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ABSTRACT

Density dependence is important in the ecology and evolution of microbial and cancer cells. Typically,
we can only measure net growth rates, but the underlying density-dependent mechanisms that give rise
to the observed dynamics can manifest in birth processes, death processes, or both. Therefore, we
utilize the mean and variance of cell number fluctuations to separately identify birth and death rates from
time series that follow stochastic birth-death processes with logistic growth. Our nonparametric method
provides a novel perspective on stochastic parameter identifiability, which we validate by analyzing
the accuracy in terms of the discretization bin size. We apply our method to the scenario where a
homogeneous cell population goes through three stages: (1) grows naturally to its carrying capacity, (2)
is treated with a drug that reduces its carrying capacity, and (3) overcomes the drug effect to restore
its original carrying capacity. In each stage, we disambiguate whether the dynamics occur through the
birth process, death process, or some combination of the two, which contributes to understanding drug
resistance mechanisms. In the case of limited sample sizes, we provide an alternative method based on
maximum likelihood and solve a constrained nonlinear optimization problem to identify the most likely
density dependence parameter for a given cell number time series. Our methods can be applied to other
biological systems at different scales to disambiguate density-dependent mechanisms underlying the
same net growth rate.

Keywords Parameter identifiability · Uncertainty quantification · Stochastic discretization error analysis
· Stochastic processes · Density-dependent ecological modeling · Drug resistance

Mathematics Subject Classifications 60J27 · 92D25 · 62M10 · 60J25

Acknowledgements This work was made possible in part by NSF grant DMS-2052109, by research sup-
port from the Oberlin College Department of Mathematics, the National Institutes of Health (5R37CA244613-
02), and the American Cancer Society Research Scholar Grant (RSG-20-096-01). The authors thank
Dr. Vishhvaan Gopalakrishnan, Mina Dinh, and Dr. Kyle Card for discussing their preliminary experimen-
tal data from the EVE system (EVolutionary biorEactor).

Statements and Declarations The authors have declared no competing interests. No experimental or
clinical datasets were generated or analysed during the current study. Code (for the methods and simulated
data) is available at https://github.com/lhuynhm/birthdeathdisambiguation.

1

https://github.com/lhuynhm/birthdeathdisambiguation


1 Introduction
Density dependence, a phenomenon in which a population’s per capita growth rate changes with popula-
tion density1, plays an important role in the ecology and evolution of microbial and cancer cell populations,
especially under drug treatments. For example, Karslake et al. 20162 shows experimentally that changes
in E.coli. cell density can either increase or decrease the efficacy of antibiotics. Existing work such
as3–7 show that interactions between drug sensitive and resistant cancer cells can shape the population’s
evolution of drug resistance. The effects of these interactions have been modeled using a quadratic
growth-suppression term; see8 for example, reflecting their density dependence.

To analyze the role of density dependence, especially in drug resistance, we begin by considering a classical
mathematical model of density-dependent population dynamics, Verhulst’s logistic growth model9. Later,
we will also discuss more general examples, including piecewise-specified density-dependent growth rates,
see Appendix C. Verhulst’s model describes the dynamics of a homogeneous population in terms of its net
growth rate:

dφ

dt
= r
(︂

1− φ

K

)︂
φ = rφ − r

K
φ

2. (1)

In Equation (1), φ denotes population size, r denotes intrinsic per capita net growth rate, and K denotes
carrying capacity. The density dependence term

r
K

φ 2 describes the direct or indirect interactions between
individuals in the population. The minus (−) sign indicates that the interactions have a negative net
effect on the population–in particular, reducing the population size. This term reflects negative density
dependence, resulting from situations such as crowding, competition, or predation, which can hinder
the growth of population size through either the birth process, the death process, or some combination
of the two. However, the formulation in Equation (1) leaves the underlying mechanisms of negative
density dependence unclear. To disambiguate birth-related versus death-related mechanisms, we rewrite
the density dependence term with the parameter γ as follows:

r
K

φ
2 = γ

r
K

φ
2 +(1− γ)

r
K

φ
2, 0 ≤ γ ≤ 1. (2)

We interpret the term γ
r
K

φ 2 as the reduction in the population’s growth rate due to competition-regulated

mechanisms affecting the birth process, and (1− γ)
r
K

φ 2 as the population’s competition-regulated mecha-
nisms affecting the death process. For example, in ecology, one distinguishes exploitative competition,
where limited resources hinder the reproduction of the populations, from interference competition, where
individuals fight against one another causing death10.

For completeness, we also disentangle the intrinsic net growth rate rφ into birth and death as follows:

rφ = b0φ − (b0 − r)φ = b0φ −d0φ , with b0 ≥ r > 0 and d0 := b0 − r ≥ 0. (3)

We interpret b0 as the population’s intrinsic (low-density) per capita birth rate and d0 as the population’s
intrinsic (low-density) per capita death rate. Hence, we parameterize Equation (1) with γ , b0, and d0 as
follows:

dφ

dt
=

(︄
b0 − γ

r
K

φ

)︄
φ⏞ ⏟⏟ ⏞

birth

−

(︄
d0 +(1− γ)

r
K

φ

)︄
φ⏞ ⏟⏟ ⏞

death

, 0 ≤ γ ≤ 1, r = b0 −d0. (4)
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For fixed K, b0, and d0 (or r), while different values of γ in Equation (4) result in equations that are
algebraically equivalent to Equation (1), they can describe different biological processes. This motivates
us to ask the following question:

[Q]: Do birth- or death-related mechanisms determine the changes in density-dependent population
dynamics?

The significance of the answer to question [Q] can also be seen in other contexts. In this paper, we
restrict attention to negative density dependence, which can be interpreted as competitive dynamics.
However, density dependence can also be positive. For example, the Allee effect11 of density-dependent
dynamics (which is defined as a positive correlation between population density and per capita net growth
rate) provides another example. Although the Allee effect is typically modeled with cubic growth12 instead
of logistic growth, answering question [Q] would contribute to understanding the mechanisms that give
rise to the effect. Increasing per capita net growth rates with increased population density could result
from increased cooperation or mating among individuals (increased birth rates) or from reduced fighting
due to habitat amelioration (decreased death rates)13. This distinction is important because populations that
experience the Allee effect can become extinct if the population sizes fall below the Allee threshold14. Ex-
tinction problems are of interest because, for example, we hope to eventually eradicate tumors and harmful
bacteria within individual hosts. Clinically, bactericidal drugs such as penicillin promote cell death, while
bacteriostatic drugs such as chloramphenicol, clindamycin, and linezolid inhibit cell division15.16 shows
that bactericidal and bacteriostatic drugs affect cellular metabolism differently, and the metabolic state of
bacteria in turn influences drug efficacy. Hence, identifying “-cidal” versus “- static” drug effects may help
contribute to developing more efficacious drug treatments. From an evolutionary perspective,17 shows that
assuming a zero death rate leads to overestimating bacterial mutation rates under stress, which in turn can
lead to incorrect conclusions about the evolution of bacteria under drug treatments. The authors point out
that it is important to separately identify birth and death rates. Theoretically, one may compute probability
of extinction/escape and mean first-passage time to extinction/escape for cell populations under certain
drug treatments such as18–20. If we model evolution with a birth-death process as in21, computing the
probability and mean first-passage time involves knowing separate birth and death rates22–24. That means
cell populations with the same net growth rates–but different birth and death rates–can have different
extinction/escape probabilities and mean first-passage times. Indeed,21 points out that defining “fitness” as
net growth rate (difference between birth rate and death rate) loses evolutionary information; instead, we
should use separate birth and death rates to measure “survival of the fittest.” Therefore, the significance of
disambiguating birth and death rates underlying a given net growth rate is clear across multiple biological
contexts on different scales.

We aim to answer question [Q] by extracting birth and death rates from observations of density-dependent
population dynamics. One type of population dynamics information that is typically available is population
size. For fixed volume, cell density and cell number are proportional. Deterministic modeling does not
allow us to disentangle birth rate b

φ̂
and death rate d

φ̂
from net growth rate (b

φ̂
−d

φ̂
), because for any

arbitrary rate a
φ̂

, the transformation b
φ̂
→ b

φ̂
+a

φ̂
and d

φ̂
→ d

φ̂
+a

φ̂
leaves the net growth rate unchanged

and results in exactly the same cell number trajectory. On the other hand, in stochastic models, cell number
trajectories generated from different pairs of birth and death rates with the same net growth rate will have
different noise levels, which makes it possible to distinguish different scenarios. Moreover, at a fundamen-
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tal level, population growth is driven by the birth/division1 and death of individual cells. At this level, cell
birth and death are discrete rather than continuous processes, and may involve stochastic elements such as
molecular fluctuations in the reactions within individual cells25. Therefore, although the tractability of
deterministic population equations has made them attractive as a framework for modeling the growth of
pathogenic populations and their responses to therapeutic agents26–28, a stochastic modeling framework
is more appropriate for the research question we consider, which is to disambiguate birth-related and
death-related dynamics. We describe density dependence with logistic growth, because it is one of the
simplest form of density dependence and still captures some realistic cell population dynamics such as the
dynamics of cancer cells29.

In this paper, we develop a nonparametric approach to modeling population growth that leverages
stochastic fluctuations in order to estimate both the birth and death rates from population time series data
(without requiring a priori assumption of a specific model such as logistic growth). Although we use
a Verhulst-inspired logistic model for illustrating and validating our method, and investigating negative
density dependence, our nonparametric estimation method applies equally well to general birth-death
models that do not have a simply parametrized birth and death rate functions. When net growth rates
are not density-dependent, the underlying population model is linear. Linear models have been used in
the context of serial dilution experiments, a protocol that keeps the population at a low density, masking
density-dependent effects (see30 for example). When growth rates are allowed to be density-dependent,
a population that could range up to K individuals (the carrying capacity) has in general (K + 1) net
growth rate parameters, i.e. {rn : 0 ≤ n ≤ K}, and hence 2(K +1) birth and death rates in total. When
the underlying model has a large number of unknown parameters, maximum likelihood methods become
intractable. While advancement in technology may allow experimental estimation of birth and death
rates31, our direct estimation method enjoys simple, commonly available data: population size.

We describe the details of our direct estimation method in Section 3, and demonstrate the method on the
Verhulst-inspired logistic birth-death process model described in Section 2, where the birth and death rates
are defined with the parameter set {b0,d0,γ,K} as in Equation (4). We mention the model parameters here
for data simulation and error analysis purposes; however, our estimation method is nonparametric and
does not require knowing the forms of birth and death rates. We illustrate this advantage of our method by
demonstrating it on a birth-death process with piecewise density-dependent per capita birth and death rates
in Appendix C. In Section 7, we compare our method with related existing methods32–34. To deal with the
sample size issue, we describe a discretization approach in Section 3.3 and analyze this approach in detail
in Appendix A. In the extreme case where there is only one cell number sample trajectory available, we
supplement our method with a maximum likelihood approach in Section 6. To study the role of density
dependence in population dynamics and drug resistance, in Section 5, we apply our direct estimation
method to disambiguate underlying mechanisms for a homogeneous cell population that goes through
three stages: (1) auto-regulated growth, (2) drug treatment, and (3) defense against the treatment, which
we define as drug resistance.

2 Verhulst-Inspired Stochastic Logistic Birth-Death Process Model
We consider systems of homogeneous cells described by a birth-death process, that is, a discrete-state
continuous-time Markov chain tracking the number of individual cells N(t) in the system over time t, with

1Although cells do not give birth to offspring in the biological sense, for the rest of the manuscript, we refer to cell division
as birth to be consistent with the birth-death process model we use.
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state transitions comprising either “birth” (N → N +1) or “death” (N → N −1), as shown in Figure 1. In
linear birth-death processes, per capita birth and death rates are constants that do not depend on N. In
contrast, here we consider birth-death processes whose per capita birth and death rates depend on N in
order to incorporate density-dependent population dynamics. Specifically, motivated by Equation (4), we
define the per capita birth rate bN and death rate dN in our model as follows:

bN = max
{︂

b0 − γ
r
K

N,0
}︂
, (5)

dN = d0 +(1− γ)
r
K

N, (6)

where b0 > 0 and d0 ≥ 0 are intrinsic (low-density) per capita birth and death rates respectively,
r = b0 − d0 ≥ 0 is the intrinsic (low-density) per capita net growth rate, K > 0 is the population’s
carrying capacity, and γ ∈ [0,1] determines the extent to which the nonlinear or density-dependent dynam-
ics arises from the per capita birth versus death rates. When γ = 0, the birth process is density-independent;
all density dependence lies in the death process. Conversely, when γ = 1, the density-dependent dynamics
is fully contained in the birth process. When 0 < γ < 1, the density-dependent dynamics is split between
birth and death. We use the max function in Definition (5) to ensure bN is nonnegative. The total birth and
death rates of the population are bNN and dNN.

Figure 1 (B) illustrates the need for separating birth and death rates, as the net growth rate may be
the same under two different drugs, but the underlying drug effects are different.

For a single-species birth-death process of this form, with d1 > 0 (d1 is the death rate when N = 1)
and no immigration, it is well known that the unique stationary probability distribution gives N(t)→ 0 as
t → ∞ with probability one35. Rather than concern ourselves with the long-term behavior, here we are
interested in answering question [Q] by estimating bN and dN . Therefore, we will focus on the analysis of
transient population behavior rather than long-time, asymptotic behavior.
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Figure 1. Schematic representation of our logistic birth-death process model. (A) State N = n
transitions to state N = n+1 at rate bn ·n and transitions to state N = n−1 at rate dn ·n. At state N = 0,
the system cannot transition to state N = 1, because there is no individual to give birth. (B) Graphical
illustration of density-dependent per capita birth and death rates defined in Equations (5) and (6) for three
cases (I) γ = 0 (solid lines), (II) γ = 0.5 (dashed lines), and (III) γ = 1 (dotted lines). The net growth rate
curve (bN −dN) is the same for each case.

