THERMAL APPROXIMATION OF THE EQUILIBRIUM MEASURE
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ABSTRACT. We consider the probability measure minimizing a free energy functional
equal to the sum of a Coulomb interaction, a confinement potential and an entropy term,
which arises in the statistical mechanics of Coulomb gases. In the limit where the inverse
temperature 8 tends to oo the entropy term disappears and the measure, which we call the
“thermal equilibrium measure” tends to the well-known equilibrium measure, which can
also be interpreted as a solution to the classical obstacle problem. We provide quantitative
estimates on the convergence of the thermal equilibrium measure to the equilibrium measure
in strong norms in the bulk of the latter, with a sequence of explicit correction terms in
powers of S, as well as an analysis of the tail after the boundary layer of size f~1/2.

RESUME. On considere la mesure de probabilité qui minimise une énergie libre égale a
la somme d’une interaction coulombienne, d’un potentiel de confinement et d’un terme
d’entropie, et qui apparait en mécanique statistique des gaz de Coulomb. Dans la limite
ou la température inverse S tend vers l'infini, le terme d’entropie disparait et la mesure,
que l'on appelle “mesure d’équilibre thermique”, tend vers la mesure d’équilibre habituelle
qui peut également étre interprétée comme solution du probleme de 1’obstacle classique.
On obtient des estimées quantitatives de convergence de la mesure d’équilibre thermique
vers la mesure d’équilibre dans des normes fortes a l'intérieur du support de cette derniere,
avec une série de termes correctifs explicites en puissances inverses de 3, de méme qu’une
analyse des queues apparaissant apres une couche limite de taille 5~1/2.

1. INTRODUCTION

1.1. Setting of the problem. The Coulomb gas is a system of points in RY with pairwise

interaction g defined by
—log|z| ifd=2,
Blr) := z>~¢ ifd > 2

and an external (or confinining) potential (or field) V', so that the total energy of the system

of N point at locations x1,...,xy is given by
1 N
(1.1) Hy (o, an) = 5 > glwi—z) + N Via).
1<i#£j<N i=1
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Here, the strength of the external potential V' has been scaled so that the potential energy
is of the same order as the interaction energy. In the limit N — oo, called the “mean field
limit,” one is led to minimizing among probability measures the (mean-field) energy

1
(1.2) E(p) = 5/ gz — y)du(x)du(y) +/ V(@)dp(z).
R xR Rd
Here p should be thought of as the limit as N — oo of the empirical measures Zf\[:l O, -

It is well known that if V' grows sufficiently fast at infinity, problem (1.2) has a unique
minimizer among probability measures, called the equilibrium measure, or the Frostman
equilibrium measure, see for instance [19] for the two-dimensional case. This measure will
be denoted pin. It is well-known that minimizers of (1.1) converge as N — 00 t0 [ in the
sense of measures (see [9] or [20, Chap. 2]).

The equilibrium measure . is typically compactly supported and characterized by the
fact that there exists a constant c., such that letting

(13 Cla) = [ gl = n)din () + V) = .

we have ( = 0 g.e. in supp io and ¢ > 0 qg.e. where q.e. is the abbreviation of “quasi-
everywhere” which means except on a set of zero capacity.

This way we can see that p., can be interpreted in terms of the classical obstacle problem.
Using the notation

(1.4 W)= | gl = )duty)

the function h#*>~ satisfies —AhH > = cqlis, Where
o if d =2,
(15) = {d(d—2)|Bl| if d > 2,
is the constant for which —Ag = c4dy. By the above properties on ( it holds that
(1.6) min (2 +V — oo, —AW>*) =0 in RY,

which is precisely the equation for the solution to the classical obstacle problem in whole
space with obstacle ¢, — V. For more details about this correspondance between equilibrium
measure and obstacle problem, one can see for instance [20, Chap. 2], [3] and references
therein. The dependence of ji, in V' has been previously examined in this full space context
in [22].

The Gibbs measure corresponding to a Coulomb gas at inverse temperature (3 is

(1.7) exp (—%HN(xl,...,xNO dxy...dxy.

Different normalizations of 5 with respect to N can be chosen, the specific above choice
with 1/N in front of the energy leads in the mean-fied limit N — oo to a minimization
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problem with an added entropy term of the form:

(18) Eol) = () + = [ wlogp,
B Jpd

see for instance [14, 16, 8, 5]. Again (1.8) should be minimized among probability measures,
and if V' grows sufficiently fast, it has a unique solution ;15 which we will call the thermal
equilibrium measure. The functional (1.8) can also be seen as the free energy associated to
the McKean-Vlasov equation which is its Wasserstein gradient flow, see for instance [13]
and references therein.

On the other hand, a natural normalization for the energy and temperature in (1.7) is
shown in [15, 2] to be

(1.9) exp (—ﬁN%AHN(xl,...,:I:N)) dry...dzry,

it is natural as 3 fixed is then shown to be the temperature choice that leads to a competition
at the microsopic scale between interaction energy and entropy. This is in particular the
normalization most studied in dimension two where 5 = 2 then corresponds to the famous
determinantal case of the Ginibre ensemble. This choice, for which § can still be considered
to depend on N, then leads in the mean-field limit to minimizing

1
1.10 & =&(pn) + / lo
(1.10) s(p) = E(n) GNT Jp 1B H
in place of (1.8). In other words it leads to considering the regime where § in (1.8) tends
to oo as N — oo, and thus formally to minimizing just (1.2). In [2], we showed however
that, compared to the usual equilibrium measure minimizing (1.2), the thermal equilibrium

measure still provides a more precise description of a Coulomb gas, even for the regime
with $ in (1.10) of order one, equivalently 3 of order N%/¢ in (1.8).

