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Many systems in physics, chemistry and biology exhibit oscillations
with a pronounced random component. Such stochastic oscillations
can emerge via different mechanisms, for example linear dynamics
of a stable focus with fluctuations, limit-cycle systems perturbed by
noise, or excitable systems in which random inputs lead to a train of
pulses. Despite their diverse origins, the phenomenology of random
oscillations can be strikingly similar. Here we introduce a nonlin-
ear transformation of stochastic oscillators to a new complex-valued
function Q7 (x) that greatly simplifies and unifies the mathematical
description of the oscillator’s spontaneous activity, its response to
an external time-dependent perturbation, and the correlation statis-
tics of different oscillators that are weakly coupled. The function
Q7 (x) is the eigenfunction of the Kolmogorov backward operator
with the least negative (but non-vanishing) eigenvalue \; = ;11 +iws.
The resulting power spectrum of the complex-valued function is ex-
actly given by a Lorentz spectrum with peak frequency w; and half-
width p1; its susceptibility with respect to a weak external forcing is
given by a simple one-pole filter, centered around w; ; and the cross-
spectrum between two coupled oscillators can be easily expressed
by a combination of the spontaneous power spectra of the uncou-
pled systems and their susceptibilities. Our approach makes qual-
itatively different stochastic oscillators comparable, provides sim-
ple characteristics for the coherence of the random oscillation, and
gives a framework for the description of weakly coupled oscillators.

Nonlinear stochastic differential equations | Power spectrum | Linear

response | Cross correlation of coupled oscillators

I n the age of big data, the human mind craves simple ex-
planations of complex phenomena. The general category
of “stochastic oscillations” embraces a bewildering array of
natural and engineered systems in which one or more mea-
surable quantities vary repeatedly but irregularly. Examples
range from the molecular scale (oscillations in genetic reg-
ulatory circuits (1)) to the macroscopic scale (fluctuations
in predator-prey systems (2, 3)), from physical and chemical
systems (lasers (4, 5), chemical oscillations (6), swaying of
bridges (7), oscillations in aircraft wings (8, 9)) to living sys-
tems (oscillations in hair cell bundles (10, 11), in glycolytic
yeast activity (12, 13), in locomotor CPG activity (14), and in
cortical networks (15, 16)), and from millisecond time scales
(neuronal firing (17, 18)) to hours (circadian rhythms (19, 20))
and longer (menstrual cycle (21)).

A universal framework for understanding and comparing
stochastic oscillations would seem to be an impossible goal,
not only because nonlinear stochastic dynamical systems are
intrinsically difficult to analyze, but because stochastic os-
cillations arise from a wide variety of underlying dynamical
mechanisms. In the simplest case, one may obtain irregular
oscillations by incorporating noise into a deterministic limit-
cycle system. FExamples of noisy oscillations generated by
such mechanisms include spontaneously active hair bundles

www.pnas.org/cgi/doi/10.1073/pnas. XXXXXXXXXX

in the auditory system (22), or tonically active nerve cells
in the sensory periphery, that produce trains of action po-
tentials perturbed by “channel noise” (random gating of ion
channels) (23, 24), or oscillations in genetic regulatory cir-
cuits perturbed by copy-number noise (1). In addition, there
are multiple types of noise-induced oscillations: systems in
which the oscillatory activity would die out in the absence
of noise. A well-known class of noise-induced mechanisms
arises when a deterministic excitable system is perturbed by
noise. Below its activation threshold, such an excitable system
will not produce sustained activity. But when perturbed by
dynamical noise, an excitable system may produce an ongo-
ing train of pulsatile activations (25). A nerve cell receiving
a subthreshold current provides a familiar example (26-29).
Another important class of noise induced-oscillators include
quasicycle systems. Quasicycles arise when a system has a
stable equilibrium (with complex eigenvalues), perturbed by
fluctuating inputs (30). Many physical and biological systems
show random oscillations attributed to quasicycle dynamics.
Examples include underdamped linear mass-spring system im-
mersed in a heat bath (31), subthreshold oscillations in nerve
cells sustained by channel noise (32), models of EEG oscilla-
tions and intermittent cortical network activity (33-36), and
oscillations in predator-prey systems sustained by demographic
(finite-population) noise (2). Demographic fluctuations can
also sustain oscillations in systems with rock-paper-scissors
interactions by yet another mechanism: noisy heteroclinic
cycle dynamics (37-40).
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Despite this diversity in the origins of noisy oscillations,
each of the mechanisms above can be instantiated as a Markov
process, for example as a system of stochastic differential
equations. Previous investigations of such systems have relied
on empirical quantities such as the power spectrum (for a single
unit), the cross-correlation (for multiple units), or the linear
response to small-amplitude perturbations. The possibility of a
simpler, unifying description of Markovian oscillators remains
an important open question. Ideally, one would aim to find
the stochastic analogue of the well known ‘phase reduction’. In
deterministic limit-cycle systems, the phase reduction (41, 42)
(and also the phase-amplitude reduction (43-46)) provide low-
dimensional descriptions that have yielded far reaching insights
into regulation, entrainment, and synchronization of oscillating
systems (47-50). Although the deterministic phase concept
can also be applied to some noisy systems (e.g. single linear
and nonlinear oscillators (51) and coupled stochastic systems
(52)), generally, the notion of phase has to be generalized in a
stochastic framework in order to make it applicable to cases
of pure noise-induced oscillations for which a deterministic
phase does not exist (53-58). Here we go beyond such a simple
extension of the phase definition, and suggest a transformation
to a complex-valued function that brings about a tremendous
simplification in the description of stochastic oscillators. We
show that by transforming the system’s output to a complex
eigenfunction of the backward Kolmogorov operator we obtain
a surprisingly simple, unified treatment of irregular oscillations,
regardless of their underlying mechanisms. Importantly, using
our complex-valued eigenfunction description, we show that
both the power spectrum and the susceptibility for single
oscillators, and the cross spectrum for multiple oscillators,
take dramatically simplified, universal forms.

