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Abstract

There exist 4d N = 2 SCFTs in class S which have different constructions as punctured
Riemann surfaces, but which nevertheless appear to describe the same physics. Some of
these class S theories have an alternative construction as torus-compactifications of 6d (1,0)
SCFTs. We demonstrate that the 6d SCFTs are isomorphic. Each 6d SCFT in question can
be obtained from a parent 6d SCF'T by Higgs branch renormalization group flow, and the
parent theory possesses a discrete symmetry under which the relevant Higgs branch flows are
exchanged. The existence of this discrete symmetry, which may be embedded in an enhanced
continuous symmetry, proves that the original pair of class S theories are, in fact, isomorphic.
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1 Introduction

A quantum field theory is characterized by its spectrum of local operators and their n-point
correlation functions. If these differ for two QFTs, we can conclude that they are distinct
theories. More subtly, even when the spectrum of local operators coincide, the theories may
differ in their spectrum of line operators [I] or other non-local observables. These more
subtle differences may be detectable in the n-point correlation functions and/or by putting
the theory on a curved d-dimensional manifold. For conformal field theories (CFTs), the
infinite set of local data is determined by a much smaller (but, for d > 2, necessarily still
infinite) set of data: the scaling dimensions and the 3-point operator product expansion
(OPE) coefficients of the conformal primary operators, namely,

Since this set is still an infinite amount of data, it is not particularly computable and it
is strongly believed to be highly redundant. Indeed, the goal of the conformal bootstrap
program (see [61] and references therein) is to constrain these data via crossing symmetry
and unitarity. Ideally, we would like to find a finite set of data from which the rest can be
recovered. Then we could determine if two CFTs (or QFTs) are isomorphic, in finite time,
by comparing the two finite sets of data.

Ideally, these finite sets of data should be computable from the presentation of the CF'T,
say, as a string theory construction. One approach is to take the subset of the CFT data
that is readily computable and ask if that subset is sufficient to distinguish between distinct
CFTs.

For four-dimensional CFTs, the two central charges (Weyl-anomaly coefficients) a and c,
the flavor symmetry algebra f (generated by conserved currents J;), and the current algebra
levels (the coefficient, in a certain normalization, of the identity operator in the OPE of
two conserved currents) are readily computed. For 4d N/ = 2 superconformal field theories
(SCFETs) of class S [40, [41], the global form of the flavor symmetry group F' is also readily
computable [I1], 28]. Moreover, every interacting 4d A/ = 2 SCFT has a Coulomb branch
with a C*-action on it. The dimension of the Coulomb branch and the weights under this
C*-action, i.e., the U(1), charges of the generators of the Coulomb branch, are also readily
computable; we call these the graded Coulomb branch dimensions. Finally, the dimension of
the Higgs branch (if the 4d A/ = 2 SCFT has one) is easily computable. Collectivelyﬂ we
refer to these data as the “conventional invariants” of a 4d N'= 2 SCFT.

In low-rank cases, these data (or even subsets thereof) suffices to characterize the 4d
SCFEFT uniquely. For instance, if we encounter a rank one 4d N/ = 2 SCFT whose Coulomb

!Sometimes, for reasons either historical or expository, we omit the global form of the flavor symmetry
group from the list of conventional invariants. Hopefully, this will be clear from the context.
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branch generator has
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then it must be the (Fg);2 Minahan—Nemeschansky theory [6]. Indeed, there are a multitude
of distinct realizations of this SCFT in class S and they are all necessarily isomorphic.

For higher rank cases, however, these “conventional invariants” are known not to suffice
to characterize the 4d SCFT. There are distinct 4d SCFTs whose “conventional invariants”
coincide 28, [30]. Nevertheless, we do have examples where distinct class S constructions
seem to lead to isomorphic SCFTs. One of the purposes of this paper is to show that, when
that happens, the resulting isomorphism frequently has a 6d (1,0) SCFT origin [10].

The situation in six-dimensions is much better. The 6d (1,0) SCFTs can be engineered in
F-theory via Calabi—Yau threefolds that are elliptic fibrations over a non-compact complex
surface B [40], 48] E| The configuration of exceptional divisors — which are P's with negative
self-intersection numbers on B — and the elliptic fibers over them, which we will refer to as

)

the “curve configuration,” is believed to uniquely characterize the interacting part of the 6d

(1,0) SCFTF|

The cancellation of gauge anomalies tightly constrains the allowed curve configurations.
Indeed, the flavor symmetry algebra and the anomaly 8-form (f, Ig) determine the curve con-
figuration almost but not completely. The anomaly polynomial Ig of a given 6d (1,0) SCFT
is given by adding geometric contributions, each via characteristic classes of the inherent
symmetry of the theory:
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(1.3)

2For the elliptically-fibered Calabi-Yau threefold compactifications via geometric-engineering process, see
[21-41, 0] [10} (13, 25, [32-39] 44], 51, 56, 62].

3The 6d effective field theory consists of usual vector, tensor, and hypermultiplets, as well as a collection
of tensionful BPS-strings. The curve configuration defines the effective field theory that exists at the generic
point of the tensor branch of the interacting SCFT that lives at the origin. We reach the conformal fixed
point by shrinking the two-cycles of B, where the two-cycles contribute tensionless strings and the two-cycles
of the fiber contribute massless multiplets; i.e., going to the origin of the tensor branch is equivalent to taking
the tension of all BPS-strings to zero simultaneously. Since the spectrum of BPS-strings is fixed by the curve
configuration, the SCFT obtained by taking the tensionless limit is identical if two curve configurations are
identical. It is shown in [3I] that some specific curve configurations can have two different tensionful string
spectra, which can be captured by including additional small data to the curve configuration. Such examples
do not appear in this paper, and thus the tensionless string limit of identical curve configurations leads to
the same SCFT at the origin.



Upon toroidal compactification, the 6d (1,0) SCFTs flow to 4d N/ = 2 SCFTs, whose
conventional invariants (as we shall review below) are determined from a subset of the data in
(f, Is), via the coefficients of the anomaly polynomial term: (f, (8,7, 0, {ks})). The anomaly
polynomial of the interacting SCF'T associated to a curve configuration can completely be
determined from the curve configuration itself [10] 52] 57]. Subtracting the anomaly polyno-
mial of the interacting sector defined via a curve configuration from anomaly polynomial of
a given mixed SCFT yields the anomaly polynomial of a collection of free-hypermultiplets.
Thus, we can determine the SCFT content by finding the interacting part of the SCFT
and the number of free hypermultiplets, while the curve configuration provides a complete
invariant of the interacting part of the 6d (1,0) SCFT.

Our strategy, then, is very simple: to prove that two 4d N/ = 2 SCFTs are isomorphic,
we show that they arise as the toroidal compactification of two 6d (1,0) SCFTs which are
isomorphic because they share the same curve configuration. Hence, we mostly consider 4d

N =2 SCFTs of class S that admits 6d (1,0) SCFTs origins[]

The rest of the paper is organized as follows. In Section [2, we show how to find candidates
of isomorphic SCFTs through constructing pairs of class S theories whose 4d conventional
invariants coincide. We show that these theories also admit 6d (1,0) SCFT origins via toroidal
compactifications by a process of ungauging, followed by gauging. Using the 6d (1,0) SCFT
parents, we show in Section |3 that each pair is isomorphic and find the renormalization
group (RG) flows between the pairs. We take type ¢; SCFTs as the target example theories
and study them explicitly. We revisit the 4d class S theories, that are from the 6d (1,0)
parents, in Section and enumerate the isomorphic fixtures (i.e., 3-punctured spheres)
in the class S theories of type e7. In Section [4.2] we relax some of the constraints in the
algorithm of Section [2| to construct more pairs of isomorphic theories. We even further relax
the constraints in Section [4.3| and construct pairs of theories that differ in the number of free
hypermultiplets, but whose interacting sectors are isomorphic SCFTs. While our analysis
was on type e; theories, we consider some examples drawn from other ADE types in Section
to demonstrate that these are not specific to type ez theories. Finally, in Section [6] we discuss
some examples which appear to be isomorphic, but which are not related to compactifications
from 6d. For each example pair, we check that their Schur indices agree (up to the order to
which we are able to compute them). In Section , we discuss the source of the origins of
these isomorphisms as Z, outer-automorphisms of 6d (1,0) SCFTs and how they differ for
the ADE types.

4This does not exhaust the set of apparently-isomorphic 4d SCFTs, and we give some examples without
a 6d (1,0) origin in Section @



2 Isomorphisms of class § theories and the setup

We consider 4d N' = 2 SCFTs of class S, the theories constructed as a compactification of 6d
(2,0) SCFTs of type g on a genus g n-punctured Riemann surface, with codimension-2 defect
operators filling all of the 4d spacetime and situated at the n marked points on the Riemann
surface [40, 41]. The defect operators located at the (“regular”) punctures are labeled by
nilpotent orbits in g. In this way, a class S theory is encoded in the following data{?]

{97 9, Ol?"'vOn}7 (2].)

where the O; are nilpotent orbits in g. It is natural to ask:

When do two different tuples of data given by
equation (2.1)) lead to the same 4d N =2 SCFTs?

In this section, we will explore methods to generate such tuples which appear to correspond
to isomorphic theories.

We focus on pairs of theories where the genus of the Riemann surface is the same, the 6d
(2,0) origin is the same, and all but two of the n punctures are the same. That is, we wish
to compare theories associated to the following data:

{gv g, 017 027 037 ) ON+2} and {ga g, /17 é? 037 ) ON+2 } (22)

Then the question boils down to find under what circumstances are these two theories the
same:

(2.3)

5“Twisted” class S theories can be constructed by incorporating outer-automorphism twists of g around
nontrivial cycles on the Riemann surface. In this paper, we consider only untwisted class S theories.



The two theories are evidently not isomorphic if they possess different conventional invariants.
Thus, we would only like to consider pairs of the form in equation ([2.2)) such that the following
quantities of the associated SCFTs are identical:

e the Weyl anomaly coefficients, a and ¢,
e the flavor symmetry algebras and levels,
e the graded Coulomb branch dimensions,
e the Higgs branch dimension.

For any class S theory, the complex structure moduli of the punctured Riemann surface
parametrize exactly-marginal deformations of the SCFT. Taking a degeneration limit, we
can simplify the question in equation ({2.3)) to:

(2.4)

The (N +1)-punctured genus g Riemann surfaces on the left are identical in this degeneration
limit, and if the cylinder connecting them to the three-punctured spheres on the right is
unambiguousﬁ then the two theories in equation are isomorphic when the two three-
punctured spheres describe isomorphic SCFTs:

010 \ o 010
o) ~lo
0,0 0,0
: (2.5)

6See Section for an example of the rare and special cases where there are inequivalent choices for the
connecting cylinders in this degeneration limit.




In equation (22.4)), we have depicted the cylinder connecting the genus g surface and the
three-punctured sphere as joining together two full punctures, labeled by 0. However, this
connecting puncture may be different in non-generic cases. If O; and O, are sufficiently low
on the Hasse diagram, then the connecting puncture on the right may instead be forced to be
an irregular puncture (in the sense of [14]); these are labeled [16] by pairs (O, H), consisting
of a nilpotent orbit O and a subgroup H of its flavor symmetry group. The puncture on the
(N + 1)-punctured surface on the left is the puncture O. In a sequence of works [14], 15| 17
19], the three-punctured spheres with irregular punctures were catalogued, and we can simply
look up the results for the pairs (Oy, Oy) which yield a 3-punctured sphere with an irregular
puncture.