.

3 Nonparametric Direct Estimation Method
3.1 Mathematical Derivation
Let N(t)≥ 0 be an integer-valued random variable representing the number of cells at time t. We consider
a small time increment ∆t, within which each cell can either divide (i.e. one cell is replaced by two cells),
die (i.e. one cell disappears and is not replaced), or stay the same (i.e. there is still one cell). Focusing
on a single timestep, let (∆N+|N,∆t) and (∆N−|N,∆t) be two random variables representing the numbers
of cells gained and lost, respectively, from an initial population of N cells, after a period of time ∆t.
The number of cells that neither die nor divide is thus equal to (N −∆N+−∆N−). Although the two
random variables (∆N+|N,∆t) and (∆N−|N,∆t) are not strictly independent (as one cell cannot both die
and reproduce at the same time), we assume the correlation between them is small enough to be neglected
and the birth and death processes are independent. In Section 7, we discuss the case where we do not
have this independence assumption. Throughout the paper, we assume that the density-dependent birth
rates bn and death rates dn are not fluctuating in time; if environmental fluctuations influenced these rates
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this could introduce additional statistical dependencies between the birth and death processes, which we
choose to neglect here.

Thus, among N cells, ∆N+ cells are “chosen” to divide and ∆N− cells are “chosen” to die. On a time
interval of length ∆t, the probabilities that a cell divides and dies are bN∆t + o(∆t) and dN∆t + o(∆t)
respectively.2 For convenience, we will omit the o(∆t) correction where possible without introducing
inaccuracies. The random variables (∆N+|N,∆t) and (∆N−|N,∆t) are binomially distributed. In particular,

(∆N+|N,∆t)∼ Binomial(N,bN∆t) with mean NbN∆t and variance NbN∆t(1−bN∆t), (7)
(∆N−|N,∆t)∼ Binomial(N,dN∆t) with mean NdN∆t and variance NdN∆t(1−dN∆t). (8)

Define a random variable (∆N|N,∆t) to be the net change in population size from N cells after a period of
time ∆t, i.e. (∆N|N,∆t) = (∆N+|N,∆t)− (∆N−|N,∆t). Typically, experimental or clinical measurements
reflect only the net change (∆N|N,∆t) rather than the increase (∆N+|N,∆t) or decrease (∆N−|N,∆t)
separately. Because (∆N+|N,∆t) and (∆N−|N,∆t) are approximately independent, for sufficiently small
∆t, we have

E[∆N|N,∆t] = E[∆N+|N,∆t]−E[∆N−|N,∆t] = NbN∆t −NdN∆t = (bN −dN)N∆t, (9)
Var[∆N|N,∆t]≈ Var[∆N+|N,∆t]+Var[∆N−|N,∆t] = NbN∆t(1−bN∆t)+NdN∆t(1−dN∆t) (10)

= NbN∆t +NdN∆t +O(∆t2) (11)
≈ (bN +dN)N∆t. (12)

Therefore, to estimate the two parameters birth and death rates, we solve the following linear system
consisting of two equations:

(bN −dN)N =
E[∆N|N,∆t]

∆t
and (bN +dN)N =

Var[∆N|N,∆t]
∆t

, (13)

and obtain:

bNN =
E[∆N|N,∆t]+Var[∆N|N,∆t]

∆t
(14)

dNN =
Var[∆N|N,∆t]−E[∆N|N,∆t]

∆t
(15)

In theory, we can divide the total birth rate bNN and total death rate dNN by N to obtain per capita birth
and death rates. However, when we implement this on a computer, dividing by small N leads to numerical
blowups. Hence, to visualize the estimated rates better, we present total rates bNN and dNN in our results
instead of per capita rates. When the total rates are nonlinear functions of cell number, that means the
per capita rates are density-dependent. In Section 3.3, we discuss how to approximate E[∆N|N,∆t] and
Var[∆N|N,∆t] from data.

3.2 Stochastic Data Simulation
To validate our method, we apply it to simulated in silico data. While our underlying model is time-
continuous, in experimental and clinical settings, one can only observe cell numbers at discrete time
points. In order to efficiently generate an ensemble of trajectories of the birth-death process, we construct

2We adopt the standard convention
o(∆t)

∆t
→ 0 as ∆t → 0.
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a τ-leaping approximation36 as follows.

Given N(t) individuals at time t, we approximate the number of individuals after a short time inter-
val ∆t as

N(t +∆t)≈ N(t)+∆N+(t)−∆N−(t), (16)

where ∆N+ ∼ Binomial
(︂

N(t),bN(t)∆t
)︂

and ∆N− ∼ Binomial
(︂

N(t),dN(t)∆t
)︂

representing the number of
cells added to and lost from the system after a period of time ∆t. We approximate ∆N+ and ∆N− as if
they were independent random variables; see discussion in Section 3.1. When N(t) is sufficiently large,
we approximate the binomial distributions with Gaussian distributions that have the same means and
variances as the binomial distributions. Our discrete-state process in Section 2 is now approximated with a
continuous-state process:

∆N(t)+ ∼ Normal

(︄
N(t)bN(t)∆t,N(t)bN(t)∆t

(︂
1−bN(t)∆t

)︂)︄
, (17)

∆N(t)− ∼ Normal

(︄
N(t)dN(t)∆t,N(t)dN(t)∆t

(︂
1−dN(t)∆t

)︂)︄
. (18)

Thus, the net change in the number of cells after a timestep ∆t is

N(t +∆t)−N(t)≈N(t)bN(t)∆t +∆W+(t)

√︃
N(t)bN(t)

(︂
1−bN(t)∆t

)︂
(19)

−N(t)dN(t)∆t −∆W−(t)

√︃
N(t)dN(t)

(︂
1−dN(t)∆t

)︂
≈
(︂

bN(t)−dN(t)

)︂
N(t)∆t +

√︃(︂
bN(t)+dN(t)

)︂
N(t)∆W (t). (20)

Here ∆W± are independent Wiener process increments (with mean 0 and variance ∆t), and ∆W is a
Wiener process increment derived from a linear combination of the ∆W±. (Note that an arbitrary linear
combination of two independent Wiener process increments Z = α∆W1+β∆W2 yields a Gaussian process
with variance E[Z2] = (α2 + β 2)∆t.) Equation (20) is the τ-leaping approximation used in our data
simulation, which is analogous to the forward Euler algorithm in the deterministic setting. Taking the
limit ∆t → dt, we obtain a version of our population model as a continuous-time Langevin stochastic
differential equation:

dN(t) =
(︂

bN(t)−dN(t)

)︂
N(t)dt +

√︃(︂
bN(t)+dN(t)

)︂
N(t)dW (t). (21)

where dW (t) is delta-correlated white noise satisfying ⟨dW (t)dW (t ′)⟩= δ (t − t ′). We use Equation (21)
under the Ito interpretation.

3.3 Estimation from Data
Equations (14) and (15) require the mean E[∆N|N,∆t] and variance Var[∆N|N,∆t] to compute the birth
and death rates corresponding to each population size N. We estimate these two statistics directly from
data. The higher the sample size, the closer the estimated statistics are to the theoretical ones. However,
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conducting multiple experiments costs time and resources. To deal with this sample size issue, one
approach is to discretize all the N values in the given dataset into bins of equal size to increase the
number of samples corresponding to each cell number. Roughly speaking, in each bin, we compute the
change in cell number ∆N from each data point after time period ∆t, and then compute the mean and
variance of those increments. We use the computed mean and variance to estimate the birth and death rates
corresponding to the midpoint of the bin. In this approach, not all the computed cell number increments
correspond to the midpoint of the bin–in fact, many of them are not cell number increments from the
midpoint. However, this approximation is good enough for an optimal binsize, which we will discuss in
Section 4 and Appendix A.

The τ-leaping simulation described in Section 3.2 provides a convenient format of the dataset, where all
the cell number trajectory vectors have the same length and the ith entries in all the vectors correspond
to the same time point ti. For example, as an illustration, the orange points labeled 2, 3, 4, 5 in Figure
2 represent cell numbers at the same time for different trajectories/experiments; the same applies to the
orange points labeled 6 and 7. More precisely, denote S as the number of cell trajectories in a given dataset
D . In general, D has the following form:

D =
{︂
[N1

0 ; . . . ;N1
i ; . . . ;N1

T1
]⏞ ⏟⏟ ⏞

trajectory vector 1

, . . . , [Ns
0; . . . ;Ns

i ; . . . ;Ns
Ts
]⏞ ⏟⏟ ⏞

trajectory vector s

, . . . , [NS
0 ; . . . ;NS

i ; . . . ;NS
TS
]⏞ ⏟⏟ ⏞

trajectory vector S

}︂
, (22)

where the superscript s of N (with s = 1, . . . ,S) indicates the sth trajectory/experiment and the ith subscripts
of N (with i = 0, . . . ,Ts) indicate the time points. Each of the S trajectory vectors has length (Ts + 1),
meaning the cell number data from experiment s are collected at Ts +1 time points. As discussed above,
with the τ-leaping simulation, we set all the Ts (with s = 1, . . . ,S) to be equal to each other. Denote T := Ts,
∀s. The time period between the ith and (i+ 1)th entries in each trajectory vector s is equal to ∆t, ∀i,
with i = 0, . . . ,T , and ∀s, with s = 1, . . . ,S. This format of our simulated data is consistent with the actual
experimental data produced by the EVolutionary biorEactor (EVE) in our lab37. Figure 2 helps visualize
the dataset. In this figure, the vertical dashed lines indicate the time points. The data points in D are the
intersections between these lines and the cell number trajectories such as the orange points in the figure.
We carry out the steps in Algorithm 1 to estimate E[∆N|N,∆t] and variance Var[∆N|N,∆t] from a given
dataset D with the properties we just described.
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Algorithm 1 Estimation of Mean and Variance of Cell Number Increments from Dataset D

Step 1: Find the minimum and maximum cell numbers Nmin and Nmax across the whole dataset D .
Step 2: Discretize the interval [Nmin,Nmax] into bins of equal size η . The total number of bins is equal

to kmax =
⌈︂Nmax −Nmin

η

⌉︂
∈ Z+, where

⌈︂
·
⌉︂

is the ceiling function that represents the smallest integer

that is greater than or equal to
Nmax −Nmin

η
.

Step 3: Put all the data points across D into appropriate bins. The data points in each kth bin [Nk,Nk+η)
are greater than or equal to Nk and less than (Nk +η), as graphically illustrated by Figures 2 and 3 (A).
The orange points in these figures are the data points in bin k.
Step 4: In each bin, compute the cell number increments after ∆t from the data points in the bin. That
means: suppose a data point Ns

i is the ith entry in trajectory vector s, then find the (i+1)th entry in
the same vector, denoted as Ns

i+1, and compute ∆Ns
i := Ns

i+1 −Ns
i . This also mean: we cannot use the

last entries of the trajectory vectors because there is no information about the cell number after ∆t for
those data points. Figure 3 serves as a “cartoon” graphical illustration for this step. Consider the orange
data points labeled 1, 2, 3, 4, 5, 6, 7, 8 in Figure 3 (A). Then, the corresponding cell numbers after ∆t
are the purple data points labeled 1, 2, 3, 4, 5, 6, 7, 8 in Figure 3 (B). The eight ∆N samples for bin k
are obtained by having the cell number values of the purple data points in Figure 3 (B) minus the cell
number values of the orange data points Figure 3 (A) in the respective order 1, 2, 3, 4, 5, 6, 7, 8.
Step 5: Compute the mean and variance of the cell number increment samples from Step 4, and
use these statistics to estimate the birth and death rates corresponding to the midpoints of the bins.
The midpoint of bin [Nk,Nk +η ] is

(︂
Nk +

η

2

)︂
. That means: we estimate b(Nk+η/2) and d(Nk+η/2) for

k = 1, . . . ,kmax.
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Figure 2. Graphical illustration of the overall discretization and Step 3 in Algorithm 1. The solid
black curves represents stochastic cell number trajectories. The cell number data are collected after time
period ∆t. We group all the data points across the whole dataset into bins along the vertical axis. Each bin
is of size η . The orange points labeled 1, 2, 3, 4, 5, 6, 7, 8 are the data points in an arbitrary bin k.
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Figure 3. Graphical illustration of Step 4 in Algorithm 1. Figure (A) is a zoom-in of Figure 2, where
the orange points labeled 1, 2, 3, 4, 5, 6, 7, 8 are the data points in an arbitrary bin k. In both (A) and (B),
∆t represents time period and η represents bin size. The cell number trajectories in (B) are the same ones
in (A). The purple points labeled 1, 2, 3, 4, 5, 6, 7, 8 in (B) represent the cell numbers after ∆t from the
orange points in (A) respectively. For example, after ∆t, the orange point labeled 1 in (A) changes to the
purple point labeled 1 in (B). Hence, the cell number value of the purple point labeled 1 minus the cell
number value of the orange point labeled 1 gives the cell number increment ∆N from the orange point
labeled 1 after ∆t. This increment is used approximating the mean and variance of cell number increment
corresponding to the midpoint of bin k. The same applies to the other points.

Our Algorithm 1 requires a sufficiently large bin size so that there are at least two samples in each bin in
order to compute the variances of the cell number increments. On the other hand, if the bin size is too
large, then the cell number increments from the data points in each bin do not accurately represent the
increment from the midpoint of the bin. That leads to the question: what is an optimal bin size η? We
answer this question with a summary in Section 4 and rigorous analytical details in Appendix A.