In this paper we thus focus on the regime > 1 in (1.8), where one expects fig — fioo-
This can also be seen as a way to smoothly approximate the obstacle problem solution.
The goal of this short paper is to specify how pz is close to p and h*# to h*><, which
we will do in C* norms. The quantitative estimates we provide are crucially used in the
papers [2, 21] and allow to treat possibly quite large temperature regimes in (1.9) (note
that large temperature regimes for Coulomb or log gases have started to gain interest quite
recently, see [18, 2, 12]).

We note that this question, although quite natural, does not seem to have been fully
answered in the literature, the only results that we are aware of are less precise, they are
those in [14] which consider the two-dimensional case with no external potential, and [18§]
which provide some results in the particular case V(z) = |z|?, and finally the work [6]
motivated by Kahler geometry, which proves an L* bound on the difference of h## and ht>
a bit weaker than (1.24) (with an extra log ( factor) but in the compact setting of a manifold.
There were also explicit formulae for the one-dimensional logarithmic case (related but
slightly out of our scope) and quadratic potential in [1].
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By contrast with fis, p15 is not compactly supported, but always positive in R? and
regular. In fact h*# defined as in (1.4) solves the PDE
1
(1.11) h“ﬂ+V+Blogu5:cﬁ,

for some constant cg. Taking the Laplacian of that equation leads to a PDE on log p1s with
notoriously delicate exponential nonlinearity

(1.12) Alog g = Blcaps — AV).

Instead of studying this equation directly, we observe for the first time that when subtracting
two such equations (with possible error term) with solutions p and v respectively, the
quotient u = pu/v — 1 rewrites nicely as a divergence form equation

. Vu

(1.13) div T a
for which elliptic regularity theory is readily applicable as soon as u is small enough. This
allows to obtain corrections to arbitrary order of the approximation pg =~ fi, see (1.30)
below. In fact our proofs only use maximum principle-based arguments and regularity
theory, and do not require going through energy estimates.

Finally, we comment that the other extreme regime § — 0 is easier to treat. We
can formally expect the interaction energy to become negligible and we are then led to
minimizing, among probability measures, the quantity

1
/Vdu+— plog pu,
R B Jpa

the minimizer of which is u = %, see [18].

= [uu + error

1.2. Assumptions and results. We let ¥ := supp i, and assume that 0¥ € C*!. Note
that it was very recently established in [10] that this holds generically with respect to V.
We assume in addition

(1.14) Ve C?
(1.15) V — +o00 as |z 200 if d>3
' limy ooV +8) = 400 if d=2,
/ exp (—EV(x)) dx < oo, ifd > 3,
(1.16) . .
/ e~ 2 (V@) —loglal) goy 4 / e PV @ -loelz) 4 1og? || de < oo if d = 2,
|z|>1 |z|>1
and

(1.17) AV > a >0 in a neighborhood of .
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Observe that
(1.18) Y. C{¢=0}.

The set {¢ = 0} is called the contact set or coincidence set of the obstacle problem, and ¥ is
the set in which the obstacle is active, sometimes called the droplet. The assumption (1.17)
ensures that these coincide. Note that h#> = ¢, —V in {¢ = 0}, hence the density satisfies

Thanks to this connection, the regularity of uy and of ¥ can be known by the standard
regularity theory for the classical obstacle problem [7] (see also [22] for the formulated in
the whole space).

Since we assume 9% € Cb! (which rules out boundary cusps), (1.15) and (1.17), by
standard results on the obstacle problem [7], we have

(1.19) ((r) > adist(r,X)* in a neighborhood of X,

with ¢ the function of (1.3), and a corresponding upper bound also holds. We now assume
in addition that

(1.20) ¢(x) > amin(dist(z, £)? 1),

which amounts, up to changing to constant o > 0 if necessary, to assume that the solution
to the obstacle problem never gets very close to the obstacle, outside of ¥. A sufficient
condition is for instance that V' be strictly convex.

Theorem 1. Assume (1.14)—~(1.17) and (1.20). Then (1.10) has a unique minimizer pg.
Moreover, there exists C(V,d) > 0 such that, for every x € RY and 5 € (2,00), we have

min(C, Cexp (—B(V(z) — C)) if d>3

(1.21) 0 < pglz) < {min(C,CeXp (=B(V(z) —loglz| - C)) if d=2

1
(1.22) pa(z) > - 0 forxeX,
(1.23 5 4 Y2 —-C) < < b 4 ¥)?*+C
23) exp | — & ist(z, X)* — < pg(x) < exp - ist(z, X)* 4+
in a B-independent neighborhood of 33,
C
(124) ||h’u5 —Cg — htte + COOHLOO(RCI) < E,

C
(1.25) [V (hFoe — RFP) || oo (ray < ﬁ7

(1.26) o(5) <
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and

C
< —.

pus log p
/zcﬁﬁﬂ

Let m be an integer > 2 such that V€ C*™7 for some vy € (0,1] and letting fy be defined
iteratively by

(1.27)

1 1 1
(ot Cd Beq

we have fi, € C*M=k=D2() and for every even integer n < 2m —4 and 0 < ' <y, if B is
large enough depending on m, for any U C 3, we have

(1.29)  lig — Freznjollonr@y < CB7F exp (—Clog?(Bdist(U, 9%)%)) + OB+,

The functions fj, provide a sequence of improving approximations to pz defined iteratively.
Spelling out the iteration we easily find the expansion in powers of 1/

AV 1 (Ak%%f

1 1
1.30 ~ —AV 4+ —AIl
( ) Ho Cq + Cq 8 Cq * ca3?

