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Abstract

We provide a new extension to the geometric construction of 6d (1, 0) SCFTs that encapsulates Higgs branch

structures with identical global symmetry but different spectra. In particular, we find that there exist

distinct 6d (1, 0) SCFTs that may appear to share their tensor branch description, flavor symmetry algebras,

and central charges. For example, such subtleties arise for the very even nilpotent Higgsing of (so4k, so4k)

conformal matter; we propose a method to predict at which conformal dimension the Higgs branch operators

of the two theories differ via augmenting the tensor branch description with the Higgs branch chiral ring

generators of the building block theories. Torus compactifications of these 6d (1, 0) SCFTs give rise to 4d

N = 2 SCFTs of class S and the Higgs branch of such 4d theories are captured via the Hall–Littlewood index.

We confirm that the resulting 4d theories indeed differ in their spectra in the predicted conformal dimension

from their Hall–Littlewood indices. We highlight how this ambiguity in the tensor branch description arises

beyond the very even nilpotent Higgsing of (so4k, so4k) conformal matter, and hence should be understood

for more general classes of 6d (1, 0) SCFTs.



2

CONTENTS

I. Introduction 3

II. (D,D) conformal matter and nilpotent Higgsing 4

III. Very even Higgsing in 6d via examples 7

A. (so8, so8) with 2× [24] 8

B. (so4k, so4k) with 2× [(2k − 2)2, 22] 10

C. (so4k, so4k) with 2× [(2k − 4)2, 24] 11

D. (so4k, so4k) with 2× [(2k − 2ℓ)2, 22ℓ] 12

E. A non-example: the uniqueness of conformal matter 14

IV. 6d (1, 0) on T 2 and class S 14

V. Conclusion 19

A. Flavor algebras from E-strings 20

B. From nilpotent orbits to E8-homomorphisms 21

Acknowledgements 23

References 23



3

I. INTRODUCTION

A generic quantum field theory is characterized by its symmetries, both global and local. Many diverse

quantum field theories can be engineered from superstring theory in ten dimensions, which has no global

symmetries and famously has only local symmetries required by anomaly cancellation [1]. However, lower di-

mensional theories that arise via string theory compactifications may have many kinds of global symmetries;

in particular, there can be R-symmetries, if the compactification preserves supersymmetry, and flavor sym-

metries that commute with the (super-)Lorentz transformations. The flavor symmetry provides an important

property describing the quantum field theory; understanding the flavor symmetry amounts to analyzing the

flavor symmetry algebra f and its global form F , where F is ambiguous from f up to the center of f. The

spectrum of states of the theory falls into representations of f, and there can be subtle distinctions between

the global form of the symmetry group F depending on those states. The analysis of the spectrum of the

theory can demonstrate that theories that appear to be identical at the level of the flavor symmetry algebra

are different. Determining which states, in which representations of f, exist in the theory is related to the

geometric and topological properties of the compactification space Y . However, how these states are encoded

in the geometry is often challenging to determine. In this paper, we explicitly show how such states are

captured in Y for certain compactifications of string theory down to six dimensions and then further down

to four dimensions.

In particular, the theories we look into in this paper are superconformal field theories (SCFTs). A natural

question is then how does one effectively distinguish superconformal field theories. The most natural things

to look at are the invariants of an SCFT. We define the “conventional invariants” of an SCFT to be the

central charges, the flavor algebras, and the flavor central charges; these are invariants in the sense that if

these quantities differ between two SCFTs, then those SCFTs are themselves different. However, these are

not complete invariants: many distinct SCFTs are known for which all of these quantities are identical. A

more refined invariant, but still not complete, is the Higgs branch. In another vein, the global form of the

flavor symmetry group F is more refined than the flavor symmetry algebra f, and can distinguish theories

which differ only up to the center of F .

We will analyze six-dimensional SCFTs and take a six-dimensional perspective on analyzing four-dimensional

SCFTs. In fact, studying six dimensional SCFTs has been particularly insightful and has played an important

role in understanding lower-dimensional theories. The quintessential examples are the understanding of the

S-duality of 4d N = 4 super Yang–Mills [2] and the class S construction [3, 4] of 4d N = 2 SCFTs from the

6d (2, 0) SCFTs. The class S construction involves a twisted compactification of the 6d (2, 0) SCFT of type

g on a n-punctured genus g Riemann surface Cg,n. In this paper, we write such 4d SCFTs as

Sg⟨Cg,n⟩{· · · } , (I.1)

where · · · refers to the data describing the punctures. The puncture data has been (almost) exhaustively

worked out in [5–14]. The power of this approach is reflected in how a multitude of physical properties of

the 4d SCFTs are encoded in the geometry of the punctured Riemann surface.

Another origin of 4d N = 2 SCFTs in six-dimensions is the torus compactification of a 6d (1, 0) SCFT.

When utilizing this approach, there is no need to perform any topological twist as the flatness of the torus

guarantees that supersymmetry is preserved in the compactification. In fact, a 6d (1, 0) SCFT origin provides

a particularly powerful perspective to understand the Higgs branch of the lower dimensional SCFTs, as a

supersymmetry-preserving torus compactification does not modify the Higgs branch. This process can also

be utilized in the reverse direction: if one understands aspects of the Higgs branch of a 4d N = 2 SCFT

from the class S perspective, and there also exists a 6d (1, 0) on T 2 perspective, then one can learn about

the Higgs branch of the 6d (1, 0) SCFT.

Four-dimensional N = 2 SCFTs which have such 6d (1, 0) and 6d (2, 0) origins have been discovered in recent

years [15–18]. The general principle is that theories of class S of type g obtained from spheres with N simple

punctures and any two regular punctures associated to nilpotent orbits of g have an alternative description
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in terms of 6d rank N (g, g) conformal matter, Higgsed by the same nilpotent orbits of g, compactified on

a torus. In [18], it was pointed out that the 6d (1, 0) origin makes manifest the full flavor algebra of the 4d

theory, whereas only a subalgebra is manifest in the class S description. This is the original example of the

6d (1, 0) origin being the optimal approach to the 4d Higgs branch. Unfortunately, the connection between

the geometric construction of 6d (1, 0) SCFTs [19, 20] and their Higgs branches has not been fully developed.

A vast landscape of 6d (1, 0) SCFTs have a geometric construction via F-theory [19, 20]. This approach

involves constructing the description of the theory at the generic point of its tensor branch, which is captured

by a collection of curves and algebras. Furthermore, there are simple rules for building new 6d SCFTs by

compositing theories associated to ≤ 3 curves. It has generally been believed that theories with the same

tensor branch description correspond to the same SCFT; in particular, such theories have the same anomaly

polynomials and all attendant SCFT invariants.

However, we show that this is not the case in this paper. From the class S description of the T 2 compactifi-

cation of the 6d (1, 0) SCFTs that we consider, we study the Hall–Littlewood index to determine the Higgs

branch spectrum. By looking at the spectra via the Hall–Littlewood indices, we see that the two theories

differ at somewhat large conformal dimensions, however they do have the same “conventional invariants.”

Given that the two theories have different Higgs branches, they are necessarily distinct theories. Theories

with identical conventional invariants which nevertheless differ in their Higgs branch spectrum have been

studied recently in [21, 22] for some 4d SCFTs of class S. In terms of the 6d (1, 0) geometric construction, we

find that there is an ambiguity in how the curves are composited together and resolving this ambiguity leads

to distinct 6d SCFTs. In this way, we propose a method to recover the relevant aspects of the different Higgs

branches directly from the 6d (1, 0) perspective, and thus provide one of the first methods to recover the

higher-dimensional operators on the Higgs branch directly from the geometric construction of the 6d (1, 0)

SCFTs.

The rest of the paper is organized as follows. In Section II, we explain the construction of rank N (Dk, Dk)

conformal matter and the Higgs branch deformations induced by pairs of nilpotent orbits of the so2k ⊕
so2k flavor symmetry from the geometric perspective of F-theory; we determine that there is a previously

overlooked subtlety with the compositing by rank one (D,D) conformal matter which occasionally leads to

inequivalent theories with the same tensor branch description. In Section III, we highlight these distinct

theories for a variety of examples involving nilpotent orbits associated to very even D-partitions, and we

determine at what conformal dimension the operator spectrum on the Higgs branch differs. The torus

compactifications of these 6d (1, 0) SCFTs leads to 4d N = 2 SCFTs which have a dual description in class

S, and in Section IV, we observe that the two theories are also distinct from that perspective and the Hall–

Littlewood index differs at the same order as predicted from the 6d (1, 0) description. Finally, in Section V

we conclude, discuss the significance of our results, and present some future directions.