Alternatively, if the collection of punctures on the genus g surface on the left are suffi-
ciently low down the Hasse diagram, and g = 0, then the full puncture 0, which connects the
(N + 1)-punctured sphere on the left, is replaced by an irregular puncture, (O, H) and the
three-punctured sphere on the right has punctures O, O, and O. This will, in fact, be the
generic situation for the examples we study. The three-punctured spheres that we find to be
isomorphic SCF'Ts of class § will invariably have the 3rd puncture in equation being a
less-than-full puncture.

Thus the general question about isomorphisms of class S theories of the form in equation
(2.3) can be simplified to a question about isomorphisms of three-punctures spheres,

010 2 (Oe
(0N ~| 00
05,0 050
, (26)

for some choice of third puncture O.

It remains to construct suitable pairs (O1,0) and (O}, O}), such that the resulting 4d
N =2 SCFTs have all the same conventional invariants. As in [28], a mechanism for doing
so can be constructed via a suitable minimal nilpotent Higgsings, i.e. the Higgs branch
renormalization group flow associated to turning on the highest-root moment map of some
simple factor in the manifest flavor symmetry of one of the punctures. The effect is to replace
the puncture O with the puncture O’ such that O is the minimal degeneration of O’.

Suppose that there exists a pair of nilpotent Higgsings by the same simple Lie algebra f§
at the same level k such that

Fie /

0, = ,
! S (2.7)

o, I 0,



In the class S construction, each puncture gives rise to a flavor algebra, referred to as the
manifest flavor algebra f(O), which is a subalgebra of the full flavor algebra of the SCFT. It
is shown in [28] that matching the manifest flavor symmetries, i.e. imposing

f(O1) ® f(O2) = §(07) @ §(Os) (2.8)

automatically leads to candidate pairs (Oy, O,) and (O}, O}) such that the theories associated
to the three-punctured spheres in equation have the same conventional invariantsﬂ
Later in this paper we will see that is a sufficient, but not necessary, condition for
obtaining isomorphic pairs. But, for now, let us impose it.

Even if we relax (2.8]), we still require that the flavor symmetry algebras and levels
coincide. Indeed, we should go further and demand that the global forms of the flavour
symmetry groups coincide. When these differ, the theories are clearly not isomorphic. But
imposing this stronger condition still does not suffice for the theories to be isomorphic.

In [28], a family of examples was constructed to illustrate this point. Consider the class
S theory of type ¢; with the puncturesﬂ

(01, OQ) — (Ag, Dﬁ(al)) y ( ,1, 0/2) - ((A3 + Al)”, D5) . (29)

Then different choices of the third puncture O lead to various possibilities for the underlying
pairs of SCFTs whose conventional invariants agree. We have depicted the Hasse diagram
of e; nilpotent orbits in Figure [2.1, where we have color coded the choice of third picture
O according to three different cases based on whether the flavor symmetry algebra and the
global form of the flavor symmetry coincides or not as the following:

e (black): the flavor symmetry algebras agree, but the global form of the flavor symmetry
groups differ,

o ( ): the global form of the flavor symmetry groups agree, but the theories are not
isomorphic,

e (green): the global form of the flavor symmetry groups agree and the theories appear
to be isomorphic,

e (red): “bad” three-punctured spheres, that are not associated to nontrivial 4d SCFTs.

"It is necessary to choose the third puncture O to be sufficiently high up on the Hasse diagram of nilpotent
orbits of g to guarantee that the theories are not bad, in the sense of Gaiotto—Witten [42].

8We denote the nilpotent orbits of exceptional Lie algebras using Bala-Carter notation [7, §]. See the
standard reference [20] or the paper [16] for a review.
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Figure 2.1: The possible choices of the third puncture O in equation (2.6 for the pairs of
punctures in equation ([2.9)).

In this family of examples, there are four choices for O that appear to lead to isomorphic
pairs of theories:

(As5)", As+ Ar, Deglas), FEq(as). (2.10)

The Schur indices up to O(7'?) were computed in [28] and shown to coincide. While persua-
sive, this is far from sufficient to prove that the pairs of theories are isomorphic.

On the other hand, once we have shown that the pair of theories with third puncture
O = (A;5)" are isomorphic, then the isomorphism follows for the other three choices of
third puncture. In particular, it was shown in [28], that any (not necessarily minimal)
nilpotent Higgsing of the third puncture of a pair of isomorphic theories leads to a new pair



of isomorphic theories. Consider the following sequence of local Higgsings:

(92)12

(A5)" = As + A1 ——— Ds(az) — Exr(as)
(92)12 su(2)26 su(2)o . (2.11)

Black arrows correspond to minimal nilpotent Higgsings associated to giving a VEV to the
highest-root moment map operator of the non-Abelian flavor symmetry which decorates
the arrow. The olive arrow is a non-minimal nilpotent Higgsing corresponding to giving a
VEV to a (g2)12 moment map in the next-to-minimal nilpotent orbit. The Higgsing from
As + Ay — Dg(ag) is not a nilpotent Higgsing, as it does not involve solely giving a VEV
to a moment map operator, but nevertheless such a Higgs branch renormalization group
flow exists, as shown in [27]. Non-nilpotent Higgsings are in general noteworthy and will be
explored in more detail in a future work [29]. But we do not need to discuss them here; all
of the punctures corresponding to additional isomorphic pairs are obtainable from (As)” by
a sequence of nilpotent Higgsings.

What remains then is to prove the isomorphism for O = (As)”. The proof involves a
detour via a similar question about isomorphisms between 6d (1,0) SCFTs known as Higgsed
rank N (g, g) conformal matter. Each of these 6d SCFTs corresponds to a pair of nilpotent
orbits, O; and Oy, as we explain in detail in Section [3] The compactification of such SCFTs
on a torus are dual to class S of type g on a sphere with N + 2 punctures, NV of which are
simple punctures, and the remaining two are associated to the nilpotent orbits O; and OQH
This is precisely the kind of class S theories discussed around equation ({2.3).

Specializing to the case of g = e7, where the simple puncture is denoted by E;(a;), and
picking the two punctures (O, Op) = (O1,0,) or (07, 04) we can further degenerate the
genus ¢ = 0 Riemann surface on the left in equation (2.4) to write the (N + 2)-punctured

(2,7,1) [(Es)1y SCET] [(Fi4)yy X (E7)gg SCET] [(Er)ge x )ss SCFT]

sphere as

When N > 5, the three-punctured sphere on the right has the full puncture, 0, along with
O, and Oy. For N = 4, 3,2, the full puncture is replaced by (3A4;)”, (As)” or Dg, respectively.
Thus, for low values of N, we are probing the physics of (an Fy, Go or SU(2) gauging of) the

9More precisely, it is a certain codimension (N — 2) sublocus of the conformal manifold of the class S
theory that is dual to the T%-compactification of the 6d (1,0) SCFT.



three-punctured sphere with (3A4;)", (A5)” or Dg as the third puncture. If the two 6d (1,0)
SCFTs that yields these theories with (O,,Oy) are isomorphic, then the three-punctured
spheres on the right are also isomorphic. For the pairs of punctures in equation , the
6d (1,0) theories are manifestly non-isomorphic for N > 3. Hence their T? compactification
to 4d does not yield isomorphic theories. However, for N = 3, we find that the theories are
manifestly isomorphic as 6d (1,0) SCFTs. Hence so are their compactifications to 4d.

We note that in equation (2.12]), we made an assumption that O, and Oy, are high-enough
up on the Hasse diagram such that the theory

, (2.13)

is “good”, i.e., that the compactification of the (2,0) theory from 6d yields a nontrivial 4d
SCFT. Of the 990 pairs, (O,, O,) in the ¢; theory, 49 of them are “bad”.

3 Nilpotent Higgsing and identical 6d (1,0) SCFTs

In Section [2| we showed how to construct pairs of class S theories whose conventional in-
variants coincide. These are are candidates for being isomorphic N' = 2 SCFTs. With
considerable additional effort, we could narrow down the list of candidate isomorphic SCFT's
by computing their spectra of Schur operators up to some high order. But this was still far
from sufficient to show that the theories are, in fact, isomorphic.

In this section, we utilize a different, and rather simple, approach to determining whether
or not two of the 4d AN/ = 2 SCFTs of interest are truly identical. First, we ask a similar
question in the context of a class of 6d (1,0) SCFTs that are each associated to a pair of
nilpotent orbits of an ADE Lie algebra; on torus-compactification, such SCFTs are known
to be dual to class S theories on spheres where two of the punctures are the same as the
nilpotent orbits in the 6d theory, and the rest are simple punctures. At first, it appears that
we have merely uplifted the same problem of determining when two SCFTs are the same to
six dimensions; however, the landscape of consistent 6d (1,0) SCFTs is highly constrained
from string theory [46, 48][] In this way, knowledge of the conventional invariants of the
6d (1,0) SCFT is often enough to fully determine the SCFT, or else leaving only a small
number of possibilities. We can determine for what pairs of nilpotent orbits two such 6d
SCFTs are the same, and this leads to the same conclusion for the 4d A" = 2 class S theories

0For recent reviews of the power of string theory in constraining (6d) SCFTs, see [5] [49].
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obtained via torus-compactification, and related SCFTs obtained from degenerations and
partial puncture closure.

The rank N (g, g) conformal matter is the 6d (1,0) SCFT that lives on the worldvolume
of N Mb5-branes probing a C?/T, singularity [24]. Here g can be any ADE Lie algebra, and
Iy is the finite subgroup of SU(2) associated to g via the McKay correspondence [53]. Each
conformal matter theory has a non-Abelian flavor algebra which is

f=g@g9, (3.1)

though this can be enhanced for small values of N. From this starting point, new 6d (1,0)
SCFTs can be obtained via Higgs branch renormalization group flows triggered by giving
nilpotent vacuum expectation values (VEVs) to the moment map operators associated to
these two flavor symmetries. In particular, we can consider the family of theories

7;,1\7<OL7 OR) ) (32)

where Oy, and Op are nilpotent orbits in g. When Oy = Og = 0, i.e., the trivial nilpotent
orbit, then we recover the original conformal matter theory, which is often referred to as sim-
ply Ty~ Such families of 6d (1,0) SCFTs related via a nilpotent hierarchy have been studied
in great detail, see, for example, [10, 12, 22, [44, [47, [50, 51, 55]. When 7, x is compactified
on a torus, the 4d N/ = 2 SCFT that is obtained is known to have a dual description in
terms of the class S construction [26, 58, 59]. In particular, the T2 compactification is dual
to the compactification of the 6d (2,0) SCEFT of type g on a sphere with two full punctures
and N simple punctures. Higgsing of the 6d (1,0) SCFT by giving a VEV valued in a nilpo-
tent orbit of g to the moment map operators then corresponds to the partial closure of the
full punctures in the dual class & description; this proposal has been tested extensively in
[10] 311 [54].

In this section, the question we will attempt to answer is:

When do the interacting sectors of two 6d (1,0)
SCFTs T, n(0r,0r) and Ty N/ (O}, Oy) match?