4 Validation and Error Analysis
We validate our method by comparing the estimated rates with the true rates that are used to generate
the simulated data. We simulate an ensemble of cell number trajectories, using a numerically efficient
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τ-leaping approximation described in Section 3.2, and estimate birth and death rates using Equations
(14) and (15) and the method described in Section 3.3. Figure 4 shows that the estimated and true rates
are well-aligned. Denote Ŝk as the sample size in bin k. Using the discretization described in Section
3.3, we estimate birth and death rates via the empirical mean

⟨︂
∆N
⃓⃓⃓
N = Nk +ηi,0 ≤ ηi < η , Ŝk

⟩︂
and

empirical variance σ2
[︂
∆N
⃓⃓⃓
N = Nk +ηi,0 ≤ ηi < η , Ŝk

]︂
obtained from an ensemble of S = 100 simulated

trajectories. To quantify the accuracy of our method, we define the error Ekbirth in estimating the birth
rate corresponding to population size N = Nk +

η

2
, and the error Ekdeath in estimating the death rate

corresponding to N = Nk +
η

2
as follows:

Ekbirth :=
E
[︂
∆N
⃓⃓⃓
N = Nk +

η

2

]︂
+Var

[︂
∆N
⃓⃓⃓
N = Nk +

η

2

]︂
2∆t

(23)

−

⟨︂
∆N
⃓⃓⃓
N = Nk +ηi,0 ≤ ηi < η , Ŝk

⟩︂
+σ2

[︂
∆N
⃓⃓⃓
N = Nk +ηi,0 ≤ ηi < η , Ŝk

]︂
2∆t

, (24)

Ekdeath :=
Var
[︂
∆N
⃓⃓⃓
N = Nk +

η

2

]︂
−E

[︂
∆N
⃓⃓⃓
N = Nk +

η

2

]︂
2∆t

(25)

−
σ2
[︂
∆N
⃓⃓⃓
N = Nk +ηi,0 ≤ ηi < η , Ŝk

]︂
−
⟨︂

∆N
⃓⃓⃓
N = Nk +ηi,0 ≤ ηi < η , Ŝk

⟩︂
2∆t

. (26)

(27)

Under the assumption that the samples ηi are iid uniformly distributed on [0,η), the theoretical means and
variances of the errors Ekbirth and Ekdeath are equal to:

E
[︂
Ekbirth

]︂
=

E

[︄
E
[︂
∆N
⃓⃓⃓
N = Nk +

η

2

]︂]︄
+E

[︄
Var
[︂
∆N
⃓⃓⃓
N = Nk +

η

2

]︂]︄
2∆t

(28)

−
E

[︄⟨︂
∆N
⃓⃓⃓
N = Nk +ηi,0 ≤ ηi < η , Ŝk

⟩︂]︄
+E

[︄
σ2
[︂
∆N
⃓⃓⃓
N = Nk +ηi,0 ≤ ηi < η , Ŝk

]︂]︄
2∆t

(29)

=
E
[︂
∆N
⃓⃓⃓
N = Nk +

η

2

]︂
−E

[︂
∆N
⃓⃓⃓
N = Nk +U,U ∼ Unif[0,η)

]︂
2∆t

(30)

+
Var
[︂
∆N
⃓⃓⃓
N = Nk +

η

2

]︂
−Var

[︂
∆N
⃓⃓⃓
N = Nk +U,U ∼ Unif[0,η)

]︂
2∆t

, (31)
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E
[︂
Ekdeath

]︂
=

E

[︄
Var
[︂
∆N
⃓⃓⃓
N = Nk +

η

2

]︂]︄
−E

[︄
E
[︂
∆N
⃓⃓⃓
N = Nk +

η

2

]︂]︄
2∆t

(32)

−
E

[︄⟨︂
∆N
⃓⃓⃓
N = Nk +ηi,0 ≤ ηi < η , Ŝk

⟩︂]︄
+E

[︄
σ2
[︂
∆N
⃓⃓⃓
N = Nk +ηi,0 ≤ ηi < η , Ŝk

]︂]︄
2∆t

(33)

=
E
[︂
∆N
⃓⃓⃓
N = Nk +

η

2

]︂
−E

[︂
∆N
⃓⃓⃓
N = Nk +U,U ∼ Unif[0,η)

]︂
2∆t

(34)

+
Var
[︂
∆N
⃓⃓⃓
N = Nk +

η

2

]︂
−Var

[︂
∆N
⃓⃓⃓
N = Nk +U,U ∼ Unif[0,η)

]︂
2∆t

. (35)

Similarly,

Var
[︂
Ekbirth

]︂
= Var

[︂
Ekdeath

]︂
(36)

=

Var

[︄⟨︂
∆N
⃓⃓⃓
N = Nk +ηi,0 ≤ ηi < η , Ŝk

⟩︂]︄
+Var

[︄
σ2
[︂
∆N
⃓⃓⃓
N = Nk +ηi,0 ≤ ηi < η , Ŝk

]︂]︄
4∆t2 (37)

=

Var
[︂
∆N
⃓⃓⃓
N = Nk +

η

2

]︂
Ŝk

+
2
(︂

Var
[︂
∆N
⃓⃓⃓
N = Nk +U,U ∼ Unif[0,η)

]︂)︂2

Ŝk −1
4∆t2 . (38)

We compute E
[︂
Ekbirth

]︂
, E
[︂
Ekdeath

]︂
, Var

[︂
Ekbirth

]︂
, and E

[︂
Ekdeath

]︂
as functions of bin size in Appendix A.

We then compute the 2-norm of the theoretical means and standard deviations (i.e. square roots of the
variances) over all k to obtain the plots in Figure 5. We observe that as the bin size η increases, the
expected errors increase, the theoretical variances (or standard deviations) of the errors decreases, and
the empirical errors (computed using data from a simulation of S = 100 cell number trajectories) balance
between the expected values and variances (or standard deviations), as shown in Figure 5. The expected
values of errors reflect the differences between ∆N at the midpoint

(︂
N = Nk +

η

2

)︂
and ∆N at multiple

points
(︂

N = Nk +ηi,0 ≤ ηi < η

)︂
. The smaller the bin size, the closer multiple points are to the midpoint,

so the error is smaller. However, if the bin is too small, then there are too few samples to accurately
estimate theoretical statistics with empirical statistics. The theoretical variances of errors involves sample
sizes; the bigger the bin size, the more samples we have. These two competing effects of bin size result in
the empirical errors being intermediate values between the two theoretical statistics (expected values and
variances) of the estimation errors. This “Goldilocks principle” is an example of the bias/variance tradeoff
common in many estimation problems.
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Total RatesTrajectories
.5

Figure 4. Agreement of estimated and true birth and death rates validates the direct estimation
method. (A, C, E): Time series ensembles simulated using the τ-leaping approximation for the cases
γ = 0 (A), γ = 0.5 (C), and γ = 1 (E) respectively. Each figure shows S = 100 trials. The estimated rates
are computed using a bin size of η = 103. Carrying capacity K = 105 cells; low-density rates
b0 = 1.1/120 and d0 = 0.1/120 (arbitrary time units). (B, D, F): Estimated and true birth and death rates,
as functions of population size. Blue line: true birth rate. Red line: true death rate. Plus signs (+) denote
estimated birth rates; circles (◦) denote estimated death rates. Throughout the paper we will use distinct
colors to denote values of γ . (B) Black: γ = 0; (D) Green: γ = 0.5; (E) Magenta: γ = 1.0. We observe
that the estimated birth and death rates are well-aligned with the true birth and death rates used to simulate
the trajectories in (A), (C), and (E). 15/55



DeathBirth
.5

Figure 5. Intermediate bin sizes give optimal estimation performance. We plot the l2-norm (over all
bins) errors in estimating birth rate (left column) and death rate (right column) as functions of bin size η

for carrying capacity K = 105. Squares (□) denote expected values of errors; triangles (△) denote
standard deviations of errors; circles (◦) denote empirical errors using data from a simulation of S = 100
cell number trajectories. (A, C, E): errors in estimating birth rates. (B, E, F): errors in estimating death
rates. (A, B): γ = 0 (black color); (C, D): γ = 0.5 (green color); (E, F): γ = 0.5 (magenta color). We
observe that as the bin size η increases, the expected errors increase, the theoretical variances/standard
deviations of the errors decreases, and the sample errors balance between the expected values and
variances and have convex quadratic shapes.
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5 Applications: Disambiguating Underlying Mechanisms of Autoregula-
tion, Drug Effects, and Drug Resistance

In this section, we apply our direct estimation method (Section 3) to a homogeneous cell population that
goes through three stages: (1) autoregulation, in which the cell population’s growth saturates at a given
carrying capacity, (2) drug treatment, in which an applied drug reduces the cell population’s carrying
capacity, and finally (3) drug resistance, in which the cell population regains its original carrying capacity
(for a discussion on definitions of drug resistance, see Section 7). In each stage, we disambiguate whether
the density-dependent mechanisms are related to the birth process, death process, or some combination of
the two. While the mechanisms are different, they result in the same mean-field cell number time series.

5.1 General Analysis
Recall that per capita birth and death rates are:

bN = max{b0 − γ
r
K

N,0} and dN = d0 +(1− γ)
r
K

N respectively. (39)

The terms γ
r
K

N and (1− γ)
r
K

N indicate the rates’ density dependence (i.e. the per capita rates are linear
functions of cell number N). In this paper, we consider only negative density dependence (i.e. competitive
interactions), so we set the density dependence parameter γ to be in [0,1], meaning density dependence
suppresses the cell population’s growth by decreasing birth rates or increasing death rates. For the rest of
this section, we omit max{·,0} in the per capita birth rate for convenience in writing, but it is understood
that the rate is the max of the formula and 0.

(1) In the autoregulation stage, different competition (negative density-dependent) mechanisms that cause
the population to stop growing around the carrying capacity K are distinguished by different values of γ ,
all of which can manifest in the same mean-field cell number trajectories. When γ = 0, density dependence
is fully in the death rate. Such a scenario could arise, for example, through interference (i.e. direct)
competition such as predation or other conspecific lethal interactions. In contrast, when γ = 1, density
dependence is fully in the birth rate. Such a scenario could arise, for example, through exploitation
(i.e. indirect) competition mediated by accumulation of waste products or limited food resources that
slow cell division. The scenario where γ ∈ (0,1) represents a combination of those two mechanisms. We
illustrate this stage in Figure 4 (B).

(2) In the drug treatment stage, we consider a drug that reduces the population’s carrying capacity by a
factor m > 1 (i.e. K → K/m). In general, parsing out birth and death rates allows us to know whether
the drug affect the birth process, death process, or a combination of the two. Since this paper focuses on
density-dependent mechanisms, we consider the situation where the drug does not change the intrinsic per
capita rates (i.e. the rates remain b0 and d0); only the density dependence parameter changes (i.e. γ →?).
Our estimation method is significant in disambiguating two particular clinically relevant drug effects:
-cidal (increasing death rates and keeping birth rates the same) versus -static (decreasing birth rates and
keeping death rates the same), both of which can manifest in the same mean-field cell number trajectories.
Note that “increase” and “decrease” in this context are with respect to cell number, meaning for a given
N, the new rates under drug treatment are either higher or lower than the original rates. For a detailed
discussion on bactericidal and bacteriostatic antibiotics, see Section 7.

(2.1) For the -cidal drug effect, in order for the new carrying capacity to be K/m while the per capita birth
rate is still b0−γ

r
K

N, the density dependence parameter has to become
γ

m
, because b0+

γ

m
r

K/m
N =
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b0 − γ
r
K

N. Then, the per capita death rate under -cidal drug treatment is d0 +
(︂

1− γ

m

)︂ r
K/m

N,

which is indeed larger than the pre-treatment per capita death rate d0 + (1 − γ)
r
K

N, because

d0 +
(︂

1− γ

m

)︂ r
K/m

N = d0 +(m− γ)
r
K

N > d0 +(1− γ)
r
K

N, as m > 1.

(2.2) For the -static drug effect, in order for the new carrying capacity to be K/m while the per capita

death rate is still d0 +(1− γ)
r
K

N, the density dependence parameter has to become 1− 1− γ

m
,

because d0 +
(︂

1− 1+
1− γ

m

)︂ r
K/m

N = d0 +(1− γ)
r
K

N. Then, the per capita birth rate under

-static drug treatment is b0−
(︂

1− 1− γ

m

)︂ r
K/m

N, which is indeed smaller than the pre-treatment per

capita birth rate b0 − γ
r
K

N, because b0 −
(︂

1− 1− γ

m

)︂ r
K/m

N = b0 − (γ +m−1)
r
K

N < b0 − γ
r
K

N,

as (m−1)> 0.

While the two drug mechanisms (-cidal versus -static) in (2.1) and (2.2) are different, they result in
the same net growth rates (birth rates minus death rates). Our direct estimation method allows us to
disambiguate the underlying mechanisms, despite the same mean-field cell number time series.

We illustrate the drug treatment stage in Figure 6.
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Figure 6. Schematic illustration of the -cidal versus -static drug effects. (A, B, C): density
dependence parameter before drug treatment is γ = 0 (solid lines), 0.5 (dashed), 1 (dotted) respectively. K
denotes the cell population’s carrying capacity before treatment, and K/m denotes the cell population’s
carrying capacity after treatment. For illustration, we set m = 2. Pre-bN and pre-dN are the per capita
birth and death rates before treatment (black curves); cidal-bN and cidal-dN are the per capita birth and
death rates treatment with a -cidal drug (death-promoting; red curves); static-bN and static-dN are the per
capita birth and death rate after treatment with a -static drug (birth-inhibiting; blue curves).