II. (D,D) CONFORMAL MATTER AND NILPOTENT HIGGSING

In this paper, we provide substantial evidence that the tensor branch description of a 6d (1, 0) SCFT from

[19, 20] is insufficient, in the sense that it does not distinguish between particular 6d (1, 0) SCFTs that

have non-isomorphic Higgs branches. Six-dimensional SCFTs are theories which contain degrees of freedom

corresponding to tensionless strings [2, 23], which magnetically-couple to tensor multiplets, and each of those

strings acquires tension at a generic point of the tensor branch.

The geometric construction is via F-theory compactified on a non-compact elliptically-fibered Calabi–Yau

threefold satisfying the negative-definite condition for the intersection pairing of compact rational curves

in the base of the fibration and that the singular fibers above the intersection points of the curves are

minimal.1,2 Each compact curve gives rise to a string, with the tension proportional to the volume of the

1 See [24] for a recent review of the construction of 6d SCFTs from F-theory, including all necessary conditions and their
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curve. The intersection pairing corresponds to the Dirac pairing on the charge lattice of the strings, and

the singular fiber is associated to a gauge algebra where the gauge coupling is proportional to the inverse

of the associated string tension. The SCFT limit involves taking the volume of all compact curves to zero

simultaneously, which is identical to taking the tensionless limit for each string. In particular, we utilize

this curve-intersection technology to build 6d (1, 0) SCFTs with minimal conformal matter (G,G) [41]. The

geometric construction itself is modular and can be reduced to the combinatorial problem of compositing

together a small collection of “building blocks”. Specifically, we can get such a 6d SCFT from compositing

together theories associated to the non-Higgsable clusters (NHCs) [42–44]. Writing the negative of the self-

intersection number of the curves and the algebras associated to the singular fibers, the NHCs can be written

as

su3

3 ,
so8

4 ,
f4
5 ,

e6
6 ,

e7
7 ,

e7
8 ,

e8
12 ,

su2

2
g2

3 , 2
su2

2
g2

3 ,
su2

2
so7

3
su2

2 ,

2 · · · 2⏞ ⏟⏟ ⏞
N−1

, 2 · · · 2⏞ ⏟⏟ ⏞
N−3

2
22 , 22

2
222 , 222

2
222 , 2222

2
222 .

(II.1)

Each NHC may be tuned, meaning that the gauge algebra can be enhanced beyond that which is written

in equation (II.1). Another key ingredient is the rank one E-string, corresponding to a (−1)-curve with no

associated gauge algebra, and its tuned counterparts:

g

1 . (II.2)

This theory has a flavor algebra f, and we can use
g

1 to composite together up to two tuned non-Higgsable

clusters, for example
gL
n and

gR
m, via gauging a gL ⊕ gR subalgebra of f; this would lead to

gL

n
g

1
gR

m . (II.3)

As long as the resulting tensor branch configuration satisfies the negative-definiteness and minimality con-

straints, then one can iterate this process of composition to generate a vast landscape of 6d (1, 0) SCFTs.

Hence each tuned E-string theory as in equation (II.2) plays a role to composite together SCFTs.

To clarify the notation, we now give an explicit example. Consider a non-compact elliptically fibered Calabi–

Yau containing three compact curves in the base: C1, C2, and C3. We take the intersection matrix to

be

Ci · Cj =

⎛⎝−1 1 0

1 −3 1

0 1 −1

⎞⎠
ij

, (II.4)

where the numbers on the diagonal are the self-intersection numbers; it is straightforward to see that this

matrix is negative-definite. Furthermore, take the singular fibers over each of the three curves to correspond

to the gauge algebras g1 = g3 = ∅ and g2 = su3. Then, we can write this tensor branch configuration in a

succinct form as

1
su3

3 1 . (II.5)

This configuration involves compositing together two copies of the rank one E-string with the
su3

3 non-

Higgsable cluster. We use this concise notation throughout this work.

derivation.
2 If F-theory is instead compactified on a compact Calabi–Yau threefold, the resulting theory is a 6d (1, 0) supergravity theory.

See [25–40] for some examples of such geometric constructions.
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In this paper, we focus on the 6d (1, 0) SCFTs known as rank N (so2k, so2k) conformal matter, and the

interacting fixed points obtained by nilpotent Higgsing of the so2k ⊕ so2k flavor symmetry. Certain nilpotent

Higgsings lead to theories with the same tensor branch description, however, when compactified on T 2 the

SCFTs have an alternative description in terms of class S, and from that perspective we see that the Higgs

branches are non-isomorphic. In these cases, we propose precisely how to augment the 6d (1, 0) tensor

branch description with additional information about the compositing theories such that we observe the

distinct Higgs branches. While we focus on (nilpotent Higgsing of) (so2k, so2k) conformal matter, this is not

the only occasion where an ambiguity in the compositing arises, as we discuss briefly in Section V, and thus

we expect that this additional information needs to be accounted for in the tensor branch descriptions of

numerous 6d (1, 0) SCFTs.

The rank N conformal matter theory of type (so2k, so2k) arises in M-theory as the theory living on the

worldvolume of N M5-branes probing a C2/Γso2k
orbifold singularity [41]. In the geometric construction of

6d (1, 0) SCFTs, this theory is obtained by compositing N − 1 copies of the tuned non-Higgsable cluster

so2k

4 , (II.6)

with N copies of the tuned E-string:

spk−4

1 . (II.7)

To wit, we have the configuration

N−1 (−4)-curves⏟ ⏞⏞ ⏟
spk−4

1
[so2k]

so2k

4
spk−4

1 · · ·
so2k

4
spk−4

1
[so2k]

. (II.8)

We refer to the
spk−4

1 as the compositing theory, and it is an SCFT in its own right; in fact, it is the minimal

(so2k, so2k) conformal matter theory. This theory has an so4k enhanced flavor symmetry.3 The Higgs branch

chiral ring has two generators: a moment map µ in the adjoint representation of the so4k flavor symmetry

and an additional generator µ± in one of the spin representations of the so4k. The latter transforms in the

representation of the SU(2) R-symmetry with highest weight k − 2. A priori there can be two SCFTs, one

with the Higgs branch chiral ring generated by (µ, µ+), and the other by (µ, µ−). However, it is easy to

see that these are equivalent SCFTs related by the outer automorphism of so4k. We refer to this pair of

equivalent theories as

sp+
k−4

1 and
sp−

k−4

1 , (II.9)

respectively. This may lead us to think that the tensor branch configuration for rank N (so2k, so2k) conformal

matter written in equation (II.8) is ambiguous; however, these theories are equivalent for all combinations of

signs on the (−1)-curve. We explicitly explore this scenario and argue in Section III E why all combinations

of signs are equivalent.

The rank N (so2k, so2k) conformal matter theory has an so2k ⊕ so2k flavor symmetry. Then, there exist

Higgs branch renormalization group flows to new interacting fixed points, triggered by giving nilpotent

vacuum expectation values to the moment map of each of the flavor symmetry factors. Let us assume that

N is large enough such that the nilpotent Higgsing leads to an interacting 6d SCFT. Then, we can determine

3 The Higgs branch of this SCFT has been studied from the perspective of magnetic quivers [45–48]. Aspects of the Higgs

branch of minimal (so2k, so2k) conformal matter for some k ≥ 5 have also been explored from a conformal bootstrap approach

in [49].
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the tensor branch configuration of the 6d (1, 0) SCFT at the end of the RG-flow from the pair of nilpotent

orbits that we use to Higgs [50–54]. Each tensor branch configuration contains compositing theories of the

form
spq

1 . (II.10)

In each case of compositions with equation (II.10), it is necessary to determine whether there is a distinction

if one composites with

sp+
q

1 or
sp−

q

1 . (II.11)

Nilpotent orbits of so2k are classified by integer partitions of 2k, which denote the decomposition of the

vector representation under the corresponding embedding of su2. Since the vector representation is real, not

every partition of 2k is allowed: the even parts must appear with even multiplicity, yielding a D-partition.

Furthermore, each very even D-partition – a D-partition with only even parts – corresponds to two distinct

nilpotent orbits, which we refer to as the redI and blueII orbits.
4 The tensor branch description after Higgsing

depends only on the pair of D-partitions, and thus one concludes that the tensor branch descriptions for the

Higgsings by (redI , redI) and (redI ,blueII) are the same.5,6

However, we find that while the tensor branch descriptions appear the same, the different Higgsings actually

lead to theories with a different Higgs branch operator spectrum, and thus do correspond to two distinct 6d

(1, 0) SCFTs. We see precisely for those Higgsings that the distinction between compositing with
sp+

q

1 versus
sp−

q

1 is important.

In six dimensions, an spq gauge algebra a priori is required to be accompanied by a choice of discrete theta-

angle, as π5(spq) = Z2. However, if there exists n hypermultiplets in the fundamental representation of spq,

then the outer-automorphism of the SO(2n) classical flavor symmetry rotating the hypermultiplets flips the

θ-angle: 0 ↔ π. This implies that the θ-angle is rarely physically relevant [59, 60]. The outer-automorphism

also swaps the spinor and conjugate spinor representations, so it is clear that the distinction between sp±q is

related to the distinction between the θ-angles. Exactly as for the sp±q , all combinations of θ-angles in the

quiver that are related by outer-automorphisms of the special orthogonal factors are physically equivalent.