AV ) + ... inside X

up to an order dictated by the regularity of V' and the size of (.
The relation (1.24) improves in particular the equivalent result in [6] (a bound in 1025 )

while (1.25) improves on the energy comparison-based estimate in 1//3 given in [18]. The
estimates reveal the natural lengthscale 1/+/ appearing in the approximation of y5 by fico.

Remark 1.1. Since h**# — ht> vanishes at infinity because pg and jio are both probability
measures, (1.24) also implies that

C
oo — 8| < —.

B

It seems difficult to obtain such a precise estimate from energy considerations only.

The rest of the paper is organized as follows: in Section 2 we check the existence of a
minimizer to £; under the assumptions (1.14)—(1.16) and prove a few of its qualitative
properties. In Section 3 we obtain a first L> bound on the difference between the solutions
to (1.11) and (1.6) via a comparison principle, and a uniform bound on pg. This then serves
to obtain a lower bound for 5 inside ¥ by a barrier argument in the following section. This
in turn leads to the optimal uniform estimates on h*# — h*>< in Section 5. These estimates
are then eventually upgraded in Section 6 to C* spaces via the iterative approximation
sequence fi thanks to DeGiorgi-Schauder elliptic regularity theory applied to (1.13).

Acknowledgements: We thank Stephen Cameron as well as the anonymous referee for
their careful reading and many useful comments that helped improve the paper. SA was
supported by NSF grant DMS-1700329 and a grant of the NYU-PSL Global Alliance. SS
was supported by NSF grant DMS-1700278 and by the Simons Investigator program.
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2. EXISTENCE OF A UNIQUE SOLUTION AND FIRST PROPERTIES

Throughout the paper, C' denotes a positive constant which depends only on V' and d
and may vary in each occurrence.

Some of the results of this section may be known, but we could not find a reference and
therefore we include them here for the convenience of the reader.

Lemma 2.1. If (1.14)(1.16) hold, then £ has a unique minimizer.

Proof. Let us first consider d > 3. We may write
1 1 1 1
Es(p) = / SVdp + 5 // gz — y)du(z)du(y) + / SVdu + —plog p.
Rd 2 2 Rd xRd Rd 2 6

The function x — %x + %xlogx achieves its minimum at z = exp (—gV — 1) hence we
may bound from below the last integral

1 1 [ LBy
(2.1) /Rszd,ujLﬁuloguz /Rdﬁe p( 2V 1).

This is finite by (1.16). On the other hand, since V' € C? and g > 0 in the case d > 3, we
have

(22) / lVdu + % //Rded gz — y)du(z)du(y) > —oo.

We deduce that inf €5 > —o0. In view of (1.15) we deduce from the above that minimizing
sequences are tight and therefore the existence of a minimizer.

We now consider the case d = 2. We note that g(z —y) > —C — logmax(|z|, |y|,1) and
thus, by symmetry,

23 &> [ Vi //| o mas((o], )dp(@)eu(y) ~ ¢+ [ oz

> [ Vin— | (oglel)sduta) - 0+ 5 [ plogn
Rd Rd B Jra
Arguing as in the case d > 3 but with V replaced by V' — (log |z|)+ and using (1.15) and
(1.16), we deduce the existence result for d = 2.
The uniqueness of the minimizing measure is immediate from the strict convexity of the
energy functional. O

Lemma 2.2. Under the same assumptions, the minimizer ug of Eg is positive almost
everywhere in RY, bounded above, locally bounded below, continuous, and satisfies (1.11)
almost everywhere in RY. Moreover, we have the following asymptotics

1s
lim (h (z) +1> —0 ind=2,
lim A*(z) =0 ind> 2.

|z| =00

(2.4)



8 S. ARMSTRONG AND S. SERFATY

Proof. Step 1. We start by showing that h*¢ € L] (RY). Let B be a bounded set in RY, we
have

(2.5) [ =[] e = ndudus(v).

If d > 3 it is then straightforward, by integrability and boundedness of g, that the right-hand
side is finite. If d = 2, then we first need to show that

2.6) | oglel)sdiat) < .
To do so, we return to (2.3) and use that for each z € R?\ {0}, the function
1
o(u) = (V = (log|z])+) p + Bulogu

is convex and achieves its minimum at uy(z) = exp (—=8(V — (log |z|);+) — 1). Its second

derivative is the decreasing function ¢”(u) = ﬁ Thus
nq y

(2.7) o(p) = d(uo) + [ —log—dy
ug ﬁ Uo

1
= $(uo) + = (uloguﬁo —M+U0>

=

> p(ug) + %(u —uo)* min (4", 4y ") .

Inserting into (2.3) and using (2.7) and (1.15), we obtain

28) &1 = ~C+ [ olus(w)da
>-C-3 / e (=B(V — (logal)s) — 1) dz
1
—ug(x) (log(l 4+ |z|) — 1) dx
+/Mﬁ($)2(1+3?|)uo(a:) ﬁuﬁ( >< g< +’ |) )

1 (5() = wofa))*
25 2ug () <pg(z) < (1+]|z|)uo (x) (1 + ‘.Z")Uo(.’lf)
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We next write

| Goglel)pste)ia

< / 2(log [2]) 1 exp (—B(V — (log|al)y) — 1) da
np(x)<2u0(x)

+f (0g]el) pa()ds
pp(@)> (14| uo(x)

log |x 1+ |z|)uo(x s () —dx.
+/21&0(33)<#ﬁ(35)<(1+|50)UO(I)( Ble)+ {1 + jol)eol) (1 + |z|)ug(x))?

