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Similar activity patterns may arise from model neural networks with distinct coupling properties and in-
dividual unit dynamics. These similar patterns may, however, respond differently to parameter variations
and, specifically, to tuning of inputs that represent control signals. In this work, we analyze the responses
resulting from modulation of a localized input in each of three classes of model neural networks that have
been recognized in the literature for their capacity to produce robust three-phase rhythms: coupled fast-slow
oscillators, near-heteroclinic oscillators, and threshold-linear networks. Triphasic rhythms, in which each
phase consists of a prolonged activation of a corresponding subgroup of neurons followed by a fast tran-
sition to another phase, represent a fundamental activity pattern observed across a range of central pattern
generators underlying behaviors critical to survival, including respiration, locomotion, and feeding. To per-
form our analysis, we extend the recently developed local timing response curve (lTRC), which allows us
to characterize the timing effects due to perturbations, and we complement our lTRC approach with model-
specific dynamical systems analysis. Interestingly, we observe disparate effects of similar perturbations
across distinct model classes. Thus, this work provides an analytical framework for studying control of
oscillations in nonlinear dynamical systems, and may help guide model selection in future efforts to study
systems exhibiting triphasic rhythmic activity.

Keywords: Central Pattern Generator, Oscillation, Limit Cycle, Fast-slow System, Heteroclinic, Threshold-
linear Network

1 Introduction

Many of the automatic behaviors fundamental to animal life, including respiration, digestion, and various
forms of locomotion, represent multi-phase processes, in each of which a sequence of motor unit activations
repeats rhythmically. In each case, the behavior is driven by the generation of sustained, multi-phase rhyth-
mic outputs by a corresponding neural circuit that, for automaticity, must be able to produce its characteristic
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activation pattern in the absence of temporally-varying inputs. Nonetheless, inputs do serve important func-
tions for these neuronal activity patterns; transient inputs may serve as triggers to turn rhythms and behaviors
on and off, they may allow for interruption of rhythms (e.g., pausing of inspiration to allow for swallowing
or vocalization) and switching between rhythms (e.g., transitions in swimming and walking in salamanders
(Ijspeert et al., 2007)), and they may serve as control signals to modulate the frequency or relative phase
durations of ongoing rhythms.

The ubiquity of these rhythms, and the relative experimental accessibility of the central pattern generator
(CPG) circuits that often produce them, have made them a common subject of scientific investigation. In the
computational realm, past modeling works have presented several distinct mathematical frameworks that
can generate repetitive, multi-phase rhythms. In each case, the rhythms can exhibit extended activations of
specific units in a circuit, occurring sequentially in each cycle. Despite its functional importance, however,
the topic of control of such circuits has received far less theoretical attention. On the one hand, control of lin-
ear systems is a thoroughly developed topic (cf. Brockett (2015)). Fixed-point control for nonlinear systems
is understood to the extent that one can approximate the nonlinear system under weak disturbances with a
related linearized system (cf. Isidori (1985)). Despite decades of development in these areas, however, con-
trol for nonlinear dynamical systems exhibiting limit cycle dynamics remains relative underdeveloped. One
reason for this lack of development may be that parametric control of limit cycles requires understanding
the coordinated changes in both the shape and timing of trajectories upon adjustment of a control parameter.
For smooth systems, Floquet analysis can capture the effects of small perturbations, but in many naturally
occurring control systems – for instance in biological motor control systems – there are switching surfaces
or fast-slow dynamics that require more subtle treatment. Such nonsmooth dynamics can occur at the point
of making or breaking contact between the organism’s body and an external substrate, or at hard boundaries
for internal dynamics such as exclusion of negative firing rates in neural network CPG models formulated
in the firing rate framework.

In this paper, we present a novel analysis of control1 in rhythm-generating neuronal circuits, achieved by
applying and extending recently developed tools that allow linearized (sometimes called variational) anal-
ysis of the parametric variations induced in periodic orbits by changes in constant input levels. As noted
in previous work (Yakovenko et al., 2005; Olypher et al., 2006; Daun et al., 2009; Rubin et al., 2009), the
functional control of CPGs requires not only the capacity to alter the overall output frequency but also, in
general, a mechanism to tune the durations of specific phases within a rhythmic pattern, such as prolonging
an inspiration without altering expiration or prolonging the stance phase of locomotion without altering the
swing phase; in practice, however, changes in the duration of activity at one node in a coupled circuit may
induce cascading changes in other nodes. Therefore, in this paper we study how changing the input intensity
to a single unit within a model CPG circuit impacts the durations of all phases within its rhythmic output
cycle, with an eye towards the independent phase modulation property.

An important aspect of the work presented here is that we consider this control problem within several
classes of mathematical models that naturally produce multi-phase oscillations and have appeared in the neu-
roscience literature. One such modeling framework consists of coupled with mutually inhibitory synapses.
The individual relaxation oscillator model includes dynamics on distinct fast and slow timescales and pro-
duces periodic dynamics featuring alternating, extended active and silent phases, with fast transitions be-

1The term control encompasses a broad set of technical problems. In the context of mathematical physiology, it has long
been understood that the regulation of e.g. metabolic processes (such as breathing) is a primary example of “control” in biological
systems. As far back as 1954, Grodins et al. asserted that “The essence of physiology is regulation” (Grodins et al., 1954) and drew
an explicit connection between control theory and the biology of respiratory control. In his seminal work on cybernetics, Wiener
asserted a similar connection (Wiener, 1948).

2



tween them. This pattern provides a strong qualitative resemblance to the outputs of units within CPGs,
and the fast-slow nature of the dynamics involved has proved convenient for a broad collection of analyses
(cf. Chapter 9 of Ermentrout and Terman (2010) as well as Bertram and Rubin (2017) for relevant methods).
In particular, it is natural to represent such a CPG model as a collection of units, each with its own active and
quiescient states, and to focus on solutions in which at most one unit is in its active state at any given time.
On the other hand, it is not necessarily the case that all components of a CPG circuit have the capacity to
oscillate individually in some input range. One alternative to the coupled relaxation oscillator CPG model is
provided by models featuring heteroclinic cycles, sometimes referred to as winnerless competition models
(May and Leonard, 1975; Afraimovich et al., 2004). In such models, an extended passage near a saddle
point yields the prolonged duration associated with each phase of a CPG output. Here, we no longer have a
fast-slow timescale splitting and decomposition of the phase space into projections for individual units. A
third modeling framework for multi-phase neuronal rhythms, which also lacks a timescale splitting, is of-
fered by the class of competitive, threshold-linear networks (Morrison et al., 2016). Inhibitory interactions
between threshold-linear units can yield oscillations without stable fixed points, as is suitable for functional
CPG dynamics, and this modeling framework has been proposed as being convenient for mathematical
tractability.

In each of these modeling frameworks, we ask how the architecture influences the controllability of the
pattern of activation. Specifically, we analyze the sensitivity of the individual activation phases comprising
the overall pattern of activity in response to the tuning of an excitatory, tonic driving current external to –
that is, not generated by or affected by – the activity of the circuit. In all cases, we use a recently developed
mathematical tool, the local timing response curve (lTRC) (Wang et al., 2021). The lTRC provides a first-
order (linear) approximation for the effect of a parametric perturbation on the time it takes for a trajectory
to pass through a given region. It decomposes the effect into a component affecting the trajectory’s entry
position into the region, an impact on the vector field within the region, and an influence on its exit from the
region. Importantly for CPG models, this idea applies to vector fields that lack smoothness, or even feature
discontinuities, at switching surfaces within the phase space. The lTRC analysis provides a mathematically
grounded numerical quantification of the effects of a specific parameter variation on rhythm period and phase
durations, which we can represent in terms of entrance, within-region, and exit effects. In several cases, we
supplement the lTRC calculation with mathematical analysis based on timescale decomposition or other
ideas, to obtain additional insights about the dynamical mechanisms underlying the observed effects. Our
findings yield important information for future work modeling neuronal generation of multi-phase rhythms,
in that they provide insights about the control properties of each framework that we consider, which can
guide the selection of a modeling framework to match experimentally observed circuit properties.

In all cases, for concreteness, we consider three-phase, or triphasic, rhythms. This choice is motivated by
the common appearance of triphasic rhythms in CPG outputs, including those for mammalian respiration,
tripod insect gaits, escape swimming in mollusks, scratching in turtles, feeding in sea slugs, and digestion in
crustaceans (Marder et al., 2007; Smith et al., 2007; Büschges et al., 2008; Daun and Büschges, 2011; Hao
et al., 2011; Wojcik et al., 2014; Shaw et al., 2015). We organize the rest of our paper as follows. A brief
description of the modeling frameworks we consider and the related phase-transition mechanisms is given
in section 2. Section 3 presents the main analysis and results on the controllability of phase durations in
each phase transition mechanism. Last, we summarize the mapping that we obtain between model classes
and control properties in section 4, where we also discuss limitations, connections to previous literature, and
possible implications of our results for biology and for future work.
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2 Model systems

We will consider three classes of three-unit model systems that generate periodic oscillations in which units
take turns activating, or exhibiting an epoch of elevated voltage, in a fixed sequence, with no two active at
the same time. For reference, we label the units as 1, 2, 3, although all three will be identical. We refer to
phase i as the segment within one period of such a solution during which unit i is active, and we use the
notation ti to denote the duration of phase i. The notation ∆ti represents the change of ti in response to a
perturbation of the control parameters.

2.1 Relaxation oscillator circuit

A vast array of planar dynamical systems, including many neuronal models, can produce relaxation oscil-
lations. In the neuronal case, the key ingredients are typically a fast inward current and a slow negative
feedback, which can be the inactivation of the inward current or the activation of an outward current. From
a mathematical perspective, all such models that produce a transition from a stable hyperpolarized state to
oscillations via an initial Andronov-Hopf (AH) bifurcation and a subsequent transition to a stable depolar-
ized state via another AH bifurcation, as a single input current parameter is varied, are equivalent (up to
criticality of the AH bifurcations) (Izhikevich, 2007). When such units are coupled together synaptically
and produce sequential oscillations, however, their responses to parameter tuning can depend on the nature
of the mathematical mechanism by which the neuronal activations alternate (Daun et al., 2009; Rubin et al.,
2009). Thus, in this work, we consider a specific choice of neuronal relaxation oscillator model and we vary
parameters within the context of that model to realize and compare several different transition mechanisms.

Equations For our individual neuron model, we follow past works on CPGs that used a slowly inactivating
persistent sodium current (INaP), as has been characterized in respiratory CPG neurons (Butera Jr et al.,
1999a,b), to support oscillations (e.g., Rybak et al. (2006); Daun et al. (2009); Rubin and Terman (2012)).
The full circuit model includes mutual inhibitory coupling among three units. We make the assumption
that the coupling strength responds instantaneously to changes in voltage, which simplifies the analysis and
represents a reasonable approximation because the synaptic conductance rise and decay rates are much faster
than the timescale of INaP (de)inactivation and which has been successfully used in previous analysis (see
Daun et al. (2009); Rubin and Terman (2012)).

The specific model equations that we consider are modified from a three-component respiratory CPG model
(Rubin and Terman, 2012):

v′1 =(F (v1, h1)− gI(b21S∞(v2) + b31S∞(v3))(v1 − VI)− gEd1(v1 − VE))/C,

v′2 =(F (v2, h2)− gI(b12S∞(v1) + b32S∞(v3))(v2 − VI)− gEd2(v2 − VE))/C,

v′3 =(F (v3, h3)− gI(b13S∞(v1) + b23S∞(v2))(v3 − VI)− gEd3(v3 − VE))/C,

h′1 =(h∞(v1)− h1)/τh(v1),

h′2 =(h∞(v2)− h2)/τh(v2),

h′3 =(h∞(v3)− h3)/τh(v3).

(1)

In system (1), F describes a persistent sodium current and a leak current,

F (v, h) = −gNaPmp∞(v)h(v − VNa)− gL(v − VL).
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The coupling function S∞ is given by a monotone increasing function taking values in [0, 1],

S∞(v) = 1/(1 + exp ((v − θI)/σI)),

where θI represents the synaptic threshold. This function closely approximates a Heaviside step function
when σI is small, and it is multiplied by a coupling strength bij for i, j ∈ {1, 2, 3} each time it appears. The
final term, gEdi(vi − VE), in each voltage equation represents a tonic excitatory drive, and we consider the
strength factors di as control parameters. In the equations for gating variables, τh is the time constant for
the sodium conductance inactivation, given by

τ−1
h (v) = ϵ cosh ((v − θh)/(2σh)),

where 0 < ϵ ≪ 1. Additional details about the functions in system (1), as well as parameter values used for
simulations, are given in Appendix A.

Figure 1 shows a typical solution of system (1), where each cell undergoes relaxation-oscillator-like dynam-
ics. Because the coupling between units in (1) only occurs through the functions S∞(vi), which transition
rapidly between values near 0 and 1, we can represent the solution as a collection of three phase plane projec-
tions, one to each coordinate pair (vi, hi). In each phase plane, since ϵ is small, the projected trajectory will
evolve along a branch of the vi-nullcline, except for rapid jumps between branches at the fold points where
pairs of branches meet and end. A rapid change in an S∞ term in a neuron’s voltage equation yields a rapid
change in its v-nullcline position and corresponding jump to a new branch. An example of the (v1, h1) pro-
jection is shown in Figure 1(b). There, we display two distinct v1-nullclines. Recall that the v1-nullsurface
in the 6-dimensional phase space of system (1) defined by v′1 = 0. This becomes a one-dimensional curve
when projected to (v1, h1)-space for any fixed (v2, v3), and the position of this curve depends on the values
assigned to v2 and v3. Because the function S∞(vi) is steep and we consider solutions in which at most
one cell is active at a time, most of the time we have (S∞(v2), S∞(v3)) within a small neighborhood of one
of the three points {(0, 0), (0, 1), (1, 0)}. Hence, three positions of the projected v1-nullsurface are most
relevant for illustrating trajectory behavior on the (v1, h1)-plane, and these reduce to two because we take
b21 = b31. We refer to the projected v1-nullsurface for (0, 0) as the active or uninhibited v1-nullcline and to
that for (1, 0), and equivalently for (0, 1), as the inhibited v1-nullcline.