In [59], the spectrum of instanton strings for an spq gauge algebra next to an su2q+8 gauge algebra was

analyzed; there it was found that the two inequivalent embeddings of su2q+8 inside of so4q+16 lead to distinct

string-like excitations. These two embeddings are again related to the choice of θ-angle for the spq gauge

algebra. While we observe the distinction between the theories by studying high-dimension Higgs branch

operators, it would be interesting to explore the difference between the spectra of instanton strings for the

(redI , redI) and (redI ,blueII) Higgsings.

III. VERY EVEN HIGGSING IN 6D VIA EXAMPLES

In this section, we consider explicit examples of the 6d SCFTs that are obtained from rank N (so4k, so4k)

conformal matter Higgsed on the left and the right by nilpotent orbits associated to very even D-partitions.

4 See e.g. [14] or the standard reference [55] for further details on nilpotent orbits. [55] uses the subscripts “I” and “II” to

distinguish the two nilpotent orbits corresponding to a very even D-partition; [14] uses the colors red and blue to distinguish

them. Here, in a somewhat redundant notation, we will use both.
5 There are examples in [54], where N is sufficiently small, such that the (redI , redI) and (redI , blueII) pairs of nilpotent

Higgsings lead to distinct tensor branch descriptions. Such cases are exceptional.
6 While the tensor branch descriptions may be identical, although it has not been found a way to see the Higgs branch operators,

one may approach with the reflection of the nilpotent Higgsing in the singular geometry, corresponding to the origin of the

tensor branch where all of the compact curves are shrunk to zero-volume, from T-brane dynamics [56–58].
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In the examples that we study here, we consider Higgsing both so4k symmetries by nilpotent orbits associated

to same very even D-partition. For the purposes of the examples in this section, we focus on the D-partitions

[(2k − 2ℓ)2, 22ℓ] , (III.1)

though it is straightforward to generalize this analysis to any arbitrary pair of very even D-partitions. Each

such D-partition is associated to two distinct nilpotent orbits of so4k. As discussed, we distinguish these two

orbits by coloring the D-partition red or blue and adding a subscript “I” or “II”.

We give several examples to demonstrate how seemingly looking identical 6d SCFTs with identical flavor

symmetry algebras are distinct and how it can be seen that they differ in their Higgs branch spectrum. The

cases for the Higgsing according to equation (III.1) where ℓ = 1 and ℓ = 2 are rather special, and we discuss

them separately. Similarly, special care must be taken when g = so8, which we study first.

A. (so8, so8) with 2× [24]

For our first example, we take rank N (so8, so8) conformal matter. We consider Higgsing the so8 ⊕ so8
flavor symmetry by the pairs of nilpotent orbits ([24]I , [2

4]I) and ([24]I , [2
4]II) and contrast the two resulting

theories. The original conformal matter theory corresponds to the tensor branch description

1
so8

4 1
so8

4 1 · · ·
so8

4 1⏞ ⏟⏟ ⏞
N−3 (−4)-curves

so8

4 1 , (III.2)

and we assume that N ≥ 3. According to [51], the tensor branch description of the SCFT obtained after the

nilpotent Higgsing we are considering is

so7

3
[sp2]

1
so8

4 1 · · ·
so8

4 1⏞ ⏟⏟ ⏞
N−3 (−4)-curves

so7

3
[sp2]

. (III.3)

The tensor branch description appears to be the same for both the pairs ([24]I , [2
4]I) and ([24]I , [2

4]II) for

the nilpotent Higgsing. That, however, is incorrect; the tensor branch description in equation (III.3) is in

fact ambiguous and the two possibilities correspond to distinct SCFTs. There exists two avatars of the

E-string, which have the geometric description
sp±

0

1 , corresponding to the Higgs branch chiral ring possessing

a generator in the positive or negative chirality spinor representation of the so16 flavor symmetry.7

We begin by studying the special case where N = 4, in which case the tensor branch configuration is

so7

3
[sp2]

sp±
0

1
so8

4
sp±

0

1
so7

3
[sp2]

. (III.4)

Let µ±
1 and µ±

2 denote the Higgs branch chiral ring generators of the two E-strings, in either the positive or

negative chirality spin representations. We determine the number of gauge singlets appearing in the tensor

product of these generators

µ±
1 ⊗ µ±

2 , (III.5)

where the tensor product is taken over the common so8 gauged subalgebra. One finds that

µ+
1 ⊗ µ+

2 = µ−
1 ⊗ µ−

2 ⊃ (1,1,1) ,

µ+
1 ⊗ µ−

2 = µ−
1 ⊗ µ+

2 ̸⊃ (1,1,1) .
(III.6)

7 The spinor generator for the E-string has ∆ = 2, and thus it combines with the moment map operator to trigger an enhance-

ment of the flavor symmetry so16 → e8.
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The Higgs branch generator in the spinor representation has conformal dimension ∆ = 2, and thus we see

that, depending on the combination of signs in equation (III.4), the SCFT may or may not have an additional

Higgs branch generator at ∆ = 4. Based on the comparison to class S, discussed in Section IV, we associate

the pairs of nilpotent orbits to tensor branch descriptions as follows:

([24]I , [2
4]I) :

so7

3
[sp2]

sp+
0

1
so8

4
sp+

0

1
so7

3
[sp2]

,

([24]I , [2
4]II) :

so7

3
[sp2]

sp+
0

1
so8

4
sp−

0

1
so7

3
[sp2]

.

(III.7)

The generalization of this analysis to N > 4 is now clear. In the tensor branch configuration in equation

(III.3), there are N − 2 E-strings acting as compositing theories, and thus there are N − 2 Higgs branch

spinors µ±
i . We must consider the gauge singlets that appear in

µ±
1 ⊗ · · · ⊗ µ±

N−2 , (III.8)

where, again, the tensor product means that we take the tensor product of the common so8 algebras after

gauging. We find two possible options

µ+
1 ⊗ µ+

2 ⊗ · · · ⊗ µ+
N−3 ⊗ µ+

N−2 ⊃ (1,1, · · ·,1) , (III.9a)

µ+
1 ⊗ µ+

2 ⊗ · · · ⊗ µ+
N−3 ⊗ µ−

N−2 ̸⊃ (1,1, · · ·,1) . (III.9b)

Of course, we might expect that each of the 2N−2 combinations of signs corresponds to a different theory,

however, this would represent a dramatic over-counting. Inside of the tensor branch description in equation

(III.3), we can act by an outer-automorphism of any of the so8 gauge algebras, and this has the effect of

flipping the signs on the two (−1)-curves adjacent to that gauge algebra; as an outer-automorphism, this

manifestly does not change the physical theory. We choose to use the convention that all except the left-most

and right-most (−1)-curves have µ+; this can always be attained via a sequence of outer-automorphisms

of the so8 gauge algebras. In this way, we can think of the two very even nilpotent orbits as Higgsing the

conformal matter theory in the following, distinct, ways:

[24]I :
sp0

1
so8

4
sp0

1
so8

4
sp0

1 · · · →
so7

3
sp+

0

1
so8

4
sp+

0

1 · · · ,

[24]II :
sp0

1
so8

4
sp0

1
so8

4
sp0

1 · · · →
so7

3
sp−

0

1
so8

4
sp+

0

1 · · · .
(III.10)

With this convention, it is easy to see that ([24]I , [2
4]I) and ([24]II , [2

4]II) give rise to the same theory

after successive actions of the so8 outer-automorphisms. Similarly, for all of the examples in this paper,

outer-automorphisms of the so2ℓ gauge algebras on the (−4)-curves can be used to show that one can always

transform the combinations of signs on the compositing theories to (+,+, · · · ,+,+) or (+,+, · · · ,+,−).

Thus, due to the two distinct combinations of signs giving rise to different numbers of gauge singlets as in

equation (III.9), we expect that the tensor branch geometry in equation (III.3) corresponds to two distinct 6d

SCFTs, which differ in their Higgs branch operator content at ∆ = 2(N − 2). Again, based on the matching

with class S in Section IV, we associate the all plus SCFT to the pair of nilpotent Higgsings ([24]I , [2
4]I),

and with one minus to ([24]I , [2
4]II).

Finally, we can consider the special case where N = 3. The tensor branch description of the Higgsed theory

is then

so7

3 1
so7

3 . (III.11)

This theory is constructed by starting with two copies of the theory

so7

3 , (III.12)
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and compositing together by gauging an so7⊕so7 subalgebra of the e8 flavor symmetry of the E-string. There

are two inequivalent embeddings of so7 ⊕ so7 inside of e8, specified by their distinct branching rules

e8 → so7 ⊕ so7

248 → (21,1)⊕ (1,21)⊕ (7,1)⊕ (1,7)⊕ (8,1)⊕ (1,8) (III.13a)

⊕ (7,8)⊕ (8,7)⊕ (8,8) ,

e8 → so7 ⊕ so7 ⊕ u1

248 → (21,1)0 ⊕ (1,21)0 ⊕ (7,1)2 ⊕ (7,1)−2 ⊕ (1,7)2 ⊕ (1,7)−2 ⊕ (7,7)0 (III.13b)

⊕ (1,1)0 ⊕ (8,8)1 ⊕ (8,8)−1 .