The first integral on the right-hand side is finite by (1.16), the second is finite by finiteness
of the terms in (2.8) and the third is seen to be finite by applying the Cauchy-Schwarz

inequality and using (2.8) and (1.16). This yields (2.6). It then follows from (2.5) that
h#s € LL (RY) for d = 2.

loc

N|=

Step 2. We check that p13 > 0 except on a set of measure zero, as in [17, 18]. Assuming
Hﬁ"rc‘ls

by contradiction that js = 0 in a bounded set S of positive measure, let us consider 5 sl

Let us expand out

pp +elg
5 (158
= Es(ps) — €9 <// gz — y)dus(x)dus(y) + /Vduﬁ + lﬂﬁ log MB)

B
+ s/(h“ﬁ +V)+ %dogs +0(?).
S

By Step 1 and the fact that S is bounded, we have that | g " +V < oo. We deduce that

ps +€lg < |S]
HpTe2s Pl
55(1+€’S‘)_55(M5)+C€+ Bsog&t,

a contradiction with the minimality of pg if |S| > 0 when ¢ is chosen small enough.

Step 3. We next check that (1.11) is satisfied. For every smooth compactly supported
function f such that [ fdus = 0 and ¢t € R with |¢| sufficiently small, (14 tf)ug is a
probability measure and we may expand

Es(ps) < Ep((L+tf)up)
to find

1
t/ (h** +V + 3 log pg) fdps + O(t*) > 0,
Rd

where h#5 is defined as in (1.4) and may take infinite values. Since this is true for all small
enough |¢| and any smooth f with [ fdus = 0, and since pg > 0 almost everywhere, it
follows that (1.11) holds almost everywhere, for some constant cg.
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Step 4. Proof of (2.4). For dimension d > 3 we have that h*# > 0 hence from (1.11)
and (1.15) we deduce that pg is bounded above. To prove (2.4), given € > 0, we choose R
such that p13(Bf%) < € (which is possible since 15 is a probability measure). We then write

2.9 v = [ e [ et

+ / g(r —y)dug(y).
B§,n{|ly—z|>n}

The first term of the right-hand side tends to zero when z — oo because g does, the second
term is bounded by ||ps| L an g which tends to zero as n tends to zero by integrability

of g near the origin, and the last term can be bounded by g(n)us(B%) < g(n)e. We may

then choose n appropriately to make all the three terms be at most % when |z| is large
enough, which proves (2.4) in the case d > 3.
For d = 2, we use —log |z —y| > —C — logmax(|z|, |y|, 1) and (2.6) to obtain

(@) + (log al)s = [ (~1oglo = |+ (oge]).) dus(v

v

O+ / ((log |z])+ — (log [y|)+)da(y)
[y|>]x|
> —C.

Therefore h*# + (log |z|)+ is bounded below. Since V' — (log |z|); is also bounded below
by (1.15), we deduce from (1.11) that ps is bounded above, and then we can finish the
proof as in dimension d > 3 from the decomposition (2.9), using (2.6).

Step 5. Continuity. The computations of the previous step starting from (2.9) show
that h*# is locally bounded above, and so is V. It then follows from (1.11) that ug is
locally bounded below. Once we have shown that p is locally bounded above and below
by positive constants, we may rewrite (1.12) as a uniformly elliptic equation for js:

div VMﬁ = 5(Cd,u,8 - AV)
Hp

By standard elliptic regularity theory (for instance [11]), we thus deduce that us is as
regular as V', in particular pg is continuous. Il

3. THE COMPARISON PRINCIPLE AND UPPER BOUND ON Ha

3.1. A preliminary lemma. We will use the following comparison principle for the
obstacle problem in the whole plane.

Lemma 3.1. Suppose that v,w are two continuous function in R? which satisfy

(3.1) min {—Av,v — (coo — V)} <0 < min {-Aw,w — (coo — V)} in R?
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as well as

(3.2) limsup ) < 1 < liminf &)
|z|—00 10g|$| |z| =00 10g|1‘|

Then v < w in R?.

Proof of Lemma 3.1. Let ¢ = coo — V' be the obstacle function. We may assume without
loss of generality that ¢ < 0 (otherwise we may subtract a constant). Then v < 0 by the
maximum principle, since the zero function is a harmonic function which, due to (3.2), is
larger than v in the complement of a bounded set. Moreover, min{tw, 0}, with 0 <t <1,
satisfies the same assumptions as w, and thus it suffices to show that v < tw for every
0 <t < 1. In light of this, we may assume that

(z)

lim sup Lx) < —1 < liminf L)
In particular, {v > w} is bounded. Observe also that {v > w} C {v > ¢}. Since v is
subharmonic in the latter and w is superharmonic in R?, we deduce that v—w is subharmonic
in {v —w > 0}. Assume that this set is nonempty, to get a contradiction. Let g be the
point at which v — w attains its global maximum, say M := (v — w)(xg) = supgz(v — w).
Then, since v — w is subharmonic at zy, we deduce that it is constant in a neighborhood
of zg. In fact, this argument shows that the set {v —w = M} is open; since v — w is
continuous, it is also closed. Since {v —w = M} # (), we must have that v —w = M. Thus
v and w are harmonic. Since v is bounded above, it must be constant. This violates the
growth condition. U

3.2. Main proof. We now turn to the main comparison result of this section.

Lemma 3.2. Let mg = supge pg. If 5 is large enough, we have
1
(3.3) - % < W —cp— (W' — co).

Proof. To compare h*# — cg and h¥>~ — co, we recall that h*# satisfies (1.11) while htee
satisfies (1.6). We may write from (1.11) that

1
(3.4) W +V — 5+ —28 >
It follows that
1
(3.5) min (W LV ey 228 —AW) > 0.

