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Abstract Motor systems show an overall robust-

ness, but because they are highly nonlinear, under-

standing how they achieve robustness is difficult. In

many rhythmic systems, robustness against pertur-

bations involves response of both the shape and the

timing of the trajectory. This makes the study of

robustness even more challenging.

To understand how a motor system produces ro-

bust behaviors in a variable environment, we con-

sider a neuromechanical model of motor patterns in

the feeding apparatus of the marine mollusk Aplysia

californica (Shaw et al., 2015; Lyttle et al., 2017). We

established in (Wang et al., 2021) the tools for study-

ing combined shape and timing responses of limit cy-

cle systems under sustained perturbations and here
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apply them to study robustness of the neuromechan-

ical model against increased mechanical load during

swallowing. Interestingly, we discover that nonlinear

biomechanical properties confer resilience by imme-

diately increasing resistance to applied loads. In con-

trast, the effect of changed sensory feedback signal is

significantly delayed by the firing rates’ hard bound-

ary properties. Our analysis suggests that sensory

feedback contributes to robustness in swallowing pri-

marily by shifting the timing of neural activation

involved in the power stroke of the motor cycle (re-

traction). This effect enables the system to generate

stronger retractor muscle forces to compensate for

the increased load, and hence achieve strong robust-

ness.

The approaches that we are applying to under-

standing a neuromechanical model in Aplysia, and

the results that we have obtained, are likely to pro-

vide insights into the function of other motor sys-

tems that encounter changing mechanical loads and

hard boundaries, both due to mechanical and neu-

ronal firing properties.

Keywords Nonsmooth systems · Aplysia · Vari-
ational dynamics · Infinitesimal phase response

curve · Robust motor behavior · Sensory feedback

1 Introduction

In many animals, motor control involves neural os-

cillatory circuits that can produce rhythmic patterns

of neural activity without receiving rhythmic inputs
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(central pattern generators (CPGs)), force genera-

tion by muscles, and interactions between the body

and environment. Moreover, sensory feedback from

the peripheral nervous system is known to modulate

the rhythms of the electrical signals in CPGs and

thereby facilitate adaptive behavior.

Motor systems show an overall robustness, but

because they are highly nonlinear, understanding how

they achieve robustness due to their different com-

ponents is difficult. To understand how animals pro-

duce robust behavior in a variable environment, Shaw

et al. (2015) and Lyttle et al. (2017) developed a neu-

romechanical model of triphasic motor patterns to

describe the feeding behavior of the marine mollusk

Aplysia californica. Like many rhythmic motor sys-

tems, feeding in Aplysia involves two distinct phases

of movement: a power stroke during which the mus-

culature engages with the substrate (the seaweed)

against which it exerts a force to advance its goal

(ingestion of seaweed), and a recovery stage during

which the motor system disengages from the sub-

strate to reposition itself, in preparation for begin-

ning the next power stroke. Similarly, in legged loco-

motion, the stance phase corresponds to the power

stroke and the swing phase corresponds to the re-

covery stage.

Also, like many rhythmic motor systems, feed-

ing in Aplysia involves a closed-loop system, which

integrates biomechanics and sensory feedback, and

exhibits a stable limit cycle solution. It has been con-

jectured that sensory feedback plays a crucial role in

creating robust behavior by extending or truncat-

ing specific phases of the motor pattern (Lyttle et

al. (2017), §3.1). To test this hypothesis, we applied
small mechanical perturbations as well as parametric

perturbations to the sensory feedback pathways in

the coupled neuromechanical system. It was shown

in Lyttle et al. (2017) that a sustained increase in

mechanical load leads to changes in both shape and

timing of the limit cycle solution: the system gen-

erates stronger retractor muscle force for a longer

time in response to the increased load. Qualitatively

similar effects have been observed during in vivo ex-

periments in Aplysia (Gill and Chiel, 2020). In gen-

eral, we expect that applying parametric changes to

CPG-based motor systems leads to changes in both

the shape and timing of the resulting limit cycle be-

havior (Fig. 1).

In Aplysia, the increased duration (timing) and

increased force (shape) have opposite effects on the

task-fitness, measured as seaweed consumption per

unit time. Strengthening the retractor force pulls in

more food with each cycle, which increases fitness,

whereas lengthening the cycle time decreases fitness.

Together these effects approximately cancel, making

the system robust against increased load. This type

of “stronger-and-longer” response may occur generi-

cally in other motor systems. Thus, in this paper, we

seek to understand the roles of sensory feedback and

biomechanics in enhancing robustness. To this end,

we apply recently developed tools from variational

analysis (Wang et al., 2021) to quantitatively study

changes in shape and timing of a limit cycle under

static perturbations.

In the first part of the present paper (cf. §2.1),
we apply the classical tools of forward variational

analysis to the model introduced by Shaw, Lyttle,

Gill and coauthors in (Shaw et al., 2015; Lyttle et

al., 2017) (denoted as the Shaw-Lyttle-Gill or SLG

model for brevity) to arrive at the following insights:

– Nonlinear biomechanical properties confer resilience

by immediately increasing resistance to applied

loads, on timescales much faster than neural re-

sponses.

– The main effect of sensory feedback is to shift

the timing of retraction neural pool deactivation;

in parallel, firing rate saturation effectively cen-

sors sensory feedback during specific movement

subintervals.