We can see that the decomposition of the moment map of the E-string contains an so7 ⊕ so7 gauge singlet

in the latter branching rule given by equation (III.13b), whereas there is none in the former branching rule

given in equation (III.13a). As this gauge singlet appears with conformal dimension ∆ = 2, it corresponds

to a moment map operator in the gauged theory; thus, the theory with the gauge singlet has an additional

u1 flavor symmetry. This matches with the branching rules depicted above.

The examples in this subsection can be summarized as follows. Nilpotent Higgsing of the so8 ⊕ so8 flavor

symmetry of the rank N ≥ 3 (so8, so8) conformal matter theory by the pairs of nilpotent orbits ([24]I , [2
4]I)

or ([24]I , [2
4]II) leads to two distinct 6d SCFTs. These two SCFTs differ in their Higgs branch operator

spectrum starting at conformal dimension

∆ = 2(N − 2) . (III.14)

B. (so4k, so4k) with 2× [(2k − 2)2, 22]

We now consider the tensor branch configurations corresponding to Higgsing both sides of rank N conformal

matter of type (so4k, so4k) by one of the nilpotent orbits associated to the very even D-partition [(2k−2)2, 22].

We assume that k > 2, as the k = 2 case has been studied in Section IIIA. The tensor branch description of

these theories is

so7

3
[sp1]

sp1

1
so12

4
sp3

1 · · ·
sp2k−5

1⏞ ⏟⏟ ⏞
k−3 (−4)-curves

(N+1)−2(k−1) (−4)-curves⏟ ⏞⏞ ⏟
so4k

4
[sp1]

sp2k−4

1
so4k

4
sp2k−4

1 · · ·
so4k

4
sp2k−4

1
so4k

4
[sp1]

sp2k−5

1 · · ·
sp1

1⏞ ⏟⏟ ⏞
k−3 (−4)-curves

so7

3
[sp1]

. (III.15)

We require that N ≥ 2k − 2 to prevent the two nilpotent Higgsings from becoming correlated across the

tensor branch. In this quiver there are N − 2 curves of self-intersection (−1), each of which composites

between the adjacent curves. Each (−1)-curve theory contains two Higgs branch operators: a moment map

operator in the adjoint representation of the flavor symmetry, and a spinor generator in either the S+ or S−

representation of the flavor symmetry, as discussed around equation (II.9). We label the spinor generators

of each of the (−1)-curve theories as µ±
1 , µ

±
2 , · · · , µ

±
N−2. We wish to count the gauge singlets that appear in

the tensor product of these spinorial generators:

µ±
1 ⊗ µ±

2 ⊗ · · · ⊗ µ±
N−3 ⊗ µ±

N−2 . (III.16)

We can see that the decomposition of the spinor representations of the so20 flavor symmetries of the
sp1

1

compositing theories are

so20 → so7 ⊕ so12 , (III.17a)

S+ → (1, S+)⊕ · · · , (III.17b)



11

S− → (1, S−)⊕ · · · . (III.17c)

The · · · represent terms that are not singlets under the so7, and thus we can see that there are gauge singlets

in the tensor product in equation (III.16). Depending on the combinations of signs, we find that there are

two possibilities for the number of gauge singlets appearing inside of the tensor product of the spinors in

equation (III.16):

µ+
1 ⊗ µ+

2 ⊗ · · · ⊗ µ+
N−3 ⊗ µ+

N−2 ⊃ (1,1, · · · ,1) , (III.18a)

µ+
1 ⊗ µ+

2 ⊗ · · · ⊗ µ+
N−3 ⊗ µ−

N−2 ̸⊃ (1,1, · · · ,1) . (III.18b)

This indicates that the tensor branch geometry given in equation (III.15) corresponds to two 6d SCFTs that

differ at conformal dimension

2

2k−5∑︂
q=1
q odd

(q + 2) + (N − 2k + 2)(2k − 2) = 2N(k − 1)− 2(k − 1)2 − 2 , (III.19)

in the spectrum of Higgs branch operators.

C. (so4k, so4k) with 2× [(2k − 4)2, 24]

We now turn to the case where ℓ = 2 in the D-partition in equation (III.1), and furthermore we take k ≥ 4.8

The tensor branch configuration describing the 6d SCFT(s) obtained by the nilpotent Higgsing of rank N

(so4k, so4k) conformal matter by nilpotent orbits associated to the very even D-partition [(2k − 4)2, 24] is

so12

3
[sp2]

sp3

1
so16

4
sp5

1 · · ·
sp2k−5

1⏞ ⏟⏟ ⏞
k−4 (−4)-curves

(N+1)−2(k−2) (−4)-curves⏟ ⏞⏞ ⏟
so4k

4
[sp1]

sp2k−4

1
so4k

4
sp2k−4

1 · · ·
so4k

4
sp2k−4

1
so4k

4
[sp1]

sp2k−5

1 · · ·
sp3

1⏞ ⏟⏟ ⏞
k−4 (−4)-curves

so12

3
[sp2]

. (III.20)

Again, we consider the gauge singlets that appear in the tensor products of the µ±
i :

µ±
1 ⊗ µ±

2 ⊗ · · · ⊗ µ±
N−3 ⊗ µ±

N−2 . (III.21)

Of course, we can see that this would never lead to a singlet under the so12 gauge algebras on the left

and the right. However, anomaly cancellation requires that an so12 algebra on a (−3)-curve includes the

presence of a half-hypermultiplet in one of the spin representations of the so12. We can consider two a priori

distinct SCFTs, corresponding to
so+

12

3 and
so−

12

3 , where the sign denotes the chirality of the spinor belonging

to the half-hypermultiplet. Similarly to the
sp±

q

1 theories, compositing together with different signs can lead

to different SCFTs.

We refer to the scalars inside of these two half-hypermultiplets as µ±
L and µ±

R, respectively, and then we

consider gauge singlets appearing in the decomposition

µ±
L ⊗ µ±

1 ⊗ µ±
2 ⊗ · · · ⊗ µ±

N−3 ⊗ µ±
N−2 ⊗ µ±

R . (III.22)

A priori, there is no expectation that the construction of gauge invariant operators involving hypermultiplets

on the tensor branch leads to operators of the 6d SCFT at the origin. In the context of 6d SCFTs however,

8 The case of k = 3 can also be studied, but requires some modification to the exposition. We leave this as a straightforward

exercise for the interested reader.
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this is not without precedent; for example, the “end-to-end” operators of [61, 62], are operators of 6d (1, 0)

SCFTs obtained by taking gauge singlet combinations of hypermultiplets along the 6d quiver. Furthermore,

we see that this analysis matches the alternative derivation via the class S construction in Section IV, and

thus we have strong evidence that these operators do indeed ascend to operators of the 6d SCFT.

It is easy to see that when all of the signs in equation (III.22) are positive one obtains a gauge singlet inside

of this tensor product, and when exactly one of the signs is negative one does not obtain any gauge singlet.9

As such, we expect that the two different combinations of signs lead to distinct 6d SCFTs, with different

spectra of states on their Higgs branches. Using the known conformal dimensions of the µ±
i and µ±

L,R, the

difference in Higgs branch operators occurs at conformal dimension

2 + 2

2k−5∑︂
q=3
q odd

(q + 2) + (N − 2k + 4)(2k − 2) = 2kN − 2N + 8k − 12− 2k2 . (III.23)

D. (so4k, so4k) with 2× [(2k − 2ℓ)2, 22ℓ]

Finally, we consider the cases where ℓ = 3, · · · , k − 1, which requires that we have k ≥ 4. The tensor branch

configuration for rank N (so4k, so4k) conformal matter Higgsed on the left and the right by nilpotent orbits

corresponding to such a D-partition [(2k − 2ℓ)2, 22ℓ] is

spℓ−3

1

k−ℓ−1 (−4)-curves⏟ ⏞⏞ ⏟
so4ℓ+4

4
[spℓ]

sp2ℓ−1

1
so4ℓ+8

4
sp2ℓ+1

1 · · ·
sp2k−5

1

(N+1)−2(k−ℓ) (−4)-curves⏟ ⏞⏞ ⏟
so4k
4

[sp1]

sp2k−4

1
so4k
4

sp2k−4

1 · · ·
so4k
4

sp2k−4

1
so4k
4

[sp1]

k−ℓ−1 (−4)-curves⏟ ⏞⏞ ⏟
sp2k−5

1 · · ·
sp2ℓ−1

1
so4ℓ+4

4
[spℓ]

spℓ−3

1⏞ ⏟⏟ ⏞
N−1 (−4)-curves

. (III.24)

We can see that it is necessary to have N ≥ 2(k− ℓ) to prevent the effects of the nilpotent Higgsing on each

side of the quiver from correlating with each other. The flavor algebra is

f =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
sp2k if ℓ = k − 1 , N = 2(k − ℓ) ,

sp⊕2
ℓ ⊕ sp2 if N = 2(k − ℓ) ,

sp⊕2
k if ℓ = k − 1 ,

sp⊕2
ℓ ⊕ sp⊕2

1 otherwise.