Stochastic oscillators described by eigenfunctions

The key step in finding a universal description comes from
the observation that stochastic systems may be described not
just by individual trajectories but by an ensemble of trajecto-
ries, described by a probability density. Nonlinear stochastic
dynamical systems are difficult to analyze (25, 59-61), in
particular, if they violate detailed balance (62). However,
their densities evolve following linear dynamics, making the
densities amenable to analysis as linear systems.

We suppose that a stochastic oscillator obeys the Langevin
equation (which we interpret in the sense of 1t0)

B — £ + 80080, i

where £ represents k-dimensional white Gaussian noise with un-
correlated components (&;(t)£;(t')) = §(t — t')d;,;. For Eq. (1)
the conditional probability of the state vector x, given initial
condition xg, obeys the forward Kolmogorov equation (62):

aP(x,t | X0, 8) = L[P] 2]

= Ve ()P + ) 5

where D = 1ggT.

The formal adjoint of the operator £
is Kolmogorov’s backward operator £' (also known as the
generator of the Markov process Eq. (1), and closely related

2 | www.pnas.org/cgi/doi/10.1073/pnas. XXXXXXXXXX

to the Koopman operator), which satisfies the equation

1o}
*&P(&HXO,S)ZL:T[P] (3]
_or
dzo,iT0,;

= f(x0) Vxo (P) + Z D;;(x0)

Let us assume that the operators £, £T possess a discrete
set of eigenvalues with corresponding eigenfunctions

LIP\ = APy,  LQ3] = Q5. [4]

Under the natural inner product we have the biorthogonality
condition

Q1P = [sxQen =i B
so that the transition probability can be expressed as (62)

P(x,tlx0,5) = Po(x) + ) M PA(x)QA(x0),  [6]
A#£0

for t > s. That is, as established for many stochastic systems
(60, 62, 63), the transition probability P can be regarded as a
sum of modes, each of which decays at a rate given by the real
part of its respective eigenvalue A, leading in the long-time
limit to the stationary distribution Py(x), which we assume to
be unique. The latter is the eigenfunction for the eigenvalue
Ao = 0; the corresponding eigenfunction for this eigenvalue for
the operator £ is Qo = 1. N.b. Even in the stationary state
the system will maintain a steady circulation of probability.

The decaying modes in Eq. (6) have been shown to contain
important information about the stochastic oscillation (54, 58,
64); the most prominent mode being the one whose associated
eigenvalue has least negative nonvanishing real part — as this
is the mode that decays the slowest. Some of us suggested a
definition of a stochastic oscillator and its stochastic phase
along these lines: according to (54) the stochastic system
in Eq. (1) qualifies as robustly oscillating if the following
conditions are met:

1. there exists a nontrivial eigenvalue with least negative
real part A\1 = p1 + iwp which is complex valued and
unique;

2. the oscillation is pronounced, i.e. the quality factor w1 /1|
is much larger than one;

3. all other nontrivial eigenvalues \’ are significantly more
negative in their real parts, i.e. [R[X]| > 2|R[\]].

If these conditions are fulfilled, then one can extract the
stochastic asymptotic phase 9 (x) as the complex argument
of the slowest decaying eigenfunction Q7(x), i.e. ¥(x) =
arg(Q7(x)). We can then ascribe at any time ¢ a phase variable
to the state x(¢) of the system by making the nonlinear trans-
formation to a real-valued phase of the system ¥(t) = ¥ (x(t))
(modulo 27).

Here, we pursue this eigenfunction perspective further by
demonstrating that the nonlinear transformation of the system,
using the complex eigenfunction Q7(x), i.e.

x(t) — Qi(x(t), [7]
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leads to a universal description of stochastic oscillations, in-
dependent of the specific stochastic mechanism responsible
for their generation. The transformation to the new complex-
valued variable Q7 (x(t)) entails a tremendous simplification
for all of the oscillator’s essential aspects. Firstly, we derive
unifying and strikingly simple formulas for its spontaneous
spectral statistics; this enables a systematic comparison of
different stochastic oscillators. Secondly, we also calculate its
linear response to external time-dependent stimuli and find a
fluctuation-dissipation theorem. Thirdly, we put forward a sim-
ple but quantitatively successful theory of cross-correlations
of weakly coupled stochastic oscillators. Hence, using the full
function Q7 (x) (instead of using only its complex argument
1(x)) as the stochastic analog of asymptotic phase, we achieve
a true simplification and capture the universal characteristics
of stochastic oscillations.

Before proceeding, we note that Q7 (x(t)) has a zero sta-
tionary mean value, in the sense that

<mww:/wm®%®:m 8]

which follows from the biorthogonality relation Eq. (5). Fur-
thermore, we normalize it to have unit variance

Qmwmm=/wWWW%®:L 9]

Finally we note that the complex argument of Q7(x) (the
above mentioned asymptotic phase of a stochastic oscillator)
is only defined up to a constant phase shift.

Example models

Throughout the paper we will illustrate our unified theory by
applying it to three models in which stochastic oscillations
arise from qualitatively different mechanisms. We will use each
model at two different parameter sets — one corresponding to a
more coherent (cf. Fig. 1) and one to a less coherent (cf. Fig. 2)
stochastic oscillation. We tune parameters such that all models
in the more coherent case have the same leading nontrivial
eigenvalue \; = —0.048+-70.698 and thus also the same quality
factor of |wi/u1| = 14.5, thereby satisfying condition (ii) for a
robust stochastic oscillation well. Likewise, we find parameters
such that all models in the less coherent case have the same
A1 = —0.168 4 70.241 and thus also the same quality factor
of |wi/p1| = 1.43 which obeys condition (ii) for a robust
stochastic oscillation only barely but represents the interesting
limit case in which fluctuations definitely cannot be regarded
as weak.