In the solutions we consider, there is always exactly one cell active at each time (except during jumps),
which inhibits the other two cells. As parameters are varied, a number of different activation patterns can
be generated, e.g. (132), (1232), (13123), etc. (see more patterns in Rubin and Terman (2012)). In the rest
of the paper, we consider the symmetric (123) firing pattern of the system, also known as splay states, in
which the three cells alternate activating in the activation order 1 → 2 → 3 → 1 → 2 → 3 → · · · . Because
all system parameters are the same for all neurons in the simulation shown in Figure 1, a splay state occurs.
Thus, the phase plane projections for the other two units are identical to those shown for (v1, h1); although
the solution time courses are phase-shifted (Figure 1 (a)), that difference does not show up in the phase plane
(Figure 1(b)), since time is not explicitly represented there.

Phase transition mechanisms Skinner et al. (1994) recognized that in half-center oscillators, defined
as pairs of neurons that generate alternating oscillations when coupled by reciprocal inhibition, switches
of which cell is active can occur through four different transition mechanisms: intrinsic release, synaptic
release, intrinsic escape and synaptic escape (see also Wang and Rinzel (1992); Zhang and Lewis (2013);
Yu and Thomas (2021)). These concepts extend naturally to larger networks with reciprocally inhibitory
coupling (Rubin et al., 2009; Sakurai and Katz, 2022). The intrinsic properties of the neurons and the
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Figure 1: A typical solution of system (1), which features an intrinsic release mechanism. (a): Voltage
versus time for the three cells. The three cells evolve in a symmetric way and take turns activating. Magenta
dashed horizontal line: synaptic activation threshold θI. (b): (v1, h1) phase plane of the solution. Black solid
curve: cell 1 limit cycle trajectory; green solid curve: h1-nullcline; blue dashed curve: inhibited v1-nullcline;
blue solid curve: active v1-nullcline; magenta dashed vertical line: synaptic activation threshold θI. Phase
planes for (v2, h2) and (v3, h3) are the same as (v1, h1). Note the transient upward voltage deflections (grey
arrows) during the brief interval in which the silent cell is released from inhibition but then suppressed due
to the faster activation of the other silent cell (cf. Rubin and Terman (2012); Park and Rubin (2022)).

properties of the synapses between them, especially the position of the synaptic threshold, determine the
fundamental differences of the four mechanisms.

Intrinsic release Figure 1 illustrates the dynamics of the intrinsic release mechanism. During the network
oscillation, the active cell reaches the lower right knee of its active (uninhibited) v-nullcline and jumps
down. As it does so, its voltage crosses through the synaptic threshold θI, releasing the suppressed cell with
the largest h-value from inhibition. Although the other suppressed cell’s voltage also transiently increases,
it is quickly suppressed by the activation of the neuron with the largest h (see grey arrows in Figure 1). The
formerly active cell becomes inhibited by the newly-active cell and thus completes its jump down on the left
branch of its inhibited v-nullcline.

Intrinsic escape In the intrinsic escape mechanism, the oscillations are controlled by the suppressed cell
escaping from inhibition when it reaches the upper left knee of its v-nullcline. Figure 2 shows the time
course of a splay state with all transitions by intrinsic escape and the phase plane projection of the trajectory
to (v1, h1)-space. At first glance, the projection may look identical to the intrinsic release case. Note,
however, that cell 1 reaches the left knee of its inhibited v-nullcline (dashed blue) and escapes, or jumps up,
from there despite still being inhibited. Moreover, once cell 1 is active, it converges to a stable critical point
where its active v-nullcline (solid blue) intersects its h-nullcline (green) at v > θI. The subsequent jump-
down of cell 1 happens only because cell 2 manages to reach its left knee and escape. Different from the
intrinsic release in which a transient increase occurs for the voltage of the suppressed cell, in the intrinsic
escape case a transient decrease exists due to double inhibition from the other two active cells (see grey
arrows in Figure 2), which we call a “double inhibition notch”.
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Figure 2: Dynamics of the intrinsic escape mechanism. Colors as in Figure 1. When the inhibited cell
reaches the upper left knee of its v-nullcline, it jumps up to the active v-nullcline and inhibits the other two
cells. Note the transient downward voltage deflection (grey arrows) during the brief interval in which the
cell is inhibited by both of the other cells in the network, which we call a “double inhibition notch”.

Synaptic release The synaptic mechanisms come into operation when the synaptic threshold θI intersects
one of the outer branches of the voltage nullclines, rather than the middle branch. In this case, the cells’
transitions between the active and suppressed states occur due to synaptic dynamics. Figure 3 illustrates an
example of the synaptic release mechanism, where θI lies on the right branch of the active v-nullcline. The
jumps occur when the active cell reaches the synaptic threshold voltage. When this happens, it no longer
fully inhibits the suppressed cells, and the one with largest h can activate. When that cell’s voltage jumps
up, it crosses the synaptic threshold and inhibits the active cell, which in turn jumps down, starting from
v ≈ θI since all of this action happens on the fast timescale. Note in Figure 3(b) that the resulting trajectory
projection does not pass through either the local maximum or minimum of the v-nullcline.

Synaptic escape In this mechanism, the synaptic threshold intersects the left branch of the inhibited null-
cline, as shown in Figure 4. The jumps are determined by when an inhibited cell’s voltage crosses through
the synaptic threshold. When this occurs, the active cell becomes inhibited and jumps down, which turns off
the inhibition to the suppressed cells and allows the inhibited cell with the newly supra-threshold voltage to
activate.

2.2 Heteroclinic cycling model

Shaw et al. (2015) and Lyttle et al. (2017) introduced a firing-rate model for the feeding pattern generator of
the marine mollusk Aplysia californica, adapted from May and Leonard’s three-population heteroclinic cy-
cling model (May and Leonard, 1975). Here we study a three-dimensional piecewise linear system adapted
from Park et al. (2018) that was introduced as a piecewise linear simplification of the (smooth) heteroclinic
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Figure 3: Dynamics of the synaptic release mechanism. Colors as in Figure 1. The synaptic threshold θI
intersects the right branch of the active voltage nullcline. The release occurs when the active cell’s voltage
declines to the synaptic threshold.

Figure 4: Dynamics of the synaptic escape mechanism. Colors as in Figure 1. The synaptic threshold θI
intersects the left branch of the inhibited voltage nullcline. When the suppressed cell passes the synaptic
threshold, it initiates a phase transition.
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Figure 5: Piecewise linear model of Aplysia feeding system (2) for ρ = 3 and two values of endogenous
neural excitation parameters ai. The domain is divided into three equal pyramidal regions, with boundaries
colored magenta, green and yellow, respectively. A saddle fixed point (solid dot) lies on the corner of each
region. The magenta, green and yellow regions are the respective active regions for pool x, y and z. Arrows
mark the direction of flow. (a) When a1 = a2 = a3 = 0, the system contains a stable heteroclinic cycle.
(b) When a1 = a2 = a3 = 0.01, the system contains a stable limit cycle. Note that in this case, the critical
points are no longer exactly at the corners of the unit cube.

cycling model. This system takes the form

d

dt

⎛⎝x
y
z

⎞⎠ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1− x− (y + a1)ρ

y + a2

(z − a3)(1− ρ)

if x ≥ y +
a1 + a2

2
, x ≥ z − a1 + a3

2

(x− a1)(1− ρ)

1− y − (z + a2)ρ

z + a3

if y > x− a1 + a2
2

, y ≥ z +
a2 + a3

2

x+ a1

(y − a2)(1− ρ)

1− z − (x+ a3)ρ

if z > x+
a1 + a3

2
, z > y − a2 + a3

2
.

(2)

This system incorporates firing rates of three neural pools — the “protraction-open” pool x, the “protraction-
closed” pool y, and the “retraction” pool z. Parameter ai represents intrinsic neural excitation to each pool,
and ρ is a coupling constant representing inhibition between the neural pools. The domain of system (2) is
divided into three equal rectangular pyramids that together comprise the unit cube, as shown in Figure 5.
When all ai = 0, the intrinsic neural dynamics contain a stable heteroclinic cycle connecting saddles at
(1, 0, 0), (0, 1, 0), and (0, 0, 1), see Figure 5(a). When some ai are small and positive, the heteroclinic cycle
is broken and a stable limit cycle arises, see Figure 5(b).
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2.3 Competitive threshold-linear network

The third framework we consider is a competitive threshold-linear three-unit network governed by the fol-
lowing ODE system (Morrison et al., 2016):

ẋi = −xi +

⎡⎣ 3∑︂
j=1

Wijxj + θi

⎤⎦
+

, i ∈ {1, 2, 3}. (3)

The connectivity matrix W = [Wij ] in (3) gives directed connection strengths between pairs of nodes, the
parameter θi is an external drive to node i, and the nonlinearity [·]+ is given by [y]+ = max{y, 0}.

Assume the connectivity matrix W to be

Wij =

⎧⎪⎨⎪⎩
0, if j = i

− 1 + ϵ, if j → i

− 1− δ, if j ↛ i

where δ > 0 and 0 < ϵ < 1. It is shown in Morrison et al. (2016) that in a unidirectional coupled network,
if

ϵ <
δ

1 + δ
,

then the network has bounded activity and no stable fixed points. Specifically, to have the nodes oscillate in
the cyclic order (123), we can take

W =

⎛⎝ 0 −1− δ −1 + ϵ
−1 + ϵ 0 −1− δ
−1− δ −1 + ϵ 0

⎞⎠ ,

where ϵ = 0.25 and δ = 0.5 to satisfy the given inequality.

If all of the drive terms θi are set to 0, then the system trajectories converge to the stable fixed point (0, 0, 0).
When the θi are all positive, the solution trajectory always converges to a stable limit cycle, which surrounds
an unstable fixed point. This oscillation mechanism differs from that in the heteroclinic cycling model
(§2.2), where the periodic orbit spends its time in small neighborhoods of invariant manifolds associated
with equilibria.

To make a clear comparison with the heteroclinic cycling model (2), we again partition the unit cube domain
into three equal pyramids and define the active region for each node to be⎧⎪⎨⎪⎩

x1 active, if x1 ≥ x2, x1 ≥ x3

x2 active, if x2 > x1, x2 ≥ x3

x3 active, if x3 > x1, x3 > x2.

Figure 6 is a reference figure showing the periodic trajectory in the default symmetric case θ1 = θ2 = θ3 =
1. The three nodes activate in the cyclic order (123) with equal durations spent in each region.
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Figure 6: Activity dynamics of the three nodes in the competitive threshold-linear network (3) with θ1 =
θ2 = θ3 = 1. (a): Time courses of nodes x1 (black), x2 (blue) and x3 (red). (b): Trajectory in the 3D cubic
domain. Node x1 is active in the magenta region; x2 is active in the green region; x3 is active in the yellow
region. Arrows mark the direction of flow. Because of the rectifying nonlinearities, the trajectory passes
through a series of six switching surfaces per periodic orbit. Black, blue, and red solid dots in panels (a) and
(b) mark nonsmooth points of the dynamics.

3 Phase-duration sensitivity

Therefore, in this section, we study the responses of periodic solutions in each model class to variations in
a control parameter. Since we consider the case of symmetric networks, in that the dynamics of all network
components and the values of all coupling strengths are identical, we (without loss of generality) vary the
control parameter to component one in each model and study the effect of this variation on all three phase
durations within the perturbed oscillation. We then explain the observed responses via two approaches: a
quantitative analysis using the local timing response curve (lTRC) and various model-specific qualitative
analyses based on other mathematical tools.

The lTRC calculation developed in Wang et al. (2021) quantifies the timing sensitivity of a limit cycle within
any given local region bounded between specific Poincaré sections in phase space, by decomposing the
response to a static perturbation into components that relate to entry section crossing, exit section crossing,
and alteration of the vector field within the region. Consider an ordinary differential equation model

dx

dt
= F (x(t), µ)

for x(t) in a phase space Ω ⊂ Rn, n ≥ 2, and a parameter µ ∈ R. Without loss of generality, we take
µ = 0 as a baseline or unperturbed case and let F (x(t)) denote F (x(t), 0). Suppose that in the baseline
case the system supports a stable periodic solution, or limit cycle, γ. Suppose that γ passes through a region
or subdomain R ⊂ Ω, with entry point xin and exit point xout. For each x ∈ γ ∩ R, let Γ(x) be the time it
takes for the trajectory that originates at x to exit from R. The lTRC is defined to be the gradient of Γ(x),
η(t) = ∇Γ(x(t)), which satisfies the adjoint equation

dη

dt
= −DF (γ(t))T η,
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where DF denotes the Jacobian of the vector field F . At the exit point xout of region R, η satisfies the
boundary condition

η(xout) = − nout

(nout)TF (xout)
,

where nout is a normal vector of the exit boundary surface at xout (see more details about the lTRC in
Appendix B.1).

Using the lTRC, Wang et al. (2021) provide a formula for analytically calculating the first-order or linear
approximation for the change in the duration a trajectory spends in region R, induced by a small change in
µ. That is, writing Γµ(x) for the time to exit R from point x under the perturbation µ, we have Γµ(x

in
µ ) =

Γ(xin) + µT1 +O(µ2), with:

T1 = η(xin) ·
∂xin

µ

∂µ

⃓⃓⃓⃓
µ=0

+

∫︂ tout

tin
η(γ(t)) · ∂Fµ(γ(t))

∂µ

⃓⃓⃓⃓
µ=0

dt, (4)

where xin, xin
µ represent the unperturbed entry point and the perturbed entry point to region R, respectively,

and Fµ(x(t)) := F (x(t), µ). The first-order duration shift T1 given by (4) consists of two terms: the first
term arises from the impact of the perturbation on the entry point to the region; the integral term shows the
impact of the perturbation on the vector field.