(III.25)

Before turning our hand to the general case, let us analyze the case with the fewest number of curves. We

take

ℓ = k − 1 and N = 2(k − ℓ) = 2 . (III.26)

In this case, the Higgsing acts as follows

sp2k−4

1
[so4k]

so4k

4
sp2k−4

1
[so4k]

([22k],[22k])−−−−−−−−−−−→
spk−4

1
so4k

4
[sp2k]

spk−4

1 . (III.27)

We expect that when the two compositing theories corresponding to the (−1)-curves have different chirality

spinors as the generators of their chiral ring, then we will have distinct 6d SCFTs on the right-hand side.

We first analyze some of the Higgs branch operator content of

sp+
k−4

1
so4k

4
[sp2k]

sp+
k−4

1 . (III.28)

9 Flipping any two signs leaves the number of gauge singlets invariant, as discussed in Section IIIA, so there are only these two

distinct options.
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We have four generators of the Higgs branch chiral ring before compositing: the moment maps µL and µR

and the spinors µ+
L and µ+

R. In particular, both µ+
L and µ+

R transform in the S+ representation of their so4k
flavor symmetries, and after gauging we find that

µ+
L ⊗ µ+

R ⊃ 1 , (III.29)

where we write only the so4k singlet representations appearing in the decomposition. If we were to instead

consider the Higgs branch of

sp+
k−4

1
so4k

4
[sp2k]

sp−
k−4

1 , (III.30)

then we would have µ−
R instead of µ+

R, and the tensor product of the two different spin representations of

so4k does not yield a singlet:

µ+
L ⊗ µ−

R ̸⊃ 1 . (III.31)

As the spinor generators have conformal dimension ∆ = k− 2 then the two theories associated to the tensor

branch descriptions appearing in equations (III.28) and (III.30) are distinct theories, and they begin to differ

in their Higgs branch spectrum at ∆ = 2k − 4.

It is now straightforward to consider the general tensor branch description in equation (III.24). We can see

that if all of the N compositing theories have a positive chirality spinor, then there will be a gauge singlet in

the N -fold tensor product, whereas if exactly one of the compositing theories has a negative chirality spinor

then that gauge singlet is not present.10 As such, we expect these two 6d SCFTs to differ in the Higgs branch

spectra at conformal dimension

2(ℓ− 1) + 2

2k−5∑︂
q=2ℓ−1
q odd

(q + 2) + (N − 2k + 2ℓ)(2k − 2) = 2N(k − 1)− 2ℓ− 2(k − ℓ)2 . (III.32)

Due to the duality of class S when compactified on a torus, as discussed in Section IV, we refer to the theory

with the extra gauge singlet as the Higgsing by the nilpotent orbits ([(2k − 2ℓ)2, 22ℓ]I , [(2k − 2ℓ)2, 22ℓ]I), and

that without as the Higgsing by the nilpotent orbits ([(2k − 2ℓ)2, 22ℓ]I , [(2k − 2ℓ)2, 22ℓ]II).

We now consider several special cases that will be of particular relevance in Section IV. First, take ℓ = k− 1,

and thus the very even D-partitions that we consider are of the form [22k]. We find that the ([22k]I , [2
2k]I)

theory has a Higgs branch operator of dimension

([22k]I , [2
2k]I) : ∆ = 2(N − 1)(k − 1)− 2 , (III.33)

that is absent from the ([22k]I , [2
2k]II) theory. Similarly, when ℓ = k− 2 we see an operator belonging to the

Higgs branch chiral ring at

([42, 22k−4]I , [4
2, 22k−4]I) : ∆ = 2(N − 1)(k − 1)− 6 , (III.34)

in the ([42, 22k−4]I , [4
2, 22k−4]I) theory, that is not present in the ([42, 22k−4]I , [4

2, 22k−4]II) theory.

More generally, if we Higgs on the left with D-partition [(2k − 2ℓ)2, 22ℓ] and on the right with D-partition

[(2k − 2ℓ′)2, 22ℓ
′
], assuming that ℓ, ℓ′ ≥ 3 and N ≥ 2k − ℓ − ℓ′, we find that there is a flavor singlet Higgs

branch operator in the ([(2k − 2ℓ)2, 22ℓ]I , [(2k − 2ℓ′)2, 22ℓ
′
]I) theory with conformal dimension

([(2k − 2ℓ)2, 22ℓ]I , [(2k − 2ℓ′)2, 22ℓ
′
]I) : ∆ = 2N(k − 1)− (k − ℓ)2 − (k − ℓ′)2 − ℓ− ℓ′ , (III.35)

which is absent in the ([(2k − 2ℓ)2, 22ℓ]I , [(2k − 2ℓ′)2, 22ℓ
′
]II) theory. We can see that equation (III.35) in fact

holds more generally, when ℓ, ℓ′ ≥ 1, by comparing to the results found in Sections III B and III C. In fact,

by generalizing further, we can see that equation (III.35) holds for ℓ, ℓ′ ≥ 0.

10 Again, flipping any pair of signs does not change the gauge singlet from what is written here.
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E. A non-example: the uniqueness of conformal matter

We have now demonstrated in a variety of examples that the Higgs branch depends on whether one composites

together the (−4)- or (−3)-curves with the positive or negative chirality versions of minimal (D,D) conformal

matter. We have observed that Higgsing by the two distinct nilpotent orbits belonging to the same very even

D-partition leads to distinct 6d SCFTs. In this way, we find that the Higgs branch renormalization group

flows recreate the double Hasse diagram formed by pairs of nilpotent orbits of so2k. At this point, the reader

may be wondering: why is it that only the tensor branch configurations associated to nilpotent Higgsing by

very even D-partitions have two avatars? Any nilpotent Higgsing of rank N (so2k, so2k) conformal matter

leads to a tensor branch which contains minimal (D,D) conformal matter as a compositing theory, and thus

one may expect that in all cases there are distinct theories depending on whether one chooses the compositing

theories to have the positive or negative chirality spinors. In this section, we demonstrate in an example

that these a priori distinct theories usually give rise to the same 6d SCFT. Consider the example of rank 2

(so4k, so4k) conformal matter, for which one can write down the following two tensor branch descriptions:

sp+
2k−4

1
[so4k]

so4k

4
sp+

2k−4

1
[so4k]

and
sp+

2k−4

1
[so4k]

so4k

4
sp−

2k−4

1
[so4k]

. (III.36)

Once we understanding the branching rule

so8k → so4k ⊕ so4k

S+ → (S+, S+)⊕ (S−, S−)

S− → (S+, S−)⊕ (S−, S+) ,

(III.37)

it is straightforward to determine that there are the following gauge singlet states, charged under the so4k ⊕
so4k flavor symmetry, in each respective theory. In the ++ theory we have:

µ+
L ⊗ µ+

R = (S+, S+)⊕ (S−, S−) , (III.38)

whereas in the +− theory there is instead:

µ+
L ⊗ µ−

R = (S+, S−)⊕ (S−, S+) . (III.39)

Thus, we see that there are the same number of gauge singlets appearing inside of µ±
L ⊗µ±

R, and furthermore

the difference between the representations of the Higgs branch operators under the flavor symmetry can be

compensated by an outer automorphism of one of the so4k factors. It is then clear that the two putative

theories appearing in equation (III.36) are, in fact, equivalent. For the class of 6d (1, 0) SCFTs obtained via

nilpotent Higgsing of rank N (D,D) conformal matter, a general analysis, involving outer-automorphisms of

the gauge and flavor algebras similar to the discussion in Section IIIA, reveals that there is only this subtle

distinction in the Higgs branch spectrum when the tensor branch description is that associated to nilpotent

Higgsing of the so4k ⊕ so4k flavor symmetry by pairs of nilpotent orbits associated to very even D-partitions.

IV. 6D (1, 0) ON T 2 AND CLASS S

At this point, the reader may be wary. We have argued for the existence of Higgs branch operators of 6d (1, 0)

SCFTs by studying gauge invariant combinations of Higgs branch operators on the partial tensor branch.

