
Contextually Guided Convolutional Neural
Networks for Learning Most Transferable

Representations
1st Olcay Kursun

Department of Computer Science
Auburn University at Montgomery

Montgomery, Alabama
okursun@aum.edu

2nd Semih Dinc
EagleView Technologies
Bellevue, Washington

semih.dinc@eagleview.com

3rd Oleg V. Favorov
Joint Department of Biomedical Engineering
University of North Carolina at Chapel Hill

Chapel Hill, North Carolina
favorov@email.unc.edu

Abstract—Implementing local contextual guidance principles
in a single-layer CNN architecture, we propose an efficient
algorithm for developing broad-purpose representations (i.e.,
representations transferable to new tasks without additional
training) in shallow CNNs trained on limited-size datasets. A
contextually guided CNN (CG-CNN) is trained on groups of
neighboring image patches picked at random image locations
in the dataset. Such neighboring patches are likely to have a
common context and therefore are treated for the purposes of
training as belonging to the same class. Across multiple iterations
of such training on different context-sharing groups of image
patches, CNN features that are optimized in one iteration are
then transferred to the next iteration for further optimization,
etc. In this process, CNN features acquire higher pluripotency,
or inferential utility for any arbitrary classification task. In our
applications to natural images and hyperspectral images, we find
that CG-CNN can learn transferable features similar to those
learned by the first layers of the well-known deep networks and
produce favorable classification accuracies.

Index Terms—Deep Learning, Contextual Guidance, Unsuper-
vised Learning, Transfer Learning, Feature Extraction, Pluripo-
tency

I. INTRODUCTION

Although supervised deep CNNs are good at extracting
pluripotent inferentially powerful transferable features, they
require big labeled datasets with detailed external training
supervision. Also, the backpropagation of the error all the way
down to early layers can be problematic as the error signal
weakens (a phenomenon known as the gradient vanishing
[2]). To avoid these difficulties, in this paper we describe a
self-supervised approach for learning pluripotent transferable
features in a single CNN layer without reliance on feedback
from higher layers and without a need for big labeled datasets.
We demonstrate the use of this approach on two examples
of a single CNN layer trained first on natural RGB images
and then on hyperspectral images. Of course, there is a limit
to sophistication of features that can be developed on raw
input patterns by a single CNN layer. However, more complex
and descriptive pluripotent features can be built by stacking
multiple CNN layers, each layer developed in its turn by

using our proposed approach on the outputs of the preceding
layer(s).

Similar to deep CNNs, cortical areas making up the sensory
cortex are organized in a modular and hierarchical architecture
[11, 14]. Column-shaped modules (referred to as columns)
making up a cortical area work in parallel performing in-
formation processing that resembles a convolutional block
(convolution, rectification, and pooling) of a deep CNN. Each
column of a higher-level cortical area builds its more complex
features using as input the features of a local set of columns in
the lower-level cortical area. Thus, as we go into higher areas
these features become increasingly more global and nonlinear,
and thus more descriptive [4, 7, 6, 10, 11].

Unlike deep CNNs, cortical areas do not rely on error
backpropagation for learning what features should be extracted
by their neurons. Instead, cortical areas rely on some local
guiding information in optimizing their feature selection.
While local (from the spatial and temporal context), such
guiding information nevertheless promotes feature selection
that enables insightful perception and successful behavior.

II. CONTEXTUALLY GUIDED CONVOLUTIONAL NEURAL
NETWORK (CG-CNN)

A. Basic Design

In this paper we apply the cortical context-guided strategy
of developing pluripotent features in individual cortical areas
to individual CNN layers. To explain our approach [13, 12],
suppose we want to develop pluripotent features in a particular
CNN layer (performing convolution + ReLU + pooling) on
a given dataset of images. We set up a three-layer training
system (Fig. 1-A) as:

1) The Input layer, which might correspond to a 2-
dimensional field of raw pixels (i.e., a 3D tensor with
two axes specifying row and column and one axis for the
color channels) or the 3D tensor that was outputed by the
preceding CNN layer with already developed features;

2) The CNN layer (“Feature Generator”), whose features
we aim to develop;

3) The Classifier layer, a set of linear units fully connected
with the output units of the CNN layer, each unit
(with softmax activation) representing one of the training
classes in the input patterns.

