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Abstract

We provide a new extension to the geometric construction of 6d (1,0) SCFTs that encapsulates Higgs branch
structures with identical global symmetry but different spectra. In particular, we find that there exist
distinct 6d (1,0) SCFTs that may appear to share their tensor branch description, flavor symmetry algebras,
and central charges. For example, such subtleties arise for the very even nilpotent Higgsing of (so4y,$041)
conformal matter; we propose a method to predict at which conformal dimension the Higgs branch operators
of the two theories differ via augmenting the tensor branch description with the Higgs branch chiral ring
generators of the building block theories. Torus compactifications of these 6d (1,0) SCFTs give rise to 4d
N =2 SCFTs of class S and the Higgs branch of such 4d theories are captured via the Hall-Littlewood index.
We confirm that the resulting 4d theories indeed differ in their spectra in the predicted conformal dimension
from their Hall-Littlewood indices. We highlight how this ambiguity in the tensor branch description arises
beyond the very even nilpotent Higgsing of (s04%,504x) conformal matter, and hence should be understood
for more general classes of 6d (1,0) SCFTs.



LI Introduction

CONTENTS

| II. (D, D) conformal matter and nilpotent Higgsing|

I[TI. Very even Higgsing in 6d via examples|

A. (sog,s08) with 2 x [27]]

B. (5045, 504)) With 2 x [(2k

(
C. (s04k, 504%) With 2 x [(2k

D. (so4,504;) with 2 X [(2k

_ 2)2722
—4)%,2%
— 26)2’24l]|

|E. A non-example: the uniqueness ot conformal matter|

[IV. 6d (1,0) on T and class S|

[V.Conclusion|

|A. Flavor algebras from E-strings|

|B. From nilpotent orbits to fg-homomorphisms|

| Acknowledgements|

[ References]

10
11
12
14

14

19
20
21
23

23



I. INTRODUCTION

A generic quantum field theory is characterized by its symmetries, both global and local. Many diverse
quantum field theories can be engineered from superstring theory in ten dimensions, which has no global
symmetries and famously has only local symmetries required by anomaly cancellation [I]. However, lower di-
mensional theories that arise via string theory compactifications may have many kinds of global symmetries;
in particular, there can be R-symmetries, if the compactification preserves supersymmetry, and flavor sym-
metries that commute with the (super-)Lorentz transformations. The flavor symmetry provides an important
property describing the quantum field theory; understanding the flavor symmetry amounts to analyzing the
flavor symmetry algebra § and its global form F', where F' is ambiguous from f up to the center of . The
spectrum of states of the theory falls into representations of f, and there can be subtle distinctions between
the global form of the symmetry group F' depending on those states. The analysis of the spectrum of the
theory can demonstrate that theories that appear to be identical at the level of the flavor symmetry algebra
are different. Determining which states, in which representations of §, exist in the theory is related to the
geometric and topological properties of the compactification space Y. However, how these states are encoded
in the geometry is often challenging to determine. In this paper, we explicitly show how such states are
captured in Y for certain compactifications of string theory down to six dimensions and then further down
to four dimensions.

In particular, the theories we look into in this paper are superconformal field theories (SCFTs). A natural
question is then how does one effectively distinguish superconformal field theories. The most natural things
to look at are the invariants of an SCFT. We define the “conventional invariants” of an SCFT to be the
central charges, the flavor algebras, and the flavor central charges; these are invariants in the sense that if
these quantities differ between two SCFTs, then those SCFTs are themselves different. However, these are
not complete invariants: many distinct SCFTs are known for which all of these quantities are identical. A
more refined invariant, but still not complete, is the Higgs branch. In another vein, the global form of the
flavor symmetry group F' is more refined than the flavor symmetry algebra f, and can distinguish theories
which differ only up to the center of F.

We will analyze six-dimensional SCFTs and take a six-dimensional perspective on analyzing four-dimensional
SCFTs. In fact, studying six dimensional SCFTs has been particularly insightful and has played an important
role in understanding lower-dimensional theories. The quintessential examples are the understanding of the
S-duality of 4d V' = 4 super Yang—Mills [2] and the class S construction [3, 4] of 4d N/ =2 SCFTs from the
6d (2,0) SCFTs. The class S construction involves a twisted compactification of the 6d (2,0) SCFT of type
g on a n-punctured genus g Riemann surface Cy ,,. In this paper, we write such 4d SCFTs as

Sg(Com){---}, (1.1)

where - -- refers to the data describing the punctures. The puncture data has been (almost) exhaustively
worked out in [BHI4]. The power of this approach is reflected in how a multitude of physical properties of
the 4d SCFTs are encoded in the geometry of the punctured Riemann surface.

Another origin of 4d N/ = 2 SCFTs in six-dimensions is the torus compactification of a 6d (1,0) SCFT.
When utilizing this approach, there is no need to perform any topological twist as the flatness of the torus
guarantees that supersymmetry is preserved in the compactification. In fact, a 6d (1,0) SCFT origin provides
a particularly powerful perspective to understand the Higgs branch of the lower dimensional SCFTs, as a
supersymmetry-preserving torus compactification does not modify the Higgs branch. This process can also
be utilized in the reverse direction: if one understands aspects of the Higgs branch of a 4d N' = 2 SCFT
from the class S perspective, and there also exists a 6d (1,0) on T2 perspective, then one can learn about
the Higgs branch of the 6d (1,0) SCFT.

Four-dimensional /' = 2 SCFTs which have such 6d (1,0) and 6d (2, 0) origins have been discovered in recent
years [I5HI8]. The general principle is that theories of class S of type g obtained from spheres with N simple
punctures and any two regular punctures associated to nilpotent orbits of g have an alternative description



in terms of 6d rank N (g,g) conformal matter, Higgsed by the same nilpotent orbits of g, compactified on
a torus. In [I§], it was pointed out that the 6d (1,0) origin makes manifest the full flavor algebra of the 4d
theory, whereas only a subalgebra is manifest in the class S description. This is the original example of the
6d (1,0) origin being the optimal approach to the 4d Higgs branch. Unfortunately, the connection between
the geometric construction of 6d (1,0) SCFTs [19, 20] and their Higgs branches has not been fully developed.
A vast landscape of 6d (1,0) SCFTs have a geometric construction via F-theory [I9] 20]. This approach
involves constructing the description of the theory at the generic point of its tensor branch, which is captured
by a collection of curves and algebras. Furthermore, there are simple rules for building new 6d SCFTs by
compositing theories associated to < 3 curves. It has generally been believed that theories with the same
tensor branch description correspond to the same SCFT; in particular, such theories have the same anomaly
polynomials and all attendant SCFT invariants.

However, we show that this is not the case in this paper. From the class S description of the T2 compactifi-
cation of the 6d (1,0) SCFTs that we consider, we study the Hall-Littlewood index to determine the Higgs
branch spectrum. By looking at the spectra via the Hall-Littlewood indices, we see that the two theories
differ at somewhat large conformal dimensions, however they do have the same “conventional invariants.”
Given that the two theories have different Higgs branches, they are necessarily distinct theories. Theories
with identical conventional invariants which nevertheless differ in their Higgs branch spectrum have been
studied recently in [21] 22] for some 4d SCFTs of class S. In terms of the 6d (1,0) geometric construction, we
find that there is an ambiguity in how the curves are composited together and resolving this ambiguity leads
to distinct 6d SCFTs. In this way, we propose a method to recover the relevant aspects of the different Higgs
branches directly from the 6d (1,0) perspective, and thus provide one of the first methods to recover the
higher-dimensional operators on the Higgs branch directly from the geometric construction of the 6d (1,0)
SCFTs.