However, there is no guarantee that the operators thus-constructed actually parametrize the Higgs branch

of the SCFT at the origin of the tensor branch. Indeed, the analogous construction in 4d N = 2 would

fail rather badly; when one moves out on the Coulomb branch (the analogue of the tensor branch in 4d),

generically the entire Higgs branch is lifted.
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Fortunately, for the classes of 6d (1, 0) SCFTs that we are considering, there is an alternative description

of the Higgs branch at the superconformal fixed point. It is isomorphic to the Higgs branch of a certain

4d N = 2 SCFT of class S. In the latter case, there is an independent computation of the Hilbert series

of the Higgs branch, from which we can confirm our conjecture that these 6d (1, 0) SCFTs are distinct,

despite sharing the same tensor branch description, and furthermore, vindicates our method for extracting

the spectrum of Higgs branch operators from the tensor branch configuration.

To verify that our tensor branch analysis is really capturing differences in the SCFTs at the origin of the

tensor branch, we use a duality to the class S construction [3, 4]. It is known that rank N (g, g) conformal

matter compactified on a T 2 gives rise to the same 4d N = 2 SCFT as the compactification of the 6d (2, 0)

SCFT of type g on a sphere with two maximal punctures and N simple punctures [15–17]. In the rank one

case, this was extended beyond maximal punctures in [18]. We write this equivalence as

Tg,N{O1, O2}⟨T 2⟩ = Sg⟨S2⟩{O1, O2, O
⊕N
simple} . (IV.1)

Here, O1 and O2 are nilpotent orbits in g; on the left they Higgs the g ⊕ g flavor symmetry in 6d, whereas

in the class S description on the right they correspond to partial closure of the two full punctures. Due to

the torus compactification, the Higgs branch of this 4d N = 2 SCFT is identical to the Higgs branch of the

original 6d (1, 0) theory.

The Hall–Littlewood limit of the superconformal index [63–67] can be obtained from the class S description.

It is a formal power series of the form

IHL(τ) = TrHHLτ
2(∆−R)(−1)

F
, (IV.2)

where HHL is the subspace of local operators satisfying ∆ − 2R − r = j1 = 0; here ∆ is the conformal

dimension, R is the charge under the SU(2) R-symmetry, and r the charge under the U(1) R-symmetry.

The index counts (with sign) operators in short multiplets of the superconformal symmetry, B̂R and DR(0,j2)

(in the notation of Dolan and Osborn [68]). It is generally believed [63, 69, 70] that there are no DR(0,j2)

multiplets in genus-zero theories of class S.11 In which case, the Hall–Littlewood index coincides with the

Hilbert series of the Higgs branch of the class S theory, with each B̂R operator contributing τ2R to the

index. The refined version of the index, IHL(a; τ) is defined similarly but with the coefficient of τ2R being

the character χ(a)R of the flavor symmetry representation under which the B̂R operators transform, rather

than merely the dimension.

For an (N + 2)-punctured sphere, the Hall–Littlewood index takes the form [63, 67]

IHL(a; τ) =
∑︂
Λ

∏︁N+2
i=1 KHL(ai)PΛ(ai)

(KHL({τ})PΛ({τ}))N
, (IV.3)

where we describe each term contributing to this expression below.

1. The sum is over finite dimensional irreducible representations Λ of g. Here, we are interested in g = so4k
and we denote Λ by its Dynkin labels

Λ = (n1, n2, . . . , nn−2;nS+ , nS−) , (IV.4)

where the last two Dynkin labels are those associated to the two irreducible spinor representations.

The outer-automorphism of so4k acts on the representation ring by exchanging nS+ ↔ nS− .

11 Exceptions to this conjecture seem to occur for class S on spheres with at least four twisted-punctures [71]. As we do not

consider such configurations in this paper, these exceptions are not relevant.
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2. Flavor fugacities ai associated to the ith puncture are determined by decomposition of the fundamental

representation of g as a representation of ρi(su2) × fi. Here, ρi : su2 → so4k describes the embedding

associated to the nilpotent orbit of the ith puncture; the fi is the remaining flavor symmetry algebra.

Furthermore, {τ} is the fugacity for the trivial puncture (i.e. the regular embedding of su2 ↪→ so4k).

3. The K-factor associated to the ith puncture is determined by the restriction of the adjoint representation

adg of g to ρi(su2)× fi as

adg =
⨁︂
j

Vj ⊗Rj,i , (IV.5)

where Vj is the (2j + 1)-dimensional irreducible representation of su2 and Rj,i is the corresponding

representation of fi, possibly reducible. Upon this decomposition, a K-factor for the ith puncture is

KHL(ai) = (1− τ2)
rank(g)

2 PE

⎡⎣∑︂
j

τ2(j+1)χfi
Rj,i

(ai)

⎤⎦ , (IV.6)

where PE[· · · ] denotes the plethystic exponential and χfi
Rj,i

(ai) is the character of the flavor algebra fi
in the relevant representation.

4. The PΛ are Hall–Littlewood polynomials for the representation Λ, which are given by

PΛ(ai) =
1

WΛ(τ)

∑︂
w∈W

ew(Λ)
∏︂

α∈Φ+

1− τ2e−w(α)

1− e−w(α)
, (IV.7)

WΛ(τ) =

√︄ ∑︂
w∈StabW (Λ)

τ2l(w) , (IV.8)

where Φ+ are the positive roots of g, W is the Weyl group of g, and flavor fugacities {ai} can be

assigned once we choose a basis for the weight lattice for g.

5. The unrefined index is recovered in the limit of setting the fugacities ai → 1.

The simple puncture in the class S theory of type so4k corresponds to the D-partition [4k − 3, 3]. For the

punctures O1, O2, we will take two very even D-partitions. It is a fundamental fact of the representation

theory of so4k that a very-even D-partition, O, gives rise to two nilpotent orbits, OI and OII . The two orbits

are exchanged by the outer-automorphism of so4k, which exchanges S+ ↔ S−.
The spinor representations S+ and S− decompose differently under the corresponding embeddings of su2⊕ f.

• Under the embedding corresponding to OI :

– For k even, S+ decomposes as half-integer-spin representations of su2 tensored with pseudoreal

representations of f, while S− decomposes as a direct sum of integer-spin representations of su2
tensored with real representations of f.

– For k odd, S+ decomposes as half-integer-spin representations of su2 tensored with real represen-

tations of f, while S− decomposes as a direct sum of integer-spin representations of su2 tensored

with pseudoreal representations of f.

• Under the embedding corresponding to OII , the decompositions of S+ and S− are reversed.

By contrast, representations of the form Λ = (n1, n2, . . . , n2k−2; 0, 0) decompose identically under the em-

beddings corresponding to OI and OII .
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The outer-automorphism of so4k is clearly a symmetry of the conformal field theory. In the index in equation

(IV.3), it exchanges Λ+ with Λ−, that are given by

Λ+ = (n1, n2, . . . , n2k−2;nS+ , nS−), Λ− = (n1, n2, . . . , n2k−2;nS− , nS+); (IV.9)

i.e. the representations with the final two Dynkin labels interchanged. This obviously leaves the sum un-

changed. In particular, this means that the theory with two very even punctures OI , O′
I is isomorphic to

the theory with OII , O′
II . However, they are not necessarily (and, in general, are not) isomorphic to the

theory with OI , O′
II . At the level of the index in equation (IV.3), however, the difference is invisible up to

the order in the τ -expansion at which the representations Λ = (0, 0, . . . , 0; 1, 0) and/or (0, 0, . . . , 0; 0, 1) first

contribute to the index.

There is a simple formula [13] for the order at which each representation Λ first contributes to the index

written in equation (IV.3). Let

w(O) = (w1, w2, · · · , w2k−2;wS+ , wS−) (IV.10)

be the weighted Dynkin diagram corresponding to the nilpotent orbit O.12 The entries of w(O) are either

0, 1 or 2. For the simple puncture, we have

w([4k − 3, 3]) = (2, 2, . . . , 2, 0; 2, 2) , (IV.11)

and the weighted Dynkin diagram corresponding to the trivial puncture (O = Oregular) is

w0 = (2, 2, . . . , 2; 2, 2) . (IV.12)

Then, the leading contribution to the index from the representation Λ is the contribution from the characters

χRΛ(a)τ
nΛ , where

nΛ = Λ · C−1 ·
(︂
Nw0 −

N+2∑︂
i=1

w(Oi)
)︂
, (IV.13)

and C is the Cartan matrix. The character χRΛ
is obtained as follows. First, for each puncture Oi, we can

decompose the representation Λ of so4k under the corresponding embedding ρi(su2)× fi as

Λ =
⨁︂
j

Vj ⊗RΛ j,i . (IV.14)

Next, we let ji be the largest value of j that occurs in the decomposition in equation (IV.14) at the ith

puncture. Then,

RΛ =

N+2⨂︂
i=1

RΛ ji,i . (IV.15)

We briefly highlight this with an example. Consider g = so8 with three punctures: [24]I , [2
4]I , and [5, 3]. For

Λ = 8v we have the following decompositions:

[24]I :

{︃
so8 → su2 ⊕ sp2 ,

8v → (2,4) ,

[5, 3] :

{︃
so8 → su2 ,

8v → 5⊕ 3 .