Note that in Wang et al. (2021, 2022), boundary surfaces of region R were assumed to be fixed in the
derivation of (4). When considering boundary surfaces that may themselves change position as control
parameters vary (e.g., the boundaries of each region in the heteroclinic cycling model (2) shift as parameters
ai are varied), a third term for T1 arises, accounting for the impact of the perturbation on the exit point:

T1 = η(xin) ·
∂xin

µ

∂µ

⃓⃓⃓⃓
µ=0

− η(xout) ·
∂xout

µ

∂µ

⃓⃓⃓⃓
µ=0

+

∫︂ tout

tin
η(γ(t)) · ∂Fµ(γ(t))

∂µ

⃓⃓⃓⃓
µ=0

dt

=

∫︂ tout

tin
δ(t− tin) · η(xin) ·

∂xin
µ

∂µ

⃓⃓⃓⃓
µ=0⏞ ⏟⏟ ⏞

term A

− δ(t− tout) · η(xout) ·
∂xout

µ

∂µ

⃓⃓⃓⃓
µ=0⏞ ⏟⏟ ⏞

term B

+ η(γ(t)) · ∂Fµ(γ(t))

∂µ

⃓⃓⃓⃓
µ=0⏞ ⏟⏟ ⏞

term C

dt,

(5)

where δ(·) is the Dirac delta function. When the exit boundary is fixed, η(xout) = ∇Γ(xout) is parallel to
nout, the vector normal to the exit boundary. In this case, nout ⊥ ∂xout

µ /∂µ; therefore, term B is identically
zero and (5) naturally reduces to (4). The derivation of our generalized formula (5) for the shifting-boundary
case is given in Appendix B.3.

With the linear duration shift T1 calculated from equation (4) or equation (5), we can obtain the phase
duration change to the first order, given by µ× T1. Numerically, in the calculation of term A and term B in
equation (5) we approximate the linear shift in the entry and exit positions on Poincaré sections by

∂xin
µ

∂µ

⃓⃓⃓⃓
µ=0

≈
xin
µ − xin

µ
,

∂xout
µ

∂µ

⃓⃓⃓⃓
µ=0

≈
xout
µ − xout

µ
.

Note that T1 > 0 (resp. T1 < 0) if a positive perturbation increases (resp. decreases) the phase duration. In
the following subsections, we use the lTRC calculation to study the phase duration sensitivity to a specific
perturbation (with a comparison to direct numerical simulation), and we supplement the lTRC analysis with
other mathematical approaches such as fast-slow decomposition and vector field analysis.
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Figure 7: Projections to the phase plane for cell 1 in the intrinsic release case for d1 = 0.7 (blue), d1 = 1
(black) and d1 = 1.3 (red). The color of each trajectory is in line with the color of the corresponding v1
nullcline; the h1-nullcline appears in green. Solid nullclines are relevant when cells 2 and 3 are inactive,
while dashed nullclines arise when cell 2 or cell 3 is active. Successive dots are equally spaced in time. As
d1 increases, the v1 nullclines are lowered, and consequently, the jump-down position (right knee) of cell 1
is lowered (see bottom rectangle). The trajectories’ proximity to the h1-nullcline translates a small spatial
dispersion into a large temporal effect, such that the prolonging of the active phase at jump-down is much
more significant than the reduction occurring in the entry to the active phase (upper rectangle), far from the
h1-nullcline.

3.1 Relaxation oscillator circuit

In the relaxation oscillator circuit (1), we start from the symmetric case (d1 = d2 = d3 = 1) and apply a
small sustained perturbation µ to d1 (i.e., d1 → d1 + µ). We immediately run into a complication in this
case: past work has shown that the response of such models to tuning a constant input parameter depends
on the phase transition mechanism operating in the unperturbed periodic orbit (Daun et al., 2009; Rubin
et al., 2009). We consider the four transition mechanisms discussed by Skinner et al. (1994) and reviewed
in the previous section: intrinsic and synaptic release and escape. We display and compare the sensitivities
of the active phase durations for three of the four cases; to our surprise, we find that, unlike in a two-cell
network, the symmetric periodic orbit with transitions by intrinsic escape is unstable to small perturbations
in the three-cell network, so we conclude this section with commentary on this instability (with additional
analysis of the instability in Appendix C).

The dominant effect of increasing the value of d1 is that the active v1-nullcline, along which cell 1 moves
during the active phase, is lowered, as illustrated in Figures 7 and 8. For visual convenience, Figures 7, 8
show the trajectories with a perturbation of magnitude |µ| = 0.3 applied to d1 = 1, but in our actual analysis
and lTRC calculation we impose a smaller perturbation of magnitude |µ| = 0.05.

We define neuron i as being in the active phase when vi > θI, the synaptic threshold. The sections {vi = θI}
partition phase space into 8 regions, based on the various possible combinations of active and inactive
neurons. For each neuron, we are interested in its active phase duration, so for each i ∈ {1, 2, 3} we define
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Figure 8: Projections to the phase plane for cell 1 in the synaptic release case for d1 = 0.7 (blue), d1 = 1
(black) and d1 = 1.3 (red). Colors are as in Figure 7. A positive perturbation to d1 results in a decrease in
the h1-coordinate of the jump-down point. In contrast to the intrinsic release case (Figure 7), the jump-down
occurs with the v1-coordinate invariant with respect to d1 at v1 ≈ θI, which is farther from the h1-nullcline,
such that the change in spatial position does not translate into as large of an increase in the active phase
duration.

Table 1: Intrinsic release: duration changes of the three individual active phases, computed by direct numer-
ical simulation (“Simulated difference”) or lTRC calculation (“lTRC difference”). Specifically, ∆ti in the
“Simulated difference” column is given by the difference between the perturbed duration and unperturbed
duration, and in the “lTRC difference” it is a first-order approximation, given by µT1 where T1 is obtained
from (4) or (5). The durations in the default case (d1 = d2 = d3 = 1) are t1 = t2 = t3 = 29.3227. Phase 1
is prolonged in response to a positive d1-perturbation, while phases 2 and 3 are insensitive.

Simulated difference ∆t1 ∆t2 ∆t3 lTRC difference ∆t1 ∆t2 ∆t3
µ = 0.05 0.1118 0.0008 0.0009 µ = 0.05 0.1033 0.0008 0.0008
µ = −0.05 -0.1107 -0.0009 -0.0008 µ = −0.05 -0.1033 -0.0008 -0.0008

the Poincaré sections

Pi,up = {vi = θI, dvi/dt > 0},
Pi,down = {vi = θI, dvi/dt < 0}

(6)

and we quantify the time from the passage of the trajectory through Pi,up until its passage through Pi,down
for each i. By equation (5), for each region we can analytically calculate the linear shift in the duration of
each active phase when a small static perturbation µ is applied to d1.

Intrinsic release Table 1 presents the active phase duration changes for a solution featuring the intrinsic
release transition mechanism, obtained both by direct numerical simulation and by the lTRC calculation.
The analytical results show good agreement with the numerical simulation, with both revealing that an
increase in d1 prolongs the active phase of cell 1 and leaves those of cells 2 and 3 almost unchanged.

The lTRC approach affords insight into the origin of the phase duration effects of perturbation. To capture
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these effects, we plot the integrand in (5) as well as the accumulated integral up to time t as functions of t.
Specifically, for t ∈ [tin, tout], the integrand depends on the three terms⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

η(xin) ·
∂xin

µ

∂µ

⃓⃓⃓⃓
µ=0

, t = tin

−η(xout) ·
∂xout

µ

∂µ

⃓⃓⃓⃓
µ=0

, t = tout

η(γ(t)) · ∂Fµ(γ(t))

∂µ

⃓⃓⃓⃓
µ=0

, tin < t < tout.

(7)

Since the exit boundaries are fixed, −η(xout) · ∂x
out
µ

∂µ

⃓⃓
µ=0

is zero in this scenario. Figure 9(a) shows the timing
responses to d1 perturbation that occur in the three active phases over one period. We observe for phase 1
(black trace) that the timing response just before the end of cell 1 activation is dominant while the effect
of the perturbation on the entry to phase 1 is insignificant. The only effect of the d1 change on phase 2
(blue trace) and phase 3 (red trace) is the slight modulation of their jump-up points. (We note that the local
timing response curve in this setting has a qualitatively similar shape to the infinitesimal phase response
curve (iPRC) (cf. Brown et al. (2004); Ermentrout and Terman (2010); Schwemmer and Lewis (2012)), and
we discuss their relationship in Appendix B.2.)

To qualitatively explain what the lTRC analysis reveals about the dominant effect of the jump-down of cell 1
on the response to perturbation, we consider the fast-slow decomposition of the relaxation oscillator system,
which makes use of the interplay of spatial and temporal measures of distance between trajectories (Terman
et al., 1998; Rubin and Terman, 2002). Recall that for the intrinsic release mechanism, the phase transition
is triggered when the active cell reaches the appropriate right knee of the active v-nullcline. As d1 increases
and the right knee, or fold, of the v1-nullcline shifts to a lower position, cell 1 spends more time in the
active phase. Specifically, as cell 1 progresses through the active state, it evolves toward the fixed point
(the intersection of the free v1-nullcline and the h1-nullcline in Figure 7), which lies just beyond the knee,
until the knee is reached. Thus, the dynamics of cell 1 exponentially decelerates as the projected trajectory
approaches the jump-down point, as shown by the contraction of points around the right knee in Figure 7.
Hence, despite a small spatial difference for the v1-nullcline caused by a slight change in d1, the difference
in time needed to cover that spatial spread, and hence the difference in the duration of active phase 1, is
significant.

Note that as d1 varies, the entry point of cell 1 into the active phase also changes (upper right corner of
Figure 7). A larger d1 results in a smaller h1 upon entry of cell 1 to the active phase, and thus a shorter time
spent in its active region. This reduction partially counters the delay around the right knee. However, since
the voltage changes much more rapidly at the start of the active state than at the end, the spatial perturbation
upon entry has negligible temporal effects.

Next, consider the effect of the d1-perturbation on the active phase of cell 2, the next cell to activate after cell
1. The change of d1 does not affect the nullclines of v2 or the jump-down point of cell 2 to the silent phase.
The timing of the entry of cell 2 into the active phase is controlled by the jump-down of cell 1 from the right
knee of the v1-nullcline, which releases cell 2 from inhibition. When cell 1 spends more time before the end
of its active state, cell 2 correspondingly spends more time in the silent state. However, since the position of
cell 2 is close to the silent phase fixed point (with extremely low rate of change), the added time in the silent
phase does not make much of a difference in the spatial position at which cell 2 enters the active phase and
hence its active phase duration.
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Figure 9: Timing responses for (a) intrinsic-release mechanism and (b) synaptic-release mechanism, mea-
sured by equation (5). Transitions into and out of each active phase are defined by (6), and the respective
timing characteristics in each phase are calculated. Top panels: time course of membrane potentials over one
period. Middle panels: integrand in T1 at each time, given by (7). Bottom panels: accumulated integral of
T1 (the area between the integrand curve and x-axis). Black, blue and red traces correspond to when cell 1,
cell 2 and cell 3, respectively, is active. Intrinsic release: When a positive perturbation is applied to d1, cell
1 (black) starts with a negative response upon entering the active phase at t = 83.49; the negative response
continues accumulating, until t = 110.88 (where the integrand is zero); near the end of the active phase, the
integrand curve rapidly increases to large positive values, which cancels out the negative response accumu-
lated before and finally ends up with a positive response. Cells 2 and 3 react slightly to the perturbation only
at their transition to the active state (at t = 53.71 and t = 23.93, respectively). Synaptic release: Although
the integrand curve at the end of the phase 1 transiently increases to a value larger than for intrinsic release,
its accumulated effect (bottom panels) is much smaller than for intrinsic release, leading to less variation in
the active duration of cell 1.
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Specifically, Figure 10 shows a schematic illustration of the jump-up of cell 2 when d1 is positively per-
turbed. The longer time of cell 2 in the silent phase is equal to the extra time of cell 1 in the active phase,
denoted by ∆t in the figure. However, when cell 2 enters the active phase, the time difference from its
perturbed to its unperturbed position is highly compressed. We can in fact show that

0 < tp − tu ≪ ∆t,

where tu and tp represent the unperturbed time and perturbed time that cell 2 spends in the active phase,
respectively.

Consider the extra journey of cell 2 during the silent phase in the perturbed case. The evolution of the gating
variable h2 is approximated by

h′2 = (hL − h2)/τL,

for some values of hL and τL. Hence, the extra time in the silent phase (from point hu to hp in Figure 10) is
given by

hp = hL + (hu − hL)e
−∆t/τL

=⇒ ∆t = τL ln

(︃
hu − hL
hp − hL

)︃
. (8)

On the right branch, h2 approximately follows

h′2 = −h2/τR,

for some value of τR. Since the jump-down position of cell 2 is invariant with respect to the d1 perturbation,
the difference between the perturbed and unperturbed active durations of cell 2, which is also equal to the
time of passage from the perturbed landing point of cell 2 in the active phase to its unperturbed landing
point, can be computed from

hRK = hpe
−tp/τR = hue

−tu/τR

=⇒ tp = τR ln

(︃
hp
hRK

)︃
, tu = τR ln

(︃
hu
hRK

)︃
=⇒ tp − tu = τR ln

(︃
hp
hu

)︃
. (9)

To compare these quantities numerically, we choose hL = h∞(−62) and τL = τh(−62), based on a typical
value of v2 in the silent phase, and we assume τR = τh(−30) to give tp− tu its largest possible value. When
d1 is increased by 0.05, we have hL = 0.9751, τ−1

L = 0.0321, τ−1
R = 0.0137, hp = 0.8817, hu = 0.8814;

by (8) and (9) we obtain
tp − tu = 0.0248, ∆t = 0.0999.