.

(3) In the drug resistance stage, we consider the situation where the cell population defends against the
drug and gains back its original carrying capacity (i.e. K/m → K). Similar to the drug treatment stage, in
general, by estimating birth and death rates, we know whether the resistance happens through the birth
process, death process, or both. Our estimation method is significant in disambiguating two particular
mechanisms: reduced-mortality resistance (decreasing death rates and keeping the birth rates the same) and
enhanced fecundity (increasing birth rates and keeping the death rates the same). There are many different
ways the per capita birth and death rates can change to satisfy the criteria of these two mechanisms.
However, in this paper, we are interested in density-dependent mechanisms, so we only consider the
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situation where the intrinsic per capita rates are still b0 and d0, and analyze changes in density dependence
parameter:

(3.1) For the reduced-mortality resistance mechanism to -cidal drugs, the density dependence parameter
changes back to the original γ . This effect could occur through a mutation in the protein by which
the drug gains entry to the cell, blocking the mechanism of drug action.

(3.2) For the enhanced-fecundity resistance mechanism to -cidal drugs, we require that (i) the intrinsic per
capita birth and death rates are still b0 and d0, (ii) the population’s carrying capacity changes to K
(from K/m), and (iii) the per capita death rate remains d0 +(m− γ)

r
K

N, so the density dependence

parameter becomes (1−m+γ) and the resistant per capita birth rate changes to b0−(1−m+γ)
r
K

N,

which is always greater than the -cidal per capita birth rate b0 − γ
r
K

N because (1−m)< 0. Since
we only consider negative density dependence, we also require 0 ≤ 1−m+ γ ≤ 1, which implies
m ≤ γ +1 ≤ 1+1 = 2. Hence, for m > γ +1, it is not possible to have enhanced-fecundity resistance
to -cidal drug through only competitive interactions. In order for the resistance to happen for the
case m > γ +1 and the intrinsic per capita birth and death rates to remain b0 and d0, we have to
allow (1−m+ γ) to be negative, reflecting cooperative interactions that increase the birth rate.
This observation is consistent with the results in7, 8, which show that cooperation between cells
contributes to drug resistance.3

While the drug resistance mechanisms in (3.1) and (3.2) are different, they result in the same net growth
rates (birth rates minus death rates).Our direct estimation method allows us to disambiguate the underlying
mechanisms, despite the same mean-field cell number time series.

3If we still require only competitive interactions (no cooperation), then the intrinsic per capita birth rate has to become larger

than b0, suggesting a mutation-related mechanism. In particular, if we rewrite the per capita death rate as d0 +
(︂

1− γ

m

)︂ (mr)
K

N

and interpret the density dependence parameter as
γ

m
, then the intrinsic per capita birth rate has to be b0 +(m−1)r.
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Figure 7. Schematic illustration of resistance to -cidal drug. -Cidal-bN and -cidal-dN are per capita
birth and death rates under a -cidal drug; resist-bN and resist-dN are resistant per capita birth and death
rates.

.

The same applies to resistance mechanisms to -static drugs:

(3.3) For enhanced-fecundity resistance mechanism to -static drugs, the density dependence parameter
changes back to the original γ . Like a reduced-mortality resistance strategy versus a -cidal drug,
this effect could occur through a mutation in the protein by which the drug gains entry to the cell,
blocking the mechanism of drug action.

(3.4) For reduced-mortality mechanism resistance to -static drugs, since we require that (i) the intrinsic
per capita birth and death rates are still b0 and d0, (ii) the population’s carrying capacity changes
to K (from K/m), and (iii) the per capita birth rate remains b0 − (γ +m− 1)

r
K

N, the density

dependence parameter becomes (γ +m− 1) and hence the resistance per capita death rate is
d0+(1−γ −m+1)

r
K

N, which is always lower than the -static per capita death rate d0+(1−γ)
r
K

N
because m > 1. Since we only consider competitive interactions (i.e. negative density dependence),
we require 0 ≤ (γ +m−1)≤ 1, which implies 1 ≤ γ +m ≤ 2, which means m ≤ 2− γ < 2. Hence,
for m > 2− γ , it is not possible to have reduced-mortality resistance to -static drugs through only
competitive interactions. In order for the resistance to happen for the case m ≥ 2 and the intrinsic per
capita birth and death rates remains b0 and d0, we have to allow

(︂
1− (γ +m−1)

)︂
to be negative,

reflecting cooperative interactions that reduce the death rate.4 Note that if (1− γ −m+ 1) < 0,
4If we still require only competitive interactions (no cooperation), then we have to decrease the intrinsic per capita death

rate to lower than d0. In particular, we rewrite the per capita birth rate as b0 −
(︂

γ +m−1
m

)︂ (mr)
K

and interpret the density

dependence parameter as
γ +m−1

m
, then the intrinsic per capita death rate becomes d0 − (m− 1)r. Unlike the enhanced-

fecundity resistance to -cidal case, the new intrinsic per capita rate d0 − (m−1)r can become negative when m >
b0

b0 −d0
,

which is not biologically meaningful. Therefore, this d0-related mechanism seems unlikely to be found in real populations.
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then the per capita death rate d0 +(1− γ −m+1)
r
K

N can potentially get negative, which is not
biologically meaningful.
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Figure 8. Schematic illustration of resistance to -static drug. -Static-bN and -static-dN are per capita
birth and death rates under a -static drug; resist-bN and resist-dN are resistant per capita birth and death
rates.

.

From the analysis, we observe that:

• While drug treatments can affect competitive interactions alone, in some cases, cell populations
have to utilize other mechanisms such as cooperative interactions or mutation to defend against drug
treatments.

• Resistance by decreasing intrinsic per capita death rates is unlikely, as discussed in (3.4), suggesting
that mutation-induced effects are more likely to accomplish resistance through changes in birth
rates.
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Table 1. Summary of Dynamics and Mechanisms. In the table, b0,d0,K,γ denote the original
parameters during the autoregulation stage before drug treatment. The carrying capacity under drug
treatment is K/m, with m > 1. For the drug treatment and resistance stages, the density dependence
parameters and intrinsic per capita birth and death rates are expressed in terms of the original parameters
b0,d0,γ,K and the reduction factor m. For example, the intrinsic per capita birth rate for the
enhanced-fecundity resistance mechanism to -cidal drugs is

(︂
b0 +(m−1)r

)︂
for m > (1+ γ) and density

dependence parameter
γ

m
.

Dynamics Other Parameters Density Dependence

Autoregulation K,b0,d0 γ ∈ [0,1]
(competition)

-Cidal Drug Effect K/m,b0,d0
γ

m
∈
[︂
0,

1
m

]︂
, m > 1

(more competition in death)

-Static Drug Effect K/m,b0,d0

(︂
1− 1− γ

m

)︂
∈
[︂
1− 1

m
,1
]︂
, m > 1

(more competition in birth)
Reduced-Mortality Resistance (to -Cidal) K,b0,d0 γ ∈ [0,1]

(less competition in death)
Enhanced-Fecundity Resistance (to -Cidal) K,b0,d0 (γ +1−m) ∈ [0,γ), m ∈ (1,γ +1]

(less competition in birth)
K,b0,d0 (γ +1−m) ∈ [1−m,0), m > γ +1

(increased birth due to cooperation)

K,b0 +(m−1)r,d0
γ

m
∈
[︂
0,

γ

γ +1

)︂
, m > γ +1

(increased intrinsic birth)
Enhanced-Fecundity Resistance (to -Static) K,b0,d0 γ ∈ [0,1]

(less competition in birth)
Reduced-Mortality Resistance (to -Static) K,b0,d0 (γ +m−1) ∈ (γ,1],m ∈ (1,2− γ]

(less competition in death)
K,b0,d0 (γ +m−1) ∈ (0,γ),m > (2− γ)

(decreased death due to cooperation)

K,b0,d0 − (m−1)r
γ +m−1

m
∈
(︂

0,
γ

m

)︂
,

(2− γ)< m ≤ b0

b0 −d0
(decreased intrinsic death)

5.2 Illustration of Specific Scenarios Using Direct Estimation Method
In order to make the preceding analysis concrete, and to further validate our direct estimation method,
we present detailed case studies of each of the scenarios summarized above, using specific parameter
values. Figure 9 illustrates the autoregulation stage; Figure 10 illustrates the drug treatment stage; Figures
11 and 12 illustrate the resistance to -cidal and -static drug stage. For all of these figures, we simulate
100 trajectories of the cell population with an initial population size N(t0) = 10 and the same parameter
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values as in Section 4 and Table 3. In addition to using K = 105 for carrying capacity, we also simulate
the population growth with a carrying capacity K = 102 for Figure 10 and K = 103 for Figures 11 and
12 to better visualize the noise levels. The method works robustly for larger values of K as well. After
simulating an ensemble of cell number trajectories, we estimate birth and death rates from that ensemble
of trajectories using the method given in section 3.3. The birth rate bN(t) and death rate dN(t) as functions
of time are computed by treating the rates as composite functions of the cell number N(t), and finding the
rates that correspond to the (randomly) selected cell number time series.

For the autoregulation stage, Figure 9 shows how our direct estimation method can disambiguate the
three autoregulation scenarios: (I) γ = 0, (II) γ = 0.5, and (III) γ = 1. We demonstrate that when the
carrying capacity is small (e.g. 102), it is easier to see the noise levels than when the carrying capacity is
large (e.g. 105), as seen in Figure 9 (C) and (D), because the fluctuations are larger relative to the mean
population. When the same net growth rate arises from different density-dependent mechanisms, at the
level of birth and death rates, the birth and death rates as functions of time can appear markedly different.
For example, while in scenarios (I) and (II), the birth and death rates show monotonically increasing, sig-
moidal shapes throughout time, in scenario (III), the birth rate has the shape of a concave-down quadratic
function as shown by the “+” magenta curves in Figure 9 (E) and (F).
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Figure 9. Underlying autoregulation mechanisms are distinguished by separately identified birth
and death rates, not necessarily by net changes in total population size. Plots showing that cell
populations with the same net growth rate and carrying capacity grow to the carrying capacity under
different density-dependent mechanisms, although the observed dynamics (shown in (C) and (D)) look
indistinguishable. Noise levels are more visible for smaller carrying capacities due to smaller scales. (A,
C, E): logistic birth-death processes with carrying capacity K = 105. (B, D, F): logistic birth-death
processes with carrying capacity K = 102. (A-F): black curves correspond to the scenario γ = 0; green
curves correspond to the scenario γ = 0.5; magenta curves correspond to the scenario γ = 1. (A, B):
estimated birth and death rates for three scenarios using the direct estimation method with an ensemble of
100 trajectories. (C, D): one selected trajectory for each scenario. (E, F): estimated birth and death rates
throughout time corresponding to the trajectories in (C) and (D). Plus signs (+) denote estimated birth
rates; circles (◦) denote estimated death rates. 24/55



For the drug treatment stage, Figure 10 illustrates the effects of -cidal versus -static drugs in scenario (I) in
the first column (panels A, D, G), scenario (II) in the second column (panels B, E, H), and scenario (III) in
the third column (panels C, F, I). As is evident in Figure 10 (D, E, F), the observed cell number dynamics
can be very similar in each scenario. However, Figure 10 panels (A, B, C) and (G, F, H) show that the
underlying birth and death processes that give rise to the dynamics can be very different. Specifically, in
(D, E, F), we see that the red and blue curves are almost indistinguishable. Thus, these scenarios could
not easily be distinguished from the general shape of the growth curve alone. However, to obtain the
red curves, we keep the per capita birth rates the same and increase the per capita death rates, and to
obtain the blue curves, it is the other way around–as illustrated in panels (A, B, C). The time-dependent
birth and death rates in panels (G, H, I) also show significant differences. In particular, the per capita
birth rates under the “-static” drug treatment (blue curves) are monotonically increasing in scenario (I)
(density-dependent death rate, as shown in (G)), but show a pronounced increase and then decrease in
scenario (III), as shown in (I). Thus, by extracting birth and death rates separately from cell number time
series, we are able to disambiguate underlying drug mechanisms.
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Figure 10. Separating birth and death rates distinguishes the underlying -cidal versus -static
action of drugs. In each of the density-dependent cases (I), (II), (III), two different drugs reduce the cell
population’s carrying capacity to the same level (shown in red and blues curves in (D), (E), (F)), but the
underlying mechanisms are different: increasing death rates (red curves) or decreasing birth rates (blue
curves). Black, green, and magenta curves represent scenarios (I), (II), and (III) without drugs. Red curves
represent the scenarios under a “-cidal” drug, and blue curves represent the scenarios under a “-static”
drug. Plus signs (+) denote estimated birth rates; circles (◦) denote estimated death rates. (A, D, G):
scenario (I) with γ = 0 (black curves), (B, E, H): scenario (II) with γ = 0.5 (green curves), (C, F, I):
scenario (III) with γ = 1.0 (magenta curves). (A, B, C): birth and death rates estimated from
100-trajectory ensembles. (D, E, F): a representative trajectory without drug and two representative
trajectories treated with drugs. The red and curves trajectories have the same mean-field behavior but the
drug mechanisms are different. (G, H, I): estimated birth and death rates throughout time corresponding
to the trajectories in (D, E, F).
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For the drug resistance stage, Figure 11 shows that having been treated with a “-cidal” drug, the cell
population can develop resistance either by decreasing its death rate and reverting to its original dynamics
(the red curves change back to the black, green, and magenta curves for scenarios (I), (II), and (III)
respectively), or by increasing its per capita birth rate as illustrated by the cyan curves. Without computing
the birth and death rates explicitly, we observe from cell number time series that if the resistant cell
population (cyan curves) reaches its original carrying capacity earlier than the wild-type population (black,
green, magenta curves) as in Figure 11 (B, D) or if the typical fluctuations around the mean population
size are visibly larger than the fluctuations of the wild-type as in Figure 11 (F), we may hypothesize that
the population has developed drug resistance through the enhanced-fecundity mechanism.