While the forward-in-time variational analysis is

illuminating and allows us to explain in detail the

robustness mechanism, it is still incomplete. Over

time, the original and perturbed cycle will become

increasingly out of phase due to the timing changes

under sustained perturbations. Hence the shape dis-

placements estimated from the forward variational

analysis will become less and less accurate over time.

This difficulty is not limited to models of feeding in

Aplysia californica. For example, if we were to com-

pare the gaits of two subjects walking on treadmills

with slightly different speeds, although the ratio of

stance and swing may be the functionally important

aspect, this quantity is difficult to assess directly

without putting the two movements on a common

footing by comparing them using a common time

scale.
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Fig. 1 A sustained change in parameter Θ in a dynamical system ẋ = F(x, Θ) producing a limit cycle trajectory typically
causes changes in both the timing and shape of the trajectory, which may both influence the performance S of the limit
cycle system.

Thus, in order to compare perturbed and unper-

turbed motions with greater accuracy, in the remain-

der of the paper (cf. §2.2 and following) we show

how to extend the local-in-time variational analy-

sis to a global analysis by applying the infinitesi-

mal shape response curve (ISRC) analysis and local

timing response curve (LTRC) analysis developed in

Wang et al. (2021). We review these methods in §3.
This time-rescaled analysis accounts for both global

timing sensitivity (through the infinitesimal phase

response curve, IPRC), as well as local timing sen-

sitivity (through LTRC) by rescaling time to take

into account local differences in the effects of para-

metric variation. It yields a more accurate and self-

consistent description of the oscillator trajectory’s

changing shape in response to parametric perturba-

tions and helps complete the picture by providing

a complementary perspective. Specifically, our time-

rescaled analysis provides additional insights, specif-

ically that

– Increasing the applied load on the system in-

creases the duty cycle of the neuron pool respon-

sible for retraction, in the sense that the retrac-

tion neuron pool is activated for a larger percent-

age of the closed phase of the cycle. (The closed

phase of the trajectory occurs while the animal’s

radula-odontophore, or grasper, is closed on the

seaweed, and encompasses the power stroke.) This

effect ultimately results in more seaweed being

consumed, despite increased force opposing in-

gestion.

– We are able to derive the multidimensional in-

finitesimal phase response curve (IPRC) despite

the presence of nonsmooth dynamics in the sys-

tem; we identify the mechanical component of the

IPRC as the one that contributes most to robust-

ness, and note that its contribution arises from

the “power stroke” segment of the motor cycle.

– We derive an analytical expression for the robust-

ness to the mechanical perturbation that decom-

poses naturally into a sum of two terms, one cap-

turing the effect of the perturbation on the shape

of the trajectory, and the other capturing the ef-

fect on the timing; this result provides a quanti-

tative analysis of robustness that confirms the

qualitative insights described previously in the

literature.

– In addition to sensory feedback and intrinsic biome-

chanical properties, robustness against changes

in applied load can arise from coordinated changes

of multiple parameters such as the gain of sensory

feedback and muscle stiffness.

The dynamics of the SLG model (Lyttle et al.,

2017) is given by

da0

dt = (a0(1− a0 − γa1) + µ+ ε0(xr − ξ0)σ0)/τa
da1

dt = (a1(1− a1 − γa2) + µ+ ε1(xr − ξ1)σ1)/τa
da2

dt = (a2(1− a2 − γa0) + µ+ ε2(xr − ξ2)σ2)/τa
du0

dt = ((a0 + a1)umax − u0)/τm
du1

dt = (a2umax − u1)/τm
dxr

dt = (Fmusc(u0, u1, xr) + rFsw)/br

(1.1)

This system incorporates firing rates of three neu-

ron populations, corresponding to the “protraction-

open” (a0), “protraction-closed” (a1), and “retrac-

tion” phase (a2). Note that when a nerve cell ceases

firing because of inhibition, its firing rate will be

held at zero until the balance of inhibition and ex-

citation allow firing activity to resume. Hence, we

supplement model (1.1) with three hard boundaries

introduced by the requirement that the firing rates
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a0, a1, a2 must be nonnegative:

Σ0 = {a0 = 0}, Σ1 = {a1 = 0}, Σ2 = {a2 = 0}.

During the limit cycle, when a neural variable ai
changes from positive to 0, we call that the ai landing

point ; when it changes from 0 to positive, we call

that the ai liftoff point. The fact that the trajectory

is non-smooth at the landing and liftoff points will

play an important role in the analysis to follow. See

§4 for further discussion of the biological basis for

our modeling assumptions.
This model also consists of a simplified version

of the mechanics of the feeding apparatus: a grasper
that can open or close (xr), a muscle that can pro-
tract the grasper to reach the food (u0) and another
muscle that can retract the grasper to pull the food
back into its mouth (u1). The net force exerted by
the muscles is given by the sum of the two muscle
forces

Fmusc(u0, u1, xr) = Fmusc,pro + Fmusc,ret (1.2)

= k0ϕ

(
c0 − xr

w0

)
u0 + k1ϕ

(
c1 − xr

w1

)
u1

where

ϕ(x) = −3
√
3

2
x(x− 1)(x+ 1)

is the effective length-tension curve for muscle forces,

ci, wi and ki denote the mechanical properties of

each muscle.

Fsw represents the external force applied to the

seaweed, which can only be felt by the grasper when

it is closed on the food (a1+a2 > 0.5), during which

r = 1. When the grasper is open (a1 + a2 ≤ 0.5),

r = 0; that is, the grasper moves independently of

the seaweed. This condition leads to a transversal

crossing boundary; that is, the open/closing bound-

ary given by

Σo/c = {a1 + a2 = 0.5}.