Note that because we chose the value of τR that occurs when the trajectory is near the right knee, which
represents the largest value that τh(v2) takes during the active phase, the difference tp − tu is in fact much
smaller than 0.0248. This analysis confirms our temporal-spatial observation that the transition to the active
state greatly compresses the temporal difference of cell 2 active phase durations (perturbed versus unper-
turbed), relative to the temporal difference of active phase durations for cell 1. The jump down of cell 2
releases cell 3 to the active phase, so cell 3 inherits the insignificant active phase duration change from cell
2. The fast-slow decomposition analysis above is in accordance with the lTRC characteristics (Figure 9(a)).
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Figure 10: A schematic diagram for the intrinsic release mechanism, illustrating the jumps of cell 1 and cell
2 when d1 is positively perturbed. Dashed black: inhibited v-nullcline for cell 2. Upper solid black: unin-
hibited v-nullcline for cell 2 and for cell 1 in the default d1 case. Lower solid black: uninhibited v1-nullcline
for the perturbed d1 case. Red (blue) traces represents the jumps when d1 is perturbed (unperturbed). The
extra time spent by cell 1 to reach the right knee hRK after perturbation is equivalent to the extra time that
cell 2 spends in the silent phase, traveling from hu to hp, denoted by ∆t. When cell 2 enters the active phase,
the time difference between the red and blue landing points on the uninhibited v-nullcline is much smaller
than ∆t; that is, tp − tu ≪ ∆t, where tu (resp., tp) represents the passage time for cell 2 from its arrival in
the active phase until it reaches the right knee of the v-nullcline without (resp., with) the perturbation.

Table 2: Synaptic release: duration changes in three individual active phases, by direct numerical simulation
or lTRC calculation. The durations in the default case (d1 = d2 = d3 = 1) are t1 = t2 = t3 = 20.6558.
The duration of phase 1 changes monotonically with d1, and the durations of the other two phases are almost
invariant.

Simulated difference ∆t1 ∆t2 ∆t3 lTRC difference ∆t1 ∆t2 ∆t3
µ = 0.05 0.0245 -0.0002 0.0006 µ = 0.05 0.0203 -0.0002 0.0006
µ = −0.05 -0.0245 0.0002 -0.0007 µ = −0.05 -0.0203 0.0002 -0.0007

Synaptic release Following a similar argument, we can uncover the sensitivity of the individual activation
phases for the synaptic release mechanism. Note that the two release mechanisms have the same nullcline
structure (see Figures 1, and 3) and we expect that very similar underlying mechanisms are at work in the
two cases.

Table 2 lists the duration changes with reference to the symmetric case. The duration of active phase 1 has a
positive response to the increase of d1 while the durations of phase 2 and phase 3 are insensitive. Compare
the sensitivity of cell 1 activation between the two release mechanisms (Tables 1, 2). While both mechanisms
yield increases in the phase 1 duration, ∆t1, the duration change for the synaptic release has a considerably
smaller magnitude than ∆t1 for the intrinsic release. This result is evident from the local timing response
analysis as shown in Figure 9. The plot of the integrand of T1 in equation (5) indicates that although the
integrand at the end of phase 1 grows to a large positive value under the synaptic release mechanism, the
elevation in the synaptic release case occurs much more briefly, resulting in a weaker temporal effect than
results due to perturbation in the intrinsic mechanism.
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Table 3: Synaptic escape: changes in durations of the three active phases, obtained by direct numerical
simulation or lTRC calculation. The durations in the default case (d1 = d2 = d3 = 1) are t1 = t2 =
t3 ≈ 16.6590. A one percent positive perturbation to d1 induces large deviations to all three phases, with a
positive response of t1 and a negative response of both t2 and t3.

Simulated difference ∆t1 ∆t2 ∆t3 lTRC difference ∆t1 ∆t2 ∆t3
µ = 0.01 0.3269 -0.3198 -0.3978 µ = 0.01 0.3323 -0.3160 -0.4068
µ = −0.01 -0.3412 0.3291 0.4079 µ = −0.01 -0.3373 0.3350 0.4005

In the synaptic release mechanism, the synaptic threshold θI plays the key role in determining the transition
of each cell from the active state to the silent state. As shown in Figure 8, as d1 is adjusted, the voltage
coordinate of the jump-down point of cell 1 remains almost equal to θI while the coordinate of the gating
variable h1 changes. Because cell 1 only has to reach v1 = θI > vRK for the transition to begin, the smallest
values of τh from the intrinsic-release case do not occur, and hence the difference in active phase duration
for cell 1 is smaller in the synaptic release case. This again translates into small differences in the active
phase durations for cells 2 and 3.

Synaptic escape Unlike the release mechanisms, where the active cell itself has primary control of the
transition, here the duration of the active phase is predominantly controlled by the silent cell. Specifically,
each transition is initiated when one of the silent cells hits the synaptic threshold, thus inhibiting the active
cell and inducing a transition. As d1 increases, the inhibited v1-nullcine shifts downwards, and so does
the escape position of the silent cell 1; the inhibited voltage nullclines, as well as the escape positions, of
the other two cells are invariant. In the following, we first show the lTRC characteristics associated with
the synaptic escape mechanism. Next, we provide a geometric argument to explain why the active phase
duration of cell 1 increases while the active phase durations of cell 2 and cell 3 decrease when d1 is increased.
Finally, we strengthen our argument by giving an analytical calculation to show that under the assumption
that t1 increases (which can be justified by the geometric argument), both of t2 and t3 must decrease.

Table 3 shows the changes in the three active phase durations when a static perturbation µ = ±0.01 is
applied to d1. The first-order changes in the phase durations given by the lTRC formula (5) match well
with direct numerical simulation. The timing response characteristics of the synaptic escape mechanism are
shown in Figure 11. As d1 increases, the silent cell 1 jumps up earlier, as indicated by the initial positive
deflection of the black curve in the integrand plot. The earlier jump-up of cell 1 results in a lower position
of the double-inhibition notch of cell 2 in its silent phase and a higher jump-down position of active cell
3, as shown in Figure 13 (see below for a more detailed discussion of Figure 13). These further lead to a
later jump-up of cell 2 and an earlier jump-up of cell 3, which are in accordance with the initial negative
deflection of the blue curve and positive deflection of the red curve in the integrand plot of Figure 11. Right
before the end of the active phase of cell 3, a significant negative response occurs and counters the initial
positive response. This negative response is due to the early escape of cell 1, which advances the termination
of the active phase of cell 3.

Figure 12 shows the phase portraits and trajectories obtained by numerical simulation for the synaptic escape
mechanism. Note that there is a notch circled in each cell panel (see also Figure 2), arising from double
inhibition from the other two cells (which plays an important role in changing the active phase durations).
Figure 13 provides a schematic illustration of the phase portraits for the three cells. For visual convenience,
we just show one v-nullcline per input level for each cell (i.e., we ignore the shift in v-nullclines due to
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Figure 11: Timing responses for the synaptic escape mechanism, measured by equation (5). Colors are as
in Figure 9. Here we adopt an artificial synaptic threshold θimag to demarcate the start and end of the active
phases. When d1 is increased (by perturbation µ = 0.01), all three of the active phases have significant
responses: cell 2 (blue) exhibits an initial negative deflection; cell 3 (red) starts with a positive response
that is subsequently overcome by a more significant negative peak; cell 1 (black) shows a positive deflection
when it enters the active phase.

inhibition). One can also refer to Figure 12 for the phase portraits and trajectories obtained by numerical
simulation in this case. Red marks represent the locations of the cells resulting from an increase in d1 and
blue marks represent the corresponding locations with the default d1. Suppose d1 is perturbed at the moment
when cell 3 is at the jump-up position hU3 (see panels (a)). Note that the jump-up of cell 3 causes cell 2 to
jump down (from the right to the left branch of its v-nullcline). Since the v1-nullcline shifts downwards and
the current position of cell 1, at the double-inhibition notch, denoted by hI1, moves to the right, the passage
time of cell 1 to its escape position hU1 (panels (b)) is shortened. Correspondingly, the active duration of
cell 3, t3, is shortened (or equivalently, the jump-down position of cell 3, hD3 , is higher), and the double-
inhibition notch location of cell 2 on the inhibited v2-nullcline, denoted by hI2, is lower (panels (b)). In
panels (c), since the escape position of cell 2, hU2 , is invariant with respect to d1, the passage time of cell 2
to from hI2 to hU2 becomes longer, which results in a longer t1, a lower hD1 , and a higher hI3. Such higher hI3
leads to a shorter passage time of cell 3 to its escape position, and thus, t2 is shortened, hD2 is higher, and
hI1 is lower (see panels (d)). Note that in the cell 1 panel of (d), we use the blue dot to mark the location of
the red dot from panel (a) that resulted from the initial perturbation of d1. Since hI1 is lower at the end of the
cycle, in panel (d), than it was initially, if we continue to track the cells following a similar argument, then
we see that the active t3 in the second iterate is no longer quite as short as it was in the first iterate.

To represent this situation analytically, we will introduce the notation tAi to denote active phase durations
(previously ti) and tSi to denote silent phase durations. Let tAi (k) denote the active phase duration of cell i
on iterate k, where k = 0 corresponds to the unperturbed solution. From above, we have

tA3 (2) > tA3 (1). (10)

We aim to show that the unperturbed active duration of phase 3 is longer than the perturbed active duration
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of phase 3. That is,
tA3 (0) > tA3 (k), k ≥ 1.

Since the active duration of cell 3 is equal to the passage time of cell 2 from point hD2 to hI2 in the silent
phase, it is sufficient to consider the h2-dynamics of cell 2. We approximate this dynamics with the ODE

h′2 = (hL − h2)/τL

for some values of hL and τL since h∞, τh are approximately constant over the relevant range of voltages.
By solving the ODE, we obtain at iterate k

tA3 (k) = τL ln

(︃
hL − hD2 (k)

hL − hI2(k)

)︃
.

Comparing k = 0 and k = 2 yields

tA3 (2)− tA3 (0) = τL ln

(︃
hL − hD2 (2)

hL − hD2 (0)
· hL − hI2(0)

hL − hI2(2)

)︃
.

Note that when cell 2 is silent, the h∞(v2) curve always lies above h2, no matter what value of hL is taken to
approximate it. This indicates that hL−hD2 > hL−hI2 > 0. Combining this observation with the discussion
in the previous paragraph gives

hI2(2) < hI2(0) < hL, hD2 (0) < hD2 (2) < hL.

Therefore we have tA3 (0) > tA3 (2). Together with (10), the active phase durations for cell 3 in the first two
iterations obey the following rule

tA3 (0) > tA3 (2) > tA3 (1).

Repeating similar arguments, we obtain

tA3 (0) > tA3 (2) > tA3 (1),

tA1 (0) < tA1 (2) < tA1 (1),

tA2 (0) > tA2 (2) > tA2 (1).

Continuing in this way, we get a sequence of active phase times, which shows that the durations tA1 (k) will
stay above the unperturbed tA1 (0) while tA2 (k), t

A
3 (k) will stay below tA2 (0), t

A
3 (0), respectively. We can

conclude that when subject to a static positive d1 perturbation, tA1 increases while tA2 and tA3 decrease.

The decrease of tA2 and tA3 can also be obtained by a direct calculation. Consider the dynamics of cell 1, with
active (silent) duration tA1 (tS1 ) and with h1-coordinate ranging from hU1 to hD1 . Assume that tA1 increases
when d1 is positively perturbed. As shown in Figure 13, the perturbation lowers hU1 and thus lowers hD1 as
well. In the silent phase, the time of cell 1 from hD1 to hU1 is tS1 = tA2 + tA3 , and thus, by approximating the
ODE for h1, we have

h′1 = (hL − h1)/τL

=⇒ hU1 = hD1 e
−(tA2 +tA3 )/τL + hL(1− e−(tA2 +tA3 )/τL).

Denote x(d1) = e−(tA2 +tA3 )/τL to obtain

hU1 (d1) = hD1 (d1)x(d1) + hL(1− x(d1))

=⇒ x(d1) =
hL − hU1 (d1)

hL − hD1 (d1)
.
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Figure 12: Synaptic escape mechanism: numerically generated nullclines and trajectories in the phase plane
of (a) cell 1, (b) cell 2, and (c) cell 3, for the three different values d1 = 0.97 (blue), d1 = 1 (black) and
d1 = 1.03 (red). Because the d1-perturbation only influences the v1-nullclines, the jump-up position of cell
1 is lowered as d1 increases and the jump-up positions of cell 2 and cell 3 are unchanged. Small changes
occur in the jump-down positions of all three cells (rectangles and insets). The “double-inhibition notch”
in the circles play an important role in determining the active phase durations, as explained in the text and
Figure 13.

Due to the compression around the right knee of the active v1-nullcine, the magnitude of the decrease in
hU1 (d1) is larger than the magnitude of the decrease in hD1 (d1). Hence, x(d1) increases, and (tA2 + tA3 )
decreases.

Now, suppose that tA3 increases; correspondingly, tA2 must decrease. On the one hand, this indicates that
tS2 = tA1 + tA3 increases. On the other hand, since tA2 is shortened and hU2 is independent of d1, then hD2
must be higher. Therefore, tS2 must decrease, which is a contradiction. Hence, tA3 decreases. A similar
argument shows that tA2 also decreases. In this way, we conclude that when the active phaseduration for cell
1 increases, the active phase durations for both cell 2 and cell 3 must decrease. This geometric analysis and
direct mathematical calculation show agreement with the timing response analysis shown in Figure 11.

Intrinsic escape The system with phase transitions via the intrinsic escape mechanism has an unstable
equal-duration firing pattern (Figure 2) and multiple stable short-long patterns (e.g., Figure 14, generated
with the same parameter set as Figure 2). Numerically we find that the equal-duration solution in Figure 2
has two unit Floquet multipliers, while for the short-long solution in Figure 14, all Floquet multipliers
except the trivial Floquet multiplier are strictly smaller than one in modulus. Due to the particularity of this
mechanism, we do not give its sensitivity analysis. Appendix C presents analysis of the instability of the
equal-duration periodic solution for the intrinsic escape mechanism in the singular limit ϵ → 0.