Figure 12 shows that having been treated with a “-static” drug, the cell population can develop re-
sistance either by increasing its birth rate and reverting to its original dynamics (the blue curves change
back to the black, green, and magenta curves for scenarios (I), (II), and (III) respectively), or by decreasing
its per capita death rate as illustrated by the cyan curves. We note that the decreased per capita death
rate can become algebraically negative and not biologically meaningful, which is consistent with the fact
that drug resistance has previously been considered mainly for “-cidal” drugs, not “-static” drugs, in the
literature, see38. However, in contrast to some recent literature38, in this paper, we propose the possibility
of mechanisms through which cell populations can overcome the “-static” effect (birth inhibition) of
drugs–that is, increasing the per capita birth rates back to the original rates, as seen in the black, green,
and magenta curves in Figure 12. For instance if, through preexisting genetic variation, the cell population
contained a mutant with an alternative sequence for the protein by which the drug targets the cell, then as
this variant propagated in favor of the principal variant, the cell line could develop resistance to the “-static”
drug. It is interesting to observe in Figure 12 (G) that even after being with a “-static” drug that inhibits
birth, the cell population can develop resistance by reducing birth rates throughout time–as we can see the
cyan curves are lower than the blue curves as time increases. We note that for scenario (I) where pre-γ = 0,
we observe a second possible drug resistance mechanism, in which the cell population decreases its per
capita death rate without making it negative. In this scenario, the cell population also changes its density
dependence parameter from pre-γ = 0 to pre-γ = 1 as it becomes resistant to the “-static” drug.
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Figure 11. Resolving separate birth versus death rates distinguishes different underlying
mechanisms of resistance to -cidal drugs. In each of the three density-dependent scenarios (I), (II),
(III), a cell population can restore its carrying capacity after a “-cidal” drug treatment via different
mechanisms: decreasing death rate to return to the original dynamics (shown in the black, green, magenta
curves) or increasing birth rate (shown in the cyan curves). (A, B, C): estimated birth and death rates
using an ensemble of 100 cell number trajectories. Plus signs (+) denote estimated birth rates; circles (◦)
denote estimated death rates. (D, E, F): selected cell number trajectories. (G, H, I): estimated birth and
death rates corresponding to the cell number trajectories in (D, E, F). (A, D, G): scenario (I) where the
density dependence pre-γ = 0. (B, E, H): scenario (II) where the density dependence pre-γ = 0.5. (C, F,
I): scenario (III) where the density dependence pre-γ = 1. The red curves represent the case where the cell
population has been treated with a “-cidal” drug. The black, green, and magenta curves represent the case
where the cell population develops resistance by decreasing its per capita death rate and returns to the
original dynamics for the scenarios (I), (II), and (III) introduced earlier. The cyan curves represent the
case in which the cell population develops resistance by increasing its per capita birth rate.
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Figure 12. Resolving separate birth versus death rates distinguishes different underlying
mechanisms of resistance to -static drugs. A cell population can restore its carrying capacity after a
“-static” drug treatment via different mechanisms: increasing birth rate to return to the original dynamics
(shown in the black, green, magenta curves) or decreasing death rate (shown in the cyan curves). The
latter can happen only for scenario (I) where originally, the density dependence is fully in the death rate.
(A, B, C): estimated birth and death rates using an ensemble of 100 cell number trajectories. Plus signs
(+) denote estimated birth rates; circles (◦) denote estimated death rates. (D, E, F): selected cell number
trajectories. (G, H, I): estimated birth and death rates corresponding to the cell number trajectories in (D,
E, F): selected cell number trajectories. (A, D, G): scenario (I) where the density dependence pre-γ = 0.
(B, E, H): scenario (II) where the density dependence pre-γ = 0.5. (C, F, I): scenario (III) where the
density dependence pre-γ = 1. The blue curves represent the case where the cell population has been
treated with a “-static” drug. The black, green, and magenta curves represent the case where the cell
population develops resistance by decreasing its per capita death rate and returns to the original dynamics
for the scenarios (I), (II), and (III) introduced earlier. The cyan curves represent the case in which the cell
population develops resistance by increasing its per capita birth rate.
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6 Likelihood-Based Statistical Inference
In the instance that there is only a single cell number trajectory, we would like to be able to assert how
likely it is that the time series belongs to one of several scenarios, parameterized by the density dependence
parameter γ . This question leads us to consider a maximum likelihood approach.

Let a cell number time series XXXdata = [x0,x1, . . . ,xT ] be a realization for the random variable NNN =
[N(t0),N(t1), . . . ,N(tT )]. For clarity, we denote x j as x j,data, j = 0, . . . ,T . In Section 3.2, we approximate
that NNN follows a normal distribution 5 characterized by the parameter set Θdata = {b0,data,d0,data,γdata,Kdata}.
These parameters determine the birth and death rates of the birth-death process from which the time series
is generated. In particular, the per capita birth and death rates are defined as follows:

bx j,data = max
{︃

b0,data − γdata
rdata

Kdata
x j,data, 0

}︃
, (40)

dx j,data = d0,data +(1− γdata)
rdata

Kdata
x j,data, (41)

where rdata = b0,data −d0,data. Recall that the mean and variance of the cell number increment (Nk+1 −
Nk|Nk,∆t) are (bNk −dNk)Nk∆t and (bNk +dNk)Nk∆t respectively.

To test whether a given time series XXXdata belongs to a scenario characterized by the parameter set
Θtest = {b0,test,d0,test,γtest,Ktest}, we evaluate the log likelihood function at the time series:

L (XXXdata|Θtest) = ln
(︂

P(x0,data)
)︂

⏞ ⏟⏟ ⏞
=ln(1)

+
T−1

∑
j=1

ln
(︂

P(x j+1,data|x j,data,Θtest)
)︂

(42)

=
T−1

∑
j=1

1
2

ln

(︄
1

2πx j,data(btest,x j,data +dtest,x j,data)∆t

)︄
(43)

− 1
2

(︂
x j+1,data − x j,data − x j,data(btest,x j,data −dtest,x j,data)∆t

)︂2

x j,data(btest,x j,data +dtest,x j,data)∆t
, (44)

where

btest,x j,data = max
{︃

b0,test − γtest
rtest

Ktest
x j,data, 0

}︃
, (45)

dtest,x j,data = d0,test +(1− γtest)
rtest

Ktest
x j,data, (46)

rtest = b0,test −d0,test. (47)

Suppose we know b0,data,d0,data, and Kdata. That is, suppose that b0,test = b0,data, d0,test = d0,data, and
Ktest = Kdata. Given one cell number time series, to infer which density dependence scenario the data
mostly likely belongs, we treat the log-likelihood function as a function f of γ := γtest, and find γ ∈ [0,1]
that maximizes f (γ). We thus formulate a constrained nonlinear optimization problem as follows:

max
γ

f (γ) = L (XXXdata|Θtest) subject to 0 ≤ γ ≤ 1. (48)

5This approximation requires sufficiently large summed birth and death rates.
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For shorter notation, here we denote b0,test and b0,data as b0, d0,test and d0,data as d0, Ktest and Kdata as K,
and x j,data as x j. We calculate the first derivative d f/dγ in Appendix B and find critical points by solving
d f
dγ

= 0,γ ∈ [0,1] numerically using the Bisection method on the interval [0−∆γ,1+∆γ],∆γ = 0.5 > 0.

For a discussion on the maximality of the critical points, please refer to Appendix B.

Given multiple samples of cell number time series (e.g. from multiple experimental trials), we ob-
tain an empirical distribution of solutions γ to the optimization problem (48). In Figure 13, for each of
the three scenarios (I) γdata = 0, (II) γdata = 0.5, and (III) γdata = 1, we plot the results upon solving the
optimization problem 100 times for 100 independent time series, and obtain a distribution of estimated γ

parameters. In addition we obtain a distribution of the estimation error, defined as the absolute difference
(γdata − γestimated), where γestimated is the numerical solution to the optimization problem (48). The values
of the parameters b0, d0, and K used in data simulation are the same as in Section 4. The empirical means
and variances of the estimated γ values and estimation errors for the three scenarios (I), (II), and (III) are
listed in Table 2.

Table 2. Numerical solution to the optimization problem (48) for a time series of length T = 90,000
points (timestep ∆t = 1/30, total time 3000 arbitrary units).

True γ Value Mean Estimated γ Variance of Estimated γ Mean Error Error Variance

0 0.0010 1.4858×10−4 −0.0010 1.4858×10−4

0.5 0.4996 8.4605×10−5 2.7218×10−5 8.4605×10−5

1 1.0000 3.6839×10−5 −2.8675×10−5 3.6839×10−5

We note that the mean values of γ for the three scenarios (I), (II), and (III) are separated by margins that
are an order of magnitude larger than the standard errors of the estimates. Thus, for the data generated by
our birth/death simulations, the distribution the density-dependent effects can clearly be distinguished in
terms of fully a birth-rate effect, fully a death-rate effect, or an evenly mixed effect.
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Figure 13. Numerical solutions to the optimization problem for different density dependence
scenarios are clearly separated. We plot empirical distributions of estimated γ values, and
corresponding errors, for an ensemble of individual cell number time series. (A, B): cell number time
series simulated with γ = 0; (C, D): cell number time series simulated with γ = 0.5; (E, F): cell number
time series simulated with γ = 1. (A, C, E): distributions of estimated γ; (B, D, F): distributions of the
corresponding estimation errors, defined as (γdata − γestimated). We observe that the distributions of the
estimated γ have small variances, and the errors are approximately normally distributed. Here we used
time series of length T = 90,000 points (timestep ∆t = 1/30, total time 3000).
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7 Conclusion and Discussion

In order to infer density-dependent population dynamics mechanisms from data, we separately identify
density-dependent per capita birth and death rates from net growth rates using the method described in
Section 3 and infer whether density dependence is manifest in the birth process, death process, or some
combination of the two. Our method involves directly estimating the mean and variance of cell number
increments, as functions of population size, and expressing birth and death rates in terms of these two
statistics. In order to obtain the mean and variance with tolerable accuracy, we compute them from an
ensemble of cell number time series (e.g. multiple experiments). We analyze the accuracy of this method
and derive analytical expressions for the theoretical expected errors and variance of errors in estimating
birth and death rates as functions of the bin size (details are in Appendix A). We discover that small bin
sizes do not necessarily result in small errors in estimating birth and death rates, due to small sample
sizes. In fact, we find that intermediate bin sizes are optimal. Our error analysis also shows that if the
product r∆t is large relative to the carrying capacity K, then the expected error in estimating the mean cell
number increment is high, as shown in Equation (95), which suggests that the estimation is not as good
for fast-producing cell types.

Our method is distinct from other methods in the literature. It provides a novel perspective on the
problem of stochastic parameter identification. Existing methods typically require numerical solution of a
high-dimensional optimization problem, e.g. in a Bayesian inverse problem setting39 or a likelihood func-
tion maximization framework. Crawford et al. 201432 constructs an expectation-maximization algorithm
to identify birth and death rates for general birth-death processes. This method enjoys fast convergence
and benefits from an elegant formulation of conditional expectations in terms of convolutions of transition
probabilities. Their approach results from solving a maximum likelihood problem and is designed for large
time periods ∆t. In contrast, we suggest a nonparametric direct estimation approach that accurately extracts
birth and death rates from the conditional first and second moments of the cell number time series data
sampled at sufficiently small time periods. Our method does not require a priori assumption of specific
forms of the rates. Aside from32, to the best of our knowledge, other work addressing disambiguation of
birth and death rates has been confined to linear birth-death processes. For example,33 uses a Bayesian
approach to parameter estimation for linear birth-death models in order to quantify the effects of changing
drug concentrations. Here, we also consider different drug treatment scenarios, but in the context of
nonlinear, logistic population models rather than linear growth models.34, 40 estimate birth and death rates
as functions of time for a continuous-time branching process. Their method applies to multi-type cell
populations and is illustrated with density-independent per capita birth and death rates. In contrast, our
framework encompasses density-dependent per capita rates.

Our direct estimation method based on Equations (14) and (15) requires an ensemble of cell number
time series. To deal with the sample size issue, we provide two solutions. The first solution is to utilize
discretization as described in Section 3.3. We provide a rigorous error analysis for this approach. As
an alternative solution, given only one cell number trajectory, we also present a maximum likelihood
approach, in which we evaluate the log-likelihood function and maximize it over the density dependence
parameter γ ∈ [0,1]. This approach, which involves solving a one-dimensional constrained nonlinear
optimization problem, is limited to the assumption that the other system parameters are known.

The significance of both approaches is the application to studying treatments of pathogens and their
resistance to the treatments. Specifically, in Section 5, we consider the scenario where a homogeneous
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cell population goes through three stages: (1) grows naturally to its carrying capacity, (2) is treated
with a drug that reduces its carrying capacity, and (3) overcomes the drug effect to gain back its carry-
ing capacity. Our method allows us to identify whether each stage happens through the birth process,
death process, or some combination of the two. Our analysis contributes to disambiguating underlying
mechanisms such as exploitation versus interference competition in ecology, bacteriostatic versus bacteri-
cidal antibiotics in clinical treatments, and enhanced-fecundity versus reduced-mortality in pathogens’
defense against drug treatments, which we may define as drug resistance. The mechanisms shown in
this paper can help explain biological phenomena and may suggest novel approaches for engineering
synthetic biological systems. More microscopic mechanisms within the birth process or death process,
such as inactivating mutations of the gene for p53 protein41, are beyond the scope of the model in this paper.