Damped harmonic oscillator with white noise — As a first
illustration, we consider an elementary physical model that
is analytically treatable (31): a one-dimensional harmonic
oscillator with mass M which is subject to Stokes friction
and white Gaussian noise and obeys the stochastic differential
equations

=, Mi = —yv — Mwix + V2DE(t). [10]
The model is already formulated in non-dimensional variables
(space and time) and parameters (friction coeflicient v, eigen-
frequency wo and noise intensity D) and will be considered
exclusively in the underdamped limit (wo > 7v/(2M)). We

Pérez-Cervera etal.
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Fig. 1. Three models of ‘robust’ stochastic oscillations. In the three panels we show
for each model ten sample trajectories in phase space together with the stochastic
asymptotic phase v (x) (left subpanel), a time series of one of the components (lower
right subpanel), and the spectrum of eigenvalues (top right subpanel). For the three
models, parameters have been tuned so they have the same value for the eigenvalue
A1 = —0.048 + 0.6984 with the smallest non-vanishing real part. a: Damped noisy
harmonic oscillator for M/ = 1, v = 0.096, wo = 0.699, D = 0.01125. b: Noisy
Stuart-Landau fora = 1, b = —0.3, D; = D5 = 0.04. c: Noisy SNIC model
(beyond the bifurcation, i.e. in the limit-cycle regime) for m = 1.216, n = 1.014,
Dy = D, = 0.0119. d: Power spectra (left) and correlation function (right) of x(t)
(harmonic oscillator, green), =1 (¢) (noisy Stuart-Landau model, purple), and x1 (t)
(SNIC model, blue).

show sample trajectories and the time courses of the stochas-
tic oscillation for a high quality factor of |wi/u1| = 14.5 in
Fig. la and for a less coherent oscillation with |wy/pi| = 1.43
in Fig. 2a. The trajectories in phase-space spend most time
around the origin and in the time series of the position variable
strong stochastic variations in amplitude and phase are seen.
The eigenvalue spectra (upper right in Fig. la and Fig. 2a) on
the left side of the complex plane are in part complex-valued
but some are also purely real; the next eigenvalue to A\; ful-
fills the condition (iii) with the equal sign (the spectrum is
discussed in (60)).”

* Although it is well known that one cannot unambiguously define the “asymptotic phase” for a deter-
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J'Shared time dependence in the long-term evolution of Eq. (6), i.e.

Noisy Stuart-Landau oscillator — This is the canonical
model for a supercritical Hopf bifurcation, which we consider
in a version endowed with white Gaussian noise

1 = axry — To — a(wf + :vg)(xl + bxz2) + V2D1&1(2),
&y = axs 4+ 21 — a(z] + x3)(z2 — br1) + V2D2&a(t),

with a,b € R. In the absence of noise this system has a limit
cycle of period T' = 27/(1 + ba). Because of the existing limit
cycle the amplitude variations of the stochastic oscillations
are much smaller than for the harmonic oscillator (see left and
bottom right panels of Fig. 1b and Fig. 2b). The eigenvalue
spectra (top right panels of Fig. 1b and Fig. 2b) are, in the
displayed region, far less populated than for those of the
harmonic oscillator. We note that there are also purely real
eigenvalues outside the shown range; these are related to the
amplitude of the stochastic oscillation (58).

Noisy SNIC system — A two-dimensional system that, in
its deterministic version, undergoes a saddle-node bifurcation
on an invariant circle (SNIC) is given by

2
. x
@1 = na1 —maz — 21(27 + 23) + ——— + V2D:161(2),
z? + 23
1 2

. 1T
To = mx1 + nxe — xg(aﬁ + x%) 2 V2D2&(t).

\/ T3+ 3
(12]

Without noise, the saddle-node bifurcation from the excitable
to the oscillatory regime occurs at m = 1. Here we consider
this model endowed with white Gaussian noise once set in the
oscillatory regime (leading to the more coherent stochastic
oscillation, see Fig. 1c) and once set in the excitable regime
(leading to the less coherent stochastic oscillation, see Fig. 2c).
In marked contrast to the first two models, the z; variable
of the SNIC model has a temporally asymmetric time series;
however, we observe this asymmetry to be more pronounced
in the excitable case. In this case, the trajectory stays most
of the time close to the stable node and occasionally the noise
causes a transition across the unstable saddle. Similarly to the
Stuart-Landau case, we have fewer eigenvalues in the displayed
range compared to the harmonic oscillator; again there exist
purely real eigenvalues outside the range shown.

As Fig. 1d and Fig. 2d show, despite having chosen the
parameters of the three models such that they all have the
same value of \; = p1 + ‘w1 and thus share the same long-
term evolution time dependence’ in Eq. (6), the power spectra
and autocorrelation functions of the models at one \; differ.
The differences are more pronounced for the less coherent
oscillation (Fig. 2d) and they reflect the specific nature of
the system. For instance, the SNIC system with its highly
temporally asymmetric time series shows pronounced higher
harmonics, while the harmonic oscillator does not. Except
for the harmonic oscillator (31), it is difficult to calculate
power spectra or correlation functions for these stochastic
oscillators analytically (for the Stuart-Landau oscillator, some
approximations for power spectrum and linear response have
been put forward in (66-68)).

By contrast, and as we show next, the heterogeneous profiles
for the statistics of spontaneous fluctuations, as given by the
ministic linear spiral sink, it was shown in (65) that both the Qf function, and hence the stochastic
asymptotic phase, are well defined as long as the noise has finite amplitude.
in P(x,t|xg,s) =~

Py(x) + erM(t=s) p (x)Q7 (x0), refers here to the shared exponential function of time;
obviously, the state-dependent functions differ among the different systems.
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Fig. 2. Three models of stochastic oscillations. In the three panels we show for
each model ten sample trajectories in phase space together with the stochastic
asymptotic phase 1 (x) (left subpanel), a time series of one of the components
(lower right subpanel), and the spectrum of eigenvalues (top right subpanel). For
the three models, parameters have been tuned so they have the same value for

slowest decaying eigenvalue A1 = —0.168 + 0.241. a: Damped noisy harmonic
oscillator for M = 1, v = 0.337, wo = 0.294, D = 0.01125. b: Noisy
Stuart-Landau fora = 1, b = —0.713, D1y = D2 = 0.0995. c¢: Noisy SNIC

model (prior to the bifurcation, i.e. in the excitable regime) for m = 0.99, n = 1,
Dy = D> = 0.01125. d: Power spectra (left) and correlation function (right) of = (¢)
(harmonic oscillator, green), x (t) (noisy Stuart-Landau model, purple), and x ()
(excitable SNIC model, blue).

power spectra or correlation functions, will be reduced to a
universal form when we observe the processes through the lens
of the leading backward eigenfunction Q7 (x(¢)).

