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Abstract

There exist 4d N = 2 SCFTs in class S which have different constructions as punctured

Riemann surfaces, but which nevertheless appear to describe the same physics. Some of

these class S theories have an alternative construction as torus-compactifications of 6d (1, 0)

SCFTs. We demonstrate that the 6d SCFTs are isomorphic. Each 6d SCFT in question can

be obtained from a parent 6d SCFT by Higgs branch renormalization group flow, and the

parent theory possesses a discrete symmetry under which the relevant Higgs branch flows are

exchanged. The existence of this discrete symmetry, which may be embedded in an enhanced

continuous symmetry, proves that the original pair of class S theories are, in fact, isomorphic.
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1 Introduction

A quantum field theory is characterized by its spectrum of local operators and their n-point

correlation functions. If these differ for two QFTs, we can conclude that they are distinct

theories. More subtly, even when the spectrum of local operators coincide, the theories may

differ in their spectrum of line operators [1] or other non-local observables. These more

subtle differences may be detectable in the n-point correlation functions and/or by putting

the theory on a curved d-dimensional manifold. For conformal field theories (CFTs), the

infinite set of local data is determined by a much smaller (but, for d > 2, necessarily still

infinite) set of data: the scaling dimensions and the 3-point operator product expansion

(OPE) coefficients of the conformal primary operators, namely,

{∆i, λijk} . (1.1)

Since this set is still an infinite amount of data, it is not particularly computable and it

is strongly believed to be highly redundant. Indeed, the goal of the conformal bootstrap

program (see [61] and references therein) is to constrain these data via crossing symmetry

and unitarity. Ideally, we would like to find a finite set of data from which the rest can be

recovered. Then we could determine if two CFTs (or QFTs) are isomorphic, in finite time,

by comparing the two finite sets of data.

Ideally, these finite sets of data should be computable from the presentation of the CFT,

say, as a string theory construction. One approach is to take the subset of the CFT data

that is readily computable and ask if that subset is sufficient to distinguish between distinct

CFTs.

For four-dimensional CFTs, the two central charges (Weyl-anomaly coefficients) a and c,

the flavor symmetry algebra f (generated by conserved currents Ja
µ), and the current algebra

levels (the coefficient, in a certain normalization, of the identity operator in the OPE of

two conserved currents) are readily computed. For 4d N = 2 superconformal field theories

(SCFTs) of class S [40, 41], the global form of the flavor symmetry group F is also readily

computable [11, 28]. Moreover, every interacting 4d N = 2 SCFT has a Coulomb branch

with a C∗-action on it. The dimension of the Coulomb branch and the weights under this

C∗-action, i.e., the U(1)r charges of the generators of the Coulomb branch, are also readily

computable; we call these the graded Coulomb branch dimensions. Finally, the dimension of

the Higgs branch (if the 4d N = 2 SCFT has one) is easily computable. Collectively1, we

refer to these data as the “conventional invariants” of a 4d N = 2 SCFT.

In low-rank cases, these data (or even subsets thereof) suffices to characterize the 4d

SCFT uniquely. For instance, if we encounter a rank one 4d N = 2 SCFT whose Coulomb

1Sometimes, for reasons either historical or expository, we omit the global form of the flavor symmetry

group from the list of conventional invariants. Hopefully, this will be clear from the context.
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branch generator has

∆ = 6 and (a, c) =

(︃
95

24
,
31

6

)︃
, (1.2)

then it must be the (E8)12 Minahan–Nemeschansky theory [6]. Indeed, there are a multitude

of distinct realizations of this SCFT in class S and they are all necessarily isomorphic.

For higher rank cases, however, these “conventional invariants” are known not to suffice

to characterize the 4d SCFT. There are distinct 4d SCFTs whose “conventional invariants”

coincide [28, 30]. Nevertheless, we do have examples where distinct class S constructions

seem to lead to isomorphic SCFTs. One of the purposes of this paper is to show that, when

that happens, the resulting isomorphism frequently has a 6d (1, 0) SCFT origin [10].

The situation in six-dimensions is much better. The 6d (1, 0) SCFTs can be engineered in

F-theory via Calabi–Yau threefolds that are elliptic fibrations over a non-compact complex

surface B [46, 48].2 The configuration of exceptional divisors — which are P1s with negative

self-intersection numbers on B — and the elliptic fibers over them, which we will refer to as

the “curve configuration,” is believed to uniquely characterize the interacting part of the 6d

(1, 0) SCFT.3

The cancellation of gauge anomalies tightly constrains the allowed curve configurations.

Indeed, the flavor symmetry algebra and the anomaly 8-form (f, I8) determine the curve con-

figuration almost but not completely. The anomaly polynomial I8 of a given 6d (1, 0) SCFT

is given by adding geometric contributions, each via characteristic classes of the inherent

symmetry of the theory:

I8 =
α

24
c2(R)2 +

β

24
c2(R)p1(T ) +

γ

24
p1(T )

2 +
δ

24
p2(T )

+
∑︂
a

TrF 2
a

(︄
κap1(T ) + νac2(R) +

∑︂
b

ρabTrF
2
b

)︄
+
∑︂
a

µaTrF
4
a .

(1.3)

2For the elliptically-fibered Calabi–Yau threefold compactifications via geometric-engineering process, see

[2–4, 9, 10, 13, 25, 32–39, 44, 51, 56, 62].
3The 6d effective field theory consists of usual vector, tensor, and hypermultiplets, as well as a collection

of tensionful BPS-strings. The curve configuration defines the effective field theory that exists at the generic

point of the tensor branch of the interacting SCFT that lives at the origin. We reach the conformal fixed

point by shrinking the two-cycles of B, where the two-cycles contribute tensionless strings and the two-cycles

of the fiber contribute massless multiplets; i.e., going to the origin of the tensor branch is equivalent to taking

the tension of all BPS-strings to zero simultaneously. Since the spectrum of BPS-strings is fixed by the curve

configuration, the SCFT obtained by taking the tensionless limit is identical if two curve configurations are

identical. It is shown in [31] that some specific curve configurations can have two different tensionful string

spectra, which can be captured by including additional small data to the curve configuration. Such examples

do not appear in this paper, and thus the tensionless string limit of identical curve configurations leads to

the same SCFT at the origin.
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Upon toroidal compactification, the 6d (1, 0) SCFTs flow to 4d N = 2 SCFTs, whose

conventional invariants (as we shall review below) are determined from a subset of the data in

(f, I8), via the coefficients of the anomaly polynomial term: (f, (β, γ, δ, {κa})). The anomaly

polynomial of the interacting SCFT associated to a curve configuration can completely be

determined from the curve configuration itself [10, 52, 57]. Subtracting the anomaly polyno-

mial of the interacting sector defined via a curve configuration from anomaly polynomial of

a given mixed SCFT yields the anomaly polynomial of a collection of free-hypermultiplets.

Thus, we can determine the SCFT content by finding the interacting part of the SCFT

and the number of free hypermultiplets, while the curve configuration provides a complete

invariant of the interacting part of the 6d (1, 0) SCFT.

Our strategy, then, is very simple: to prove that two 4d N = 2 SCFTs are isomorphic,

we show that they arise as the toroidal compactification of two 6d (1, 0) SCFTs which are

isomorphic because they share the same curve configuration. Hence, we mostly consider 4d

N = 2 SCFTs of class S that admits 6d (1, 0) SCFTs origins.4

The rest of the paper is organized as follows. In Section 2, we show how to find candidates

of isomorphic SCFTs through constructing pairs of class S theories whose 4d conventional

invariants coincide. We show that these theories also admit 6d (1, 0) SCFT origins via toroidal

compactifications by a process of ungauging, followed by gauging. Using the 6d (1, 0) SCFT

parents, we show in Section 3 that each pair is isomorphic and find the renormalization

group (RG) flows between the pairs. We take type e7 SCFTs as the target example theories

and study them explicitly. We revisit the 4d class S theories, that are from the 6d (1, 0)

parents, in Section 4.1 and enumerate the isomorphic fixtures (i.e., 3-punctured spheres)

in the class S theories of type e7. In Section 4.2, we relax some of the constraints in the

algorithm of Section 2 to construct more pairs of isomorphic theories. We even further relax

the constraints in Section 4.3 and construct pairs of theories that differ in the number of free

hypermultiplets, but whose interacting sectors are isomorphic SCFTs. While our analysis

was on type e7 theories, we consider some examples drawn from other ADE types in Section 5

to demonstrate that these are not specific to type e7 theories. Finally, in Section 6, we discuss

some examples which appear to be isomorphic, but which are not related to compactifications

from 6d. For each example pair, we check that their Schur indices agree (up to the order to

which we are able to compute them). In Section 7, we discuss the source of the origins of

these isomorphisms as Z2 outer-automorphisms of 6d (1, 0) SCFTs and how they differ for

the ADE types.

4This does not exhaust the set of apparently-isomorphic 4d SCFTs, and we give some examples without

a 6d (1, 0) origin in Section 6.
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2 Isomorphisms of class S theories and the setup

We consider 4d N = 2 SCFTs of class S, the theories constructed as a compactification of 6d

(2, 0) SCFTs of type g on a genus g n-punctured Riemann surface, with codimension-2 defect

operators filling all of the 4d spacetime and situated at the n marked points on the Riemann

surface [40, 41]. The defect operators located at the (“regular”) punctures are labeled by

nilpotent orbits in g. In this way, a class S theory is encoded in the following data:5

{ g, g, O1, · · · , On } , (2.1)

where the Oi are nilpotent orbits in g. It is natural to ask:

When do two different tuples of data given by

equation (2.1) lead to the same 4d N = 2 SCFTs?

In this section, we will explore methods to generate such tuples which appear to correspond

to isomorphic theories.

We focus on pairs of theories where the genus of the Riemann surface is the same, the 6d

(2, 0) origin is the same, and all but two of the n punctures are the same. That is, we wish

to compare theories associated to the following data:

{ g, g, O1, O2, O3, · · · , ON+2 } and { g, g, O′
1, O′

2, O3, · · · , ON+2 } . (2.2)

Then the question boils down to find under what circumstances are these two theories the

same:

O1

O2

≃

?

O′
1

O′
2

.

(2.3)

5“Twisted” class S theories can be constructed by incorporating outer-automorphism twists of g around

nontrivial cycles on the Riemann surface. In this paper, we consider only untwisted class S theories.

4



The two theories are evidently not isomorphic if they possess different conventional invariants.

Thus, we would only like to consider pairs of the form in equation (2.2) such that the following

quantities of the associated SCFTs are identical:

• the Weyl anomaly coefficients, a and c,

• the flavor symmetry algebras and levels,

• the graded Coulomb branch dimensions,

• the Higgs branch dimension.

For any class S theory, the complex structure moduli of the punctured Riemann surface

parametrize exactly-marginal deformations of the SCFT. Taking a degeneration limit, we

can simplify the question in equation (2.3) to:

0

O1

O2

0

≃

?

0

O′
1

O′
2

0

.

(2.4)

The (N+1)-punctured genus g Riemann surfaces on the left are identical in this degeneration

limit, and if the cylinder connecting them to the three-punctured spheres on the right is

unambiguous,6 then the two theories in equation (2.3) are isomorphic when the two three-

punctured spheres describe isomorphic SCFTs:

O1

O2

≃?
O′

1

O′
2

. (2.5)

6See Section 5.1 for an example of the rare and special cases where there are inequivalent choices for the

connecting cylinders in this degeneration limit.
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In equation (2.4), we have depicted the cylinder connecting the genus g surface and the

three-punctured sphere as joining together two full punctures, labeled by 0. However, this

connecting puncture may be different in non-generic cases. If O1 and O2 are sufficiently low

on the Hasse diagram, then the connecting puncture on the right may instead be forced to be

an irregular puncture (in the sense of [14]); these are labeled [16] by pairs (O,H), consisting

of a nilpotent orbit O and a subgroup H of its flavor symmetry group. The puncture on the

(N + 1)-punctured surface on the left is the puncture O. In a sequence of works [14, 15, 17–

19], the three-punctured spheres with irregular punctures were catalogued, and we can simply

look up the results for the pairs (O1, O2) which yield a 3-punctured sphere with an irregular

puncture.

Alternatively, if the collection of punctures on the genus g surface on the left are suffi-

ciently low down the Hasse diagram, and g = 0, then the full puncture 0, which connects the

(N + 1)-punctured sphere on the left, is replaced by an irregular puncture, (O,H) and the

three-punctured sphere on the right has punctures O1, O2 and O. This will, in fact, be the

generic situation for the examples we study. The three-punctured spheres that we find to be

isomorphic SCFTs of class S will invariably have the 3rd puncture in equation (2.5) being a

less-than-full puncture.

Thus the general question about isomorphisms of class S theories of the form in equation

(2.3) can be simplified to a question about isomorphisms of three-punctures spheres,

O1

O2

O ≃?
O′

1

O′
2

O

, (2.6)

for some choice of third puncture O.

It remains to construct suitable pairs (O1, O2) and (O′
1, O

′
2), such that the resulting 4d

N = 2 SCFTs have all the same conventional invariants. As in [28], a mechanism for doing

so can be constructed via a suitable minimal nilpotent Higgsings, i.e. the Higgs branch

renormalization group flow associated to turning on the highest-root moment map of some

simple factor in the manifest flavor symmetry of one of the punctures. The effect is to replace

the puncture O with the puncture O′ such that O is the minimal degeneration of O′.

