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Abstract Motor systems show an overall robust-
ness, but because they are highly nonlinear, under-
standing how they achieve robustness is difficult. In
many rhythmic systems, robustness against pertur-
bations involves response of both the shape and the
timing of the trajectory. This makes the study of
robustness even more challenging.

To understand how a motor system produces ro-
bust behaviors in a variable environment, we con-
sider a neuromechanical model of motor patterns in
the feeding apparatus of the marine mollusk Aplysia
californica (Shaw et al.|[2015; Lyttle et al.L|2017). We
established in (Wang et al.,2021)) the tools for study-
ing combined shape and timing responses of limit cy-
cle systems under sustained perturbations and here
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apply them to study robustness of the neuromechan-
ical model against increased mechanical load during
swallowing. Interestingly, we discover that nonlinear
biomechanical properties confer resilience by imme-
diately increasing resistance to applied loads. In con-
trast, the effect of changed sensory feedback signal is
significantly delayed by the firing rates’ hard bound-
ary properties. Our analysis suggests that sensory
feedback contributes to robustness in swallowing pri-
marily by shifting the timing of neural activation
involved in the power stroke of the motor cycle (re-
traction). This effect enables the system to generate
stronger retractor muscle forces to compensate for
the increased load, and hence achieve strong robust-
ness.

The approaches that we are applying to under-
standing a neuromechanical model in Aplysia, and
the results that we have obtained, are likely to pro-
vide insights into the function of other motor sys-
tems that encounter changing mechanical loads and
hard boundaries, both due to mechanical and neu-
ronal firing properties.

Keywords Nonsmooth systems - Aplysia - Vari-
ational dynamics - Infinitesimal phase response
curve - Robust motor behavior - Sensory feedback

1 Introduction

In many animals, motor control involves neural os-
cillatory circuits that can produce rhythmic patterns
of neural activity without receiving rhythmic inputs
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(central pattern generators (CPGs)), force genera-
tion by muscles, and interactions between the body
and environment. Moreover, sensory feedback from
the peripheral nervous system is known to modulate
the rhythms of the electrical signals in CPGs and
thereby facilitate adaptive behavior.

Motor systems show an overall robustness, but
because they are highly nonlinear, understanding how
they achieve robustness due to their different com-
ponents is difficult. To understand how animals pro-
duce robust behavior in a variable environment, |Shaw
et al.|(2015]) and [Lyttle et al. (2017)) developed a neu-
romechanical model of triphasic motor patterns to
describe the feeding behavior of the marine mollusk
Aplysia californica. Like many rhythmic motor sys-
tems, feeding in Aplysia involves two distinct phases
of movement: a power stroke during which the mus-
culature engages with the substrate (the seaweed)
against which it exerts a force to advance its goal
(ingestion of seaweed), and a recovery stage during
which the motor system disengages from the sub-
strate to reposition itself, in preparation for begin-
ning the next power stroke. Similarly, in legged loco-
motion, the stance phase corresponds to the power
stroke and the swing phase corresponds to the re-
covery stage.

Also, like many rhythmic motor systems, feed-
ing in Aplysia involves a closed-loop system, which
integrates biomechanics and sensory feedback, and
exhibits a stable limit cycle solution. It has been con-
jectured that sensory feedback plays a crucial role in
creating robust behavior by extending or truncat-
ing specific phases of the motor pattern (Lyttle et
al| (2017), §3.1). To test this hypothesis, we applied
small mechanical perturbations as well as parametric
perturbations to the sensory feedback pathways in
the coupled neuromechanical system. It was shown
in [Lyttle et al.| (2017)) that a sustained increase in
mechanical load leads to changes in both shape and
timing of the limit cycle solution: the system gen-
erates stronger retractor muscle force for a longer
time in response to the increased load. Qualitatively
similar effects have been observed during in vivo ex-
periments in Aplysia (Gill and Chiel, |2020). In gen-
eral, we expect that applying parametric changes to
CPG-based motor systems leads to changes in both
the shape and timing of the resulting limit cycle be-

havior (Fig. [I).

In Aplysia, the increased duration (timing) and
increased force (shape) have opposite effects on the
task-fitness, measured as seaweed consumption per
unit time. Strengthening the retractor force pulls in
more food with each cycle, which increases fitness,
whereas lengthening the cycle time decreases fitness.
Together these effects approximately cancel, making
the system robust against increased load. This type
of “stronger-and-longer” response may occur generi-
cally in other motor systems. Thus, in this paper, we
seek to understand the roles of sensory feedback and
biomechanics in enhancing robustness. To this end,
we apply recently developed tools from variational
analysis (Wang et al., |2021) to quantitatively study
changes in shape and timing of a limit cycle under
static perturbations.

In the first part of the present paper (cf. ,
we apply the classical tools of forward variational
analysis to the model introduced by Shaw, Lyttle,
Gill and coauthors in (Shaw et al., 2015; [Lyttle et
al. 2017) (denoted as the Shaw-Lyttle-Gill or SLG
model for brevity) to arrive at the following insights:

— Nonlinear biomechanical properties confer resilience

by immediately increasing resistance to applied
loads, on timescales much faster than neural re-
sponses.

— The main effect of sensory feedback is to shift
the timing of retraction neural pool deactivation;
in parallel, firing rate saturation effectively cen-
sors sensory feedback during specific movement
subintervals.

While the forward-in-time variational analysis is
illuminating and allows us to explain in detail the
robustness mechanism, it is still incomplete. Over
time, the original and perturbed cycle will become
increasingly out of phase due to the timing changes
under sustained perturbations. Hence the shape dis-
placements estimated from the forward variational
analysis will become less and less accurate over time.
This difficulty is not limited to models of feeding in
Aplysia californica. For example, if we were to com-
pare the gaits of two subjects walking on treadmills
with slightly different speeds, although the ratio of
stance and swing may be the functionally important
aspect, this quantity is difficult to assess directly
without putting the two movements on a common
footing by comparing them using a common time
scale.
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Fig. 1 A sustained change in parameter © in a dynamical system x = F(x, ©) producing a limit cycle trajectory typically
causes changes in both the timing and shape of the trajectory, which may both influence the performance S of the limit

cycle system.

Thus, in order to compare perturbed and unper-
turbed motions with greater accuracy, in the remain-
der of the paper (cf. and following) we show
how to extend the local-in-time variational analy-
sis to a global analysis by applying the infinitesi-
mal shape response curve (ISRC) analysis and local
timing response curve (LTRC) analysis developed in
Wang et al.| (2021). We review these methods in
This time-rescaled analysis accounts for both global
timing sensitivity (through the infinitesimal phase
response curve, IPRC), as well as local timing sen-
sitivity (through LTRC) by rescaling time to take
into account local differences in the effects of para-
metric variation. It yields a more accurate and self-
consistent description of the oscillator trajectory’s
changing shape in response to parametric perturba-
tions and helps complete the picture by providing
a complementary perspective. Specifically, our time-
rescaled analysis provides additional insights, specif-
ically that

— Increasing the applied load on the system in-
creases the duty cycle of the neuron pool respon-
sible for retraction, in the sense that the retrac-
tion neuron pool is activated for a larger percent-
age of the closed phase of the cycle. (The closed
phase of the trajectory occurs while the animal’s
radula-odontophore, or grasper, is closed on the
seaweed, and encompasses the power stroke.) This
effect ultimately results in more seaweed being
consumed, despite increased force opposing in-
gestion.

— We are able to derive the multidimensional in-
finitesimal phase response curve (IPRC) despite
the presence of nonsmooth dynamics in the sys-
tem; we identify the mechanical component of the
IPRC as the one that contributes most to robust-

ness, and note that its contribution arises from
the “power stroke” segment of the motor cycle.

— We derive an analytical expression for the robust-
ness to the mechanical perturbation that decom-
poses naturally into a sum of two terms, one cap-
turing the effect of the perturbation on the shape
of the trajectory, and the other capturing the ef-
fect on the timing; this result provides a quanti-
tative analysis of robustness that confirms the
qualitative insights described previously in the
literature.

— In addition to sensory feedback and intrinsic biome-
chanical properties, robustness against changes
in applied load can arise from coordinated changes
of multiple parameters such as the gain of sensory
feedback and muscle stiffness.

The dynamics of the SLG model (Lyttle et al.,
2017) is given by

dtiito — (a0(1 —ag — 'yal) + M + Eo(xr - 60)0—0)/7—11
@ = (ar(1 — a1 — yas) + p+ e1(z, — &1)on) /7
das

72 = (a2(1 —az — yag) + p + e2(wr — £2)02) /T4

% = ((a0+a1)umax*’u0)/7—m (11)
% = (a2umax - Ul)/’Tm
d;tT = (qusc(an Uy, xr) + TFSW)/bT

This system incorporates firing rates of three neu-
ron populations, corresponding to the “protraction-
open” (ag), “protraction-closed” (ay), and “retrac-
tion” phase (aq). Note that when a nerve cell ceases
firing because of inhibition, its firing rate will be
held at zero until the balance of inhibition and ex-
citation allow firing activity to resume. Hence, we
supplement model with three hard boundaries
introduced by the requirement that the firing rates
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ag, a1, as must be nonnegative:
Yo ={ag =0}, 2, = {a1 = 0}, X3 = {az = 0}.

During the limit cycle, when a neural variable a;
changes from positive to 0, we call that the a; landing
point; when it changes from 0 to positive, we call
that the a; liftoff point. The fact that the trajectory
is non-smooth at the landing and liftoff points will
play an important role in the analysis to follow. See
44 for further discussion of the biological basis for

our modeling assumptions.

This model also consists of a simplified version
of the mechanics of the feeding apparatus: a grasper
that can open or close (z,), a muscle that can pro-
tract the grasper to reach the food (ug) and another
muscle that can retract the grasper to pull the food
back into its mouth (u1). The net force exerted by
the muscles is given by the sum of the two muscle
forces

Frusc (u07 ul, mr) = qusc,pro + qusc,ret (1-2)

= koo (M) up + k19 (Cl — a:,«) u1
wo w1
3V3
2

o(x) = ——=z(xz—-1)(xz+1)

is the effective length-tension curve for muscle forces,
c;, w; and k; denote the mechanical properties of
each muscle.