It is straightforward to see that Ty n(Op,Or) and Ty n/(O},O%) can only have identical
interacting parts if N = N’. Rank N conformal matter, for any g, possesses a sequence of
Higgs branch renormalization group flows which eventually ends at the 6d (2,0) SCFT of
type Ay_1 [09]. In particular, after going to the superconformal point at the origin of the
tensor branch, the Type IIB geometry is an elliptic fibration over a base C?/Zy. The defect
group of a 6d SCFT depends only on the information of the base [23]; for C*/Zy, it is simply
Zy. Hence, two interacting SCFTs with different defect groups cannot be identical. A priori,
we could consider a more general version of this question where g’ # g, as there are known

11



examples where such different Higgsed conformal matter theories lead to the same 6d (1,0)
SCFTs. However, we will not consider these cases in this paper and will restrict to the setting
where g remains the SameE-] In special cases, this question has been answered previously,
for example, all the theories 7;1(Op,Og) and 7y 1(0},O%), where g is an exceptional Lie
algebra, with isomorphic interacting sectors have been tabulated in [10].

The analysis in this paper makes much use of the atomic construction of 6d (1,0) SCFTs,
which we briefly review here. We consider Type IIB string theory compactified to six di-
mensions on a complex Kahler surface B, and with a non-trivial axio-dilaton profile turned
on along B so as to preserve eight supercharges. The consistency of the axio-dilaton profile
can be rephrased as an elliptic fibration over B, such that the total space of the fibration is
a Calabi—-Yau threefold. Compactifications on non-compact elliptically-fibered Calabi—Yau
threefolds, satisfying some conditions such as the absence of compact complex curves in B,
lead to 6d (1,0) SCEFTs. Such threefolds have non-minimal singular fibers and may also
have orbifold-like singularities in the base: B = C?/T', where T is a finite subgroup of U(2).
Performing a sequence of Kéahler deformations leads to a new non-compact elliptically-fibered
Calabi—Yau threefold for which B is smooth and all singular fibers are minimal. Physically,
this procedure involves giving vacuum expectation values to the scalar primaries inside all of
the tensor multiplets of the SCF'T; thus, the new Calabi—Yau threefold describes the tensor
branch effective field theory associated to the SCFT.

It turns out that the Calabi—Yau geometries that can correspond to a tensor branch con-
figuration are highly constrained. The only compact curves that the base can contain are
rational curves, and those must intersection in an intersection matrix A% which is negative-
definite; furthermore, the self-intersection number of each rational curve is constrained to
be > —12, and adjacent curves can only intersect with intersection number one. The de-
tailed conditions have recently been reviewed in [49] and were summarized in recent works of
(subsets of) the current authors [10, BT]. Enumerating tensor branch geometry then reduces
to a problem of combining rational curves and singular fibers/algebras in such a way that
the necessary conditions are satisfied. In the end, we utilize a common shorthand notation,
which we explain via an example. Consider

S5U3 susg

313 . (3.3)

This represents a non-compact elliptically-fibered Calabi—Yau threefold where the base con-
tains three P's, which intersect in the following intersection matrix:
-3 1 0

ij

1Tn fact, in this paper, we focus on the case where g = e7; however, we include some examples for other
gauge algebras in Section

12



The two (—3)-curves are written with an susz above them, this indicates that the singular
fiber over those curves is of type IV; physically each singular fiber is associated to an algebra,
and that algebra provides a gauge algebra of the effective field theory on the tensor branch.
The tensor branch field theory also contains hypermultiplets transforming in representations
of the gauge algebra, however it is redundant to write them in the shorthand notation, as the
number and representation is entirely fixed by gauge-anomaly cancellation, after specifying
the self-intersection number and the gauge algebra: 7%. We use this concise notation to refer
to a tensor branch effective field theory for a 6d (1,0) SCFT throughout this paper; we refer
the reader to the review [49] for a comprehensive explanation.

Now that we have introduced a construction for 6d (1,0) SCETs from string theory, we
would like to know what physical properties of the resulting SCFTs can be determined from
knowledge of the tensor branch description. When a 6d (1,0) SCFT is compactified on a
T2, without any additional bells and whistles, then the dimension of the Coulomb branch of
the resulting 4d N' = 2 SCFT is equal to the sum of number of tensor multiplets plus the
sum of the ranks of the gauge algebras of the 6d theory. To avoid confusion, we will call this
number ranky), even though it is an intrinsic property of the 6d SCFT.

The hallmark of 6d (1,0) SCFTs is the anomaly polynomial. The anomaly polynomial of
a 6d (1,0) SCFT is a formal eight-form written in terms of the characteristic classes of the
R-symmetry, Lorentz symmetry, and the flavor symmetry. It takes the form
8

R + L es(Rypu(T) + L) + 2 p(m)

I
24 24 24

(3.5)
+ Z TrF? (/{apl (T) + vyea(R) + Z pabTer?> + Z pa TeF:
a b a

where each summation over a or b runs over the simple non-Abelian flavor symmetries of the
theory. The coefficients in the anomaly polynomial are referred to as the 't Hooft coefficients.
The anomaly polynomial can be determined from the effective tensor branch description of
the SCEF'T following [10], 21}, 25 52], 57].

As we have discussed, in four dimensions the A/ = 2 conventional invariants are the
central charges, the flavor algebras, and the flavor central charges;ﬁ and these quantities are
neatly summarized in the 4d anomaly polynomial

Is = 24(a—c) (%01<R)3 _ %cl(R)pl(T4)) —4(2a—c)cl(R)02(R)+Z koc1(R)co(Fy,), (3.6)

12There are a small number of cases where the hypermultiplet spectrum is ambiguous even after specifying
the self-intersection number and the algebra, however these situations will not arise in this paper.

13Generally, we include more information in the 4d conventional invariants, such as the graded Coulomb
branch scaling dimensions.
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where ¢;(R) is the first Chern class of the U(1) R-symmetry, co(R) is the second Chern class
of the SU(2) R-symmetry, p;(7}) is the first Pontryagin class of the tangent bundle to the 4d
spacetime, and co(F,) are the curvatures of the simple non-Abelian flavor symmetry factors.E
A natural generalization of this notion of conventional invariants to the 6d (1,0) context is to
again to take the anomaly polynomial I5. This quantity, Iy, satisfies the necessary condition
to form an invariant: SCFTs with different anomalies polynomials are necessarily different
CFTs. Interestingly, if a 6d (1,0) SCFT Ty 5(Or, Og) is compactified on a torus, then the
resulting 4d N = 2 anomaly polynomial depends only on a subset of the anomaly coefficients
appearing in equation . In particular, we can consider the “A/ = 2 subsector of the 6d
conventional invariants”, which includes only the coefficients

B, v, 0, {kra}- (3.7)

It is noteworthy then that there can exist 6d (1,0) SCFTs which have different conventional
invariants, but which compactify on a 7? to 4d N' = 2 SCFTs with the same conventional
invariants. Generally these two 4d SCFTs will be different, as the differences in six dimensions
should be reflected in the torus-compactification; in particular, we would like to understand
how the 6d (1,0) anomaly coefficient « affects the 4d physics. We leave a detailed answer to
this question for future work.

While the 6d (1,0) anomaly polynomial is a powerful invariant of the Higgsed conformal
matter theories that we consider in this paper, it is not complete. There exist a small
number of interacting 6d (1,0) SCFTs with the same anomaly polynomial, and yet which
are distinct SCFTs. Modulo the subtletied™] explored in [31], the effective field theory on
the tensor branch does provide a complete invariant. To determine whether two theories
Ton(Or,Or) and Ty (07, O%) possess the same interacting sector, it suffices to determine
the curve configuration/tensor branch description of each theory. If the curve configurations
are the same, then the SCFTs that live at the origin of the tensor branch are the same.

When a Higgs branch renormalization group flow is triggered by giving a nilpotent vac-
uum expectation value, associated to a nilpotent orbit O, to the moment map of a g flavor
symmetry, the resulting SCF'T typically has a reduced flavor symmetry. The nilpotent orbit
O is associated to an embedding po : sus — g, and the residual flavor symmetry is defined
to be the commutant in g of this embedded suy; we call this f(O). Then, the manifest
non-Abelian flavor algebra of Ty y(Op, Og) is

jretet = §(0r) @ (Or) - (3.8)

4For ease of explanation we do not write the Abelian flavor symmetries in the anomaly polynomial in

equation however they are of course included in spirit.

5The usual tensor branch description, involving a collection of exceptional curves and the elliptic fibers
over them may need to be supplemented, as in [31], by a choice of + chiral projection for each (—1) curve.
As in [3T], these sign choices are well-defined modulo outer-automorphisms of the gauge and flavor algebras.
In the examples discussed in this paper, they are completely removable.
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However, the flavor symmetry of the interacting sector of 7y y(Op,Ogr) may differ from
this manifest symmetry. That is, the flavor symmetry and the flavor central charges are
conventional invariants of the 6d (1,0) SCFT which cannot be read off from the pair of
nilpotent orbits directly, but one must first go through the intermediate step of constructing
the tensor branch description, and then use the procedure described in [I0] to read off the
correct non-Abelian flavor algebras and their flavor central charges.

There is no guarantee that 7; y(Op, Og) is an interacting SCFTs with no free sector and

a single stress-energy tensor. Therefore, it is not only important to know the effective tensor

branch description of the interacting sector, but also to be able to determine the number of

free hypermultiplets in the spectrum. The quaternionic dimension of the Higgs branch of
Ton(Op,OR) is

dim(H) = N 4 dim(g) — dim(Oy) — dim(Og) . (3.9)

Here the dimension of the nilpotent orbit is as defined in [20]. In contrast, if we have a tensor

branch configuration corresponding to a single interacting SCFT that is Higgsable to a 6d

(2,0) SCFT of rank N — 1, then the dimension of the Higgs branch of this interacting SCET
can be obtained from the anomaly polynomial [58] 59]. It is

dim(H) = —606 — 29(N — 1), (3.10)

where § is the coefficient of the po(T') term appearing in the anomaly polynomial in equation
(3-5). The difference between the dimension of the Higgs branch in equations and
is the number of free hypermultiplets in 7y x(Op,Og). A free hypermultiplet transforming
in a representation R of a flavor algebra f contributes to the anomaly polynomial as

dim(R)
5760

1 1
Iéree hyper(f7 R, F) _ —TI'RF4 + —m (T)TI'RFQ +

24 48 (Tp1(T)? —4po(T)) ,  (3.11)

where F'is the curvature associated to §f. Thus, we can see that adding free hypermultiplets
does not modify the anomaly coefficients a and 3 in the combined theory. As these coefficients
are insensitive to the inclusion of free sectors, they are conventional invariants which are well-
suited for searching for 75 x(Or,Ogr) SCFTs with the same interacting sector.