In dimension d = 2, applying the comparison principle of Lemma 3.1 to h*# +co —cs+ %
and ht>~ we deduce that
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which is the desired result. For dimension d > 3, we first show that we have

1
(3.6) lim inf (W Few —cpt 28 mﬁ) >0
|z =00 g

which is equivalent by (2.4) to showing that co, — cg + log% > 0.

To do so, by contradiction assume that ¢, —cs+ logﬁmﬂ < 0 and let us consider ) harmonic

in RY\Y such that ¢ = 0 on 9% and ¥ = ¢, — s+ bgﬁmﬁ at 0o. Because co, —cs+ log% <0,

) decays at infinity like the Green’s function, i.e. like

logmg

we have that ¢ — (coo -+ =3
|z|>79. On the other hand, setting

log mg

@ i=ht"" — hi'>~ 4+ c —cg + 5

by (3.4) and (1.6) we have

>0 in X
(3.7) { Ap <0 inR\D

It then follows that —A(p — ) > 0 in R\ with ¢ — 1 — 0 at co and ¢ — 1 > 0 on
0%. Thus by the maximum principle ¢ — ¢ > 0 in R¥\X. On the other hand, since
— fRd Ap =cq fRd 1g — oo = 0 we also have that ¢ — (c —cg+ bg%) decays at infinity

like |z|'~9. This, the fact that ¢ — (c —cs+ log%) decays at infinity like |z|>~9, and the
fact that ¢ > ¢ bring a contradiction, which shows that liminf|; . ¢ > 0. Since (3.7)

holds in any case, we then deduce by the maximum principle that ¢ > 0 in all RY, which is
the desired result. U

We deduce the following bounds on pgs.

Lemma 3.3. For every x € RY and 8 > 1, we have

min(C, Cexp (—8(V(z) — C)) ford>3

(38 O0<ulo) < {mmw,cexp(—ﬁ(v(:c) —logla| =€) ford=2.

Proof. Let us now turn to the upper bound. With the result of (3.3) and bounds on h#>,
we have
logmg

B

h*%(x) — cg > —max(1,log |z|)1g—e — C —
Inserting into (1.11) we deduce that
(3.9) log g = B(cg — h*?) — BV < Bmax(1,log |z|) 14—z + BC + logmg — V.

In view of (1.15), there thus exists R > 0 independent of 3 such that if x € RY\ Br we have
log g < logmg — 1 (and recall that mg < co by Lemma 2.2). This, with the fact that pg
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is continuous, implies that supga f15 must be a maximum, and it must be achieved at some
point x5 in Br. Then we must have Alog ps(xg) < 0, hence by (1.12)

caps(xp) — AV(x5) < 0.
We may then deduce that

1
mp = pp(rs) < —max AV
C4 Br
i.e. that mg is bounded independently of 5. The first bounds in the right-hand side of (3.8)

follow. The bound in (3.9) then gets improved to
log 1s < fmax(1,log|z|)L4—s + SC — SV

which yields the second set of bounds in (3.8).
O

Proposition 3.4. There exists C' > 0 (depending only on V' and d) such that if B is large
enough, we have

c C'1
(3.10) -5 < h — ey — (M — cx) < ;gﬁ

Proof. The lower bound is an immediate consequence of (3.3) and (3.8). Let us turn to the
upper bound.
We know that

1
min(h*? — c¢g + V, —AhM?) = min (_B log 13, pg) .

If the right-hand side were < 0 we could directly conclude by comparison principle. Instead,
we need to modify our test function slightly. To that end, let us define

E:={zcR%: ug(z) < B2}
Let us estimate ug(E): using (3.8) and (1.16), we find that

(3.11) ps(E) < C/Eﬁ‘l (exp (—g(v - C)) A 1)
<cpt

or respectively using V — log || — C' in dimension 2. Since pug(R?) =1 and ug < C, it also
follows that if g is large enough,

1
(3.12) IRNE| > ek
Let now w be

ps(E)
(3.13) w = g * (uglE - |Rd6\ B 1Rd\E)

’1—d

This way w decays like |z

(3.14) Ve e RY  |w(z)| < CB7N

in all dimensions d > 2, and in view of (3.11) we have
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Let us then set

2
vi= WP — g+ coo — Blogﬁ—w—@ﬁ_l
for the C of (3.14). Observe that

1 ps(E) . Tod
——Av = pugl — 1 R®.

By choice of E, (1.11) and (3.14), we have in R\ E,

2
(3.15) v—i—V—cOO:h“B—i—V—cﬁ—Blogﬁ—w—@ﬁ_l
L) 2 Jog 3 B <0
= ——logug — =logff —w — <0.
5T p

It follows that
(3.16) min(v + V — ¢o, —Av) <0 in RY

In dimension d = 2 the comparison principle of Lemma 3.1 allows to conclude that v < h#e
which yields the desired upper bound for h*4. Let us now turn to dimension d > 3. Setting

@ = ht~ —0,
by (3.15) and (1.6) we have
p>0  mRIN\E
(3.17) { —Ap >0 in E.

We also have ¢ — cg — coo + %logﬂ + CB~! at oo. Arguing as in the proof of Lemma
3.2, let ¢ be a harmonic function equal to zero on OF and cg — oo + %logﬁ + OB~ at
infinity, we have ¢ > in E and if cg — co + %logﬁ +CB71 <0, v tends to its limit from
above at speed |2z[>7¢. On the other hand [pq Ag = 0. As in the proof of Lemma 3.2, we
get a contradiction and conclude that cz — co + %log S+ CB~1 > 0. We then conclude
from (3.17) and the maximum principle that ¢ > 0 everywhere, which yields the desired
result. O
We deduce some corollaries.