Correlation functions and power spectra

Generally, for any eigenfunction Q3 (x(t)), the correlation
function is given by Cxa(7) = (QX(x(7))Qx(x(0))) and
its Fourier transform, the power spectrum, by Sy i(w) =
ffooo Cya(T)e™™Tdr.
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We can write the autocorrelation function as the following
integral

Caa(r) = /dx /dxo QX (x)Qx(x0) P(x, T|x0,0) P(x0)-

If we express the conditional density as in Eq. (6) and use the
biorthogonal properties in Eq. (5) we arrive (see SI) for 7 > 0
at

Can(r) = (|QX ).

This is a strikingly simple result: the correlation function is
given by the product of the stationary variance of Q3% and
a complex exponential function. Specifically, for our new
variable Q7 (x), taking into account Eq. (9) and generalizing
the formula to both negative and positive time lags 7, the
correlation function reads

(13]

Ci(1) = exp [p|7] + iwiT] . [14]
Real and imaginary parts of this function display damped os-
cillations (not shown) corresponding to the finite coherence of
the stochastic oscillations. One characteristic of the oscillation
is the quality factor |wi/p1| that tells us how many cycles (in
multiples of 27) are seen in the correlation function before the
exponential envelope has decayed to 1/e.

The even simpler expression for the power spectral density
corresponds to a (purely real-valued) Lorentzian, peaked at
w = wy with a half-width of u1

2| |

S1(w) = 7/1% T

(15]

In Fig. 3 we show the power spectra of @Q7(x) and the real
part of the auto-correlation function C1(7) for the parameters
chosen in Fig. 1 and Fig. 2 (panels Fig. 3a and b, respectively).
As we show in Figs. 1d and 2d, the power spectra and correla-
tion functions of the models in the original variables exhibit
different shapes. However, when transforming to Q7 (x), since
we tuned parameters such that all three models in Figs. 1 and
2 have the same complex eigenvalue with smallest real part,
A1, the three very different systems possess identical power
spectra. This is confirmed by our simulations (symbols) which
all fall on the line predicted by Eq. (15) (see Fig. 3). Therefore,
by means of the function Q)7 we have made the three systems
quantitatively comparable and, moreover, characterizable with
a simple analytical expression and two informative parameters
— the frequency and the half-width of the spectral peak (or,
equivalently, the frequency and the quality factor).

By a procedure similar to that for the correlation func-
tions and power spectra for Q3(x(t)), we can also calcu-
late expressions for the cross-correlation functions Cy /(1) =

(Qx(x(7))Qx (x(0))) (see SI for details):

’
AT

Can(7) = (Q3Qx) { 70

, 16
, T>0 [16]

and for the cross-spectra Sy x/(w) = ffooo drC x(T)e™ ™7

Sa(@) = = (@5Qw) ( 7]

1 + 1 )
A—dw  AN*tiw/
We will need these expressions below for the theory of coupled
stochastic oscillators.
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Fig. 3. Power spectra S; (w) and real part of the auto-correlation function C (t) of
Q7 (x(t)) for the different models in Fig. 1 (panel a) and Fig. 2 (panel b). a: For
parameters from Fig. 1 (chosen such that A\1 = p1 + ‘w1 is approximately the
same for all models with ;1 = —0.048, w1 = 0.698, leading to a more coherent
oscillation with a quality factor of |wy /p1| = 14.3) we compare Eq. (15) (solid
line), to stochastic simulations of the three models (symbols). b: For parameters
from Fig. 2 (chosen such that A\1 = w1 + ‘w1 is approximately the same for all
models with 3 = —0.168, w; = 0.241, leading to a less coherent oscillation with
a quality factor of |wq /p1| = 1.43) we compare Eq. (15) (solid line), to stochastic
simulations of the three models (symbols).

Linear Response and fluctuation-dissipation theorem

‘We now consider how the stochastic oscillators respond to a
weak time-dependent forcing ep(t) that enters the system via
a perturbation vector e. That is, we consider

B tx) + eplt)e + g(x)EWD),  x,e € R™.

o2 _ 18
7 18]
How the time-dependent mean value of our new variable
Q1 (x(t)) is affected by the perturbation p(t) can be described

in terms of linear response theory (60, 61, 69, 70)

t

(Qi(x(t) =< / dt Ko(t — Op(t),  [19]

—o0

where we have taken into account Eq. (8) and introduced
the complex-valued linear-response function Ke(7) (the in-
dex indicates the dependence on the direction of perturba-
tion, e). Equivalently, we can use the susceptibility xe(w) =
/ fooo dre” "7 Ko(7), the Fourier transform of the response func-
tion.

In order to derive an expression for Ke(7), we follow Risken
(60, chapter 7) and express the Fokker-Planck operator by an
unperturbed part £ and a perturbation part Lo = —e - V,
leading to the Fokker-Planck equation

O P(x,t) = (C(x) + sp(t)ﬂe(x))P(x, t). [20]
Expanding the density in powers of e, P(x,t) = Po(x) +
ePs(x,t) + O(e?), taking only the leading linear order and
expressing this by an integral over the formal time-dependent
solution, we obtain

Po(x,t) = / dt’ p(t')eF =) [z:e(x)[Po(x)]} [21]
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By expressing the time-dependent mean value (Q7 (x(t))) by
the integral over Pe(x,t) and comparing to Eq. (19), we obtain
for the linear-response function the intermediate result

Ko(7) = / dx Q} (x)ec™T [ﬁe(x)[Po(x)]} >0, [22]

We expand Le(x)[Po(x)] = >,/ Bex Py (x) into forward
eigenfunctions, use the eigenvalue equations and the biorthog-
onality relation Eq. (5), and finally take into account causality
(which implies Ke(7) = 0 for 7 < 0) to arrive at a simple
expression for the linear-response function (see SI for details)

AT

e’ >0

23]
0, else

Kmﬁ—&{

where the complex-valued coefficient Be = fBe,r, (we omit the
second index for ease of notation) is given by

Be = — / dx Q1 (x)[e - VP (x)], [24]
where V Py(x) is the gradient of the stationary density in our n-
dimensional phase space. We note that for a stationary density
Py(x) obeying natural boundary conditions, Se = e-(VQ1(x)),
i.e. the coefficient is related to the mean change of Q7 (x) in
the direction of the perturbation.