For the remainder of the section, we specialize to studying isomorphic pairs of the 6d
(1,0) SCFTs from rank N (e7, ¢7) conformal matter that leads to class S theories via toroidal
compactifications. It is a curious quirk that the isomorphism of 6d (1,0) SCFTs is more
obvious when considering g = ¢, than when considering g a classical Lie algebra. We first
highlight the power of the curve configuration in determining isomorphisms by analyzing in
detail for two examples in Section [3.1] and then provide all the isomorphic pairs with g = e;
in Section 3.2
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3.1 Examples of two pairs of isomorphic SCFTs with g = ¢

Let us now present a couple of detailed examples to illustrate pairs of theories with isomorphic
interacting sectors. We first consider the theory

TerN(As, Az + 241) (3.12)
which has
ranky) = 18N — 22, « = 2304N® — 13438N + 12586 — 18 , B =269—-191N,
N (3.13)
dimH = N +44,  fuanifest = (SUz)12 B (SUs)24 B (SU2)13 D (8507)16
We compare this theory with a different Higgsed (e7, ¢7) conformal matter,
Terv ((As + A1)", (A5 + Ar)') (3.14)
The physical properties of this latter theory are
ranky) = 18N — 22, « = 2304N° — 13438N + 12562, =269 — 191N, (315)

dimH =N+44,  fmanitest = (SU2)12 B (SU2)2g B (SU2)13 B (507)16

It is clear that, for generic values of N, the theories in equations (3.12) and (3.14)) are different,
in particular, they have different values of the 't Hooft anomaly coefficient a. This is also

clear to see from the tensor branch descriptions of each theory. We have two theories

N;Z
S5Ug e7 5u25075u2 e7 suU 5075112\ e7
Toon(As, A3 +24;) © 2 12572 18...1973791 712, (3.16a)
NJ:Q
Ton((As+ A (As+A)) . 217193218123 21§ 12, (3.16b)

Both of these theories can be obtained from a nilpotent Higgsing of a parent theory, in this
case T n(As, (A3 + A1)'), as we can see from the Hasse diagram in Figure [3.1] The parent
theory has two (sus)1o flavor symmetries, and giving a nilpotent vacuum expectation value
to the associated moment map operators triggers a Higgs branch renormalization flow from

Ag — (Ag + Al)ll and (Ag + Al)l — Ag + 2A1 , (317)

respectively. On the tensor branch, these Higgsings can be though of as shrinking either of
the dangling (—1)-curves and deforming the geometry to remove the resulting singularity.
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Tern(As, (A5 + Ar)')

N-2
N

SuU2 e7 Sug2s07sU2 €7 5U25075U [4rd

21%123218---1232121%12

f=(su2)(5 B (su2)as @ (5U2)13 B (507)16

(A3 +A; )/—>A3 +2A1

7;7,N(A37 A3 + 2A1)

N-2

U (44 SU25075U2 € SU25075U [4rd

Su2 7 2
21%123218---12321712

f = (su2)12 B (SU2)24 B (5U2)13 B (507)16

A3—>(A3 +A1 )”

Teo N((As + A1)", (As + Ay)')

N-2

Sug e7 SU2507S5U2 € S5U25075U2 (44

917123 218---12 3 21812

f = (SU2)12 B (SUs)24 B (SU2)13 B (507)16

Figure 3.1: The Hasse diagram for the two nilpotent Higgsings of T, n(As, (A3 + A;)’) that
lead to T, n(As, A3 + 2A;) and 7., n((As + A1)", (A3 + A;)'). In both cases the Higgsing
involves giving a vacuum expectation value to the highest-root moment map of an (sus)q2
flavor symmetry factor.

Ter2(As, (As + Ar)')
1

Su ey

21812
1

f=(su2)(5 B (su2)aq ® (5U2)13 D (507)16

(A3+A1 ),—>A3+2A1

7;7,2(A37 A3 + 2A1)
sug ey

21712
1

f=(s5u2)12 B (5U2)24 B (5U2)13 B (507)16

A3—>(A3 +A; )”

Ter2((As + A1)", (A3 + Ay)')
sup o7

21712
1

f = (su2)12 B (5U2)214 B (5U2)13 B (507)16

Figure 3.2: The Hasse diagram in Figure|3.1{when N = 2. The parent theory, 7., 2(As, (A3 +
A1)'), has a Zy automorphism that interchanges the two ()12 flavor symmetry factors, and
thus nilpotent Higgsing by either factor leads to the same infrared 6d (1,0) SCFT.

When N = 2, we can see that the two theories in equations (3.12)) and (3.14) have
the same value of «, in addition to the other properties that agree for all N E] These are

16Tt is important to note that o, 3, and rank 4) are the same. In this example, they also have the same Higgs



necessary conditions for the two SCF'Ts to be the same; now, we determine the tensor branch
descriptions of the SCFTs when N = 2, and we find that the Hasse diagram in Figure [3.1
becomes the Hasse diagram in Figure It is clear that the tensor branch description of
the parent theory possesses a Zy automorphism that exchanges the two dangling (—1)-curves
attached to the central (—8)-curve. Thus Higgsing by giving a nilpotent vev to either of
the two (su2)12 moment maps yields the same tensor branch description and thus the same
SCFTs, that is:

Ter2(As, As+241) = Too((As+ A", (As + A)'). (3.18)

In the previous example, we have considered a solution to the question posed in this
section where the Higgsed conformal matter theories are interacting SCFTs, with no free
sector, and where the non-Abelian flavor algebra of the identical theories is simply the man-
ifest flavor algebra associated to the nilpotent orbits. We now consider an example where
each Higgsed conformal matter theory contains different numbers of free hypermultiplets and
where there is flavor symmetry enhancement for both theories. Consider the theories, which
we list together with their relevant physical properties, in Table [I, We can see that when
N = 2, we have two SCFTs with the same values of «, 3, and rank); these are then good
candidates for theory with isomorphic interacting sectors. We determine that the tensor
branch description for the interacting sector of both theories is

509 Sus

412 . (3.19)
The interacting SCF'T associated to this tensor branch has
dimH = 41 , f = (5u2)9 D (5u6)18 . (320)

From the differences in the dimensions of the Higgs branches, we can see that 7, (A2, Dg(a2))
contains six free hypermultiplets, which rotate under an (sug), flavor algebra; similarly,
Ter (Ao + Ay, AL) contains two free hypermultiplets, which rotate under the fundamental
of an (suy)e flavor algebra. This is consistent with the non-Abelian flavor symmetry of the
interacting sector in equation . Thus, we learn that

509 Sus

Ter2(A2, Dg(az)) = 412 4 6 free hypers, (3:21)
Ter2(As + A AY) = 5191553 + 2 free hypers.

branch dimension and manifest flavor symmetries. However this is not necessary for the Higgsed conformal
matter theories to have the same interacting sectors.
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Theory Ter N (A2, Dg(a2)) Ter N (Ag + Ay, A7)

Tensor N3 N3
S09 @25uU2 e7 SU2507 5112 €7 SU2507SU2 €7 SuUgSuUy 509 S07SuU2 e7 5U25075U2 €7 SU2507SU2 €7 SuUg2S5uUgz
branch 413218123 8123218122 413 21812 3 8123218122
o 2304N3 — 24958 N + 39447 — 13872/N 2304N3 — 23806 N + 35607 — 10800/N
153 663 — 382N 663 — 382N
rank 4) 18N — 27 28N — 27
dimH N + 45 N +41
Fmanifest (su2)9 @ (su6)20 (su2)9 @ (suz)20 & (su4)18

Table 1: Some of the physical properties of the 6d (1,0) SCFTs 7., n(As, Dg(az)) and
Tern (A + Ay, A).

Similarly to the isomorphic interacting SCFTs that appear in Figure [3.2] we argue that
there exists a parent theory, and that the isomorphism of the interacting sectors of the two
SCF'Ts listed in Table [1] can similarly be understood as due to an enhanced symmetry in the
parent theory that makes the equivalency of the two nilpotent Higgsings manifest. In this
case, the parent theory is 7., n(A2, Af), which has the tensor branch description

N—3

o 3.22
509 5075U2 e7 51260752 7 SU95075U2 €7 SU25U4 ( . )

41321812321- %123218122.
The non-Abelian flavor algebra of this SCFT is

(su2)g B (sU2)20 B (SUg)20 - (3.23)
The Higgs branch renormalization group flows that lead to the two SCFTs in Table [1] are
AQ — A2 + Al and Ai:) — Dﬁ(ag) , (324)

which correspond to giving highest-root nilpotent vacuum expectation values to the moment
maps of the (sug)ao and (sus)q flavor algebras, respectively. When N = 2 the tensor branch

becomes
509 SuUy

412, (3.25)

and the two flavor symmetry factors with level 20 recombine to the enhanced flavor algebra
(5112)20 ) (5116)20 — (5u8)20 . (326)

In the previous example, we observed that when N = 2 there emerged a discrete Z, sym-
metry of the tensor branch configuration, and this provided the physical justification for the
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isomorphism of the two theories in the Hasse diagram in Figure |3.2; in this case, instead of a
emergent discrete symmetry we see that there is an enhanced continuous symmetry. When we
see an enhanced flavor symmetry, we can Higgs by giving a vacuum expectation value to the
highest-root moment-map of that enhanced flavor symmetry; this triggers a renormalization
group flow to a new interacting SCFT. However, giving a VEV to the highest-root moment
map of a subalgebra will lead to the same interacting SCF'T, but with differing numbers of
free hypermultiplets transforming under the unbroken part of the flavor symmetry. As such,
it is clear that when there exists such a flavor symmetry enhancement, the two Higgs branch
deformations corresponding to, in this case,

AQ — A2 + A1 and A/5 — DG(CLQ) , (327)

lead to theories with the same interacting sector. The unbroken part of the flavor symmetry is,

respectively, su, and sug, which produces precisely the correct number of free hypermultiplets
that we observed in equation ({3.21)).

3.2 Isomorphic theories for g = ¢;

We now possess a straightforward and algorithmic method to determine all answers to the
question posted in this section, for a given g. For each theory Ty n(Op,Opg), it is well-
known how to determine the tensor branch description for N sufficiently large such that
the nilpotent Higgsing on the left and right do not cross-correlate across the tensor branch.
From this effective tensor branch description, we can compute rank) of the SCFT and the
anomaly polynomial. For any pair of theories Ty n(Op, Or) and Ty n (07, O%) we then ask if
there exists a value of N such that «, 3, and the rank,) are the same. From the resulting
list of putatively isomorphic theories, we determine the tensor branch descriptions of the
interacting part of each pair, and if they are identical then the two SCFTs associated to
each pair are identical. The results are conveniently summarized in a collection of Hasse
diagrams describing Higgs branch renormalization group flows; for g = ¢; there exists pairs
with isomorphic interacting sectors for N = 1,--- |5, and we depict these in Figures [3.3]
3.5 and [3.6], respectively.

In the Hasse diagrams that we have drawn, we have generally shown 6d (1,0) SCFTs
which have two realizations by two different pairs of nilpotent orbits connected by arrows if
there exists a (minimal) nilpotent Higgsing (that is, a Higgsing triggered by giving a vacuum
expectation value to a highest-root moment map of a simple non-Abelian flavor symmetry
factor) between two interacting SCFTs. We have depicted these nilpotent Higgsing by solid
arrows labelled by the flavor algebra which is given a VEV. However, in the sets of theories
that we consider, there also exist elementary slices in the Hasse diagram of nilpotent orbit
closures, which are not associated to a nilpotent Higgsing. These are labeled by dashed
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arrows; they occur when we have a 6d tensor branch description which is of one of the
following forms:

...18571...’ o141 (3.28)

Anomaly cancellation requires that the e; gauge algebra has nsg = 3 or nsg = 4 half-
hypermultiplets, respectively, in the fundamental representation; thus there is an so,,, flavor
symmetry under which the half-hypermultiplets transform in the vector representation.ﬂ
There is a Higgsing of these theories to SCFTs with tensor branch configurations

4] €6
o151, c 141 (3.29)

respectively. This is not a nilpotent Higgsing of the so,,, flavor factor. Understanding the
Higgs branch renormalization group flows between conformal matter theories (in particular
those which, like the ones discussed here, are not nilpotent Higgsings) is the subject of [29];
we leave a fuller explanation to that work.