F,, represents the external force applied to the
seaweed, which can only be felt by the grasper when
it is closed on the food (a; +ag > 0.5), during which
r = 1. When the grasper is open (a; + a2 < 0.5),
r = 0; that is, the grasper moves independently of
the seaweed. This condition leads to a transversal
crossing boundary; that is, the open/closing bound-
ary given by

EO/C = {a1 +ag = 05}

Values for model parameters and initial conditions
are given in Table 2] and Table [3] in the Appendix.
For additional details on the biological assumptions
motivating the model, see (Shaw et al., 2015; [Lyttle
et al. [2017).

In this paper, we are interested in the so-called
heteroclinic mode in which the neural dynamics tem-
porarily slow down when the sensory feedback over-
comes the endogeneous neural excitation and forces
the neural trajectory to slide along the hard bound-
ary a; = 0. Such temporary slowing down of neural

variables allows the muscles, which evolve on slower
timescales, to “catch up”; hence the seaweed can be
swallowed and ingested successfully. Following the
terminology from (Wang et al., |2021)), we call at-
tracting periodic trajectories that experience sliding
motions limit cycles with sliding components (LC-
SCs).

Using classical sensitivity analysis and our re-
cently developed tools from variational analysis (Warlg
et al., |2021)), we show here that biomechanics and
sensory feedback cooperatively support strong ro-
bustness by changing the timing and shape of the
neuromechanical trajectory. While both sensory feed-
back and biomechanics respond immediately to the
increased load, we find that the sensory feedback
effect is initially censored while the neural activ-
ity is pinned against a hard boundary of neuronal
firing. Thus the effect of the sensory feedback sig-
nal is significantly delayed relative to onset of the
increased load. Our analysis suggests that sensory
feedback mediates robustness mainly through shift-
ing the timing of neural activation and specifically
increasing the duty cycle of the retraction neural
pool. This response allows the system to digest more
seaweed despite the increased force opposing inges-
tion and hence achieve strong robustness. In addition
to uncovering the mechanisms for robust motor con-
trol, our methods allow us to quantify analytically
the robustness of the model system to the mechan-
ical perturbation. Finally, although we focus on the
Aplysia californica feeding system as our working
example, our methods should extend naturally to a
broad range of motor systems.

Our paper is organized as follows. We present
our analysis and main results in Methods that
we use to understand the robustness in the Aplysia
neuromechanical model are presented and reviewed
in We discuss limitations and possible extensions
of our approach in

2 Results

Recall that a sustained (parametric) perturbation of-
ten causes changes in both shape and timing of the
neuromechanical trajectory solution of . In this
paper, we adopt methods developed in (Wang et al.,
2021)) for analyzing the joint variation of both shape
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and timing of limit cycles with sliding components
under parametric perturbations.

2.1 Forward Variational Analysis.

We begin our analysis by investigating how the shape
of the trajectory changes in response to a sustained
increase in mechanical load Fiy,. To a first approx-
imation, the change in shape can be captured by
classical sensitivity analysis (also called forward vari-
ational analysis) which we review in

We apply a small static perturbation to the sys-
tem by increasing the model parameter Fiy
by € = 0.02: Fy — Fiw + €, and comparing the
new, perturbed limit cycle trajectory 7. to the orig-
inal, unperturbed limit cycle trajectory g, begin-
ning at the start of the grasper-closed phase (time
0 in Figure |2 panels A-D). That is, we plot v ~
(V=(t) — 70(t))/e; see ([B3:13)-(3.15) for precise defi-
nitions. Note that Fy,, is multiplied by an indicator
function that is only nonzero when the trajectory is
in the grasper-closed phase. Thus the perturbation is
only present when the grasper is closed on the food.

The neural and biomechanical components of the
unperturbed trajectory (t) are shown by the solid
curves in Figure and B, respectively. The per-
turbed trajectories 7. (t) are indicated by the dashed
lines. The gray shaded regions indicate phases when
the grasper in the unperturbed system is closed. With
the perturbation (increased load), the transition from
closing to opening is delayed; this transition is indi-
cated by the magenta vertical line. Figure 2C and D
show the difference between the two trajectories per
perturbation along the neural directions and along

the biomechanical directions, respectively. These curves

can be approximated by the solutions to the forward
variational equation defined in The muscle
forces Fiusc(uo, u1, x,) before and after the pertur-
bation are shown by the gray curves in Figure 2B,
and the difference between them is included as the
gray curve in Figure 2D.

Figure [2] yields several insights about the roles
of sensory feedback and biomechanics in robustness,
which we discuss in detail below.

Biomechanics confer resilience by immediately
increasing resistance to the increased load.

Immediately following the perturbation of the me-
chanical load, we observed a positive displacement in
the grasper position x, relative to the unperturbed
trajectory (Figure , yellow curve). This displace-
ment simply reflects the grasper being pulled by a
stronger force Fgy + €. If nothing other than the ap-
plied load Fj, changes in the system, a linearized
analysis suggests that the initial displacement of z,
would approximately follow the yellow dashed line
given by b%t (Figure ) Nonetheless, while this
line gives a good initial approximation, the true dis-
placement in x, (yellow solid curve) quickly sags
below the yellow dashed line over time. This dif-
ference arises due to the negative displacement oc-
curring in the muscle force Fpusc(uo,u1,2,) (Fig-
ure , gray curve) which acts to overcome the in-
creased load. However, early in the retraction cycle,
all other variables, including the muscle activation
ug and up, show almost no displacement at all (see
Figure and D). This observation suggests that
long before the sensory feedback effect has time to
act, the biomechanics may play an essential role in
generating robust motor behavior, by providing an
immediate, short-term resistance to increased load.
Early in the retraction cycle, increasing the load
stretches both the retractor and protractor muscles,
and moves them down their length-tension curves.
As aresult, both forces become weaker, but the mag-
nitude of the protractor muscle force drops more
quickly than the retractor muscle force (Figure (3.
Thus, the retractor muscle force grows relative to the
opposing protractor muscle force. This shift endows
the system with a built-in resilience, in that increas-
ing seaweed force opposing ingestion automatically
(i-e., without changes in neural activation) engages a
larger resisting muscle force long before neural pools
or muscles show differential activation. This is a new
insight beyond the previous “longer-stronger” hy-
pothesis (Shaw et al., 2015; Lyttle et al.l |2017)).

Sensory feedback effects are largely delayed by the
firing rate hard boundary properties.

Changes in x, due to the increased load will imme-
diately propagate to the neural variables (ag, a1, as)
through the sensory feedback &;(z, — &;)0;)/7a, and
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Fig. 2 A small sustained perturbation is applied to the Aplysia model over the closing phase in which Fyw — Fsw+e
with perturbation e = 0.02. (A, B) Time series of the trajectory components for nominal force value Fi (solid) and
perturbed force value (dashed) over two periods, aligned at the start of the closed phase. (C, D) The displacement
solution, v(t), to the forward variational equation over two periods. The gray curve in (D) denotes the displacement
between the perturbed and unperturbed muscle forces Fiusc, shown as the gray curves in panel (B). The yellow dashed
line in panel (D) approximates the displacement in z, if the net muscle force Fiusc did not change after perturbation.
The intervals during which the grasper without perturbation is closed on the food are indicated by the shaded regions.
The vertical magenta lines indicate the times at which the grasper under perturbation switches from closed to open.
The difference in periods and the delay in the grasper opening time both accumulate, making the comparison between
the two trajectories invalid except at short times. (A) and (C) show trajectories and displacements along the neural
directions, while (B) and (D) show trajectories and displacements along the mechanical directions. The lines in panel
(C) (resp., (D)) approximate the difference between the dashed and solid trajectories from panel (A) (resp., (B)) per
perturbation.

hence should affect the neural variables without any
lag. However, no significant displacement of the neu-
ral variables is observed until nearly the end of the
retraction cycle (Figure PC). In other words, while
the sensory feedback itself immediately responds to
the increased load, the effect of the changed sensory
feedback signal is not manifest until much later in
the retraction cycle, when the protraction-open neu-
ron pool is released from inhibition along its hard
boundary and starts to fire (Figure . Hence, the
nonsmooth hard boundary conditions on neuronal
firing rates significantly delay the effect of sensory

feedback, and create intervals during which neurons
are insensitive to sensory feedback.

Sensory feedback contributes by shifting the timing
of neural activation.

Due to the hard boundary effects, the displacements
of the neural variables appear near the end of the
closed phase, when the protraction-open neuron pool
ap lifts off from its hard boundary, and the retraction-
closed neuron pool ay deactivates to stop firing (Fig-
ure[2A and C). A positive (resp., negative) displace-
ment of as (resp., ag) indicates that ay deactivates
(resp., ag activates) at a later time with the increased
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load, and hence the retraction-closed phase is pro-
longed. Consequently, the retraction muscle activity
will increase, because its stimulation by the retrac-
tion motor neuron is prolonged, allowing the slow
retractor muscle to generate larger forces (Figure
). Similarly, we also observe a decreased protrac-
tor muscle activity, as the protraction neuron pool
ag turns on at a later time. This decrease leads to
a stronger retractor muscle force and a weaker pro-
tractor muscle force (Figure [3)). Hence, a more nega-
tive net muscle force results (Figure , gray curve),
which corresponds to a stronger resisting force pulling
the seaweed towards the jaw to swallow the food.
To summarize, the main effect of sensory feedback
that contributes to robustness is prolonging the re-
traction phase to confer on the system a resilience
in that increasing seaweed force opposing ingestion
engages a larger resisting muscle force. Thus, sen-
sory feedback contributes to robustness primarily by
shifting the timing of neural activation, as opposed
to the magnitude of neural activation. Biologically,
this distinction corresponds to affecting the timing
of motor neuron burst onset or offset, rather than
burst intensity.