(IV.16)

12 See page 83 of [55] for the determination of the weighted Dynkin diagram from the D-partition.
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As such, we can see that RΛ=8v = (4,4) under the sp2 ⊕ sp2 flavor symmetry from the two [24]I punctures.

Since we take N of the punctures to be simple, [4k − 3, 3], equation (IV.13) reduces to

nΛ = Λ · C−1 ·
(︂
(0, 0, . . . , 0, 2N ; 0, 0)− w(O1)− w(O2)

)︂
. (IV.17)

In the examples that we wish to consider, we have

w
(︁
[22k]I

)︁
=

(︁
0, 0, . . . , 0; (1 + (−1)k), (1− (−1)k)

)︁
,

w
(︁
[22k]II

)︁
=

(︁
0, 0, . . . , 0; (1− (−1)k), (1 + (−1)k)

)︁
,

w
(︁
[42, 22k−4]I

)︁
=

(︁
0, 2, 0, . . . , 0; (1 + (−1)k), (1− (−1)k)

)︁
,

w
(︁
[42, 22k−4]II

)︁
=

(︁
0, 2, 0, . . . , 0; (1− (−1)k), (1 + (−1)k)

)︁
,

w
(︁
[(2k − 2l)2, 22l]I

)︁
=

(︁
0, 2, 0, 2, . . . , 0, 2⏞ ⏟⏟ ⏞

2(k−l−1)

, 0, 0, . . . , 0⏞ ⏟⏟ ⏞
2l

; (1 + (−1)k), (1− (−1)k)
)︁
,

w
(︁
[(2k − 2l)2, 22l]II

)︁
=

(︁
0, 2, 0, 2, . . . , 0, 2⏞ ⏟⏟ ⏞

2(k−l−1)

, 0, 0, . . . , 0⏞ ⏟⏟ ⏞
2l

; (1− (−1)k), (1 + (−1)k)
)︁
.

(IV.18)

We want to extract the values of nS+ and nS− , for which we need

S+ · C−1 = 1
2 (1, 2, 3, . . . , 2k − 2; k, k − 1) ,

S− · C−1 = 1
2 (1, 2, 3, . . . , 2k − 2; k − 1, k) .

(IV.19)

Putting together equations (IV.17), (IV.18), and (IV.19), we get nS+ and nS− for any pair of punctures O1

and O2. For instance, we see that

nS+

(︁
[22k]I , [2

2k]I
)︁
= 2(k − 1)(N − 1)−

(︁
1 + (−1)k

)︁
,

nS−
(︁
[22k]I , [2

2k]I
)︁
= 2(k − 1)(N − 1)−

(︁
1− (−1)k

)︁
,

(IV.20)

whereas we get different values for the other theories:

nS+

(︁
[22k]I , [2

2k]II
)︁
= 2(k − 1)(N − 1)− 1 ,

nS−
(︁
[22k]I , [2

2k]II
)︁
= 2(k − 1)(N − 1)− 1 .

(IV.21)

Thus we find that the discrepancy between the theories Sso4k
⟨S2⟩{[22k]I , [22k]I , [4k − 3, 3]⊕N} and

Sso4k
⟨S2⟩{[22k]I , [22k]II , [4k−3, 3]⊕N} first appears at order τ2(k−1)(N−1)−2 where the representation Λ = S+

(for k even) or Λ = S− (for k odd) contributes a B̂(k−1)(N−1)−1 operator. We depict these two distinct class

S theories in terms of their N + 2 punctured spheres in Figure IV.1.

In fact, from equation (IV.15), we see that this operator is a singlet of the flavor symmetry. This is precisely

the state that was determined, in equation (III.33), to exist in the nilpotent Higgsing of the 6d rank N

(so4k, so4k) conformal matter theory by the pair of nilpotent orbits ([22k]I , [2
2k]I), and which does not exist

for the ([22k]I , [2
2k]II) Higgsing. In this way, we see that the class S analysis of the Higgs branch confirms

the conclusion of the 6d (1, 0) analysis.



19

[22k]I

[4k − 3, 3]⊕N

[22k]I

(a) Sso4k ⟨S
2⟩{[22k]I , [22k]I , [4k − 3, 3]⊕N}

[22k]I

[4k − 3, 3]⊕N

[22k]II

(b) Sso4k ⟨S
2⟩{[22k]I , [22k]II , [4k − 3, 3]⊕N}

FIG. IV.1: The (N+2)-punctured spheres associated to the class S theories where the Higgs branch operator

spectrum differs as described in equations (IV.20) and (IV.21). The former contains a B̂(k−1)(N−1)−1 operator

that the latter does not.

Applying this method to all pairs of very even D-partitions that were studied in Section III, we observe that

the 4d class S and 6d (1, 0) approaches to the Higgs branch agree, as (perhaps) expected. The most general

pair of very even D-partitions, studied at the end of Section IIID was

O = [(2k − 2ℓ)2, 22ℓ] , O′ = [(2k − 2ℓ′)2, 22ℓ
′
] . (IV.22)

Combining equations (IV.17), (IV.18), and (IV.19) we can again determine nS± for the pairs (OI , O
′
I) and

(OI , O
′
II) We find for the pairs of two reds (OI , O

′
I),

nS+

(︁
OI , O

′
I

)︁
= 2N(k − 1)− (k − ℓ)2 − (k − ℓ′)2 − ℓ− ℓ′ +

(︁
1− (−1)k

)︁
,

nS−
(︁
OI , O

′
I

)︁
= 2N(k − 1)− (k − ℓ)2 − (k − ℓ′)2 − ℓ− ℓ′ +

(︁
1 + (−1)k

)︁
,

(IV.23)

and for the pairs of a red and a blue (OI , O
′
II),

nS+

(︁
OI , O

′
II

)︁
= 2N(k − 1)− (k − ℓ)2 − (k − ℓ′)2 − ℓ− ℓ′ + 1 ,

nS−
(︁
OI , O

′
II

)︁
= 2N(k − 1)− (k − ℓ)2 − (k − ℓ′)2 − ℓ− ℓ′ + 1 .

(IV.24)

The Hall–Littlewood indices of the two theories begin to differ at order

τ2N(k−1)−(k−ℓ)2−(k−ℓ′)2−ℓ−ℓ′ , (IV.25)

where there is one additional flavor singlet Higgs branch operator in the (redI , redI) theory that is absent in

the (redI ,blueII) theory. This is identical with the result from the 6d (1, 0) tensor branch analysis as given

in equation (III.35). Using the methodologies described throughout this paper, the extension to an arbitrary

pair of very even D-partitions, both on the 6d (1, 0) and class S sides, is straightforward, though somewhat

tedious.

V. CONCLUSION

In this paper, we have demonstrated that distinct 6d (1, 0) SCFTs can share the same description of the

low-energy theory that lives at the generic point of the tensor branch. Such SCFTs differ in their spectrum

of Higgs branch operators, which we compute in two independent ways for the very even nilpotent Higgsing

of rank N (D,D) conformal matter. First, we consider the generators of the Higgs branch spectrum of

the building blocks, i.e. minimal (D,D) conformal matter, out of which the 6d SCFTs we consider are
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built; we then construct gauge-invariant operators out of these generators. Alternatively, we consider the

compactification on a torus, which preserves the Higgs branch, and compute the Higgs branch spectrum from

the dual class S description of the resulting 4d N = 2 SCFTs. Both approaches lead to identical results.

To conclude, we give several examples which demonstrate how the two possibilities for compositing via

minimal (D,D) conformal matter can lead to distinct 6d SCFTs with the same tensor branch description,

outside of the class of theories obtained via very even nilpotent Higgsing of rank N (D,D) conformal matter.

In these examples, there generally do not exist known class S duals, and thus the powerful techniques used

in this paper to verify the computation of Higgs branch operators cannot be applied. However, we seek

to emphasize that such compositing may also be ambiguous beyond minimal (D,D) conformal matter, for

example, in configurations where the compositing theory is instead
suK

1 . Further analysis is required to

determine when the tensor branches constructed via the algorithms of [19, 20] correspond to multiple 6d

(1, 0) SCFTs.

A. Flavor algebras from E-strings

Flavor symmetries in 6d (1, 0) SCFTs can arise in a variety of ways, as pointed out in, for example, [18, 72].