In the derivation of the relations between birth/death rates and the mean/variance of cell number in-
crements in Section 3, we assume that the birth and death processes are approximately independent.
However, the birth and death processes cannot be truly independent, as a cell cannot both divide and die
at the same time. Suppose we do not assume independence in data, which means our data simulations
would include the nonzero covariance between the number of cells going through division and the number
of cells going through death. The covariance is computed as follows. Let I(p)

+ denote a binary random
variable indicating whether the pth cell divides after a time period ∆t: I(p)

+ = 1 in case the cell divides,
otherwise I(p)

+ = 0. Similarly, let I(q)− denote a binary random variable indicating whether the qth cell dies
after a time period ∆t. Then,

∆N+ =
N

∑
p=1

I(p)
+ and ∆N− =

N

∑
q=1

I(q)− , (49)

and (50)

Cov
(︂

∆N+,∆N−

⃓⃓⃓
N
)︂
= Cov

(︂ N

∑
p=1

I(p)
+ ,

N

∑
q=1

I(q)−

)︂
(51)

=
N

∑
p=1

N

∑
q=1

Cov
(︂

I(p)
+ , I(q)−

)︂
(52)

=
N

∑
q=1

Cov
(︂

I(q)+ , I(p)
−

)︂
+

N

∑
p=1

∑
q ̸=p

Cov
(︂

I(p)
+ , I(q)−

)︂
(53)

=
N

∑
q=1

Cov
(︂

I(q)+ , I(q)−

)︂
, as the transitions of different cells p ̸= q are independent. (54)

=
N

∑
q=1

E
[︂
I(q)+ I(q)−

]︂
−

N

∑
q=1

E
[︂
I(q)+

]︂
E
[︂
I(q)−

]︂
(55)

= 0−
N

∑
q=1

E
[︂
I(q)+

]︂
E
[︂
I(q)−

]︂
, as I(q)+ I(q)− = 0, since a cell cannot simultaneously divide and die. (56)

=−N
(︂

bN∆t
)︂(︂

dN∆t
)︂

(57)

=−NbNdN∆t2, (58)
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which is the covariance of two multinomial random variables on three outcomes (birth, death, and neither),
with parameter N and probability vector (bN∆t,dN∆t,1− (bN +dN)∆t). We could include the covariance
term in our data simulation using Gaussian approximation and τ-leaping simulation as follows:

N(t +∆t)−N(t) =
(︂

bN(t)−dN(t)

)︂
N(t)∆t +

√
σ2 ∆W (t), (59)

where σ
2
∆t =

(︂
bN(t)+dN(t)

)︂
N(t)∆t−N(t)bN(t)dN(t)∆t2⏞ ⏟⏟ ⏞

from nonzero covariance

is the variance of ∆N(t). (60)

We simulate cell number trajectories using Equation (59) and estimate birth and death rates with the
independence assumption, as in Equations (13) with the approximation Var[∆N|N] ≈

(︂
bN + dN

)︂
N∆t.

Although the data do not assume independence between the birth and death processes and our estimation
does, we see that the estimated and true birth and death rates are well-aligned, showing our method
described in Section 3 with the independence assumption is robust, as shown in Figure 14.
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Figure 14. The estimation method works well even without the independence assumption in the
simulated data. (A, C, E): Time series ensembles simulated using the τ-leaping approximation for the
cases γ = 0 (A), γ = 0.5 (C), and γ = 1 (E) respectively. In the simulation, we do not assume
independence between the birth and death processes, and include the nonzero covariance between the two
processes. Each figure shows S = 100 trials. The estimated rates are computed using a bin size of
η = 103. Carrying capacity K = 105 cells; low-density rates b0 = 1.1/120 and d0 = 0 (arbitrary time
units); the other parameters are the same as in Section 4. (B, D, F): Estimated and true birth and death
rates, as functions of population size. Blue line: true birth rate. Red line: true death rate. Plus signs (+)
denote estimated birth rates; circles (◦) denote estimated death rates. Throughout the we will use distinct
colors to denote values of γ . (B) Black: γ = 0; (D) Green: γ = 0.5; (E) Magenta: γ = 1.0. We observe
that the estimated birth and death rates are well-aligned with the true birth and death rates used to simulate
the trajectories in (A), (C), and (E).
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In Section 5, we show how to apply our method to distinguish the action of “-static” (birth-inhibiting) ver-
sus “-cidal” (death-promoting) drugs. However, the classification of drugs as being “-static” or “-cidal” is
complicated by potentially stochastic factors such as external growth conditions15. For bacterial infections
in a clinical setting, the “-static/-cidal” distinction is defined in terms of drug concentrations–specifically in
terms of the ratio between Minimum Inhibitory Concentration (MIC) and Minimum Bactericidal Concen-
tration (MBC). The Minimum Inhibitory Concentration (MIC) is defined as the lowest drug concentration
that prevents visible growth, and the Minimum Bactericidal Concentration (MBC) is defined as the lowest
drug concentration that results in a 99.99% decrease in the initial population size over a fixed period of
time. Bacteriostatic drugs have been defined as those for which the ratio of the MBC to the MIC is larger
than 4. Bactericidal drugs are those for which the ratio is ≤ 442. Including the differential effects of
drugs at larger or smaller concentrations will be an interesting direction for expanding our birth/death rate
analysis in future work.

In Section 5, we use our direct estimation method to disambiguate different drug resistance mecha-
nisms. In our paper, we define “drug resistance” as the cell population’s ability to overcome the drug
effect and gain back its original carrying capacity. However, the term “drug resistance” is used to mean
different things in the research literature. For example, in Davison et al. 200043, drug resistance is defined
in terms of the drug concentration needed to inhibit growth or kill the pathogen. Brauner et al. 201638

quantify cell populations overcoming drug effects in terms of MIC and the minimum time needed to kill
the pathogens (MDK). Based on these two measures, MIC and MDK, the pathogens’ defense against the
drug can be called drug tolerance, persistence, or resistance. For future work, we will look into different
definitions of “drug resistance”.

For the present study, we confine our investigation to simulated data because of several factors. First,
generating large ensembles of cell population trajectories is expensive, although high-throughput methods
continue to accelerate the pace of data generation37. In a typical bioreactor, the data available are optical
density time series, rather than direct cell number measurements. In theory, the relation between optical
density and cell count is expected to be linear. Unfortunately, that is not always the case. McClure et
al. 199344 show that it can be second order and Stephens et al. 199745 show that it can be third order.
Moreover, Stevenson et al. 201646 show that the relation between cell count and optical density varies
for different cell sizes and shapes, as well as other properties such as the index of refraction of the media.
Some experimental calibration techniques have been developed to overcome these discrepancies, such
as Francois et al. 200547 and Beal et al. 202048. Finally, experimental data may include measurement
noise that obscures finite population driven density fluctuations. Swain et al. 201649 attempts to estimate
net growth rates from optical density data using a Gaussian process framework. In contrast, we would
like disambiguate net growth rate into separate birth and death rates. Extending our method to take into
account the mapping from cell number to noisy optical density measurements is an interesting subject for
future work.

As mentioned in the Introduction (Section 1), throughout the paper, we interpret the density depen-
dence term (interaction between individuals) as competition, which either reduces birth rates or increases
death rates. However, in some situations, interactions among individuals can be cooperative, and increase
the birth rate or reduce death rate with increasing population size50. To address this possibility, in future
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work one might introduce to a cooperation parameter c ≥ 0:

dφ

dt
= rφ − r

K
φ

2 = rφ + c
r
K

φ
2⏞ ⏟⏟ ⏞

cooperation

−(1+ c)
r
K

φ
2⏞ ⏟⏟ ⏞

competition

. (61)

One may interpret the cooperation term c
r
K

φ 2 as a positive interaction between individuals that increases
cell population growth. One could parameterize this term with parameter γc, to quantify how much of
the cooperation increases birth and how much of the cooperation decreases death. Similarly, one may
interpret the competition term (1+ c)

r
K

φ 2 as a negative interaction between individuals that reduces cell
population growth. One could parameterize the competition term with parameter γ∼c to quantify how
much of the competition decreases birth and how much of the competition increases death:

dφ

dt
=rφ + γcc

r
K

φ
2⏞ ⏟⏟ ⏞

cooperation

+(1− γc)c
r
K

φ
2⏞ ⏟⏟ ⏞

cooperation

−γ∼c(1+ c)
r
K

φ
2⏞ ⏟⏟ ⏞

competition

−(1− γ∼c)(1+ c)
r
K

φ
2⏞ ⏟⏟ ⏞

competition

(62)

=
(︂

b0φ + γcc
r
K

φ
2 − γ∼c(1+ c)

r
K

φ
2
)︂

⏞ ⏟⏟ ⏞
birth

(63)

−
(︂

d0φ − (1− γc)c
r
K

φ
2 +(1− γ∼c)(1+ c)

r
K

φ
2
)︂

⏞ ⏟⏟ ⏞
death

. (64)

This study would provide a new perspective on modeling and analyzing the Allee effect and help disentan-
gle positive and negative density dependence. Exploring these and other extensions provide interesting
directions for future investigation.
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A Error Analysis of the Direct Estimation Method

As described in Section 3.3, we discretize all the values of cell number across the whole ensemble of
trajectories into bins. Denote the bin size as η . The left end point Nk of the kth bin [Nk,Nk +η) with
k = 1,2, . . . ,kmax is equal to Nk := Nmin+(k−1)η , where Nmin is the smallest value of cell number across
the whole ensemble of trajectories. In many instances, Nmin = N(t0), the initial population size. The

total number of bins kmax ∈ Z+ is equal to
⌈︂Nmax −Nmin

η

⌉︂
, where Nmax is the largest value of cell number

across the whole ensemble of trajectories, and ⌈n⌉ is the smallest integer not less than n. The ith cell
number element to have landed in the kth bin [Nk,Nk +η) is equal to Nk +ηi. For simplicity, we make
the approximation that for each bin, the random variables ηi are i.i.d. and uniformly distributed on [0,η).
We expect this approximation to be reasonably accurate when the bin size η is small enough that a given
trajectory is unlikely to land in any particular bin twice in succession; the approximation may become
inaccurate for excessively large bin sizes. In light of this uniform distribution assumption, we use the
midpoint Nk +

η

2
to represent the kth bin [Nk,Nk +η).

We approximate the theoretical mean E
[︂
∆N
⃓⃓⃓
N = Nk +

η

2

]︂
with the empirical mean

⟨︂
∆N
⃓⃓⃓
N = Nk +ηi,0 ≤

ηi < η , Ŝk

⟩︂
and the theoretical variance Var

[︂
∆N
⃓⃓⃓
N = Nk +

η

2

]︂
the empirical variance σ2

[︂
∆N
⃓⃓⃓
N =

Nk +ηi,0 ≤ ηi < η , Ŝk

]︂
obtained from simulation of S cell number trajectories. Recall that Ŝk denotes the

number of population size Nk +ηi landing in bin k. These sample sizes Ŝk,k = 1,2, . . . ,kmax, are not nec-
essarily equal to each other or equal to the number of cell number trajectories S, which is pre-determined
and independent of the bin size η . Different bin sizes η result in different sets of Ŝk,k = 1,2, . . . ,kmax.
With the same bin size η , different simulations may also result in different sets of cell number values
and hence different sets of Ŝk,k = 1,2, . . . ,kmax. It is well-known that as the larger the sample size Ŝk, the
smaller the estimation errors34.

In this section, we analyze how the bin size influences distributions of estimation errors of birth and death
rates. In particular, we compute the theoretical means and variances of errors as functions of bin size η .
We use the notation N for cell number to be consistent with the mathematical model discussed in Section
2. A summary of notations can be found in Section A.3.

A.1 Theoretical Mean and Variance of Cell Number Increment as Functions of Bin Size

As mentioned above, our estimation of the birth and death rates corresponding to N = Nk +
η

2
uses

the empirical mean
⟨︂

∆N
⃓⃓⃓
N = Nk +ηi,0 ≤ ηi < η , Ŝk

⟩︂
and empirical variance σ2

[︂
∆N|N = Nk +ηi]

⃓⃓⃓
0 ≤

ηi < η , Ŝk

]︂
. The theoretical means and variances of the estimation errors involves the theoretical mean

E
[︂
∆N
⃓⃓⃓
N = Nk +U,U ∼ Unif[0,η)

]︂
and theoretical variance Var

[︂
∆N
⃓⃓⃓
N = Nk +U,U ∼ Unif[0,η)

]︂
, as

shown in Section 4. In this subsection, we analyze how the bin size η influences these theoretical mean
and variance. We present the analysis for nonnegative birth rates, that is, in which we can drop the max
function in Equation (5), as the birth rates are always positive in our simulated datasets.
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Theoretical mean:

E
[︂
∆N
⃓⃓⃓
N = Nk +U,U ∼ Unif[0,η)

]︂
= E

[︂
E[∆N|N = Nk +U ]

⃓⃓⃓
U ∼ Unif[0,η)

]︂
(65)

=E
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(bNk+U −dNk+U)(Nk +U)∆t

⃓⃓⃓
U ∼ Unif[0,η)

]︂
(66)

=E
[︂
(r− r

K
Nk −

r
K

U)(Nk +U)∆t
⃓⃓⃓
U ∼ Unif[0,η)

]︂
(67)
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[︂
(r− r

K
Nk)Nk∆t

⃓⃓⃓
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]︂
− r

K
Nk∆tE

[︂
U
⃓⃓⃓
U ∼ Unif[0,η)

]︂
(68)

+(r− r
K

Nk)∆tE
[︂
U
⃓⃓⃓
U ∼ Unif[0,η)

]︂
− r

K
∆tE

[︂
U2
⃓⃓⃓
U ∼ Unif[0,η)
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r
K

Nk)∆t
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2
− r

K
∆t

η2

3
. (69)

Theoretical variance:

Var
[︂
∆N
⃓⃓⃓
N = Nk +U,U ∼ Unif[0,η)

]︂
=E
[︂
∆N2

⃓⃓⃓
N = Nk +U,U ∼ Unif[0,η)

]︂
−
(︂
E
[︂
∆N
⃓⃓⃓
N = Nk +U,U ∼ Unif[0,η)

]︂)︂2
, (70)

where

E
[︂
E[∆N2|N = Nk +U ]

⃓⃓⃓
U ∼ Unif[0,η)

]︂
=E
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and

E
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Var[∆N|N = Nk +U ]
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]︂
= E
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and

E
[︂
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Therefore,

Var
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+
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−
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r
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.