As in standard CNNs, during this network’s training the
classification errors will be backpropagated and used to adjust
connection weights in the Classifier layer and the CNN layer.

While eventually (after its training) this CNN layer might
be used as a part of a deep CNN to discriminate some
particular application-specific classes of input patterns, during
the training period the class labels will have to be assigned
to the training input patterns internally; i.e., without any
outside supervision. Adopting the cortical contextual guidance
strategy, we can create a training class by picking at random a
set of neighboring window patches in one of database images
(Fig. 1-B). Being close together or even overlapping, such
patches will have a high chance of showing the same object
and those that do will share something in common (i.e., the
same context). Other randomly chosen locations in the dataset
images – giving us other training classes – will likely come
from other objects and at those locations the neighboring
window patches will have some other contexts to share. We
can thus create a training dataset X = {xt | 1 ≤ t ≤ CN} of
C × N class-labeled input patterns by treating C sets of N
neighboring window patches – each set drawn from a different
randomly picked image location – as belonging to C training
classes, uniquely labeled from 1 to C. These inputs are small
a×a×b tensors, a×a patches (feature-maps) with b features.
We will refer to each such class of neighboring image patches
as a “contextual group.”

Upon a presentation of a particular input pattern xt from the
training dataset X, the response of the CNN layer is computed
as:

ytj = MaxPool([Wj ∗ xt]+) (1)

where ytj is the response of output unit j in the CNN layer
with d units (i.e., yj is CNN’s feature j, where 1 ≤ j ≤ d),
Wj is the input connection weights of that unit (each unit has
w × w × b input connections), symbol * denotes convolution
operation, and [·]+ = max{· , 0} denotes the ReLU operation.
Next, the response of the Classifier layer is computed by the
softmax operation as:

ztl =
exp (Vl · yt)∑C
c=1 exp (Vc · yt)

(2)

where ztl is the response of output unit l in the Classifier layer
(expressing the probability of this input pattern xt belonging
to class l), yt = [ytj]

d
j=1 is the d-dimensional feature vector

computed as the output of the CNN layer, and Vl is the vector
of connection weights of that unit from all the d units of the
CNN layer.

During training, connection weights W and V are adjusted
by error backpropagation so as to maximize the log-likelihood
(whose negative is the loss function):

Fig. 1. Contextually Guided Convolutional Neural Network (CG-CNN)
design. (A) CG-CNN architecture. (B) Class-defining contextual groups of
image patches. Each image patch – used as input in CG-CNN training – is
shown as a small square box superimposed on one of the database images.
Neighboring patches constitute a contextual group and during network training
are treated as belonging to the same class. During network training, locations
of contextual groups are picked at random. Six such groups, or classes, are
shown on this photo with five patches in each (C = 6 and N = 5).

L
(
V,W

∣∣X)
=

CN∑
t=1

C∑
c=1

rtc log z
t
c (3)

where rtc ∈ 0, 1 indicates whether input pattern xt belongs to
class c.

B. Iterative Training Algorithm

CG-CNN training is performed over multiple iterations,
with each iteration using a different small sample of contextual
groups as training classes. That is, in each iteration a new
small (e.g., C = 100) number of contextual groups is drawn
from the database and the system is trained to discriminate
them. Once this training is finished, a new small number of
contextual groups is drawn and training continues in the next
iteration on these new classes without resetting the already
developed CNN connection weights.