Lemma 3.5. There exists C > 0 (depending only on V' and d) such that

(3.18) ps(z) < exp (—Bamin(l, dist(z, $)*) + C) ,
(3.19) ps(z) > exp(—Clog 5) for zin X,
C
3.20 e —
(3.20) pp(E°) < NGk
and

(3.21)

ale

/ p1plog MB' <
Ec
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Proof. Taking the exponential of (1.11) and using (1.3), we find

(3.22) pps = exp(B(cg — h* = V)) = exp (B(cg — coo + R — W — ().
Inserting (3.10) and (1.20), we find
(3.23) exp (—fA¢(z) — Clog ) < ps(z) < exp (—604 min(1, dist(z, £)?) + C) )

The upper bound in (3.18) follows, and (3.19) as well since ( = 0 in X.
For (3.20), using (3.23) and (3.8) as well as (1.16) and the coarea formula, we may write

(3.24) pa(5) < c/oa exp(—Bas?)ds+C exp <—§a> /R exp (—g(v _ o)A 1) < %,

or respectively using V' — log |x| — C' in dimension d = 2.
Arguing in the same way, and using the behavior of the function x logx we have

/uﬁloguﬁ SC/ Bs® exp(—fas?)ds
P 0

+ CBacexp (—ga) /]Rd exp <—§(V —C)A 1)

< ¢
~ VB

(respectively with V' — log |z| in dimension 2) which proves (3.21). O

4. STUDY OF THE RADIAL CASE AND BARRIER ARGUMENT

Here we first specialize to V(z) = $|z|?, which will provide a barrier function for the

general case. The problem is then radial and the solution ps(x) = e“#(#D with us solving
in place of (1.11) the ODE

1
(4.1) ——(r ) = Blcae™® — N).
By scaling, the coincidence set ¥ is then a ball of radius RgA~'/¢, where Rq only depends

on d, more precisely fio = él B(0,Rgr-1/4)- We first note that at a point of local maximum

< AV _

of ug we have Alog s < 0 hence g % We thus know that cqpg < A everywhere
and thus (rd_lu/’g)’ < 0 and rd_lu’ﬁ < 0 hence ug is nonincreasing.

In view of the exponential decay proved for the general problem in (3.18), for 1 < Kz <
C'log B3, there exists an 75 (depending on ) and bounded above by 2R4A~"/¢ such that

Uﬂ(rg) = _KB'

Lemma 4.1. Let n be such that e %7 < n < ﬁ, and let vy be as above such that ug(rs) =

Kg+logn

—Kpg. There exists ry > 19 — C 5

(depending on () such that

with C' depending only on d and .
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Proof. Integrating (4.1), we may write

(4.2) rf Tl (r) = /0 Bs97 (cqe®) — ) ds.
Let r; be the largest r < ry such that ug(r;) = logn. For r > r; we have ug(r) < logn <
log ﬁ hence

T2 1 t
logn + Kg = ug(ri1) —ug(r:) = ﬁ/ td—_l/ s47H(N — cqe ) ds dt
r 0

1

A [Tz Tf
> 3 dt
- B2d - pd—1
A T
> 3 t— dt
52 al. (t—mr1)
A
> 5@(7’2 = 1)2
The result follows. O

We may now use the radial solution as a barrier for the solution in the general case.

Proposition 4.2. Let
(4.3) Mg = 5%?((}1“5 — g — W' + co),

and 1 >n > e Ms. There exists C > 0 depending only on V and d such that for v € X
satisfying dist(z, 0%) > Cy/ %, we have

(4.4) ps(x) > n.

Proof. We know from (3.10) that Mg < C'log . Taking the exponential of (1.11) and using
the definition (1.3) and the definition of Mz, we find

(45) s = exp(Bles — W — V) = exp (B(es — oo + I — 15 — () > ¢ Ms

in 3, since ¢ = 0 in X. Since 9% € C1!, it satisfies an interior ball condition, with a ball of

radius which can be chosen independently of the point, say of radius e. We then choose
A > 2¢q large enough that A > « and 2Ry N"Y4 < 2. Given this A, we consider v to be a/A
times the radial pas of Lemma 4.1, which satisfies

A

(4.6) Alogv = f(cqv — ).

We also let K,p3/x = Mg in Lemma 4.1 applied at the inverse temperature S/, and we let

r be the ry given there. Since ro < 2Rd)\_% < g, a ball B, tangent to 0% at any point can
be included in . In view of (4.5), the monotonicity of v and the definition of r and K,g/»,



THERMAL APPROXIMATION OF THE EQUILIBRIUM MEASURE AND OBSTACLE PROBLEM 17

we check that v < pg on 0B,. We now substract (1.12) and (4.6) and test the resulting
relation against (logv — log p153)+ which vanishes on 0B,. We obtain

/ (Alogv — Alog ug)(logv —log pug)+ = B | (cqv — capp + AV — a)(logv — log pg) +-
- By
Using that AV > « in B, by (1.17) and an integration by parts, we are led to
-/ Vllogy ~log )l = fes [ (v ps)logy ~ log )y 2 .
Brn{v>pg}

T

It follows that v < pg a.e. in B,, thus v is a barrier for pug. In view of the result of
Lemma 4.1, we deduce that ug > n as soon as « € B, and dist(z,0B,) > C4/ WJFTIOM for
some C' depending only on V' and d. The result follows. O
5. OPTIMAL ESTIMATES AND LOWER BOUND ON Ha
We may now conclude

Proposition 5.1. There exists C' > 0 (depending only on V' and d) such that if B is large
enough, we have

5.1 W —cg — (W~ —c) <
(5.1) 8

Y

| Q

(5.2) exp (—gdist(x, ¥)? — C’) < ug(z)

for x in a neighborhood of ¥, and
1
(5.3) ws(z) > ok 0 forzxeX.