In Figure 15, we compare the theoretical mean E
[︂
∆N
⃓⃓⃓
N = Nk +U,U ∼ Unif[0,η)

]︂
that we just computed

with the theoretical mean E
[︂
∆N
⃓⃓⃓
N = Nk+

η

2

]︂
and the empirical mean

⟨︂
∆N
⃓⃓⃓
N = Nk+U,U ∼ Unif[0,η)

⟩︂
using data from a simulation of S = 100 cell number trajectories. Similarly, we also compare the
population variance Var

[︂
∆N
⃓⃓⃓
N = Nk +U,U ∼ Unif[0,η)

]︂
that we just computed with the theoretical

variance Var
[︂
∆N
⃓⃓⃓
N = Nk +

η

2

]︂
and the empirical variance σ2

[︂
∆N
⃓⃓⃓
N = Nk +ηi,0 ≤ ηi < η

]︂
using data

from a simulation of S = 100 cell number trajectories.
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Figure 15. Theoretical mean and variance of cell number increments ∆N as functions of
population size are well-aligned with empirical mean and variance. The statistics are computed
using carrying capacity K = 105 and bin size η = 103. In (A, C, E), we compare the theoretical mean
E
[︂
∆N
⃓⃓⃓
N = Nk +U,U ∼ Unif[0,η)

]︂
with the theoretical mean E

[︂
∆N
⃓⃓⃓
N = Nk +

η

2

]︂
and the empirical

mean
⟨︂

∆N
⃓⃓⃓
N = Nk +ηi,0 ≤ ηi < η

⟩︂
using data from a simulation of S = 100 cell number trajectories.

In (B, E, F), we compare the theoretical variance Var
[︂
∆N
⃓⃓⃓
N = Nk +U,U ∼ Unif[0,η)

]︂
with theoretical

variance Var
[︂
∆N
⃓⃓⃓
N = Nk +

η

2

]︂
and the empirical variance σ2

[︂
∆N
⃓⃓⃓
N = Nk +ηi,0 ≤ ηi < η

]︂
using data

from a simulation of S = 100 cell number trajectories. (A, B): γ = 0 (black color); (C, D): γ = 0.5 (green
color); (E, F): γ = 0.5 (magenta color). Red lines (-) denote theoretical statistics (i.e. mean and variance)
for N = Nk +

η

2
; blue squares (□) denote theoretical statistics for N = Nk +U,U ∼ Unif[0,η); circles (◦)

denote empirical statistics for N = Nk +ηi with i = 1, . . . , Ŝk.
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A.2 Errors of Birth and Death Rate Estimation as Functions of Bin Size
In this section we consider the effect of bin size on the accuracy with which we can estimate the birth and
death rates. Thus we compare the theoretical mean and variance of the population increment, given that
a point of the trajectory lies within a given bin, versus the empirical mean and variance obtained from
simulation with a finite sample size. We use E to represent expected differences in these errors. Define

Ekmean := E
[︂
∆N
⃓⃓⃓
N = Nk +

η

2

]︂
−
⟨︂

∆N
⃓⃓⃓
N = Nk +ηi,0 ≤ ηi < η , Ŝk

⟩︂
, (83)

Ekvar := Var
[︂
∆N
⃓⃓⃓
N = Nk +

η

2

]︂
−σ

2
[︂
∆N
⃓⃓⃓
N = Nk +ηi,0 ≤ ηi < η , Ŝk

]︂
. (84)

The errors in estimating the birth and death rates corresponding to N = Nk +
η

2
are

Ekbirth =
Ekvar +Ekmean

2∆t
and Ekdeath =

Ekvar −Ekmean

2∆t
. (85)

The theoretical means of the errors over all realizations ηi of the iid uniform random variable U ∼
Unif[0,η) are

E
[︂
Ekbirth

]︂
=

E
[︂
Ekvar

]︂
+E

[︂
Ekmean

]︂
2∆t

and E
[︂
Ekdeath

]︂
=

E
[︂
Ekvar

]︂
−E

[︂
Ekmean

]︂
2∆t

. (86)

The theoretical variances of the errors over all realizations ηi of U are

Var
[︂
Ekbirth

]︂
= Var

[︂
Ekdeath

]︂
=

Var
[︂
Ekvar

]︂
+Var

[︂
Ekmean

]︂
4∆t2 . (87)

We analyze how the bin size η influences these analytical expected values and variances of errors
E
[︂
Ekmean

]︂
, E
[︂
Ekvar

]︂
, Var

[︂
Ekvar

]︂
, and Var

[︂
Ekmean

]︂
.

Treating the samples of
(︂

∆N
⃓⃓⃓
N = Nk +U,U ∼ Unif[),η)

)︂
as if they were identically and independently

distributed, the expected value of the sample mean is equal to the theoretical mean. Therefore,

E
[︂
Ekmean

]︂
= E

[︄
E
[︂
∆N
⃓⃓⃓
N = Nk +

η

2

]︂
⏞ ⏟⏟ ⏞

independent of ηi

]︄
−E

[︄⟨︂
∆N
⃓⃓⃓
N = Nk +ηi,0 ≤ ηi < η , Ŝk

⟩︂]︄
(88)

= E
[︂
∆N
⃓⃓⃓
N = Nk +

η

2

]︂
−E

[︂
∆N
⃓⃓⃓
N = Nk +U,U ∼ Unif[0,η)

]︂
, (89)

where

E
[︂
∆N
⃓⃓⃓
N = Nk +

η

2

]︂
=
(︂

bNk+(η/2)−dNk+(η/2)

)︂(︂
Nk +

η

2

)︂
∆t (90)

=
(︂

r− r
K

Nk −
r
K

η

2

)︂(︂
Nk +

η

2

)︂
∆t (91)

=
(︂

r− r
K

Nk

)︂
Nk∆t +

(︂
r− r

K
Nk

)︂
∆t

η

2
− r

K
Nk∆t

η

2
− r

K
η2

4
∆t (92)

= E[∆N|N = Nk]+
(︂

r−2
r
K

Nk

)︂
∆t

η

2
− r

K
∆t

η2

4
. (93)
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Hence,

E
[︂
Ekmean

]︂
=E[∆N|N = Nk]+

(︂
r−2

r
K

Nk

)︂
∆t

η

2
− r

K
∆t

η2

4
(94)

−E[∆N |N = Nk]− (r−2
r
K

Nk)∆t
η

2
+

r
K

∆t
η2

3

=
1

12
r
K

∆tη2. (95)

We observe that the expected error E
[︂
Ekmean

]︂
in approximating the true mean E

[︂
∆N
⃓⃓⃓
N = Nk +

η

2

]︂
for

each bin k is independent of k and is increasing quadratically for η > 0. If we write the expected error

E
[︂
Ekmean

]︂
as

1
12

(︂
r∆t
)︂(︂

η

K

)︂
η , then we see that the expected error depends on the ratio

(︂
η

K

)︂
, which

shows how big the bin size is relative to the system size (i.e. carrying capacity K), and also depends on the

product r∆t, which can be interpreted roughly as the per capita change in cell number
(︂

∆N
N

)︂
after ∆t.

The higher these ratios are, the higher expected error is. Looking from a different angle, the expected error

E
[︂
Ekmean

]︂
can be written as

(︂r∆t
K

)︂(︂ 1
12

η2
)︂

. This shows that the expected error depends on
(︂ 1

12
η2
)︂

,
which is the variance of the random variable ηi, and how big the per capita change in cell number r∆t
after ∆t is relative to the system size K. This observation suggests that it may be harder to estimate the cell
number increments with high accuracy for fast-reproducing cell types. Further analysis on the relation
between r and K would be interesting for future work, since existing work such as51 shows that the product
rK can influence the evolution of antibiotic-resistant bacterial genomes.

We assume that the samples of
(︂

∆N
⃓⃓⃓
N = Nk +U,U ∼ Unif[0,η)

)︂
are independently and identically

distributed, so the expected value of the sample variance is equal to the population variance. Therefore,

E
[︂
Ekvar

]︂
=E

[︄
Var
[︂
∆N
⃓⃓⃓
N = Nk +

η

2

]︂
⏞ ⏟⏟ ⏞

independent of ηi

]︄
−E

[︄
σ

2
[︂
∆N
⃓⃓⃓
N = Nk +ηi,0 ≤ ηi < η , Ŝk

]︂]︄
(96)

=Var
[︂
∆N
⃓⃓⃓
N = Nk +

η

2

]︂
−Var

[︂
∆N
⃓⃓⃓
N = Nk +U,U ∼ Unif[0,η)

]︂
, (97)

where

Var
[︂
∆N
⃓⃓⃓
N = Nk +

η

2

]︂
=
(︂

b0 +d0 +(1−2γ)
r
K

Nk +(1−2γ)
r
K

η

2

)︂(︂
Nk +

η

2

)︂
∆t (98)

=Var[∆Nk]+
(︂

b0 +d0 +2(1−2γ)
r
K

Nk

)︂
∆t

η

2
+(1−2γ)

r
K

∆t
η2

4
. (99)

Therefore,

E
[︂
Ekvar

]︂
=− (1−2γ)

r
K

∆t
η2

12
(100)

+∆t2r2 (Nk +η)3 −N3
k

3η
−2

r2

K
∆t2 (Nk +η)4 −N4

k
4η

+
r2

K2 ∆t2 (Nk +η)5 −N5
k

5η

−

(︄
E[∆N |N = Nk]+ (r−2

r
K

Nk)∆t
η

2
− r

K
∆t

η2

3

)︄2

.
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Now, we compute the theoretical variances Var
[︂
Ekmean

]︂
and Var

[︂
Ekvar

]︂
over all realizations of ηi. We

assume the samples of
(︂

∆N
⃓⃓⃓
N = Nk +U,U ∼ Unif[0,η)

)︂
are identically distributed, so the variance of

the sample mean is equal to the population variance divided by the sample size. Therefore,

Var
[︂
Ekmean

]︂
= Var

[︄
E
[︂
∆N
⃓⃓⃓
N = Nk +

η

2

]︂
⏞ ⏟⏟ ⏞

independent of ηi

]︄
+Var

[︄⟨︂
∆N
⃓⃓⃓
N = Nk +U,0 ≤ ηi < η , Ŝk

⟩︂]︄
(101)

= Var

[︄⟨︂
∆N
⃓⃓⃓
N = Nk +ηi,0 ≤ ηi < η , Ŝk

⟩︂]︄
(102)

=
Var
[︂
∆N
⃓⃓⃓
N = Nk +U,U ∼ Unif[0,η)

]︂
Ŝk

. (103)

As mentioned above, the samples of
(︂

∆N
⃓⃓⃓
N = Nk +U,U ∼ Unif[0,η)

)︂
are independently and identically

distributed. For computation convenience here, we approximate the binomial distribution of these samples
with the Gaussian distribution with the empirical mean and variance as discussed in Section 3.2. We still
use the notation N instead of X here to be consistent with the other statistics computed above. With this
approximation, the theoretical variance of the empirical variance is equal to two times the theoretical
variance squared divided by the sample size minus one. Therefore,

Var
[︂
Ekvar

]︂
=Var

[︄
Var
[︂
∆N
⃓⃓⃓
N = Nk +

η

2

]︂
⏞ ⏟⏟ ⏞

independent of ηi

]︄
+Var

[︄
σ

2
[︂
∆N
⃓⃓⃓
N = Nk +ηi,0 ≤ ηi < η , Ŝk

]︂]︄
(104)

=Var

[︄
σ

2
[︂
∆N
⃓⃓⃓
N = Nk +ηi,0 ≤ ηi < η , Ŝk

]︂]︄
(105)

=
2
(︂

Var
[︂
∆N
⃓⃓⃓
N = Nk +U,U ∼ Unif[0,η)

]︂)︂2

Ŝk −1
. (106)

The theoretical variance Var
[︂
∆N
⃓⃓⃓
N = Nk +U,U ∼ Unif[0,η)

]︂
is given by Equation (82).

Using the E
[︂
Ekmean

]︂
, E
[︂
Ekvar

]︂
, Var

[︂
Ekmean

]︂
, and Var

[︂
Ekvar

]︂
that we just computed, we obtain the theoret-

ical means and variances of the errors in estimating birth and death rates corresponding to N = Nk +
η

2
for

all k = 1,2, . . . ,kmax using Equations (85) and (86).

In Figure 5, we compare the l2-norm of the theoretical means and variances of the errors and com-
pare them with the l2-norm of the empirical errors (i.e. realizations of the error random variables)
computed using data from a simulation of S = 100 cell number trajectories. To computed the theoretical
variances of the errors shown in Figure 5, we use the empirical sample sizes Ŝk,k = 1,2, . . . ,kmax, from
the same data simulation.