Suppose that there exists a pair of nilpotent Higgsings by the same simple Lie algebra f

at the same level k such that

O1
fk−→ O′

1 ,

O′
2

fk−→ O2 .
(2.7)
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In the class S construction, each puncture gives rise to a flavor algebra, referred to as the

manifest flavor algebra f(O), which is a subalgebra of the full flavor algebra of the SCFT. It

is shown in [28] that matching the manifest flavor symmetries, i.e. imposing

f(O1)⊕ f(O2) = f(O′
1)⊕ f(O′

2) (2.8)

automatically leads to candidate pairs (O1, O2) and (O′
1, O

′
2) such that the theories associated

to the three-punctured spheres in equation (2.6) have the same conventional invariants.7

Later in this paper we will see that (2.8) is a sufficient, but not necessary, condition for

obtaining isomorphic pairs. But, for now, let us impose it.

Even if we relax (2.8), we still require that the flavor symmetry algebras and levels

coincide. Indeed, we should go further and demand that the global forms of the flavour

symmetry groups coincide. When these differ, the theories are clearly not isomorphic. But

imposing this stronger condition still does not suffice for the theories to be isomorphic.

In [28], a family of examples was constructed to illustrate this point. Consider the class

S theory of type e7 with the punctures8

(O1, O2) =
(︁
A3, D6(a1)

)︁
, (O′

1, O
′
2) =

(︁
(A3 + A1)

′′, D5

)︁
. (2.9)

Then different choices of the third puncture O lead to various possibilities for the underlying

pairs of SCFTs whose conventional invariants agree. We have depicted the Hasse diagram

of e7 nilpotent orbits in Figure 2.1, where we have color coded the choice of third picture

O according to three different cases based on whether the flavor symmetry algebra and the

global form of the flavor symmetry coincides or not as the following:

• (black): the flavor symmetry algebras agree, but the global form of the flavor symmetry

groups differ,

• (yellow): the global form of the flavor symmetry groups agree, but the theories are not

isomorphic,

• (green): the global form of the flavor symmetry groups agree and the theories appear

to be isomorphic,

• (red): “bad” three-punctured spheres, that are not associated to nontrivial 4d SCFTs.

7It is necessary to choose the third puncture O to be sufficiently high up on the Hasse diagram of nilpotent

orbits of g to guarantee that the theories are not bad, in the sense of Gaiotto–Witten [42].
8We denote the nilpotent orbits of exceptional Lie algebras using Bala–Carter notation [7, 8]. See the

standard reference [20] or the paper [16] for a review.
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0

A1

2A1

(3A1)
′′ (3A1)

′

4A1 A2

A2 + A1

A2 + 2A1

2A2 A2 + 3A1

A3

2A2 + A1

(A3 + A1)
′′

(A3 + A1)
′

A3 + 2A1

D4(a1)

D4(a1) + A1

A3 + A2

D4

A4 A3 + A2 + A1

A4 + A1

D4 + A1

(A5)
′′ A4 + A2

D5(a1)

A5 + A1
(A5)

′ D5(a1) + A1

D6(a2)
E6(a3)

E7(a5)
D5

A6 D6(a1)
D5 + A1

E7(a4)

D6

E6(a1)

E7(a3)
E6

E7(a2)

E7(a1)

(e7)36

(so12)28

(su2)20 (so9)24

(f4)24 (sp3)20
(su2)19

(sp3)19 (su6)20

(su4)18

(su2)28 (su2)16

(g2)16

(su2)36

(g2)28

(su2)12

(so7)16 (su2)38

(so7)16 (su2)12

(su2)13

(su2)13 (su2)12

(su2)12

(su2)12

(su2)12
(sp3)12

(su3)12

(sp2)11

(g2)12
(su2)10

(su2)26
(su2)20

(su2)9

(su2)9
(su2)20

(su2)12
(su2)8

(su2)36
(su2)8 (su2)12

(su2)7

(su2)12

Figure 2.1: The possible choices of the third puncture O in equation (2.6) for the pairs of

punctures in equation (2.9).

In this family of examples, there are four choices for O that appear to lead to isomorphic

pairs of theories:

(A5)
′′ , A5 + A1 , D6(a2) , E7(a5) . (2.10)

The Schur indices up to O(τ 12) were computed in [28] and shown to coincide. While persua-

sive, this is far from sufficient to prove that the pairs of theories are isomorphic.

On the other hand, once we have shown that the pair of theories with third puncture

O = (A5)
′′ are isomorphic, then the isomorphism follows for the other three choices of

third puncture. In particular, it was shown in [28], that any (not necessarily minimal)

nilpotent Higgsing of the third puncture of a pair of isomorphic theories leads to a new pair
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of isomorphic theories. Consider the following sequence of local Higgsings:

(A5)
′′ A5 + A1 D6(a2) E7(a5)
(g2)12 su(2)26 su(2)9

(g2)12

. (2.11)

Black arrows correspond to minimal nilpotent Higgsings associated to giving a VEV to the

highest-root moment map operator of the non-Abelian flavor symmetry which decorates

the arrow. The olive arrow is a non-minimal nilpotent Higgsing corresponding to giving a

VEV to a (g2)12 moment map in the next-to-minimal nilpotent orbit. The Higgsing from

A5 + A1 → D6(a2) is not a nilpotent Higgsing, as it does not involve solely giving a VEV

to a moment map operator, but nevertheless such a Higgs branch renormalization group

flow exists, as shown in [27]. Non-nilpotent Higgsings are in general noteworthy and will be

explored in more detail in a future work [29]. But we do not need to discuss them here; all

of the punctures corresponding to additional isomorphic pairs are obtainable from (A5)
′′ by

a sequence of nilpotent Higgsings.

What remains then is to prove the isomorphism for O = (A5)
′′. The proof involves a

detour via a similar question about isomorphisms between 6d (1, 0) SCFTs known as Higgsed

rank N (g, g) conformal matter. Each of these 6d SCFTs corresponds to a pair of nilpotent

orbits, O1 and O2, as we explain in detail in Section 3. The compactification of such SCFTs

on a torus are dual to class S of type g on a sphere with N + 2 punctures, N of which are

simple punctures, and the remaining two are associated to the nilpotent orbits O1 and O2.
9

This is precisely the kind of class S theories discussed around equation (2.3).

Specializing to the case of g = e7, where the simple puncture is denoted by E7(a1), and

picking the two punctures (Oa, Ob) = (O1, O2) or (O′
1, O

′
2) we can further degenerate the

genus g = 0 Riemann surface on the left in equation (2.4) to write the (N + 2)-punctured

sphere as

E7(a1)

E7(a1)

(︁
D6, SU(2)

)︁

1
2
(2, 1, 1)

E7(a1)

D6(︁
(A5)

′′, G2

)︁SU(2)

1
2
(2, 7, 1)

E7(a1)

(A5)
′′(︁

(3A1)
′′, F4

)︁G2

[(E8)12 SCFT]

E7(a1)

(3A1)
′′ 0

F4

[(F4)24 × (E7)36 SCFT]

E7(a1)

0 0

E7

[(E7)36 × (E7)36 SCFT]

. . .
E7

0

Oa

Ob

E7

. (2.12)

When N ≥ 5, the three-punctured sphere on the right has the full puncture, 0, along with

Oa and Ob. For N = 4, 3, 2, the full puncture is replaced by (3A1)
′′, (A5)

′′ or D6, respectively.

Thus, for low values of N , we are probing the physics of (an F4, G2 or SU(2) gauging of) the

9More precisely, it is a certain codimension (N − 2) sublocus of the conformal manifold of the class S
theory that is dual to the T 2-compactification of the 6d (1, 0) SCFT.
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three-punctured sphere with (3A1)
′′, (A5)

′′ or D6 as the third puncture. If the two 6d (1, 0)

SCFTs that yields these theories with (Oa, Ob) are isomorphic, then the three-punctured

spheres on the right are also isomorphic. For the pairs of punctures in equation (2.9), the

6d (1, 0) theories are manifestly non-isomorphic for N > 3. Hence their T 2 compactification

to 4d does not yield isomorphic theories. However, for N = 3, we find that the theories are

manifestly isomorphic as 6d (1, 0) SCFTs. Hence so are their compactifications to 4d.

We note that in equation (2.12), we made an assumption that Oa and Ob are high-enough

up on the Hasse diagram such that the theory

0

Oa

Ob

, (2.13)

is “good”, i.e., that the compactification of the (2, 0) theory from 6d yields a nontrivial 4d

SCFT. Of the 990 pairs, (Oa, Ob) in the e7 theory, 49 of them are “bad”.

3 Nilpotent Higgsing and identical 6d (1, 0) SCFTs

In Section 2, we showed how to construct pairs of class S theories whose conventional in-

variants coincide. These are are candidates for being isomorphic N = 2 SCFTs. With

considerable additional effort, we could narrow down the list of candidate isomorphic SCFTs

by computing their spectra of Schur operators up to some high order. But this was still far

from sufficient to show that the theories are, in fact, isomorphic.

In this section, we utilize a different, and rather simple, approach to determining whether

or not two of the 4d N = 2 SCFTs of interest are truly identical. First, we ask a similar

question in the context of a class of 6d (1, 0) SCFTs that are each associated to a pair of

nilpotent orbits of an ADE Lie algebra; on torus-compactification, such SCFTs are known

to be dual to class S theories on spheres where two of the punctures are the same as the

nilpotent orbits in the 6d theory, and the rest are simple punctures. At first, it appears that

we have merely uplifted the same problem of determining when two SCFTs are the same to

six dimensions; however, the landscape of consistent 6d (1, 0) SCFTs is highly constrained

from string theory [46, 48].10 In this way, knowledge of the conventional invariants of the

6d (1, 0) SCFT is often enough to fully determine the SCFT, or else leaving only a small

number of possibilities. We can determine for what pairs of nilpotent orbits two such 6d

SCFTs are the same, and this leads to the same conclusion for the 4d N = 2 class S theories

10For recent reviews of the power of string theory in constraining (6d) SCFTs, see [5, 49].
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obtained via torus-compactification, and related SCFTs obtained from degenerations and

partial puncture closure.

The rank N (g, g) conformal matter is the 6d (1, 0) SCFT that lives on the worldvolume

of N M5-branes probing a C2/Γg singularity [24]. Here g can be any ADE Lie algebra, and

Γg is the finite subgroup of SU(2) associated to g via the McKay correspondence [53]. Each

conformal matter theory has a non-Abelian flavor algebra which is

f = g⊕ g , (3.1)

though this can be enhanced for small values of N . From this starting point, new 6d (1, 0)

SCFTs can be obtained via Higgs branch renormalization group flows triggered by giving

nilpotent vacuum expectation values (VEVs) to the moment map operators associated to

these two flavor symmetries. In particular, we can consider the family of theories

Tg,N(OL, OR) , (3.2)

where OL and OR are nilpotent orbits in g. When OL = OR = 0, i.e., the trivial nilpotent

orbit, then we recover the original conformal matter theory, which is often referred to as sim-

ply Tg,N . Such families of 6d (1, 0) SCFTs related via a nilpotent hierarchy have been studied

in great detail, see, for example, [10, 12, 22, 44, 47, 50, 51, 55]. When Tg,N is compactified

on a torus, the 4d N = 2 SCFT that is obtained is known to have a dual description in

terms of the class S construction [26, 58, 59]. In particular, the T 2 compactification is dual

to the compactification of the 6d (2, 0) SCFT of type g on a sphere with two full punctures

and N simple punctures. Higgsing of the 6d (1, 0) SCFT by giving a VEV valued in a nilpo-

tent orbit of g to the moment map operators then corresponds to the partial closure of the

full punctures in the dual class S description; this proposal has been tested extensively in

[10, 31, 54].

In this section, the question we will attempt to answer is:

When do the interacting sectors of two 6d (1, 0)

SCFTs Tg,N(OL, OR) and Tg,N ′(O′
L, O

′
R) match?

It is straightforward to see that Tg,N(OL, OR) and Tg,N ′(O′
L, O

′
R) can only have identical

interacting parts if N = N ′. Rank N conformal matter, for any g, possesses a sequence of

Higgs branch renormalization group flows which eventually ends at the 6d (2, 0) SCFT of

type AN−1 [59]. In particular, after going to the superconformal point at the origin of the

tensor branch, the Type IIB geometry is an elliptic fibration over a base C2/ZN . The defect

group of a 6d SCFT depends only on the information of the base [23]; for C2/ZN , it is simply

ZN . Hence, two interacting SCFTs with different defect groups cannot be identical. A priori,

we could consider a more general version of this question where g′ ̸= g, as there are known
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examples where such different Higgsed conformal matter theories lead to the same 6d (1, 0)

SCFTs. However, we will not consider these cases in this paper and will restrict to the setting

where g remains the same.11 In special cases, this question has been answered previously,

for example, all the theories Tg,1(OL, OR) and Tg,1(O
′
L, O

′
R), where g is an exceptional Lie

algebra, with isomorphic interacting sectors have been tabulated in [10].

The analysis in this paper makes much use of the atomic construction of 6d (1, 0) SCFTs,

which we briefly review here. We consider Type IIB string theory compactified to six di-

mensions on a complex Kähler surface B, and with a non-trivial axio-dilaton profile turned

on along B so as to preserve eight supercharges. The consistency of the axio-dilaton profile

can be rephrased as an elliptic fibration over B, such that the total space of the fibration is

a Calabi–Yau threefold. Compactifications on non-compact elliptically-fibered Calabi–Yau

threefolds, satisfying some conditions such as the absence of compact complex curves in B,

lead to 6d (1, 0) SCFTs. Such threefolds have non-minimal singular fibers and may also

have orbifold-like singularities in the base: B = C2/Γ, where Γ is a finite subgroup of U(2).

Performing a sequence of Kähler deformations leads to a new non-compact elliptically-fibered

Calabi–Yau threefold for which B is smooth and all singular fibers are minimal. Physically,

this procedure involves giving vacuum expectation values to the scalar primaries inside all of

the tensor multiplets of the SCFT; thus, the new Calabi–Yau threefold describes the tensor

branch effective field theory associated to the SCFT.

