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Many systems in physics, chemistry and biology exhibit oscillations
with a pronounced random component. Such stochastic oscillations
can emerge via different mechanisms, for example linear dynamics
of a stable focus with fluctuations, limit-cycle systems perturbed by
noise, or excitable systems in which random inputs lead to a train of
pulses. Despite their diverse origins, the phenomenology of random
oscillations can be strikingly similar. Here we introduce a nonlin-
ear transformation of stochastic oscillators to a new complex-valued
function Q∗

1(x) that greatly simplifies and unifies the mathematical
description of the oscillator’s spontaneous activity, its response to
an external time-dependent perturbation, and the correlation statis-
tics of different oscillators that are weakly coupled. The function
Q∗

1(x) is the eigenfunction of the Kolmogorov backward operator
with the least negative (but non-vanishing) eigenvalue λ1 = µ1 + iω1.
The resulting power spectrum of the complex-valued function is ex-
actly given by a Lorentz spectrum with peak frequency ω1 and half-
width µ1; its susceptibility with respect to a weak external forcing is
given by a simple one-pole filter, centered around ω1; and the cross-
spectrum between two coupled oscillators can be easily expressed
by a combination of the spontaneous power spectra of the uncou-
pled systems and their susceptibilities. Our approach makes qual-
itatively different stochastic oscillators comparable, provides sim-
ple characteristics for the coherence of the random oscillation, and
gives a framework for the description of weakly coupled oscillators.
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In the age of big data, the human mind craves simple ex-1

planations of complex phenomena. The general category2

of “stochastic oscillations” embraces a bewildering array of3

natural and engineered systems in which one or more mea-4

surable quantities vary repeatedly but irregularly. Examples5

range from the molecular scale (oscillations in genetic reg-6

ulatory circuits (1)) to the macroscopic scale (fluctuations7

in predator-prey systems (2, 3)), from physical and chemical8

systems (lasers (4, 5), chemical oscillations (6), swaying of9

bridges (7), oscillations in aircraft wings (8, 9)) to living sys-10

tems (oscillations in hair cell bundles (10, 11), in glycolytic11

yeast activity (12, 13), in locomotor CPG activity (14), and in12

cortical networks (15, 16)), and from millisecond time scales13

(neuronal firing (17, 18)) to hours (circadian rhythms (19, 20))14

and longer (menstrual cycle (21)).15

A universal framework for understanding and comparing16

stochastic oscillations would seem to be an impossible goal,17

not only because nonlinear stochastic dynamical systems are18

intrinsically difficult to analyze, but because stochastic os-19

cillations arise from a wide variety of underlying dynamical20

mechanisms. In the simplest case, one may obtain irregular21

oscillations by incorporating noise into a deterministic limit-22

cycle system. Examples of noisy oscillations generated by23

such mechanisms include spontaneously active hair bundles24

in the auditory system (22), or tonically active nerve cells 25

in the sensory periphery, that produce trains of action po- 26

tentials perturbed by “channel noise” (random gating of ion 27

channels) (23, 24), or oscillations in genetic regulatory cir- 28

cuits perturbed by copy-number noise (1). In addition, there 29

are multiple types of noise-induced oscillations: systems in 30

which the oscillatory activity would die out in the absence 31

of noise. A well-known class of noise-induced mechanisms 32

arises when a deterministic excitable system is perturbed by 33

noise. Below its activation threshold, such an excitable system 34

will not produce sustained activity. But when perturbed by 35

dynamical noise, an excitable system may produce an ongo- 36

ing train of pulsatile activations (25). A nerve cell receiving 37

a subthreshold current provides a familiar example (26–29). 38

Another important class of noise induced-oscillators include 39

quasicycle systems. Quasicycles arise when a system has a 40

stable equilibrium (with complex eigenvalues), perturbed by 41

fluctuating inputs (30). Many physical and biological systems 42

show random oscillations attributed to quasicycle dynamics. 43

Examples include underdamped linear mass-spring system im- 44

mersed in a heat bath (31), subthreshold oscillations in nerve 45

cells sustained by channel noise (32), models of EEG oscilla- 46

tions and intermittent cortical network activity (33–36), and 47

oscillations in predator-prey systems sustained by demographic 48

(finite-population) noise (2). Demographic fluctuations can 49

also sustain oscillations in systems with rock-paper-scissors 50

interactions by yet another mechanism: noisy heteroclinic 51

cycle dynamics (37–40). 52
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Despite this diversity in the origins of noisy oscillations,53

each of the mechanisms above can be instantiated as a Markov54

process, for example as a system of stochastic differential55

equations. Previous investigations of such systems have relied56

on empirical quantities such as the power spectrum (for a single57

unit), the cross-correlation (for multiple units), or the linear58

response to small-amplitude perturbations. The possibility of a59

simpler, unifying description of Markovian oscillators remains60

an important open question. Ideally, one would aim to find61

the stochastic analogue of the well known ‘phase reduction’. In62

deterministic limit-cycle systems, the phase reduction (41, 42)63

(and also the phase-amplitude reduction (43–46)) provide low-64

dimensional descriptions that have yielded far reaching insights65

into regulation, entrainment, and synchronization of oscillating66

systems (47–50). Although the deterministic phase concept67

can also be applied to some noisy systems (e.g. single linear68

and nonlinear oscillators (51) and coupled stochastic systems69

(52)), generally, the notion of phase has to be generalized in a70

stochastic framework in order to make it applicable to cases71

of pure noise-induced oscillations for which a deterministic72

phase does not exist (53–58). Here we go beyond such a simple73

extension of the phase definition, and suggest a transformation74

to a complex-valued function that brings about a tremendous75

simplification in the description of stochastic oscillators. We76

show that by transforming the system’s output to a complex77

eigenfunction of the backward Kolmogorov operator we obtain78

a surprisingly simple, unified treatment of irregular oscillations,79

regardless of their underlying mechanisms. Importantly, using80

our complex-valued eigenfunction description, we show that81

both the power spectrum and the susceptibility for single82

oscillators, and the cross spectrum for multiple oscillators,83

take dramatically simplified, universal forms.84

Stochastic oscillators described by eigenfunctions85

The key step in finding a universal description comes from86

the observation that stochastic systems may be described not87

just by individual trajectories but by an ensemble of trajecto-88

ries, described by a probability density. Nonlinear stochastic89

dynamical systems are difficult to analyze (25, 59–61), in90

particular, if they violate detailed balance (62). However,91

their densities evolve following linear dynamics, making the92

densities amenable to analysis as linear systems.93

We suppose that a stochastic oscillator obeys the Langevin94

equation (which we interpret in the sense of Itô)95

dx
dt

= f(x) + g(x)ξ(t), [1]96

where ξ represents k-dimensional white Gaussian noise with un-
correlated components ⟨ξi(t)ξj(t′)⟩ = δ(t− t′)δi,j . For Eq. (1)
the conditional probability of the state vector x, given initial
condition x0, obeys the forward Kolmogorov equation (62):