The susceptibility of the stochastic oscillator is given by

Xe (@) :/ dr Ko(r)e ™7 = — Do 135

o —p +i(w — wi)

i.e. a simple bandpass filter centered at w = wy. Its modulus
and its phase are given by,

X
VI + (@ —w)?

arg(xe(w)) = arg(Be) + arctan(wi — w, —p1).

IXe(w)| = 2]

We confirm these results via numerical simulations of all three
models in Fig. 4 (see SI for details on measuring suscepti-
bilities). For the harmonic oscillator, we show only the sus-
ceptibility for the physically relevant case of a perturbation
of the velocity equation. For the Stuart-Landau model the
susceptibilities for perturbations in the x; and x2 directions
are shown separately but coincide because of the symmetry of
the model; the phase shifts are also the same up to a constant
(we recall that the phase of our output variable Q7 is only
determined up to a constant phase). In contrast to the rota-
tional symmetry of the Stuart-Landau oscillator, the excitable
SNIC model differs in its response to perturbations in the z:
and z2 directions: perturbations in the x; direction are more
efficient in kicking the system out of the stable fixed point and
thus in evoking a response; consequently, Xe,, > Xe,, for all
frequencies.

We note that we can calculate the response functions and
susceptibilities of the higher eigenfunctions Q3,(x(t)) in an
analogous fashion, resulting in very similar formulas, Eq. (23)
and Eq. (25). The main differences are that (i) we have to use
)’ instead of A1, and (ii) in the computation of the coefficient
Be in Eq. (24), we use Q3 (x) instead of Q7 (x).

Turning back to the statistics of Q7 (x(t)), we stress that
the simple expressions for the autocorrelation function of the
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Fig. 4. Susceptibility functions xe(w) of the variable Q7 (x(t)) for the different
models with the same parameters as in Fig. 2 and different perturbation vectors
e as indicated. For each model, we show the squared of the absolute value,
|xe(w)|?, (left panel) showing a Lorentzian profile and its angle arg(xo (w)) (right
panel). The perturbation vectors are e; = (1,0)' and ex = (0,1) . a: The

harmonic oscillator Be,, = 3.87i (blue, computations; cyan, theory); b: Stuart-
Landau model Be; = —0.641 + 0.297: (orange, computations; yellow, the-
ory), fey = —0.297 — 0.6414, (blue, computations; cyan, theory); ¢: SNIC
excitable system Be, = —1.38 — 1.3i (orange, computations; yellow, theory),

Bes = 0.54 — 0.19i (blue, computations; cyan, theory).

oscillator and its response function permit a simple connec-
tion between them, which can be regarded as a fluctuation-
dissipation theorem (FDT). FDTs are relations between the
spontaneous activity of a system and its response to exter-
nal perturbations, and have been derived for thermodynamic
equilibrium (60, 69, 71) as well as for non-equilibrium settings
(61, 72-76). For our broad model class, we obtain the simplest
relation in the time domain as follows

Ke(1) = BeCi(),

This relation resembles, formally, the generalized FDT (61, 72,
73, 77), but differs from the latter, because the generalized
FDT is based on the (purely real-valued) conjugated variable.
Our result Eq. (27) constitutes a simple fluctuation-dissipation
theorem holding true for the general class of stochastic oscil-
lators, most of which operate far from thermodynamic equi-
librium. For relations between the power spectrum and the
susceptibility that are formally closer to the standard FDT of
equilibrium systems in the Fourier domain (71), see SI.

7> 0. [27]

Two weakly coupled stochastic oscillators

We now demonstrate that the transformation to the new vari-
able Q7 (x) also allows for a simplified description of the statis-
tics of weakly coupled stochastic oscillators. For simplicity,
we consider only two coupled oscillators; however, the general
method can be applied for larger systems of interacting units
too.

Pérez-Cervera etal.

376

377

378

379

380

381

382

383

384

385
386
387
388
389
390
391
392

393

394

395

396

397

398

399

400


www.pnas.org/cgi/doi/10.1073/pnas.XXXXXXXXXX

401

402

403

404

405

406

407

408

409

410

412
413
414
415

416

417

418

419

420

422

423

424

425

426

427

428

429

430

432

433

434

435

436

We couple the two oscillators with the scalar functions
Hy(x,¥) = Hxx(x)+Hyx(y) and Hy (x,y) = Hxy (x)+Hyy(y)
along the directions ex and ey, respectively, and scale the
coupling terms by a small parameter &

X = fx(x) + cex[Huxx (%) + Hyx(y)] + 8x(x)&x(t),
v = fy(y) + cey[Hxy(x) + Hyy (y)] + 8y (¥)&y (1)

Here, the terms with mixed indices Hyx(y) (Hxy(x)) describe
the effect of the y (x) oscillator on the x (y) oscillator; the
diagonal terms Hxx(x) and Hyy(y) can in principle be lumped
into the drift terms fx(x) and fy(y), respectively (which will
then also change our Q7 functions). Here we keep for clar-
ity the diagonal terms as a perturbing input, such that the
eigenfunctions Q7, (x) and @1, (y) are those of the uncoupled
oscillators (see SI for a discussion of the alternative treatment
of the problem).