The rest of the paper is organized as follows. In Section [lI} we explain the construction of rank N (Dy, Dy)
conformal matter and the Higgs branch deformations induced by pairs of nilpotent orbits of the soq; &
509 flavor symmetry from the geometric perspective of F-theory; we determine that there is a previously
overlooked subtlety with the compositing by rank one (D, D) conformal matter which occasionally leads to
inequivalent theories with the same tensor branch description. In Section [[II] we highlight these distinct
theories for a variety of examples involving nilpotent orbits associated to very even D-partitions, and we
determine at what conformal dimension the operator spectrum on the Higgs branch differs. The torus
compactifications of these 6d (1,0) SCFTs leads to 4d A/ = 2 SCFTs which have a dual description in class
S, and in Section [[V] we observe that the two theories are also distinct from that perspective and the Hall-
Littlewood index differs at the same order as predicted from the 6d (1,0) description. Finally, in Section
we conclude, discuss the significance of our results, and present some future directions.

II. (D,D) CONFORMAL MATTER AND NILPOTENT HIGGSING

In this paper, we provide substantial evidence that the tensor branch description of a 6d (1,0) SCFT from
[19, 20] is insufficient, in the sense that it does not distinguish between particular 6d (1,0) SCFTs that
have non-isomorphic Higgs branches. Six-dimensional SCFTs are theories which contain degrees of freedom
corresponding to tensionless strings [2, 23], which magnetically-couple to tensor multiplets, and each of those
strings acquires tension at a generic point of the tensor branch.

The geometric construction is via F-theory compactified on a non-compact elliptically-fibered Calabi—Yau
threefold satisfying the negative-definite condition for the intersection pairing of compact rational curves
in the base of the fibration and that the singular fibers above the intersection points of the curves are
minimalEHﬂ Each compact curve gives rise to a string, with the tension proportional to the volume of the

1 See [24] for a recent review of the construction of 6d SCFTs from F-theory, including all necessary conditions and their



curve. The intersection pairing corresponds to the Dirac pairing on the charge lattice of the strings, and
the singular fiber is associated to a gauge algebra where the gauge coupling is proportional to the inverse
of the associated string tension. The SCFT limit involves taking the volume of all compact curves to zero
simultaneously, which is identical to taking the tensionless limit for each string. In particular, we utilize
this curve-intersection technology to build 6d (1,0) SCFTs with minimal conformal matter (G, G) [41]. The
geometric construction itself is modular and can be reduced to the combinatorial problem of compositing
together a small collection of “building blocks”. Specifically, we can get such a 6d SCFT from compositing
together theories associated to the non-Higgsable clusters (NHCs) [42H44]. Writing the negative of the self-
intersection number of the curves and the algebras associated to the singular fibers, the NHCs can be written
as

Sus 508 f4 (43 e7 (44 eg S5uUs9g2 Sus g2 S5U2507S5U2
, ., 5, 6, 7, &, 12, 23, 223, 232,
2 2 2 2 (IL.1)
2---2, 2---222, 22222, 222222, 2222222.
——
N-1 N-3

Each NHC may be tuned, meaning that the gauge algebra can be enhanced beyond that which is written
in equation (II.1)). Another key ingredient is the rank one E-string, corresponding to a (—1)-curve with no
associated gauge algebra, and its tuned counterparts:

i (I1.2)

g
This theory has a flavor algebra §, and we can use 1 to composite together up to two tuned non-Higgsable
clusters, for example % and %’%, via gauging a gy, @ gr subalgebra of f; this would lead to

wim. (IL3)

As long as the resulting tensor branch configuration satisfies the negative-definiteness and minimality con-
straints, then one can iterate this process of composition to generate a vast landscape of 6d (1,0) SCFTs.
Hence each tuned E-string theory as in equation plays a role to composite together SCFTs.

To clarify the notation, we now give an explicit example. Consider a non-compact elliptically fibered Calabi—
Yau containing three compact curves in the base: C7, Cs, and C3. We take the intersection matrix to
be

-1 1 0
Ci-Cij=11 =3 1 , (I1.4)
0o 1 -1 i

where the numbers on the diagonal are the self-intersection numbers; it is straightforward to see that this
matrix is negative-definite. Furthermore, take the singular fibers over each of the three curves to correspond
to the gauge algebras g; = g3 = @ and go = sus. Then, we can write this tensor branch configuration in a
succinct form as

suU3

131. (11.5)
This configuration involves compositing together two copies of the rank one E-string with the 553 non-
Higgsable cluster. We use this concise notation throughout this work.

derivation.
2 If F-theory is instead compactified on a compact Calabi—Yau threefold, the resulting theory is a 6d (1,0) supergravity theory.
See [25H40] for some examples of such geometric constructions.



In this paper, we focus on the 6d (1,0) SCFTs known as rank N (s0gk,502;) conformal matter, and the
interacting fixed points obtained by nilpotent Higgsing of the s0ox @ s09;, flavor symmetry. Certain nilpotent
Higgsings lead to theories with the same tensor branch description, however, when compactified on T2 the
SCFTs have an alternative description in terms of class S, and from that perspective we see that the Higgs
branches are non-isomorphic. In these cases, we propose precisely how to augment the 6d (1,0) tensor
branch description with additional information about the compositing theories such that we observe the
distinct Higgs branches. While we focus on (nilpotent Higgsing of) (09, 5025) conformal matter, this is not
the only occasion where an ambiguity in the compositing arises, as we discuss briefly in Section [V} and thus
we expect that this additional information needs to be accounted for in the tensor branch descriptions of
numerous 6d (1,0) SCFTs.

The rank N conformal matter theory of type (soox,s025) arises in M-theory as the theory living on the
worldvolume of N M5-branes probing a C?/I's,,, orbifold singularity [41]. In the geometric construction of
6d (1,0) SCFTs, this theory is obtained by compositing N — 1 copies of the tuned non-Higgsable cluster

5090k
(" (IL6)
with IV copies of the tuned E-string:
SPr_4a
(IL.7)
To wit, we have the configuration
N—1 (—4)-curves
SP_4 502, SPp_4y 5025 SPr_4
1 4 1 ---4 1 . (I1.8)
[s02k] [s02k]

SPp_4
We refer to the 1 as the compositing theory, and it is an SCFT in its own right; in fact, it is the minimal

(809K, 509 ) conformal matter theory. This theory has an so04; enhanced flavor symmetryﬂ The Higgs branch
chiral ring has two generators: a moment map p in the adjoint representation of the so4 flavor symmetry
and an additional generator u* in one of the spin representations of the so4;. The latter transforms in the
representation of the SU(2) R-symmetry with highest weight & — 2. A priori there can be two SCFTs, one
with the Higgs branch chiral ring generated by (u, u), and the other by (u, ). However, it is easy to
see that these are equivalent SCFTs related by the outer automorphism of so4;,. We refer to this pair of
equivalent theories as

5p2.'74 SPy_4

1 and 1, (I1.9)

respectively. This may lead us to think that the tensor branch configuration for rank N (sogy, $02)) conformal
matter written in equation is ambiguous; however, these theories are equivalent for all combinations of
signs on the (—1)-curve. We explicitly explore this scenario and argue in Section why all combinations
of signs are equivalent.

The rank N (sogx,509;) conformal matter theory has an sog, @ sog flavor symmetry. Then, there exist
Higgs branch renormalization group flows to new interacting fixed points, triggered by giving nilpotent
vacuum expectation values to the moment map of each of the flavor symmetry factors. Let us assume that
N is large enough such that the nilpotent Higgsing leads to an interacting 6d SCFT. Then, we can determine

3 The Higgs branch of this SCFT has been studied from the perspective of magnetic quivers [45H48]. Aspects of the Higgs
branch of minimal (so2, 8095 ) conformal matter for some k& > 5 have also been explored from a conformal bootstrap approach
in [49].



the tensor branch configuration of the 6d (1,0) SCFT at the end of the RG-flow from the pair of nilpotent
orbits that we use to Higgs [50H54]. Each tensor branch configuration contains compositing theories of the
form

qu

1. (I1.10)
In each case of compositions with equation , it is necessary to determine whether there is a distinction
if one composites with

sp spy

1 or 1. (I1.11)
Nilpotent orbits of soy are classified by integer partitions of 2k, which denote the decomposition of the
vector representation under the corresponding embedding of sus. Since the vector representation is real, not
every partition of 2k is allowed: the even parts must appear with even multiplicity, yielding a D-partition.
Furthermore, each very even D-partition — a D-partition with only even parts — corresponds to two distinct
nilpotent orbits, which we refer to as the red; and blue;y orbitsE| The tensor branch description after Higgsing
depends only on the pair of D-partitions, and thus one concludes that the tensor branch descriptions for the
Higgsings by (red;,red;) and (red;, bluess) are the sameEHﬂ
However, we find that while the tensor branch descriptions appear the same, the different Higgsings actually

lead to theories with a different Higgs branch operator spectrum, and thus do correspond to two distinct 6d
spt
(1,0) SCFTs. We see precisely for those Higgsings that the distinction between compositing with 1" versus
sp_
1 s important.