‘ .
protraction

retraction

Muscle Forces
o
.

time

Fig. 3 The time series of the perturbed (dashed) and un-
perturbed (solid) protractor muscle forces Fiusc,pro (red)
and retractor muscle forces Fmusc,ret (blue) over two peri-
ods. The gray shaded regions and the magenta lines have
the same meanings as in Figure
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Fig. 4 Enlarged views of Figure and D near the first
transition from closed to open. Note the displacement of
z, (i.e., the z, component of v(¢) shown as the yellow solid
line in (D)) is positive both at the end of the closing time
of the unperturbed system (see the green arrow near the
grey/white boundary) and the perturbed system (see the
green arrow near the magenta line).

2.2 Variational Analysis with Rescaled Time -
ISRC.

Under the forward-in-time analysis, the grasper of
the perturbed system lags behind the grasper of the
unperturbed system throughout the closing phase;
yet the net seaweed movement was measured to be
greater for the perturbed system (Lyttle et al.,[2017).
Fig. [ shows an expanded view of the perturbed
and unperturbed systems’ grasper position (Fig. )
and the linearized difference produced by the vari-
ational equation (Fig. D). As this detailed view
shows, at the time when the unperturbed system
transitions from closed to open (gray-white bound-
ary) the unperturbed grasper position is more re-
tracted than the perturbed grasper position at the
coincident time point. Similarly, the grasper com-
ponent of the variational equation is positive at the
gray-white boundary. Furthermore, at the time when
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the perturbed system transitions from closed to open
(magenta line) the perturbed system continues to be
less retracted than the unperturbed system. Thus,
whether we compare the systems at the perturbed
or unperturbed opening time, the perturbed grasper
is “further behind”. Yet the overall effect in the per-
turbed system is a larger net intake of seaweed per
cycle.

This apparent contradiction underscores the need
to extend the perturbation analysis beyond the stan-
dard forward-in-time variational analysis. In partic-
ular, if one cycle is slower than another, then while
the local perturbation analysis can explain the cause-
and-effect relations a short time into the future, they
cannot account for the net effect around a cycle in
a self-consistent way. Over time, the displacements
between the two trajectories grow, and the linearized
approximation becomes invalid except at short times
(cf.Jordan et al.|(2007))). Hence, unless time is rescaled
to take into account the difference in cycle period,
comparing the components of the original and per-
turbed cycles will become less and less meaningful.

To overcome this difficulty, we extend the local-
in-time variational analysis to a global analysis by
rescaling time so the unperturbed closing and open-
ing events coincide with those after perturbations,
respectively. We do so by applying the infinitesimal
shape response curve (ISRC) analysis and the local
timing response curve (LTRC) (Wang et al.| [2021]),
which we review in §3} This method yields a more ac-
curate and self-consistent description of the oscilla-
tor trajectory’s changing shape in response to para-
metric perturbations (see Figure . We show that
the combination of the ISRC and the LTRC gives a
sensitivity analysis of an oscillator to sustained per-
turbations within any given region (e.g., protraction
or retraction cycle, opening or closing phase) and
provides a self-contained framework for analytically
quantifying and understanding robustness to pertur-
bations.

We write v for the linear shift in the limit cycle
shape in response to the static perturbation Fy, —
Fiw + ¢, that is:

Ye(Te(t)) = 70(t) +em(t) + O(e),

uniformly in time. Note that the time for the per-
turbed trajectory is rescaled to be 7.(¢) to match the
unperturbed time points. The linear shift ; (¢) is the
so-called ISRC curve and satisfies a nonhomogeneous

variational equation (see . Compared with the for-
ward variational equation, the ISRC equation has
one additional nonhomogeneous term v Fy(y0(t)) that
arises from the time rescaling. In this term, v is de-
termined by the choice of time rescaling 7.(t) and
Fy(yo(t)) is the unperturbed vector field evaluated
along the unperturbed limit cycle yo(t) (see §3| for
details).

Since the perturbation is applied to the seaweed,
it can only be felt by the system when the grasper
is closed on the seaweed. It is natural to expect
that the segment at the closing phase has a different
timing sensitivity than the segment at the opening
phase. We hence choose to rescale time differently
in the two phases, using piecewise uniform rescaling
when computing the ISRC. This leads to a piece-
wise ISRC equation, where 1 is piecewise constant.
It was shown in (Wang et al.l 2021) that v; can be
estimated from the LTRC analysis (see §3)).

In Figure and B, the time traces of vari-
ables along the unperturbed limit cycle are shown by
the solid curves, whereas the perturbed limit cycle
whose time has been rescaled to match the unper-
turbed time points as described above are indicated
by the dashed curves. With the piecewise rescal-
ing, the transitions between the closing and opening
events of the perturbed and unperturbed systems
now coincide. The relative displacements between
the perturbed and unperturbed trajectories are ap-
proximately given by the piecewise ISRC ~; shown
in Figure5|C and D. In contrast to the forward varia-
tional analysis, in which the displacements grow over
time, the piecewise ISRC curve is periodic, meaning
we have achieved a self-consistent global description
of the response of the limit cycle to increased load.

We now show that the apparent contradiction
that we obtained from the forward variational anal-
ysis, i.e., that the grasper displacement at the end
of the closing phase is positive (cf. Fig, can now
be resolved in the time-rescaled picture. In response
to the perturbation, the relative displacement of the
grasper position (the z, component of 1, denoted
as Y1 4,.) initially increases (i.e., the grasper becomes
more and more protracted due to the increased load)
and reaches its peak at about t = 1.4 (see Figure
, yellow curve). Then it starts to decrease and be-
comes negative at the time when the grasper opens.
This means later in the retraction cycle, the per-
turbed grasper is less and less protracted than the
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Fig. 5 Variational analysis with piecewise uniform time rescaling. The same sustained perturbation as in Figure |2 is
applied to the Aplysia model . (A, B) Time series of the perturbed (dashed) and unperturbed solutions (solid).
Here piecewise uniform rescaling is applied so the closing and opening events coincide. (C, D) The ISRC with piecewise
uniform rescaling ~(t) over two periods. Shaded regions have the same meanings as in Figure [2| Note the z, component
of the ISRC is negative at the time of opening (see green arrow). With piecewise uniform rescaling, the variational
approximation is consistent across multiple periods (c.f., Figure [2).

unperturbed version and eventually become more re-
tracted by the end of the closing phase (Fig. ,
green arrow). In summary, the grasper perturbed by
larger force begins “behind” the unperturbed ver-
sion, but catches up around 60% of the way through
the retraction phase (in relative time) and comes out
“ahead” by the time both graspers open, consistent

with having a larger net seaweed intake (Lyttle et
2017).

To understand what causes 7; ., to be negative
despite its initial big rise, we consider the effect of
the perturbation on the neural pool through sensory
feedback. In Figure[5C, we observe positive displace-
ments in 1 4, (yellow curve) occurring both when
the retraction neuron pool as activates and when it
deactivates. These displacements indicate that with
the increased load, the retraction neuron ay activates
earlier and turns off later relative to the unperturbed

as. In other words, increasing the applied load on the
system increases the duty cycle of the neuron pool in-
volved in retraction, i.e., the retraction neuron pool
is activated for a larger percentage of the total cy-
cle. As a result, the motor system recruits a larger
retractor muscle force, as indicated by the positive
displacement of the retractor muscle activation wu
during the closing phase (Figure , red curve). A
similar increase in motor recruitment in response to
increased external load has been observed in vivo
(Gill and Chiel, 2020). In the model, the stronger
retraction force acts to impede the protraction of
the grasper, and eventually pulls the grasper to a
more retracted state. Thus the grasper displacement
crosses zero and becomes negative at the end of the
closing phase (Figure , green arrow).

Note that there is no perturbation during the
opening phase (Figure [5] white space). During this
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phase of the cycle, displacements slowly decay and
are nearly zero by the time the grasper closes on the
food again.

2.3 Timing responses to sustained perturbations of
Fyy-

Infinitesimal phase response curve.

To understand the timing response of system
to increased load, we perform an IPRC analysis. Fig-
ure [6] shows the time traces of the IPRC curve over
one cycle. As before, the shaded region indicates the
phase when the grasper is closed.

<10% IPRC
4 = - |
— 2
2| — Za, as liftoff 7
Zg ¢
0k : : ‘ ]
0 1 2 3 4
6 — 2y, .
al —_—2 |
2z
z, ]
S
0
-2 — ]
0 1 . 4
time
|
pro-closed  retract-closed pro-open

Fig. 6 IPRC for the Aplysia model. Grey shaded re-
gion indicates the period when the radula/odontophore
is closed. On the bottom, the red, yellow and blue rectan-
gles denote the protraction-closed, retraction-closed and
protraction-open phases, respectively. The blue spike in
the IPRC in the top panel occurs when the ao variable
“lifts off” from the ap = 0 boundary; the red spike occurs
when the a; variable lifts off; the liftoff point for as is
indicated with an arrow.

The IPRC curves associated with biomechanical
variables are shown in Figure[6] lower panel. In par-
ticular, the timing sensitivity of system to the
increased load on the grasper (Fyy, — Fysw + €) can
be estimated using the IPRC along the z,. direction,
i.e., the yellow curve in the lower panel of Figure
[l Since the perturbation only has effect during the
closing phase, only the portion of z,, . over the shaded

region is relevant. This portion is strictly negative.
Therefore, in response to the increased load consid-
ered above, the system undergoes phase delay, and
hence the total period is prolonged. This finding is
consistent with earlier results on the sensory feed-
back effect obtained from the variational analysis
(see §2.2).

The linear shift in period can be estimated by
evaluating the integral

T. - Ty _ _/0 " oy PF=00(0)

Ty = 1i
! ey Oe e=0

dt,
e—0 £

where Ty, T. are the periods before and after per-
turbation € (see Section |3). For the perturbation
on Fi,,, the derivative 81’5877;@)) equals (0, }%)T over
the grasper-closed region, and equals 0 du;ing the
grasper-open region, where the first 0 is a 5 x 1 zero
vector and the second 0 is a 6 x 1 vector. It then

follows that

e |
e

where O.jpse denotes the grasper-closed phase.