For g = ¢7, it is noteworthy that almost all pairs of theories
E,N(O[n OR) and 7—971\[(0/[/, O;B) s (330)

with the same ranky) and the same 't Hooft anomaly coefficients o and 8 have isomorphic
interacting partsH In fact, there is precisely one counterexample. The theories

Ter3(Da(ar), A5) and  Te, 3((As + A1)", Es(as)), (3.31)

have the same «a, 3, and rank), however they correspond to SCFTs with tensor branch
descriptions

1
Eigg and 1ER1T1Y (3.32)
1

respectively. This is merely a consequence of the fact that the (mixed) R-symmetry and grav-
itational anomalies do not provide sufficient data to distinguish any pair of 6d (1,0) SCFTs,
and it is thus necessary to determine the full tensor branch description: the tensor branch
effective field theory is (modulo the aforementioned subtlety of [31]) a complete invariant of
the SCF'T, unlike the anomalies.

1"We note that this is different from the manifest flavor symmetry, but rather, an enhanced flavor symmetry
for the case of nsg = 4. This can be observed easily in the entry 13 of Table

!8For obvious reasons, this statement requires that Ty n(Or,Ogr) and Ty N (O}, 0%) have a non-trivial
interacting sector.
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12
Ter 1(241,34))
(dim C, dim H) = (5, 76)

(EPAR %24

g2
131
Ter,1(2A1,3AY)
(dimC,dimH) = (5, 80)

g2
12

(dim C, dim H) = (4,72)

4-20

‘(5)34)19

Sus
12

(dimC,dim H) = (4, 68)

4-21

(e6)24

sug

1 4-22
(dimC, dimH) = (3,57)

(dimC,dimH) = (4,76)

SUg5Ug

(sue)18

22

(501&

Sug

122
(dimC,dimH) = (4,92)

%36

Su2

(dimC,dimH) = (3,63)

4-16
4-17

‘/(507)16

12

4-18
4-19

(dim C, dim H) = (2, 59)

(su2)13

1

(dimC,dim#H) = (1,29)

4-23

Figure 3.3: The Hasse diagram of 6d (1,0) SCFTs arising from Higgsed rank one (e7,e7)
conformal matter which occur via Higgsing by two distinct pairs of nilpotent orbits. We
write the tensor branch description of the interacting sector. We have not depicted any
non-minimal Higgs branch RG flows. Tensor branch configurations which are colored red
are parent theories. The olive-colored “x-y” refers to Table x, entry y, where the pair of
nilpotent orbits and its flavor symmetry are listed. This Hasse diagram is a subdiagram of
Hasse diagram of nilpotent Higgsings of minimal (e, ¢7) conformal matter that appears in
[10]. Note that this case contains some triples of pairs corresponding to isomorphic theories.
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Figure 3.4: The Hasse diagrams of 6d (1,0) SCFTs arising from Higgsed rank two (e;,e;)

conformal matter which occur via Higgsing by two distinct pairs of nilpotent orbits. See the
caption of Figure for an explanation of the notation.
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Figure 3.5: The Hasse diagrams of 6d (1,0) SCFTs arising from Higgsed rank three (e7, ¢7)
conformal matter which occur via Higgsing by two distinct pairs of nilpotent orbits. See the
caption of Figure for an explanation of the notation.
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1

SlUg €7 SU2507SUg 1
21812 3 2 S07SU €7 SU507
1 321712 3
Ter,a(As3, Eg) (dim C,dim H) = (23,24)

(dimC, dim H) = (22, 35)

L(Euz)u (suz)s

1 1
SU2 €7 SU2507SU2 ga2sug e7 SU26507
21712 3 2 2-1 321712 3 24
(dimC, dim H) = (21, 34) (dim C, dimH) = (22, 23)
L(ﬁﬂﬁle
1

€7 SU2507SUn

21712 3 2 2-2
(dim €, dim ) = (20, 30)

L(ﬁuz)w

€7 SU2507S5U2

1’1712 32 23

(dim C, dim ) = (20, 29)

L(Suz)lz

1
1 5075Us €7 SUS07Slg
4 SU2607S5U. < 2
1612732 31 3218123 2
(dim C, dim ) = (19, 28) Ter,5(Ds, Ee)
(dimC,dim H) = (26, 22)
J(5u2) l(ﬁuz)lz
e7 Sups07SUy 1
1512 3 2 3-2 507512 7 SU25075Uz _
(dimC,dim H) = (18,27) 321712 3 2 2-15
I (dimC, dim H) = (25,21)
i l(ﬁuz)s
¢g SU25075U2 ) 1
1512 3 2 4-1 g25Uy €7 SU26075U o
(dim C, dimH) = (17, 25) 321712 3 2 2-16
(dim C,dim H) = (24, 20)

(a) N = 4. (b) N = 5.

Figure 3.6: The Hasse diagrams of 6d (1,0) SCFTs arising from Higgsed rank four and rank
five (e7,e7) conformal matter which occur via Higgsing by two distinct pairs of nilpotent
orbits. See the caption of Figure for an explanation of the notation.
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4 Isomorphic 4d N =2 SCFTs of class S with g = e,

We can now return to the three-punctured spheres that were discussed in Section[2] Following
Section 3| we know how to determine when 6d (1,0) SCFTs associated to the data

(nga OL7OR)7 (41)

are isomorphic. The 4d N' = 2 SCFTs resulting from the toroidal compactification of these
isomorphic 6d SCFTs are thus evidently themselves isomorphic. Each of the 4d SCFTs has a
dual description in terms of class S, and we can take the degeneration limit depicted in equa-
tion (2.12) [ Finally, moving to the codimension one boundary of the conformal manifold
we can see that the three-punctured spheres on the right in equation decouple, and we
have established the isomorphism. It is important to note that the third puncture, appearing
in both three-punctured sphere, must belong to the quiver tail in the degeneration limit;
for g = e7, the possible choices of regular third puncture are O = E;(aq), Dg, (A5)", (341)".
Further isomorphisms of three-punctured spheres can be obtained via nilpotent Higgsings of

the non-Abelian flavor symmetry associated to the third puncture.

4.1 Pairs with the same manifest symmetries

We begin by considering three-punctured spheres where the flavor symmetry is simply the
manifest flavor symmetry induced by the choice of the three punctures. The discovering of
such examples was a part of the analysis in [28]; in particular, the putatively isomorphic pair
satisfies equation together with equation (2.8)). The isomorphic pairs of three-punctured
spheres satisfying this condition, and for which the isomorphism can be proven directly from
six dimensions, are listed in Table 2]

The last two entries in Table [2| are a little special, as the collision of the two chosen
punctures leads to an irregular fixture on the right. The quiver tails for theory A in row 15
looks like

D5O

Ay, Spin(12)
Bl 2 (4.2)

(2,1,1) 1(2,7,1) [(Es)yy SCET]  [(Fy)y, x Spin(13),s SCFT]  (12) + [(E7)s SCFT]

9Tn equation (2.12)), we drew the degeneration limit for g = ¢7, however the generalization to arbitrary g
is obvious.
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whereas the quiver tail for theory B in row 16 is

E7(a4) o

311,3 in(12
o (12} (4.3)

3(2,7,1) [(Es)1y SCET]  [(Fi)gy x Spin(13)ys SCFT] (12) + (32)
The degeneration for the other element of each pair involves modifying only the two rightmost
punctures.

For entries 1-11 in Table [2| we can do a chain of nilpotent Higgsings of the third puncture
to establish other isomorphic pairs of theories. For entries 1-4 in Table [2| we can start with
(3A;)” and Higgs it according to the following:

245
(5112)28 (92)16
, (Fa)2a | (83 )19 (su4) 18 / \

(3A4;) Ay Ay + Ay —— Ay + 24, 240+ A1 (4.4)
(5u2)k 4)28
Ay + 344

The Higgsing to 2A, is special. For these theories, the manifest (sus)16® (stl2)os B (SU2)g4
symmetry of the As+2A; puncture is enhanced to (sit2)16® (5ua)og P (SU2)28 P (s112)56. Of the
two (suy)ag factors present in the SCFT, which one is the “manifest” one (whose Higgsing
leads to the 245 puncture) differs between Theory A and Theory B. Hence, at that one
step in the chain, the nilpotent Higgsing of the manifest (st3)sg, which leads to 2As, yields
non-isomorphic SCFTs in Theories A and B.

The Higgsings for entries 5-11 in Table [2| are simpler, yielding three additional pairs of
isomorphic theories per entry. These Higgsings were discussed around equation , and
they are

(92)12

/\

(A5)" = As + Ay ——— Dg(as) ——— Er(as)
(92)12 su(2)26 s5u(2)9 ) (4.5)

Nilpotent Higgsing of the (sus)7 flavor factor associated to the Dg punctures in entries 12-14
yields bad theories, as would further Higgsings of 24, + A; in equation (4.4]).
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# Theory A Theory B Nuin 6d SCFT Flavor symmetry
A- Aq+ Ay SU2§075Uz €7 SU
1 . (" | (34;)" (45 . ) (34,)" 4 3721712 (st2)12 @ (507)16
7(a2 6
E E SU26075Us €
2 S (34" (12) gy g T3T2UT1I2 (s1n)10 @ (s12)04 © (512) 13
Az +2A; (As + Ay) 1
Dy(a Dy(ay) + A 1
3 E‘:((a;i (3A1)// 4( 26 1 (3141)// 4 SU25§75§212’{71 (5112)%3
D5 D 50751 g
4 (3141)” 6(a1) (3A1)// 4 2%7 521?155232 (5u2)12 ) (Sug)g
Er(a4) Ds + Ay
A A —|—A " 5075U2 e7 Suo
5 T (4) (s + 41) (45)" 3 12 (su2)12 & (su2)s B (507)16
D6(a1) D5
A Az + Ay)” 9
6 3 (A5)” ( 3 1) (AS)H 3 SUy ey SUs02 (5112)12 o (507)16
E7(a4) Ds + A
S I VS S 2 EE R e
Dﬁ(al) Dy 1 @(Sug)g ©® (Eug)lg
As + Ay As +2A g2sus ¢
g (At (As)” ST 45 3 321712 (su)io ® (sus)04 & (sa)1s
E7(a4) Dy + A1 1
Dy(ay) Dy(a1) + Ay 1
9 A " A " 3 S5075U €7 su @3@ su
De(ay) (45) Ds (4s5) 1 (su2)is @ (su2)s
D D A 1
0 DU gy R B S T (o)
Er(ay) Ds + Ay 1
As)’ E
11 (4s5) (As)" 6(as) (As)" 3 $05 @2 509 (s112) 19 B (5112)g
E7(a5) D(;(ag)
12 Asg (Ag + A1)// . 9 9 1?771532 (5112)12 D (5112)24
A3 —+ 2A1 (A3 + Al)/ 1 @(5112)13 S (507)16
As (Az + Ap)” !
13 2 7. %82 su2) % @ (s0
Dy(ar) + Ay ‘ Dy(ay) ’ 1I1 2 (Sua)iz ® (Sor)is
Az + Ay Az 424 1
14 (45 +41) 6 ° ' Dg 2 1712 (su2)$y © (su2)24 ® (5U2)13
Dy(ar) + Ay Dy(ar) 1
D D, 507 SUp €7 SUg 507 SU
15 (5 | (Ay, Spin(12)) ‘;Eal) (A1, Spin(12)) 5 3 2 1 fl 273 2 (sua)10 © (sUa)s
702 6
Ds+ A B g2 Sl €7  Slip 507 SU
16 bf(a )1 (A1, Spin(12)) (as) (A1, Spin(12)) 5 3 21 f1 2" '3 9 (s112)12
7(a2 6