In six dimensions, an sp, gauge algebra a priori is required to be accompanied by a choice of discrete theta-
angle, as m5(sp,) = Zy. However, if there exists n hypermultiplets in the fundamental representation of sp,,
then the outer-automorphism of the SO(2n) classical flavor symmetry rotating the hypermultiplets flips the
f-angle: 0 +» 7. This implies that the f-angle is rarely physically relevant [59] [60]. The outer-automorphism
also swaps the spinor and conjugate spinor representations, so it is clear that the distinction between 5pflt is
related to the distinction between the #-angles. Exactly as for the qui, all combinations of #-angles in the
quiver that are related by outer-automorphisms of the special orthogonal factors are physically equivalent.
In [59], the spectrum of instanton strings for an sp, gauge algebra next to an sug,+s gauge algebra was
analyzed; there it was found that the two inequivalent embeddings of sty g inside of 5044416 lead to distinct
string-like excitations. These two embeddings are again related to the choice of #-angle for the sp, gauge
algebra. While we observe the distinction between the theories by studying high-dimension Higgs branch
operators, it would be interesting to explore the difference between the spectra of instanton strings for the
(reds,reds) and (red;, blues;) Higgsings.

III. VERY EVEN HIGGSING IN 6D VIA EXAMPLES

In this section, we consider explicit examples of the 6d SCFTs that are obtained from rank N (s04x,5045)
conformal matter Higgsed on the left and the right by nilpotent orbits associated to very even D-partitions.

4 See e.g. [I4] or the standard reference [55] for further details on nilpotent orbits. [55] uses the subscripts “I” and “IT” to
distinguish the two nilpotent orbits corresponding to a very even D-partition; [14] uses the colors red and blue to distinguish
them. Here, in a somewhat redundant notation, we will use both.

5 There are examples in [54], where N is sufficiently small, such that the (red;,red;) and (red;,blue;;) pairs of nilpotent
Higgsings lead to distinct tensor branch descriptions. Such cases are exceptional.

6 While the tensor branch descriptions may be identical, although it has not been found a way to see the Higgs branch operators,
one may approach with the reflection of the nilpotent Higgsing in the singular geometry, corresponding to the origin of the
tensor branch where all of the compact curves are shrunk to zero-volume, from T-brane dynamics [56H58].



In the examples that we study here, we consider Higgsing both so4; symmetries by nilpotent orbits associated
to same very even D-partition. For the purposes of the examples in this section, we focus on the D-partitions

[(2k — 20)%,2%], (IIL.1)

though it is straightforward to generalize this analysis to any arbitrary pair of very even D-partitions. Each
such D-partition is associated to two distinct nilpotent orbits of so4x. As discussed, we distinguish these two
orbits by coloring the D-partition red or blue and adding a subscript “I” or “IT”.

We give several examples to demonstrate how seemingly looking identical 6d SCFTs with identical flavor
symmetry algebras are distinct and how it can be seen that they differ in their Higgs branch spectrum. The
cases for the Higgsing according to equation where ¢ = 1 and ¢ = 2 are rather special, and we discuss
them separately. Similarly, special care must be taken when g = sog, which we study first.

A. (so0s,s508) with 2 x [24]

For our first example, we take rank N (sog,s0g) conformal matter. We consider Higgsing the sog @ sog
flavor symmetry by the pairs of nilpotent orbits ([2%]7, [2%];) and ([2%], [2*]77) and contrast the two resulting
theories. The original conformal matter theory corresponds to the tensor branch description

508 508 508 508

14141..-41 41
————
N -3 (—4)-curves

, (I11.2)

and we assume that N > 3. According to [51], the tensor branch description of the SCFT obtained after the
nilpotent Higgsing we are considering is

s07 507

508 508
1 41...41 3. (I11.3)
[spa) ST~ [sp,]

N -3 (—4)-curves
The tensor branch description appears to be the same for both the pairs ([2%]7, [2%]7) and ([2*]7,[2%];7) for
the nilpotent Higgsing. That, however, is incorrect; the tensor branch description in equation ([I1.3)) is in

fact ambiguous and the two possibilities correspond to distinct SCFTs. There exists two avatars of the
+
sp
E-string, which have the geometric description 1 , corresponding to the Higgs branch chiral ring possessing

a generator in the positive or negative chirality spinor representation of the soqg flavor symmetrym
We begin by studying the special case where N = 4, in which case the tensor branch configuration is

507 5pUi 508 5100i 507

3 1 4 1 3. (IIL.4)
[sps] [sps]

Let uli and ,uQi denote the Higgs branch chiral ring generators of the two E-strings, in either the positive or
negative chirality spin representations. We determine the number of gauge singlets appearing in the tensor
product of these generators
+ +
p1 @ g, (IIL5)
where the tensor product is taken over the common sog gauged subalgebra. One finds that
pf @py =py ©py O (1L,1,1), (111.6)
pi @puy =py @pg 2 (1,1,1).

7 The spinor generator for the E-string has A = 2, and thus it combines with the moment map operator to trigger an enhance-
ment of the flavor symmetry so16 — ¢s.



The Higgs branch generator in the spinor representation has conformal dimension A = 2, and thus we see
that, depending on the combination of signs in equation 7 the SCFT may or may not have an additional
Higgs branch generator at A = 4. Based on the comparison to class S, discussed in Section [[V] we associate
the pairs of nilpotent orbits to tensor branch descriptions as follows:

507 spg 508 ﬁpg s07

(21, 21) - 3 1 4 1 3,
[spe] [spo] (I11.7)
s07 spo+ 508 Sp, S07

(1247, 12Y11) - 3 1 4 1 3.
[sps) [sps]

The generalization of this analysis to N > 4 is now clear. In the tensor branch configuration in equation
(I11.3)), there are N — 2 E-strings acting as compositing theories, and thus there are N — 2 Higgs branch
spinors u;t. We must consider the gauge singlets that appear in

/1'% R ® /’(‘%—2 ; (IH.S)

where, again, the tensor product means that we take the tensor product of the common sog algebras after
gauging. We find two possible options

p @ ps @ @py_3 @ py_y O (1,1,04,1), (I1.9a)
W ®ps @ @uy_3 @ puy_y P (1,1,0041). (I11.9D)

Of course, we might expect that each of the 2V~2 combinations of signs corresponds to a different theory,

however, this would represent a dramatic over-counting. Inside of the tensor branch description in equation
, we can act by an outer-automorphism of any of the sog gauge algebras, and this has the effect of
flipping the signs on the two (—1)-curves adjacent to that gauge algebra; as an outer-automorphism, this
manifestly does not change the physical theory. We choose to use the convention that all except the left-most
and right-most (—1)-curves have pT; this can always be attained via a sequence of outer-automorphisms
of the sog gauge algebras. In this way, we can think of the two very even nilpotent orbits as Higgsing the
conformal matter theory in the following, distinct, ways:

4 5Py s08 SPg s0g SPo s07 5p0+ 508 5P0+
2Y%,: 1 4 1 4 1.+ = 3 1 4 1.,
) N (I11.10)
4 5Py sog SPg sog SPg s07 5Py sog 5Py
PY,: 1 41 4 1.~ - 3 1 4 1.