Values for model parameters and initial conditions

are given in Table 2 and Table 3 in the Appendix.

For additional details on the biological assumptions

motivating the model, see (Shaw et al., 2015; Lyttle

et al., 2017).

In this paper, we are interested in the so-called

heteroclinic mode in which the neural dynamics tem-

porarily slow down when the sensory feedback over-

comes the endogeneous neural excitation and forces

the neural trajectory to slide along the hard bound-

ary ai = 0. Such temporary slowing down of neural

variables allows the muscles, which evolve on slower

timescales, to “catch up”; hence the seaweed can be

swallowed and ingested successfully. Following the

terminology from (Wang et al., 2021), we call at-

tracting periodic trajectories that experience sliding

motions limit cycles with sliding components (LC-

SCs).

Using classical sensitivity analysis and our re-

cently developed tools from variational analysis (Wang

et al., 2021), we show here that biomechanics and

sensory feedback cooperatively support strong ro-

bustness by changing the timing and shape of the

neuromechanical trajectory. While both sensory feed-

back and biomechanics respond immediately to the

increased load, we find that the sensory feedback

effect is initially censored while the neural activ-

ity is pinned against a hard boundary of neuronal

firing. Thus the effect of the sensory feedback sig-

nal is significantly delayed relative to onset of the

increased load. Our analysis suggests that sensory

feedback mediates robustness mainly through shift-

ing the timing of neural activation and specifically

increasing the duty cycle of the retraction neural

pool. This response allows the system to digest more

seaweed despite the increased force opposing inges-

tion and hence achieve strong robustness. In addition

to uncovering the mechanisms for robust motor con-

trol, our methods allow us to quantify analytically

the robustness of the model system to the mechan-

ical perturbation. Finally, although we focus on the

Aplysia californica feeding system as our working

example, our methods should extend naturally to a

broad range of motor systems.

Our paper is organized as follows. We present

our analysis and main results in §2. Methods that

we use to understand the robustness in the Aplysia

neuromechanical model are presented and reviewed

in §3. We discuss limitations and possible extensions

of our approach in §4.

2 Results

Recall that a sustained (parametric) perturbation of-

ten causes changes in both shape and timing of the

neuromechanical trajectory solution of (1.1). In this

paper, we adopt methods developed in (Wang et al.,

2021) for analyzing the joint variation of both shape
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and timing of limit cycles with sliding components

under parametric perturbations.

2.1 Forward Variational Analysis.

We begin our analysis by investigating how the shape

of the trajectory changes in response to a sustained

increase in mechanical load Fsw. To a first approx-

imation, the change in shape can be captured by

classical sensitivity analysis (also called forward vari-

ational analysis) which we review in §3.
We apply a small static perturbation to the sys-

tem (1.1) by increasing the model parameter Fsw

by ε = 0.02: Fsw → Fsw + ε, and comparing the

new, perturbed limit cycle trajectory γε to the orig-

inal, unperturbed limit cycle trajectory γ0, begin-

ning at the start of the grasper-closed phase (time

0 in Figure 2 panels A-D). That is, we plot v ≈
(γε(t) − γ0(t))/ε; see (3.13)-(3.15) for precise defi-

nitions. Note that Fsw is multiplied by an indicator

function that is only nonzero when the trajectory is

in the grasper-closed phase. Thus the perturbation is

only present when the grasper is closed on the food.

The neural and biomechanical components of the

unperturbed trajectory γ(t) are shown by the solid

curves in Figure 2A and B, respectively. The per-

turbed trajectories γε(t) are indicated by the dashed

lines. The gray shaded regions indicate phases when

the grasper in the unperturbed system is closed. With

the perturbation (increased load), the transition from

closing to opening is delayed; this transition is indi-

cated by the magenta vertical line. Figure 2C and D

show the difference between the two trajectories per

perturbation along the neural directions and along

the biomechanical directions, respectively. These curves

can be approximated by the solutions to the forward

variational equation (3.14) defined in §3. The muscle

forces Fmusc(u0, u1, xr) before and after the pertur-

bation are shown by the gray curves in Figure 2B,

and the difference between them is included as the

gray curve in Figure 2D.

Figure 2 yields several insights about the roles

of sensory feedback and biomechanics in robustness,

which we discuss in detail below.

Biomechanics confer resilience by immediately

increasing resistance to the increased load.

Immediately following the perturbation of the me-

chanical load, we observed a positive displacement in

the grasper position xr relative to the unperturbed

trajectory (Figure 2D, yellow curve). This displace-

ment simply reflects the grasper being pulled by a

stronger force Fsw + ε. If nothing other than the ap-

plied load Fsw changes in the system, a linearized

analysis suggests that the initial displacement of xr

would approximately follow the yellow dashed line

given by 1
br
t (Figure 2D). Nonetheless, while this

line gives a good initial approximation, the true dis-

placement in xr (yellow solid curve) quickly sags

below the yellow dashed line over time. This dif-

ference arises due to the negative displacement oc-

curring in the muscle force Fmusc(u0, u1, xr) (Fig-

ure 2D, gray curve) which acts to overcome the in-

creased load. However, early in the retraction cycle,

all other variables, including the muscle activation

u0 and u1, show almost no displacement at all (see

Figure 2C and D). This observation suggests that

long before the sensory feedback effect has time to

act, the biomechanics may play an essential role in

generating robust motor behavior, by providing an

immediate, short-term resistance to increased load.