∂

∂t
P (x, t | x0, s) = L[P ] [2]

= −∇x ·(f(x)P ) +
∑︂
i,j

∂2

∂xixj
(Dij(x)P ) ,

where D = 1
2gg

⊺. The formal adjoint of the operator L
is Kolmogorov’s backward operator L† (also known as the
generator of the Markov process Eq. (1), and closely related

to the Koopman operator), which satisfies the equation

− ∂

∂s
P (x, t | x0, s) = L†[P ] [3]

= f(x0)·∇x0 (P ) +
∑︂
i,j

Dij(x0) ∂2P

∂x0,ix0,j
,

Let us assume that the operators L, L† possess a discrete 97

set of eigenvalues with corresponding eigenfunctions 98

L[Pλ] = λPλ, L†[Q∗
λ] = λQ∗

λ. [4] 99

Under the natural inner product we have the biorthogonality 100

condition 101

⟨Qλ′ | Pλ⟩ =
∫︂
dxQ∗

λ′ (x)Pλ(x) = δλ′λ, [5] 102

so that the transition probability can be expressed as (62) 103

P (x, t|x0, s) = P0(x) +
∑︂
λ̸=0

eλ(t−s)Pλ(x)Q∗
λ(x0), [6] 104

for t > s. That is, as established for many stochastic systems 105

(60, 62, 63), the transition probability P can be regarded as a 106

sum of modes, each of which decays at a rate given by the real 107

part of its respective eigenvalue λ, leading in the long-time 108

limit to the stationary distribution P0(x), which we assume to 109

be unique. The latter is the eigenfunction for the eigenvalue 110

λ0 = 0; the corresponding eigenfunction for this eigenvalue for 111

the operator L† is Q0 = 1. N.b. Even in the stationary state 112

the system will maintain a steady circulation of probability. 113

The decaying modes in Eq. (6) have been shown to contain 114

important information about the stochastic oscillation (54, 58, 115

64); the most prominent mode being the one whose associated 116

eigenvalue has least negative nonvanishing real part – as this 117

is the mode that decays the slowest. Some of us suggested a 118

definition of a stochastic oscillator and its stochastic phase 119

along these lines: according to (54) the stochastic system 120

in Eq. (1) qualifies as robustly oscillating if the following 121

conditions are met: 122

1. there exists a nontrivial eigenvalue with least negative 123

real part λ1 = µ1 + iω1 which is complex valued and 124

unique; 125

2. the oscillation is pronounced, i.e. the quality factor |ω1/µ1| 126

is much larger than one; 127

3. all other nontrivial eigenvalues λ′ are significantly more 128

negative in their real parts, i.e. |ℜ[λ′]| ≥ 2|ℜ[λ1]|. 129

If these conditions are fulfilled, then one can extract the 130

stochastic asymptotic phase ψ(x) as the complex argument 131

of the slowest decaying eigenfunction Q∗
1(x), i.e. ψ(x) = 132

arg(Q∗
1(x)). We can then ascribe at any time t a phase variable 133

to the state x(t) of the system by making the nonlinear trans- 134

formation to a real-valued phase of the system ψ(t) = ψ(x(t)) 135

(modulo 2π). 136

Here, we pursue this eigenfunction perspective further by 137

demonstrating that the nonlinear transformation of the system, 138

using the complex eigenfunction Q∗
1(x), i.e. 139

x(t) → Q∗
1(x(t)), [7] 140
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leads to a universal description of stochastic oscillations, in-141

dependent of the specific stochastic mechanism responsible142

for their generation. The transformation to the new complex-143

valued variable Q∗
1(x(t)) entails a tremendous simplification144

for all of the oscillator’s essential aspects. Firstly, we derive145

unifying and strikingly simple formulas for its spontaneous146

spectral statistics; this enables a systematic comparison of147

different stochastic oscillators. Secondly, we also calculate its148

linear response to external time-dependent stimuli and find a149

fluctuation-dissipation theorem. Thirdly, we put forward a sim-150

ple but quantitatively successful theory of cross-correlations151

of weakly coupled stochastic oscillators. Hence, using the full152

function Q∗
1(x) (instead of using only its complex argument153

ψ(x)) as the stochastic analog of asymptotic phase, we achieve154

a true simplification and capture the universal characteristics155

of stochastic oscillations.156

Before proceeding, we note that Q∗
1(x(t)) has a zero sta-157

tionary mean value, in the sense that158

⟨Q∗
1(x(t))⟩ =

∫︂
dxQ∗

1(x)P0(x) = 0, [8]159

which follows from the biorthogonality relation Eq. (5). Fur-160

thermore, we normalize it to have unit variance161 ⟨︁
|Q∗

1(x(t))|2
⟩︁

=
∫︂
dx |Q∗

1(x)|2P0(x) = 1. [9]162

Finally we note that the complex argument of Q∗
1(x) (the163

above mentioned asymptotic phase of a stochastic oscillator)164

is only defined up to a constant phase shift.165

Example models166

Throughout the paper we will illustrate our unified theory by167

applying it to three models in which stochastic oscillations168

arise from qualitatively different mechanisms. We will use each169

model at two different parameter sets – one corresponding to a170

more coherent (cf. Fig. 1) and one to a less coherent (cf. Fig. 2)171

stochastic oscillation. We tune parameters such that all models172

in the more coherent case have the same leading nontrivial173

eigenvalue λ1 = −0.048+i0.698 and thus also the same quality174

factor of |ω1/µ1| = 14.5, thereby satisfying condition (ii) for a175

robust stochastic oscillation well. Likewise, we find parameters176

such that all models in the less coherent case have the same177

λ1 = −0.168 + i0.241 and thus also the same quality factor178

of |ω1/µ1| = 1.43 which obeys condition (ii) for a robust179

stochastic oscillation only barely but represents the interesting180

limit case in which fluctuations definitely cannot be regarded181

as weak.182

Damped harmonic oscillator with white noise – As a first183

illustration, we consider an elementary physical model that184

is analytically treatable (31): a one-dimensional harmonic185

oscillator with mass M which is subject to Stokes friction186

and white Gaussian noise and obeys the stochastic differential187

equations188

ẋ = v, Mv̇ = −γv −Mω2
0x+

√
2Dξ(t). [10]189

The model is already formulated in non-dimensional variables190

(space and time) and parameters (friction coefficient γ, eigen-191

frequency ω0 and noise intensity D) and will be considered192

exclusively in the underdamped limit (ω0 > γ/(2M)). We193

Fig. 1. Three models of ‘robust’ stochastic oscillations. In the three panels we show
for each model ten sample trajectories in phase space together with the stochastic
asymptotic phase ψ(x) (left subpanel), a time series of one of the components (lower
right subpanel), and the spectrum of eigenvalues (top right subpanel). For the three
models, parameters have been tuned so they have the same value for the eigenvalue
λ1 = −0.048 + 0.698i with the smallest non-vanishing real part. a: Damped noisy
harmonic oscillator for M = 1, γ = 0.096, ω0 = 0.699, D = 0.01125. b: Noisy
Stuart-Landau for a = 1, b = −0.3, D1 = D2 = 0.04. c: Noisy SNIC model
(beyond the bifurcation, i.e. in the limit-cycle regime) for m = 1.216, n = 1.014,
D1 = D2 = 0.0119. d: Power spectra (left) and correlation function (right) of x(t)
(harmonic oscillator, green), x1(t) (noisy Stuart-Landau model, purple), and x1(t)
(SNIC model, blue).