3.2 Heteroclinic cycling model

In this section, to study the controllability of the heteroclinic cycling model (2), we apply a small sustained
perturbation µ to a1 = 0.01 (i.e., a1 → a1+µ), with the other two control parameters a2 and a3 fixed at the
default value of 0.01. As a reference, Figure 15 shows how the dynamics of the three pools evolves when
a1 = 0.0005, 0.01, or 0.02. In what follows, we explain the sensitivity of each phase duration using the
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Figure 13: A schematic diagram for the synaptic escape mechanism illustrating locations of the three
cells as time evolves (a)→(b)→(c)→(d). Suppose a positive perturbation is applied to d1 when cell 3 is
at the escape position, which immediately results in the position change of cell 1 (panels (a)). For visual
convenience, we show only one vi-nullcline per input level for cell i. The v1-nullcline is lowered by the
positive perturbation (dashed cubic curve in the top panels), while the v2-nullcline and v3-nullcline are
invariant. Magenta lines indicate the synaptic threshold θI. Notations hUi and hDi represent the hi-coordinate
of cell i at the jump-up position and jump-down position, respectively; notation hIi on the left branch of the
nullcline represents the location of the “double-inhibition notch” of silent cell i when some other cell is at
escape. Red marks indicate the new locations of the cells subjected to the increased d1, and blue marks
indicate the corresponding old locations with the default d1. Note that in the cell 1 panel of (d), we use the
blue dot to mark the location of the red dot from panel (a) that resulted from the initial perturbation of d1.
See text for analysis of how the locations of the crucial points and the active phase durations change. The
corresponding numerical simulation figures are shown in Figure 12.
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Figure 14: A double-period solution associated with the intrinsic escape mechanism. Colors and model
parameters as in Figure 2. The system exhibits a stable short-long alternation and two double-inhibition
notches, with the nontrivial Floquet multipliers less than one in magnitude.

Table 4: Heteroclinic cycling model: duration changes in three individual phases, from direct numerical
simulation or lTRC calculation. The durations in the default case (a1 = a2 = a3 = 0.01) are t1 = t2 =
t3 = 2.9080. With a small positive perturbation to a1, pool z shows a significant decrease in the active
duration (∆t3); pool y is insensitive (∆t2); pool x has a relatively small negative response (∆t1).

Simulated difference ∆t1 ∆t2 ∆t3 lTRC difference ∆t1 ∆t2 ∆t3
µ = 0.0005 -0.0070 -0.0010 -0.0460 µ = 0.0005 -0.0070 -0.0010 -0.0471
µ = −0.0005 0.0070 0.0010 0.0480 µ = −0.0005 0.0070 0.0010 0.0468

lTRC as well as direct analysis based on the vector field.

Figure 16 shows the timing responses of the heteroclinic cycling system computed from the lTRC ias given
in equation (5). Phase 3 (red) has a significant negative response to the increase of a1; phase 2 (blue) is
almost invariant; phase 1 (black) has a relatively small negative response. To understand the effect upon
trajectory entry to each phase, consider the terms comprising “term A” in equation (5), which captures

the effects of shifting the entry point to a given region, namely η(xin) · ∂xin
µ

∂µ

⃓⃓
µ=0

. The timing response
curve vector at the entry point to phase 3 is ηIII(xin) = (−48.89, 0, 0.06)T , which shows that the first
component should dominate the response. The lTRC at the entry points to the other phases is given by cyclic
permutation, so the contribution to the response at the entry to phase 2 is dominated by the third component,
and the response upon entry to phase 1 is driven by the second component. The timing sensitivity depends
on the inner product between the lTRC and the derivative of the entry location with respect to µ. The lTRCs
are symmetric (under threefold rotation); the derivatives of the entry location vary from phase to phase.
Specifically, the entry location on phase 3 varies most, while the entry location on phase 2 varies least (as
a reference, see Figure 15(b)). This accounts for the smaller or larger initial displacement effects seen in
Figure 16 (grey arrows). Table 4 lists the duration changes in the three individual phases, obtained either
from direct numerical simulation or from the lTRC formula (5), when a perturbation of size |µ| = 0.0005 is
applied to a1 = 0.01.

The vector field of the model is given in (2). During phase 1 (in which pool x is active), a positive pertur-
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Figure 15: Trajectories of the heteroclinic cycling model (2) at three values of a1, with a2 = a3 = 0.01.
(a): time courses of pool x (black), y (blue) and z (red) when a1 = 0.02 (top), a1 = 0.01 (middle) and
a1 = 0.0005 (bottom). (b): Trajectories in the 3D cubic domain, with a1 = 0.02 (red), a1 = 0.01 (black)
and a1 = 0.0005 (blue). The active duration of pool z shrinks most when a1 increases, while that of pool y
shrinks least.

Figure 16: Timing responses in the heteroclinic cycling model (2). Black, blue and red traces represent
pools x, y and z, respectively. When a positive perturbation is applied to a1, pool z has a significant negative
timing response throughout its active phase. The initial displacement at the beginning of each phase (grey
arrows) indicates the effect of the perturbation on the entry point to each phase (given by term A in equation
(5)).
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bation to a1 only influences the evolution of x and the boundary surfaces of phase 1. When dx/dt > 0,
the increase of a1 decreases the speed of x, making x grow slower; when dx/dt < 0, the increase of a1
accelerates the decline of x. Note that the exit surface of x from phase 1 is x = y+ a1+a2

2 (and the trajectory
stays in phase 1 when x ≥ y + a1+a2

2 ). Compared with the default case, the effects of increasing a1 on
dx/dt cause the x on the left hand side of this condition to shrink, while the right hand side increases with
a1.

With perturbation a1 → a1+µ, denote the perturbed (x, y, z)-solution and the unperturbed (x, y, z)-solution
to be (xp(t), yp(t), zp(t)) and (xu(t), yu(t), zu(t)), respectively. Let (x0p, y

0
p, z

0
p) and (x0u, y

0
u, z

0
u) represent

the entry points for the perturbed case and unperturbed case, respectively. Let t1 be the unperturbed exit
time from phase 1 and t∗1 = t1 +∆t1 be the perturbed exit time; from the above observations, ∆t1 < 0. We
analytically derive that the first-order approximation for the duration change in phase 1 can be estimated by
(see Appendix D for the derivation)

∆t1 =
µ[1/2 + (1− e−t1)ρ]− e−t1(x0p − x0u)− (e−t1 − et1)(y0p − y0u)ρ/2 + et1(y0p − y0u)

1− (2 + ρ)xu(t1)− µe−t1ρ− e−t1(x0p − x0u)− (e−t1 + et1)(y0p − y0u)ρ/2− et1(y0p − y0u)
+O(∆t21)

(11)

When µ = 0.0005, from a direct numerical simulation, we have

t1 = 2.9080, xu(t1) = 0.3874, x0u = 0.3773,

x0p = 0.3769, y0u = 0.0111, y0p = 0.0112,

and (11) gives ∆t1 ≈ −0.0071. Compared with Table 4, this result confirms that equation (11) provides
an accurate estimate to the change of phase 1 duration. We note that based on numerical calculations, the
fidelity of this estimate depends on the inclusion of the impact of the perturbation on the positions of the
entry points into the phase (i.e., x0p, x

0
u, y

0
p, y

0
u), which is consistent with the initial negative deflection of the

black curve in Figure 16 (grey arrow).

For phase 2, in which pool y is active, the entry points for different values of a1 are extremely close (see
Figure 15 when a very large perturbation is applied). The change in a1 influences neither dy/dt nor dz/dt,
which also do not depend on x. Further, the exit surface, given by y = z+ a2+a3

2 , is also independent of a1.
Therefore, the duration of phase 2 is insensitive to the a1-perturbation.

When z is active in phase 3, the increase of a1 leads to a faster increase of x, which then results in a faster
decay of z. The exit surface is z = x + a1+a3

2 and the trajectory stays in phase 3 when z > x + a1+a3
2 .

Hence, a decrease in z on the left hand side of this condition and an increase in the right hand side due to
both x and a1 indicate that the trajectory leaves phase 3 earlier than in the default case. Similar to phase 1,
we obtain

∆t3 =
µ(1/2 + ρ) + e−t3 (z0p − z0u) + e−t3 (x0

p − x0
u − µ)ρ/2− et3 (x0

p − x0
u + µ)(1 + ρ/2)

a3ρ− 1 + (2 + ρ)xu(t3) + e−t3 (z0p − z0u) + e−t3 (x0
p − x0

u − µ)ρ/2 + et3 (x0
p − x0

u + µ)(1 + ρ/2) + 3a1+a3
2

+O(∆t23).

(12)

From direct numerical simulation,

t3 = 2.9080, xu(t3) = 0.3769, x0u = 0.0111,

x0p = 0.0116, z0u = 0.3774, z0p = 0.3772,

and by (12), ∆t3 ≈ −0.0448. Consistent with the direct numerical simulation and lTRC results in Table 4,
equation (12) gives a good estimate of the phase 3 duration change. Numerical calculations suggest that
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Table 5: Competitive threshold-linear model: active phase duration changes in three individual phases, from
direct numerical simulation or lTRC calculation. The durations in the default case (θ1 = θ2 = θ3 = 1) are
t1 = t2 = t3 = 3.7470. With a small positive perturbation to θ1, nodes x1 and x2 display a positive response
in their active duration; node x3 displays a large negative response. With a small negative perturbation to
θ1, the opposite responses occur.

Simulated difference ∆t1 ∆t2 ∆t3 lTRC difference ∆t1 ∆t2 ∆t3
µ = 0.01 0.0730 0.0640 -0.1290 µ = 0.01 0.0721 0.0636 -0.1298
µ = −0.01 -0.0670 -0.0640 0.1350 µ = −0.01 -0.0689 -0.0636 0.1377

similarly to phase 1, the perturbation of the entry position to phase 3 has a significant influence on the phase
3 duration (as suggested by the large initial displacement of the red curve in Figure 16 (grey arrow)).

Note that such vector field analysis is of limited general utility because it requires the solutions of the model
ODEs. Since the results of this analysis give a good agreement with the timing response calculation, how-
ever, this example provides a reassuring demonstration of the relevance of the lTRC analytical formula (5),
which can be used to compute responses to perturbations in general cases.

3.3 Competitive threshold-linear network

In the competitive threshold-linear system (3), we impose a small static perturbation µ on the drive term θ1
to the first node x1. As an illustration, Figure 17 shows the trajectories in the default case where θ1 = θ2 =
θ3 = 1 and in the perturbed case where θ1 is positively perturbed at the beginning of the first active phase.
(Note that for convenience of intuitive understanding, the perturbation here is applied since the first active
phase, but in the following calculation we still impose a static perturbation along the limit cycle.) We can
understand the effects of perturbation as shown in Figure 17 by referring to equation (3). The increase in
θ1 implies that W12x2 + W13x3 must become more negative (recall that W12,W13 < 0) in order to cause
ẋ1 = 0 than was needed in the unperturbed case. Although x2 begins to increase while x1 is still active,
even if x2 increased at its unperturbed rate, it would take longer for x2 to grow enough for W12x2 +W13x3
to reach this more negative value; moreover, x2 actually becomes slowed once x1 exceeds its unperturbed
maximum. The longer time until x1 starts decreasing and the larger maximal amplitude of x1 translate into
a longer active phase for cell 1. Meanwhile, again with reference to equation (3) with W31 = −1 − δ, we
see that the larger amplitude of x1 makes ẋ3 stay negative for a longer time than before and causes x3 to
reach a lower minimum value. From this lower minimum, x3 inhibits x2 only weakly, allowing x2 to stay
larger than before, and it takes longer for x3 to overtake x2 than in the unperturbed case, resulting in a longer
active phase for cell 2. Meanwhile, ẋ1 becomes positive earlier relative to the active phase of x3 than before,
due to the increase in θ1. The resulting earlier increase in x1 causes an earlier sign switch of ẋ3 at a smaller
x3 value, resulting in a shorter active phase for cell 3.

Using the lTRC calculation, Table 5 lists the duration change for each individual active phase in response
to the perturbation of magnitude |µ| = 0.01 on θ1, and Figure 18 shows the local timing responses. Con-
sistent with direct analysis above, all three phases are sensitive to the perturbation: the first two phases are
prolonged under a positive perturbation, while the third phase is shortened.

We note that the phase duration responses are quite different from those in the heteroclinic cycling case
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Figure 17: Comparison of time courses for the competitive threshold-linear model in the unperturbed case
and perturbed case. Dashed traces: trajectory in the unperturbed case where θ1 = θ2 = θ3 = 1. Solid traces:
trajectory in the perturbed case where θ1 is increased to 1.05 at time 3.75 (solid black dot) when x1 becomes
active. The increase of θ1 leads to a prolonged duration of x1 activation and x2 activation, in exchange for
a shortened duration of x3 activation.

Figure 18: Timing responses for the competitive threshold-linear model (3). Black, blue and red traces
represent nodes x1, x2 and x3, respectively. Asterisks in the top panel mark nonsmooth points of the solution
trajectory (see also Figure 6). Correspondingly, the integrand of the lTRC in the middle panel inherits the
nonsmooth dynamics (solid dots).
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(compare Table 4). The heteroclinic cycling case allows independent phase modulation — selectively in-
creasing the active duration of i-th unit can be attained by decreasing the drive input to the (i+1)-st unit.
In contrast, in the competitive threshold-linear case, implementing perturbation on one phase gives rise to
simultaneous changes in the other phases. A key difference between these two cases is that the heteroclinic
cycling model features the passage near a saddle point in each phase, which the threshold-linear model
lacks. Thus, the difference in responses to perturbations between these cases suggests that the slowing of
trajectories near saddle points may make an important contribution to the timing responses to perturbation
in the heteroclinic cycling case.