Early in the retraction cycle, increasing the load

stretches both the retractor and protractor muscles,

and moves them down their length-tension curves.

As a result, both forces become weaker, but the mag-

nitude of the protractor muscle force drops more

quickly than the retractor muscle force (Figure 3).

Thus, the retractor muscle force grows relative to the

opposing protractor muscle force. This shift endows

the system with a built-in resilience, in that increas-

ing seaweed force opposing ingestion automatically

(i.e., without changes in neural activation) engages a

larger resisting muscle force long before neural pools

or muscles show differential activation. This is a new

insight beyond the previous “longer-stronger” hy-

pothesis (Shaw et al., 2015; Lyttle et al., 2017).

Sensory feedback effects are largely delayed by the

firing rate hard boundary properties.

Changes in xr due to the increased load will imme-

diately propagate to the neural variables (a0, a1, a2)

through the sensory feedback εi(xr − ξi)σi)/τa, and
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Fig. 2 A small sustained perturbation is applied to the Aplysia model (1.1) over the closing phase in which Fsw → Fsw+ε
with perturbation ε = 0.02. (A, B) Time series of the trajectory components for nominal force value Fsw (solid) and
perturbed force value (dashed) over two periods, aligned at the start of the closed phase. (C, D) The displacement
solution, v(t), to the forward variational equation over two periods. The gray curve in (D) denotes the displacement
between the perturbed and unperturbed muscle forces Fmusc, shown as the gray curves in panel (B). The yellow dashed
line in panel (D) approximates the displacement in xr if the net muscle force Fmusc did not change after perturbation.
The intervals during which the grasper without perturbation is closed on the food are indicated by the shaded regions.
The vertical magenta lines indicate the times at which the grasper under perturbation switches from closed to open.
The difference in periods and the delay in the grasper opening time both accumulate, making the comparison between
the two trajectories invalid except at short times. (A) and (C) show trajectories and displacements along the neural
directions, while (B) and (D) show trajectories and displacements along the mechanical directions. The lines in panel
(C) (resp., (D)) approximate the difference between the dashed and solid trajectories from panel (A) (resp., (B)) per
perturbation.

hence should affect the neural variables without any

lag. However, no significant displacement of the neu-

ral variables is observed until nearly the end of the

retraction cycle (Figure 2C). In other words, while

the sensory feedback itself immediately responds to

the increased load, the effect of the changed sensory

feedback signal is not manifest until much later in

the retraction cycle, when the protraction-open neu-

ron pool is released from inhibition along its hard

boundary and starts to fire (Figure 2). Hence, the

nonsmooth hard boundary conditions on neuronal

firing rates significantly delay the effect of sensory

feedback, and create intervals during which neurons

are insensitive to sensory feedback.

Sensory feedback contributes by shifting the timing

of neural activation.

Due to the hard boundary effects, the displacements

of the neural variables appear near the end of the

closed phase, when the protraction-open neuron pool

a0 lifts off from its hard boundary, and the retraction-

closed neuron pool a2 deactivates to stop firing (Fig-

ure 2A and C). A positive (resp., negative) displace-

ment of a2 (resp., a0) indicates that a2 deactivates

(resp., a0 activates) at a later time with the increased
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load, and hence the retraction-closed phase is pro-

longed. Consequently, the retraction muscle activity

will increase, because its stimulation by the retrac-

tion motor neuron is prolonged, allowing the slow

retractor muscle to generate larger forces (Figure

3D). Similarly, we also observe a decreased protrac-

tor muscle activity, as the protraction neuron pool

a0 turns on at a later time. This decrease leads to

a stronger retractor muscle force and a weaker pro-

tractor muscle force (Figure 3). Hence, a more nega-

tive net muscle force results (Figure 2D, gray curve),

which corresponds to a stronger resisting force pulling

the seaweed towards the jaw to swallow the food.

To summarize, the main effect of sensory feedback

that contributes to robustness is prolonging the re-

traction phase to confer on the system a resilience

in that increasing seaweed force opposing ingestion

engages a larger resisting muscle force. Thus, sen-

sory feedback contributes to robustness primarily by

shifting the timing of neural activation, as opposed

to the magnitude of neural activation. Biologically,

this distinction corresponds to affecting the timing

of motor neuron burst onset or offset, rather than

burst intensity.

Fig. 3 The time series of the perturbed (dashed) and un-
perturbed (solid) protractor muscle forces Fmusc,pro (red)
and retractor muscle forces Fmusc,ret (blue) over two peri-
ods. The gray shaded regions and the magenta lines have
the same meanings as in Figure 2.
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Fig. 4 Enlarged views of Figure 2B and D near the first
transition from closed to open. Note the displacement of
xr (i.e., the xr component of v(t) shown as the yellow solid
line in (D)) is positive both at the end of the closing time
of the unperturbed system (see the green arrow near the
grey/white boundary) and the perturbed system (see the
green arrow near the magenta line).

2.2 Variational Analysis with Rescaled Time -

ISRC.

Under the forward-in-time analysis, the grasper of

the perturbed system lags behind the grasper of the

unperturbed system throughout the closing phase;

yet the net seaweed movement was measured to be

greater for the perturbed system (Lyttle et al., 2017).