show sample trajectories and the time courses of the stochas- 194

tic oscillation for a high quality factor of |ω1/µ1| = 14.5 in 195

Fig. 1a and for a less coherent oscillation with |ω1/µ1| = 1.43 196

in Fig. 2a. The trajectories in phase-space spend most time 197

around the origin and in the time series of the position variable 198

strong stochastic variations in amplitude and phase are seen. 199

The eigenvalue spectra (upper right in Fig. 1a and Fig. 2a) on 200

the left side of the complex plane are in part complex-valued 201

but some are also purely real; the next eigenvalue to λ1 ful- 202

fills the condition (iii) with the equal sign (the spectrum is 203

discussed in (60)).∗ 204

∗Although it is well known that one cannot unambiguously define the “asymptotic phase" for a deter-
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Noisy Stuart-Landau oscillator – This is the canonical205

model for a supercritical Hopf bifurcation, which we consider206

in a version endowed with white Gaussian noise207

ẋ1 = ax1 − x2 − a(x2
1 + x2

2)(x1 + bx2) +
√

2D1ξ1(t),

ẋ2 = ax2 + x1 − a(x2
1 + x2

2)(x2 − bx1) +
√

2D2ξ2(t),
[11]208

with a, b ∈ R. In the absence of noise this system has a limit209

cycle of period T = 2π/(1 + ba). Because of the existing limit210

cycle the amplitude variations of the stochastic oscillations211

are much smaller than for the harmonic oscillator (see left and212

bottom right panels of Fig. 1b and Fig. 2b). The eigenvalue213

spectra (top right panels of Fig. 1b and Fig. 2b) are, in the214

displayed region, far less populated than for those of the215

harmonic oscillator. We note that there are also purely real216

eigenvalues outside the shown range; these are related to the217

amplitude of the stochastic oscillation (58).218

Noisy SNIC system – A two-dimensional system that, in219

its deterministic version, undergoes a saddle-node bifurcation220

on an invariant circle (SNIC) is given by221

ẋ1 = nx1 −mx2 − x1(x2
1 + x2

2) + x2
2√︁

x2
1 + x2

2
+

√
2D1ξ1(t),

ẋ2 = mx1 + nx2 − x2(x2
1 + x2

2) − x1x2√︁
x2

1 + x2
2

+
√

2D2ξ2(t).

[12]222

Without noise, the saddle-node bifurcation from the excitable223

to the oscillatory regime occurs at m = 1. Here we consider224

this model endowed with white Gaussian noise once set in the225

oscillatory regime (leading to the more coherent stochastic226

oscillation, see Fig. 1c) and once set in the excitable regime227

(leading to the less coherent stochastic oscillation, see Fig. 2c).228

In marked contrast to the first two models, the x1 variable229

of the SNIC model has a temporally asymmetric time series;230

however, we observe this asymmetry to be more pronounced231

in the excitable case. In this case, the trajectory stays most232

of the time close to the stable node and occasionally the noise233

causes a transition across the unstable saddle. Similarly to the234

Stuart-Landau case, we have fewer eigenvalues in the displayed235

range compared to the harmonic oscillator; again there exist236

purely real eigenvalues outside the range shown.237

As Fig. 1d and Fig. 2d show, despite having chosen the238

parameters of the three models such that they all have the239

same value of λ1 = µ1 + iω1 and thus share the same long-240

term evolution time dependence† in Eq. (6), the power spectra241

and autocorrelation functions of the models at one λ1 differ.242

The differences are more pronounced for the less coherent243

oscillation (Fig. 2d) and they reflect the specific nature of244

the system. For instance, the SNIC system with its highly245

temporally asymmetric time series shows pronounced higher246

harmonics, while the harmonic oscillator does not. Except247

for the harmonic oscillator (31), it is difficult to calculate248

power spectra or correlation functions for these stochastic249

oscillators analytically (for the Stuart-Landau oscillator, some250

approximations for power spectrum and linear response have251

been put forward in (66–68)).252

By contrast, and as we show next, the heterogeneous profiles253

for the statistics of spontaneous fluctuations, as given by the254

ministic linear spiral sink, it was shown in (65) that both the Q∗
1 function, and hence the stochastic

asymptotic phase, are well defined as long as the noise has finite amplitude.
†Shared time dependence in the long-term evolution of Eq. (6), i.e. in P (x, t|x0, s) ≈

P0(x) + eλ1(t−s)P1(x)Q∗
1 (x0), refers here to the shared exponential function of time;

obviously, the state-dependent functions differ among the different systems.

Fig. 2. Three models of stochastic oscillations. In the three panels we show for
each model ten sample trajectories in phase space together with the stochastic
asymptotic phase ψ(x) (left subpanel), a time series of one of the components
(lower right subpanel), and the spectrum of eigenvalues (top right subpanel). For
the three models, parameters have been tuned so they have the same value for
slowest decaying eigenvalue λ1 = −0.168 + 0.241i. a: Damped noisy harmonic
oscillator for M = 1, γ = 0.337, ω0 = 0.294, D = 0.01125. b: Noisy
Stuart-Landau for a = 1, b = −0.713, D1 = D2 = 0.0995. c: Noisy SNIC
model (prior to the bifurcation, i.e. in the excitable regime) for m = 0.99, n = 1,
D1 = D2 = 0.01125. d: Power spectra (left) and correlation function (right) of x(t)
(harmonic oscillator, green), x1(t) (noisy Stuart-Landau model, purple), and x1(t)
(excitable SNIC model, blue).

power spectra or correlation functions, will be reduced to a 255

universal form when we observe the processes through the lens 256

of the leading backward eigenfunction Q∗
1(x(t)). 257

Correlation functions and power spectra 258

Generally, for any eigenfunction Q∗
λ(x(t)), the correlation 259

function is given by Cλ,λ(τ) = ⟨Q∗
λ(x(τ))Qλ(x(0))⟩ and 260

its Fourier transform, the power spectrum, by Sλ,λ(ω) = 261∫︁ ∞
−∞ Cλ,λ(τ)e−iωτdτ . 262

4 | www.pnas.org/cgi/doi/10.1073/pnas.XXXXXXXXXX Pérez-Cervera et al.
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We can write the autocorrelation function as the following
integral

Cλ,λ(τ) =
∫︂
dx

∫︂
dx0 Q

∗
λ(x)Qλ(x0)P (x, τ |x0, 0)P (x0).