It turns out that the Calabi–Yau geometries that can correspond to a tensor branch con-

figuration are highly constrained. The only compact curves that the base can contain are

rational curves, and those must intersection in an intersection matrix Aij which is negative-

definite; furthermore, the self-intersection number of each rational curve is constrained to

be ≥ −12, and adjacent curves can only intersect with intersection number one. The de-

tailed conditions have recently been reviewed in [49] and were summarized in recent works of

(subsets of) the current authors [10, 31]. Enumerating tensor branch geometry then reduces

to a problem of combining rational curves and singular fibers/algebras in such a way that

the necessary conditions are satisfied. In the end, we utilize a common shorthand notation,

which we explain via an example. Consider
su3
3 1

su3
3 . (3.3)

This represents a non-compact elliptically-fibered Calabi–Yau threefold where the base con-

tains three P1s, which intersect in the following intersection matrix:

Aij =

⎛⎝−3 1 0

1 −1 1

0 1 −3

⎞⎠
ij

. (3.4)

11In fact, in this paper, we focus on the case where g = e7; however, we include some examples for other

gauge algebras in Section 5.
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The two (−3)-curves are written with an su3 above them, this indicates that the singular

fiber over those curves is of type IV; physically each singular fiber is associated to an algebra,

and that algebra provides a gauge algebra of the effective field theory on the tensor branch.

The tensor branch field theory also contains hypermultiplets transforming in representations

of the gauge algebra, however it is redundant to write them in the shorthand notation, as the

number and representation is entirely fixed by gauge-anomaly cancellation, after specifying

the self-intersection number and the gauge algebra:
g
n.12 We use this concise notation to refer

to a tensor branch effective field theory for a 6d (1, 0) SCFT throughout this paper; we refer

the reader to the review [49] for a comprehensive explanation.

Now that we have introduced a construction for 6d (1, 0) SCFTs from string theory, we

would like to know what physical properties of the resulting SCFTs can be determined from

knowledge of the tensor branch description. When a 6d (1, 0) SCFT is compactified on a

T 2, without any additional bells and whistles, then the dimension of the Coulomb branch of

the resulting 4d N = 2 SCFT is equal to the sum of number of tensor multiplets plus the

sum of the ranks of the gauge algebras of the 6d theory. To avoid confusion, we will call this

number rank(4), even though it is an intrinsic property of the 6d SCFT.

The hallmark of 6d (1, 0) SCFTs is the anomaly polynomial. The anomaly polynomial of

a 6d (1, 0) SCFT is a formal eight-form written in terms of the characteristic classes of the

R-symmetry, Lorentz symmetry, and the flavor symmetry. It takes the form

I8 =
α

24
c2(R)2 +

β

24
c2(R)p1(T ) +

γ

24
p1(T )

2 +
δ

24
p2(T )

+
∑︂
a

TrF 2
a

(︄
κap1(T ) + νac2(R) +

∑︂
b

ρabTrF
2
b

)︄
+
∑︂
a

µaTrF
4
a ,

(3.5)

where each summation over a or b runs over the simple non-Abelian flavor symmetries of the

theory. The coefficients in the anomaly polynomial are referred to as the ’t Hooft coefficients.

The anomaly polynomial can be determined from the effective tensor branch description of

the SCFT following [10, 21, 25, 52, 57].

As we have discussed, in four dimensions the N = 2 conventional invariants are the

central charges, the flavor algebras, and the flavor central charges;13 and these quantities are

neatly summarized in the 4d anomaly polynomial

I6 = 24(a−c)

(︃
1

3
c1(R)3 − 1

12
c1(R)p1(T4)

)︃
−4(2a−c)c1(R)c2(R)+

∑︂
a

kac1(R)c2(Fa) , (3.6)

12There are a small number of cases where the hypermultiplet spectrum is ambiguous even after specifying

the self-intersection number and the algebra, however these situations will not arise in this paper.
13Generally, we include more information in the 4d conventional invariants, such as the graded Coulomb

branch scaling dimensions.
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where c1(R) is the first Chern class of the U(1) R-symmetry, c2(R) is the second Chern class

of the SU(2) R-symmetry, p1(T4) is the first Pontryagin class of the tangent bundle to the 4d

spacetime, and c2(Fa) are the curvatures of the simple non-Abelian flavor symmetry factors.14

A natural generalization of this notion of conventional invariants to the 6d (1, 0) context is to

again to take the anomaly polynomial I8. This quantity, I8, satisfies the necessary condition

to form an invariant: SCFTs with different anomalies polynomials are necessarily different

CFTs. Interestingly, if a 6d (1, 0) SCFT Tg,N(OL, OR) is compactified on a torus, then the

resulting 4d N = 2 anomaly polynomial depends only on a subset of the anomaly coefficients

appearing in equation (3.5). In particular, we can consider the “N = 2 subsector of the 6d

conventional invariants”, which includes only the coefficients

β , γ , δ , {κa} . (3.7)

It is noteworthy then that there can exist 6d (1, 0) SCFTs which have different conventional

invariants, but which compactify on a T 2 to 4d N = 2 SCFTs with the same conventional

invariants. Generally these two 4d SCFTs will be different, as the differences in six dimensions

should be reflected in the torus-compactification; in particular, we would like to understand

how the 6d (1, 0) anomaly coefficient α affects the 4d physics. We leave a detailed answer to

this question for future work.

While the 6d (1, 0) anomaly polynomial is a powerful invariant of the Higgsed conformal

matter theories that we consider in this paper, it is not complete. There exist a small

number of interacting 6d (1, 0) SCFTs with the same anomaly polynomial, and yet which

are distinct SCFTs. Modulo the subtleties15 explored in [31], the effective field theory on

the tensor branch does provide a complete invariant. To determine whether two theories

Tg,N(OL, OR) and Tg,N(O
′
L, O

′
R) possess the same interacting sector, it suffices to determine

the curve configuration/tensor branch description of each theory. If the curve configurations

are the same, then the SCFTs that live at the origin of the tensor branch are the same.

When a Higgs branch renormalization group flow is triggered by giving a nilpotent vac-

uum expectation value, associated to a nilpotent orbit O, to the moment map of a g flavor

symmetry, the resulting SCFT typically has a reduced flavor symmetry. The nilpotent orbit

O is associated to an embedding ρO : su2 → g, and the residual flavor symmetry is defined

to be the commutant in g of this embedded su2; we call this f(O). Then, the manifest

non-Abelian flavor algebra of Tg,N(OL, OR) is

fmanifest = f(OL)⊕ f(OR) . (3.8)

14For ease of explanation we do not write the Abelian flavor symmetries in the anomaly polynomial in

equation 3.6, however they are of course included in spirit.
15The usual tensor branch description, involving a collection of exceptional curves and the elliptic fibers

over them may need to be supplemented, as in [31], by a choice of ± chiral projection for each (−1) curve.

As in [31], these sign choices are well-defined modulo outer-automorphisms of the gauge and flavor algebras.

In the examples discussed in this paper, they are completely removable.
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However, the flavor symmetry of the interacting sector of Tg,N(OL, OR) may differ from

this manifest symmetry. That is, the flavor symmetry and the flavor central charges are

conventional invariants of the 6d (1, 0) SCFT which cannot be read off from the pair of

nilpotent orbits directly, but one must first go through the intermediate step of constructing

the tensor branch description, and then use the procedure described in [10] to read off the

correct non-Abelian flavor algebras and their flavor central charges.

There is no guarantee that Tg,N(OL, OR) is an interacting SCFTs with no free sector and

a single stress-energy tensor. Therefore, it is not only important to know the effective tensor

branch description of the interacting sector, but also to be able to determine the number of

free hypermultiplets in the spectrum. The quaternionic dimension of the Higgs branch of

Tg,N(OL, OR) is

dim(H) = N + dim(g)− dim(OL)− dim(OR) . (3.9)

Here the dimension of the nilpotent orbit is as defined in [20]. In contrast, if we have a tensor

branch configuration corresponding to a single interacting SCFT that is Higgsable to a 6d

(2, 0) SCFT of rank N − 1, then the dimension of the Higgs branch of this interacting SCFT

can be obtained from the anomaly polynomial [58, 59]. It is

dim(H) = −60δ − 29(N − 1) , (3.10)

where δ is the coefficient of the p2(T ) term appearing in the anomaly polynomial in equation

(3.5). The difference between the dimension of the Higgs branch in equations (3.9) and (3.10)

is the number of free hypermultiplets in Tg,N(OL, OR). A free hypermultiplet transforming

in a representation R of a flavor algebra f contributes to the anomaly polynomial as

I free hyper
8 (f,R, F ) =

1

24
TrRF

4 +
1

48
p1(T )TrRF

2 +
dim(R)

5760

(︁
7p1(T )

2 − 4p2(T )
)︁
, (3.11)

where F is the curvature associated to f. Thus, we can see that adding free hypermultiplets

does not modify the anomaly coefficients α and β in the combined theory. As these coefficients

are insensitive to the inclusion of free sectors, they are conventional invariants which are well-

suited for searching for Tg,N(OL, OR) SCFTs with the same interacting sector.

For the remainder of the section, we specialize to studying isomorphic pairs of the 6d

(1, 0) SCFTs from rank N (e7, e7) conformal matter that leads to class S theories via toroidal

compactifications. It is a curious quirk that the isomorphism of 6d (1, 0) SCFTs is more

obvious when considering g = en than when considering g a classical Lie algebra. We first

highlight the power of the curve configuration in determining isomorphisms by analyzing in

detail for two examples in Section 3.1, and then provide all the isomorphic pairs with g = e7
in Section 3.2.
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3.1 Examples of two pairs of isomorphic SCFTs with g = e7

Let us now present a couple of detailed examples to illustrate pairs of theories with isomorphic

interacting sectors. We first consider the theory

Te7,N(A3, A3 + 2A1) , (3.12)

which has

rank(4) = 18N − 22 , α = 2304N3 − 13438N + 12586− 48

N
, β = 269− 191N ,

dimH = N + 44 , fmanifest = (su2)12 ⊕ (su2)24 ⊕ (su2)13 ⊕ (so7)16 .

(3.13)

We compare this theory with a different Higgsed (e7, e7) conformal matter,

Te7,N ((A3 + A1)
′′, (A3 + A1)

′) . (3.14)

The physical properties of this latter theory are

rank(4) = 18N − 22 , α = 2304N3 − 13438N + 12562 , β = 269− 191N ,

dimH = N + 44 , fmanifest = (su2)12 ⊕ (su2)24 ⊕ (su2)13 ⊕ (so7)16 .
(3.15)

It is clear that, for generic values ofN , the theories in equations (3.12) and (3.14) are different,

in particular, they have different values of the ’t Hooft anomaly coefficient α. This is also

clear to see from the tensor branch descriptions of each theory. We have two theories

Te7,N(A3, A3 + 2A1) :
su2
2 1

e7
8
1

N−2⏟ ⏞⏞ ⏟
1
su2
2

so7
3

su2
2 1

e7
8 · · · 1

su2
2

so7
3

su2
2 1

e7
71 2 , (3.16a)

Te7,N((A3 + A1)
′′, (A3 + A1)

′) :
su2
2 1

e7
7

N−2⏟ ⏞⏞ ⏟
1
su2
2

so7
3

su2
2 1

e7
8 · · · 1

su2
2

so7
3

su2
2 1

e7
8
1
1 2 . (3.16b)

Both of these theories can be obtained from a nilpotent Higgsing of a parent theory, in this

case Te7,N(A3, (A3 + A1)
′), as we can see from the Hasse diagram in Figure 3.1. The parent

theory has two (su2)12 flavor symmetries, and giving a nilpotent vacuum expectation value

to the associated moment map operators triggers a Higgs branch renormalization flow from

A3 → (A3 + A1)
′′ and (A3 + A1)

′ → A3 + 2A1 , (3.17)

respectively. On the tensor branch, these Higgsings can be though of as shrinking either of

the dangling (−1)-curves and deforming the geometry to remove the resulting singularity.
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Te7,N(A3, (A3 + A1)
′)

su2
2 1

e7
8
1

N−2⏟ ⏞⏞ ⏟
1
su2
2

so7
3

su2
2 1

e7
8 · · · 1

su2
2

so7
3

su2
2 1

e7
8
1
1 2

f = (su2)
⊕2
12 ⊕ (su2)24 ⊕ (su2)13 ⊕ (so7)16

Te7,N(A3, A3 + 2A1)

su2
2 1

e7
8
1

N−2⏟ ⏞⏞ ⏟
1
su2
2

so7
3

su2
2 1

e7
8 · · · 1

su2
2

so7
3

su2
2 1

e7
71 2

f = (su2)12 ⊕ (su2)24 ⊕ (su2)13 ⊕ (so7)16

Te7,N((A3 + A1)
′′, (A3 + A1)

′)

su2
2 1

e7
7

N−2⏟ ⏞⏞ ⏟
1
su2
2

so7
3

su2
2 1

e7
8 · · · 1

su2
2

so7
3

su2
2 1

e7
8
1
1 2

f = (su2)12 ⊕ (su2)24 ⊕ (su2)13 ⊕ (so7)16

(A3+A1)′→A3+2A1 A3→(A3+A1)′′

Figure 3.1: The Hasse diagram for the two nilpotent Higgsings of Te7,N(A3, (A3 + A1)
′) that

lead to Te7,N(A3, A3 + 2A1) and Te7,N((A3 + A1)
′′, (A3 + A1)

′). In both cases the Higgsing

involves giving a vacuum expectation value to the highest-root moment map of an (su2)12
flavor symmetry factor.