With this convention, it is easy to see that ([2%]7,[2%];) and ([2%]11,[2%]11) give rise to the same theory
after successive actions of the sog outer-automorphisms. Similarly, for all of the examples in this paper,
outer-automorphisms of the so0oy gauge algebras on the (—4)-curves can be used to show that one can always
transform the combinations of signs on the compositing theories to (4,+,---,+,+) or (+,+,---,+,—).
Thus, due to the two distinct combinations of signs giving rise to different numbers of gauge singlets as in
equation , we expect that the tensor branch geometry in equation corresponds to two distinct 6d
SCFTs, which differ in their Higgs branch operator content at A = 2(N — 2). Again, based on the matching
with class S in Section we associate the all plus SCFT to the pair of nilpotent Higgsings ([2%]/, [2%];),
and with one minus to ([2%]7, [2%]77).

Finally, we can consider the special case where N = 3. The tensor branch description of the Higgsed theory
is then

(IIL.11)

This theory is constructed by starting with two copies of the theory

507

3, (IT1.12)
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and compositing together by gauging an so7 @ so; subalgebra of the eg flavor symmetry of the E-string. There
are two inequivalent embeddings of so7 @ so7 inside of eg, specified by their distinct branching rules

eg — 507 P S07
248 — (21,1) & (1,21) & (7,1) & (1,7) & (8,1) & (1, 8) (LIL.13a)
@ (7,8) @ (8,7) & (8,8),
eg — 507 D so7 Dy
248 — (21,1)0 @ (1,21)0 @ (7,1)2 © (7,1)_2 ® (1,7)2 & (1,7)_2 & (7, 7)o (IIL.13b)
@ (1,1)0 ® (8,8); @ (8,8)_1 .

We can see that the decomposition of the moment map of the E-string contains an so; @ so; gauge singlet
in the latter branching rule given by equation , whereas there is none in the former branching rule
given in equation . As this gauge singlet appears with conformal dimension A = 2, it corresponds
to a moment map operator in the gauged theory; thus, the theory with the gauge singlet has an additional
u; flavor symmetry. This matches with the branching rules depicted above.

The examples in this subsection can be summarized as follows. Nilpotent Higgsing of the sog @ sog flavor
symmetry of the rank N > 3 (so0g, s05) conformal matter theory by the pairs of nilpotent orbits ([2%];, [2%])
or ([2Y]7,[2%1r) leads to two distinct 6d SCFTs. These two SCFTs differ in their Higgs branch operator
spectrum starting at conformal dimension

A=2(N-2). (I11.14)

B. (504%,5041) with 2 x [(2k — 2)?,2?

We now consider the tensor branch configurations corresponding to Higgsing both sides of rank N conformal
matter of type (s04x,504%) by one of the nilpotent orbits associated to the very even D-partition [(2k—2)2, 22].
We assume that k > 2, as the k = 2 case has been studied in Section [ITA] The tensor branch description of
these theories is

(N+1)—2(k—1) (—4)-curves

507 5Py 5012 SP3 SPok—5 504k SP2k—4 S04k SP2p—4 §04k SPop—4 S04; SP2k—5 5p; so7
3 1 4 1.~ 1 4 1 4 1 -4 1 4 1 ---1 3. (I1L.15)
(5] k—3 (—4)-curves (5] [sp1] k—3 (—4)-curves [5p1]

We require that N > 2k — 2 to prevent the two nilpotent Higgsings from becoming correlated across the
tensor branch. In this quiver there are N — 2 curves of self-intersection (—1), each of which composites
between the adjacent curves. Each (—1)-curve theory contains two Higgs branch operators: a moment map
operator in the adjoint representation of the flavor symmetry, and a spinor generator in either the S* or S~
representation of the flavor symmetry, as discussed around equation . We label the spinor generators
of each of the (—1)-curve theories as /ﬁ[, u2i, e 7uﬁ72. We wish to count the gauge singlets that appear in
the tensor product of these spinorial generators:

pE@ U @ @ uE @ uE . (I11.16)

sp
We can see that the decomposition of the spinor representations of the soyy flavor symmetries of the 1

compositing theories are

5090 — 507 P §012, (II1.17a)
St—@@,8Ne---, (IIL.17b)
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ST (1,8 )@ . (IIL.17c)

The - - - represent terms that are not singlets under the so7, and thus we can see that there are gauge singlets
in the tensor product in equation (III.16). Depending on the combinations of signs, we find that there are
two possibilities for the number of gauge singlets appearing inside of the tensor product of the spinors in

equation (I11.16)):
MT®M;®®M}—3®MX/—2 ) (1517 51)7 (IIIlSa)
P @us @ @uy_3®@puy_g P (1,150 ,1). (IT1.18b)

This indicates that the tensor branch geometry given in equation ([II.15)) corresponds to two 6d SCFTs that
differ at conformal dimension

2k—5
2> (q+2)+ (N —2k+2)(2k—2) =2N(k—1) —2(k —1)* - 2, (I11.19)

q odd

in the spectrum of Higgs branch operators.

C. (soar,504x) With 2 x [(2k —4)2,2%]

We now turn to the case where ¢ = 2 in the D-partition in equation (III.1f), and furthermore we take k > 4E|
The tensor branch configuration describing the 6d SCFT(s) obtained by the nilpotent Higgsing of rank N
(504%,504%) conformal matter by nilpotent orbits associated to the very even D-partition [(2k — 4)2,24] is

(N+1)—2(k—2) (—4)-curves

5012 SP3 5016 SPs5 SPok_5 S04k SPok_4a S04k SP2p—4a 504 SPok_a S04k  SP2k_5 5p3 5012
3141 .- 1 4 1 4 1 ---4 1 4 1 -1 3. (I11.20)
[sp2] k—4 (—4)-curves (5] [sp] k—4 (—4)-curves [sp2]

Again, we consider the gauge singlets that appear in the tensor products of the uf:
PO UE @ @ N g ® iy - (IIL.21)

Of course, we can see that this would never lead to a singlet under the so;> gauge algebras on the left
and the right. However, anomaly cancellation requires that an s015 algebra on a (—3)-curve includes the

presence of a half-hypermultiplet in one of the spin representations of the so15. We can consider two a priori

+
5045

50
distinct SCFTs, corresponding to 3 and 3 2, where the sign denotes the chirality of the spinor belonging
+
sp

to the half-hypermultiplet. Similarly to the s theories, compositing together with different signs can lead
to different SCFTs.

We refer to the scalars inside of these two half-hypermultiplets as /HLE and uﬁ, respectively, and then we
consider gauge singlets appearing in the decomposition

HEQUE @ UT @ ® g @ o ® J, - (111.22)

A priori, there is no expectation that the construction of gauge invariant operators involving hypermultiplets
on the tensor branch leads to operators of the 6d SCFT at the origin. In the context of 6d SCFTs however,

8 The case of k = 3 can also be studied, but requires some modification to the exposition. We leave this as a straightforward
exercise for the interested reader.
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this is not without precedent; for example, the “end-to-end” operators of [61} 62], are operators of 6d (1,0)
SCFTs obtained by taking gauge singlet combinations of hypermultiplets along the 6d quiver. Furthermore,
we see that this analysis matches the alternative derivation via the class S construction in Section [[V] and
thus we have strong evidence that these operators do indeed ascend to operators of the 6d SCFT.