4 Discussion

We have considered three different dynamical systems frameworks for the production of triphasic oscilla-
tions in which three components take turns becoming active in a fixed order. In each framework, we have
presented a computational and mathematical analysis of the effects induced by changes in a parameter,
which represents the strength of tonic input to one component, on the active phase durations of all of the
components in the network. We find that distinct phase duration responses arise when phase transitions
occur through different mechanisms. Specifically, we arrive at the following observations.

Relaxation oscillator model Each of the four mechanisms underlying the relaxation oscillator model
features its own phase modulation characteristics.

• Intrinsic release: an increase in the excitatory gain factor d1 prolongs the active phase of cell 1 and
leaves those of cells 2 and 3 almost unchanged. The mechanism involves the fast-slow dynamics of
the model. Although the increased d1 advances the entry of cell 1 to the active phase, the small spatial
change around the jump-down (exit) position of cell 1 from the active phase translates into a signif-
icant temporal extension. As cell 1 progresses through the active state, the dynamics exponentially
decelerates towards the exit position.

• Synaptic release: similarly to intrinsic release, an increase in d1 increases the duration of cell 1’s
active phase, but it is a quantitatively smaller effect in the synaptic release case than in the intrinsic
release case. The mechanism by which increasing d1 affects the synaptic release case is qualitatively
similar to that of the intrinsic release case. The smaller effect size is due to the different jump-down
positions in the two release mechanisms; in the synaptic case, the jump-down of cell 1 is farther from
the fixed point, with less slowing down, resulting in the less significant temporal increase.

• Synaptic escape: an increase in d1 prolongs the active phase of cell 1 and shortens the active phase
durations of cells 2 and 3. In contrast to the release mechanisms, in this case an increase in d1 allows
cell 1 to enter its active phase earlier in the cycle than it otherwise would, leading to several changes in
the points at which the cells in the circuit initiate jumps between phases and to the compound effects
on active phase durations of all three cells.

• Intrinsic escape: although the two-unit half-center oscillator (HCO) with intrinsic escape produces
stable oscillations, the 3-cell circuit produces an unstable equal-duration pattern and multiple stable
short-long alternating patterns. In this study, we focus on patterns with equal phase durations, and
thus the response sensitivity of the stable patterns in this case are outside of the scope of our analysis.
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Overall, we conclude that in the release cases, the system can selectively increase the active duration of
a single unit with minimal change in the active phases of the other units, just by increasing the drive to
that specific unit. However, in the synaptic escape case, an increase in the active duration of one unit
is accompanied by non-negligible decreases in the active durations of the other units. In other words,
independent active phase modulation is possible with release transitions but not escape transitions.

Heteroclinic cycle model An increase in the excitatory neural drive a1 leads to a slight decrease in the
active phase duration of the first cell, a negligible change in the active phase duration of the second cell,
and a large decrease in the active phase duration of the third cell. The mechanism appears mainly to in-
volve shifting the entry point of the trajectory to the domain governed by the vector field around the saddle
point corresponding to elevated activity in the cell receiving the increased drive. Nearly independent active
phase modulation can be achieved in this model; in contrast to the relaxation oscillator model, selectively
increasing the active duration of the i-th unit requires decreasing the input to the succeeding, (i+1)-st unit.

Competitive threshold-linear network model Increasing the external drive θ1 to unit 1 prolongs the
duration of the active phases of both cell 1 and cell 2, while decreasing the active phase duration of cell 3.
This mechanism increases the active duration of the i-th unit by decreasing the drive to the (i+1)-st unit, with
the side effect of increases in the active durations of the other uints. Hence, a key difference of this model
from the heteroclinic cycling case is the lack of a simple mechanism for independent phase modulation. A
perturbation can be implemented here such that one cell’s active duration exhibits the predominant effect,
but the timing of the other cells is still impacted. This contrast in phase modulation properties is likely
due to the lack of saddle points, which make an important contribution to the timing of trajectories in the
heteroclinic cycle model.

In the relaxation oscillator cases, phase duration changes manifest through fast threshold modulation and
associated timing effects. Here, we can think of the units that are not directly perturbed as being unaffected
(i.e., no change in flow or transition surfaces) except in the timing at which their transitions occur. Consistent
with past work (Daun et al., 2009; Rubin et al., 2009), however, the specific transition mechanisms do
matter for what outcomes result from perturbations. In the piecewise continuous heteroclinic case with
state-dependent switching boundary surfaces (i.e., surfaces defined in terms of the dependent variables), the
effects could arise both through changes in switching manifolds and through direct effects on the vector
field. To distinguish these factors, we also consider:

• The piecewise-continuous heteroclinic case with fixed boundaries. Here, we obtain almost the same
results (not shown) as in the switching boundary case. This indicates that the dominant contribution
to the duration changes comes from the vector field, especially the effect of changes in the vector
field on the positions where the trajectory reaches the surfaces of vector field discontinuity, not from
changes in these surfaces themselves.

• The continuous heteroclinic case with fixed boundaries. This model has the fewest possible factors
affecting the timing. We find that it has qualitatively the same responses (not shown) to perturbation
as the piecewise-continuous cases. Thus, the impact of a perturbation does not arise predominantly
from the jumps in the vector field, but rather from the impact of the perturbed vector field on the
trajectory position, irrespective of the vector field continuity.
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Table 6: Effects of increasing the drive to unit 1 on the phase durations ti and total period T0 in each
mechanism. Columns 1-3 and 4 list the dimensionless change ∆ti

ti
d1
∆d1

for each active phase duration, and
∆T0
T0

d1
∆d1

for total period. Matrix C for each case is circulant, with first row given by the elements of columns
1, 2, 3 of the table. Column 4 gives the 2-norm of the inverse of C; column 5 gives the condition number of
C−1.

Unit 1 Unit 2 Unit 3 Total period ∥C−1∥ cond(C−1)

Intrinsic release +0.076 +0.000 -0.000 +0.025 13.24 1.02
Synaptic release +0.024 -0.000 +0.000 +0.008 42.00 1.02
Synaptic escape +1.962 -1.920 -2.388 -0.782 0.43 1.76

Heteroclinic cycling -0.048 -0.007 -0.316 -0.124 3.44 1.28
Threshold linear +1.948 +1.708 -3.443 +0.071 4.69 24.77

Unlike the relaxation oscillator cases, in the heteroclinic cycle and threshold-linear models, we cannot de-
compose the flow into lower-dimensional systems for separate units, and impacts on the flow occur through-
out the path of the trajectory. Interestingly, it is not obvious (at least to us) why these combinations of factors
result in the diverse responses to perturbations that arise across the cases that we have considered.

A previous study performed a thorough analysis comparing effects of perturbations to single units within a
fast-slow half-center oscillator model with either escape transitions, release transitions, or transitions via an
intermediate “adaptation” mechanism combining elements of both escape and release (Daun et al., 2009).
Interestingly, that study found that escape transitions restricted the impact of such perturbations to the silent
duration of the perturbed unit or equivalently the active duration of the unperturbed unit, while release
transitions led to compensatory effects and produced only weak changes in durations, and in the adaptation
regime, one-sided perturbations affected durations of both units. In other words, independent silent phase
modulation was possible with escape transitions but not release transitions. In fact, our results are consistent
with these earlier findings. In this study, in the escape regime, we do have independent modulation of silent
phase durations. Specifically, as shown in Table 3, the duration change in the silent phase 1 is given by
∆t2+∆t3, which is significantly negative when a positive perturbation on d1 is imposed, while the duration
change in the silent phase 2, ∆t1 + ∆t3, and the change in the silent phase 3, ∆t1 + ∆t2, are negligible.
Moreover, in the intrinsic release regime, the larger duration change that we found is linked to the slowing
down near the right knee of the voltage nullcline, such that the difference between the two papers in the
release case comes not from the number of cells but rather from the position of the slow nullcline relative to
the right knee.

Applying similar arguments, we can consider how well each model analyzed in this study achieves inde-
pendent active phase modulation as could be important for downstream effectors driven by excitation from
CPG units, independent silent phase modulation as could be important for downstream effects dependent on
pauses in CPG unit activity, and either invariance or sensitivity of period to perturbations. The information
in Table 6 allows us to discuss these properties heuristically and empirically, where for the latter, we define
a circulant matrix C for each case with first row given by the elements of columns 1, 2, 3 of the table. We
see that the most pronounced independent active phase modulation comes from the intrinsic release model,
in which an input perturbation to cell 1 induces an increase in the cell 1 active phase duration that is strong
relative to the negligible impacts on the other two cells’ active phases. As discussed above, the synaptic
escape model achieves independent silent phase modulation. The threshold-linear network also exhibits this
property to some extent, because changes in input to unit 1 will produce much stronger impacts on the silent
phase duration of unit 3 (comprising the active phase durations of units 1 and 2) than on those of the other
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units. Finally, the ranking of the models in order of sensitivity of period to input modulation goes as follows:
synaptic escape, heteroclinic cycle, threshold-linear, intrinsic release, synaptic release. This ranking aligns
with ∥C−1∥ in Table 6. Indeed, if a system wants to induce a change ρ in its three active phase durations,
then that corresponds to finding a vector µ of input strengths such that ρ = Cµ. The size of the needed
input is therefore bounded as ∥µ∥ ≤ ∥C−1∥∥ρ∥. The threshold-linear model is interesting in that it allows
for significant phase perturbations with relatively small changes in overall period, as evidenced by its large
condition number (see cond(C−1) in Table 6). On the other hand, since all of the rhythm features in the
synaptic release model show little response to input changes, that framework seems to be effective for ro-
bustness but not amenable to simple control; more generally, the relatively weak responses of the release
models to input perturbations is consistent with past observations in HCOs (Daun et al., 2009).

On the other hand, a new result from our work that distinguishes the triphasic case from the HCO case is the
instability to perturbations for the triphasic rhythm with intrinsic escape transitions. This finding does not
rule out intrinsic escape as a transition mechanism for biological CPGs, which may feature asymmetries or
differences in transition mechanisms for different phases as discussed below, but it does highlight the impor-
tance of checking robustness of rhythmic behavior in models, of paying attention to transition mechanisms
in model design, and of taking care in extending small circuit models to larger ones.

A paradigmatic model for the brain stem neuronal network underlying respiratory rhythm generation in-
cludes three populations coupled with mutual inhibition, along with a fourth excitatory population. An
investigation of that model based on fast-slow decomposition and bifurcation analysis revealed that the
expiration-to-inspiration transition occurs via escape while the inspiration-to-expiration transition results
from release. Simulations yielded the predictions that varying a tonic control drive to the escaping inspira-
tory neurons would shorten the expiratory phase, while varying the drive to the released expiratory neurons
would have relatively little effect on phase durations (Rubin et al., 2009). These results are consistent with
the two-cell, half-center oscillator analysis (Daun et al., 2009), but it is important to note that the active
phases of two of the three inhibitory respiratory populations overlap, so it is not surprising that this system
acts more like a two-cell network than the type of three-cell network that we studied. Although the results
from the respiratory model, which combines escape and release, agreed qualitatively with those obtained
from analysis of pure escape and pure release scenarios, it is not obvious that a similarly straightforward
generalization of our analysis would yield correct predictions for three-cell networks that combine escape
and release.

In contrast to these studies of effects of constant input levels on phase durations, Zhang and Lewis inves-
tigated differences in the infinitesimal phase response curves (iPRC) for HCO systems (Zhang and Lewis,
2013). They found that the timing sensitivity of release systems to transient pertubations was greatest when
applied to the active cell, near the end of the active phase. Similarly, they found that escape systems showed
greatest sensitivity to perturbations applied towards the end of an escaping cell’s silent phase. Here, we find
behavior that is consistent with these observations. In Figure 9, for example, under the release mechanisms,
the integrand of the local timing response curve integral was largest (greatest sensitivity) towards the end of
the active phase of the cell (cell 1) subject to the perturbation (changing d1). In contrast, in Figure 11, under
the escape mechanism, the largest values of the lTRC integrand occurred towards the end of the inactive
phase of the cell coming one step earlier in the activation sequence than the cell subject to the parametric
perturbation.

Extreme sensitivity of timing for limit cycle trajectories that pass close to a saddle or are near a heteroclinic
or homoclinic bifurcation point has been noted previously. For example, Shaw et al. (2012) pointed out
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phase-dependent divergence of infinitesimal phase response curves for a family of limit cycles that approach
a heteroclinic cycle as a parameter is varied. In another timing-related analysis, Izhikevich derived the phase
equations for a coupled pair of relaxation oscillators and showed that in the singular limit, the effective
coupling function exhibits discontinuous jumps at the points where fast phase transitions start and stop; these
jumps perturb into large slopes when the singular perturbation parameter is small but nonzero (Izhikevich,
2000).

This work offers a stepping stone towards a broader theory of control of limit cycle systems. Control theory
is most fully developed for linear systems (Brockett, 2015; Stanhope et al., 2014; Bechhoefer, 2021). For
a linear system such as ẋ = Ax + Bu, with state vector x ∈ Rn, control input u ∈ Rk, and observable
y = Cx ∈ Rm, the notions of controllability and observability are global: one constructs the “controllable”
space C ⊂ Rn of all points to which the system can be driven in finite time from initial x(0) = 0 via a
suitable control, and the “observable” space O ⊂ Rn such that trajectories from different initial conditions
within O may be distinguished by observing the trajectory y(t). For nonlinear systems these notions are
necessarily more limited, and are restricted to specific subclasses of systems (Isidori, 1985; Whalen et al.,
2015). Here we consider nonlinear dynamical systems supporting stable limit cycle trajectories, as typically
arise in central pattern generator models. Previous work on control of limit cycle systems has focused on
controlling global properties of limit cycles, for instance the amplitude or period of an ongoing oscillation,
or (de)synchronization of a population of coupled oscillators (Monga et al., 2019; Monga and Moehlis,
2019; Wilson and Moehlis, 2022). Here we focus on the control of specific subcomponents of a limit
cycle trajectory, in motor control systems comprising three distinct phases of movement. Classic analysis
for understanding timing of control systems under a weak perturbation is well established by using the
infinitesimal phase response curve (iPRC). The iPRC can only capture the global change in the timing
induced by the perturbation, instead of the local timing change in each subcomponent of the limit cycle.
To circumvent this limitation, Wang et al. (2021) developed the local timing response curve (lTRC), which
allows one to compute local timing changes due to nonuniform timing sensitivities of the control system
along the limit cycle. In this work we have conducted analysis on the duration sensitivity in each phase
of limit cycle systems by applying the lTRC, which yields excellent agreement with both direct numerial
simulation and other mathematical analysis. Our work provides detailed examples of how to analyze the
responses to perturbations arising in multi-phase oscillations of naturally occurring biological motor control
systems, by applying tools that allow linearized/variational analysis of the parametric variations.

