinverse method.

TABLE I. CROSS-MODAL PREDICTION TEST ERRORS PRODUCED BY THE PROPOSED AND THE PSEUDOINVERSE METHODS

S:s):isﬁtl;t?i Cross-modal-top-3

Qu‘ery- Target- CNN error classification error
View View | Architecture Proposed | Pseudoinverse | Proposed | Pseudoinverse

Method Method Method Method

AlexNet 0.3465 0.3553 0.1664 0.1793

Images Tags ResNet 0.2925 0.3015 0.1336 0.1469

VGG 0.2989 0.3039 0.1271 0.1359

AlexNet 0.2438 0.5045 0.1106 0.2914

Tags Images ResNet 0.2437 0.4459 0.1027 0.244

VGG 0.2495 0.4861 0.1040 0.2688




With the query and target views as images and tags,
respectively, the cross-modal prediction task was analogous to
finding the tag representations that might label a given image.
The proposed method was more accurate in the superclasses
of the recommended tag representations. With AlexNet image
features as the query, the proposed method output a cross-
modal classification error of 0.3465, which means that about
65 out of 100 tag representations recommended were correct.
This error was comparable to the pseudoinverse method.
However, the proposed method was more beneficial in the
way that it performed its search in a low dimensional space: It
eliminated the additional computation to reconstruct the 500-
dimensional image features. Moreover, the search in a low
dimensional space was slightly more accurate than the
pseudoinverse method. When considering the top-3
classification error, the proposed method had much smaller
error. Furthermore, for both the proposed and pseudoinverse
methods, cross-modal prediction using image features
extracted by ResNet and VGG produced better results than
those by AlexNet. With ResNet and VGG, the top-3 tag
representations contained the true superclass approximately
87% of the time (the top-3 error of VGG was slightly lower).
Overall, when comparing the pre-trained CNNs based on the
corresponding ~ CCA-based  cross-modal  prediction
performance, ResNet and VGG were comparable in their
ability to extract discriminative image features, and they were
better than AlexNet.

When the tag representations were used as the query view,
the cross-modal recommendation aimed at retrieving the most
fitting images associated with the given noisy tag vector. For
this cross-modal prediction task, the improvement in accuracy
using the proposed method was more apparent. The proposed
method performed significantly better than the pseudoinverse
method, cutting the classification errors down by almost half.
All three pre-trained CNNs worked well, with ResNet
yielding the best performance.

V. CONCLUSION

In this paper, we propose a novel CCA-based cross-modal
prediction method, which is built on using CCA to extract
canonical features and find a common (canonical) subspace
between the two views of the training examples. During the
test phase, one of the views is chosen to be the query view and
the other one to be the target view. The cross-modal prediction
is performed by computing the canonical variates using the
data in the query view, and then applying a nearest-neighbors
search in the canonical space of the target view to retrieve the
most matching examples in the target view. The proposed
method was compared with an alternative method referred to
as the pseudoinverse method [11], which reconstructs the
representations in the target view from the canonical space and
then performs a nearest-neighbors search in a much higher
dimensional space. The two alternative methods were applied
to CIFAR-100 dataset of 60,000 images categorized into 100
classes and further into 20 superclasses. The experimental
results showed that the proposed nearest-neighbor search in
the canonical space is more effective than the pseudoinverse
method.

More generally, this study offers an experimental support
to the neuroscientific conjecture that neurons on the cerebral
cortex acquire their feature tuning properties under the
contextual guidance from neighboring processing modules in
the same cortical area or from other cortical areas.
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