Fig. 4 shows an expanded view of the perturbed

and unperturbed systems’ grasper position (Fig. 4B)

and the linearized difference produced by the vari-

ational equation (Fig. 4D). As this detailed view

shows, at the time when the unperturbed system

transitions from closed to open (gray-white bound-

ary) the unperturbed grasper position is more re-

tracted than the perturbed grasper position at the

coincident time point. Similarly, the grasper com-

ponent of the variational equation is positive at the

gray-white boundary. Furthermore, at the time when
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the perturbed system transitions from closed to open

(magenta line) the perturbed system continues to be

less retracted than the unperturbed system. Thus,

whether we compare the systems at the perturbed

or unperturbed opening time, the perturbed grasper

is “further behind”. Yet the overall effect in the per-

turbed system is a larger net intake of seaweed per

cycle.

This apparent contradiction underscores the need

to extend the perturbation analysis beyond the stan-

dard forward-in-time variational analysis. In partic-

ular, if one cycle is slower than another, then while

the local perturbation analysis can explain the cause-

and-effect relations a short time into the future, they

cannot account for the net effect around a cycle in

a self-consistent way. Over time, the displacements

between the two trajectories grow, and the linearized

approximation becomes invalid except at short times

(cf. Jordan et al. (2007)). Hence, unless time is rescaled

to take into account the difference in cycle period,

comparing the components of the original and per-

turbed cycles will become less and less meaningful.

To overcome this difficulty, we extend the local-

in-time variational analysis to a global analysis by

rescaling time so the unperturbed closing and open-

ing events coincide with those after perturbations,

respectively. We do so by applying the infinitesimal

shape response curve (ISRC) analysis and the local

timing response curve (LTRC) (Wang et al., 2021),

which we review in §3. This method yields a more ac-

curate and self-consistent description of the oscilla-

tor trajectory’s changing shape in response to para-

metric perturbations (see Figure 5). We show that

the combination of the ISRC and the LTRC gives a

sensitivity analysis of an oscillator to sustained per-

turbations within any given region (e.g., protraction
or retraction cycle, opening or closing phase) and

provides a self-contained framework for analytically

quantifying and understanding robustness to pertur-

bations.

We write γ1 for the linear shift in the limit cycle

shape in response to the static perturbation Fsw →
Fsw + ε, that is:

γε(τε(t)) = γ0(t) + εγ1(t) +O(ε2),

uniformly in time. Note that the time for the per-

turbed trajectory is rescaled to be τε(t) to match the

unperturbed time points. The linear shift γ1(t) is the

so-called ISRC curve and satisfies a nonhomogeneous

variational equation (see §3). Compared with the for-

ward variational equation, the ISRC equation has

one additional nonhomogeneous term ν1F0(γ0(t)) that

arises from the time rescaling. In this term, ν1 is de-

termined by the choice of time rescaling τε(t) and

F0(γ0(t)) is the unperturbed vector field evaluated

along the unperturbed limit cycle γ0(t) (see §3 for

details).

Since the perturbation is applied to the seaweed,

it can only be felt by the system when the grasper

is closed on the seaweed. It is natural to expect

that the segment at the closing phase has a different

timing sensitivity than the segment at the opening

phase. We hence choose to rescale time differently

in the two phases, using piecewise uniform rescaling

when computing the ISRC. This leads to a piece-

wise ISRC equation, where ν1 is piecewise constant.

It was shown in (Wang et al., 2021) that ν1 can be

estimated from the LTRC analysis (see §3).
In Figure 5A and B, the time traces of vari-

ables along the unperturbed limit cycle are shown by

the solid curves, whereas the perturbed limit cycle

whose time has been rescaled to match the unper-

turbed time points as described above are indicated

by the dashed curves. With the piecewise rescal-

ing, the transitions between the closing and opening

events of the perturbed and unperturbed systems

now coincide. The relative displacements between

the perturbed and unperturbed trajectories are ap-

proximately given by the piecewise ISRC γ1 shown

in Figure 5C and D. In contrast to the forward varia-

tional analysis, in which the displacements grow over

time, the piecewise ISRC curve is periodic, meaning

we have achieved a self-consistent global description

of the response of the limit cycle to increased load.

We now show that the apparent contradiction

that we obtained from the forward variational anal-

ysis, i.e., that the grasper displacement at the end

of the closing phase is positive (cf. Fig.4), can now

be resolved in the time-rescaled picture. In response

to the perturbation, the relative displacement of the

grasper position (the xr component of γ1, denoted

as γ1,xr
) initially increases (i.e., the grasper becomes

more and more protracted due to the increased load)

and reaches its peak at about t = 1.4 (see Figure

5D, yellow curve). Then it starts to decrease and be-

comes negative at the time when the grasper opens.

This means later in the retraction cycle, the per-

turbed grasper is less and less protracted than the
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Fig. 5 Variational analysis with piecewise uniform time rescaling. The same sustained perturbation as in Figure 2 is
applied to the Aplysia model (1.1). (A, B) Time series of the perturbed (dashed) and unperturbed solutions (solid).
Here piecewise uniform rescaling is applied so the closing and opening events coincide. (C, D) The ISRC with piecewise
uniform rescaling γ(t) over two periods. Shaded regions have the same meanings as in Figure 2. Note the xr component
of the ISRC is negative at the time of opening (see green arrow). With piecewise uniform rescaling, the variational
approximation is consistent across multiple periods (c.f., Figure 2).

unperturbed version and eventually become more re-

tracted by the end of the closing phase (Fig. 5D,

green arrow). In summary, the grasper perturbed by

larger force begins “behind” the unperturbed ver-

sion, but catches up around 60% of the way through

the retraction phase (in relative time) and comes out

“ahead” by the time both graspers open, consistent

with having a larger net seaweed intake (Lyttle et

al., 2017).