Table 2: Isomorphic pairs of interacting three-punctured spheres for class S of type e7, where

the flavor symmetry is the manifest flavor symmetry from the individual punctures.
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# Theory A Theory B Nuin 6d SCFT Flavor symmetry
D + A A3+ A
1 4(01() ) 1 (3A1)” 3 2 (3A1)” 4 12?71552557552 (suQ)%Z
E7 ag E6
E, E7(a 250752
? As + A6 + A (341)" A 7J(rf4) (341)" 4 13127372 (su2)12 @ (su2)224
3 2 1 3 2
D D [4 S5Ug50
A T A I LA ()57 © (su2)s
3+ Az Dy(ar) + 41
D A A A
4 4((11() +) 1 (AE’,)N 3 + 2 (A5)H 3 19?7155292 (5112)%2
Er(ayq Ds + A4
Az + Ay As+Ar+ Ay
5 (A45)" (45)" 3 1517273 (su2)12 @ (sU2)224 © (SU2)8
Dﬁ(al) D5
Az + Ay As+ Az + Ay
6 (A5)" (45)" 3 151°79°% (su2)12 ® (su2)224
E7(CL4) Ds + Ay
A As + Ay)"” e7 Sug
7 ° Dg (A3 + A1) Dy P 1612 (su2) P2 @& (s07)16
Az + As D4(a1) + A 1
(A3 + Al)/ Az + 244 er
8 2 1612 (5u2)%2 (&) (5“2)24 (&) (EUQ)]_g
Az + Ay Dy(ar) + A4 1
Dy(ar) Dy(a1)+ A 1
9 Y Dg ) ' Dg 2 161 (su) 5
Az + Ay Dy(a1) + Ay 1
A3+A2 A3+A2+A1 2
10 D 2 1057155 (su2)12 @ (su2)224 B (507)16
(As+ Ay)” As
1 Az + As De Az + Ax+ A4 D 9 12571 5 (5112)12 D (5u2)24
As + 24, (As+ Ay @ (su2)224 @ (sU2)13
Az + A A3+ A+ A ey
12 3 2 3 2 ! D6 2 151 (5112)3923 S5 (5112)224
Dy(a1) + 44 Dy(ay) 1
Az + Ay As+ As + Ay
13 6 2 141 (su2)f5 & (s04)112
Az + Ao D4(a1) + A;
2A1 (3A1 " 509 @2
14 De(as) Dg 4 ))/ D 2 ba fzieleghlyper (fa)24 @ (sU2)9 & (su2)19
6la2 5
2A1 3A " 508 @2
15 D (344) D 2 4131 (fa)24 @ (su2)19
E7(as) Es(as) + a free hyper

Table 3: Isomorphic pairs of three-punctured spheres for class S of type e7, where the flavor

symmetry is not the manifest flavor symmetry from the individual punctures.

29



4.2 Interacting pairs with different manifest symmetries

In Section [2| we constructed candidate pairs of isomorphic theories by starting with a parent
theory with punctures Oy, O}, with an f; @ f; flavor symmetry. Then, by Higgsing of one
or the other of the f; factors, as in equation (£2.7), we obtained a pair of theories whose
conventional invariants coincided. As in [28], we imposed the restriction in equation (|2.8))
that the manifest symmetries of the two theories coincide. We can relax this assumption:
two three-punctured spheres can be isomorphic as long as the enhanced flavor symmetries
match, even if the manifest flavor symmetries are different.

In the e¢; case, this leads to a slew of new pairs which we can show are isomorphic
SCFTs using the 6d (1,0) uplift. We list the interacting three-punctured sphere which are
isomorphic and do not have identical manifest flavor symmetries in Table [3] As before, the
third puncture in each of these pairs can be Higgsed as in equations and to yield
additional isomorphic pairs of SCFTs.

4.3 Fixtures with isomorphic interacting sectors

Thus far, we have demanded that each pair of fixtures be isomorphic on-the-nose as 4d
SCFTs; that is, each fixture is associated to an interacting SCFT's plus some number of free
hypermultiplets which is the same across the pair. More generally, we could allow fixtures
which include differing numbers of free hypermultiplets, but whose interacting sectors are
isomorphic. To construct examples of this behavior, we rely on the fact that if we have
an embedding h; C gx, then a nilpotent Higgsing of h; will result in the same theory as
a nilpotent Higgsing of g, with the addition of some number of free hypermultiplets. This
results in two mechanisms for constructing candidate pairs which correspond to theories with
isomorphic interacting parts.

The first occurs when two punctures both contribute simple flavor factors at level k, say
hr and gg. If we choose a third puncture low enough down on the Hasse diagram, it is
possible that the b, @ g, enhances to a g, @ g, and there is an outer automorphism symmetry
that exchanges the two g factors. Then we can do a nilpotent Higgsing of either the gy
or by, where the latter takes us to the same theory as the former in addition to some free
hypermultiplets. Using 6d constructions we can prove the existence of such automorphism
symmetries and thus prove the interacting sectors are indeed isomorphic.

The second mechanism occurs when two punctures contribute an f; and an b that is
enhanced to a g; global symmetry. Then the interacting part of the two fixtures obtained by
Higgsing either the f; or by should be the theory obtained by Higgsing the gx, meaning they
are isomorphic. In this case we do not require a 6d explanation as the isomorphism can be
directly seen from the nilpotent Higgsing, though, of course, the 6d uplifts if they exist will
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also be isomorphic.

An example of the first mechanism is given by the following three-punctured sphere in
the class S theory of type es:

The manifest flavor symmetry is enhanced:

franifest = (507)24 @ (02)57 @ (Su2)2r  — = (s07)5) & (suz)a1 . (4.7)

Minimal nilpotent Higgsing of the one of the manifest (gs)24 factors is a local Higgsing that
changes the puncture 24, — 24, + A;, whereas minimal nilpotent Higgsing of the manifest
(s07)24 factor changes the puncture A; + A; — Az + 2A;. These Higgsings lead to the
following three-punctured spheres:

(4.8)

These are clearly different theories — the theory on the right has a free hypermultiplet whereas
the theory on the left does not. The parent theory, given by the three-punctured sphere in
equation , has an uplift to a 6d (1,0) curve configuration (via the usual quiver tail
procedure), which is

509

4 (4.9)

Evidently this curve configuration possesses an S5 outer-automorphism group that permutes
the three (—1)-curves, and thus the three (so7)s4 flavor symmetry factors. Performing a
minimal nilpotent Higgsing by any of the three (so07)o4 factors, or by the subalgebra (gs)2s C
(807)24, leads to 6d SCFTs with the same interacting sector. In conclusion, we can see that
the interacting parts of the two 4d theories in equation (4.8)) are isomorphic. In fact, as we
can see from [10], the uplift of the interacting sector of both three-punctured spheres has the
curve configuration

509

131. (4.10)
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# Theory A Theory B na np Npin  6d SCFT Flavor symmetry
1 E;(lzz ) (34 A ;;Al B4, 1 0 4 151927379 (sus)12
A Ay + A ¢ SU2S07
2 D6(4a1) (45)" AR O C T ] (s13)12 @ (5112)s
Ay " Ay + Ay " ¢g Suzg2
§ Er(aq) (4) Ds + A4 (45) Lo 3 15123 (su3)12
A Ag+ A ¢g sup
! (As +4A1)” Ds 4A3 ' Ds 1 0 2 1512 (suz)12 @ (s07)16
A Ag+ A ¢
b As +42A1 Ds (A;+ All)’ De Lo ) 1512 (sus)12 @ (su3)2s4 B (su2)13
Ay Ag+ Ay 6 o3
6 D, D 1 0 2 151
Dy(ar) + 4, ~° Dy(ay) 6 ? (su3)is
A A+ A €6
’ As +4A2 De D4(21) +1Al Ds 2 1 2 141 (sus) s @ (su2)s4
A As+ A 6
i Az + A;l + Ay Ds A;1 + A; Do 32 2 13 (su3)12 @ (su3)s54
0 Ay su202
9 Er(as) Dg Aq Ds 28 12 2 (e7)24
A A + A 509 SuU3
0 D6<Z2> Pe ?As)' D 6 2 2 12 (su2)o @ (sug)1s
As Ay + Ay 505 sug
H Er(as) Ds FEg(as) Dy 6 2 2 (sue)1s
3A ! 4A 509 92
12 (DG(;Z) De (A53’ Dg 3 1 2 (suz)o @ (spy)19
(3A1)/ 4A1 s08 g2
13 Er(as) —° FEglaz) —° 3 1 - 412 (5pa)19
Ay + 244 24, 809 _SU2 (507)16 (S5) (5112)9
. As Do Ds(a1) + Ay Do 4 3 2 112 @ (su2)24 © (su2)48
Ay +3A 245 + A 50
15 2 AL ' Dg D5(;1) N j41 D 7 4 2 12 (507)20 ® (su2)o © (su2)13
0 Al Sug
16 (Az+ Ay)” Er(a1) 24, Er(a1) 28 12 1 12 (e7)24 @ (807)16
A 2A
17 2/112 E7(a1) Ayt ;Al Er(ay) 12 4 1 1 (e7)24 @ (507)16
A 2A
18 o4 iAl E7(ay) A ZliAl Er(ay) 13 7 1 12 (¢8)24 @ (s142)13
0 A
19 Az + 24, Er(a) 24, 41— Ay Er(a) 28 13 1 12 (es)24 @ (su2)13
24 3A 7
20 4A1 Ez(a1) ((3A11))’ Er(ay) 1 3 1 1’322 (§4)24 @ (s94)19
A Ay + A su
21 (SAi)” Er(ar) 22,41 ' Er(as) 6 2 1 12 (e6)24 B (su6)1s
A Ay + A N
22 41421 E7(CL1) (23141)/1 E?((ll) 9 7 1 s (5u12)18
0 3A4;)
23 As + Ay Er(ay) Ai n 13)141 Er(a;) 56 31 1 1 (e8)12

Table 4: Isomorphic SCF'Ts arising from class S of type e; on three-punctured spheres with
differing numbers of free hypermultiplets. n,,p is the number for free hypermultiplets in
Theory A/B.
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We now turn to an example of the second mechanism for generating isomorphic pairs
with different numbers of free hypermultiplets. Consider class S of type ¢; and the following
three-punctured sphere:

(4.11)
The manifest flavor symmetry
frnanifest = (809)24 B (8l3)20 B (5Ug)20 (4.12)
is enhanced to
f = (5010)24 & (sU1g)20 - (4.13)

The manifest (suy)q0 and (sug)a have combined into a single simple (sug)qo factor. A minimal
nilpotent Higgsing of the (su3)s corresponds to partially closing the 2A; puncture, 24; —
(3A;)"; similarly, the minimal nilpotent Higgsing of the (sug)ao corresponds to Ay — Ay + A;.
However, we know that the minimal nilpotent Higgsing of any subalgebra leads to the same
interacting SCFT as the minimal nilpotent Higgsing of the full flavor factor, plus some number
of free hypermultiplets fixed by the embedding. Indeed it is easy to check that the interacting
sectors of the fixtures

(4.14)

have the correct conventional invariants, and their Schur indices (after removing 6 free hypers
from the fixture on the left and 2 free hypers from the fixture on the right) agree to at least

order 7%

. Their interacting parts are isomorphic and this isomorphism of the interacting
sectors of these two three-punctures spheres follows only from the enhanced flavor symmetry,
without the need to uplift to six dimensions. However, one can read directly from [I0]
that the interacting parts of both three-punctured spheres are obtained from the torus-

compactification of the 6d (1,0) SCFT associated to the curve configuration

sus

(4.15)

In Table [4] we list all the isomorphic pairs with differing numbers of free hypermultiplets
obtained by the aforementioned methods for the class S theory of type e;. We can see that
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the pairs with isomorphic interacting sectors in Table ] together with those in Tables [2] and
, reproduce all of the isomorphic pairs of 6d (1,0) SCFTs 7., n(Or, Og), as summarized in

Figures [3.3] [3.4] [3.5], and [3.6]

Interestingly, when considering theories where only the interacting sectors are required to
coincide, we find that there are isomorphic triples of three-punctured spheres. As is evident
from the 6d curve configurations in Table[d] we see that the following three-punctured spheres:

(4.16)

are different realizations of the rank-2 Eg Minahan-Nemeschansky theory with 13, 7 and 28
free hypermultiplets, respectively. Similarly,

(4.17)

I

are different realizations of the rank-3 (FE7)ay X Spin(7)1s SCFT with 28, 12 and 4 free
hypermultiplets, respectively.