For such iterative training of the CG-CNN system, we use
an expectation-maximization (EM) algorithm [1]. The EM
iterations alternate between performing an expectation (E) step
and a maximization (M) step. At each EM iteration, we create
a new training dataset X = {xt | 1 ≤ t ≤ CN} of C × N
self-class-labeled input patterns and randomly partition it into
two subsets; one subset XE to be used in the E-step, the other
subset XM to be used in the M-step. Next, we perform the E-
step, which involves keeping W connection weights from the
previous EM iteration (Wold), while training V connections
of the Classifier layer on the newly created XE subset so as
to maximize its log-likelihood L (Eq. 3):

E-step: Vnew = argmax
V

L
(
V,Wold

∣∣XE

)
(4)

Next, we perform the M-step, which involves holding the
newly optimized V connection weights fixed, while updating

W connections of the CNN layer on the XM subset so as to
maximize log-likelihood L one more time:

M-step: Wnew = argmax
W

L
(
Vnew,W

∣∣XM

)
(5)

By continuing to update the CNN layer weights W , while
the contextual groups to be discriminated by the Classifier
keep changing with every EM iteration, CG-CNN spreads the
potentially high number of contextual groups (classes) needed
for learning image-domain contextual regularities into multiple
iterations [9]. The proposed EM algorithm for training CG-
CNN achieves an efficient approach to learning the regularities
that define contextual classes, which otherwise would theoret-
ically require a C value in orders of tens of thousands [5].

No particular CNN architecture is required for applying the
CG-CNN training procedures. CG-CNN accepts a small a ×
a × b tensor as input. In CG-CNN’s application to image-
pixels directly, b simply denotes the number of color bands,
and a denotes the width of the image patches that form the
contextual groups. The kernel size of the convolutions and
the stride are denoted by w and s, respectively. CG-CNN’s
Feature Generator (the CNN layer) learns to extract d features
that most contextually and pluripotently represent any given
a×a image patch. Note that at this level CG-CNN is not trying
to solve an actual classification problem and is only learning a
powerful local representation; only a pyramidal combination
of these powerful local features can be used to describe an
image big enough to capture real-world object class.

III. EXPERIMENTAL RESULTS

A. Demonstration on Natural Images

To demonstrate the feasibility of CG-CNN developing
pluripotent features using a limited number of images without
any class-labels, we used images from the Caltech-101 dataset
[8]. We used images from a single (face) class to emphasize
that the proposed algorithm does not use any external supervi-
sion for tuning to its discriminatory features. Thus, our dataset
had 435 color images, with sizes varying around 400 × 600
pixels.

Fig. 2. CG-CNN features after 1, 5, 20, 50, and 100 EM iterations.

We used a moderate number of contextual groups (C = 100)
for the CG-CNN training. For selecting image patches for each
contextual group, we used g = 25 pixels for the extent/slide of
the seed window for spatial contextual guidance. We also used
color jitter and color-to-gray conversion to enrich contextual
groups. With each EM iteration, the network’s features become
progressively more defined and more resembling visual corti-
cal features (gratings, Gabor-like features, and color blobs) as
well as features extracted in the early layers of deep learning
architectures AlexNet, GoogLeNet, and ResNet (see Fig. 2).

B. Demonstration on Texture Image Classification

We used the Brodatz dataset [3] of 13 texture images. To
compare with AlexNet-Pool1 (which has 11×11 pixel features,
stride s = 4, and therefore pooled window size of 19 × 19
pixels), we trained classifiers to discriminate textures in 19×19
patches. To compare with GoogLeNet and ResNet (which
have 7 × 7 pixel features, stride s = 2, and therefore pooled
window size of 11× 11 pixels), we trained other classifiers to
discriminate textures in 11×11 patches. For either of these two
window sizes, we subdivided each 512 × 512 texture image
into 256 32 × 32 subregions and picked 128 training image
patches at random positions within 128 of these subregions,
and other 128 test image patches at random positions within
the remaining 128 subregions. The accuracies of the classifiers
are listed in Table I. Classifiers directly applied to pixels
performed much worse, indicating non-trivial nature of this
classification task. These results demonstrate the superiority of
using the transfer learning approach, with transferred features
taken from CG-CNN or Pool-1 of pretrained deep networks.

TABLE I
TEXTURE CLASSIFICATION ACCURACIES.