It is easy to see that when all of the signs in equation are positive one obtains a gauge singlet inside
of this tensor product, and when exactly one of the signs is negative one does not obtain any gauge singletﬂ
As such, we expect that the two different combinations of signs lead to distinct 6d SCFTs, with different
spectra of states on their Higgs branches. Using the known conformal dimensions of the /ﬁ[ and Mf R the
difference in Higgs branch operators occurs at conformal dimension ’

2k—5
242 (q+2)+ (N —2k+4)(2k — 2) = 2kN — 2N + 8k — 12 — 2k°. (111.23)
qq:c?d
D. (s04,504;) With 2 x [(2k — 20)%, 2%
Finally, we consider the cases where £ = 3,--- , k — 1, which requires that we have k > 4. The tensor branch

configuration for rank N (so4x,504;) conformal matter Higgsed on the left and the right by nilpotent orbits
corresponding to such a D-partition [(2k — 2¢)2, 2%/] is

k—£€—1 (—4)-curves (N+1)—2(k—¢) (—4)-curves k—£—1 (—4)-curves
SPp_3 504044 SP2¢—1 S04048 SP2o41 SPok—5 504) SP2k—4 S504) SP2K—4a S04 SP2k—4 sogp SP2k—5 SP2p 1504044 5P¢—3
4 1 1 4 1 -4 1 4 1 -1 4 1 . (II1.24)
[spe] [sp1] [sp1] [spc]

N—1 (—4)-curves

We can see that it is necessary to have N > 2(k — £) to prevent the effects of the nilpotent Higgsing on each
side of the quiver from correlating with each other. The flavor algebra is

S if0=k—1, N=2%k-0),
i if N =2(k—¢
jo SR @SR k=), (I11.25)
spy ife=k—-1,

5p§a2 @5]3?2 otherwise.

Before turning our hand to the general case, let us analyze the case with the fewest number of curves. We
take

(=k-1 and N=2k—-1¥)=2. (111.26)
In this case, the Higgsing acts as follows
T @) T (27)
[s04%] [s04r] [spay)

We expect that when the two compositing theories corresponding to the (—1)-curves have different chirality
spinors as the generators of their chiral ring, then we will have distinct 6d SCFTs on the right-hand side.
We first analyze some of the Higgs branch operator content of

spi_, soun spl_,

1 4 1. (IT1.28)
[sp2]

9 Flipping any two signs leaves the number of gauge singlets invariant, as discussed in Section [III Al so there are only these two
distinct options.
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We have four generators of the Higgs branch chiral ring before compositing: the moment maps py and ug
and the spinors ,uj{ and ME- In particular, both uz and ,ug transform in the ST representation of their soyy
flavor symmetries, and after gauging we find that

preuphol, (I11.29)

where we write only the so4y singlet representations appearing in the decomposition. If we were to instead
consider the Higgs branch of
Sy, S04k SPL_,
1 4 1, (I11.30)
[sp2r]
then we would have ;7 instead of /1;7 and the tensor product of the two different spin representations of
5045 does not yield a singlet:

uf@up pl. (I11.31)

As the spinor generators have conformal dimension A = k — 2 then the two theories associated to the tensor
branch descriptions appearing in equations and are distinct theories, and they begin to differ
in their Higgs branch spectrum at A = 2k — 4.
It is now straightforward to consider the general tensor branch description in equation . We can see
that if all of the N compositing theories have a positive chirality spinor, then there will be a gauge singlet in
the N-fold tensor product, whereas if exactly one of the compositing theories has a negative chirality spinor
then that gauge singlet is not presentE As such, we expect these two 6d SCFT's to differ in the Higgs branch
spectra at conformal dimension
2k—5
20— 1)+2 > (q+2)+ (N —2k+20)(2k —2) =2N(k — 1) — 20 — 2(k — £)*. (I11.32)
q=2¢—1
q odd

Due to the duality of class § when compactified on a torus, as discussed in Section [[V] we refer to the theory
with the extra gauge singlet as the Higgsing by the nilpotent orbits ([(2k — 2/)2,22/];, [(2k — 2¢)%,2%/];), and
that without as the Higgsing by the nilpotent orbits ([(2k — 2¢)2,22¢];, [(2k — 20)%,22¢] ;).
We now consider several special cases that will be of particular relevance in Section [[V] First, take ¢ = k —1,
and thus the very even D-partitions that we consider are of the form [22¥]. We find that the ([22%];, [2%¥];)
theory has a Higgs branch operator of dimension

(12%517,12%%]) : A=2(N —1)(k —1) -2, (I1.33)

that is absent from the ([2%*];, [2%¥];7) theory. Similarly, when ¢ = k — 2 we see an operator belonging to the
Higgs branch chiral ring at

([42, 22K, (42,221 ) s A=2(N —1)(k—1)—6, (I11.34)

in the ([42,22F=4];,[4%,22%=4]}) theory, that is not present in the ([42,22%=%]; [42,22k=4];;) theory.

More generally, if we Higgs on the left with D-partition [(2k — 2¢)2,2%‘] and on the right with D-partition
[(2k — 20')2,22%], assuming that £,¢ > 3 and N > 2k — £ — ', we find that there is a flavor singlet Higgs
branch operator in the ([(2k — 20)%, 22, [(2k — 2¢')%,2%"']}) theory with conformal dimension

([(2k —20)%,22,,[(2k — 202,22 1)) : A=2N(k—1)— (k—0>— (k=02 —0—1', (I11.35)

which is absent in the ([(2k — 20)2,22¢];, [(2k — 2¢')2,22"'|;1) theory. We can see that equation (TIL35) in fact
holds more generally, when ¢,¢" > 1, by comparing to the results found in Sections [[II Bl and [[ILIC| In fact,
by generalizing further, we can see that equation (III1.35]) holds for ¢,¢ > 0.

10 Again, flipping any pair of signs does not change the gauge singlet from what is written here.
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E. A non-example: the uniqueness of conformal matter

We have now demonstrated in a variety of examples that the Higgs branch depends on whether one composites
together the (—4)- or (—3)-curves with the positive or negative chirality versions of minimal (D, D) conformal
matter. We have observed that Higgsing by the two distinct nilpotent orbits belonging to the same very even
D-partition leads to distinct 6d SCFTs. In this way, we find that the Higgs branch renormalization group
flows recreate the double Hasse diagram formed by pairs of nilpotent orbits of s0o;. At this point, the reader
may be wondering: why is it that only the tensor branch configurations associated to nilpotent Higgsing by
very even D-partitions have two avatars? Any nilpotent Higgsing of rank N (soax,$09;) conformal matter
leads to a tensor branch which contains minimal (D, D) conformal matter as a compositing theory, and thus
one may expect that in all cases there are distinct theories depending on whether one chooses the compositing
theories to have the positive or negative chirality spinors. In this section, we demonstrate in an example
that these a priori distinct theories usually give rise to the same 6d SCFT. Consider the example of rank 2
(804, 5045 ) conformal matter, for which one can write down the following two tensor branch descriptions:

5";@74 504k 5p2+k74 5p;rk74 S04k SPaj_4
1 4 1 and 1 4 1 . (111.36)
[s04k] [s04x] [s04r] [s04k]

Once we understanding the branching rule

508k — S04k D 041
ST = (ST, S e(5,87) (I11.37)
ST = (8T, 8T) @ (S7,8),

it is straightforward to determine that there are the following gauge singlet states, charged under the so4; &
504 flavor symmetry, in each respective theory. In the ++ theory we have:

pf @uh= (ST, SN (S,87), (I11.38)
whereas in the +— theory there is instead:
pf @uy=(S*t,S7)®(S7,87). (I11.39)

Thus, we see that there are the same number of gauge singlets appearing inside of /L% ® ulj%, and furthermore
the difference between the representations of the Higgs branch operators under the flavor symmetry can be
compensated by an outer automorphism of one of the soy; factors. It is then clear that the two putative
theories appearing in equation are, in fact, equivalent. For the class of 6d (1,0) SCFTs obtained via
nilpotent Higgsing of rank N (D, D) conformal matter, a general analysis, involving outer-automorphisms of
the gauge and flavor algebras similar to the discussion in Section [[ITA] reveals that there is only this subtle
distinction in the Higgs branch spectrum when the tensor branch description is that associated to nilpotent
Higgsing of the so4, @ s04; flavor symmetry by pairs of nilpotent orbits associated to very even D-partitions.