5 Examples where g # ey

Class S theories of type e; have provided a wealth of examples of candidates for pairs of
isomorphic SCF'Ts. We have explored the e; theories as they provide a representative sample
of theories illustrating our six-dimensional methods for determining isomorphisms. However,
class S theories of different ADE-types evince the same behavior. Using the procedures laid
out in this paper, it is straightforward to determine candidate papers for any other g, and
furthermore to verify they correspond to isomorphic 4d AN/ = 2 SCFTs from the 6d (1,0)
uplift, as discussed in Section [3] In this section, we provide a small number of examples of
isomorphic pairs when g is a classical Lie algebra*]

20Class S theories of type g can also contain punctures that are twisted by an outer-automorphism of
g. Some such theories can alternatively be constructed from 6d (1,0) compactified on a torus, now with
the inclusion of a Stiefel-Whitney twist [43], 45 [60]; therefore the methods of this paper demonstrating
the isomorphisms of 6d (1,0) SCFTs can also prove isomorphisms between class S theories with twisted
punctures.
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5.1 An so, example

One nice class of examples can be found in the g = 5012 theory. When the 6d (1,0) conformal
matter theory, Higgsed by nilpotent orbits O, and O, is compactified on the torus, the class
S dual theory has a degeneration limit where it looks like

°[9,3]

S0O(12)
([7,22,1],5U(2)) S

(5.1)

[(E3);, SCFT]  [Spin(20)15 SCFT] [Spin(12)%, SCFT]

If we follow the prescription of equation (2.7)), we can take (O1,02) = ([4%,1%], 5,3, 2?))
and (0}, 0%) = ([4?,2?],[5,3,1%]) or ([4%,22],[5,3,1%]). The puncture [42,11] has an (suy);2 ®
(sug)2 flavor symmetry, and nilpotent Higgsing of one or the other of the (suy)g factors leads
to either [4%,22] or [42,22]. The resulting theories are related by the outer-automorphism of
5015 which exchanges (globally) red and blue. This is an isomorphism of SCFTs (for any N).
When N =4, the 6d curve configuration is

508 5Py s011 SPy  so7
3 1 4 1 3 . (5.2)

[(su2)s®(su2)s]  [(su2)11]  [(su2)s]

Peeling off the quiver tail establishes the isomorphism

12

(5.3)

which is a rank-8 interacting SCF'T with flavor symmetry

f= (su2)f ® (su2)11, (5.4)
and one free hypermultiplet, transforming as %(1, 1,1, 2) under the four manifest su, factors.

It should be emphasized that while the fixtures in class § are isomorphic if, upon attaching
the quiver tail, the resulting theories arise from the compactification of isomorphic theories
in 6d, the statement is not an if and only if. Consider the degeneration limit

[e]
[9,3]
o [5, 17] o
([3,1%],Spin(9))

o
9,3
2 [3,17
([112],Spin(11))

0[9,3]

([7,22.1),5U(2)) o

o

o)
[22,1%), 8pin(7))

ObO

0[9,3]

. (5.5)

1(2,1,1) 1(2,7,1) [(Eg),, SCFT] [Spin(20)15 SCFT] [Spin(20)15 SCFT] 1(8)
+1(1) +1(11)
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For (O, Oy) = ([42,2%]),19,3]), ([42,22)), 19, 3]) or ([42, 3, 1]),19, 1%]), these 8-punctured spheres
have all the same conventional invariants. But they are not isomorphic SCFTs. Indeed, the
6d curve configuration for (O,, Oy) = ([42,22]),[9,3]) and ([4%,2%]),19,3]) is

5;)7 suil 521 5)i1 5%9 Slil 9325311 7 (5.6)

whereas, for (O,,Oy) = ([4%,3,1]),[9,1%]), the curve configuration is

STUTETET. (5.7)
Nevertheless, if we peel off the quiver tail, the fixture on the far right is 8 free hypermultiplets
for all three choices.

The point is that there are three distinct embeddings of the Spin(7) gauge group in the
Spin(8) flavor symmetry of the [22, 18] puncture. Two of them are exchanged under the s0(12)
outer-automorphism that exchanges [4%,2%] <+ [4%, 22|, which is, of course, a symmetry of the
SCFEFT. But the third embedding (in which the vector of Spin(8) decomposes as (7+1)) is dis-
tinct?l] leading to a distinct SCFT in equation for the pair (O,, 0y) = ([4%,3,1]), ]9, 13]).

5.2 A family of examples in su,

In class S theories of type su,, it is easy to see that the condition in equation is never
satisfied, and thus there can only be pairs of isomorphic SCFTs if there is enhanced global
symmetry, which may arise from the presence of a free sector. In this section, we present one
example of an isomorphic pair for class § theories of type su,, for each n > 6, and explain
how the isomorphism can be verified from the 6d (1, 0) uplift.

We consider class S of type su, g, where the nilpotent orbits describing the punctures
are in one-to-one correspondence with integer partitions of n+6. Consider then the following
pair of three-punctured spheres:

[227 1n+2] o
o [n+1,1°
[4,2,17] o

12

(5.8)

The manifest flavor symmetry, which can be read off directly from the integer partitions, for
the theory associated to the the fixture on the left in equation (/5.8]) is

fmanifest _

= (8Uy,13)2n+8 B (SU2)2n+12 B (SUy,)2n+a B (SUs5)12 B u?g ; (5.9)

2n fact, the Spin(7) is embedded in the centralizer of Spin(11) C Spin(20). Even in that context the
two embeddings are not conjugate to each other.
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whereas the fixture on the right has manifest flavor symmetry

PRt = (81040 )on48 @ (812)2n412 B (814n)2nra B (SU5)10 B uF*. (5.10)

For all values of n, these are mixed fixtures. When n > 1, there are two free hypermultiplets
which transform in the (1,2, 1, 1) representation of the manifest flavor symmetries appearing
in both equations and ; thus for both theories, in the interacting sector the
(su3)an412 factor is replaced by an (sug)a,410 factor. For n > 2 this is the only enhancement
for the theory on the left, however the in the theory on the right the manifest (sit,12)2,18
combines with one of the u; factors to produce a (su,13)2,+s factor. Thus, we can see that
the enhanced flavor symmetries agree between the two interacting sectors:

f = (SUnt3)onts @ (5U2)2n+10 B (SUn)2nta D (SU5)12 D u?g . (5.11)

We can also see, for example when n = 3, that the Schur indices of the interacting sectors of
the fixtures match (up to the order we could compute them):

Tsenar(7) = 1+ 7372 + 3473 + 28237 4 26267°

6 7 8 9 10 (5.12)
+ 772987° + 1070487" 4 16890067° + 30642887 + O(7°) .
For n = 1, the flavor symmetry is further enhanced on both sides to
(s14)10 @ (su7)12 B uf?. (5.13)

Finally, in the extremal case where n = 0, there are twelve free hypermultiplets, and the
interacting sector of both theories is the (FE;)s Minahan—Nemeschansky theory. The free
hypers transform in the (2,6) of the manifest (sus)1o @ (sug)12. We emphasize once again
that, for all values of n > 0, the conventional invariants and the Schur index (insofar as we
can compute it) are consistent with the two fixtures in equation being isomorphic 4d
SCFTs.

The theories can be proven to be isomorphic from our 6d considerations. If we replace
the [n + 1,1°] punctures that appear in both the fixtures in equation with N copies of
the simple puncture, each corresponding to the partition [n+ 5, 1], then each of the resulting
N + 2 punctured spheres arise as torus-compactifications of 6d (1,0) SCFTs. In particular,
the uplift of the fixture on the left in equation is rank N (su,.¢,5u,46) conformal
matter, where one of the su,, 4 flavor symmetries is Higgsed by the nilpotent orbit associated
to the partition [3,1""3] and the other is Higgsed by [32,1"]. It is well-known how to map
from a pair of partitions to a tensor branch description, and in this case that description is

Sip 44 SUp 45 SUn 46 SUnt6 SUn+46 SUnt6 SUnt6 SUnt+4 Sip 42

2 2 2 2 ...2 2 2 2 2 (5.14)

[(stn+3)2n+s] (1] [(su2)2n412] [(sun)2n+4]
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where we have written the non-Abelian flavor factors directly in the quiver. Similarly, the 6d
(1,0) uplift of the fixture on the right in equation (5.8) has the tensor branch description:

SUn44 SUn46 5Up+46 Sln+6 S5Un+4-6 SUn46 Sln45 SUnt4  SUnp42
2 2 2 2 ...2 2 2 2 2 (5.15)

[(sunt2)2n+s] [(su2)2n412] (1] (1] [(stn)2nta]

In both cases, the total number of (—2)-curves is N — 1. Each of these theories, which are
clearly not isomorphic, arise via Higgs branch renormalization group flow from a “parent”
theory, with tensor branch description

SUn44 SUn+6 SUn+6 SUn+46 SUn+6 SUn+46 SUn-+6 SUn44 SUn42
2 2 2 ... 2 2 2 2 2 . (5.16)
[(stn+2)2n+8] [(su2)2n+12] [(su2)2n+12] [(sun)2nt4]

Nilpotent Higgsing of one or the other of the (suy)s,112 factors leads to SCFTs with tensor
branches given in equations (5.14]) and (5.15). When N = 5, the parent theory becomes

[(su2)2n412]
SUn44 SUnt6 SUn 44 SUn 42
2 2 2 , (5.17)
[(stn+2)2nts] [(su2)2n412] [(sun)2nt4]

which has a Zy outer-automorphism that exchanges the two (sl3)s,112 flavor symmetry fac-
tors. In fact, the flavor symmetry enhances and we find

(8U2)2n+12 D (5Us)2nt+12 — (SUg)2n 412 - (5.18)

Performing a Higgs branch deformation by giving a vacuum expectation value to the highest
root moment map of the suy or either of the su, subalgebras leads to the same interacting
SCF'T, where the latter two options contain an additional two free hypermultiplets. The two
nilpotent Higgsings, which take either [22 1"72] — [3,1""3] or [3%,1"] — [4,2,1"], thus both
lead to the same interacting 6d (1,0) SCFT; its tensor branch description is

Sln 44 SUn 45 SUn44 SUn 42
57 Ty Y (5.19)

[(stn+3)2n+s] [(su2)2n12] [1] [(Sun)2nta]

In this way, we have verified that the two class S descriptions in equation are isomorphic
as 4d N = 2 quantum field theories when the [n + 1,15] punctures are replaced with five
copies of the simple puncture, [n 4 5,1]. To prove the isomorphism for the three-punctured
spheres, we go to a different degeneration limit, where the simple punctures form a chain
of 3-punctured spheres, reproducing the standard quiver tail of [40] — with gauge group
SU(2) x SU(3) x SU(4) x SU(5) and bifundamental hypermultiplets (i.e., the representation
(2,1,1,1) ® (2,3,1,1) ® (1,3,4,1) ® (1,1,4,5)). Sending the SU(5) gauge coupling to
zero establishes the isomorphism in equation ([5.§]).