We use the response functions Eq. (23) in a realisation-wise
version

(28]

t

Ql= Qio+e / 0t K (1) [ Hoo (<(t')) + Hy (y ()],

t

Q= QLo +e / 0t Koy (1) [ Hoey (x(t')) + Hyy (y ()],

— 00

29]

and similarly for the other backward eigenmodes Q;;{ and Q:;
(see SI). In Eq. (29) the functions Q7, o and Q7 o denote the
spontaneous activity of the uncoupled oscillator, respectively.
A similar approximation (using the response function for the
time-dependent mean value to approximate the realization-
wise response of the system) has been successfully applied in
the past to stochastic network models of recurrently coupled
spiking neurons (78, 79).

We assume that we can expand the coupling functions into
the backward eigenfunctions as follows

* *
= E Y Qg + E ax Qi s
A )\’

Hxx(x) + Hyx(y)

(30]
Hyy(x) + Hyy(y ZOW Qi +Z’YA’ QA/
where the coefficients vy, , /. are given by
YaL :/deA;(x)Hxx X), axl /dx Py (%) Hxy (%),
(31]

TN, :/dy P/\Q, (y)Hyy(y Ny /dy P>\' ) Hyx(y)-

In addition to introducing these coefficients, we now also

consider the finite-time-window Fourier transforms of the ob-
servables (see SI for details) and thus obtain from Eq. (29)

Qr = Qo+ oxen (Do @y + D an, @y ),
A A,

Q1 = Qo+ oxe (D an @ + Y m @5 )
A A

and similarly for the remaining modes. From this linear system
of equations, by a systematic expansion in the weak coupling

(32]
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Fig. 5. Cross-Spectra of two coupled units for weak coupling strength e = 0.01. In
all panels the thin (thick) lines indicate simulations (theory); blue (green) corresponds
to real (imaginary) part. a: For two harmonic oscillators with parameters as in Fig. 1
we show cross-spectra between the position variables of each oscillator (left) and
between the Q7 functions, Sy | . b: For two symmetrically coupled but non-identical
Stuart-Landau oscillators we show the cross spectrum between the Q7 functions;
left: oscillators slightly detuned with one oscillator as in Fig. 1 and the other one with
a changed value of b = —0.25; right: second oscillator is more strongly detuned with
b = —0.1. c: For two coupled identically SNIC systems we show the cross-spectra

Sf,yx with parameters as in Fig. 1 (left panel) and Fig. 2 (right panel). In the right

panel two versions of the theory are shown: approximations by one mode (dashed
line) and by the five leading terms (solid line, see text).

strength € we obtain the cross-spectrum between Q7, and
Q{y in terms of the susceptibilities Eq. (25) and cross-spectra
between the modes of one oscillator Eq. (17) (see SI):

STyx = €(X:x Z sy Siy .y F Xey Z a SA;,1X)~ 33]
X, A,

From this formula we can extract the following information.
First of all, for weak coupling, the cross-spectrum between
oscillators is proportional to €. Secondly, the first term in the
parenthesis consists of the susceptibility of the x oscillator,
and a weighted sum of cross-spectra between the different
eigenfunctions of the y oscillator with the most important
term being the power spectrum S1,,. The complex-valued co-
efficients of this sum are determined by Hyx(y), the coupling
function from y to x (see Eq. (31)). The second term in the
parenthesis is similar, only the roles of x and y are switched.
For two statistically identical oscillators with symmetric cou-
pling, the second term is the complex conjugate of the first
one and hence the cross-spectrum will be real-valued; any
non-vanishing imaginary part thus reflects a heterogeneity in
the oscillators or the coupling. For the interesting case of a
purely unidirectional coupling from y to x, for instance, the
second term in the parenthesis in Eq. (33) will simply vanish.
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Our result for the cross-spectrum of the oscillators Eq. (33)
still contains an infinite sum of terms. However, as all of
our numerical examples below show, just a few terms in the
sums will effectively contribute. Specifically, for the case of
coherent stochastic oscillators with similar frequencies, we may
restrict the sums just to the first terms (involving the spectra
associated with A\; and A7) and still obtain accurate results.

We start testing our formula for the cross-spectrum of two
identical harmonic oscillators that are weakly coupled by a
spring (Fig. 5a). In this case, of course, the cross-spectrum
between the original position variables of the two oscillators
can be easily calculated and is shown in the left panel (and
calculated in the SI): a purely real function with a positive lobe
for w < wo, a negative lobe for w > wp and everything mirrored
at negative frequencies. When computing the cross-spectrum
of the new variables Q7,, Q7,, we can take advantage of the
analytical expression for Q] (see SI), to find that the coupling
function is exactly given by a linear combination of Q7 and
Q1 (hence, higher coefficients a;& and ay in the expansion

are identically zero; see SI for further details). Therefore, the
infinite sum in Eq. (33) reduces to
St yx 268?()(205’{51 + X:a151,1)7 [34]
where we have omitted the x, y dependences of the functions
on the r.h.s. since both oscillators are assumed to be identical.
As we observe in Fig. 5a right panel, Eq. (34) displays an
excellent agreement with numerical simulations. If we compare
the cross-spectrum of the Q7,, Q7, functions with the cross-
spectrum in the original position variables, we note that they
look very similar with the only difference being that in ST ,x(w)
everything happens exclusively at positive frequencies (we
consider rotating pointers in the complex plane instead of
real-valued time series) and the zero crossing of the function
is at wy (here close to wp). Hence, the cross-spectrum of the
two systems described in terms of the backward eigenfunctions
reflects the interdependence of the two systems appropriately.
We note that, while the largest contribution to STy in Eq. (34)
is given by the power spectra term S1, the additional term S 1,
even if it is small, has to be included to match the asymmetry
between the two lobes (sizes of minimum and maximum are
slightly different); including only power spectra terms would
result in a strictly odd function with respect to w = ws.
Next, we employ our formula Eq. (33), to study a case
of symmetrically coupled but non-identical oscillators. We
consider two different noisy Stuart-Landau oscillators diffu-
sively coupled by their first coordinates 1 and y1. We study
two cases to inspect how inhomogeneities of the oscillators
affect the cross-spectrum: we set parameters such that (i)
both oscillators are slightly detuned (A1, = —0.048 + 0.6984,
A1, = —0.047 4 0.748:) and (ii) oscillators are more strongly
detuned (A1, = —0.048 + 0.698i, A1, = —0.047 4 0.97). As
all quality factors in this example are small and the system
is rotationally symmetric (which according to our numerical
observations implies S1,1(w) = 0), we expect that the cross-
spectrum is approximately given by
Slyx = e(xzxoﬁySly + Xey 1y Slx). [35]
This formula agrees well with numerical simulations for both
cases (see Fig. 5b). We note that, as the oscillators are non-
identical, the cross-spectrum has both non-vanishing real and
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Fig. 6. Spectral overlap and cross-spectra between Q7 and the rest of the backward
modes for a more (a) and less (b) coherent oscillator. Spectrum of eigenvalues (left
panels), power spectrum S of different eigenmodes (mid panels) and the cross-
spectra between Q7 and different eigenmodes (right panels). SNIC model with
parameters as in Fig. 1 (a) and as in Fig. 2 (b).