Proof of Proposition 5.1. We iterate and improve on the proof of Proposition 3.4. Let
Mpg be as in (4.3). We know from (3.10) that Mz < Clog . If Mg is bounded above
independently of 3, then there is nothing to prove. If Mz — 400 as 8 — 00, let n be a
constant in [e=s, min(ﬁ, 1)], to be determined later. Let then

S = {x € 3, dist(z, 0%) > Cy/ % = Tﬁ}

with C' as in Proposition 4.2. In view of that proposition we have that s > 7 in 5.
Since 9% € O 50 is O for B large enough, and we may consider R(z) to be the reflexion
with respect to 9%, defined in a tubular neighborhood. We next let fi5 = p1515 where

E = ({o < dist(z, %) < f1}U (2\§)> N {ps(z) < ).
Arguing as in (3.24) we have that

(5.4) 1s((E\E)°) — 3(B)| < %
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We note that F is included in a 75 + 87/4 neighborhood of 3.
Let w be

(55)  w:i=gx (ITB — Rt + (nplme — 1) — H’B((Z\Eﬁ% — p(F) 12) ,

where # denotes the push-forward of measures. We claim that
(5.6) Vo€ R, Ju(a)] < C4(Mj + [logn),

‘1—d

with C' depending only of V' and d. We note that w decays like |z in all dimensions

d > 2 because its Laplacian integrates to 0, and in view of (5.4) we have

— up((S\B)) — ia(E) 12)

g * (Mﬂl(E\E)C — s 5 <Cp

Hence there remains to show that

— - M
(5.7) g (i — R#tip) | < Onf.

By definition of the push-forward, we have
(58)  |g* (7 — RED) ()] = \ [ &tz =) - stz ~ R dmw‘

< | lgx —y) — g(e — R(y))|dy
min(|ly—zl|,|R(y)—z|) <73

y—R(y),y—x)|
+O/ K (y) / >\d%(y)
ly—a|>7s,| R(y)—2|>75 ly — x|
y—R(y)?
+C by = RWF 7).
=l | Ry)—alzrs Y — T

The first time in the right-hand side is bounded by 0777'5 in all dimensions, while the second
is bounded by

~

dist(y, X)[{y —
(5.9) C’/ ist(y, 2)Iy dx,n(y)ﬂ min (1, exp(—Badist®(y, X)) dy
ly—z|>75,0<dist(y,B)< B~ 1/4 ’y - .’17’

~

dist(y, 2 —
+Cn/ ist(y, X)|(y dx,n(y)>| dy
|y—:r:\27'[3,y62\§ |y - [E|

where n(y) is the normal vector to oY at y. We claim that these terms are bounded by
Cnrj. To see this, let us use local coordinates adapted to ¥ of the form (s,t) € 0¥ x R such

that each vector y can be decomposed into y = s + tn(y), with s € d% and t = dist(y, f])
We choose the origin so that x has coordinates (0, %), and assume |¢y| < e (for otherwise
the result is clearly true). The Jacobian of the change of variables is bounded, and
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(y —z,n(y)) = O(|s]*) +t — t as |s| — 0, using that 9% € C1, so we may locally on 9%
bound this integral by

o i (o, xp(—Ba(t = 72)%) (0= t0) + O
|t—to|>7g,75<t<Ts+B~1/%,5€05 (’t - t0|2 + |3|2 + O(|S|2|t - t0|>)§
. _ N2 n2le
conf i (o, xp(=Ba(t = 7)) (O0 +IsPlt — )
Tg<t<Tg+B-1/4s ea‘t ) % (14 |s]?)2
|logn| ( nllogn\)

< COnrt <C
= OUnTg 3 3

where used the change of variables s = |t — ty|¢’, that 9% € C'! and that  can be chosen
small enough.

The second term in (5.9) and the third term in (5.8) are bounded by C7rj by similar
computations, which concludes the proof of (5.7) hence of (5.6). Let us then set

1

v = hM? —65+cm—w—Cg(Mﬁ+|logn\)+%
for the C of (5.6). Observe that

1 _ ¥O) — g(X© )

L Ao = pptes + RATT + pa(X%) — fis( )12 in RY,

Cd X
hence Av is supported in ¥\ E. By (1.11), (5.6) and pg > n in X\ E, we have in ¥\ E,
(5.10) U+V—coo:h“f’+V—cﬁ—w—Cﬂ(MB+|logn|) En

1 M 1

5 B B

It follows that
(5.11) min(v +V — s, —Av) <0 in RY

In dimension d = 2 the comparison principle of Lemma 3.1 allows to conclude that v < h#e
which yields the desired upper bound for h*#. Let us now turn to dimension d > 3. Setting

Q= ht>~ —0,
by (5.10) and (1.6) we have
>0 in X\ E
(5.12) { “Ap>0 in (S\E).
Mp+|logn|

We also have ¢ — c5 —coo —Cn + k’%l at oo. Arguing as in the proof of Lemma 3.2,

B
let ¢ be a harmonic function equal vanishing on 9(X\E) and ¢z — coo — an + k’%
at infinity, we have ¢ > ¢ in ¥\ E and if ¢g — ¢ — CUW + 10% < 0, 9 tends to

its limit from above at speed |z[*~9. On the other hand [y A¢ = 0. As in the proof of
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Lemma 3.2, we get a contradiction and conclude that cg — coo — an + 10_271 > 0. We

then conclude from (5.12) and the maximum principle that ¢ > 0 everywhere, which yields

logn Mpg + |logn|
—C
g T8

h#>~ —cs — R +cg >

hence by definition of Mg

Ms CnMB +[logn| _ logn
B B B
Choosing 7 a small enough constant, we obtain that Mg < C', which concludes the proof
of (5.1). The result (5.2) follows from combining (3.22) and (5.1), and (5.3) follows from
combining (3.22), (5.1) and the fact that ( =0 in X. O

Corollary 5.2. We have
(5.13) IV (B = ho) | o us) < CB72.