To understand what causes γ1,xr
to be negative

despite its initial big rise, we consider the effect of

the perturbation on the neural pool through sensory

feedback. In Figure 5C, we observe positive displace-

ments in γ1,a2
(yellow curve) occurring both when

the retraction neuron pool a2 activates and when it

deactivates. These displacements indicate that with

the increased load, the retraction neuron a2 activates

earlier and turns off later relative to the unperturbed

a2. In other words, increasing the applied load on the

system increases the duty cycle of the neuron pool in-

volved in retraction, i.e., the retraction neuron pool

is activated for a larger percentage of the total cy-

cle. As a result, the motor system recruits a larger

retractor muscle force, as indicated by the positive

displacement of the retractor muscle activation u1

during the closing phase (Figure 5D, red curve). A

similar increase in motor recruitment in response to

increased external load has been observed in vivo

(Gill and Chiel, 2020). In the model, the stronger

retraction force acts to impede the protraction of

the grasper, and eventually pulls the grasper to a

more retracted state. Thus the grasper displacement

crosses zero and becomes negative at the end of the

closing phase (Figure 5D, green arrow).

Note that there is no perturbation during the

opening phase (Figure 5, white space). During this
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phase of the cycle, displacements slowly decay and

are nearly zero by the time the grasper closes on the

food again.

2.3 Timing responses to sustained perturbations of

Fsw.

Infinitesimal phase response curve.

To understand the timing response of system (1.1)

to increased load, we perform an IPRC analysis. Fig-

ure 6 shows the time traces of the IPRC curve over

one cycle. As before, the shaded region indicates the

phase when the grasper is closed.

Fig. 6 IPRC for the Aplysia model. Grey shaded re-
gion indicates the period when the radula/odontophore
is closed. On the bottom, the red, yellow and blue rectan-
gles denote the protraction-closed, retraction-closed and
protraction-open phases, respectively. The blue spike in
the IPRC in the top panel occurs when the a0 variable
“lifts off” from the a0 = 0 boundary; the red spike occurs
when the a1 variable lifts off; the liftoff point for a2 is
indicated with an arrow.

The IPRC curves associated with biomechanical

variables are shown in Figure 6, lower panel. In par-

ticular, the timing sensitivity of system (1.1) to the

increased load on the grasper (Fsw → Fsw + ε) can

be estimated using the IPRC along the xr direction,

i.e., the yellow curve in the lower panel of Figure

6. Since the perturbation only has effect during the

closing phase, only the portion of zxr over the shaded

region is relevant. This portion is strictly negative.

Therefore, in response to the increased load consid-

ered above, the system undergoes phase delay, and

hence the total period is prolonged. This finding is

consistent with earlier results on the sensory feed-

back effect obtained from the variational analysis

(see §2.2).
The linear shift in period can be estimated by

evaluating the integral

T1 := lim
ε→0

Tε − T0

ε
= −

∫ T0

0

z(t)⊺
∂Fε(γ0(t))

∂ε

⏐⏐⏐
ε=0

dt,

where T0, Tε are the periods before and after per-

turbation ε (see Section 3). For the perturbation

on Fsw, the derivative ∂Fε(γ0(t))
∂ε equals (0, 1

br
)⊺ over

the grasper-closed region, and equals 0 during the

grasper-open region, where the first 0 is a 5× 1 zero

vector and the second 0 is a 6 × 1 vector. It then

follows that

T1 = −
∫
Θclose

zxr (t)/br dt (2.3)

where Θclose denotes the grasper-closed phase.

Other IPRC curves in Figure 6 indicate the tim-

ing sensitivity of the model to other perturbations

and lead to several useful insights as well as testable

predictions. For example,

– The IPRC curves are continuous except at the

liftoff points (Figure 6 top panel, blue and red

spikes). While all three neural variables go through

liftoff points, there is no large spike in za2
(yellow

curve). The absence of a yellow spike and the fact

that the red spike is larger than the blue spike,

imply that the system has the highest timing sen-

sitivity to perturbing a1 and intermediate timing

sensitivity to a0, both of which are significantly

higher than the sensitivity to a2 perturbations.

– Excitatory inputs to neural populations lead to

phase advance and hence shorten the total pe-

riod, because the IPRC curves associated with

neural variables are mostly positive (Figure 6 top

panel).

– Most of the time the system is not sensitive to

neural perturbations, but there also exist sensi-

tive regions when the trajectory is not restricted

to the hard boundaries (e.g., Figure 6 top panel,

blue and red spikes). For instance, the system

has high timing sensitivity to perturbations of
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a0 late in the closing phase and to perturbations

of a1 late in the opening phase, whereas sensory

inputs are largely ignored early in the opening

phase. This effect is a concrete example of dif-

ferential penetrance, a striking feature of many

biological systems in which some neural activity

can vary greatly, with little effect on behavior,

whereas in other circumstances, a small change

in neural activity may have a very large impact

on behavior (Chiel et al., 1999; Beer et al., 1999;

Ye et al., 2006; Cullins et al., 2015).