Te7,2(A3, (A3 + A1)
′)

su2
2 1

1
e7
8
1
1 2

f = (su2)
⊕2
12 ⊕ (su2)24 ⊕ (su2)13 ⊕ (so7)16

Te7,2(A3, A3 + 2A1)
su2
2 1

e7
7
1
1 2

f = (su2)12 ⊕ (su2)24 ⊕ (su2)13 ⊕ (so7)16

Te7,2((A3 + A1)
′′, (A3 + A1)

′)
su2
2 1

e7
7
1
1 2

f = (su2)12 ⊕ (su2)24 ⊕ (su2)13 ⊕ (so7)16

(A3+A1)′→A3+2A1 A3→(A3+A1)′′

Figure 3.2: The Hasse diagram in Figure 3.1 when N = 2. The parent theory, Te7,2(A3, (A3+

A1)
′), has a Z2 automorphism that interchanges the two (su2)12 flavor symmetry factors, and

thus nilpotent Higgsing by either factor leads to the same infrared 6d (1, 0) SCFT.

When N = 2, we can see that the two theories in equations (3.12) and (3.14) have

the same value of α, in addition to the other properties that agree for all N .16 These are

16It is important to note that α, β, and rank(4) are the same. In this example, they also have the same Higgs
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necessary conditions for the two SCFTs to be the same; now, we determine the tensor branch

descriptions of the SCFTs when N = 2, and we find that the Hasse diagram in Figure 3.1

becomes the Hasse diagram in Figure 3.2. It is clear that the tensor branch description of

the parent theory possesses a Z2 automorphism that exchanges the two dangling (−1)-curves

attached to the central (−8)-curve. Thus Higgsing by giving a nilpotent vev to either of

the two (su2)12 moment maps yields the same tensor branch description and thus the same

SCFTs, that is:

Te7,2(A3, A3 + 2A1) = Te7,2((A3 + A1)
′′, (A3 + A1)

′) . (3.18)

In the previous example, we have considered a solution to the question posed in this

section where the Higgsed conformal matter theories are interacting SCFTs, with no free

sector, and where the non-Abelian flavor algebra of the identical theories is simply the man-

ifest flavor algebra associated to the nilpotent orbits. We now consider an example where

each Higgsed conformal matter theory contains different numbers of free hypermultiplets and

where there is flavor symmetry enhancement for both theories. Consider the theories, which

we list together with their relevant physical properties, in Table 1. We can see that when

N = 2, we have two SCFTs with the same values of α, β, and rank(4); these are then good

candidates for theory with isomorphic interacting sectors. We determine that the tensor

branch description for the interacting sector of both theories is

so9
4 1

su3
2 . (3.19)

The interacting SCFT associated to this tensor branch has

dimH = 41 , f = (su2)9 ⊕ (su6)18 . (3.20)

From the differences in the dimensions of the Higgs branches, we can see that Te7,2(A2, D6(a2))

contains six free hypermultiplets, which rotate under an (su6)2 flavor algebra; similarly,

Te7,2(A2 + A1, A
′
5) contains two free hypermultiplets, which rotate under the fundamental

of an (su2)2 flavor algebra. This is consistent with the non-Abelian flavor symmetry of the

interacting sector in equation (3.20). Thus, we learn that

Te7,2(A2, D6(a2)) =
so9
4 1

su3
2 + 6 free hypers ,

Te7,2(A2 + A1, A
′
5) =

so9
4 1

su3
2 + 2 free hypers .

(3.21)

branch dimension and manifest flavor symmetries. However this is not necessary for the Higgsed conformal

matter theories to have the same interacting sectors.
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Theory Te7,N (A2, D6(a2)) Te7,N (A2 +A1, A
′
5)

Tensor

branch
so9
4 1

g2

3
su2

2 1

N−3⏟ ⏞⏞ ⏟
e7
81

su2

2
so7
3

su2

2 1 · · ·
e7
81

su2

2
so7
3

su2

2 1
e7
81

su2

2
su4

2
so9
4 1

so7
3

su2

2 1

N−3⏟ ⏞⏞ ⏟
e7
81

su2

2
so7
3

su2

2 1 · · ·
e7
81

su2

2
so7
3

su2

2 1
e7
81

su2

2
su3

2

α 2304N3 − 24958N + 39447− 13872/N 2304N3 − 23806N + 35607− 10800/N

β 663− 382N 663− 382N

rank(4) 18N − 27 28N − 27

dimH N + 45 N + 41

fmanifest (su2)9 ⊕ (su6)20 (su2)9 ⊕ (su2)20 ⊕ (su4)18

Table 1: Some of the physical properties of the 6d (1, 0) SCFTs Te7,N(A2, D6(a2)) and

Te7,N(A2 + A1, A
′
5).

Similarly to the isomorphic interacting SCFTs that appear in Figure 3.2, we argue that

there exists a parent theory, and that the isomorphism of the interacting sectors of the two

SCFTs listed in Table 1 can similarly be understood as due to an enhanced symmetry in the

parent theory that makes the equivalency of the two nilpotent Higgsings manifest. In this

case, the parent theory is Te7,N(A2, A
′
5), which has the tensor branch description

so9
4 1

so7
3

su2
2 1

N−3⏟ ⏞⏞ ⏟
e7
81

su2
2

so7
3

su2
2 1 · · ·

e7
81

su2
2

so7
3

su2
2 1

e7
81

su2
2

su4
2 .

(3.22)

The non-Abelian flavor algebra of this SCFT is

(su2)9 ⊕ (su2)20 ⊕ (su6)20 . (3.23)

The Higgs branch renormalization group flows that lead to the two SCFTs in Table 1 are

A2 → A2 + A1 and A′
5 → D6(a2) , (3.24)

which correspond to giving highest-root nilpotent vacuum expectation values to the moment

maps of the (su6)20 and (su2)20 flavor algebras, respectively. When N = 2 the tensor branch

becomes
so9
4 1

su4
2 , (3.25)

and the two flavor symmetry factors with level 20 recombine to the enhanced flavor algebra

(su2)20 ⊕ (su6)20 → (su8)20 . (3.26)

In the previous example, we observed that when N = 2 there emerged a discrete Z2 sym-

metry of the tensor branch configuration, and this provided the physical justification for the
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isomorphism of the two theories in the Hasse diagram in Figure 3.2; in this case, instead of a

emergent discrete symmetry we see that there is an enhanced continuous symmetry. When we

see an enhanced flavor symmetry, we can Higgs by giving a vacuum expectation value to the

highest-root moment-map of that enhanced flavor symmetry; this triggers a renormalization

group flow to a new interacting SCFT. However, giving a VEV to the highest-root moment

map of a subalgebra will lead to the same interacting SCFT, but with differing numbers of

free hypermultiplets transforming under the unbroken part of the flavor symmetry. As such,

it is clear that when there exists such a flavor symmetry enhancement, the two Higgs branch

deformations corresponding to, in this case,

A2 → A2 + A1 and A′
5 → D6(a2) , (3.27)

lead to theories with the same interacting sector. The unbroken part of the flavor symmetry is,

respectively, su2 and su6, which produces precisely the correct number of free hypermultiplets

that we observed in equation (3.21).

3.2 Isomorphic theories for g = e7

We now possess a straightforward and algorithmic method to determine all answers to the

question posted in this section, for a given g. For each theory Tg,N(OL, OR), it is well-

known how to determine the tensor branch description for N sufficiently large such that

the nilpotent Higgsing on the left and right do not cross-correlate across the tensor branch.

From this effective tensor branch description, we can compute rank(4) of the SCFT and the

anomaly polynomial. For any pair of theories Tg,N(OL, OR) and Tg,N(O
′
L, O

′
R) we then ask if

there exists a value of N such that α, β, and the rank(4) are the same. From the resulting

list of putatively isomorphic theories, we determine the tensor branch descriptions of the

interacting part of each pair, and if they are identical then the two SCFTs associated to

each pair are identical. The results are conveniently summarized in a collection of Hasse

diagrams describing Higgs branch renormalization group flows; for g = e7 there exists pairs

with isomorphic interacting sectors for N = 1, · · · , 5, and we depict these in Figures 3.3, 3.4,

3.5, and 3.6, respectively.

In the Hasse diagrams that we have drawn, we have generally shown 6d (1, 0) SCFTs

which have two realizations by two different pairs of nilpotent orbits connected by arrows if

there exists a (minimal) nilpotent Higgsing (that is, a Higgsing triggered by giving a vacuum

expectation value to a highest-root moment map of a simple non-Abelian flavor symmetry

factor) between two interacting SCFTs. We have depicted these nilpotent Higgsing by solid

arrows labelled by the flavor algebra which is given a VEV. However, in the sets of theories

that we consider, there also exist elementary slices in the Hasse diagram of nilpotent orbit

closures, which are not associated to a nilpotent Higgsing. These are labeled by dashed
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arrows; they occur when we have a 6d tensor branch description which is of one of the

following forms:

· · · 1
e7
51 · · · , · · · 1

e7
41 · · · . (3.28)

Anomaly cancellation requires that the e7 gauge algebra has n56 = 3 or n56 = 4 half-

hypermultiplets, respectively, in the fundamental representation; thus there is an son56 flavor

symmetry under which the half-hypermultiplets transform in the vector representation.17

There is a Higgsing of these theories to SCFTs with tensor branch configurations

· · · 1
e6
51 · · · , · · · 1

e6
41 · · · , (3.29)

respectively. This is not a nilpotent Higgsing of the son56 flavor factor. Understanding the

Higgs branch renormalization group flows between conformal matter theories (in particular

those which, like the ones discussed here, are not nilpotent Higgsings) is the subject of [29];

we leave a fuller explanation to that work.

For g = e7, it is noteworthy that almost all pairs of theories

Tg,N(OL, OR) and Tg,N(O
′
L, O

′
R) , (3.30)

with the same rank(4) and the same ’t Hooft anomaly coefficients α and β have isomorphic

interacting parts.18 In fact, there is precisely one counterexample. The theories

Te7,3(D4(a1), A
′′
5) and Te7,3((A3 + A1)

′′, E6(a3)) , (3.31)

have the same α, β, and rank(4), however they correspond to SCFTs with tensor branch

descriptions

1
f4
51

g2
3
su2
2 1

1
e7
8
1
1 and

so8
4 1

so7
3

su2
2 1

e7
71

su2
2 , (3.32)

respectively. This is merely a consequence of the fact that the (mixed) R-symmetry and grav-

itational anomalies do not provide sufficient data to distinguish any pair of 6d (1, 0) SCFTs,

and it is thus necessary to determine the full tensor branch description: the tensor branch

effective field theory is (modulo the aforementioned subtlety of [31]) a complete invariant of

the SCFT, unlike the anomalies.

17We note that this is different from the manifest flavor symmetry, but rather, an enhanced flavor symmetry

for the case of n56 = 4. This can be observed easily in the entry 13 of Table 3.
18For obvious reasons, this statement requires that Tg,N (OL, OR) and Tg,N (O′

L, O
′
R) have a non-trivial

interacting sector.
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1
so7

2

Te7,1(2A1, 3A′
1)

(dim C, dimH) = (5, 76)

1
g2

3 1

Te7,1(2A1, 3A′′
1 )

(dim C,dimH) = (5, 80)

1
g2

2 4-20

(dim C, dimH) = (4, 72)

1
su3

2 4-21

(dim C, dimH) = (4, 68)

su2

1
su2

2

(dim C,dimH) = (4, 76)

1 2
su2

2

(dim C,dimH) = (4, 92)

su3

1 4-22

(dim C, dimH) = (3, 57)

1
su2

2
4-16
4-17

(dim C, dimH) = (3, 63)

1 2
4-18
4-19

(dim C, dimH) = (2, 59)

1 4-23

(dim C, dimH) = (1, 29)

(sp4)20 (f4)24

(sp4)19

(e6)24 (su6)18 (so16)28 (e8)36

(so7)16

(su2)13

Figure 3.3: The Hasse diagram of 6d (1, 0) SCFTs arising from Higgsed rank one (e7, e7)

conformal matter which occur via Higgsing by two distinct pairs of nilpotent orbits. We

write the tensor branch description of the interacting sector. We have not depicted any

non-minimal Higgs branch RG flows. Tensor branch configurations which are colored red

are parent theories. The olive-colored “x-y” refers to Table x, entry y, where the pair of

nilpotent orbits and its flavor symmetry are listed. This Hasse diagram is a subdiagram of

Hasse diagram of nilpotent Higgsings of minimal (e7, e7) conformal matter that appears in

[10]. Note that this case contains some triples of pairs corresponding to isomorphic theories.
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su2

2 1

1
e7
8
1
1 2

Te7,2(A3, (A3 +A1)′)

(dim C, dimH) = (15, 47)

su2

2 1
e7
7
1
1
su2

2

Te7,2(A3, (A3 +A1)′′)

(dim C, dimH) = (15, 50)

g2

3
su2

2 2 1
Te7,2(0, A6)

(dim C, dimH) = (7, 78)

su2

2 1
e7
7
1
1 2 2-12

(dim C, dimH) = (14, 46)

g2

3
su2

2 1 4-9
(dim C, dimH) = (6, 49)

su2

2 1

1
e7
7
1
1 2-13

(dim C, dimH) = (14, 45)

2 1

1
e7
7
1
1 2-14

(dim C, dimH) = (13, 41)

su2

2 1
e7
6
1
1 3-7

(dim C, dimH) = (13, 44)

2 1
e7
6
1
1 3-8

(dim C, dimH) = (12, 40)

su2

2 1
e7
51 3-10

(dim C, dimH) = (12, 43)

so9

4 1
so7

3 1
Te7,2(2A1, A′

5)