IV. 6D (1,0) ON T2 AND CLASS S

At this point, the reader may be wary. We have argued for the existence of Higgs branch operators of 6d (1,0)
SCFTs by studying gauge invariant combinations of Higgs branch operators on the partial tensor branch.
However, there is no guarantee that the operators thus-constructed actually parametrize the Higgs branch
of the SCFT at the origin of the tensor branch. Indeed, the analogous construction in 4d N = 2 would
fail rather badly; when one moves out on the Coulomb branch (the analogue of the tensor branch in 4d),
generically the entire Higgs branch is lifted.
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Fortunately, for the classes of 6d (1,0) SCFTs that we are considering, there is an alternative description
of the Higgs branch at the superconformal fixed point. It is isomorphic to the Higgs branch of a certain
4d N = 2 SCFT of class S. In the latter case, there is an independent computation of the Hilbert series
of the Higgs branch, from which we can confirm our conjecture that these 6d (1,0) SCFTs are distinct,
despite sharing the same tensor branch description, and furthermore, vindicates our method for extracting
the spectrum of Higgs branch operators from the tensor branch configuration.
To verify that our tensor branch analysis is really capturing differences in the SCFTs at the origin of the
tensor branch, we use a duality to the class & construction [3| [4]. It is known that rank N (g, g) conformal
matter compactified on a T? gives rise to the same 4d N' = 2 SCFT as the compactification of the 6d (2,0)
SCFT of type g on a sphere with two maximal punctures and N simple punctures [I5GHI7]. In the rank one
case, this was extended beyond maximal punctures in [I8]. We write this equivalence as

Tan {01, 02 1(T?) = S4(5%){01,04,05 .} - (IV.1)
Here, O; and Oy are nilpotent orbits in g; on the left they Higgs the g & g flavor symmetry in 6d, whereas
in the class S description on the right they correspond to partial closure of the two full punctures. Due to
the torus compactification, the Higgs branch of this 4d A/ = 2 SCFT is identical to the Higgs branch of the
original 6d (1,0) theory.
The Hall-Littlewood limit of the superconformal index [63H67] can be obtained from the class S description.
It is a formal power series of the form

Inp (1) = Tryg,, 7248 (=1)F (IV.2)

where Hpyp, is the subspace of local operators satisfying A — 2R —r = j; = 0; here A is the conformal
dimension, R is the charge under the SU(2) R-symmetry, and r the charge under the U(1) R-symmetry.
The index counts (with sign) operators in short multiplets of the superconformal symmetry, Br and D R(0,j2)
(in the notation of Dolan and Osborn [68]). It is generally believed [63] 69, [70] that there are no Drg(o,j,)
multiplets in genus-zero theories of class S E In which case, the Hall-Littlewood index coincides with the
Hilbert series of the Higgs branch of the class S theory, with each By operator contributing 72% to the
index. The refined version of the index, Ixr(a;7) is defined similarly but with the coefficient of 72% being
the character x(a)g of the flavor symmetry representation under which the Bp, operators transform, rather
than merely the dimension.

For an (N + 2)-punctured sphere, the Hall-Littlewood index takes the form [63], [67]

Tigfas ) = 30 Lt Knulo) Pafe avs)

x (Kae({rHPalr)™

where we describe each term contributing to this expression below.

1. The sum is over finite dimensional irreducible representations A of g. Here, we are interested in g = 504
and we denote A by its Dynkin labels

A:(Tll,’flg,...,Tln_z;ﬂs+,ns—), (IV4)

where the last two Dynkin labels are those associated to the two irreducible spinor representations.
The outer-automorphism of so4; acts on the representation ring by exchanging ng+ <> ng-.

11 Exceptions to this conjecture seem to occur for class S on spheres with at least four twisted-punctures [71]. As we do not
consider such configurations in this paper, these exceptions are not relevant.
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2. Flavor fugacities a; associated to the " puncture are determined by decomposition of the fundamental
representation of g as a representation of p;(sus) x f;. Here, p; : sus — s04; describes the embedding
associated to the nilpotent orbit of the i*" puncture; the f; is the remaining flavor symmetry algebra.
Furthermore, {7} is the fugacity for the trivial puncture (i.e. the regular embedding of sus — s04;).

3. The K-factor associated to the i*" puncture is determined by the restriction of the adjoint representation
adg of g to p;(suz) x f; as

ady =PV, @ R;, (IV.5)
J

where V; is the (2j + 1)-dimensional irreducible representation of sus and R;; is the corresponding
representation of §;, possibly reducible. Upon this decomposition, a K-factor for the i puncture is

(a;)| , (Iv.6)

3t

ICHL(ai) _ (1 _ TQ)LHE(B)PE ZT2U+1)X%
J

where PE[- - -] denotes the plethystic exponential and X%i _(a;) is the character of the flavor algebra f;
in the relevant representation. '

4. The P, are Hall-Littlewood polynomials for the representation A, which are given by

1 1 — 72¢~w(@)
Pp(a;) = —— e @) R —— IV.7)
NGRS | S e
Wa(r) = > 7w, (IV.8)

weEStabyy (A)

where @, are the positive roots of g, W is the Weyl group of g, and flavor fugacities {a;} can be
assigned once we choose a basis for the weight lattice for g.

5. The unrefined index is recovered in the limit of setting the fugacities a; — 1.

The simple puncture in the class S theory of type so04; corresponds to the D-partition [4k — 3,3]. For the
punctures O;, Oz, we will take two very even D-partitions. It is a fundamental fact of the representation
theory of soyy, that a very-even D-partition, O, gives rise to two nilpotent orbits, O; and Oj;. The two orbits
are exchanged by the outer-automorphism of so4, which exchanges ST <+ S~.

The spinor representations St and S~ decompose differently under the corresponding embeddings of sus @ .

e Under the embedding corresponding to O;:

— For k even, ST decomposes as half-integer-spin representations of su, tensored with pseudoreal
representations of §, while S~ decomposes as a direct sum of integer-spin representations of suy
tensored with real representations of f.

— For k odd, ST decomposes as half-integer-spin representations of sus tensored with real represen-
tations of f, while S~ decomposes as a direct sum of integer-spin representations of sus tensored
with pseudoreal representations of f.

e Under the embedding corresponding to O;;, the decompositions of ST and S~ are reversed.

By contrast, representations of the form A = (ny,ns,...,n2k_2;0,0) decompose identically under the em-
beddings corresponding to O; and Oyj.
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The outer-automorphism of soyy, is clearly a symmetry of the conformal field theory. In the index in equation
(TV.3)), it exchanges AT with A=, that are given by

AT = (n1,n9,...,nok_2;ng+,n5-), AT = (ni,n,...,Nok_2;Ng—,Ng+); (IV.9)

i.e. the representations with the final two Dynkin labels interchanged. This obviously leaves the sum un-
changed. In particular, this means that the theory with two very even punctures O, O is isomorphic to
the theory with Orr, O};. However, they are not necessarily (and, in general, are not) isomorphic to the
theory with Oy, Of;. At the level of the index in equation , however, the difference is invisible up to
the order in the 7-expansion at which the representations A = (0,0,...,0;1,0) and/or (0,0,...,0;0,1) first
contribute to the index.

There is a simple formula [I3] for the order at which each representation A first contributes to the index

written in equation (IV.3]). Let
w(0) = (wy,wa, -+, Wag—2; W+, Wg-) (IV.10)

be the weighted Dynkin diagram corresponding to the nilpotent orbit OE The entries of w(O) are either
0,1 or 2. For the simple puncture, we have

w([4k —3,3]) = (2,2,...,2,0:2,2), (Iv.11)
and the weighted Dynkin diagram corresponding to the trivial puncture (O = Oreguiar) is
wo = (2,2,...,2;2,2). (IV.12)
Then, the leading contribution to the index from the representation A is the contribution from the characters
Xr, (2)T™, where

N+2
na=A-C71. (Nwo -3 w(Oi)> : (IV.13)

i=1

and C is the Cartan matrix. The character xr, is obtained as follows. First, for each puncture O;, we can
decompose the representation A of soy4 under the corresponding embedding p;(sus) X f; as

A=EVi®Raj. (IV.14)

J

Next, we let j; be the largest value of j that occurs in the decomposition in equation (IV.14) at the ‘P
puncture. Then,

N+2
Ry = ® RA i (IV.15)
i=1

We briefly highlight this with an example. Consider g = sog with three punctures: [2*];, [2*];, and [5,3]. For
A = 8, we have the following decompositions:

[24} ) s0g — sus @ sp,,
T8 — (2,4),

. ) 808 — SuUg,
[5,3] '{8,,—>5693.