Other IPRC curves in Figure [] indicate the tim-
ing sensitivity of the model to other perturbations
and lead to several useful insights as well as testable
predictions. For example,

2, (1) by dt (2.3)

close

— The TPRC curves are continuous except at the
liftoff points (Figure |§| top panel, blue and red
spikes). While all three neural variables go through
liftoff points, there is no large spike in z,, (yellow
curve). The absence of a yellow spike and the fact
that the red spike is larger than the blue spike,
imply that the system has the highest timing sen-
sitivity to perturbing a; and intermediate timing
sensitivity to ag, both of which are significantly
higher than the sensitivity to as perturbations.

— Excitatory inputs to neural populations lead to
phase advance and hence shorten the total pe-
riod, because the IPRC curves associated with
neural variables are mostly positive (Figure@top
panel).

— Most of the time the system is not sensitive to
neural perturbations, but there also exist sensi-
tive regions when the trajectory is not restricted
to the hard boundaries (e.g., Figure |§|top panel,
blue and red spikes). For instance, the system
has high timing sensitivity to perturbations of
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ap late in the closing phase and to perturbations
of a; late in the opening phase, whereas sensory
inputs are largely ignored early in the opening
phase. This effect is a concrete example of dif-
ferential penetrance, a striking feature of many
biological systems in which some neural activity
can vary greatly, with little effect on behavior,
whereas in other circumstances, a small change
in neural activity may have a very large impact
on behavior (Chiel et all [1999; [Beer et al.| [1999;
[Ye et al. 2006} |Cullins et al.| [2015)).

— Increasing the protractor muscle activation wug
causes a phase delay early in the closing phase
and late in the opening phase, and a phase ad-
vance otherwise. In contrast, increasing the re-
traction muscle activation u; causes a phase ad-
vance early in the closing phase and late in the
opening phase, and a phase delay otherwise. Ap-
pendix |B| discusses why the system has different
timing sensitivities to muscle perturbations.

Although all three neural variables go through
liftoff points, there is no large yellow spike in z,,
(see Figure @ To understand this, we note that be-
fore ag (resp., aq) lifts off its hard boundary, there
exists no inhibition from other neurons except for
inhibitory sensory feedback. However, when aq lifts
off at around t ~ 3.2, it still experiences inhibition
from ao (see Figure [fA). In other words, there are
two inhibitory effects pressing neurons as down to
the hard boundary, but only one inhibitory effect
acting on the other two neuron populations. As a re-
sult, while there is a discontinuous jump of the IPRC
curve corresponding to as at the liftoff point, it re-
mains small as the other inhibition is still present.

Local timing response curve.

While the IPRC is a powerful tool for understand-
ing the global timing sensitivity of an oscillator to
sustained perturbations, it does not give local tim-
ing sensitivities, which, however, are needed for com-
puting the ISRC curve as discussed above. We hence
adopt the local timing response curve (LTRC) method
developed in |Wang et al| (2021) and reviewed in
To illustrate this method, we show the LTRC asso-
ciated with the closing phase and denote it as 1%
(see Figure . Although the LTRC 7% is defined
throughout the full domain, estimating the effect of

the perturbation within the closing region only re-
quires evaluating the LTRC in this region. Figure [7]
shows the time series of 7% for the model in the
closing region, obtained by numerically integrating
the adjoint equation backward in time with the ini-
tial condition of 7°°%¢ given by its value when the
grasper switches from closing to opening. Note that
7az,., the yellow curve in Figure mlower panel, remains
positive over the closing phase. This implies that the
increased load on seaweed prolongs the time remain-
ing in the closing region; that is, the increased load
prolongs the total closing time. The relative shift in
the closing time caused by the increased load can
also be estimated by integrating the LTRC (see Sec-
tion .

In addition, Figure [7] implies that strengthening
the protractor muscle activation ug during the clos-
ing phase prolongs the total closing time, whereas
increasing the retraction muscle activation w; de-
creases the total closing time. Similarly, we can com-
pute the LTRC over other phases, such as the retrac-
tion phase, in order to estimate local timing sensi-
tivities of the system in other regions.

close
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Fig. 7 Time series of the LTRC 7°l°%® over the closing
phase. The liftoff point on agp = 0 coincides with the spike
in nq, (blue curve, top panel). The cusp where 71, changes
from increasing to decreasing (intersection of yellow and
vertical black dashed curves in the bottom panel) also oc-
curs at the liftoff point for ag.

Finally we note an interesting feature in nclose:
there is an abrupt change in 7, at the ap = 0 liftoff

point (Figure 7] bottom panel, dashed vertical line).
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To understand this behavior, note that an instanta-
neous perturbation of x, directly propagates to neu-
ral pools through sensory feedback. While all three
neural pools are affected by this mechanical per-
turbation, the neural components of 7% are zero
most of the time except when the trajectory lifts off
from the ag = 0 constraint (Figure [7]top panel, blue
spike). This observation implies that the system has
a high local sensitivity to ag during the blue spike,
whereas the sensitivity to a; and as are significantly
smaller than unity at all times. Thus, to understand
the effect of perturbing x, on the local timing, it is
sufficient to focus on 7,, and examine how ag reacts
to perturbing z,..

Similar to the forward variational analysis, per-
turbing x, delays the activation of ag, i.e., ag lifts
off from ag = 0 at a later time. That is, the displace-
ment in ag near the ag = 0 liftoff point is negative.
Since 1, is negative near the liftoff point, perturbing
x, prolongs the total closed time (i.e., 7, is positive
during the closed phase).

Next we address the cusp phenomena observed in
N, (Figure bottom panel, yellow curve). Note that
perturbations arriving before the trajectory lifts off
from ag = 0 delay the activation of ay by increasing
the inhibition from its sensory feedback. Moreover,
the closer the time of perturbation to the time of
liftoff, the larger the delay on the activation of ag.
Such a larger delay leads to a greater increase of the
total closed time due to perturbing x,.. Hence, be-
fore the liftoff time (Figure |7} bottom panel, vertical
black dashed line), 7, gradually increases. Once the
trajectory has passed the liftoff point, perturbing x,
delays the activation of ag by decreasing its sensory
feedback, the effect of which now becomes excita-
tory. The size of this effect decays exponentially as
the trajectory gradually leaves the boundary ag = 0.
Thus, there is a cusp in the 7, curve at the liftoff
point, after which 7, rapidly decreases.

2.4 Robustness to static perturbations.

In this section, we show how the robustness of the
Aplysia model , the ability of the system to
maintain its performance despite perturbations, can
be quantified using the ISRC, IPRC and LTRC anal-
ysis.

Following (Lyttle et all 2017)), we quantify the
performance or task fitness via the average seaweed
intake rate

—Ax
S — e

€ Tg

(2.4)

where Az, . is the net change in perturbed grasper
position z, . during the grasper-closed phase and 7T
is the perturbed period. Note that we assume the
seaweed is moving together with the grasper when it
is closed and not moving at all during the grasper-
open component of the trajectory. Hence, —Az, .
denotes the total amount of seaweed consumed per
cycle.

Since the vector field F.(x) in system is
piecewise smooth in the coordinates x and smooth
in the perturbation ¢, it follows that the following
expansion holds:

Az, = Azpo+cAzpq + O(e?),

where Az, is the net change in the unperturbed
grasper position during the grasper-closed compo-
nent of the trajectory. Here, Az, ; is approximately
given by the net change of the z, component of the
ISRC 1, which is denoted as 71 4, (see , over
the grasper-closed phase. Suppose the grasper closes
at t°1°¢ and opens at t°P*® over one cycle. It follows
that Ax,.1 = y1 4, (t°P) — 71 4, (£19%¢).

(Lyttle et al., 2017) show that the robustness,
i.e., the relative shift in the task fitness per relative
change in perturbation, for small €, can be written
as

Robustness = ::W 5(6?5,0_ S (2.5)
Al’r 1 T1
- st — — = )
<A$r0 T0> +O(e)

as € — 0. Recall that T} is the period of the unper-
turbed limit cycle and 77 denotes the linear shift in
period, which can be estimated using the IPRC (see
§2.3)).

In summary, the robustness formula can be de-
composed into two parts, one involving changes in
shape (in particular, the grasper position z,) and
the other involving the timing change. As discussed
before, changes in shape can be estimated using the
ISRC and the LTRC analysis, whereas the latter can
be quantified using the IPRC. Below, we illustrate
the quantification of the robustness by considering
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the perturbation to be the increase in the constant
applied load Fyy — Fyw + €.

The ISRC with or without timing rescaling cor-
responding to the perturbation on the applied load
have already been computed and discussed in §2.1|
and Note that Az, ; in is the net change
in the ISRC during the grasper-closed phase. Choos-
ing the ISRC with rescaling based on the timing of
the closing and opening events provides a more ac-
curate estimate of Az, ;. Hence, we use the ISRC
with piecewise rescaling to estimate Ax, 1, which is
the net change in 7, 4, over the closing region per
cycle (see the yellow curve over the shaded region in
the lower right panel of Figure [5| and the green ar-
row marking the difference at the end of the closing
phase). Furthermore, the linear shift in the period
Ty can be estimated by using the IPRC.

L,

From the above analysis, we obtain % ~ 0.4806
r,0

and % = 1.6532, both of which are positive and are
consistent with the concept of an adaptive “stronger
and longer” change in the motor pattern in response
to increased load. It follows that the robustness is ap-
proximately —1.1726 x 10~2. (Note that the smaller
this number is in magnitude, the more robust the
system is.) To the first order in €, the relative change

in the performance is then given by

S(E) — SO

~ —1.1726 x 107%(e/Fyy),
So

which is illustrated by the red circle as the pertur-
bation size ¢ varies (see Figure [8| top panel). To
see what this means, we take a data point on the
line indicated by the arrow, i.e., (0.42, —0.005). Here
€/Fsw = 0.42 indicates a 42% increase in load Fiy,
which only causes a 0.5% decrease in the task fitness,
corresponding to a highly robust response. Here the
“stronger” effect (i.e., the first term in the robustness
formula being positive) contributes to the ro-
bustness whereas the “longer” effect (i.e., the second
term in the robustness) reduces it. However, these
two effects are not independent from each other: it
is the longer retraction-closed time that allows the
muscle to build up a stronger force, thereby con-
tributing to a robust response.