If we express the conditional density as in Eq. (6) and use the263

biorthogonal properties in Eq. (5) we arrive (see SI) for τ > 0264

at265

Cλ,λ(τ) = ⟨|Q∗
λ|2⟩eλτ . [13]266

This is a strikingly simple result: the correlation function is267

given by the product of the stationary variance of Q∗
λ and268

a complex exponential function. Specifically, for our new269

variable Q∗
1(x), taking into account Eq. (9) and generalizing270

the formula to both negative and positive time lags τ , the271

correlation function reads272

C1(τ) = exp [µ1|τ | + iω1τ ] . [14]273

Real and imaginary parts of this function display damped os-274

cillations (not shown) corresponding to the finite coherence of275

the stochastic oscillations. One characteristic of the oscillation276

is the quality factor |ω1/µ1| that tells us how many cycles (in277

multiples of 2π) are seen in the correlation function before the278

exponential envelope has decayed to 1/e.279

The even simpler expression for the power spectral density280

corresponds to a (purely real-valued) Lorentzian, peaked at281

ω = ω1 with a half-width of µ1282

S1(ω) = 2|µ1|
µ2

1 + (ω − ω1)2 . [15]283

In Fig. 3 we show the power spectra of Q∗
1(x) and the real284

part of the auto-correlation function C1(τ) for the parameters285

chosen in Fig. 1 and Fig. 2 (panels Fig. 3a and b, respectively).286

As we show in Figs. 1d and 2d, the power spectra and correla-287

tion functions of the models in the original variables exhibit288

different shapes. However, when transforming to Q∗
1(x), since289

we tuned parameters such that all three models in Figs. 1 and290

2 have the same complex eigenvalue with smallest real part,291

λ1, the three very different systems possess identical power292

spectra. This is confirmed by our simulations (symbols) which293

all fall on the line predicted by Eq. (15) (see Fig. 3). Therefore,294

by means of the function Q∗
1 we have made the three systems295

quantitatively comparable and, moreover, characterizable with296

a simple analytical expression and two informative parameters297

– the frequency and the half-width of the spectral peak (or,298

equivalently, the frequency and the quality factor).299

By a procedure similar to that for the correlation func-
tions and power spectra for Q∗

λ(x(t)), we can also calcu-
late expressions for the cross-correlation functions Cλ,λ′ (τ) =
⟨Q∗

λ(x(τ))Qλ′ (x(0))⟩ (see SI for details):

Cλ,λ′ (τ) = ⟨Q∗
λQλ′ ⟩

{︃
e−λ′∗τ , τ < 0
eλτ , τ > 0

, [16]

and for the cross-spectra Sλ,λ′ (ω) =
∫︁ ∞

−∞ dτCλ,λ′ (τ)e−iωτ
300

Sλ,λ′ (ω) = − ⟨Q∗
λQλ′ ⟩

(︂ 1
λ− iω

+ 1
λ′∗ + iω

)︂
. [17]301

We will need these expressions below for the theory of coupled302

stochastic oscillators.303

Fig. 3. Power spectra S1(ω) and real part of the auto-correlation function C1(t) of
Q∗

1(x(t)) for the different models in Fig. 1 (panel a) and Fig. 2 (panel b). a: For
parameters from Fig. 1 (chosen such that λ1 = µ1 + iω1 is approximately the
same for all models with µ1 = −0.048, ω1 = 0.698, leading to a more coherent
oscillation with a quality factor of |ω1/µ1| = 14.3) we compare Eq. (15) (solid
line), to stochastic simulations of the three models (symbols). b: For parameters
from Fig. 2 (chosen such that λ1 = µ1 + iω1 is approximately the same for all
models with µ1 = −0.168, ω1 = 0.241, leading to a less coherent oscillation with
a quality factor of |ω1/µ1| = 1.43) we compare Eq. (15) (solid line), to stochastic
simulations of the three models (symbols).

Linear Response and fluctuation-dissipation theorem 304

We now consider how the stochastic oscillators respond to a 305

weak time-dependent forcing εp(t) that enters the system via 306

a perturbation vector e. That is, we consider 307

dx
dt

= f(x) + εp(t)e + g(x)ξ(t), x, e ∈ Rn. [18] 308

How the time-dependent mean value of our new variable 309

Q∗
1(x(t)) is affected by the perturbation p(t) can be described 310

in terms of linear response theory (60, 61, 69, 70) 311

⟨Q∗
1(x(t))⟩ = ε

∫︂ t

−∞
dt′ Ke(t− t′)p(t′), [19] 312

where we have taken into account Eq. (8) and introduced 313

the complex-valued linear-response function Ke(τ) (the in- 314

dex indicates the dependence on the direction of perturba- 315

tion, e). Equivalently, we can use the susceptibility χe(ω) = 316∫︁ ∞
−∞ dτe−iωτKe(τ), the Fourier transform of the response func- 317

tion. 318

In order to derive an expression for Ke(τ), we follow Risken 319

(60, chapter 7) and express the Fokker-Planck operator by an 320

unperturbed part L and a perturbation part Le = −e · ∇, 321

leading to the Fokker-Planck equation 322

∂tP (x, t) =
(︁
L(x) + εp(t)Le(x)

)︁
P (x, t). [20] 323

Expanding the density in powers of ε, P (x, t) = P0(x) + 324

εPe(x, t) + O(ε2), taking only the leading linear order and 325

expressing this by an integral over the formal time-dependent 326

solution, we obtain 327

Pe(x, t) =
∫︂ t

−∞
dt′ p(t′)eL(x)(t−t′)

[︂
Le(x)[P0(x)]

]︂
. [21] 328
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By expressing the time-dependent mean value ⟨Q∗
1(x(t))⟩ by329

the integral over Pe(x, t) and comparing to Eq. (19), we obtain330

for the linear-response function the intermediate result331

Ke(τ) =
∫︂
dx Q∗

1(x)eL(x)τ
[︂
Le(x)[P0(x)]