(IV.16)

12 See page 83 of [55] for the determination of the weighted Dynkin diagram from the D-partition.
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As such, we can see that Ry—g, = (4,4) under the sp, & sp, flavor symmetry from the two [2?]; punctures.

Since we take N of the punctures to be simple, [4k — 3, 3], equation (IV.13]) reduces to
A=A-CL. ((0, 0,...,0,2N;0,0) — w(O;) — w(02)> . (IV.17)

In the examples that we wish to consider, we have

w([2*]7) = (0,0,....0:(1+ (=1)F), (1 = (-=1)")),,
w([2?*]11) = (0,0 (1= (=DM, 0+ (=1)"),
w([4%,277),) = (0,270 1+( 1F), (1= (=1)")),
(42 22574,1) = (0,2,0,. (1= (=1, 1+ (=1)k)), (1V.18)
w([(2k - 21)%,2%];) = (0,2,0 2,...,0,2,0,0,...,0;(1+ (=1)%), (1 - (-1)")),
_,_/ N—_— —
2(k—1—-1) 21
w([(2k —20),2%];7) = (0,2,0,2,...,0,2,0,0,...,0; (1 — (=1)%), (1 + (=1)%)).
N —— N ——
2(k—1—-1) 21
We want to extract the values of ng+ and ng-, for which we need
St.c™t=1(1,2,3,...,2k — 2;k, k — 1),
- 11 (IV.19)
ST-ct=1(1,2,3,...,2k — 2,k — 1 k).

Putting together equations (IV.17)), (IV.18), and (IV.19), we get ng+ and ng- for any pair of punctures O
and O,. For instance, we see that

g+ (221, [2%]1) = 2(k = (N —1) = (1 + (=1)*),
V.20
s (1211, [24]1) = 20k~ DN = 1) - (1- (1)) (20
whereas we get different values for the other theories:
ng+([2°%]7, 2% 1) = 2(k = 1)(N — 1) — 1,
ng- (12217, 12%%]11) = 2(k — 1)(N —1) — 1. av.21)

Thus we find that the discrepancy between the theories Sso,, (S?){[2%"]1, [2%"], [4k — 3,3]®N} and

Ssor (S{[279]1, [2%%) 11, [4k —3, 3|9} first appears at order 72(F=D(V=1)=2 where the representation A = S+
(for k even) or A = S~ (for k odd) contributes a B j_1y(n—1)—1 operator. We depict these two distinct class
S theories in terms of their NV + 2 punctured spheres in Figure

In fact, from equation , we see that this operator is a singlet of the flavor symmetry. This is precisely
the state that was determined, in equation ([IL.33)), to exist in the nilpotent Higgsing of the 6d rank N
(504%,504%) conformal matter theory by the pair of nilpotent orbits ([22*],[22%];), and which does not exist
for the ([22%];, [22¥];;) Higgsing. In this way, we see that the class S analysis of the Higgs branch confirms
the conclusion of the 6d (1,0) analysis.



19

(a') $5°4k <52>{[22k7}17 [22]\7]17 [4k -3, 3]$N} (b) 8504k <SQ>{[22}C}17 [22k]117 [4k -3, 3]@]\]}

FIG.IV.1: The (N +2)-punctured spheres associated to the class S theories where the Higgs branch operator
spectrum differs as described in equations (IV.20)) and (IV.21)). The former contains a B(;_1)(ny—1)—1 operator
that the latter does not.

Applying this method to all pairs of very even D-partitions that were studied in Section [[TI} we observe that
the 4d class S and 6d (1,0) approaches to the Higgs branch agree, as (perhaps) expected. The most general
pair of very even D-partitions, studied at the end of Section [[ITD] was

O =[(2k —20)%,2%], O =2k —20')?,2%]. (IV.22)

Combining equations (IV.17)), (IV.18]), and (IV.19) we can again determine ng+ for the pairs (O, 0’) and
(O1,0%;) We find for the pairs of two reds (O, 0}),

ng+(01,07) =2N(k—1) — (k= 0> — (k= 0)> = — '+ (1 — (-1)F),

ng- (OI, O’,) =2Nk—1)—(k—0? (k=) (-0 + (1 + (—1)k) , (1v-23)
and for the pairs of a red and a blue (Or, O%;),
ng+(01,05) =2N(k—1)— (k=0 —(k—0)>—(— 0 +1,
ns-(07,07;) =2N(k—1)— (k—0*— (k—0)> = —{' + 1. (Iv.24)
The Hall-Littlewood indices of the two theories begin to differ at order
T2N(k71)7(kfz)27(k7€’)27£7£’ ’ (IV.25)

where there is one additional flavor singlet Higgs branch operator in the (redy,red;) theory that is absent in
the (redy, bluery) theory. This is identical with the result from the 6d (1,0) tensor branch analysis as given
in equation . Using the methodologies described throughout this paper, the extension to an arbitrary
pair of very even D-partitions, both on the 6d (1,0) and class S sides, is straightforward, though somewhat
tedious.

V. CONCLUSION

In this paper, we have demonstrated that distinct 6d (1,0) SCFTs can share the same description of the
low-energy theory that lives at the generic point of the tensor branch. Such SCFTs differ in their spectrum
of Higgs branch operators, which we compute in two independent ways for the very even nilpotent Higgsing
of rank N (D, D) conformal matter. First, we consider the generators of the Higgs branch spectrum of
the building blocks, i.e. minimal (D, D) conformal matter, out of which the 6d SCFTs we consider are
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built; we then construct gauge-invariant operators out of these generators. Alternatively, we consider the
compactification on a torus, which preserves the Higgs branch, and compute the Higgs branch spectrum from
the dual class S description of the resulting 4d N' = 2 SCFTs. Both approaches lead to identical results.

To conclude, we give several examples which demonstrate how the two possibilities for compositing via
minimal (D, D) conformal matter can lead to distinct 6d SCFTs with the same tensor branch description,
outside of the class of theories obtained via very even nilpotent Higgsing of rank N (D, D) conformal matter.
In these examples, there generally do not exist known class S duals, and thus the powerful techniques used
in this paper to verify the computation of Higgs branch operators cannot be applied. However, we seek
to emphasize that such compositing may also be ambiguous beyond minimal (D, D) conformal matter, for

s5u
example, in configurations where the compositing theory is instead 1°. Further analysis is required to
determine when the tensor branches constructed via the algorithms of [19, 20] correspond to multiple 6d
(1,0) SCFTs.