Proof. This follows from (3.10), the fact that ||ps — pieo||z= < C and interpolation (see for
instance the appendix in [4]). O

6. REGULARITY THEORY AND ITERATIVE APPROXIMATION

Once g is bounded below, the PDE (1.13) becomes uniformly elliptic and we may apply
regularity theory tools to compare s to the expected solution. In the case that AV is
constant, then we can show that pg is very close to the constant ji, inside X, however in
the case where AV is not constant, there are corrections to arbitrary order that need to be
added to fis.

Assuming that V' € C?™7 for some m € N and exponent v > 0, we recursively define f;,
by (1.28). We note that, for § sufficiently large depending on the norms of V' and on &,
and by (1.17),

a
(6.1) ||fk||c2(mfk71>w(z) <C and f;> dc, in 2.
d

We also define

(6.2) e := Alog fr. — B(cafy — AV) = Bea(frs1 — fr)
and check that

Ek
€ =Alog |1+
e g( 5%&)

and thus
(63) ||€k”02(m7k72),’y(2) < Oﬁ_k

Thus since ¢, gets small as § gets large, fx is a good approximate solution to (1.12) for
k> 1. In view of (6.2) and (6.3), if V€ C* then f; converges as k — oo in all C™ spaces
to fso, an exact solution of (1.12).
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Proposition 6.1. Assume m € N, m > 2, and vy € (0, 1] are such that V € C*™7. Then
for every n even integer with n < 2(m — 2) and every 0 < ~' < ~, there exists C' > 0
depending only on V,d,n such that if 5 is large enough depending on m, for any U C %,
we have

(6.4)

1) = frnz3 (@)l sy < OB exp (~Clog® (Bdist* (U, OX))) + Cm 1%
Proof. Define ug := f—f — 1. By (1.12), we have
Alog(fi(us +1)) = Blcafrug + cafe — AV).
In view of (6.2), we get

Alog(1 + ug) = Beq frug — e

which can be rewritten as

\Y
Up

This equation is uniformly elliptic in ¥ since, by (3.8),(5.3) and (6.1),

a c .

We next seek a local L? estimate for ug in 3. Select zg € X, r € (0, dist (1’0, 82)) and a
cutoff function x € C°(B,). Testing (6.5) with x*ug, we obtain

Vugl|? 2 Vy -V
/ A / AOXTX T 4 Beg / X* frus = / X exug.
Br(zo) 11 Us  JB.(x0) 1+ ug By (x0) By (20)

Using Young’s inequality and (6.1), we obtain after rearrangement that

1 Vus?  Bc u2 |Vy|? 1
_/ X2| sl +ﬁ/ XkaU%Sél/ 51Vx| N / 22
2 Br(xO) 1 + uﬁ 2 BT(LL‘O) Br(x()) 1 + U,B 2BCd B, J,‘())

L
<c / P+ G [ d
Br(fﬂo) Br wO

Choosing x such that 1p @) < X < 1p,() and [Vx| < 4r~" and using (6.1), (6.3)
and (6.6), we find that, if £ < m — 2, then

C
(6.7) ][ \Vug|* + 6][ uj < ug + Cp- R
r/2(x0) 1 /2(T0

2
T By (wo)

In particular, keeping only the second term on the left side, we obtain

c
(6.8) ][ W < W][ 34 O,
By B
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After an iteration of the previous inequality, we obtain, for s := CBz,
]{B ( )u% < exp (—clog2 (67“2)) + O 2k
s(Zo

Let us now rescale the equation (6.5) by defining
(6.9) ug(x) == ug(xo + sx),

and similarly fk, Ek. In terms of ug, the equation becomes

Vu AP ~ .
(6.10) —div (1 _:LSB) + cafrug = f71E, in B;.
Note that the function cd]?k is bounded. Applying the De Giorgi-Nash Holder estimate
(see [11, Theorem 8.24]) for uniformly elliptic equations, we obtain, for some o > 0 and
again for k < m — 2,
1

3
HUB”Loc(Bl/Z) + [uﬁ]co,a(gl/Q) <C </B UZ’) +Cp! HngLoo(BS)
1

< Cexp (—c(log®(Br?)) + Cp~ "+,
Repeatedly applying Schauder estimates yields, for every n < 2(m —k —2) and 0 < 7/ <,

(6.11) (V" U)o (5, ) < Cexp (—c(log?(8r?)) + Ca~+D,
with constants C' which now depend on m. Taking k = m — 2 — 7, after rescaling back, by
definition of ug this implies (6.4). O

Remark 6.2. The estimates above apply in the same way to all solutions of relations of
the form (6.5). This allows to handle questions of stability of the solutions with respect to
V:if Vois changed into V + t€ with & supported in X, then letting u% be the corresponding

t
.7 . . 124 .
thermal equilibrium measure, the function u, = ﬁ — 1 satisfies

(6.12) div ( v ) = B (capfus — tAE) .

1+ u
which is of the same form as (6.5). The same method then allows to estimate u; hence
15/ ks
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