From a biological point of view, a general important point evident in this and past work is that we cannot
assume that effects of perturbation of one unit in a coupled circuit will be localized to that unit or even
dominant in that unit. Moreover, such effects may not materialize instantly; instead, we may need to observe
one or more full cycles to see the persistent effects. In addition, the lessons we extract from this work can
provide insights into the selection of a CPG model for robotics or for representing biological systems.
Specifically, the divergent properties of the heteroclinic cycle CPG model and the relaxation oscillator CPG
models can guide the selection of a suitable modeling framework to capture experimental observations or
design aims for triphasic rhythmic systems, while similar analysis can be applied to other models producing
other forms of multi-phase rhythms.

Note that circuits of interest for biological applications would typically not have the same degree of sym-
metry as those studied here. For example, in the respiratory network, in addition to the possibility that both
escape and release transitions arise during each respiratory cycle, it is unlikely that the effective strengths of
all synaptic connections within the network are equal; indeed, these differ in models that meet experimental
benchmarks (Golowasch et al., 1999; Latorre et al., 2002; Rubin et al., 2009, 2011; Park and Rubin, 2022).
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It remains an interesting open question to apply the methods developed here to more realistic circuits. The
work presented here serves as a template, although it remains to be seen to what extent the lessons learned
here carry over to systems with heterogeneous switching mechanisms. Similarly, the approaches in this
work can be applied to analogous circuits with more than three components, for the study of solutions in
which units’ active phases do not overlap, albeit with additional bookkeeping. What matters most for the
analysis is the number of units influencing other units’ dynamics and the location of switching surfaces at
any one time. The relaxation oscillator framework with a steep or Heaviside-like synaptic coupling function
S∞(v) is particular conducive to the inclusion of more units (e.g., Rubin et al. (2009); Molkov et al. (2015);
Webster-Wood et al. (2020)). The precise results on tuning sensitivity associated with specific transition
mechanisms may, however, depend on the number of units in the circuit, or possibly the parity of the circuit
size; more units would also allow for the additional complication of diverse coupling architectures.

In this paper we have considered deterministic CPG models. In biological control circuits, stochastic fluc-
tuations can also play an important role (Carroll and Ramirez, 2013; Yu and Thomas, 2021; Rubin et al.,
2022). For example, stochastic heteroclinic channels have been studied intensively (Stone and Holmes,
1990; Armbruster et al., 2003; Bakhtin, 2011). Horchler and colleagues used the amplitude of an additive
noise signal as a control parameter to dynamically regulate the mean period of a three-population May-
Leonard model (Horchler et al., 2015). It would be interesting to investigate how changing the amplitude
of noise impinging on individual units affects the (mean) activation durations of all three units, in analogy
to the single-input perturbations studied here, but this question goes beyond the scope of the current pa-
per. In his doctoral thesis, Shaw observed that one could manipulate the mean period of a stochastic 2D
heteroclinic-channel based oscillator by changing the underlying vector field, by varying the additive noise
level, or through a combination of both (Shaw, 2014). Results in Barendregt and Thomas (2022) put this
analysis on a rigorous footing and extend it to several variants of the May-Leonard three-population model
with discrete (non-Gaussian, non-additive) noise arising from demographic stochasticity.

Finally, we have presented three dynamical architectures that produce triphasic rhythms but our examples are
certainly not exhaustive. For instance, the repressilator is a genetic regulatory network consisting of three
transcriptional repressor genes (Elowitz and Leibler, 2000). The three units are connected in a negative
feedback loop, allowing sustained limit-cycle oscillations. Another example is the stomatogastric ganglion
of decapod crustaceans. Its constituent neurons encompass two central pattern generators, one for the gastric
mill rhythm and one for the pyloric rhythm. For the pyloric CPG, three nerves, containing all of the pyloric
units, generate a triphasic rhythm. This pattern controls striated muscles that dilate and constrict the pyloric
region of the stomach, which moves the food caudally through filter combs inside the pylorus (Weimann
et al., 1991; Selverston et al., 1998). The approaches we use here can be applied to these triphasic systems
as well.
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Table 7: Parameter values for the relaxation oscillator model (1) with the intrinsic-release transition mech-
anism (Figure 1).

Parameter Value Unit Parameter Value Unit Parameter Value Unit
C 0.21 µF/cm2 θI -43 mV θh -40 mV
ϵ 0.01 None σI -0.01 None θmp -37 mV
VNa 50 mV gNaP 6.8 µS/cm2 σh 6 None
VL -65 mV gL 3 µS/cm2 σmp -6 None
VI -80 mV gI 0.4 µS/cm2 bij 1 None
VE 0 mV gE 0.1 µS/cm2 di as in text None

A Model details

In the relaxation oscillator system (1), the functions x∞(v) for x = h,mp are given by

x∞(v) =
1

1 + exp ((v − θx)/σx)
.

Table 7 lists the parameter values for the intrinsic release transition mechanism, which produces Figure 1.
Based on Table 7, change θI to -25 mV to generate the synaptic release mechanism (Figure 3); change
θI to -62 mV and σh to 5 to generate the synaptic escape mechanism (Figure 4). For the intrinsic escape
mechanism shown in Figure 2 and Figure 14, make the following changes:

θI = −36, θh = −39, σh = 9, gI = 0.24, gE = 0.14.

The simulation codes are available at https://github.com/zhuojunyu-appliedmath/Triphasic-control. Instruc-
tions for reproducing each figure and table in the paper are provided.

B Local timing response curve (lTRC)

B.1 Introduction to lTRCs

Consider a parametrized continuous-time dynamical system defined on a domain Ω ⊂ Rn,

dx

dt
= Fµ(x), (13)

where x ∈ Ω, µ ∈ R and Fµ(·) is either smooth or piecewise smooth on Ω. We are interested in the case
where Fµ(·) admits a family of hyperbolically stable limit cycles for some range of µ including µ = 0,
which we consider the “unperturbed” limit cycle γ(t). We assume the basins of attraction are contained in
Ω and that the domain is partitioned into two or more subdomains, Ω = RI ∪ RII ∪ · · · with successive
domain boundaries transverse to the flow of the unperturbed limit cycle. Moreover, we suppose that Fµ(·)
is smooth (in x) within each domain. (See Park et al. (2018) for a fully detailed construction of such a
system of domains.) In the following we will write F (x) for F0(x). The local timing response curve (lTRC)
introduced by Wang et al. (2021) is defined to measure the timing sensitivity within each region in response
to a static perturbation µ ̸= 0.

35



For x ∈ Ri, i = I,II, · · · , let Γi(x) be the time remaining until the trajectory beginning at x exits the region.
At any point x ∈ Ri, by construction, Γi satisfies

dΓi(x)

dt
= −1, x ∈ Ri, (14)

along γ(t). Thus, by the chain rule

F (x) · ∇Γi(x(t)) = −1, x ∈ Ri. (15)

The associated lTRC for region Ri is defined to be the gradient of Γi evaluated along the limit cycle:

ηi(t) = ∇Γi(γ(t)).

For convenience, we drop the superscript i but note that every region is characterized by its own lTRC.
Differentiating both sides of (15), within any particular subdomain, with respect to t gives

dη

dt
= −DF (γ(t))T η, (16)

where DF denotes the Jacobian of F . Let xout denote the exit point from region Ri and nout denote a
normal vector of the exit boundary of Ri at xout. Then, following (15), the lTRC η satisfies the boundary
(normalization) condition

F (xout) · η(xout) = −1 =⇒ η(xout) = − nout

(nout)TF (xout)
, (17)

The adjoint equation (16) together with the boundary (normalization) condition (17) defines the local timing
response curve in each subdomain.

B.2 Relationship between iPRC and lTRC

The formulation of the lTRC given by (16) and (17) is similar to the formulation of the infinitesimal phase
response curve (iPRC). The iPRC, denoted by z(t), satisfies the same adjoint equation

dz

dt
= −DF (γ(t))T z,

with a different normalization condition

F (γ(t)) · z(t) = 1.

Figure 19 shows the lTRC and iPRC during the first active phase for the relaxation-oscillator system with
each of the two release mechanisms. (Due to symmetry, the curves for phase 2 (or phase 3) are the same if
the same perturbation is applied to v2 (or v3).) As expected, the lTRC and iPRC have an identical geometric
shape and are mutually symmetric about the time axis.
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Figure 19: Comparison of the lTRC and iPRC during the active phase of cell 1 when d1 is perturbed, with
transitions by (a) intrinsic release; (b) synaptic release. Top panels: time series of v1; middle panels: lTRC
η in the v1 direction; bottom panels: iPRC z in the v1 direction. The lTRC and iPRC are symmetric in shape
about the abscissa (t-axis).

B.3 Derivation of generalized T1 formula (5)

This section presents the derivation of equation (5), which is a generalization of (4) from the fixed-boundary
case to the shifting-boundary case. It follows the same generally exposition given in Wang et al. (2021) but
with some modifications. Like the lTRC, the linear time shift T i

1 is considered separately in each subdomain
Ri, but the superscript i is dropped for the time being.

Suppose limit cycle γµ is a solution to the perturbed system

dx

dτ
= Fµ(x), (18)

where τ = τ(µ, t) is the perturbed time coordinate satisfying

τ(0, t) = t, τ(µ, t+ T0) = τ(µ, t) + Tµ,

where T0 and Tµ represent the durations spent by the unperturbed trajectory and the perturbed trajectory,
respectively, in region Ri. For simplicity, consider the linear scaling

dτ

dt
=

1

νµ
=

Tµ

T0
. (19)

Suppose the unperturbed trajectory γ(t) enters Ri through boundary Σin at xin when t = tin, and it exits
the region through Σout at xout when t = tout; we use similar notation for the perturbed trajectory γµ(τ).
Assume the boundaries are not fixed, but perturb to Σin

µ and Σout
µ under the static perturbation µ, as illustrated

in Figure 20. Without loss of generality, let tout = 0, and thus, the time duration the limit cycles spend in Ri

is
T0 = −tin, Tµ = tout

µ − tin
µ .
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Figure 20: A schematic illustration of the shifting entry and exit surfaces for a system with three regions.
The unperturbed trajectory γ(t) (black circle) enters region RI (grey shaded) through boundary Σin and exits
RI through boundary Σout; the perturbed trajectory γµ(t) (red circle) enters region RI

µ (magenta shaded)
through boundary Σin

µ and exits RI
µ through boundary Σout

µ . The grey dot on Σin (resp., Σout) represents the
entry position xin (resp., exit position xout) of the unperturbed trajectory into (resp., from) region RI. The
magenta dot on Σin

µ (resp., Σout
µ ) represents the entry position xin

µ (resp., exit position xout
µ ) of the perturbed

trajectory into (resp., from) region RI
µ.

Therefore, at entry and exit points to region Ri, the following expressions give the times that the unperturbed
and perturbed limit cycles have left to spend in region Ri:

Γ(xin) = −tin = T0, Γ(xout) = 0,

Γµ(x
in
µ ) = tout

µ − tin
µ = Tµ, Γµ(x

out
µ ) = 0.

As in (14) and (15), for any µ,

−1 =
dΓµ(γµ(τ))

dτ
= Fµ(γµ(τ)) · ηµ(γµ(τ)). (20)

Integrating (20) from τ = tout
µ to tin

µ gives

Tµ =

∫︂ tin
µ

tout
µ

Fµ(γµ(τ)) · ηµ(γµ(τ)) dτ. (21)

On the other hand, we can expand Tµ as

Tµ = T0 + µT1 +O(µ2), (22)

where T1 is the first-order change in the duration the trajectory spends in region Ri resulting from perturba-
tion µ. Our goal is to obtain the expression for T1 using Taylor expansions for all of the terms in (21).
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Suppose we can expand Fµ, Γµ, ηµ and γµ as follows:

Fµ(x) = F (x) + µF1(x) +O(µ2),

Γµ(x) = Γ(x) + µΓ1(x) +O(µ2),

ηµ(x) = η(x) + µη1(x) +O(µ2),

γµ(τ) = γ(t) + µγ1(t) +O(µ2).

(23)

From (19) and the exit time expressions, the relation between t and τ is

t = νµ(τ − tout
µ ) =

T0

Tµ
(τ − tout

µ ). (24)

Accordingly, expand (21) to first order:

Tµ =

∫︂ tin
µ

tout
µ

[F (γ(t(τ))) + µDF (γ(t(τ))) · γ1(t(τ)) + µF1(γ(t(τ)))] ·

[η(γ(t(τ)) + µDη(γ(t(τ))) · γ1(t(τ)) + µη1(γ(t(τ)))] dτ +O(µ2)

=

∫︂ tin
µ

tout
µ

{F (γ(t(τ))) · η(γ(t(τ)) + µ [F (γ(t(τ))) · η1(γ(t(τ))) + F1(γ(t(τ))) · η(γ(t(τ))] +

µ [F (γ(t(τ))) ·Dη(γ(t(τ))) · γ1(t(τ)) +DF (γ(t(τ))) · γ1(t(τ)) · η(γ(t(τ))]} dτ +O(µ2)

(24)
=

1

νµ

∫︂ −T0

0
{F (γ(t)) · η(γ(t)) + µ [F (γ(t)) · η1(γ(t)) + F1(γ(t)) · η(γ(t))] +

µ [F (γ(t) ·Dη(γ(t)) · γ1(t) +DF (γ(t)) · γ1(t) · η(γ(t))]} dt+O(µ2).