Having established the isomorphism of the two theories where the third puncture is given
by the partition [n + 1,15], we can then do a chain of nilpotent Higgsings of that third
puncture to establish further isomorphic pairs

m+1,1° — [n+1,2,1"] — n+1,221] — [n+1,3,1*] — [n+1,3,2].  (5.20)
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Note that for n = 2, the nilpotent Higgsings
[3%,1%] — [4,2,1%] — [4,2%] — [4,3,1], (5.21)

lead to bad theories, and so do not generate any additional isomorphic pairs.

6 Oddballs

The mechanism described in equation for generating candidate pairs of isomorphic 4d
SCFTs led to a 6d proof when the third puncture in the fixture was chosen from the “quiver
tail” formed by fusing together N simple punctures (in the type e; theory, this was the
sequence of punctures {(3A4)", (A5)", D¢, E7(a1)} — see equation (2.12))). We could then find
additional isomorphic SCFTs by Higgsing down from this puncture.

This does not preclude the possibility of finding isomorphic pairs of SCFTs where the
third puncture is not part of the quiver tail (or a nilpotent Higgsing thereof). For instance,
consider the pair of interacting fixtures

(6.1)

These fixtures appear to correspond to isomorphic SCFTs when O is chosen from the four
punctures related by the following Hasse diagram

(sus) Dolen) (sus)
2)12 ~8t)s
D /

Er(as) (6.2)

(5u2)8\ %Q) 12

D5 + A;

The Schur indices of all four pairs agree to at least O(7'%). E.g., for O = Djs, the Schur
indices of both SCFTs are

Isehar = 1+ 3777 + 8537 + 153057° + 2335527° + 31684587 + O(7'!) . (6.3)

However, since none of the punctures in equation (6.2)) belong to the E; quiver tail, these
SCFTs have no avatars as 6d (1,0) SCFTs; thus, we cannot provide a proof that these 4d
N = 2 SCFTs are isomorphic.
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The theories in equation (6.1) appear to be isomorphic on-the-nose. We can also find
pairs of theories whose interacting parts appear to be isomorphic, but differ in the number
of free hypermultiplets. For example,

12

+ 2 free hypers (6.4)

After removing two free hypermultiplets from the fixture on the left, the Schur indices are
Ischur = 14 237% + 107% + 3447% + 3087° + 41707° + 572077 + O(7®) . (6.5)
The interacting SCF'T has flavor symmetry
f = (sug)72 @ (su2)a6 ® (SU2)s D (g2)12 - (6.6)

On the left, the su(2)s is associated to the Dg(a;) puncture; on the right it is associated to
the D5 puncture. If we do a nilpotent Higgsing of the (suy)s on both sides, we arrive at

+ 2 free hypers (6.7)

After removing two free hypermultiplets from the fixture on the left, the Schur indices are
Isar = 1+ 2072 + 147° + 2727 + 3807° + 31867° + 63387" + O(7%), (6.8)

which, again, indicates that they correspond to isomorphic SCFTs.

As another example, we consider the following pair of fixtures

(6.9)

After removing one free hypermultiplet from the fixture on the right, the Schur indices of
both interacting SCFTs are

I = 1+ 397 + 427% 4+ 9707 + 20687° + 200597° + O(77) . (6.10)
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The flavor symmetry of the interacting theory is
f=(507)16 @ (sU2)3, @ (5U2)% D (sUg) 13- (6.11)

Of the three (sus);o flavor algebra factors, two are manifest (associated to the Eg puncture
and to the (A3 + A;)’ on the left or the A3 on the right). The other arises as an enhancement
of the (sus)36 C (Silp)aq B (SUg)12 symmetry (associated to the 24, puncture on the left or
the 245 + A; puncture on the right).

One of the (suy)q2 factors (the one associated to (A3 + A1)" on the right or Az on the left)
is the same on both sides of the isomorphism. But the role of the other two (the manifest one
associated to the Eg puncture and the enhanced one) is swapped between the two theories.
This is exactly the same phenomenon we encountered in equation (4.4]), where the roles of
the two (sus)og (the manifest one and the enhanced one) associated to the A +2A; puncture

were swapped between the two theories. There, when we Higgsed A; + 2A4; {ouz)as, 2A,,

we obtained different theories. Here, too, if we Higgs the FEjg % E;(ay), we obtain
non-isomorphic theories

+ 1 free hyper £ (6.12)

On the left, the (suy)%, is enhanced to (sps)24, whereas on the right, it is unenhanced.

On the other hand, if we Higgs the (suy);2 flavor symmetry of the fixtures in equation
associated with the (A3 + A;)’ puncture on the left and with the As puncture on the
right, we obtain theories with isomorphic interacting sectors:

+ 1 free hyper =~ (6.13)
The interacting sector has Schur index
Isehur = 144077 + 5873 + 10487* + 284877 + 235417° + O(77) . (6.14)
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This time, Higgsing the Fjg DN E;(ay) yields another pair of isomorphic theories:

+ 1 free hyper o~ (6.15)

We need to remove one free hypermultiplet from the fixture on the left, and two free hyper-
multiplets from the fixture on the right to obtain isomorphic interacting SCF'Ts, which have
Schur index

Isehar = 14 3777 + 787° + 9857 + 35007° + O (7°) (6.16)

As we have highlighted, the “oddball” theories discussed in this section are pairs of class
S theories which appear to be isomorphic, based on their conventional invariants and their
Schur indices (to the extent that we were able to compute them). However, as they are
unrelated to torus-compactifications of 6d (1,0) SCFTs, we are unable to use the techniques
from 6d to prove that they are indeed isomorphic. Nevertheless, the insights from 6d point
towards a possible direction for a direct 4d proof. The key insight was that the pair of
isomorphic 4d SCFTs have a parent 4d SCFT in common. Turning on a VEV for certain
operators in the parent theory triggers a Higgs branch renormalization group flow to one
or the other of the “child” theories. Moreover, the parent SCF'T has a Zs symmetry which
exchanges the two operators in question, and hence the RG flows that they trigger. This
symmetry is manifest in the 6d (1,0) uplift of the parent 4d SCFT. However, it might be
possible to show that the symmetry is present directly in the 4d SCFT. For instance, the
parent of the pair in equation (6.1)) is

(6.17)

which has flavor symmetry

f=(g2)16 @ (512)36 @ (s12)5 D (SU2)12.- (6.18)

This theory has a Z, outer automorphism which exchanges the two (sus)ss factors. The
two RG flows which lead to the pair of SCFTs in equation are triggered by turning on
a VEV for the highest root moment map of one or the other of the (sus)szs. If we could
show that this Z, extends to a Z, symmetry of the full SCFT in equation (6.17)), we would
establish the isomorphism in equation (|6.1).
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7 Discussion

The pairs of isomorphic class S theories we have found share the feature that they arise as
(different) Higgsings of a “parent” SCFT. Upon uplifting to 6d, we found that the parent 6d
(1,0) SCFT has a Zs automorphism which exchanges the two Higgsings. It is striking that
— for the 6d (1,0) SCFTs of (e, ¢) conformal matter — this automorphism has a geometrical
realization as an automorphism of the curve configuration on B. By contrast, for (su,,su,)
and (802, 502,) conformal matter, the automorphism had a more subtle origin. This section
is focused on explaining this behavior.

The curve configuration that gives rise to the intersecting part of the 6d (1,0) SCFT is
composed of non-Higgsable clusters (NHCs), which are given by

sug 508 fa 6 e7 e7 [ SU2g2 sug g2 SU25075U2
3, 4, 5, 6, 7, 8, 12, 23, 223, 232,
2 2 2 2 (7.1)
2...2, 2...222. 22222, 222222, 2222222,
——

where we have used the negative of the self-intersection number of the curves and the algebras
g associated to the singular fibers. Curve configurations are then constructed by connecting
these non-Higgsable clusters via (—1)-curves, while requiring that the resulting curve config-
uration has a negative-definite intersection matrix. This restrict the number of (—1)-curves
that can be attached to a (—n)-curve to be < (n —1).

In all of our examples drawn from the (e7, ¢7) conformal matter theories, the curve configu-
ration of the parent theory had a central (—n)-curve with 2 (or more) “dangling” (—1)-curves
— exchanged by the Zy automorphism — in addition to the (—1)-curves which attach it to
the rest of the diagram. The nilpotent Higgsings of the flavor symmetries associated to the
dangling (—1)-curves are exchanged by the Z, automorphism. For this to occur, we must
have n > 5. But, for

g = Sll,, $09,, ¢, €7, €8 (7.2)

the maximally negative self-intersection curve can have self-intersection

(—2), (_4)7 (_G)a (_S)a (_12>7 (7'3)

respectively. Thus these geometrical Zo automorphisms of the curve configuration only occur
for the exceptional algebras.

For the classical algebras the isomorphisms are generated not by the automorphisms of the
curve configuration, but rather as automorphisms of the flavor symmetry algebras decorating
the central node. That is, they are implemented as automorphisms of the elliptic fiber over
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that exceptional curve on B. For example, in equation , the central node of the parent
theory had an (sus)e, 12 @ (SUs)ani12 flavor symmetry which was enhanced to (suy)a, 112
The Zy automorphism (which exchanges the two (su)2,1 12 factors) is an automorphism, not
of the curve configuration on B, but of the elliptic fiber over the central (—2)-curve.

Similarly for the example in equation (5.2)), the parent theory has an

((s1,)s ® (s1,)s) B (su:)11 ® ((su,)s B (sU,)3). (7.4)

There is a Zs X Zo automorphism of the flavor symmetry algebra. The first Z, simultaneously
swaps the two (suy)ss within each parenthesis. This Zs corresponds to the choice of ambiguity
of sp* for the theories with very-even punctures of type g = s0s, [31]. The second Z,
exchanges the two parenthesized factors and, thereby, the two Higgsing that lead to the
distinct (s019,8012) conformal matter theories.

This paper made extensive use of two ingredients: the Higgs branch RG flows between
SCFTs and the correspondence between a subclass of 6d (1,0) theories and a subclass of 4d
theories of class S. We have been very circumspect in the Higgsings we considered: focusing
exclusively on nilpotent Higgsings. This rather limited the isomorphisms we could explore
and expanding the class of Higgsing that we have under good control [29] will expand the
reach of our methods. Moreover, we found evidence, through the computation of Schur
indices in Section [0} for isomorphisms in 4d which have no avatars in 6d (1,0) SCFTs. Still,
an important lesson emerged from the 6d (1,0) analysis: the automorphisms of the UV CFT
exchange naively distinct Higgs branch RG flows, thus leading to isomorphisms between the
naively distinct IR CFTs.
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