]︂
, τ > 0. [22]332

We expand Le(x)[P0(x)] =
∑︁

λ′ βe,λ′Pλ′ (x) into forward333

eigenfunctions, use the eigenvalue equations and the biorthog-334

onality relation Eq. (5), and finally take into account causality335

(which implies Ke(τ) ≡ 0 for τ < 0) to arrive at a simple336

expression for the linear-response function (see SI for details)337

Ke(τ) = βe

{︃
eλ1τ , τ > 0
0, else

, [23]338

where the complex-valued coefficient βe = βe,λ1 (we omit the339

second index for ease of notation) is given by340

βe = −
∫︂
dxQ∗

1(x)[e · ∇P0(x)], [24]341

where ∇P0(x) is the gradient of the stationary density in our n-342

dimensional phase space. We note that for a stationary density343

P0(x) obeying natural boundary conditions, βe = e·⟨∇Q∗
1(x)⟩,344

i.e. the coefficient is related to the mean change of Q∗
1(x) in345

the direction of the perturbation.346

The susceptibility of the stochastic oscillator is given by347

χe(ω) =
∫︂ ∞

−∞
dτ Ke(τ)e−iωτ = βe

−µ1 + i(ω − ω1) , [25]348

i.e. a simple bandpass filter centered at ω = ω1. Its modulus349

and its phase are given by,350

|χe(ω)| = |βe|√︁
µ2

1 + (ω − ω1)2
,

arg(χe(ω)) = arg(βe) + arctan(ω1 − ω,−µ1).
[26]351

We confirm these results via numerical simulations of all three352

models in Fig. 4 (see SI for details on measuring suscepti-353

bilities). For the harmonic oscillator, we show only the sus-354

ceptibility for the physically relevant case of a perturbation355

of the velocity equation. For the Stuart-Landau model the356

susceptibilities for perturbations in the x1 and x2 directions357

are shown separately but coincide because of the symmetry of358

the model; the phase shifts are also the same up to a constant359

(we recall that the phase of our output variable Q∗
1 is only360

determined up to a constant phase). In contrast to the rota-361

tional symmetry of the Stuart-Landau oscillator, the excitable362

SNIC model differs in its response to perturbations in the x1363

and x2 directions: perturbations in the x1 direction are more364

efficient in kicking the system out of the stable fixed point and365

thus in evoking a response; consequently, χex1 > χex2 for all366

frequencies.367

We note that we can calculate the response functions and368

susceptibilities of the higher eigenfunctions Q∗
λ′ (x(t)) in an369

analogous fashion, resulting in very similar formulas, Eq. (23)370

and Eq. (25). The main differences are that (i) we have to use371

λ′ instead of λ1, and (ii) in the computation of the coefficient372

βe in Eq. (24), we use Q∗
λ′ (x) instead of Q∗

1(x).373

Turning back to the statistics of Q∗
1(x(t)), we stress that374

the simple expressions for the autocorrelation function of the375

Fig. 4. Susceptibility functions χe(ω) of the variable Q∗
1(x(t)) for the different

models with the same parameters as in Fig. 2 and different perturbation vectors
e as indicated. For each model, we show the squared of the absolute value,
|χe(ω)|2, (left panel) showing a Lorentzian profile and its angle arg(χe(ω)) (right
panel). The perturbation vectors are e1 = (1, 0)⊤ and e2 = (0, 1)⊤. a: The
harmonic oscillator βev = 3.87i (blue, computations; cyan, theory); b: Stuart-
Landau model βe1 = −0.641 + 0.297i (orange, computations; yellow, the-
ory), βe2 = −0.297 − 0.641i, (blue, computations; cyan, theory); c: SNIC
excitable system βe1 = −1.38 − 1.3i (orange, computations; yellow, theory),
βe2 = 0.54 − 0.19i (blue, computations; cyan, theory).

oscillator and its response function permit a simple connec- 376

tion between them, which can be regarded as a fluctuation- 377

dissipation theorem (FDT). FDTs are relations between the 378

spontaneous activity of a system and its response to exter- 379

nal perturbations, and have been derived for thermodynamic 380

equilibrium (60, 69, 71) as well as for non-equilibrium settings 381

(61, 72–76). For our broad model class, we obtain the simplest 382

relation in the time domain as follows 383

Ke(τ) = βeC1(τ), τ > 0. [27] 384

This relation resembles, formally, the generalized FDT (61, 72, 385

73, 77), but differs from the latter, because the generalized 386

FDT is based on the (purely real-valued) conjugated variable. 387

Our result Eq. (27) constitutes a simple fluctuation-dissipation 388

theorem holding true for the general class of stochastic oscil- 389

lators, most of which operate far from thermodynamic equi- 390

librium. For relations between the power spectrum and the 391

susceptibility that are formally closer to the standard FDT of 392

equilibrium systems in the Fourier domain (71), see SI. 393

Two weakly coupled stochastic oscillators 394

We now demonstrate that the transformation to the new vari- 395

able Q∗
1(x) also allows for a simplified description of the statis- 396

tics of weakly coupled stochastic oscillators. For simplicity, 397

we consider only two coupled oscillators; however, the general 398

method can be applied for larger systems of interacting units 399

too. 400
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We couple the two oscillators with the scalar functions401

Hx(x,y) = Hxx(x)+Hyx(y) and Hy(x,y) = Hxy(x)+Hyy(y)402

along the directions ex and ey, respectively, and scale the403

coupling terms by a small parameter ε404

ẋ = fx(x) + εex[Hxx(x) +Hyx(y)] + gx(x)ξx(t),
ẏ = fy(y) + εey[Hxy(x) +Hyy(y)] + gy(y)ξy(t).

[28]405

Here, the terms with mixed indices Hyx(y) (Hxy(x)) describe406

the effect of the y (x) oscillator on the x (y) oscillator; the407

diagonal terms Hxx(x) and Hyy(y) can in principle be lumped408

into the drift terms fx(x) and fy(y), respectively (which will409

then also change our Q∗
1 functions). Here we keep for clar-410

ity the diagonal terms as a perturbing input, such that the411

eigenfunctions Q∗
1x (x) and Q∗

1y (y) are those of the uncoupled412

oscillators (see SI for a discussion of the alternative treatment413

of the problem).414

We use the response functions Eq. (23) in a realisation-wise415

version416

Q∗
1x= Q∗

1x,0 + ε

t∫︂
−∞

dt′Kex (t−t′)[Hxx(x(t′))+Hyx(y(t′))],

Q∗
1y= Q∗

1y,0 + ε

t∫︂
−∞

dt′Key (t−t′)[Hxy(x(t′))+Hyy(y(t′))],

[29]417

and similarly for the other backward eigenmodes Q∗
λ′

x
and Q∗

λ′
y

418

(see SI). In Eq. (29) the functions Q∗
1x,0 and Q∗

1y,0 denote the419

spontaneous activity of the uncoupled oscillator, respectively.420

A similar approximation (using the response function for the421

time-dependent mean value to approximate the realization-422

wise response of the system) has been successfully applied in423

the past to stochastic network models of recurrently coupled424

spiking neurons (78, 79).425

We assume that we can expand the coupling functions into426

the backward eigenfunctions as follows427

Hxx(x) +Hyx(y) =
∑︂
λ′

x

γλ′
x
Q∗

λ′
x

+
∑︂
λ′

y

αλ′
y
Q∗

λ′
y
,

Hxy(x) +Hyy(y) =
∑︂
λ′

x

αλ′
x
Q∗

λ′
x

+
∑︂
λ′

y

γλ′
y
Q∗

λ′
y
,

[30]428

where the coefficients γλ′
x
, αλ′

x
are given by429

γλ′
x

=
∫︂
dxPλ′

x
(x)Hxx(x), αλ′

x
=

∫︂
dxPλ′

x
(x)Hxy(x),

γλ′
y

=
∫︂
dyPλ′

y
(y)Hyy(y), αλ′

y
=

∫︂
dyPλ′

y
(y)Hyx(y).