At µ = 0, (21) gives

T0 =

∫︂ −T0

0
F (γ(t)) · η(γ(t)) dt,

and (19) gives T0/νµ = Tµ. Thus, the above equation becomes

0 =

∫︂ −T0

0
{[F (γ(t)) · η1(γ(t)) + F1(γ(t)) · η(γ(t))] + [F (γ(t)) ·Dη(γ(t)) · γ1(t) +DF (γ(t)) · γ1(t) · η(γ(t))]} dt+O(µ)

=

∫︂ −T0

0

{︂
[F (γ(t)) · η1(γ(t)) + F1(γ(t)) · η(γ(t))] +

[︂
F (γ(t))TDη(γ(t)) + η(γ(t))TDF (γ(t))

]︂
· γ1(t)

}︂
dt+O(µ).

Following (20),

F · η =
∑︂
i

ηiF i = −1

=⇒ ∂

∂xj

(︄∑︂
i

ηiF i

)︄
=
∑︂
i

∂ηi

∂xj
F i +

∑︂
i

ηi
∂F i

∂xj
= 0

=⇒ F TDη + ηTDF = 0.

Thus, we have

0 =

∫︂ −T0

0
[F (γ(t)) · η1(γ(t)) + F1(γ(t)) · η(γ(t))] dt+O(µ). (25)

39



Since

F (γ(t)) =
dγ(t)

dt
and η1(x) =

∂ηµ(x)

∂µ

⃓⃓⃓⃓
µ=0

=
∂∇Γµ(x)

∂µ

⃓⃓⃓⃓
µ=0

,

we have ∫︂ −T0

0
F (γ(t)) · η1(γ(t)) dt =

∫︂ −T0

t=0

dγ(t)

dt
· ∂∇Γµ(γ(t))

∂µ

⃓⃓⃓⃓
µ=0

dt

=

∫︂ −T0

0

dγ(t)

dt
· ∇
(︃
∂Γµ(γ(t))

∂µ

)︃ ⃓⃓⃓⃓
µ=0

dt

=

∫︂ −T0

0

d

dt

(︃
∂Γµ

∂µ
(γ(t))

)︃ ⃓⃓⃓⃓
µ=0

dt

=

(︃
∂Γµ

∂µ
(xin)

)︃ ⃓⃓⃓⃓
µ=0

−
(︃
∂Γµ

∂µ
(xout)

)︃ ⃓⃓⃓⃓
µ=0

= Γ1(x
in)− Γ1(x

out).

Note that the key difference in this derivation relative to the previously derived fixed-boundary case is that
in the fixed-boundary case, ∂Γµ(xout)

∂µ

⃓⃓
µ=0

= 0. From the above calculation, we can simplify (25) as

0 = Γ1(x
in)− Γ1(x

out) +

∫︂ −T0

0
F1(γ(t)) · η(γ(t)) dt+O(ϵ)

Γ1(x
in) = Γ1(x

out) +

∫︂ 0

−T0

F1(γ(t)) · η(γ(t)) dt+O(ϵ)

= Γ1(x
out) +

∫︂ tout
0

tin
0

F1(γ(t)) · η(γ(t)) dt+O(ϵ). (26)

Moreover, by the Taylor expansions given in (23),

Tµ = Γµ(x
in
µ ) = Γ(xin

µ ) + µΓ1(x
in
µ ) +O(µ2)

= Γ(xin) + µ∇Γ(xin) · xin
1 + µΓ1(x

in) +O(µ2)

= Γ(xin) + µ(η(xin) · xin
1 + Γ1(x

in)) +O(µ2),

where xin
1 =

∂xin
µ

∂µ

⃓⃓
µ=0

. Equate the first order terms of Tµ with T1 and substitute Γ1(x
in) as given in (26):

T1 = η(xin) · xin
1 + Γ1(x

in)

= η(xin) · xin
1 + Γ1(x

out) +

∫︂ tout

tin
F1(γ(t)) · η(γ(t)) dt.

Now only Γ1(x
out) remains to be defined. Similarly, the expansion of Γµ(x

out
µ ) gives

Γµ(x
out
µ ) = Γ(xout) + µ(η(xout) · xout

1 + Γ1(x
out)) +O(µ2).

Note that Γµ(x
out
µ ) = Γ(xout) = 0, so

Γ1(x
out) = −η(xout) · xout

1 +O(µ).
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Figure 21: A schematic of the cells in the intrinsic escape mechanism in the singular limit ϵ → 0. The
dashed blue line and solid blue line represent the inhibited v-nullcline and free v-nullcline, respectively. (a):
cell 1 (black dot) is about to escape; cell 3 (red dot) is at the jump-down position and ready to jump to the
lower silent position; cell 2 (blue dot) is at the upper silent position. The passage time in the silent phase of
cell 3 and cell 2 is denoted by x and y, respectively. (b): function f that maps the active duration y (of cell
1 here) to the silent duration f(y).

Thus, we finally obtain the expression for the first-order change in the duration through region Ri:

T1 = η(xin) · xin
1 − η(xout) · xout

1 +

∫︂ tout
0

tin
F1(γ(t)) · η(γ(t)) dt

= η(xin) ·
∂xin

µ

∂µ

⃓⃓⃓⃓
µ=0

− η(xout) ·
∂xout

µ

∂µ

⃓⃓⃓⃓
µ=0

+

∫︂ tout

tin
η(γ(t)) · ∂Fµ(γ(t))

∂µ

⃓⃓⃓⃓
µ=0

dt,

which is exactly equation (5).

C Instability for intrinsic escape

This section gives an analysis of the instability of the equal-duration firing pattern for the intrinsic-escape
transition mechanism. We consider the case in the singular limit ϵ → 0, as sketched in Figure 21. (Note that
compared with Figure 2, there is no double-inhibition notch.)

In this activity pattern, all cells jump up from the left knee of the inhibited nullcline. Suppose cell 1 (black)
is ready to escape and jump up. Let x denote the passage time of cell 3 (red) from its jump-down position
to its escape position (left knee of the inhibited v3-nullcline). Let y denote the passage time of cell 2 (blue)
from its initial position to the escape position. Correspondingly, the time cell 1 spends in the active phase is
equal to y. Since all cells jump up from a specific position, we can define the map f(y) that translates the
time y that a cell spends in the active phase to the time that it spends in its next silent phase.

Each phase within a full evolution cycle starts with an analogous configuration, with a “lower silent” cell
that just jumped down, an “upper silent” cell that will be next to escape, and an escaping cell. Table 8 gives
the passage time for the two cells in the silent phase as time passes; the left column denotes the total time
spent in the silent phase while the right column denotes the time spent in the silent phase from the jump up
of a cell’s predecessor to the jump up of that cell.
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Table 8: Intrinsic escape when ϵ → 0: time of passage for lower and upper silent cells.
Passage time of
lower silent cell

Passage time of
upper silent cell

cycle 1 x y

cycle 2 f(y) x− y

cycle 3 f(x− y) f(y)− x+ y

cycle 4 f(f(y)− x+ y) f(x− y)− (f(y)− x+ y)
...

...
...

We are interested in a fixed point of the map defined from cycle 1 to cycle 4:

(x, y) ↦−→ (f(f(y)− x+ y), f(x− y)− (f(y)− x+ y)), (27)

with x = 2y and f(y) = x, so that all the three phases have equal durations. We observe that f ′(y) ∈ (0, 1),
because based on the slowing rate of flow as a trajectory approaches the right knee, a small increase in y
translates to a very small decrease in the position of the active cell at jump-down and hence a very small
increase in f(y). With this observation, we check the stability of the equal-duration oscillation using the
Jacobian of the map (27),

J =

(︃
−f ′(f(y)− y) (f ′(y) + 1)f ′(f(y)− y)

f ′(y) + 1 −2f ′(y)− 1

)︃
.

It is easy to see that tr(J) < 0 and det(J) < 0. Hence, the desired equal-duration solution, if it exists, is
unstable.

D Analysis of duration changes for model (2)

In this section, we provide an analytical formula to approximate the first-order duration change in each phase
of the heteroclinic cycling model (2). In phase 1, pools x and y satisfy

dx

dt
= 1− x− (y + a1)ρ, x(0) = x0,

dy

dt
= y + a2, y(0) = y0,

and we obtain

y(t) = y0e
t + a2(e

t − 1),

x(t) = e−t [x0 − 1 + (y0 − a2)ρ/2]− et(y0 + a2)ρ/2 + 1 + a2ρ+ a1(e
−t − 1)ρ.

(28)

With perturbation a1 → a1 + µ, denote the perturbed (x, y)-solution and the unperturbed (x, y)-solution to
be (xp(t), yp(t)) and (xu(t), yu(t)), respectively. From (28),

yp(t) = yu(t) + et(y0p − y0u), (29)

xp(t) = xu(t) + e−t(x0p − x0u) + (e−t − et)(y0p − y0u)ρ/2 + µ(e−t − 1)ρ, (30)
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where (x0p, y
0
p) and (x0u, y

0
u) represent the entry points for the perturbed case and unperturbed case, respec-

tively. Let t1 denote the unperturbed exit time and t∗1 = t1 + ∆t1 the perturbed exit time; from the above
observations, ∆t1 < 0. On the exit surface,

xp(t1 +∆t1) = y(t1 +∆t1) +
a1 + µ+ a2

2
, (31)

xu(t1) = y(t1) +
a1 + a2

2
. (32)

Substituting (29) and (30) into (31) yields

xu(t1 +∆t1) + e−(t1+∆t1)(x0p − x0u) + (e−(t1+∆t1) − et1+∆t1)(y0p − y0u)ρ/2 + µ(e−(t1+∆t1) − 1)ρ

= yu(t1 +∆t1) + et1+∆t1(y0p − y0u) +
µ

2
+

a1 + a2
2

.

By Taylor expansion of xu(t1 + ∆t1), y(t1 + ∆t1), et1+∆t1 and e−(t1+∆t1) at t = t1 and substitution of
(32), we obtain

x′u(t1)∆t1 + e−t1(1−∆t1)(x
0
p − x0u) + [e−t1(1−∆t1)− et1(1 + ∆t1)](y

0
p − y0u)ρ/2+

µ[e−t1(1−∆t1)− 1]ρ = y′u(t1)∆t1 + et1(1 + ∆t1)(y
0
p − y0u) +

µ

2
+O(∆t21). (33)

Using the ODEs for the x and y variables and the fact that a1 = a2 gives

y′u(t1) = yu(t1) + a2 = xu(t1)−
a1 + a2

2
+ a2 = xu(t1),

x′u(t1) = 1− xu(t1)− (yu(t1) + a1)ρ

= 1− xu(t1)−
(︃
xu(t1)−

a1 + a2
2

+ a1

)︃
ρ

= 1− (1 + ρ)xu(t1).

Then, collecting the ∆t1 terms and the constant terms in (33) gives us a first-order estimate of ∆t1

∆t1 =
µ[1/2 + (1− e−t1)ρ]− e−t1(x0p − x0u)− (e−t1 − et1)(y0p − y0u)ρ/2 + et1(y0p − y0u)

1− (2 + ρ)xu(t1)− µe−t1ρ− e−t1(x0p − x0u)− (e−t1 + et1)(y0p − y0u)ρ/2− et1(y0p − y0u)
+O(∆t21)

(34)

In phase 3, the dynamics of pools x and z satisfies

dx

dt
= x+ a1, x(0) = x0,

dz

dt
= 1− z − (x+ a3)ρ, z(0) = z0,

and we obtain

x(t) = x0e
t + a1(e

t − 1),

z(t) = e−t [z0 − 1 + (2a3 + x0)ρ/2]− etx0ρ/2 + 1− a3ρ+ a1(2− et − e−t)ρ/2.
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Similar to phase 1,

xp(t) = xu(t) + et(x0p − x0u) + µ(et − 1),

zp(t) = zu(t) + e−t(z0p − z0u) + (e−t − et)(x0p − x0u)ρ/2 + µ(2− et − e−t)ρ/2,

zp(t3 +∆t3) = xp(t3 +∆t3) +
a1 + µ+ a3

2
,

zu(t3) = xu(t3) +
a1 + a3

2
.

Substituting the first two equations into the third equation and using Taylor expansion, with cancellation
from the last equation, yields

z′u(t3)∆t3 + e−t3(1−∆t3)(z
0
p − z0u) + [e−t3(1−∆t3)− et3(1 + ∆t3)](x

0
p − x0u)ρ/2

+µ[2− et3(1 + ∆t3)− e−t3(1−∆t3)]ρ/2 = x′u(t3)∆t3 + et3(1 + ∆t3)(x
0
p − x0u)+

∆a1[e
t3(1 + ∆t3)− 1] +

µ

2
+O(∆t23).

Note that

x′u(t3) = xu(t3) + a1,

z′u(t3) = 1− zu(t3)− (xu(t3) + a3)ρ

= 1−
(︃
xu(t3) +

a1 + a3
2

)︃
− (xu(t3) + a3)ρ

= 1− (1 + ρ)xu(t3)− a3ρ−
a1 + a3

2
.

Thus, we obtain

∆t3 =
µ(1/2 + ρ) + e−t3 (z0p − z0u) + e−t3 (x0

p − x0
u − µ)ρ/2− et3 (x0

p − x0
u + µ)(1 + ρ/2)

a3ρ− 1 + (2 + ρ)xu(t3) + e−t3 (z0p − z0u) + e−t3 (x0
p − x0

u − µ)ρ/2 + et3 (x0
p − x0

u + µ)(1 + ρ/2) + 3a1+a3
2

+O(∆t23).

(35)

Both of the analytical approximation (34) and (35) have a great agreement with direct numerical calculation
and lTRC calculation (see §3.2).
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