(dim C, dimH) = (11, 55)

1

1
e7
6
1
1 3-9

(dim C, dimH) = (12, 39)

2 1
e7
51 3-11

(dim C, dimH) = (11, 39)

su2

2 1
e6
51 4-4

(dim C, dimH) = (11, 41)

so9

4 1
g2

3 1 3-14
(dim C, dimH) = (10, 53)

1
e7
5
1
1 3-12

(dim C, dimH) = (11, 38)

2 1
e6
51 4-5

(dim C, dimH) = (10, 37)

so8

4 1
g2

3 1 3-15
(dim C, dimH) = (10, 52)

so9

4 1
g2

2 4-12
(dim C, dimH) = (9, 45)

1
e7
41 3-13

(dim C, dimH) = (10, 37)

1
e6
5
1
1 4-6

(dim C, dimH) = (10, 36)

so8

4 1
g2

2 4-13
(dim C,dimH) = (9, 44)

so9

4 1
su3

2 4-10
(dim C, dimH) = (9, 41)

1
e6
41 4-7

(dim C, dimH) = (9, 34)

so8

4 1
su3

2 4-11
(dim C,dimH) = (9, 40)

so9

4 1
su2

2 4-14
(dim C, dimH) = (8, 36)

e6
31 4-8

(dim C, dimH) = (8, 32)

so9

4 1 2 4-15
(dim C, dimH) = (7, 32)

(su2)12 (so7)16 (e8)36

(su2)13

(so7)16 (su2)12

(su2)12 (so7)16
(su2)12

(su2)13 (su2)12
(so7)16 (sp2)20

(su2)12 (su2)13 (so7)16
(su2)9 (f4)24

(su2)12 (su2)13 (f4)24 (su2)9
(sp4)19

(su3)12 (sp4)19 (su2)9
(su6)18

(su3)12 (so7)16

Figure 3.4: The Hasse diagrams of 6d (1, 0) SCFTs arising from Higgsed rank two (e7, e7)

conformal matter which occur via Higgsing by two distinct pairs of nilpotent orbits. See the

caption of Figure 3.3 for an explanation of the notation.
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su2

2 1

1
e7
8
1
1
su2

2
so7

3

Te7,3(A3, D5)

(dim C, dimH) = (20, 38)

so9

4 1
so7

3 1
so8

4
Te7,3((A5)′, E6(a3))

(dim C, dimH) = (16, 27)

so9

4 1
g2

3 1
so9

4
Te7,3((A5)′, D6(a2))

(dim C,dimH) = (15, 26)

su2

2 1

1
e7
71

su2

2
so7

3 2-5
(dim C, dimH) = (19, 37)

so9

4 1
g2

3 1
so8

4 2-11
(dim C,dimH) = (15, 25)

su2

2 1

1
e7
71

su2

2
g2

3 2-6
(dim C, dimH) = (18, 36)

2 1

1
e7
71

su2

2
so7

3 2-7
(dim C, dimH) = (18, 33)

2 1

1
e7
71

su2

2
g2

3 2-8
(dim C, dimH) = (17, 32)

1

1
e7
7
1
1
su2

2
so7

3 2-9

(dim C, dimH) = (18, 32)

1

1
e7
7
1
1
su2

2
g2

3 2-10

(dim C, dimH) = (17, 31)

1

1
e7
61

su2

2
so7

3 3-3
(dim C, dimH) = (17, 31)

1

1
e7
61

su2

2
g2

3 3-4
(dim C,dimH) = (16, 30)

1
e7
51

su2

2
so7

3 3-5
(dim C, dimH) = (16, 30)

1
e7
51

su2

2
g2

3 3-6
(dim C,dimH) = (15, 29)

1
e6
51

su2

2
so7

3 4-2
(dim C, dimH) = (15, 28)

1
e6
51

su2

2
g2

3 4-3
(dim C,dimH) = (14, 27)

(su2)12 (sp2)20 (su2)9

(su2)8
(so7)16

(so7)16
(su2)8

(su2)13

(su2)13 (su2)12
(su2)8

(su2)12 (su2)12(su2)8

(su2)12 (su2)8

(su2)8

Figure 3.5: The Hasse diagrams of 6d (1, 0) SCFTs arising from Higgsed rank three (e7, e7)

conformal matter which occur via Higgsing by two distinct pairs of nilpotent orbits. See the

caption of Figure 3.3 for an explanation of the notation.
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su2

2 1

1
e7
8
1
1
su2

2
so7

3
su2

2

Te7,4(A3, E6)

(dim C, dimH) = (22, 35)

so7

3
su2

2 1

1
e7
71

su2

2
so7

3
(dim C, dimH) = (23, 24)

su2

2 1

1
e7
71

su2

2
so7

3
su2

2 2-1
(dim C, dimH) = (21, 34)

g2

3
su2

2 1

1
e7
71

su2

2
so7

3 2-4
(dim C, dimH) = (22, 23)

2 1

1
e7
71

su2

2
so7

3
su2

2 2-2
(dim C, dimH) = (20, 30)

1

1
e7
7
1
1
su2

2
so7

3
su2

2 2-3

(dim C, dimH) = (20, 29)

1

1
e7
61

su2

2
so7

3
su2

2 3-1
(dim C, dimH) = (19, 28)

1
e7
51

su2

2
so7

3
su2

2 3-2
(dim C, dimH) = (18, 27)

1
e6
51

su2

2
so7

3
su2

2 4-1
(dim C, dimH) = (17, 25)

(su2)12
(su2)8

(so7)16

(su2)13

(su2)12

(su2)12

(a) N = 4.

so7

3
su2

2 1

1
e7
8
1
1
su2

2
so7

3
su2

2

Te7,5(D5, E6)

(dim C, dimH) = (26, 22)

so7

3
su2

2 1

1
e7
71

su2

2
so7

3
su2

2 2-15
(dim C, dimH) = (25, 21)

g2

3
su2

2 1

1
e7
71

su2

2
so7

3
su2

2 2-16
(dim C,dimH) = (24, 20)

(su2)12

(su2)8

(b) N = 5.

Figure 3.6: The Hasse diagrams of 6d (1, 0) SCFTs arising from Higgsed rank four and rank

five (e7, e7) conformal matter which occur via Higgsing by two distinct pairs of nilpotent

orbits. See the caption of Figure 3.3 for an explanation of the notation.
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4 Isomorphic 4d N = 2 SCFTs of class S with g = e7

We can now return to the three-punctured spheres that were discussed in Section 2. Following

Section 3, we know how to determine when 6d (1, 0) SCFTs associated to the data

(g, N,OL, OR) , (4.1)

are isomorphic. The 4d N = 2 SCFTs resulting from the toroidal compactification of these

isomorphic 6d SCFTs are thus evidently themselves isomorphic. Each of the 4d SCFTs has a

dual description in terms of class S, and we can take the degeneration limit depicted in equa-

tion (2.12).19 Finally, moving to the codimension one boundary of the conformal manifold

we can see that the three-punctured spheres on the right in equation (2.12) decouple, and we

have established the isomorphism. It is important to note that the third puncture, appearing

in both three-punctured sphere, must belong to the quiver tail in the degeneration limit;

for g = e7, the possible choices of regular third puncture are O = E7(a1), D6, (A5)
′′, (3A1)

′′.

Further isomorphisms of three-punctured spheres can be obtained via nilpotent Higgsings of

the non-Abelian flavor symmetry associated to the third puncture.

4.1 Pairs with the same manifest symmetries

We begin by considering three-punctured spheres where the flavor symmetry is simply the

manifest flavor symmetry induced by the choice of the three punctures. The discovering of

such examples was a part of the analysis in [28]; in particular, the putatively isomorphic pair

satisfies equation (2.7) together with equation (2.8). The isomorphic pairs of three-punctured

spheres satisfying this condition, and for which the isomorphism can be proven directly from

six dimensions, are listed in Table 2.

The last two entries in Table 2 are a little special, as the collision of the two chosen

punctures leads to an irregular fixture on the right. The quiver tails for theory A in row 15

looks like

E7(a1)

E7(a1)

(︁
D6, SU(2)

)︁

1
2
(2, 1, 1)

E7(a1)

D6(︁
(A5)

′′, G2

)︁SU(2)

1
2
(2, 7, 1)

E7(a1)

(A5)
′′(︁

(3A1)
′′, F4

)︁G2

[(E8)12 SCFT]

E7(a1)

(3A1)
′′
A1

F4

[(F4)24 × Spin(13)28 SCFT]

(︁
A1, Spin(12)

)︁
D5

E7(a2)

Spin(12)

(12) + [(E7)8 SCFT] ,

(4.2)

19In equation (2.12), we drew the degeneration limit for g = e7, however the generalization to arbitrary g

is obvious.
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whereas the quiver tail for theory B in row 16 is

E7(a1)

E7(a1)

(︁
D6, SU(2)

)︁

1
2
(2, 1, 1)

E7(a1)

D6(︁
(A5)

′′, G2

)︁SU(2)

1
2
(2, 7, 1)

E7(a1)

(A5)
′′(︁

(3A1)
′′, F4

)︁G2

[(E8)12 SCFT]

E7(a1)

(3A1)
′′
A1

F4

[(F4)24 × Spin(13)28 SCFT]

(︁
A1, Spin(12)

)︁
E7(a4)

E6

Spin(12)

(12) + (32) .

(4.3)

The degeneration for the other element of each pair involves modifying only the two rightmost

punctures.

For entries 1–11 in Table 2, we can do a chain of nilpotent Higgsings of the third puncture

to establish other isomorphic pairs of theories. For entries 1–4 in Table 2, we can start with

(3A1)
′′ and Higgs it according to the following:

(3A1)
′′ 4A1 A2 + A1 A2 + 2A1

2A2

A2 + 3A1

2A2 + A1

(f4)24 (sp3)19 (su4)18

(su2)28

(su2)16

(g2)16

(g2)28

. (4.4)

The Higgsing to 2A2 is special. For these theories, the manifest (su2)16⊕ (su2)28⊕ (su2)84
symmetry of the A2+2A1 puncture is enhanced to (su2)16⊕(su2)28⊕(su2)28⊕(su2)56. Of the

two (su2)28 factors present in the SCFT, which one is the “manifest” one (whose Higgsing

leads to the 2A2 puncture) differs between Theory A and Theory B. Hence, at that one

step in the chain, the nilpotent Higgsing of the manifest (su2)28, which leads to 2A2, yields

non-isomorphic SCFTs in Theories A and B.

The Higgsings for entries 5–11 in Table 2 are simpler, yielding three additional pairs of

isomorphic theories per entry. These Higgsings were discussed around equation (2.11), and

they are

(A5)
′′ A5 + A1 D6(a2) E7(a5)
(g2)12 su(2)26 su(2)9

(g2)12

. (4.5)

Nilpotent Higgsing of the (su2)7 flavor factor associated to the D6 punctures in entries 12–14

yields bad theories, as would further Higgsings of 2A2 + A1 in equation (4.4).
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# Theory A Theory B Nmin 6d SCFT Flavor symmetry

1
A3

E7(a2)
(3A1)

′′ (A3 +A1)
′′

E6

(3A1)
′′ 4

su2

2
so7

3
su2

2 1
e7
7
1
1
su2

2 (su2)12 ⊕ (so7)16

2
E6

A3 + 2A1

(3A1)
′′ E7(a2)

(A3 +A1)
′

(3A1)
′′ 4

su2

2
so7

3
su2

2 1
e7
7
1
1 2 (su2)12 ⊕ (su2)24 ⊕ (su2)13

3
D4(a1)

E7(a2)
(3A1)

′′ D4(a1) +A1

E6

(3A1)
′′ 4 su2

2
so7

3
su2

2 1

1
e7
7
1
1 (su2)

⊕3
12

4
D5

E7(a4)
(3A1)

′′ D6(a1)

D5 +A1

(3A1)
′′ 4

so7

3
su2

2 1
e7
7
1
1
su2

2
g2

3 (su2)12 ⊕ (su2)8

5
A3

D6(a1)
(A5)

′′ (A3 +A1)
′′

D5

(A5)
′′ 3

so7

3
su2

2 1
e7
7
1
1
su2

2 (su2)12 ⊕ (su2)8 ⊕ (so7)16

6
A3

E7(a4)
(A5)

′′ (A3 +A1)
′′

D5 +A1

(A5)
′′ 3

su2

2 1
e7
7
1
1
su2

2
g2

3 (su2)12 ⊕ (so7)16

7
(A3 +A1)

′

D6(a1)
(A5)

′′ A3 + 2A1

D5

(A5)
′′ 3

so7

3
su2

2 1
e7
7
1
1 2

(su2)12 ⊕ (su2)24
⊕(su2)8 ⊕ (su2)13

8
(A3 +A1)

′

E7(a4)
(A5)

′′ A3 + 2A1

D5 +A1

(A5)
′′ 3

g2

3
su2

2 1
e7
7
1
1 2 (su2)12 ⊕ (su2)24 ⊕ (su2)13

9
D4(a1)

D6(a1)
(A5)

′′ D4(a1) +A1

D5

(A5)
′′ 3 so7

3
su2

2 1

1
e7
7
1
1 (su2)

⊕3
12 ⊕ (su2)8

10
D4(a1)

E7(a4)
(A5)

′′ D4(a1) +A1

D5 +A1

(A5)
′′ 3 g2

3
su2

2 1

1
e7
7
1
1 (su2)

⊕3
12

11
(A5)

′

E7(a5)
(A5)

′′ E6(a3)

D6(a2)
(A5)