A. Flavor algebras from E-strings

Flavor symmetries in 6d (1,0) SCFTs can arise in a variety of ways, as pointed out in, for example, [18] [72].
One particular source is the so-called “E-string flavor”, which occurs when we have a configuration of the
form

---7%1,,%~-~. (V.1)
We write a subscript p on the (—1)-curve to stress that compositing the (—m)- and (—n)-curves together via
an E-string involves a choice of embedding

prgdh—eg. (V.2)
The non-Abelian part of the flavor algebra arising from such a compositing is
fE-string — Commutant(p, g @ b) , (V.3)

i.e. the commuting subalgebra of the gauge symmetries under the embedding p, which is highly dependent
on the choice of p. In Section [[ITA] we explore the tensor branch configuration

s07 s07

31, 3, (V.4)
and we discover that there are two inequivalent p, which have commutants u; and &, respectively. The flavor
symmetry is an invariant of the SCFT, thus these two tensor branch configurations correspond to distinct
SCFTs, and the duality to class S verifies that both theories exist as interacting 6d (1,0) SCFTs. Such
ambiguity in the choice of embedding is ubiquitous in the geometric constructions of [19] [20], and raises the
question of which embeddings lead to interacting SCFTs at the origin of the tensor branch. We explore an
example tensor branch configuration with such an ambiguity that appears in [72]. Consider

Sl 508
[so7] 2 1, 4. (V.5)
To understand how the (—1)-curve composites between the two neighboring curves, we need to understand
embeddings

P Sug D sog D fE_String — ¢g, (VG)

where the sus and sog factors must have Dynkin embedding index 1 as they are gauged. For a detailed
study of the relevance of Dynkin embedding index one for F-theory compactifications see [30]. In [72], two
embeddings were pointed out, with

@3

fE—string = su
- 2

and 75U = gp, (V.7)
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however, in principle, there may be additional embeddings. In fact, the embedding
p : suy B sog P spy —> eg, (V.8)

is not appropriate in this configuration, as the Dynkin embedding index of the suy factor is 2, not 1. This
tensor branch configuration can also be obtained from nilpotent Higgsing of rank two (eg,es) conformal
matter:

13161781 (241,D4(a1)) 9171

[e6] [e6] [so7]

(V.9)

Compactification of at least one of the SCFTs associated to the tensor branch configuration in equation
then has a dual description in terms of class & of type eg on a sphere with two simple punctures
and two punctures associated to the nilpotent orbits 24; and D4(a1)lE| From the class S perspective, the
Hall-Littlewood index yields

1+ 3072 + 6473 + O(r?), (V.10)
which demonstrates that the flavor algebra is enhanced from the manifest (so07)16 @ u?® t
f = (s07)16 ® (5u2)5y . (V.11)

Thus, we can confidently state, via the duality to class S, that

SuUo 508
2 1 4, (V.12)
[so7] [sud?)
describes the tensor branch of an interacting 6d (1,0) SCFT, however, this does not suggest that any other
embeddings of the form in equation (V.6) do not give rise to interacting 6d SCFTs. It is an important
question for the understanding of the landscape of possible 6d (1,0) SCFTs to determine if tensor branch
geometries like that in equation (V.5)) correspond to one or more interacting SCFTs.

B. From nilpotent orbits to Es-homomorphisms

The rank N (g,g) conformal matter theories have many tools with which their properties can be studied.
In particular, they can be realized as the worldvolume theories on a stack of M5-branes probing a C2?/ Iy
orbifold. Here, I'y is the finite subgroup of SU(2) of the same ADE-type as g. In this M-theory framework,
the 6d SCFT behaves as a defect in 7d super Yang—Mills, with gauge algebra g, and the SCFT thus inherits
a g@® g flavor symmetry. Each flavor symmetry factor can be Higgsed by a nilpotent orbit of g, corresponding
to turning on asymptotic boundary conditions for the scalar inside of the 7d vector multiplet. Nilpotent
orbits of simple Lie algebras are well-studied and classified [73] [74]. In addition, when compactified on a
torus the resulting 4d A/ = 2 SCFTs have an alternative description in terms of class S and thus one has an
independent construction with which to study aspects of the Higgs branch of the 6d (1,0) SCFTs.

For other classes of 6d (1,0) SCFTs, we are not so lucky. In this section, we remark on the 6d SCFTs
obtained via Higgs branch renormalization group flows from the rank N (eg, g) orbi-instanton theories. The
orbi-instanton is realized in M-theory as a stack of N M5-branes probing a C?/ I'y orbifold singularity, and
contained inside of an M9-brane [4I]. In such a configuration, one must specify the boundary conditions

13 For the exceptional Lie algebras we use the Bala—Carter notation [73} [74] for the nilpotent orbits, see [55] for more details.

14 The levels of the enhanced sus factors are not immediately obvious. They can be obtained by considering the degeneration limit
of the 4-punctured sphere in which the theory becomes a weakly-coupled SU(2) gauging of interacting fixture #43 of [9] with
an additional half-hypermultiplet in the 2. Alternatively, the S-dual realization is a Spin(8) gauging of the (E7)24 X Spin(7)16
SCFT, which is interacting fixture #3 of [9]. The centralizer of sog C (e7)24 is (5u2)§943.
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inside of the M9-brane, which are fixed by a choice of homomorphism 7 : I'y — FEg, and changing these
boundary conditions corresponds to performing Higgs branch renormalization group flows. We can consider
the Higgsed rank N (eg, g) orbi-instanton theories as

QQ,N(W7 U) ) (V13)

where 7 : I'y — Ejy is the Eg-homomorphism with which the eg flavor symmetry is Higgsed, and o : sup — g
is the nilpotent orbit by which the g flavor symmetry is Higgsed. Homomorphisms from I'y,, and I'¢, to
Es have been classified in [75] and [76], respectively, however in each of the other cases there is no known
complete classification. In addition, the orbi-instantons and their Higgsings do not generally have known
class S descriptions after compactification on a torus, and thus that avenue for understanding the 6d Higgs
branch is closed.

In [72], the authors seek to classify the homomorphims I'y — FEs utilizing the study of 6d (1,0) tensor branch

geometries. Of course, if one were to attempt to derive the nilpotent orbits in the same way, and one did
sp
not know about the two different ways of compositing using 1 pointed out in this paper, then one would

not notice that each very even D-partition corresponds to two nilpotent orbits! This is pointed out in [72],
where the authors claim only to classify such homomorphims only up to outer automorphism. Here, we argue
that by including the information about different possible compositings in the tensor branch description, one
can see the difference between Eg-homomorphisms that appear to correspond to the same tensor branch.
Furthermore, one should again be able to determine properties of the Higgs branches of the two SCFTs
obtained in such a way, and observe how they differ.
For conciseness, we consider the following example: take the rank N (es,s0g) orbi-instanton, which has the
following tensor branch configuration:
N—1 (—4)-curves
Suz g2 m
[eg]12 2 3 14 1---4 1][sos]. (V.14)
To be more illuminating, we focus on the case where N = 3. Consider the homomorphism 7 : I'so, — Es,
discussed in [72], which triggers a Higgs branch renormalization group flow to a new 6d SCFT with the
following tensor branch description:

Suo g2 508 508 T 507 508
[s]12 2 31 4 1 4 1[s0g) —> [s00)1 3 1 4 1[s0g]. (V.15)

[spo]

As we can see, there is a (—1)-curve, corresponding to the E-string, that composites between the 5§7 and 5518
building blocks. In Section [[ITA] we saw that such a compositing was ambiguous, and could lead to distinct
6d SCFTs. Due to this ambiguity, we propose that there are two distinct Eg-homomorphisms, labeled as 7
and 7;7, which lead to the same tensor branch. Further Higgsing the sog flavor symmetry on the right by
either the [2%]; or the [2%]7; nilpotent orbit leads to the following tensor branch configuration:

507 508 507 507
[s0g] 1 [sg)] 1 4 1[sog] — [so0g]1 [ri’)] 1 3 [spsy]. (V.16)

Based on the arguments in Section [[ITA] in particular the two distinct embeddings of so7 & so; inside of
¢g given in equation , we expect that this tensor branch configuration corresponds to two distinct
6d SCFTs; (77, [2%];) with an additional u; flavor symmetry, and (777, [2*];) without. Unfortunately, as we
discussed, there does not exist known class S duals for the compactifications of Higgsed orbi-instantons on
T2, and thus, unlike in the study of Higgsed conformal matter, we lack an independent method to verify this
plurality of 6d (1,0) SCFTs[T]

15 When g = sug there are class S descriptions for the Higgsed orbi-instantons [59]. In that reference, the authors point out
SPq su2q48
that there exist Eg-homomorphisms such that after Higgsing the tensor branch has the form 1 2 ..., and it is argued

that, in such cases, the choice of 6-angle for the sp, gauge algebra can lead to two distinct 6d SCFTs. It would be interesting
to verify this from the class S perspective.
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