– Increasing the protractor muscle activation u0

causes a phase delay early in the closing phase

and late in the opening phase, and a phase ad-

vance otherwise. In contrast, increasing the re-

traction muscle activation u1 causes a phase ad-

vance early in the closing phase and late in the

opening phase, and a phase delay otherwise. Ap-

pendix B discusses why the system has different

timing sensitivities to muscle perturbations.

Although all three neural variables go through

liftoff points, there is no large yellow spike in za2

(see Figure 6). To understand this, we note that be-

fore a0 (resp., a1) lifts off its hard boundary, there

exists no inhibition from other neurons except for

inhibitory sensory feedback. However, when a2 lifts

off at around t ≈ 3.2, it still experiences inhibition

from a0 (see Figure 5A). In other words, there are

two inhibitory effects pressing neurons a2 down to

the hard boundary, but only one inhibitory effect

acting on the other two neuron populations. As a re-

sult, while there is a discontinuous jump of the IPRC

curve corresponding to a2 at the liftoff point, it re-

mains small as the other inhibition is still present.

Local timing response curve.

While the IPRC is a powerful tool for understand-

ing the global timing sensitivity of an oscillator to

sustained perturbations, it does not give local tim-

ing sensitivities, which, however, are needed for com-

puting the ISRC curve as discussed above. We hence

adopt the local timing response curve (LTRC) method

developed in Wang et al. (2021) and reviewed in §3.
To illustrate this method, we show the LTRC asso-

ciated with the closing phase and denote it as ηclose

(see Figure 7). Although the LTRC ηclose is defined

throughout the full domain, estimating the effect of

the perturbation within the closing region only re-

quires evaluating the LTRC in this region. Figure 7

shows the time series of ηclose for the model in the

closing region, obtained by numerically integrating

the adjoint equation backward in time with the ini-

tial condition of ηclose given by its value when the

grasper switches from closing to opening. Note that

ηxr
, the yellow curve in Figure 7 lower panel, remains

positive over the closing phase. This implies that the

increased load on seaweed prolongs the time remain-

ing in the closing region; that is, the increased load

prolongs the total closing time. The relative shift in

the closing time caused by the increased load can

also be estimated by integrating the LTRC (see Sec-

tion 3).

In addition, Figure 7 implies that strengthening

the protractor muscle activation u0 during the clos-

ing phase prolongs the total closing time, whereas

increasing the retraction muscle activation u1 de-

creases the total closing time. Similarly, we can com-

pute the LTRC over other phases, such as the retrac-

tion phase, in order to estimate local timing sensi-

tivities of the system in other regions.
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Fig. 7 Time series of the LTRC ηclose over the closing
phase. The liftoff point on a0 = 0 coincides with the spike
in ηa0 (blue curve, top panel). The cusp where ηxr changes
from increasing to decreasing (intersection of yellow and
vertical black dashed curves in the bottom panel) also oc-
curs at the liftoff point for a0.

Finally we note an interesting feature in ηclose:

there is an abrupt change in ηxr
at the a0 = 0 liftoff

point (Figure 7 bottom panel, dashed vertical line).
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To understand this behavior, note that an instanta-

neous perturbation of xr directly propagates to neu-

ral pools through sensory feedback. While all three

neural pools are affected by this mechanical per-

turbation, the neural components of ηclose are zero

most of the time except when the trajectory lifts off

from the a0 = 0 constraint (Figure 7 top panel, blue

spike). This observation implies that the system has

a high local sensitivity to a0 during the blue spike,

whereas the sensitivity to a1 and a2 are significantly

smaller than unity at all times. Thus, to understand

the effect of perturbing xr on the local timing, it is

sufficient to focus on ηa0 and examine how a0 reacts

to perturbing xr.

Similar to the forward variational analysis, per-

turbing xr delays the activation of a0, i.e., a0 lifts

off from a0 = 0 at a later time. That is, the displace-

ment in a0 near the a0 = 0 liftoff point is negative.

Since ηa0
is negative near the liftoff point, perturbing

xr prolongs the total closed time (i.e., ηxr
is positive

during the closed phase).

Next we address the cusp phenomena observed in

ηxr (Figure 7, bottom panel, yellow curve). Note that

perturbations arriving before the trajectory lifts off

from a0 = 0 delay the activation of a0 by increasing

the inhibition from its sensory feedback. Moreover,

the closer the time of perturbation to the time of

liftoff, the larger the delay on the activation of a0.

Such a larger delay leads to a greater increase of the

total closed time due to perturbing xr. Hence, be-

fore the liftoff time (Figure 7, bottom panel, vertical

black dashed line), ηxr
gradually increases. Once the

trajectory has passed the liftoff point, perturbing xr

delays the activation of a0 by decreasing its sensory

feedback, the effect of which now becomes excita-

tory. The size of this effect decays exponentially as

the trajectory gradually leaves the boundary a0 = 0.

Thus, there is a cusp in the ηxr
curve at the liftoff

point, after which ηxr
rapidly decreases.

2.4 Robustness to static perturbations.

In this section, we show how the robustness of the

Aplysia model (1.1), the ability of the system to

maintain its performance despite perturbations, can

be quantified using the ISRC, IPRC and LTRC anal-

ysis.