imaginary parts. The effect of inhomogeneities is clearly seen
by comparing left and right panels in Fig. 5b. For small de-
tuning (left panel), we observe a similar profile for the real
and imaginary parts of S y: a one lobe function, which is
only different from zero around a narrow frequency band in
the neighbourhood of both eigenfrequencies. As the detuning
is small in case (i), the real part of ST, is larger than the
imaginary part. By contrast, in case (ii) with stronger detun-
ing, the situation is reversed and the imaginary part has a
larger absolute value than the real part; also now the two fre-
quencies of the oscillator become visible by two distinct peaks
in both real and imaginary parts. Indeed, the larger degree of
inhomogeneity is not only captured by the increase of power
in the imaginary part of Sy, but also in the appearance of
two secondary peaks around the individual eigenfrequencies
of each unit.

Finally, we illustrate how for less coherent oscillators, more
terms in the sum are required to yield a quantitatively correct
result in Eq. (33). To this end, we consider first two identical
SNIC systems with parameters of the more coherent case
(chosen as in Fig. 1) and coupled symmetrically through their
first coordinates. Here we expect that, again, few modes are
needed and, indeed, similarly to the Stuart-Landau case, we
just need the power spectra term

STyx = 263?()@0415’1), [36]
(due to symmetry, we can drop the index again and obtain
a purely real-valued cross-spectrum). This formula shows
an excellent agreement with numerical simulations (Fig. 5c,
left panel). However, changing the parameters to the less
coherent case (parameters as in Fig. 2) (so now both coupled
units are in the excitable regime), we find that Eq. (36) does
not suffice (compare dashed and solid curves in Fig. 5c¢ right
panel). Besides the power spectra contribution, we find that
obtaining an accurate prediction in this non-coherent case,
requires including cross-spectral contributions between Q7
and the neighbouring backwards eigenmodes associated to the
eigenvalues AT, A2, A3 and A4 (the contributions associated to
A3, A3 and A} have negligible covariance values).
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Why did this last example require more modes than any
other of the cases considered? There is no general answer to
this question as Eq. (33) depends on the coefficients Qrg s Ay
which depend in turn on the specific systems and the specific
coupling functions. However, the dependence of Eq. (33) on
the cross-spectra Si,x, can shed some light on this question.
As Eq. (17) shows, our formula for the cross-spectra Six
between Q7 and any other backward mode is weighted by their
covariance (Q7Qx). The more robustly oscillatory a system
is, the smaller we would expect the co-variance between Q7
and the rest of the backward modes. The reason for such
expectation is illustrated in Fig. 6. In Fig. 6a, we consider the
SNIC model in the coherent regime and show its eigenvalue
spectrum (left panel). We observe that the closest eigenvalue
to A1 = —0.048 + 0.698i is A2 = po + iwe = —0.18 + 1.424.
Consequently, the power spectrum of @3, which is also given
by a Lorentzian centered at w2 and half-width of u2, shows
very little overlap with the power spectrum of Q7 (mid panel).
Hence, it is not surprising that the cross-spectrum Sy 2 is small
(right panel). By contrast, if we now consider the SNIC in
the less coherent case (Fig. 6b), this scenario changes. As we
see in Fig. 6b, right panel, the eigenvalues are much closer in
their imaginary parts (also real parts are larger) than in the
coherent case (now A1 = —0.168 +30.241, A2 = —0.42 4 0.64
and A3 = —0.73+41.11). Therefore, there is an effective overlap
between their respective power spectra (mid panel) leading to
non-negligible cross-spectra between Q7 and its neighbouring
modes (right panel) and these contributions have to be taken
into account in the theory.

Summary and discussion

In this paper we have developed a simplifying framework for
stochastic oscillators that can be described by systems of
stochastic differential equations. By mapping the system’s
n-dimensional state vector to a complex-valued oscillator given
by the eigenfunction Q7 (x) of the backward Kolmogorov op-
erator to the eigenvalue \1 = pi1 + ‘w1 with the least neg-
ative real part, we achieve a significant reduction in com-
plexity. By using the transformed variable Q7(x), i.e. the
pair (R[Q7](x(t))], S[Q1(x(¢))]), we accomplish three major
simplifications. First, we can describe the single oscillator’s
spontaneous activity by a simple correlation function consist-
ing of a single exponential, or, equivalently, by a Lorentzian
power spectrum with frequency wi, half-width w1, and quality
factor |wi/u1|. Second, we can quantify the response to an
external stimulus with a simple linear response function of
the form K(7) x ©(7)exp(A17), a function that is related
to the correlation function by a simple proportionality. This
result constitutes a fluctuation-dissipation theorem for a non-
equilibrium system that is distinct from other theorems that
have been derived in the past (e.g. (72, 73, 75)). Third, by
mapping the oscillator state to the Q7(x) function, we can
predict the form of the cross-correlations of coupled noisy
oscillators.