[31]430

In addition to introducing these coefficients, we now also431

consider the finite-time-window Fourier transforms of the ob-432

servables (see SI for details) and thus obtain from Eq. (29)433

Q̃
∗
1x = Q̃

∗
1x,0 + εχex

(︂ ∑︂
λ′

x

γλ′
x
Q̃

∗
λ′

x
+

∑︂
λ′

y

αλ′
y
Q̃

∗
λ′

y

)︂
,

Q̃
∗
1y = Q̃

∗
1y,0 + εχey

(︂ ∑︂
λ′

x

αλ′
x
Q̃

∗
λ′

x
+

∑︂
λ′

y

γλ′
y
Q̃

∗
λ′

y

)︂
,

[32]434

and similarly for the remaining modes. From this linear system435

of equations, by a systematic expansion in the weak coupling436

Fig. 5. Cross-Spectra of two coupled units for weak coupling strength ε = 0.01. In
all panels the thin (thick) lines indicate simulations (theory); blue (green) corresponds
to real (imaginary) part. a: For two harmonic oscillators with parameters as in Fig. 1
we show cross-spectra between the position variables of each oscillator (left) and
between theQ∗

1 functions, Sc
1,yx. b: For two symmetrically coupled but non-identical

Stuart-Landau oscillators we show the cross spectrum between the Q∗
1 functions;

left: oscillators slightly detuned with one oscillator as in Fig. 1 and the other one with
a changed value of b = −0.25; right: second oscillator is more strongly detuned with
b = −0.1. c: For two coupled identically SNIC systems we show the cross-spectra
Sc

1,yx with parameters as in Fig. 1 (left panel) and Fig. 2 (right panel). In the right
panel two versions of the theory are shown: approximations by one mode (dashed
line) and by the five leading terms (solid line, see text).

strength ε we obtain the cross-spectrum between Q∗
1x and 437

Q∗
1y in terms of the susceptibilities Eq. (25) and cross-spectra 438

between the modes of one oscillator Eq. (17) (see SI): 439

Sc
1,yx = ε

(︂
χ∗

ex

∑︂
λ′

y

α∗
λ′

y
S1y,λ′

y
+ χey

∑︂
λ′

x

αλ′
x
Sλ′

x,1x

)︂
. [33] 440

From this formula we can extract the following information. 441

First of all, for weak coupling, the cross-spectrum between 442

oscillators is proportional to ε. Secondly, the first term in the 443

parenthesis consists of the susceptibility of the x oscillator, 444

and a weighted sum of cross-spectra between the different 445

eigenfunctions of the y oscillator with the most important 446

term being the power spectrum S1y . The complex-valued co- 447

efficients of this sum are determined by Hyx(y), the coupling 448

function from y to x (see Eq. (31)). The second term in the 449

parenthesis is similar, only the roles of x and y are switched. 450

For two statistically identical oscillators with symmetric cou- 451

pling, the second term is the complex conjugate of the first 452

one and hence the cross-spectrum will be real-valued; any 453

non-vanishing imaginary part thus reflects a heterogeneity in 454

the oscillators or the coupling. For the interesting case of a 455

purely unidirectional coupling from y to x, for instance, the 456

second term in the parenthesis in Eq. (33) will simply vanish. 457
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Our result for the cross-spectrum of the oscillators Eq. (33)458

still contains an infinite sum of terms. However, as all of459

our numerical examples below show, just a few terms in the460

sums will effectively contribute. Specifically, for the case of461

coherent stochastic oscillators with similar frequencies, we may462

restrict the sums just to the first terms (involving the spectra463

associated with λ1 and λ∗
1) and still obtain accurate results.464

We start testing our formula for the cross-spectrum of two465

identical harmonic oscillators that are weakly coupled by a466

spring (Fig. 5a). In this case, of course, the cross-spectrum467

between the original position variables of the two oscillators468

can be easily calculated and is shown in the left panel (and469

calculated in the SI): a purely real function with a positive lobe470

for ω < ω0, a negative lobe for ω > ω0 and everything mirrored471

at negative frequencies. When computing the cross-spectrum472

of the new variables Q∗
1x , Q∗

1y , we can take advantage of the473

analytical expression for Q∗
1 (see SI), to find that the coupling474

function is exactly given by a linear combination of Q∗
1 and475

Q1 (hence, higher coefficients α∗
λ′

y
and αλ′

x
in the expansion476

are identically zero; see SI for further details). Therefore, the477

infinite sum in Eq. (33) reduces to478

Sc
1,yx ≈ 2εℜ

(︂
χ∗

eα
∗
1S1 + χ∗

eα1S1,1

)︂
, [34]479

where we have omitted the x, y dependences of the functions480

on the r.h.s. since both oscillators are assumed to be identical.481

As we observe in Fig. 5a right panel, Eq. (34) displays an482

excellent agreement with numerical simulations. If we compare483

the cross-spectrum of the Q∗
1x , Q∗

1y functions with the cross-484

spectrum in the original position variables, we note that they485

look very similar with the only difference being that in Sc
1,yx(ω)486

everything happens exclusively at positive frequencies (we487

consider rotating pointers in the complex plane instead of488

real-valued time series) and the zero crossing of the function489

is at ω1 (here close to ω0). Hence, the cross-spectrum of the490

two systems described in terms of the backward eigenfunctions491

reflects the interdependence of the two systems appropriately.492

We note that, while the largest contribution to Sc
1,yx in Eq. (34)493

is given by the power spectra term S1, the additional term S1,1,494

even if it is small, has to be included to match the asymmetry495

between the two lobes (sizes of minimum and maximum are496

slightly different); including only power spectra terms would497

result in a strictly odd function with respect to ω = ω1.498

Next, we employ our formula Eq. (33), to study a case499

of symmetrically coupled but non-identical oscillators. We500

consider two different noisy Stuart-Landau oscillators diffu-501

sively coupled by their first coordinates x1 and y1. We study502

two cases to inspect how inhomogeneities of the oscillators503

affect the cross-spectrum: we set parameters such that (i)504

both oscillators are slightly detuned (λ1x = −0.048 + 0.698i,505

λ1y = −0.047 + 0.748i) and (ii) oscillators are more strongly506

detuned (λ1x = −0.048 + 0.698i, λ1y = −0.047 + 0.9i). As507

all quality factors in this example are small and the system508

is rotationally symmetric (which according to our numerical509

observations implies S1,1(ω) ≡ 0), we expect that the cross-510

spectrum is approximately given by511

Sc
1,yx = ε

(︂
χ∗

exα
∗
1yS1y + χeyα1xS1x

)︂
. [35]512

This formula agrees well with numerical simulations for both513

cases (see Fig. 5b). We note that, as the oscillators are non-514

identical, the cross-spectrum has both non-vanishing real and515

Fig. 6. Spectral overlap and cross-spectra between Q∗
1 and the rest of the backward