We also compute the relative change in S with
respect to ¢ using direct numerical simulations (see
Figure |8 blue stars), which show good agreement
with our analytical results. In contrast, if we esti-
mate Az, ; using the ISRC with a uniform timing

Az, approximated from the piecewise ISRC
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®s I
® ® O approximation
000
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Fig. 8 Relative change in task fitness (S(¢)—So)/So com-
puted numerically (blue stars) versus those obtained an-
alytically from the ISRC and the IPRC according to for-
mula (red circles), as the perturbation ¢ on the sea-
weed load Fgy, varies. Without perturbation, the nominal
applied load is Fsw = 0.01. The approximation using the
ISRC with different timing rescalings during the grasper-
closed (v1,cl0se) Versus grasper-open phases (v1,open) €sti-
mated from the LTRC analysis matches the actual simu-
lation (top panel), whereas the ISRC with uniform rescal-
ing v1 = T1/To estimated from the IPRC no longer gives
a good approximation (bottom panel).

rescaling (see Figure , the resulting estimated ro-
bustness becomes more negative and no longer gives
an accurate approximation to the actual robustness
(see Figure |8 bottom panel). That is, the ISRC us-
ing different rescaling factors over the grasper-closed
phase (11 close) versus the grasper-open phase (1 open),
gives a much better approximation to the robust-
ness than the ISRC based on a global timing rescal-
ing v1 = T1/Tp. The fact that the vy gpen/close are
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obtained via the LTRC analysis highlights the con-
tribution of this novel analytical tool. This observa-
tion demonstrates that for systems under certain cir-
cumstances (e.g, non-uniform perturbation as con-
sidered in system (L.1)), the ISRC together with the
LTRC greatly improves the accuracy of the robust-
ness, compared to the ISRC with global timing anal-
ysis given by the IPRC.

2.5 Sensitivity of robustness to other parameters.

In general, the performance of motor control sys-
tems may be affected not only by external param-
eters, such as an applied load, but also be inter-
nal parameters, for instance describing the physical
properties of the biomechanics or neural controllers.
The variational tools used in the previous section to
understand mechanisms of robustness to increases
in applied load — the IPRC, ISRC and LTRC - can
also give insights into the effects of changing internal
model parameters. For instance, in the SLG model,
appropriately varying strengths of protractor or re-
tractor muscles can overcome effects of the increased
mechanical load Fi,, — Fiw + €. Because of the SLG
model’s relative simplicity, we can relate many of
these changes to specific components of the fitness
equation in detail.

Below, we first consider how varying sensory feed-
back strengths can help restore the reduced seaweed
intake rate due to increased applied load. Then we
examine how changing the strengths of the protrac-
tor and retractor muscles affects robustness to ap-
plied loads.

Varying sensory feedback strengths.

Figure [9] shows the seaweed intake rate and robust-
ness to the increased load Fiy, with respect to changes
in sensory feedback strengths ¢;, i € {0,1,2}. The
performance Sy becomes negative when ¢y or e; is
relatively small (e.g., smaller than 107%) or when
g9 is relatively big (e.g., larger than 1073), during
which the system is in a fast limit cycle/biting mode
and hence cannot swallow seaweed.

When the system is in the heteroclinic/swallowing
mode, as one might expect, increasing the sensory
feedback (e.g., €3) improves the performance. Sur-
prisingly, our results show that increasing sensory

feedback strengths to the two protraction-related neu-
ral pools leads to opposite results by decreasing the
performance. These results seem to suggest that to
restore the deficit caused by the increased load and
achieve an increased robustness, we can either in-
crease g4 or decrease €y and/or €1. However, this is
not true. As shown in Figure [9] a decrease in the
robustness can be induced by either decreasing ¢
or increasing €. Moreover, the robustness is largely
insensitive to changes in €1, despite the fact that
it influences the performance. Understanding these
effects on the robustness would require analysis of
a second-order variational problem and represents a
future direction for understanding neuromodulation.

Varying muscle strengths.

Next we investigate how variations of kg and |k ], the
strengths of the protraction and retraction muscles,
affect the robustness to changes in seaweed load.

Figure[10|shows that performance improves with
the increased protractor muscle strength kg or the in-
creased retractor muscle strength |k;|. This suggests
that increasing kg or |k1| can help restore the deficit
in the performance due to the increased mechanical
load and hence boost the robustness, which agrees
with our numerical simulations (see Figure top
panel, black curve).

Recall that the robustness can be approximated

as Fiy (Am"l - Q) (see equation (2.5))). Understand-

Az o To
ing the underlying mechanisms of the robustness re-
quires one to investigate how the two quantities in-
volving shifts in shape and timing change with re-
spect to ko or |k1| (see Figure lower three pan-
els). We find that increasing kg or |k; | reduces T; and
— Az, while Ty and —Ax,. o are almost unaffected.
Hence, both Az, ;/Az, (the “stronger” effect in
response to perturbations on the seaweed load) and
T1/To (the “longer” effect ) are decreased as we in-
crease the muscle strengths. However, the reduction
in the “stronger” effect is smaller than the reduction
in the “longer” effect. As a result, the robustness ap-

. Az, .
proximated by Fgy ( Ai (1) — %) increases as kg or

|k1| increases.

Together, our analytical tools suggest ways in
which coordinated changes in intrinsic parameters
could maintain fitness and thus enhance robustness.
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Fig. 9 Effects of varying 9 (top row), €1 (center row)
and ez (bottom row) on the robustness to Fsw and
the unperturbed seaweed intake rate Sp, when Fsy = 0.01.
Blue curves: Fitness Sg. Black curves: Robustness.

3 Methods

In this section, we review the classical variational
theory for limit cycles (e.g., (Filippov, |1988; Bernardo
et al.l 2008} [Leine and Nijmeijer}, 2013; |Park et al.|
2018))), and new tools that we recently developed in
Wang et al.| (2021 for linear approximation of the ef-

fects of small sustained perturbations on the timing
and shape of a limit cycle trajectory in both smooth
and nonsmooth systems.

In the next two sections we treat the smooth and
nonsmooth cases, respectively. In each case, we con-
sider a one-parameter family of n-dimensional dy-
namical systems
Z—}; = F.(x),
indexed by a parameter € representing a static per-
turbation of a reference system

dx
— = I .
i 0(x)

(3.6)

(3.7)

3.1 Timing and shape responses to static
perturbations in smooth systems.

Following [Wang et al.| (2021]), we make the following
assumptions:

Assumption 1

— The vector field F.(x) : 2xZ — R™ is C'! in both
the coordinates X in some open subset {2 C R"
and the perturbation € € T C R, where T is an
open neighborhood of zero.

— Fore € I, system has a linearly asymptoti-
cally stable limit cycle v.(t), with finite period T
depending (at least C*) on €.

It follows from Assumption [I| that when & = 0,
Fo(x) is C! in x € 2 and the unperturbed system
(3.7) exhibits a Tp-periodic linearly asymptotically
stable limit cycle solution ~o(t) = 7o(t + Tp) with
0 < Tp < oo. Assumption [I] also implies that the
following approximations hold:

F.(0) = Folx) + 5= 00)| _ +0(2), (3.8)
T. =Ty + Ty + O(£%), (3.9)

(uniformly in ¢),
(3.10)

e (1(t) = 70(t) +em(t) + O(c?)

where T7 is the linear shift in the limit cycle pe-
riod in response to the static perturbation of size
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Fig. 10 Effects of varying muscle strengths ko (left panels) and |k1| (right panels) on the robustness to Fsyw (top panels,
black curve) and the unperturbed seaweed intake rate So (top panels, blue curve). Default parameters ko =1, k1 = —1
represent the strengths and directions of protraction and retraction muscles. The second and third rows of panels show
the effects of muscle strengths on timing (7p,71) and shape (—Az, o, —Az, 1), respectively. The bottom panels shows
how T1/To (blue) and Az, 1/Az,o (red) change as muscle strengths vary.

. This global timing sensitivity, 77, is strictly pos-  the limit cycle. It satisfies the adjoint equation (Schwem-
itive if increasing e increases the period. The per-  |mer and Lewis| [2012)

turbed time 7.(¢) satisfies the conditions 7o(t) = ¢

and 7.(t + Tp) — 7-(t) = T.; it allows the approxi-  dz _ .
mation to be uniform in tim(ﬂ and permits us dt DEy((1))72, (3.11)
to compare perturbed and unperturbed trajectories
at corresponding time points. The vector function
m(t) = Wkﬁo is the linear (i.e. first-order)
shift in the limit cycle shape. Fo(h(t)) - 2(t) = 1.

The timing and shape aspects of limit cycles are

complementary, and may be studied together by con-

with the normalization condition

The linear shift in period 77 can be calculated using

sidering the infinitesimal phase response curve (IPRC) the IPRC as
and the variational analysis of the limit cycle, re- T
e [P PRl
spectively. T =-— z(t) T ————| dt. (3.12)
0 Oe e=0

Infinitesimal Phase Response Curve (IPRC) The IPRC

is a classical analytic tool that measures the timing  Forward Variational Equation Classical sensitivity
response of an oscillator due to an infinitesimally  analysis (Wilkins et al.,2009)) has been used in many
small perturbation delivered at any given point on  applications to study the shape sensitivity or re-

sponse of an oscillator to sustained perturbations.
The dynamics of the linear shift

1 That is, the approximation remains valid for arbitrar-
ily long times ¢. Formally, there exists a constant C' > 0,

independent of ¢, such that M —v1(t)| < Ce
as e — 0, for all t > 0. v(t) = gii%(’}%(t) - ’YO(t))/E (3.13)
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at time ¢ of the periodic orbit v, (t) due to a sustained
parametric perturbation ¢ initiated at time 0 satisfies
the following forward variational equation:

8FE (’YO (t))
Oe

N DRy o)y +

p (3.14)

e=0

with initial condition v(0) set by the difference in
the perturbed and unperturbed trajectories at the
point where they cross the Poincaré section defined
by the beginning of the closed phase. Specifically,

v(0) = L (. (9% = 30 (£6°°)) /2.

e—0

(3.15)

Compared with the homogeneous variational equa-
tion, which studies the shape sensitivity to instan-
taneous perturbations, the forward variational equa-
tion contains a non-homogeneous term arising
directly from the parametric perturbation acting on
the vector field.