We illustrated the working of the general theory by three
models that have distinct mechanisms for generating stochas-
tic oscillations; mathematically speaking, these were a linear
system with a stable focus driven by fluctuations, the canonical
model for a supercritical Hopf bifurcation endowed with noise,
and a system with a saddle-node on invariant circle bifurcation
likewise with uncorrelated noise. It is important to note that
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the first and the third example would not perform any oscilla-
tions (at least in the long-time limit) in the absence of noise.
These oscillations are noise-generated in both cases, though by
different mechanisms. The second system constitutes a limit-
cycle system perturbed by noise and thus here the effect of
the fluctuations are easier to grasp: more noise will reduce the
phase coherence of the oscillation. Although the three systems
are very different in their dynamical mechanism, they become
similar and, moreover, comparable when viewed through the
lens of the Q7 (x) function. Even in our framework, we still
see characteristic aspects of the system, when we look at their
response to external stimuli or the cross-correlation statistics
for coupled systems.

While results on the theory of the single power spectrum
and the linear response are exact, the case of coupled stochastic
oscillators required a new idea for the analytical calculation; we
used an ansatz that employs linear response theory (proceeding
as if the dynamics in the new variable were linear). We
illustrated the resulting expressions for a number of numerical
examples: for the three models, for identical and non-identical
oscillators, for rather coherent and for more noisy oscillators.
In all cases and for sufficiently weak coupling we found excellent
agreement between the predicted and the simulated cross-
spectra of the @7 variables of the two systems. We take this
as an indication that the true dynamics of the new variable
is effectively linear. The reasons why this is so merit further
exploration.

The universal description of stochastic oscillations put for-
ward here, may also be used to better highlight the charac-
teristic differences between the different systems. Given that
two oscillators have the same A1 (i.e. the same quality factor),
what sets them apart? Should we combine the information
for the leading complex-valued eigenvalue and its eigenfunc-
tion with that of the first purely real-valued eigenvalue and
the associated eigenfunction, which can be used to define the
stochastic limit cycle (80)7 Or should we rather compare
the higher oscillatory modes Q3. (with |R(\)| > |u1| and
3(A') # 0), that play such a prominent role in our theory of
coupled oscillators? It seems to us that both comparisons offer
a novel perspective for the finer categorization of stochastic
oscillators.

The relation between our universal description of stochastic
oscillators and the classical phase description of deterministic
oscillators bears further discussion. Recall that, in deter-
ministic limit-cycle systems, the phase can be obtained from
the argument of the principal eigenfunction of the Koopman
operator with purely imaginary eigenvalue (81, 82). Upon
introducing noise into the system, this eigenvalue develops a
negative real part. Indeed it becomes A\; and its associated
eigenfunction becomes Q7. This connection between the de-
terministic phase and the Q7 function in the noise vanishing
limit is not coincidental since the Kolmogorov backward oper-
ator L corresponds to the stochastic version of the Koopman
operator (83). Indeed, the relationship between the stochas-
tic asymptotic phase (the complex argument of Q7) and the
deterministic phase in the limit D — 0 has already been
noted (54, 64, 84, 85). Hence, our transformation also em-
braces the deterministic case and connects cleanly with the
well-established deterministic Koopman-operator framework
(86).

Returning to the specific results of our paper, we note that
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they can be generalized in different directions. First of all, even
if our general setup includes multiplicative noise, for simplicity
we restricted all of our examples to Langevin systems with
additive white Gaussian noise. Nothing keeps us from finding
the eigenfunction to the eigenvalue with the least negative real
part and to make the transformation to this complex-valued
variable in a system with multiplicative noise. Likewise, we
are not restricted to systems with Gaussian white noise but
can also apply the method to Markov processes described
by a master equation (for which there exist also a backward
operator with eigenfunctions; one such example has been
already treated in (54) for the extraction of the asymptotic
phase of a stochastic neuron model with discrete channel
noise). More generally even, any jump-drift-diffusion process
(62) described by a master equation (with additional drift and
diffusion terms) that shows the hallmarks of robust stochastic
oscillations, can be captured by our universal description in
terms of the Q7(x) function. Our formulas for the main
characteristics will not change and, for instance, the power
spectrum of such systems in the new variable will still be a
pure Lorentzian, the response function a pure exponential, etc.
Another straightforward generalization concerns the external
perturbation: this could (and will in certain cases) also depend
on the state of the system. This will mainly affect the definition
of the complex-valued coefficient 8 that appears in the response
function.

An exciting challenge is to extend our analysis of two
coupled oscillators to the general case of N weakly coupled
oscillators with its obvious applications to neural (87-89),
mechano-sensory (90-92), genetic (1, 93), metabolic (94), and
energy supply networks (95), to name but a few examples.
Because our analytical approach can be generalized to this
case, different scenarios of connectivity (sparse, random or
structured) and heterogenity (in the single oscillator properties
or in the connections) can be studied analytically. Moreover,
the summed activity of subgroups of oscillators at the meso-
scopic level can be calculated from the cross-spectral statistics
of single stochastic oscillators.

Our theory was here applied to stochastic models, but ap-
plications to data are conceivable. In (54) it was demonstrated
how the stochastic asymptotic phase (the complex argument
of the function Q7) can be extracted from data. In the same
way, the function Q7 itself can be found, provided the data
are consistent with a robustly oscillatory Markov process. We
suggest that if one were to propose a method for extract-
ing either @7, or higher modes Q3, our results offer a test:
whether the resulting power spectra fit simple Lorentzians at
the respective eigenfrequencies (see SI). Thus, in light of the
direct link between the Kolmogorov backwards operator and
the stochastic Koopman operator, our work may help advance
methods for extracting Koopman eigenfunctions from data
(96-99), as well as for providing physical interpretations of
particular modes (54, 58).

Our framework also offers a test of a key assumption, namely
that the stochastic oscillation arises from a Markov process.
Markovianity is an important characteristic of stochastic pro-
cesses, and different methods to test for it are currently under
debate (see e.g. (76, 100, 101)). For the important class of
stochastic oscillators, computing the statistics of Q7 (x(t)), and
specifically probing for a purely Lorentzian line shape, may
provide another independent tool to test for Markovianity.

10 | www.pnas.org/cgi/doi/10.1073/pnas. XXXXXXXXXX

In summary, there are many open problems that can be
studied within the framework put forward here.
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