Method 11× 11 field 19× 19 field
CG-CNN 63.3 ± 0.7 74.3 ± 0.9
AlexNet 72.2 ± 0.7
GoogLeNet 62.2 ± 1.1
ResNet-101 61.6 ± 0.9
ResNet-18 61.5 ± 0.9

RBF-SVM 53.6 ± 0.9 62.9 ± 0.9
Naive Bayes 39.3 ± 1.0 49.4 ± 0.8
Random Forest 34.7 ± 1.3 35.0 ± 1.5
MLP 33.6 ± 0.7 30.7 ± 0.6
K-NN 28.6 ± 0.9 29.2 ± 0.8
Linear-SVM 23.3 ± 1.2 28.0 ± 1.9
LR 22.8 ± 1.5 25.1 ± 0.6

C. Demonstration on Hyperspectral Image Classification

Unlike color image processing that uses a large image
window with a few color channels (grayscale or RGB), Hyper-
spectral Image (HSI) analysis typically aims at classification of
a single pixel characterized by a high number of spectral chan-
nels (bands). Typically, HSI datasets are small, and application
of supervised deep learning to such small datasets can result in
overlearning, not yielding pluripotent task-transferrable HSI-
domain features. To improve generalization, the supervised

classification can benefit from unsupervised feature extraction
of a small number of more complex/informative features than
the raw data in the spectral channels. CG-CNN algorithm
is applied on the Indian Pines and Salinas datasets with
a = 3 pixels, b = 220 channels (corresponding to the HSI
wavelengths), d = 30 features, w = 1 pixel (i.e., each
convolution uses only the bands of a single pixel), C = 20
contextual groups, and g = 2 pixels for the extent of the
spatial contextual guidance. In training of CG-CNN, the class
labels of the HSI pixels were not used; instead, local groups of
pixels (controlled by the g parameter) were treated as training
classes. CG-CNN learns to represent its input HSI image
patch, which is a hypercube of size 3×3×220, in such a way
that the image patch and its neighboring windows/positions
(obtained by shifting it g = ±2 pixels in each direction)
can be maximally discriminable from other contextual groups
centered elsewhere. Note that only a total of (2×2+1)2 = 25
image patches are created for each contextual group. (We can
also enrich contextual groups by adding band-specific noise
or frequency shift, but leave this for future work.) Then, we
used the extracted features as inputs to various classifiers. CG-
CNN features were fed to these classifiers for the supervised
classification task with 16 target classes (various vegetation,
buildings, etc.). Pixel classification accuracies were computed
using 10-fold cross validation. For comparison, we evaluated
the use of all of the original raw variables (i.e., 220 bands)
as inputs to the classifiers and we also compared with first 30
principal components of the Principal Component Analysis
(PCA) and best 30 features selected by Random Forest. As
shown in Tables II and III, the best performance was achieved
by CG-CNN, combining CG-CNN features with Random
Forest or K-NN classifiers.

TABLE II
HSI CLASSIFICATION RESULTS ON THE INDIAN PINES DATASET.

Accuracy (%)
Orig.(220) PCA(30) RF(30) CG-CNN(30)

ID3 67.8 ± 1.1 68.2 ± 1.3 67.0 ± 1.9 76.5 ± 1.6
LDA 79.4 ± 1.0 61.0 ± 1.4 62.1 ± 1.7 72.3 ± 1.5
Linear-SVM 85.2 ± 1.7 75.1 ± 1.4 76.0 ± 1.3 79.5 ± 0.8
Cubic-SVM 91.9 ± 0.8 86.0 ± 1.0 87.0 ± 1.0 94.7 ± 0.7
RBF-SVM 87.1 ± 0.6 81.5 ± 0.8 80.7 ± 1.8 90.5 ± 1.0
K-NN 76.0 ± 1.1 74.2 ± 1.2 80.0 ± 0.9 95.4 ± 0.5
RF 86.5 ± 0.9 82.8 ± 1.1 83.4 ± 1.3 96.2 ± 0.6

IV. CONCLUSIONS

The proposed Contextually Guided Convolutional Neural
Network (CG-CNN) method uses a shallow CNN network
with a small number of output units trained to recognize
contextually related input patterns. Once the network is trained
on one task, involving one set of different contexts, the
convolutional features it develops are transferred to a new
task, involving a new set of different contexts, and training
continues. In a course of repeatedly transferred training on a
sequence of such tasks, convolutional features progressively

TABLE III
HSI CLASSIFICATION RESULTS ON THE SALINAS DATASET.