However, since the perturbed limit cycle has a
different period T. and hence a different perturbed
time 7. due to sustained perturbations, the forward
variational equation which neglects such changes in
timing fails to give a valid comparison between the
perturbed and unperturbed trajectories for times on
the order of a full cycle or longer (see Figure and
D). Hence, we adopt a new tool developed in [Wang
et al.| (2021), the infinitesimal shape response curve
(ISRC), which incorporates both the shape and tim-
ing aspects and captures a more accurate first-order
approximation to the change in shape of the limit
cycle under a parameteric perturbation.

Infinitesimal Shape Response Curve (ISRC) Suppose
the rescaled perturbed time can be written as 7. (t) =
t/ve € 10,T;] for t € [0,Tp]. It follows that the rela-
tive change in timing denoted by v, = Ty/T: can be
represented as v. = 1 — evy + O(e?) where v; = %

Wang et al.| (2021)) denote the linear shift in the
periodic orbit, v1 (t) in , as the ISRC and adapted
Lighthill’s method of “strained coordinates” (Jordan
et al., 2007) to show it satisfies the following varia-
tional equation. An equation similar to (3.16]) can
also be derived by simultaneously Taylor expanding
the state variable x around the limit cycle and its
frequency (Keenerl 2018]) (see Appendix [C| for de-
tails).

dyi(t)

OF:(+(t))
dt N

Oe

= DFy(v(t))m1 (t)+1 Fo(v(t))

s:O.

(3.16)

This equation resembles the forward variational equa-
tion (|3.14]), but has one additional non-homogeneous

term arising from time rescaling t — 7.(¢). In con-

trast to the forward variational dynamics avgs(t), the
ISRC 7, (t) is periodic with period Ty (see Figure
left). To see how well the ISRC approximates
the actual linear shift between the perturbed and
unperturbed trajectories, we plot the linear shift ap-
proximated from the ISRC (black curve) and the ac-
tual displacement (red dashed curve). Overall, they
show good agreement with each other except near
the transition between the grasper-closed and grasper-
open phases. Such discrepancies arise from the fact
that the solution segment at the closing phase has
different timing sensitivity to the parametric pertur-
bation compared with the segment at the opening
phase, as discussed before. While these small errors
are nearly unnoticeable (see Figure right), they
expand when the ISRC result is used to calculate the
robustness (see Figure 8] bottom panel).

Thus, in the case when a parametric perturba-
tion leads to different timing sensitivities in differ-
ent regions, we use the local timing response curve
(LTRC) defined by [Wang et al.| (2021) to compute
shifts in timing in different regions in order to im-
prove the accuracy of the ISRC, as demonstrated
when considering perturbations to the load applied
to the seaweed (see Figure [12]).

Local Timing Response Curve (LTRC) The accu-
racy of the ISRC in approximating the linear change
in the limit cycle shape evidently depends on its
timing sensitivity, that is, the choice of the relative
change in frequency vy. In , we chose v1 to
be the relative change in the full period, by assum-
ing the limit cycle has constant timing sensitivity.
It is natural to expect that different choices of vy
will be needed for systems with varying timing sen-
sitivities along the limit cycle. To more accurately
capture timing sensitivity of such systems to static
perturbations,[Wang et al.| (2021) defined a local tim-
ing response curve (LTRC) which is analogous to
the IPRC but measures the linear shift in the time
that the trajectory spends within any given region.
Specifically, the LTRC is the gradient of the time
remaining in a given region until exiting it through
some specified Poincaré section - a local timing sur-
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Fig. 11 Variational analysis with uniform rescaling. The same perturbation as in Figure |2|is applied to the Aplysia
model . Left: The ISRC ~1(t) with a uniform rescaling over one period. Right: Time series of the difference between
the perturbed and unperturbed solutions along ag-, a2-, and xz,-directions. The black curve denotes the numerical
displacement (Ay(t) = ye(7=(t)) —y(¢t)) computed by subtracting the unperturbed solution trajectory from the perturbed
trajectory, after globally rescaling time, and aligning trajectories at the onset of closing. The red dashed curve denotes
the product of the perturbation ¢ and the ISRC curve. The vertical blue dashed lines indicate the times at which
the unperturbed grasper switches from closed to open. Shaded regions and the vertical magenta lines have the same

meanings as in Figure 2] The perturbation is the same as in Figure 2]

face corresponding to the exit boundary of this re-
gion. Such a section could be given as a bound-
ary where the dynamics changes between regions,
or where a perturbation is applied in one region but
not another. For instance, in the feeding system of
Aplysia californica (Shaw et al.l 2015} [Lyttle et al.
2017), the open-closed switching boundary of the
grasper defines a local timing surface.

Let n' denote the LTRC vector for region 1. Sup-
pose that at time #, the trajectory vo(t) enters re-
gion I upon crossing the surface X' at the point x™;
at time t°" ~o(t) exits region I upon crossing the
surface X°U at the point x°“t. Similar to the IPRC,
the LTRC 7' satisfies the adjoint equation

i’

" — —DF( ()

together with the boundary condition at the exit
point

(3.17)

I outy __ _nOUt 1
n (X ) - noutTF(Xout) (3 8)
where n°" is a normal vector of X°% at the unper-

turbed exit point x°"*. The linear shift in the total
time spent in region I, T}, is given by

axin tout
SR O
e=0 tin

oxi OF.(+(1))
Oe

I/, in
n(x™) s

dt
=0

€

(3.19)

where x denotes the coordinate of the perturbed
entry point into region I. It follows that the relative
change in frequency local to region I is given by v] =
Tll/(tout _ tin).

Piecewise uniform ISRC The existence of different
timing sensitivities of v(¢) in different regions there-
fore leads to a piecewise-specified version of the ISRC

(3.16) with period Tp,

dvi (t)

7 = DEJ ((8))] (8)+0 B (v(1))+

(3.20)

where 7{ , Fg , FJ and u{ denote the ISRC, the unper-
turbed vector field, the perturbed vector field, and
the relative change in frequency in region j, respec-
tively, with j € {I,IL,IIL, - - - }. Note that in a smooth
system, Fg = Fj for all j.

As discussed before, the piecewise-specified ISRC,
where v; takes different values in the closing and
opening phases, nicely complements the forward vari-
ational analysis. It provides a more self-consistent
global description of the shape response of the limit
cycle to the mechanical perturbation (see Figure [)).

» Displacements between perturbed and unperturbed

)
e=0
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Fig. 12 Displacements between perturbed and unperturbed trajectories estimated from the ISRC ~; with piece-
wise uniform rescaling (red dashed, ey,) agree well with the actual displacement Ay(t) = ye(7:(t)) — y(¢) where
y = {ao0,a1,a2,uo,u1,z} (solid black). Shaded regions, vertical magenta and blue lines have the same meanings as

in Figure The perturbation is the same as in Figure [2]

trajectories estimated using the piecewise-specified
ISRC agree well with the actual displacements (see
Figure. Moreover, it yields a much better approx-
imation to the robustness compared with the ISRC
with uniform rescaling (see Figure .

3.2 Timing and shape responses to static
perturbations in nonsmooth systems.

As discussed before, system is a piecewise smooth
system with one transversal crossing boundary X, /.
and three hard boundaries (X, X'y, X5). The study
of limit cycle motions in such nonsmooth systems
requires analytical tools beyond the standard arse-
nal of phase response curves and variational anal-
ysis, developed for systems with smooth (differen-
tiable) right-hand sides (Spardy et al.,[2011alb; [Park|
2017)). For small instantaneous displacements,
variational analysis has been extended to nonsmooth
dynamics with both transversal crossing boundaries
and hard boundaries for studying the linearized ef-
fect on the shape of a trajectory
[Bernardo et all 2008} [Leine and Nijmeijer}, 2013}

Dieci and Lopez, 2011). Analysis in terms of in-
finitesimal phase response curves (IPRC) has like-
wise been extended to nonsmooth dynamics for study-
ing the linear shift in the timing of a trajectory fol-
lowing a small perturbation, provided the flow is al-
ways transverse to any switching surfaces at which

nonsmooth transitions occur (Shirasaka et al., 2017
[Park et al. 2018} [Chartrand et all, 2018} Wilson|
2019). Recently, Wang et al| (2021) extended the
TPRC method to nonsmooth systems with hard bound-
aries.

In nonsmooth systems with degree of smooth-
ness one or higher (i.e., Filippov systems), the right-
hand-side changes discontinuously as one or more
switching surfaces are crossed. A trajectory reaching
a switching surface or boundary has two behaviors:
it may cross the boundary transversally or it may
slide along it. Hence, there are two types of bound-
ary crossing points: transversal crossing points, at
which the trajectory crosses a boundary with finite
velocity in the direction normal to the boundary, and
non-transversal crossing points including the landing
point at which a sliding motion along a switching
boundary begins, and the liftoff point at which the
sliding terminates. The time evolutions of the solu-
tions to the variational equation (i.e., the forward
variational dynamics and the ISRC) and the solu-
tions to the adjoint equation (i.e., the IPRC and the
LTRC) may experience discontinuities at a bound-
ary crossing point (Filippov, [1988; Bernardo et al.,
[2008; [Leine and Nijmeijer], 2013} [Park et al 2018}
Wang et al. [2021]).

The discontinuity in the variational dynamics when
a trajectory meets a boundary crossing point x, at
crossing time ¢, can be expressed with the saltation
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matrix S, (see Table :
v; =Sp,v,

where v(t) denotes the solution of the forward varia-

tional equation or the ISRC, v = lim,_, v(t) and
vi = lim, _, ¢ v(t) represent the solution just before
and just after the crossing, respectively.