modes for a more (a) and less (b) coherent oscillator. Spectrum of eigenvalues (left
panels), power spectrum Sλ of different eigenmodes (mid panels) and the cross-
spectra between Q∗

1 and different eigenmodes (right panels). SNIC model with
parameters as in Fig. 1 (a) and as in Fig. 2 (b).

imaginary parts. The effect of inhomogeneities is clearly seen 516

by comparing left and right panels in Fig. 5b. For small de- 517

tuning (left panel), we observe a similar profile for the real 518

and imaginary parts of Sc
1,yx: a one lobe function, which is 519

only different from zero around a narrow frequency band in 520

the neighbourhood of both eigenfrequencies. As the detuning 521

is small in case (i), the real part of Sc
1,yx is larger than the 522

imaginary part. By contrast, in case (ii) with stronger detun- 523

ing, the situation is reversed and the imaginary part has a 524

larger absolute value than the real part; also now the two fre- 525

quencies of the oscillator become visible by two distinct peaks 526

in both real and imaginary parts. Indeed, the larger degree of 527

inhomogeneity is not only captured by the increase of power 528

in the imaginary part of Sc
1,yx, but also in the appearance of 529

two secondary peaks around the individual eigenfrequencies 530

of each unit. 531

Finally, we illustrate how for less coherent oscillators, more 532

terms in the sum are required to yield a quantitatively correct 533

result in Eq. (33). To this end, we consider first two identical 534

SNIC systems with parameters of the more coherent case 535

(chosen as in Fig. 1) and coupled symmetrically through their 536

first coordinates. Here we expect that, again, few modes are 537

needed and, indeed, similarly to the Stuart-Landau case, we 538

just need the power spectra term 539

Sc
1,yx = 2εℜ

(︂
χeα1S1

)︂
, [36] 540

(due to symmetry, we can drop the index again and obtain 541

a purely real-valued cross-spectrum). This formula shows 542

an excellent agreement with numerical simulations (Fig. 5c, 543

left panel). However, changing the parameters to the less 544

coherent case (parameters as in Fig. 2) (so now both coupled 545

units are in the excitable regime), we find that Eq. (36) does 546

not suffice (compare dashed and solid curves in Fig. 5c right 547

panel). Besides the power spectra contribution, we find that 548

obtaining an accurate prediction in this non-coherent case, 549

requires including cross-spectral contributions between Q∗
1 550

and the neighbouring backwards eigenmodes associated to the 551

eigenvalues λ∗
1, λ2, λ3 and λ4 (the contributions associated to 552

λ∗
2, λ

∗
3 and λ∗

4 have negligible covariance values). 553
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Why did this last example require more modes than any554