′′ 3
so8

4 1
g2

3 1
so9

4 (su2)19 ⊕ (su2)9

12
A3

A3 + 2A1

D6

(A3 +A1)
′′

(A3 +A1)
′

D6 2 2 1
e7
7
1
1
su2

2
(su2)12 ⊕ (su2)24

⊕(su2)13 ⊕ (so7)16

13
A3

D4(a1) +A1

D6

(A3 +A1)
′′

D4(a1)
D6 2 1

1
e7
7
1
1
su2

2 (su2)
⊕3
12 ⊕ (so7)16

14
(A3 +A1)

′

D4(a1) +A1

D6

A3 + 2A1

D4(a1)
D6 2 1

1
e7
7
1
1 2 (su2)

⊕3
12 ⊕ (su2)24 ⊕ (su2)13

15
D5

E7(a2)

(︁
A1, Spin(12)

)︁ D6(a1)

E6

(︁
A1, Spin(12)

)︁
5

so7

3
su2

2 1
e7
7
1
1
su2

2
so7

3
su2

2 (su2)12 ⊕ (su2)8

16
D5 +A1

E7(a2)

(︁
A1, Spin(12)

)︁ E7(a4)

E6

(︁
A1, Spin(12)

)︁
5

g2

3
su2

2 1
e7
7
1
1
su2

2
so7

3
su2

2 (su2)12

Table 2: Isomorphic pairs of interacting three-punctured spheres for class S of type e7, where

the flavor symmetry is the manifest flavor symmetry from the individual punctures.
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# Theory A Theory B Nmin 6d SCFT Flavor symmetry

1
D4(a1) +A1

E7(a2)
(3A1)

′′ A3 +A2

E6

(3A1)
′′ 4 1

e7
6
1
1
su2

2
so7

3
su2

2 (su2)
⊕2
12

2
E6

A3 +A2 +A1

(3A1)
′′ E7(a2)

A3 +A2

(3A1)
′′ 4 1

e7
51

su2

2
so7

3
su2

2 (su2)12 ⊕ (su2)224

3
D5

A3 +A2

(A5)
′′ D6(a1)

D4(a1) +A1

(A5)
′′ 3 1

e7
6
1
1
su2

2
so7

3 (su2)
⊕2
12 ⊕ (su2)8

4
D4(a1) +A1

E7(a4)
(A5)

′′ A3 +A2

D5 +A1

(A5)
′′ 3 1

e7
6
1
1
su2

2
g2

3 (su2)
⊕2
12

5
A3 +A2

D6(a1)
(A5)

′′ A3 +A2 +A1

D5

(A5)
′′ 3 1

e7
51

su2

2
so7

3 (su2)12 ⊕ (su2)224 ⊕ (su2)8

6
A3 +A2

E7(a4)
(A5)

′′ A3 +A2 +A1

D5 +A1

(A5)
′′ 3 1

e7
51

su2

2
g2

3 (su2)12 ⊕ (su2)224

7
A3

A3 +A2

D6

(A3 +A1)
′′

D4(a1) +A1

D6 2 1
e7
6
1
1
su2

2 (su2)
⊕2
12 ⊕ (so7)16

8
(A3 +A1)

′

A3 +A2

D6

A3 + 2A1

D4(a1) +A1

D6 2 1
e7
6
1
1 2 (su2)

⊕2
12 ⊕ (su2)24 ⊕ (su2)13

9
D4(a1)

A3 +A2

D6

D4(a1) +A1

D4(a1) +A1

D6 2 1

1
e7
6
1
1 (su2)

⊕4
12

10
A3 +A2

(A3 +A1)
′′

D6

A3 +A2 +A1

A3

D6 2 1
e7
51

su2

2 (su2)12 ⊕ (su2)224 ⊕ (so7)16

11
A3 +A2

A3 + 2A1

D6

A3 +A2 +A1

(A3 +A1)
′

D6 2 1
e7
51 2

(su2)12 ⊕ (su2)24

⊕(su2)224 ⊕ (su2)13

12
A3 +A2

D4(a1) +A1

D6

A3 +A2 +A1

D4(a1)
D6 2 1

e7
5
1
1 (su2)

⊕3
12 ⊕ (su2)224

13
A3 +A2

A3 +A2

D6

A3 +A2 +A1

D4(a1) +A1

D6 2 1
e7
41 (su2)

⊕2
12 ⊕ (so4)112

14
2A1

D6(a2)
D6

(3A1)
′′

(A5)
′

D6 2
so9

4 1
g2

3 1
+ a free hyper

(f4)24 ⊕ (su2)9 ⊕ (su2)19

15
2A1

E7(a5)
D6

(3A1)
′′

E6(a3)
D6 2

so8

4 1
g2

3 1
+ a free hyper

(f4)24 ⊕ (su2)19

Table 3: Isomorphic pairs of three-punctured spheres for class S of type e7, where the flavor

symmetry is not the manifest flavor symmetry from the individual punctures.
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4.2 Interacting pairs with different manifest symmetries

In Section 2, we constructed candidate pairs of isomorphic theories by starting with a parent

theory with punctures O1, O
′
2, with an fk ⊕ fk flavor symmetry. Then, by Higgsing of one

or the other of the fk factors, as in equation (2.7), we obtained a pair of theories whose

conventional invariants coincided. As in [28], we imposed the restriction in equation (2.8)

that the manifest symmetries of the two theories coincide. We can relax this assumption:

two three-punctured spheres can be isomorphic as long as the enhanced flavor symmetries

match, even if the manifest flavor symmetries are different.

In the e7 case, this leads to a slew of new pairs which we can show are isomorphic

SCFTs using the 6d (1, 0) uplift. We list the interacting three-punctured sphere which are

isomorphic and do not have identical manifest flavor symmetries in Table 3. As before, the

third puncture in each of these pairs can be Higgsed as in equations (4.4) and (4.5) to yield

additional isomorphic pairs of SCFTs.

4.3 Fixtures with isomorphic interacting sectors

Thus far, we have demanded that each pair of fixtures be isomorphic on-the-nose as 4d

SCFTs; that is, each fixture is associated to an interacting SCFTs plus some number of free

hypermultiplets which is the same across the pair. More generally, we could allow fixtures

which include differing numbers of free hypermultiplets, but whose interacting sectors are

isomorphic. To construct examples of this behavior, we rely on the fact that if we have

an embedding hk ⊂ gk, then a nilpotent Higgsing of hk will result in the same theory as

a nilpotent Higgsing of gk, with the addition of some number of free hypermultiplets. This

results in two mechanisms for constructing candidate pairs which correspond to theories with

isomorphic interacting parts.

The first occurs when two punctures both contribute simple flavor factors at level k, say

hk and gk. If we choose a third puncture low enough down on the Hasse diagram, it is

possible that the hk⊕gk enhances to a gk⊕gk and there is an outer automorphism symmetry

that exchanges the two g factors. Then we can do a nilpotent Higgsing of either the gk
or hk, where the latter takes us to the same theory as the former in addition to some free

hypermultiplets. Using 6d constructions we can prove the existence of such automorphism

symmetries and thus prove the interacting sectors are indeed isomorphic.

The second mechanism occurs when two punctures contribute an fk and an hk that is

enhanced to a gk global symmetry. Then the interacting part of the two fixtures obtained by

Higgsing either the fk or hk should be the theory obtained by Higgsing the gk, meaning they

are isomorphic. In this case we do not require a 6d explanation as the isomorphism can be

directly seen from the nilpotent Higgsing, though, of course, the 6d uplifts if they exist will
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also be isomorphic.

An example of the first mechanism is given by the following three-punctured sphere in

the class S theory of type e8:

E8(a1)

A3 + A1

2A2

.

(4.6)

The manifest flavor symmetry is enhanced:

fmanifest = (so7)24 ⊕ (g2)
⊕2
24 ⊕ (su2)21 → f = (so7)

⊕3
24 ⊕ (su2)21 . (4.7)

Minimal nilpotent Higgsing of the one of the manifest (g2)24 factors is a local Higgsing that

changes the puncture 2A2 → 2A2 + A1, whereas minimal nilpotent Higgsing of the manifest

(so7)24 factor changes the puncture A3 + A1 → A3 + 2A1. These Higgsings lead to the

following three-punctured spheres:

E8(a1)

A3 + 2A1

2A2

E8(a1)

A3 + A1

2A2 + A1

.

(4.8)

These are clearly different theories – the theory on the right has a free hypermultiplet whereas

the theory on the left does not. The parent theory, given by the three-punctured sphere in

equation (4.6), has an uplift to a 6d (1, 0) curve configuration (via the usual quiver tail

procedure), which is

1
so9
4
1
1 . (4.9)

Evidently this curve configuration possesses an S3 outer-automorphism group that permutes

the three (−1)-curves, and thus the three (so7)24 flavor symmetry factors. Performing a

minimal nilpotent Higgsing by any of the three (so7)24 factors, or by the subalgebra (g2)24 ⊂
(so7)24, leads to 6d SCFTs with the same interacting sector. In conclusion, we can see that

the interacting parts of the two 4d theories in equation (4.8) are isomorphic. In fact, as we

can see from [10], the uplift of the interacting sector of both three-punctured spheres has the

curve configuration

1
so9
3 1 . (4.10)
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# Theory A Theory B nA nB Nmin 6d SCFT Flavor symmetry

1
A4

E7(a2)
(3A1)

′′ A4 +A1

E6
(3A1)

′′ 1 0 4 1
e6
51

su2

2
so7
3

su2

2 (su3)12

2
A4

D6(a1)
(A5)

′′ A4 +A1

D5
(A5)

′′ 1 0 3 1
e6
51

su2

2
so7
3 (su3)12 ⊕ (su2)8

3
A4

E7(a4)
(A5)

′′ A4 +A1

D5 +A1
(A5)

′′ 1 0 3 1
e6
51

su2

2
g2

3 (su3)12

4
A4

(A3 +A1)
′′ D6

A4 +A1

A3
D6 1 0 2 1

e6
51

su2

2 (su3)12 ⊕ (so7)16

5
A4

A3 + 2A1
D6

A4 +A1

(A3 +A1)
′ D6 1 0 2 1

e6
51 2 (su3)12 ⊕ (su3)24 ⊕ (su2)13

6
A4

D4(a1) +A1
D6

A4 +A1

D4(a1)
D6 1 0 2 1

e6
5
1
1 (su3)

⊕3
12

7
A4

A3 +A2
D6

A4 +A1

D4(a1) +A1
D6 2 1 2 1

e6
41 (su3)

⊕2
12 ⊕ (su2)54

8
A4

A3 +A2 +A1
D6

A4 +A1

A3 +A2
D6 3 2 2 1

e6
3 (su3)12 ⊕ (su3)54

9
0

E7(a4)
D6

A1

A6
D6 28 12 2 1

su2

2
g2

3 (e7)24

10
A2

D6(a2)
D6

A2 +A1

(A5)
′ D6 6 2 2

so9
4 1

su3

2 (su2)9 ⊕ (su6)18

11
A2

E7(a5)
D6

A2 +A1

E6(a3)
D6 6 2 2

so8
4 1

su3

2 (su6)18

12
(3A1)

′

D6(a2)
D6

4A1

(A5)
′ D6 3 1 2

so9
4 1

g2

2 (su2)9 ⊕ (sp4)19

13
(3A1)

′

E7(a5)
D6

4A1

E6(a3)
D6 3 1 2

so8
4 1

g2

2 (sp4)19

14
A2 + 2A1

A′
5

D6
2A2

D5(a1) +A1
D6 4 3 2

so9
4 1

su2

2
(so7)16 ⊕ (su2)9

⊕ (su2)24 ⊕ (su2)48

15
A2 + 3A1

A′
5

D6
2A2 +A1

D5(a1) +A1
D6 7 4 2

so9
4 1 2 (so7)24 ⊕ (su2)9 ⊕ (su2)13

16
0

(A3 +A1)
′′ E7(a1)

A1

2A2
E7(a1) 28 12 1 1

su2

2 (e7)24 ⊕ (so7)16

17
A1

2A2
E7(a1)

2A1

A2 + 2A1
E7(a1) 12 4 1 1

su2

2 (e7)24 ⊕ (so7)16

18
A1

2A2 +A1
E7(a1)

2A1

A2 + 3A1
E7(a1) 13 7 1 1 2 (e8)24 ⊕ (su2)13

19
0

A3 + 2A1
E7(a1)

A1

2A2 +A1
E7(a1) 28 13 1 1 2 (e8)24 ⊕ (su2)13

20
2A1

4A1
E7(a1)

(3A1)
′′

(3A1)
′ E7(a1) 1 3 1 1

g2

2 (f4)24 ⊕ (sp4)19

21
A2

(3A1)
′′ E7(a1)

A2 +A1

2A1
E7(a1) 6 2 1 1

su3

2 (e6)24 ⊕ (su6)18

22
A2

4A1
E7(a1)

A2 +A1

(3A1)
′ E7(a1) 9 7 1

su3

1 (su12)18

23
0

A3 +A2
E7(a1)

(3A1)
′

A2 + 3A1
E7(a1) 56 31 1 1 (e8)12

Table 4: Isomorphic SCFTs arising from class S of type e7 on three-punctured spheres with

differing numbers of free hypermultiplets. nA/B is the number for free hypermultiplets in

Theory A/B.
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We now turn to an example of the second mechanism for generating isomorphic pairs

with different numbers of free hypermultiplets. Consider class S of type e7 and the following

three-punctured sphere:

E7(a1)

2A1

A2

.