The discontinuity in z(t), the solution to the ad-
joint equation, at a boundary crossing point x, may

be expressed with the forward jump matrix (Jp)

(3.21)

z;' = Jpz,
where 2z, = lim,_,,- z(t) and z; = lim,_,,+ z(t) are
the IPRC or the LTRC just before and just after
crossing the switching boundary at time ¢, in for-
wards time. However, Wang et al.|(2021)) showed that
the jump matrix is not well defined at a liftoff point
and hence introduced a time-reversed version of the
jump matrix, denoted as J,, defined as follows:

z, = Jpz} (3.22)
Table|l| summarizes the saltation and jump matrices
at different types of boundary crossing points.

3.3 Simulation codes.

Simulation codes written in Matlab are available at

https://github.com/yangyang-wang/AplysiaModel.

4 Discussion

Overview. Motor systems are robust - they main-
tain their performance despite perturbations. Under-
standing the mechanisms of robustness is important
but challenging. To unravel the contributions of dif-
ferent components of robustness, we adopted tools
we established in [Wang et al.| (2021 and reviewed
in the methods section ( for studying combined
shape and timing responses of both continuous and
nonsmooth limit cycle systems under small sustained
perturbations. We applied these tools to understand
the mechanisms of robustness in a neuromechani-
cal model of triphasic motor patterns in the feed-
ing apparatus of Aplysia developed in (Shaw et al.|
2015; |[Lyttle et all [2017). We show in the results
section ( that this framework lets us analyze how
a small sustained perturbation alters the shape and
timing of a closed loop system, and thus we began

to describe how the neural and biomechanical com-
ponents interact to contribute to robustness.

The first perturbation we considered was a sus-
tained increase in mechanical load (Fgyw — Faw +
¢). To our surprise, we discovered that long before
sensory feedback affected the system, biomechanics
played an essential role in robustness by producing
an immediate force increase to resist the applied load
(Figure and . Furthermore, although the sen-
sory feedback immediately responded to the pertur-
bation, its effect was delayed by the hard bound-
ary properties of the neural firing rates. Our analy-
sis suggests that sensory feedback contributes to the
robustness primarily by shifting the timing of neu-
ral activation as opposed to changing neuronal firing
rate amplitude (Figure [5] [6] and [7). Our methods
can also be readily used to quantify how changes in
timing and shape of trajectory affect the robustness
(Figure. We find that sensory feedback and biome-
chanics contribute to the robustness of the system by
generating a stronger retractor muscle force build-up
during the prolonged retraction-closed phase that re-
sists the increased load. The increased retractor mus-
cle force ultimately leads to more seaweed being con-
sumed during the slightly longer cycle time despite
the large opposing forces, thereby contributing to a
robust response. These new insights have refined and
expanded a previous hypothesis that sensory feed-
back is the major mechanism that plays a crucial
role in creating robust behavior (Lyttle et al., [2017)).

Robustness is sensitive to other model parame-
ters. For example, in we investigated how vary-
ing internal parameters such as strengths of sensory
feedback and muscle activity can help restore the
performance that was reduced by an increased ap-
plied load (Figure |§| and . Again, we obtained
some non-intuitive results. For example, increasing
the sensory feedback strength can reduce the ro-
bustness rather than improving it (Figure E[) More-
over, increasing sensory feedback gain has opposite
effects on performance and robustness, whereas in-
creasing the protractor or retractor muscle strength
improves both performance and robustness. Under-
standing sensitivities of performance to mixed pa-
rameters requires us to go beyond our existing meth-
ods. This second-order sensitivity represents an in-
teresting future direction for understanding neuro-
modulation - the coordinated change of multiple sys-
tem parameters in order to most effectively counter
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Table 1 Saltation matrices and jump matrices at boundary crossing points in Filippov systems dFilippov], |1988]; IBernardol

let al., [2008; [Leine and Nijmeijer} [2013} [Park et al., 2018} |Wang et al., [2021])

Landing Point

Transversal Crossing Point  Liftoff Point

+ p—
(F, —F, )n]

Variational dynamics Sp=1—mnpny Sp=1+-—2_—L Sp=1

npFyp
IPRC & LTRC (forward time)  J, =1 Jp = (S H)T Jp is undefined
IPRC & LTRC (time-reversed) Jp, =1 Tp = Jp Tp =1 —npn}

In the table, Sp, Jp and Jp denote the saltation matrix, the jump matrix, and the time-reversed jump matrix at some

boundary crossing point x, = x(tp), respectively. F, = lim

.~ F(x) and Ff =1lim + F(x) denote the vector fields
P

X—X.

of the nonsmooth system just before and just after the crossing at xp, I denotes the identity matrix, n, denotes the unit

normal vector of the crossing boundary at x,.

the effect of an external perturbation (Cropper et al.|
2018). There are multiple pathways for neuromodu-
lation, and the simplicity of the model lends itself to
detailed analysis of multifactor sensitivities. In fu-
ture work, we may apply the variational tools used
in the present paper for understanding how changes
in multiple parameters simultaneously could impact
model performance and robustness (cf. §2.5)).

Nonsmooth dynamics and biological realism. — Our
model incorporates two types of nonsmooth dynam-
ics. Both of these features complicate the model anal-
ysis, and one might ask whether an “equivalent”
smooth formulation might have been employed. We
emphasize that both types of nonsmooth dynamics
provide better reflection of the underlying biophysics
than a “smoothed” version would do, and contribute
in fundamental ways to the biological mechanisms
we study. Our model assumes that neurons fire, once
excited, at a nonzero rate, and maintain a rate of
exactly zero (rather than “very small”) when inhib-
ited. Thus our motor pool variables a; have hard
boundaries at zero firing rate. It is well known that
the Hodgkin-Huxley model, for example, fires at very
high rates when provided even relatively small cur-
rents, and slower rates are only possible with ad-
ditional ionic conductances, such as the A current
(see, for example, ) Studies on the ener-
getics of neurons in real brains do not assume that
they can fire at values much lower than a few Hertz.
See, for example, Figure 2 in|Laughlin and Sejnowski|

slowly (e.g., a sigmoid function or a hyperbolic tan-
gent function (Ermentrout] [1998))). Thus, assuming
that neurons fire once excited at a nonzero rate (and
thus have a “hard boundary” at 0 firing frequency)
is more biologically realistic. Moreover, we have at-
tempted to replicate the results in this paper using
an alternative formulation in which we replace the
hard boundary with a “soft” boundary, implemented
using a sigmoidal firing rate function (Harris and Er-]
and found that eliminating the hard
boundary drives the system from the so-called “het-
eroclinic cycling” regime (Shaw et al) 2015 [Lyttle|
to the “limit cycle regime” in which
it fails to consume seaweed at a rate sufficient to
support survival. In addition to the hard “sliding
boundary” at zero firing rate Wang et al.| (2021)
our model has a nonsmooth transverse crossing of a
Poincaré section at the point when the grasper tran-
sitions from “open” to “closed”, and the biomechan-
ics switch from being free of the mechanical loading
to engaging the mechanical load of the seaweed. It is
important to realize that when an animal encounters
a load, that interaction creates a non-linear change
in the dynamics of the system. Although some in-
vestigators attempt to finesse this aspect by trying
to add a smoothly changing load function (such as
a spring with a very stiff spring constant), an en-
tire field devoted to hybrid systems has developed
to study how dynamics evolves when there is a dis-
continuous change due to interaction with the en-
vironment (see, for example, [Holmes et al.| (20006));

, where the minimum firing rate for rat cor-
tex is estimated to be about 3 Hz. Thus, the model
we are using (Lyttle et al| [2017) is more realistic
than one that assumes that neurons can fire infinitely

|Aihara and Suzuki| (2010])).

Ezperimentally testable predictions. The surprising
result that the length-tension curves of the opposing
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muscles generate an instantaneous response to force
perturbations could be tested, at least initially, using
some of the more realistic biomechanics models that
have been developed of Aplysia feeding.

For example, in a detailed kinetic model that
does not have sensory feedback (Sutton et al., 2004;
Novakovic et al., [2006), one could apply a step in-
crease in force when the odontophore is closed and
the retractor muscle is activated while measuring the
force resistance to that change, and compare that
to a purely passive response in which the retractor
muscle is not activated. The results of this paper pre-
dict that there will be significant differences between
these conditions.

up and strengthen feeding responses in normal ani-
mals, and thus might contribute to robustness.

Future experimental studies could be guided by
coordinated changes of parameters in this model us-
ing the analysis tools we have presented.

Caveats and limitations. Tracking possible transi-
tions into and out of constraint surfaces becomes
combinatorially complex as the number of distinct
constraint surfaces grows. Here we impose three hard
boundaries at a; > 0, as discussed above, by requir-
ing firing rates to be nonnegative. An earlier model
specification given in (Shaw et all 2015} Lyttle et
al.,|2017)) also required firing rates to be bounded via

In a model that does have sensory feedback (Webster-the constraint a; < 1. Here we relax this constraint

Wood et al., |2020)), one could apply a step increase
in force when the odontophore is closed and measure
the change in force and the duration of the cycle to
determine how that perturbation alters fitness. This
paper’s results predict that the response to a sus-
tained perturbation will be smaller in the presence
of sensory feedback and will be larger if sensory feed-
back is removed.

The model suggests that there may be delays
from the time that sensory feedback is available to
the time that force changes. Using the model, sinu-
soidal force changes could be applied at different fre-
quencies to determine the predicted phase lag, and
this effect could be tested in the real animal.

Results shown in Figure []suggest that the model
is relatively insensitive to changes in the strength of
sensory feedback over a wide range of gains. Thus,
one experimental test might be to increase or de-
crease the strength of sensory feedback to show that
robustness to changing mechanical loads is not sig-
nificantly affected. One way to test this hypothesis
would be to use the newly developed technology of
carbon fiber electrode arrays, which could be used to
excite, inhibit, and record from many sensory neu-
rons simultaneously (Huan et al.| [2021)).