Accuracy (%)
Orig.(220) PCA(30) RF(30) CG-CNN(30)

ID3 88.3 ± 0.6 90.2 ± 0.3 85.9 ± 0.5 87.3 ± 0.5
LDA 91.7 ± 0.3 90.6 ± 0.4 89.6 ± 0.5 88.7 ± 0.6
Linear-SVM 92.9 ± 0.4 93.2 ± 0.3 92.2 ± 0.4 92.8 ± 0.4
Cubic-SVM 96.1 ± 1.5 96.2 ± 1.0 94.8 ± 1.0 96.8 ± 0.2
RBF-SVM 95.2 ± 0.3 96.5 ± 0.3 94.1 ± 0.3 95.7 ± 0.2
K-NN 91.9 ± 0.5 92.6 ± 0.4 93.0 ± 0.3 97.8 ± 0.3
RF 95.3 ± 0.3 96.1 ± 0.2 95.2 ± 0.3 97.8 ± 0.3

develop greater pluripotency (the degree of usefulness when
transferred to new tasks) as demonstrated on texture and
hyperspectral image datasets.

ACKNOWLEDGMENT

This work was supported, in part, by the National Science
Foundation under Grant No. 2003740, by the Office of Naval
Research, by the Arkansas INBRE program, and by the DART
grant from NSF EPSCoR RII Track-1.

REFERENCES

[1] Ethem Alpaydin. Introduction to machine learning, third edition. The
MIT Press, Cambridge, 2014.

[2] M Arjovsky and L Bottou. Towards principled methods for training
generative adversarial networks. In International Conference on Neural
Information Processing Systems (NIPS) 2016 Workshop on Adversarial
Training. In review for ICLR, volume 2016, 2017.

[3] Phil Brodatz. Textures: A photographic album for artists and designers.
Dover Pubns, 1966.

[4] Andy Clark and Chris Thornton. Trading spaces: Computation, repre-
sentation, and the limits of uninformed learning. Behavioral and Brain
Sciences, 20(1):57–66, 1997.

[5] Alexey Dosovitskiy, Jost Tobias Springenberg, Martin Riedmiller, and
Thomas Brox. Discriminative unsupervised feature learning with convo-
lutional neural networks. In Advances in Neural Information Processing
Systems, pages 766–774, 2014.

[6] Oleg V Favorov and Olcay Kursun. Neocortical layer 4 as a pluripotent
function linearizer. Journal of Neurophysiology, 105(3):1342–1360,
2011.

[7] Oleg V Favorov and Dan Ryder. Sinbad: A neocortical mechanism for
discovering environmental variables and regularities hidden in sensory
input. Biological Cybernetics, 90(3):191–202, 2004.

[8] Li Fei-Fei, Rob Fergus, and Pietro Perona. Learning generative visual
models from few training examples: An incremental bayesian approach
tested on 101 object categories. Computer Vision and Image Under-
standing, 106(1):59–70, 2007.

[9] Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-
learning for fast adaptation of deep networks, 2017.

[10] Kalanit Grill-Spector and Rafael Malach. The human visual cortex.
Annual Review of Neuroscience, 27:649–677, 2004.

[11] Jeff Hawkins, Subutai Ahmad, and Yuwei Cui. A theory of how columns
in the neocortex enable learning the structure of the world. Frontiers in
Neural Circuits, 11:81, 2017.

[12] Olcay Kursun, Semih Dinc, and Oleg V. Favorov. Contextually guided
convolutional neural networks for learning most transferable represen-
tations, 2021.

[13] Olcay Kursun and Oleg V. Favorov. Suitability of features of deep
convolutional neural networks for modeling somatosensory information
processing. In Pattern Recognition and Tracking XXX, volume 10995,
pages 94 – 105. International Society for Optics and Photonics, SPIE,
2019.

[14] Adam H Marblestone, Greg Wayne, and Konrad P Kording. Toward an
integration of deep learning and neuroscience. Frontiers in Computa-
tional Neuroscience, 10:94, 2016.