One particular source is the so-called “E-string flavor”, which occurs when we have a configuration of the

form

· · · g
m 1ρ

h
n · · · . (V.1)

We write a subscript ρ on the (−1)-curve to stress that compositing the (−m)- and (−n)-curves together via

an E-string involves a choice of embedding

ρ : g⊕ h → e8 . (V.2)

The non-Abelian part of the flavor algebra arising from such a compositing is

fE-string = Commutant(ρ, g⊕ h) , (V.3)

i.e. the commuting subalgebra of the gauge symmetries under the embedding ρ, which is highly dependent

on the choice of ρ. In Section IIIA, we explore the tensor branch configuration

so7

3 1ρ
so7

3 , (V.4)

and we discover that there are two inequivalent ρ, which have commutants u1 and ∅, respectively. The flavor

symmetry is an invariant of the SCFT, thus these two tensor branch configurations correspond to distinct

SCFTs, and the duality to class S verifies that both theories exist as interacting 6d (1, 0) SCFTs. Such

ambiguity in the choice of embedding is ubiquitous in the geometric constructions of [19, 20], and raises the

question of which embeddings lead to interacting SCFTs at the origin of the tensor branch. We explore an

example tensor branch configuration with such an ambiguity that appears in [72]. Consider

[so7]
su2

2 1ρ
so8

4 . (V.5)

To understand how the (−1)-curve composites between the two neighboring curves, we need to understand

embeddings

ρ : su2 ⊕ so8 ⊕ fE-string → e8 , (V.6)

where the su2 and so8 factors must have Dynkin embedding index 1 as they are gauged. For a detailed

study of the relevance of Dynkin embedding index one for F-theory compactifications see [30]. In [72], two

embeddings were pointed out, with

fE-string = su⊕3
2 and fE-string = sp2 , (V.7)
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however, in principle, there may be additional embeddings. In fact, the embedding

ρ : su2 ⊕ so8 ⊕ sp2 → e8 , (V.8)

is not appropriate in this configuration, as the Dynkin embedding index of the su2 factor is 2, not 1. This

tensor branch configuration can also be obtained from nilpotent Higgsing of rank two (e6, e6) conformal

matter:

1
[e6]

su3

3 1
e6
6 1

su3

3 1
[e6]

(2A1,D4(a1))−−−−−−−−−−−−→
su2

2
[so7]

1
so8

4 . (V.9)

Compactification of at least one of the SCFTs associated to the tensor branch configuration in equation

(V.5) then has a dual description in terms of class S of type e6 on a sphere with two simple punctures

and two punctures associated to the nilpotent orbits 2A1 and D4(a1).
13 From the class S perspective, the

Hall–Littlewood index yields

1 + 30τ2 + 64τ3 +O(τ4) , (V.10)

which demonstrates that the flavor algebra is enhanced from the manifest (so7)16 ⊕ u⊕3
1 to14

f = (so7)16 ⊕ (su2)
⊕3
24 . (V.11)

Thus, we can confidently state, via the duality to class S, that
su2

2
[so7]

1
[su⊕3

2 ]

so8

4 , (V.12)

describes the tensor branch of an interacting 6d (1, 0) SCFT, however, this does not suggest that any other

embeddings of the form in equation (V.6) do not give rise to interacting 6d SCFTs. It is an important

question for the understanding of the landscape of possible 6d (1, 0) SCFTs to determine if tensor branch

geometries like that in equation (V.5) correspond to one or more interacting SCFTs.

B. From nilpotent orbits to E8-homomorphisms

The rank N (g, g) conformal matter theories have many tools with which their properties can be studied.

In particular, they can be realized as the worldvolume theories on a stack of M5-branes probing a C2/Γg

orbifold. Here, Γg is the finite subgroup of SU(2) of the same ADE-type as g. In this M-theory framework,

the 6d SCFT behaves as a defect in 7d super Yang–Mills, with gauge algebra g, and the SCFT thus inherits

a g⊕g flavor symmetry. Each flavor symmetry factor can be Higgsed by a nilpotent orbit of g, corresponding

to turning on asymptotic boundary conditions for the scalar inside of the 7d vector multiplet. Nilpotent

orbits of simple Lie algebras are well-studied and classified [73, 74]. In addition, when compactified on a

torus the resulting 4d N = 2 SCFTs have an alternative description in terms of class S and thus one has an

independent construction with which to study aspects of the Higgs branch of the 6d (1, 0) SCFTs.

For other classes of 6d (1, 0) SCFTs, we are not so lucky. In this section, we remark on the 6d SCFTs

obtained via Higgs branch renormalization group flows from the rank N (e8, g) orbi-instanton theories. The

orbi-instanton is realized in M-theory as a stack of N M5-branes probing a C2/Γg orbifold singularity, and

contained inside of an M9-brane [41]. In such a configuration, one must specify the boundary conditions

13 For the exceptional Lie algebras we use the Bala–Carter notation [73, 74] for the nilpotent orbits, see [55] for more details.
14 The levels of the enhanced su2 factors are not immediately obvious. They can be obtained by considering the degeneration limit

of the 4-punctured sphere in which the theory becomes a weakly-coupled SU(2) gauging of interacting fixture #43 of [9] with

an additional half-hypermultiplet in the 2. Alternatively, the S-dual realization is a Spin(8) gauging of the (E7)24×Spin(7)16
SCFT, which is interacting fixture #3 of [9]. The centralizer of so8 ⊂ (e7)24 is (su2)

⊕3
24 .
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inside of the M9-brane, which are fixed by a choice of homomorphism π : Γg → E8, and changing these

boundary conditions corresponds to performing Higgs branch renormalization group flows. We can consider

the Higgsed rank N (e8, g) orbi-instanton theories as

Ωg,N (π, σ) , (V.13)

where π : Γg → E8 is the E8-homomorphism with which the e8 flavor symmetry is Higgsed, and σ : su2 → g

is the nilpotent orbit by which the g flavor symmetry is Higgsed. Homomorphisms from ΓsuK
and Γe8 to

E8 have been classified in [75] and [76], respectively, however in each of the other cases there is no known

complete classification. In addition, the orbi-instantons and their Higgsings do not generally have known

class S descriptions after compactification on a torus, and thus that avenue for understanding the 6d Higgs

branch is closed.

In [72], the authors seek to classify the homomorphims Γg → E8 utilizing the study of 6d (1, 0) tensor branch

geometries. Of course, if one were to attempt to derive the nilpotent orbits in the same way, and one did

not know about the two different ways of compositing using
spq

1 pointed out in this paper, then one would

not notice that each very even D-partition corresponds to two nilpotent orbits! This is pointed out in [72],

where the authors claim only to classify such homomorphims only up to outer automorphism. Here, we argue

that by including the information about different possible compositings in the tensor branch description, one

can see the difference between E8-homomorphisms that appear to correspond to the same tensor branch.

Furthermore, one should again be able to determine properties of the Higgs branches of the two SCFTs

obtained in such a way, and observe how they differ.

For conciseness, we consider the following example: take the rank N (e8, so8) orbi-instanton, which has the

following tensor branch configuration:

[e8] 1 2
su2

2
g2

3

N−1 (−4)-curves⏟ ⏞⏞ ⏟
1
so8

4 1 · · ·
so8

4 1 [so8] . (V.14)

To be more illuminating, we focus on the case where N = 3. Consider the homomorphism π : Γso8
→ E8,

discussed in [72], which triggers a Higgs branch renormalization group flow to a new 6d SCFT with the

following tensor branch description:

[e8] 1 2
su2

2
g2

3 1
so8

4 1
so8

4 1 [so8]
π−→ [so9] 1

so7

3
[sp2]

1
so8

4 1 [so8] . (V.15)

As we can see, there is a (−1)-curve, corresponding to the E-string, that composites between the
so7

3 and
so8

4

building blocks. In Section IIIA, we saw that such a compositing was ambiguous, and could lead to distinct

6d SCFTs. Due to this ambiguity, we propose that there are two distinct E8-homomorphisms, labeled as πI

and πII , which lead to the same tensor branch. Further Higgsing the so8 flavor symmetry on the right by

either the [24]I or the [24]II nilpotent orbit leads to the following tensor branch configuration:

[so9] 1
so7

3
[sp2]

1
so8

4 1 [so8] → [so9] 1
so7

3
[sp2]

1
so7

3 [sp2] . (V.16)

Based on the arguments in Section IIIA, in particular the two distinct embeddings of so7 ⊕ so7 inside of

e8 given in equation (III.13), we expect that this tensor branch configuration corresponds to two distinct

6d SCFTs; (πI , [2
4]I) with an additional u1 flavor symmetry, and (πII , [2

4]I) without. Unfortunately, as we

discussed, there does not exist known class S duals for the compactifications of Higgsed orbi-instantons on

T 2, and thus, unlike in the study of Higgsed conformal matter, we lack an independent method to verify this

plurality of 6d (1, 0) SCFTs.15

15 When g = suK there are class S descriptions for the Higgsed orbi-instantons [59]. In that reference, the authors point out

that there exist E8-homomorphisms such that after Higgsing the tensor branch has the form
spq
1

su2q+8

2 · · · , and it is argued

that, in such cases, the choice of θ-angle for the spq gauge algebra can lead to two distinct 6d SCFTs. It would be interesting

to verify this from the class S perspective.
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