In contrast, results shown in Figure [I0] suggest
that changing the relative strengths of the muscles
can have larger effects on robustness. Previous stud-
ies have shown that neuromodulators can speed up
and strengthen muscular contractions and thus might
contribute to robustness (Taghert and Nitabachl [2012;
Lu et al., 2015} |Cropper et al., [2018]). Studies of the
neuromuscular transform (Brezina et al., [2000) sug-
gested that neuromodulation could effectively speed

for computational convenience, since the coexistence
of multiple constraints requires encoding entry/exit
conditions and vector field restrictions for all fea-
sible combinations of constraints. In practice, com-
parison of simulations with and without the a; < 1
constraint give qualitatively and quantitatively in-
distinguishable results under most conditions.

Our analysis is in principle limited to small per-
turbations. Large perturbations lead to crossing of
bifurcation boundaries in which the behavior switches
to a different dynamical mode. “Robustness” in a
broader sense can mean the distance to a basin of
attraction of another dynamical attractor. For ex-
ample, if the force is increased too much, the model
will collapse into a stable fixed point with overex-
tended protraction, while the animal will engage a
different response to release or sever the seaweed to
avoid damage to its feeding apparatus. This aspect
is not captured in the variational approach. Nonlin-
ear and bifurcation analysis could complement the
present study and is ripe for investigation in future
work.

In this paper we considered a specific perturba-
tion, namely increasing the force opposing seaweed
ingestion Fg, — Fgw + €. Note that in this formula-
tion, the perturbation parameter € carries the same
units (force) as Fgy,. Consequently, in order to use a
unitless measure of robustness, the expression
includes a factor of Fy/e. Also, in this formulation,
the timing sensitivity 77 (shift in period per increase
in force) and shape sensitivity v; (shift in limit cycle
shape per increase in force) have units including re-
ciprocal force. As an alternative formulation, which
might facilitate comparison of robustness to pertur-
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bations across different modalities, one could rewrite
the force perturbation as Fyy, — Fiw(1 4+ €). In this
case € would represent a unitless measure of rela-
tive perturbation size. The subsequent variational,
IPRC, ISRC and LTRC analysis would remain un-
changed, except the resulting quantities Z, Ty, 71,
and 77 would undergo a change in units, hence a
multiplicative (fixed) change in scale. An advantage
of specifying perturbations as a relative or unitless
quantity would be that a similar analysis to that
undertaken in this paper could be applied to other
modalities in the same or system or across disparate
systems.

Generalizability to other systems. Although we fo-
cused in the present work on the robustness of the
mean rate of seaweed intake with respect to increases
in the force opposing ingestion, our analysis carries
over to other objective functions (e.g. calories con-
sumed per energy expenditure) as well as other per-
turbations (e.g. temperature, which may alter the
speed of feeding in Aplysia). The variational ap-
proach to analyzing robustness should apply to any

reasonable (e.g. smoothly differentiable) objective func-

tion and any parameter represented in the system,
e.g. adjustments to changes in speed, steepness, or
right-left asymmetry of walking movements on a (split)
treadmill system (Frigon et al., |2013; [Embry et al.l
2015).

Our methods might also provide insights into how
rapidly a system can adjust to small modulation of
forces. One could possibly conduct experiments to
study the linear response of a system to modula-
tion of applied force Fy,, such as an instantaneous
small change from one static force to another, or a
small amplitude sinusoidal modulation of Fy,. The
infinitesimal shape response curve and other varia-
tional tools developed in [Wang et al| (2021]) might
play a role in the linear response analysis. This treat-
ment could represent an interesting future direction.

The present manuscript applies variational meth-
ods to understand the robustness in a specific Aplysia
neuromechanical model (Lyttle et al., 2017). This
model makes significant simplifications to the real
feeding apparatus control system in order to gain
mathematical tractability and analytical and bio-
logical insights. Nonetheless, the framework devel-
oped in (Wang et al.,|2021)) applies naturally to more

elaborate dynamical models of Aplysia feeding such
as (Webster-Wood et all |2020) and models incor-
porating conductance-based network descriptions of
the central pattern generator (Cataldo et al., |2006;
|Costa et al. 2020). Thus, what we have done here
provides a framework for understanding neural con-
trol of motor behaviors like the one considered in
this paper.

More broadly, motor control beyond the Aplysia
feeding system is also amenable to the analysis of
the sort developed in §3| (Wang et al, [2021)). For ex-
ample, the stability of bipedal walking movements
remains a challenge in the field of mobile robotics
[Vukobratovic et al.| (2012)); [Westervelt et al.| (2018).
Biologically inspired robotics continues to provide
alternative approaches with greater robustness than
conventional devices (Beer, 2009; Pfeifer et al. | 2007;
Beer et al.||1997; (Goldsmith et al. | |2019). The varia-
tional framework exhibited here applies to these sys-
tems as well (Fitzpatrick et al., [2020). In the context
of any motor control model, the variational analysis
we present here should allow analysis of robustness
of any reasonable objective function with respect to
any system parameter.
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A Tables for model parameters and initial
conditions

Values for model parameters and initial conditions of state
variables are given in Table [2| and Table

Parameter | Value | Description

¥ 2.4 inhibition strength from
next pool

€4 10=4 | sensory feedback strength

I 10~ | neural pool intrinsic exci-
tation

Ta 0.05 neural pool time constant

Tm 2.45 muscle activation time
constant

br 0.4 grasper damping con-
stant

co 1.0 position  of  shortest
length for 12

c1 1.1 position of center of 13

Fisw 0.01 force on the seaweed re-
sisting ingestion

00 -1 sign of proproceptive in-
put to ap motor pool

o1 1 sign of proproceptive in-
put to a; motor pool

o2 1 sign of proproceptive in-
put to as motor pool

éo 0.5 proprioceptive neutral
position for protraction-
open neural pool

&1 0.5 proprioceptive neutral
position for protraction-
closed neural pool

&2 0.25 proprioceptive neutral
position for retraction-
closed neural pool

Umax 1.0 maximum muscle activa-

tion

wo 2 maximal effective length
of 12

w1 1.1 maximal effective length
of 13

ko 1 strength and direction of
the protrator muscle

k1 -1 strength and direction of
the retractor muscle

Table 2 Model parameters

B Different timing sensitivities to muscle
perturbations

Here we explain why increasing the protractor (resp., re-
tractor) muscle activation during the early closing phase
leads to a phase delay (resp., phase advance), whereas

State Initial

: Description
variable | value

ag 0.9 activity of 12 motor pool
(non-negative)

a1 0.08355 | activity of hinge motor
pool (non-negative)

a2 0.00003 | activity of I3 motor pool
(non-negative)

uo 0.748 activity of 12 muscle

uq 0.25 activity of I3 muscle

Ty 0.65 grasper position (0 is
retracted, 1 is
protracted)

Table 3 State variables

increasing the muscle activations during the late closing
phase lead to the opposite effects (see Figure |§| in .

Early in the closing phase (i.e., the protraction-closed
phase), increasing uo leads to a phase delay. This effect
occurs because with larger ug force, x, protracts more,
which prolongs the inhibition to ag through sensory feed-
back (feedback to ag is inhibitory when z, > 0.5). Hence
ag activates at a later time and the switch from closed
to open is delayed, corresponding to a phase delay (see
Figure )

On the other hand, increasing w1 during the early clos-
ing phase leads to a phase advance, because z, decreases
due to the increased retraction muscle forces and hence
the inhibition switches to excitation earlier than in the
original case (see Figure )

During the late retraction-closed phase, increasing ug
leads to a phase advance (see Figure ) With increased
protractor muscle force, z, increases, but soon the state
transitions to protraction-open. Then, the inhibition on
a1 from the sensory feedback (feedback to aj is inhibitory
when z, < 0.5) will be released earlier than before, be-
cause z, is larger under perturbation and hence a; acti-
vates earlier. As a result, the system switches from opening
to closing phase earlier and this change corresponds to a
phase advance.

On the other hand, if we increase u; during the late
closing phase, a phase delay results because z, decreases
with the perturbation. This effect prolongs the inhibition
from sensory feedback to a1, since z, stays below 0.5 for
a longer time (see Figure [I3D).

C An alternative derivation of the
infinitesimal shape response curve

Recall that we assume for ¢ small,
x' = F.(x)

has a linearly asymptotically stable limit cycle with fre-
quency w(e) depending (at least C') on e. To incorporate
the unknown period into the problem, we make the change
of variables s = Tow(e)t. Then we look for period Ty peri-
odic solutions of the new equation

Tow(e)x' = F.(x) (C.23)
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Fig. 13 Time series of trajectories before (solid) and after (dashed) an instantaneous perturbation of the muscle
activation variables (u; — u; + 0.1, see green arrows). Left panels show trajectories for neural variables, while right
panels show trajectories for mechanical variables. (A) Perturbing the protractor muscle activation ug at the beginning
of the closing phase leads to a phase delay. (B) Perturbing ug during the late closing phase leads to a phase advance.
(C) Perturbing the retractor muscle activation u; at the beginning of the closing phase leads to a phase advance. (D)
Perturbing w; during the late closing phase leads to a phase delay. Shaded regions and vertical magenta lines have the
same meanings as in FigurelZl
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where the prime ’ denotes the derivative with resepct to
s. We can write

x(t) = xo(t) +€x1(t) 4 ...

C.24
w(e) =wo +ewi + ... ( )

We substitute the above expansions into the governing
equation (C.23)), collect like powers of € and obtain the
following equations

/

/ xo = Fo(xo) / (C.25)
x7 — DFy(x0)x1 = G(x0) — Tow1x(
where G(x0) = 817%7(;(“)\5%0. The first equation in
is just the unperturbed differential equation with xo rep-
resenting the coordinate of the unperturbed limit cycle.
The second equation is equivalent to the ISRC equation
(2.20) that we derived in and x; de-
notes the coordinates of the linear displacement between
the perturbed and unperturbed limit cycle.

By the Fredholm Alternative, the second equation of

(C.25) has a solution if and only if

j—‘(\
/0 (G(XU (s)) - T()11)1x6(.9)) . Z(S) ds =0

where z is the infinitesimal phase response curve. Hence,
the linear shift in the frequency is given by

L[
wy] = —2/ G(xo(s)) ~z(s) ds,
5 Jo

which is equivalent to equation (2.14) in (Wang et al|
2021)).
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