other of the cases considered? There is no general answer to555

this question as Eq. (33) depends on the coefficients αλ′
x

, αλ′
y

556

which depend in turn on the specific systems and the specific557

coupling functions. However, the dependence of Eq. (33) on558

the cross-spectra S1,λ, can shed some light on this question.559

As Eq. (17) shows, our formula for the cross-spectra S1,λ560

between Q∗
1 and any other backward mode is weighted by their561

covariance ⟨Q∗
1Qλ⟩. The more robustly oscillatory a system562

is, the smaller we would expect the co-variance between Q∗
1563

and the rest of the backward modes. The reason for such564

expectation is illustrated in Fig. 6. In Fig. 6a, we consider the565

SNIC model in the coherent regime and show its eigenvalue566

spectrum (left panel). We observe that the closest eigenvalue567

to λ1 = −0.048 + 0.698i is λ2 = µ2 + iω2 = −0.18 + 1.42i.568

Consequently, the power spectrum of Q∗
2, which is also given569

by a Lorentzian centered at ω2 and half-width of µ2, shows570

very little overlap with the power spectrum of Q∗
1 (mid panel).571

Hence, it is not surprising that the cross-spectrum S1,2 is small572

(right panel). By contrast, if we now consider the SNIC in573

the less coherent case (Fig. 6b), this scenario changes. As we574

see in Fig. 6b, right panel, the eigenvalues are much closer in575

their imaginary parts (also real parts are larger) than in the576

coherent case (now λ1 = −0.168 + i0.241, λ2 = −0.42 + i0.64577

and λ3 = −0.73+i1.11). Therefore, there is an effective overlap578

between their respective power spectra (mid panel) leading to579

non-negligible cross-spectra between Q∗
1 and its neighbouring580

modes (right panel) and these contributions have to be taken581

into account in the theory.582

Summary and discussion583

In this paper we have developed a simplifying framework for584

stochastic oscillators that can be described by systems of585

stochastic differential equations. By mapping the system’s586

n-dimensional state vector to a complex-valued oscillator given587

by the eigenfunction Q∗
1(x) of the backward Kolmogorov op-588

erator to the eigenvalue λ1 = µ1 + iω1 with the least neg-589

ative real part, we achieve a significant reduction in com-590

plexity. By using the transformed variable Q∗
1(x), i.e. the591

pair (ℜ[Q∗
1(x(t))],ℑ[Q∗

1(x(t))]), we accomplish three major592

simplifications. First, we can describe the single oscillator’s593

spontaneous activity by a simple correlation function consist-594

ing of a single exponential, or, equivalently, by a Lorentzian595

power spectrum with frequency ω1, half-width µ1, and quality596

factor |ω1/µ1|. Second, we can quantify the response to an597

external stimulus with a simple linear response function of598

the form K(τ) ∝ Θ(τ) exp(λ1τ), a function that is related599

to the correlation function by a simple proportionality. This600

result constitutes a fluctuation-dissipation theorem for a non-601

equilibrium system that is distinct from other theorems that602

have been derived in the past (e.g. (72, 73, 75)). Third, by603

mapping the oscillator state to the Q∗
1(x) function, we can604

predict the form of the cross-correlations of coupled noisy605

oscillators.606

We illustrated the working of the general theory by three607

models that have distinct mechanisms for generating stochas-608

tic oscillations; mathematically speaking, these were a linear609

system with a stable focus driven by fluctuations, the canonical610

model for a supercritical Hopf bifurcation endowed with noise,611

and a system with a saddle-node on invariant circle bifurcation612

likewise with uncorrelated noise. It is important to note that613

the first and the third example would not perform any oscilla- 614

tions (at least in the long-time limit) in the absence of noise. 615

These oscillations are noise-generated in both cases, though by 616

different mechanisms. The second system constitutes a limit- 617

cycle system perturbed by noise and thus here the effect of 618

the fluctuations are easier to grasp: more noise will reduce the 619

phase coherence of the oscillation. Although the three systems 620

are very different in their dynamical mechanism, they become 621

similar and, moreover, comparable when viewed through the 622

lens of the Q∗
1(x) function. Even in our framework, we still 623

see characteristic aspects of the system, when we look at their 624

response to external stimuli or the cross-correlation statistics 625

for coupled systems. 626

While results on the theory of the single power spectrum 627

and the linear response are exact, the case of coupled stochastic 628

oscillators required a new idea for the analytical calculation; we 629

used an ansatz that employs linear response theory (proceeding 630

as if the dynamics in the new variable were linear). We 631

illustrated the resulting expressions for a number of numerical 632

examples: for the three models, for identical and non-identical 633

oscillators, for rather coherent and for more noisy oscillators. 634

In all cases and for sufficiently weak coupling we found excellent 635

agreement between the predicted and the simulated cross- 636

spectra of the Q∗
1 variables of the two systems. We take this 637

as an indication that the true dynamics of the new variable 638

is effectively linear. The reasons why this is so merit further 639

exploration. 640

The universal description of stochastic oscillations put for- 641

ward here, may also be used to better highlight the charac- 642

teristic differences between the different systems. Given that 643

two oscillators have the same λ1 (i.e. the same quality factor), 644

what sets them apart? Should we combine the information 645

for the leading complex-valued eigenvalue and its eigenfunc- 646

tion with that of the first purely real-valued eigenvalue and 647

the associated eigenfunction, which can be used to define the 648

stochastic limit cycle (80)? Or should we rather compare 649

the higher oscillatory modes Q∗
λ′ (with |ℜ(λ′)| > |µ1| and 650

ℑ(λ′) ̸= 0), that play such a prominent role in our theory of 651

coupled oscillators? It seems to us that both comparisons offer 652

a novel perspective for the finer categorization of stochastic 653

oscillators. 654

The relation between our universal description of stochastic 655

oscillators and the classical phase description of deterministic 656

oscillators bears further discussion. Recall that, in deter- 657

ministic limit-cycle systems, the phase can be obtained from 658

the argument of the principal eigenfunction of the Koopman 659

operator with purely imaginary eigenvalue (81, 82). Upon 660

introducing noise into the system, this eigenvalue develops a 661

negative real part. Indeed it becomes λ1 and its associated 662

eigenfunction becomes Q∗
1. This connection between the de- 663

terministic phase and the Q∗
1 function in the noise vanishing 664

limit is not coincidental since the Kolmogorov backward oper- 665

ator L† corresponds to the stochastic version of the Koopman 666

operator (83). Indeed, the relationship between the stochas- 667

tic asymptotic phase (the complex argument of Q∗
1) and the 668

deterministic phase in the limit D → 0 has already been 669

noted (54, 64, 84, 85). Hence, our transformation also em- 670

braces the deterministic case and connects cleanly with the 671

well-established deterministic Koopman-operator framework 672

(86). 673

Returning to the specific results of our paper, we note that 674
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they can be generalized in different directions. First of all, even675

if our general setup includes multiplicative noise, for simplicity676

we restricted all of our examples to Langevin systems with677

additive white Gaussian noise. Nothing keeps us from finding678

the eigenfunction to the eigenvalue with the least negative real679

part and to make the transformation to this complex-valued680

variable in a system with multiplicative noise. Likewise, we681

are not restricted to systems with Gaussian white noise but682

can also apply the method to Markov processes described683

by a master equation (for which there exist also a backward684

operator with eigenfunctions; one such example has been685

already treated in (54) for the extraction of the asymptotic686

phase of a stochastic neuron model with discrete channel687

noise). More generally even, any jump-drift-diffusion process688

(62) described by a master equation (with additional drift and689

diffusion terms) that shows the hallmarks of robust stochastic690

oscillations, can be captured by our universal description in691

terms of the Q∗
1(x) function. Our formulas for the main692

characteristics will not change and, for instance, the power693

spectrum of such systems in the new variable will still be a694

pure Lorentzian, the response function a pure exponential, etc.695

Another straightforward generalization concerns the external696

perturbation: this could (and will in certain cases) also depend697

on the state of the system. This will mainly affect the definition698

of the complex-valued coefficient β that appears in the response699

function.700

An exciting challenge is to extend our analysis of two701

coupled oscillators to the general case of N weakly coupled702

oscillators with its obvious applications to neural (87–89),703

mechano-sensory (90–92), genetic (1, 93), metabolic (94), and704

energy supply networks (95), to name but a few examples.705

Because our analytical approach can be generalized to this706

case, different scenarios of connectivity (sparse, random or707

structured) and heterogenity (in the single oscillator properties708

or in the connections) can be studied analytically. Moreover,709

the summed activity of subgroups of oscillators at the meso-710

scopic level can be calculated from the cross-spectral statistics711

of single stochastic oscillators.712

Our theory was here applied to stochastic models, but ap-713

plications to data are conceivable. In (54) it was demonstrated714

how the stochastic asymptotic phase (the complex argument715

of the function Q∗
1) can be extracted from data. In the same716

way, the function Q∗
1 itself can be found, provided the data717

are consistent with a robustly oscillatory Markov process. We718

suggest that if one were to propose a method for extract-719

ing either Q∗
1, or higher modes Q∗

λ, our results offer a test:720

whether the resulting power spectra fit simple Lorentzians at721

the respective eigenfrequencies (see SI). Thus, in light of the722

direct link between the Kolmogorov backwards operator and723

the stochastic Koopman operator, our work may help advance724

methods for extracting Koopman eigenfunctions from data725

(96–99), as well as for providing physical interpretations of726

particular modes (54, 58).727

Our framework also offers a test of a key assumption, namely728

that the stochastic oscillation arises from a Markov process.729

Markovianity is an important characteristic of stochastic pro-730

cesses, and different methods to test for it are currently under731

debate (see e.g. (76, 100, 101)). For the important class of732

stochastic oscillators, computing the statistics of Q∗
1(x(t)), and733

specifically probing for a purely Lorentzian line shape, may734

provide another independent tool to test for Markovianity.735

In summary, there are many open problems that can be 736

studied within the framework put forward here. 737
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