(4.11)

The manifest flavor symmetry

fmanifest = (so9)24 ⊕ (su2)20 ⊕ (su6)20 , (4.12)

is enhanced to

f = (so10)24 ⊕ (su8)20 . (4.13)

The manifest (su2)20 and (su6)20 have combined into a single simple (su8)20 factor. A minimal

nilpotent Higgsing of the (su2)20 corresponds to partially closing the 2A1 puncture, 2A1 →
(3A1)

′′; similarly, the minimal nilpotent Higgsing of the (su6)20 corresponds to A2 → A2+A1.

However, we know that the minimal nilpotent Higgsing of any subalgebra leads to the same

interacting SCFT as the minimal nilpotent Higgsing of the full flavor factor, plus some number

of free hypermultiplets fixed by the embedding. Indeed it is easy to check that the interacting

sectors of the fixtures

E7(a1)

(3A1)
′′
A2

E7(a1)

2A1

A2 + A1

,

(4.14)

have the correct conventional invariants, and their Schur indices (after removing 6 free hypers

from the fixture on the left and 2 free hypers from the fixture on the right) agree to at least

order τ 4. Their interacting parts are isomorphic and this isomorphism of the interacting

sectors of these two three-punctures spheres follows only from the enhanced flavor symmetry,

without the need to uplift to six dimensions. However, one can read directly from [10]

that the interacting parts of both three-punctured spheres are obtained from the torus-

compactification of the 6d (1, 0) SCFT associated to the curve configuration

1
su3
3 . (4.15)

In Table 4, we list all the isomorphic pairs with differing numbers of free hypermultiplets

obtained by the aforementioned methods for the class S theory of type e7. We can see that
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the pairs with isomorphic interacting sectors in Table 4, together with those in Tables 2 and

3, reproduce all of the isomorphic pairs of 6d (1, 0) SCFTs Te7,N(OL, OR), as summarized in

Figures 3.3, 3.4, 3.5, and 3.6.

Interestingly, when considering theories where only the interacting sectors are required to

coincide, we find that there are isomorphic triples of three-punctured spheres. As is evident

from the 6d curve configurations in Table 4, we see that the following three-punctured spheres:

A1

2A2 + A1

E7(a1) ∼

2A1

A2 + 3A1

E7(a1) ∼

0

A3 + 2A1

E7(a1)

,

(4.16)

are different realizations of the rank-2 E8 Minahan–Nemeschansky theory with 13, 7 and 28

free hypermultiplets, respectively. Similarly,

0

(A3 + A1)
′′

E7(a1) ∼

A1

2A2

E7(a1) ∼

2A1

A2 + 2A1

E7(a1)

,

(4.17)

are different realizations of the rank-3 (E7)24 × Spin(7)16 SCFT with 28, 12 and 4 free

hypermultiplets, respectively.

5 Examples where g ̸= e7

Class S theories of type e7 have provided a wealth of examples of candidates for pairs of

isomorphic SCFTs. We have explored the e7 theories as they provide a representative sample

of theories illustrating our six-dimensional methods for determining isomorphisms. However,

class S theories of different ADE-types evince the same behavior. Using the procedures laid

out in this paper, it is straightforward to determine candidate papers for any other g, and

furthermore to verify they correspond to isomorphic 4d N = 2 SCFTs from the 6d (1, 0)

uplift, as discussed in Section 3. In this section, we provide a small number of examples of

isomorphic pairs when g is a classical Lie algebra.20

20Class S theories of type g can also contain punctures that are twisted by an outer-automorphism of

g. Some such theories can alternatively be constructed from 6d (1, 0) compactified on a torus, now with

the inclusion of a Stiefel–Whitney twist [43, 45, 60]; therefore the methods of this paper demonstrating

the isomorphisms of 6d (1, 0) SCFTs can also prove isomorphisms between class S theories with twisted

punctures.
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5.1 An so12 example

One nice class of examples can be found in the g = so12 theory. When the 6d (1, 0) conformal

matter theory, Higgsed by nilpotent orbits Oa and Ob, is compactified on the torus, the class

S dual theory has a degeneration limit where it looks like

[9, 3]

[9, 3]

([7,22,1],SU(2))

1
2
(2, 1, 1)

[9, 3]

[7, 22, 1](︁
[5, 17], G2

)︁SU(2)

1
2
(2, 7, 1)

[9, 3]

[5, 17]
([3,19],SO(9))

G2

[(E8)12 SCFT]

[9, 3]

[3, 19]
([112],SO(11))

SO(9)

[Spin(20)16 SCFT]

[9, 3]

[112]
[112]

SO(11)

[Spin(12)220 SCFT]

. . .
SO12)

[112]

Oa

Ob

SO(12)

. (5.1)

If we follow the prescription of equation (2.7), we can take (O1, O2) = ([42, 14], [5, 3, 22])

and (O′
1, O

′
2) = ([42, 22], [5, 3, 14]) or ([42, 22], [5, 3, 14]). The puncture [42, 14] has an (su2)12⊕

(su2)
2
8 flavor symmetry, and nilpotent Higgsing of one or the other of the (su2)8 factors leads

to either [42, 22] or [42, 22]. The resulting theories are related by the outer-automorphism of

so12 which exchanges (globally) red and blue. This is an isomorphism of SCFTs (for any N).

When N = 4, the 6d curve configuration is

so8
3

[(su2)8⊕(su2)8]

sp1
1

so11
4

[(su2)11]

sp1
1

so7
3

[(su2)8]
. (5.2)

Peeling off the quiver tail establishes the isomorphism

[3, 19]

[42, 14]

[5, 3, 22]
≃ [3, 19]

[42, 22]

[5, 3, 14]
≃ [3, 19]

[42, 22]

[5, 3, 14]

,

(5.3)

which is a rank-8 interacting SCFT with flavor symmetry

f = (su2)
3
8 ⊕ (su2)11 , (5.4)

and one free hypermultiplet, transforming as 1
2
(1,1,1,2) under the four manifest su2 factors.

It should be emphasized that while the fixtures in class S are isomorphic if, upon attaching

the quiver tail, the resulting theories arise from the compactification of isomorphic theories

in 6d, the statement is not an if and only if. Consider the degeneration limit

[9, 3]

[9, 3]

([7,22,1],SU(2))

1
2
(2, 1, 1)

[9, 3]

[7, 22, 1](︁
[5, 17], G2

)︁SU(2)

1
2
(2, 7, 1)

[9, 3]

[5, 17]
([3,19],Spin(9))

G2

[(E8)12 SCFT]

[9, 3]

[3, 19]
([112],Spin(11))

Spin(9)

[Spin(20)16 SCFT]

[9, 3]

[112]
[22, 18]

Spin(11)

[Spin(20)16 SCFT]

+1(1) + 1(11)

Spin(7)

([22,18],Spin(7))

Oa

Ob

1(8)

. (5.5)

35



For (Oa, Ob) = ([42, 22]), [9, 3]), ([42, 22]), [9, 3]) or ([42, 3, 1]), [9, 13]), these 8-punctured spheres

have all the same conventional invariants. But they are not isomorphic SCFTs. Indeed, the

6d curve configuration for (Oa, Ob) = ([42, 22]), [9, 3]) and ([42, 22]), [9, 3]) is

so7
3

sp1
1

so11
4

sp1
1

so9
3

sp1
1

g2
3

sp1
1 , (5.6)

whereas, for (Oa, Ob) = ([42, 3, 1]), [9, 13]), the curve configuration is

g2
3

sp1
1

so11
4

sp1
1

so9
3

sp1
1

so7
3

sp1
1 . (5.7)

Nevertheless, if we peel off the quiver tail, the fixture on the far right is 8 free hypermultiplets

for all three choices.

The point is that there are three distinct embeddings of the Spin(7) gauge group in the

Spin(8) flavor symmetry of the [22, 18] puncture. Two of them are exchanged under the so(12)

outer-automorphism that exchanges [42, 22] ↔ [42, 22], which is, of course, a symmetry of the

SCFT. But the third embedding (in which the vector of Spin(8) decomposes as (7+1)) is dis-

tinct21, leading to a distinct SCFT in equation (5.5) for the pair (Oa, Ob) = ([42, 3, 1]), [9, 13]).

5.2 A family of examples in sun

In class S theories of type sun, it is easy to see that the condition in equation (2.8) is never

satisfied, and thus there can only be pairs of isomorphic SCFTs if there is enhanced global

symmetry, which may arise from the presence of a free sector. In this section, we present one

example of an isomorphic pair for class S theories of type sun, for each n ≥ 6, and explain

how the isomorphism can be verified from the 6d (1, 0) uplift.

We consider class S of type sun+6, where the nilpotent orbits describing the punctures

are in one-to-one correspondence with integer partitions of n+6. Consider then the following

pair of three-punctured spheres:

[n+ 1, 15]

[3, 1n+3]

[32, 1n]

≃ [n+ 1, 15]

[22, 1n+2]

[4, 2, 1n]

.

(5.8)

The manifest flavor symmetry, which can be read off directly from the integer partitions, for

the theory associated to the the fixture on the left in equation (5.8) is

fmanifest = (sun+3)2n+8 ⊕ (su2)2n+12 ⊕ (sun)2n+4 ⊕ (su5)12 ⊕ u⊕3
1 , (5.9)

21In fact, the Spin(7) is embedded in the centralizer of Spin(11) ⊂ Spin(20). Even in that context the

two embeddings are not conjugate to each other.
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whereas the fixture on the right has manifest flavor symmetry

fmanifest = (sun+2)2n+8 ⊕ (su2)2n+12 ⊕ (sun)2n+4 ⊕ (su5)12 ⊕ u⊕4
1 . (5.10)

For all values of n, these are mixed fixtures. When n ≥ 1, there are two free hypermultiplets

which transform in the (1,2,1,1) representation of the manifest flavor symmetries appearing

in both equations (5.9) and (5.10); thus for both theories, in the interacting sector the

(su2)2n+12 factor is replaced by an (su2)2n+10 factor. For n ≥ 2, this is the only enhancement

for the theory on the left, however the in the theory on the right the manifest (sun+2)2n+8

combines with one of the u1 factors to produce a (sun+3)2n+8 factor. Thus, we can see that

the enhanced flavor symmetries agree between the two interacting sectors:

f = (sun+3)2n+8 ⊕ (su2)2n+10 ⊕ (sun)2n+4 ⊕ (su5)12 ⊕ u⊕3
1 . (5.11)

We can also see, for example when n = 3, that the Schur indices of the interacting sectors of

the fixtures match (up to the order we could compute them):

ISchur(τ) = 1 + 73τ 2 + 34τ 3 + 2823τ 4 + 2626τ 5

+ 77298τ 6 + 107048τ 7 + 1689006τ 8 + 3064288τ 9 +O(τ 10) .
(5.12)

For n = 1, the flavor symmetry is further enhanced on both sides to

(su4)10 ⊕ (su7)12 ⊕ u⊕2
1 . (5.13)

Finally, in the extremal case where n = 0, there are twelve free hypermultiplets, and the

interacting sector of both theories is the (E7)8 Minahan–Nemeschansky theory. The free

hypers transform in the (2,6) of the manifest (su2)12 ⊕ (su6)12. We emphasize once again

that, for all values of n ≥ 0, the conventional invariants and the Schur index (insofar as we

can compute it) are consistent with the two fixtures in equation (5.8) being isomorphic 4d

SCFTs.

The theories can be proven to be isomorphic from our 6d considerations. If we replace

the [n+ 1, 15] punctures that appear in both the fixtures in equation (5.8) with N copies of

the simple puncture, each corresponding to the partition [n+5, 1], then each of the resulting

N + 2 punctured spheres arise as torus-compactifications of 6d (1, 0) SCFTs. In particular,

the uplift of the fixture on the left in equation (5.8) is rank N (sun+6, sun+6) conformal

matter, where one of the sun+6 flavor symmetries is Higgsed by the nilpotent orbit associated

to the partition [3, 1n+3] and the other is Higgsed by [32, 1n]. It is well-known how to map

from a pair of partitions to a tensor branch description, and in this case that description is

sun+4

2
[(sun+3)2n+8]

sun+5

2
sun+6

2
[1]

sun+6

2 . . .
sun+6

2
sun+6

2
sun+6

2
[(su2)2n+12]

sun+4

2
sun+2

2
[(sun)2n+4]

, (5.14)
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where we have written the non-Abelian flavor factors directly in the quiver. Similarly, the 6d

(1, 0) uplift of the fixture on the right in equation (5.8) has the tensor branch description:

sun+4

2
[(sun+2)2n+8]

sun+6

2
[(su2)2n+12]

sun+6

2
sun+6

2 . . .
sun+6

2
sun+6

2
[1]

sun+5

2
sun+4

2
[1]

sun+2

2
[(sun)2n+4]

. (5.15)

In both cases, the total number of (−2)-curves is N − 1. Each of these theories, which are

clearly not isomorphic, arise via Higgs branch renormalization group flow from a “parent”

theory, with tensor branch description

sun+4

2
[(sun+2)2n+8]

sun+6

2
[(su2)2n+12]

sun+6

2
sun+6

2 . . .
sun+6

2
sun+6

2
sun+6

2
[(su2)2n+12]

sun+4

2
sun+2

2
[(sun)2n+4]

. (5.16)

Nilpotent Higgsing of one or the other of the (su2)2n+12 factors leads to SCFTs with tensor

branches given in equations (5.14) and (5.15). When N = 5, the parent theory becomes

sun+4

2
[(sun+2)2n+8]

[(su2)2n+12]
sun+6

2
[(su2)2n+12]

sun+4

2
sun+2

2
[(sun)2n+4]

, (5.17)

which has a Z2 outer-automorphism that exchanges the two (su2)2n+12 flavor symmetry fac-

tors. In fact, the flavor symmetry enhances and we find

(su2)2n+12 ⊕ (su2)2n+12 → (su4)2n+12 . (5.18)

Performing a Higgs branch deformation by giving a vacuum expectation value to the highest

root moment map of the su4 or either of the su2 subalgebras leads to the same interacting

SCFT, where the latter two options contain an additional two free hypermultiplets. The two

nilpotent Higgsings, which take either [22, 1n+2] → [3, 1n+3] or [32, 1n] → [4, 2, 1n], thus both

lead to the same interacting 6d (1, 0) SCFT; its tensor branch description is

sun+4

2
[(sun+3)2n+8]

sun+5

2
[(su2)2n+12]

sun+4

2
[1]

sun+2

2
[(sun)2n+4]

. (5.19)

In this way, we have verified that the two class S descriptions in equation (5.8) are isomorphic

as 4d N = 2 quantum field theories when the [n + 1, 15] punctures are replaced with five

copies of the simple puncture, [n + 5, 1]. To prove the isomorphism for the three-punctured

spheres, we go to a different degeneration limit, where the simple punctures form a chain

of 3-punctured spheres, reproducing the standard quiver tail of [40] — with gauge group

SU(2)×SU(3)×SU(4)×SU(5) and bifundamental hypermultiplets (i.e., the representation

(2,1,1,1) ⊕ (2,3,1,1) ⊕ (1,3,4,1) ⊕ (1,1,4,5)). Sending the SU(5) gauge coupling to

zero establishes the isomorphism in equation (5.8).