We observe that as the bin size η increases, the theoretical means of the errors increase, the theoret-
ical variances (or standard deviations) of the errors decreases, and the empirical errors balance between the
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theoretical means and variances (or standard deviations) and have convex quadratic shapes. The theoretical
means of the errors reflect the differences between ∆N at one point

(︂
N = Nk +

η

2

)︂
and ∆N at multiple

points
(︂

N = Nk +ηi,0 ≤ ηi < η

)︂
; the smaller the bin size, the closer multiple points are to one point, so

the error is smaller (for example, Equation (95) shows that the expected errors in estimating the mean of
cell number increments are (r∆t/12K)η2). However, if the bin is too small, then there are not enough
samples to estimate theoretical statistics with empirical statistics with accuracy. The theoretical variances
of errors involves sample sizes; the bigger the bin size, the more samples we have. These two competing
effects of bin size result in the empirical errors being intermediate values between the two theoretical
statistics (means and variances) of the estimation errors. The optimal bin size reflects a balancing of these
two effects. When the bin size is smaller than the optimal bin size, the sample error coincides with the sum
of the expected error and the standard deviation of the error. When the bin size is bigger than the optimal
bin size, this relationship breaks down, which may reflect growing inaccuracy of our approximation that
the trajectory points are uniformly and i.i.d. within each bin.

A.3 Notation

N denotes cell number random variable
t0 and tT denotes deterministic initial and final times respectively

η denotes deterministic bin size
k denotes bin index, k = 1,2, . . . ,kmax

U denotes uniformly distributed random variable such that
(︂

N = Nk +U
)︂
∈ [Nk,Nk +η)

ηi denotes realization of the random variable U
S denotes number of cell number trajectories/time series

Ŝk denotes number of samples of ∆N := N(t +∆t)−N(t) in bin [Nk,Nk +η)

E[·] denotes theoretical mean
⟨·⟩ denotes empirical mean

Var[·] denotes theoretical variance

σ
2[·] denotes empirical variance
E[·] denotes error

B Analysis of Log-Likelihood Function
We calculate the first and second derivatives of the log-likelihood function f (γ) (44) for a single trajectory
as a function of the density dependence parameter γ . Let ∆x j = x j+1 − x j.

f (γ) =
T−1

∑
j=1

1
2

ln
(︃

1
2πVar[∆x j]

)︃
− 1

2

(︂
∆x j −E[∆x j]

)︂2

Var[∆x j]
(107)

=
T−1

∑
j=1

−1
2

ln(2π)− 1
2

ln
(︂

Var[∆x j]
)︂
− 1

2

(︂
∆x j −E[∆x j]

)︂2

Var[∆x j]
, (108)
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where

E[∆x j] = x j∆t(bx j −dx j) = x j∆t

(︄
b0 − γ(r/K)x j +

⃓⃓⃓
b0 − γ(r/K)x j

⃓⃓⃓
2

−d0 − (1− γ)(r/K)x j

)︄
,

(109)

Var[∆x j] = x j∆t(bx j +dx j) = 2x j∆t

(︄
b0 − γ(r/K)x j +

⃓⃓⃓
b0 − γ(r/K)x j

⃓⃓⃓
2

+d0 +(1− γ)(r/K)x j

)︄
.

(110)

We observe that E[∆x j] is a piecewise linear function of γ , i.e. E[∆x j] has the form c j
1 + c j

2γ , where

c j
1 =

⎧⎨⎩x j∆t
(︂

b0 −d0 −
r
K

x j

)︂
, for

(︂
b0 − γ

r
K

x j

)︂
> 0,

−x j∆t
(︂

d0 +
r
K

x j

)︂
, for

(︂
b0 − γ

r
K

x2
j

)︂
= 0,

(111)

and

c j
2 =

⎧⎨⎩0, for
(︂

b0 − γ
r
K

x j

)︂
> 0,

∆t
r
K

x j, for
(︂

b0 − γ
r
K

x2
j

)︂
= 0.

(112)

The variance Var[∆x j] is also a linear function of γ , i.e. Var[∆x j] has the form c j
3 − c j

4γ with

c j
3 =

⎧⎨⎩x j∆t
(︂

b0 +d0 +
r
K

x j

)︂
, for

(︂
b0 − γ

r
K

x j

)︂
> 0,

x j∆t
(︂

d0 +
r
K

x j

)︂
, for

(︂
b0 − γ

r
K

x2
j

)︂
= 0,

(113)

and

c j
4 =

⎧⎨⎩2∆t
r
K

x2
j , for

(︂
b0 − γ

r
K

x j

)︂
> 0,

∆t
r
K

x2
j , for

(︂
b0 − γ

r
K

x2
j

)︂
= 0,

(114)

Therefore,

f (γ) =
T−1

∑
j=1

−1
2

ln(2π)− 1
2

ln
(︂

c j
3 − c j

4γ

)︂
− 1

2

(︂
∆x j − c j

1 − c j
2γ

)︂2

c j
3 − c j

4γ
. (115)

Denote v j =
1

c j
3 − c j

4γ
⇒ v j > 0 and

dv j

dγ
=

c j
4

(c j
3 − c j

4γ)2
= c j

4v2
j . We have

f (γ) =
T−1

∑
j=1

−1
2

ln(2π)+
1
2

ln(v j)−
1
2

(︂
∆x j − c j

1 − c j
2γ

)︂2
v j. (116)

50/55



If b0 − γ(r/K)x j > 0, then c j
2 = 0 and E[∆x j] = c j

1 is independent of γ . Hence,

d f
dγ

=
T−1

∑
j=1

1
2

1
v j

dv j

dγ
− 1

2

(︂
∆x j − c j

1

)︂2 dv j

dγ
=

T−1

∑
j=1

1
2

c j
4v j −

1
2

(︂
∆x j − c j

1

)︂2
c j

4v2
j (117)

⇒ d2 f
dγ2 =

T−1

∑
j=1

1
2

c j
4

dv j

dγ
− 1

2

(︂
∆x j − c j

1

)︂2
c j

42v j
dv j

dγ
(118)

=
T−1

∑
j=1

1
2
(c j

4)
2v2

j −
(︂

∆x j − c j
1

)︂2
(c j

4)
2v3

j (119)

=
T−1

∑
j=1

(c j
4)

2v2
j

(︄
1
2
−
(︂

∆x j − c j
1)
)︂2

v j

)︄
(120)

=
T−1

∑
j=1

(c j
4)

2v2
j

(︄
1
2
−

(∆x j −E[∆x j])
)︂2

Var[∆x j]

)︄
. (121)

In general,

d f
dγ

=
T−1

∑
j=1

1
2

1
v j

dv j

dγ
− 1

2

(︂
∆x j − c j

1 − c j
2γ

)︂2 dv j

dγ
+ c j

2

(︂
∆x j − c j

1 − c j
2γ

)︂
v j (122)

=
T−1

∑
j=1

1
2

c j
4v j −

1
2

(︂
∆x j − c j

1 − c j
2γ

)︂2
c j

4v2
j + c j

2

(︂
∆x j − c j

1 − c j
2γ

)︂
v j (123)

⇒ d2 f
dγ2 =

T−1

∑
j=1

1
2

c j
4

dv j

dγ
+

1
2

2c j
2

(︂
∆x j − c j

1 − c j
2γ

)︂
c j

4v2
j −

1
2

(︂
∆x j − c j

1 − c j
2γ

)︂2
c j

42v j
dv j

dγ
(124)

+
T−1

∑
j=1

c j
2

(︂
∆x j − c j

1 − c j
2γ

)︂dv j

dγ
(125)

=
T−1

∑
j=1

1
2
(c j

4)
2v2

j +2c j
2c j

4

(︂
∆x j − c j

1 − c j
2γ

)︂
v2

j −
(︂

∆x j − c j
1 − c j

2γ

)︂2
(c j

4)
2v3

j (126)

=
T−1

∑
j=1

c j
4v2

j

(︄
1
2

c j
4 +2c j

2

(︂
∆x j − c j

1 − c j
2γ

)︂
−
(︂

∆x j − c j
1 − c j

2γ

)︂2
c j

4v j

)︄
. (127)

Figure 16 shows the histogram of
d2 f
dγ2 evaluated at the numerical root of

d f
dγ

on [0,1]. The second

derivative is negative among for each of 100 instances of solving the optimization problem (48). We
observe that the second derivatives are negative for all of the cases, which implies that the numerical root
is reasonably presumed to be a maximum.

51/55



𝜸 = 𝟎 𝜸 = 𝟎. 𝟓 𝜸 =1

Figure 16. The second derivative of the log likelihood is confirmed empirically to be negative at
the numerical solution of the optimization problem. We plot empirical distributions of the second
derivative of the log-likelihood function f (γ) evaluated at the numerical root on [0,1] of the first
derivative of f (γ) for 100 cell number trajectories. (A), (B), (C) correspond to three different scenarios of
density dependence γ = 0, γ = 0.5, γ = 1 respectively. The distributions are obtained from maximizing
the log-likelihood function f (γ) 100 times for each of the three γ scenarios. We observe that the second
derivatives are negative for all of the cases.

We explicitly calculate the first derivative of f (γ) below to find critical points:

d f
dγ

=
T−1

∑
j=1

−1
2

1
x j(bx j +dx j)

x j
d
dγ

(bx j +dx j) (128)

−
T−1

∑
j=1

1
2

2
(︂

∆x j − x j(bx j −dx j)∆t
)︂

∆t(−x j)
d
dγ

(bx j −dx j)
1

x j(bx j +dx j)

1
∆t

(129)

−
T−1

∑
j=1

1
2
(∆x j − x j(bX j −dx j)∆t)2 −1

∆tx2
j(bx j +dx j)

2 x j
d
dγ

(bx j +dx j) (130)

=
T−1

∑
j=1

−1
2

1
(bx j +dx j)

d
dγ

(bx j +dx j) (131)

+
T−1

∑
j=1

(︂
∆x j − x j(bx j −dx j)∆t

)︂ 1
(bx j +dx j)

d
dγ

(bx j −dx j) (132)

+
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∑
j=1

1
2
(∆x j − x j(bX j −dx j)∆t)2 1

∆tx j(bx j +dx j)
2

d
dγ

(bx j +dx j), (133)

where

bx j +dx j =
b0 − γ(r/K)x j +

⃓⃓⃓
b0 − γ(r/K)x j

⃓⃓⃓
2

+d0 +(1− γ)(r/K)x j (134)

⇒ d
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=−

(r/K)x j

2
− (r/K)x j −

1
2
(r/K)x j
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b0 − γ(r/K)x j

(135)

=−3
2
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1
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, (136)
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and

bx j −dx j =
b0 − γ(r/K)x j +

⃓⃓⃓
b0 − γ(r/K)x j

⃓⃓⃓
2

−d0 − (1− γ)(r/K)x j (137)

⇒ d
dγ

(︂
bx j −dx j

)︂
=−

(r/K)x j

2
+(r/K)x j −

1
2
(r/K)x j

⃓⃓⃓
b0 − γ(r/K)x j
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b0 − γ(r/K)x j

(138)

=
1
2
(r/K)x j −

1
2
(r/K)x j

⃓⃓⃓
b0 − γ(r/K)x j

⃓⃓⃓
b0 − γ(r/K)x j

. (139)

Using these expressions, we numerically obtain the root of the first derivative on the interval [0,1].

C Demonstration of the Nonparametric Property of Our Direct Estimation
Method

Our birth-rate/death-rate disambiguation method applies to a broader class of models than the Verhulst-
inspired logistic model used for illustration in other parts of the paper. To demonstrate the method’s utility,
we apply the method here to a model that does not have a simple low-dimensional parametric description,
and is thus intractable via maximum likelihood methods. We consider a stochastic birth-death process for
which the density-dependent per capita birth and death rates are defined piecewise as functions of the cell
number N as follows:

bN = max
{︂ 1

60
,

1
120

− 1
15K

N
}︂
, (140)

dN = max
{︂ 1

15K
N − 1

20
,

1
105K

N
}︂
, (141)

K = 105 is the carrying capacity.

This birth-death process has cell number trajectories as in Figure 17.
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Figure 17. Cell number trajectories for the birth-death process with the per capita birth and
death rates defined by Equations (140) and (141).

Suppose we are given only cell number trajectories like those in Figure 17; we do not know the forms
of the birth and death rates (note: we defined bN and dN in Equations (140) and (141) above for data
simulation and validation only). Using only the given ensemble of cell number trajectories, we use our
direct estimation method discussed in Section 3.3 and are able to infer the birth and death rates, as shown
in Figure 18.

Figure 18. Inferred birth and death rates for the birth-death process with the per capita birth
and death rates defined by Equations (140) and (141) are well-aligned with the true rates.
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Direct inspection of the cell number trajectories in Figure 17 would not readily lead one to suppose that
the birth and death rates have the shapes as in Figure 18; moreover, we cannot take a maximum likelihood
approach to make inferences. By utilizing the mean and variance of the cell number stochastic fluctuations,
our direct estimation method allows us to see the shapes of the rates and their values corresponding to

certain cell numbers. In this particular example, the per capita birth rate is density-dependent for N ≤ K
2

,

but not for N >
K
2

. In addition to not knowing the forms of the rates, the piecewise-defined functions
are not differentiable at the transition points (between the pieces), which may make it difficult to solve
nonlinear optimization problems.

D Model Parameters Used in Simulation

Table 3. Model Parameters Used in Simulation
Parameter Value Unit

b0 1.1/120 1/time
d0 0.1/120 1/time
r 1/120 1/time
K 105 Dimensionless
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