Having established the isomorphism of the two theories where the third puncture is given

by the partition [n + 1, 15], we can then do a chain of nilpotent Higgsings of that third

puncture to establish further isomorphic pairs

[n+ 1, 15] −→ [n+ 1, 2, 13] −→ [n+ 1, 22, 1] −→ [n+ 1, 3, 12] −→ [n+ 1, 3, 2] . (5.20)
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Note that for n = 2, the nilpotent Higgsings

[32, 12] −→ [4, 2, 12] −→ [4, 22] −→ [4, 3, 1] , (5.21)

lead to bad theories, and so do not generate any additional isomorphic pairs.

6 Oddballs

The mechanism described in equation (2.7) for generating candidate pairs of isomorphic 4d

SCFTs led to a 6d proof when the third puncture in the fixture was chosen from the “quiver

tail” formed by fusing together N simple punctures (in the type e7 theory, this was the

sequence of punctures {(3A)′′, (A5)
′′, D6, E7(a1)} – see equation (2.12)). We could then find

additional isomorphic SCFTs by Higgsing down from this puncture.

This does not preclude the possibility of finding isomorphic pairs of SCFTs where the

third puncture is not part of the quiver tail (or a nilpotent Higgsing thereof). For instance,

consider the pair of interacting fixtures

A6

(A3 + A1)
′′

O

E7(a4)

2A2

O

.

(6.1)

These fixtures appear to correspond to isomorphic SCFTs when O is chosen from the four

punctures related by the following Hasse diagram

D5

D6(a1)

D5 + A1

E7(a4)

(su2)12

(su2)8

(su2)8

(su2)12
.

(6.2)

The Schur indices of all four pairs agree to at least O(τ 10). E.g., for O = D5, the Schur

indices of both SCFTs are

ISchur = 1 + 37τ 2 + 853τ 4 + 15305τ 6 + 233552τ 8 + 3168458τ 10 +O(τ 11) . (6.3)

However, since none of the punctures in equation (6.2) belong to the E7 quiver tail, these

SCFTs have no avatars as 6d (1, 0) SCFTs; thus, we cannot provide a proof that these 4d

N = 2 SCFTs are isomorphic.
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The theories in equation (6.1) appear to be isomorphic on-the-nose. We can also find

pairs of theories whose interacting parts appear to be isomorphic, but differ in the number

of free hypermultiplets. For example,

(A5)
′′

D6(a1)

A4 + A2

A5 + A1

D5

A4 + A2≃ + 2 free hypers

.

(6.4)

After removing two free hypermultiplets from the fixture on the left, the Schur indices are

ISchur = 1 + 23τ 2 + 10τ 3 + 344τ 4 + 308τ 5 + 4170τ 6 + 5720τ 7 +O(τ 8) . (6.5)

The interacting SCFT has flavor symmetry

f = (su2)72 ⊕ (su2)26 ⊕ (su2)8 ⊕ (g2)12 . (6.6)

On the left, the su(2)8 is associated to the D6(a1) puncture; on the right it is associated to

the D5 puncture. If we do a nilpotent Higgsing of the (su2)8 on both sides, we arrive at

(A5)
′′

E7(a4)

A4 + A2

A5 + A1

D5 + A1

A4 + A2≃ + 2 free hypers

.

(6.7)

After removing two free hypermultiplets from the fixture on the left, the Schur indices are

ISchur = 1 + 20τ 2 + 14τ 3 + 272τ 4 + 380τ 5 + 3186τ 6 + 6338τ 7 +O(τ 8) , (6.8)

which, again, indicates that they correspond to isomorphic SCFTs.

As another example, we consider the following pair of fixtures

2A2

(A3 + A1)
′

E6

2A2 + A1

A3

E6≃+ 1 free hyper

.

(6.9)

After removing one free hypermultiplet from the fixture on the right, the Schur indices of

both interacting SCFTs are

ISchur = 1 + 39τ 2 + 42τ 3 + 970τ 4 + 2068τ 5 + 20059τ 6 +O(τ 7) . (6.10)
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The flavor symmetry of the interacting theory is

f = (so7)16 ⊕ (su2)
2
24 ⊕ (su2)

3
12 ⊕ (su2)13 . (6.11)

Of the three (su2)12 flavor algebra factors, two are manifest (associated to the E6 puncture

and to the (A3+A1)
′ on the left or the A3 on the right). The other arises as an enhancement

of the (su2)36 ⊂ (su2)24 ⊕ (su2)12 symmetry (associated to the 2A2 puncture on the left or

the 2A2 + A1 puncture on the right).

One of the (su2)12 factors (the one associated to (A3+A1)
′ on the right or A3 on the left)

is the same on both sides of the isomorphism. But the role of the other two (the manifest one

associated to the E6 puncture and the enhanced one) is swapped between the two theories.

This is exactly the same phenomenon we encountered in equation (4.4), where the roles of

the two (su2)28 (the manifest one and the enhanced one) associated to the A2+2A1 puncture

were swapped between the two theories. There, when we Higgsed A2 + 2A1
(su2)28−−−−→ 2A2,

we obtained different theories. Here, too, if we Higgs the E6
(su2)12−−−−→ E7(a2), we obtain

non-isomorphic theories

2A2

(A3 + A1)
′

E7(a2)
2A2 + A1

A3

E7(a2)̸≃+ 1 free hyper

.

(6.12)

On the left, the (su2)
2
24 is enhanced to (sp2)24, whereas on the right, it is unenhanced.

On the other hand, if we Higgs the (su2)12 flavor symmetry of the fixtures in equation

(6.9) associated with the (A3 + A1)
′ puncture on the left and with the A3 puncture on the

right, we obtain theories with isomorphic interacting sectors:

2A2

A3 + 2A1

E6

2A2 + A1

(A3 + A1)
′′

E6≃+ 1 free hyper

.

(6.13)

The interacting sector has Schur index

ISchur = 1 + 40τ 2 + 58τ 3 + 1048τ 4 + 2848τ 5 + 23541τ 6 +O(τ 7) . (6.14)
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This time, Higgsing the E6
(su2)12−−−−→ E7(a2) yields another pair of isomorphic theories:

2A2

A3 + 2A1

E7(a2)
2A2 + A1

(A3 + A1)
′′

E7(a2)≃+ 1 free hyper

.

(6.15)

We need to remove one free hypermultiplet from the fixture on the left, and two free hyper-

multiplets from the fixture on the right to obtain isomorphic interacting SCFTs, which have

Schur index

ISchur = 1 + 37τ 2 + 78τ 3 + 985τ 4 + 3500τ 5 +O
(︁
τ 6
)︁

(6.16)

As we have highlighted, the “oddball” theories discussed in this section are pairs of class

S theories which appear to be isomorphic, based on their conventional invariants and their

Schur indices (to the extent that we were able to compute them). However, as they are

unrelated to torus-compactifications of 6d (1, 0) SCFTs, we are unable to use the techniques

from 6d to prove that they are indeed isomorphic. Nevertheless, the insights from 6d point

towards a possible direction for a direct 4d proof. The key insight was that the pair of

isomorphic 4d SCFTs have a parent 4d SCFT in common. Turning on a VEV for certain

operators in the parent theory triggers a Higgs branch renormalization group flow to one

or the other of the “child” theories. Moreover, the parent SCFT has a Z2 symmetry which

exchanges the two operators in question, and hence the RG flows that they trigger. This

symmetry is manifest in the 6d (1, 0) uplift of the parent 4d SCFT. However, it might be

possible to show that the symmetry is present directly in the 4d SCFT. For instance, the

parent of the pair in equation (6.1) is

A6

(A3 + A1)
′′

D5

,

(6.17)

which has flavor symmetry

f = (g2)16 ⊕ (su2)
2
36 ⊕ (su2)8 ⊕ (su2)12 . (6.18)

This theory has a Z2 outer automorphism which exchanges the two (su2)36 factors. The

two RG flows which lead to the pair of SCFTs in equation (6.1) are triggered by turning on

a VEV for the highest root moment map of one or the other of the (su2)36s. If we could

show that this Z2 extends to a Z2 symmetry of the full SCFT in equation (6.17), we would

establish the isomorphism in equation (6.1).
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7 Discussion

The pairs of isomorphic class S theories we have found share the feature that they arise as

(different) Higgsings of a “parent” SCFT. Upon uplifting to 6d, we found that the parent 6d

(1,0) SCFT has a Z2 automorphism which exchanges the two Higgsings. It is striking that

— for the 6d (1, 0) SCFTs of (e, e) conformal matter — this automorphism has a geometrical

realization as an automorphism of the curve configuration on B. By contrast, for (sun, sun)

and (so2n, so2n) conformal matter, the automorphism had a more subtle origin. This section

is focused on explaining this behavior.

The curve configuration that gives rise to the intersecting part of the 6d (1, 0) SCFT is

composed of non-Higgsable clusters (NHCs), which are given by

su3
3 ,

so8
4 ,

f4
5 ,

e6
6 ,

e7
7 ,

e7
8 ,

e8
12 ,

su2
2

g2
3 , 2

su2
2

g2
3 ,

su2
2

so7
3

su2
2 ,

2 · · · 2⏞ ⏟⏟ ⏞
N−1

, 2 · · · 2⏞ ⏟⏟ ⏞
N−3

2
22 , 22

2
222 , 222

2
222 , 2222

2
222 ,

(7.1)

where we have used the negative of the self-intersection number of the curves and the algebras

g associated to the singular fibers. Curve configurations are then constructed by connecting

these non-Higgsable clusters via (−1)-curves, while requiring that the resulting curve config-

uration has a negative-definite intersection matrix. This restrict the number of (−1)-curves

that can be attached to a (−n)-curve to be ≤ (n− 1).

In all of our examples drawn from the (e7, e7) conformal matter theories, the curve configu-

ration of the parent theory had a central (−n)-curve with 2 (or more) “dangling” (−1)-curves

— exchanged by the Z2 automorphism — in addition to the (−1)-curves which attach it to

the rest of the diagram. The nilpotent Higgsings of the flavor symmetries associated to the

dangling (−1)-curves are exchanged by the Z2 automorphism. For this to occur, we must

have n ≥ 5. But, for

g = sun, so2n, e6, e7, e8 (7.2)

the maximally negative self-intersection curve can have self-intersection

(−2), (−4), (−6), (−8), (−12), (7.3)

respectively. Thus these geometrical Z2 automorphisms of the curve configuration only occur

for the exceptional algebras.

For the classical algebras the isomorphisms are generated not by the automorphisms of the

curve configuration, but rather as automorphisms of the flavor symmetry algebras decorating

the central node. That is, they are implemented as automorphisms of the elliptic fiber over
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that exceptional curve on B. For example, in equation (5.18), the central node of the parent

theory had an (su2)2n+12 ⊕ (su2)2n+12 flavor symmetry which was enhanced to (su4)2n+12.

The Z2 automorphism (which exchanges the two (su2)2n+12 factors) is an automorphism, not

of the curve configuration on B, but of the elliptic fiber over the central (−2)-curve.

Similarly for the example in equation (5.2), the parent theory has an(︁
(su2)8 ⊕ (su2)8

)︁
⊕ (su2)11 ⊕

(︁
(su2)8 ⊕ (su2)8

)︁
. (7.4)

There is a Z2×Z2 automorphism of the flavor symmetry algebra. The first Z2 simultaneously

swaps the two (su2)8s within each parenthesis. This Z2 corresponds to the choice of ambiguity

of sp± for the theories with very-even punctures of type g = so2n [31]. The second Z2

exchanges the two parenthesized factors and, thereby, the two Higgsing that lead to the

distinct (so12, so12) conformal matter theories.

This paper made extensive use of two ingredients: the Higgs branch RG flows between

SCFTs and the correspondence between a subclass of 6d (1,0) theories and a subclass of 4d

theories of class S. We have been very circumspect in the Higgsings we considered: focusing

exclusively on nilpotent Higgsings. This rather limited the isomorphisms we could explore

and expanding the class of Higgsing that we have under good control [29] will expand the

reach of our methods. Moreover, we found evidence, through the computation of Schur

indices in Section 6, for isomorphisms in 4d which have no avatars in 6d (1, 0) SCFTs. Still,

an important lesson emerged from the 6d (1, 0) analysis: the automorphisms of the UV CFT

exchange naively distinct Higgs branch RG flows, thus leading to isomorphisms between the

naively distinct IR CFTs.
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