Following (Lyttle et al., 2017), we quantify the

performance or task fitness via the average seaweed

intake rate

Sε =
−∆xr,ε

Tε
(2.4)

where ∆xr,ε is the net change in perturbed grasper

position xr,ε during the grasper-closed phase and Tε

is the perturbed period. Note that we assume the

seaweed is moving together with the grasper when it

is closed and not moving at all during the grasper-

open component of the trajectory. Hence, −∆xr,ε

denotes the total amount of seaweed consumed per

cycle.

Since the vector field Fε(x) in system (1.1) is

piecewise smooth in the coordinates x and smooth

in the perturbation ε, it follows that the following

expansion holds:

∆xr,ε = ∆xr,0 + ε∆xr,1 +O(ε2),

where ∆xr,0 is the net change in the unperturbed

grasper position during the grasper-closed compo-

nent of the trajectory. Here, ∆xr,1 is approximately

given by the net change of the xr component of the

ISRC γ1, which is denoted as γ1,xr
(see §2.2), over

the grasper-closed phase. Suppose the grasper closes

at tclose and opens at topen over one cycle. It follows

that ∆xr,1 = γ1,xr
(topen)− γ1,xr

(tclose).

(Lyttle et al., 2017) show that the robustness,

i.e., the relative shift in the task fitness per relative

change in perturbation, for small ε, can be written

as

Robustness =
Fsw

ε

S(ε)− S0

S0
(2.5)

= Fsw

(
∆xr,1

∆xr,0
− T1

T0

)
+O(ε),

as ε → 0. Recall that T0 is the period of the unper-

turbed limit cycle and T1 denotes the linear shift in

period, which can be estimated using the IPRC (see

§2.3).
In summary, the robustness formula can be de-

composed into two parts, one involving changes in

shape (in particular, the grasper position xr) and

the other involving the timing change. As discussed

before, changes in shape can be estimated using the

ISRC and the LTRC analysis, whereas the latter can

be quantified using the IPRC. Below, we illustrate

the quantification of the robustness by considering
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the perturbation to be the increase in the constant

applied load Fsw → Fsw + ε.

The ISRC with or without timing rescaling cor-

responding to the perturbation on the applied load

have already been computed and discussed in §2.1
and §2.2. Note that ∆xr,1 in (2.5) is the net change

in the ISRC during the grasper-closed phase. Choos-

ing the ISRC with rescaling based on the timing of

the closing and opening events provides a more ac-

curate estimate of ∆xr,1. Hence, we use the ISRC

with piecewise rescaling to estimate ∆xr,1, which is

the net change in γ1,xr over the closing region per

cycle (see the yellow curve over the shaded region in

the lower right panel of Figure 5 and the green ar-

row marking the difference at the end of the closing

phase). Furthermore, the linear shift in the period

T1 can be estimated by (2.3) using the IPRC.

From the above analysis, we obtain
∆xr,1

∆xr,0
≈ 0.4806

and T1

T0
≈ 1.6532, both of which are positive and are

consistent with the concept of an adaptive “stronger

and longer” change in the motor pattern in response

to increased load. It follows that the robustness is ap-

proximately −1.1726× 10−2. (Note that the smaller

this number is in magnitude, the more robust the

system is.) To the first order in ε, the relative change

in the performance is then given by

S(ε)− S0

S0
≈ −1.1726× 10−2(ε/Fsw),

which is illustrated by the red circle as the pertur-

bation size ε varies (see Figure 8, top panel). To

see what this means, we take a data point on the

line indicated by the arrow, i.e., (0.42,−0.005). Here

ε/Fsw = 0.42 indicates a 42% increase in load Fsw,

which only causes a 0.5% decrease in the task fitness,
corresponding to a highly robust response. Here the

“stronger” effect (i.e., the first term in the robustness

formula (2.5) being positive) contributes to the ro-

bustness whereas the “longer” effect (i.e., the second

term in the robustness) reduces it. However, these

two effects are not independent from each other: it

is the longer retraction-closed time that allows the

muscle to build up a stronger force, thereby con-

tributing to a robust response.

We also compute the relative change in S with

respect to ε using direct numerical simulations (see

Figure 8, blue stars), which show good agreement

with our analytical results. In contrast, if we esti-

mate ∆xr,1 using the ISRC with a uniform timing
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Fig. 8 Relative change in task fitness (S(ε)−S0)/S0 com-
puted numerically (blue stars) versus those obtained an-
alytically from the ISRC and the IPRC according to for-
mula (2.5) (red circles), as the perturbation ε on the sea-
weed load Fsw varies. Without perturbation, the nominal
applied load is Fsw = 0.01. The approximation using the
ISRC with different timing rescalings during the grasper-
closed (ν1,close) versus grasper-open phases (ν1,open) esti-
mated from the LTRC analysis matches the actual simu-
lation (top panel), whereas the ISRC with uniform rescal-
ing ν1 = T1/T0 estimated from the IPRC no longer gives
a good approximation (bottom panel).

rescaling (see Figure 11), the resulting estimated ro-

bustness becomes more negative and no longer gives

an accurate approximation to the actual robustness

(see Figure 8, bottom panel). That is, the ISRC us-

ing different rescaling factors over the grasper-closed

phase (ν1,close) versus the grasper-open phase (ν1,open),

gives a much better approximation to the robust-

ness than the ISRC based on a global timing rescal-

ing ν1 = T1/T0. The fact that the ν1,open/close are
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obtained via the LTRC analysis highlights the con-

tribution of this novel analytical tool. This observa-

tion demonstrates that for systems under certain cir-

cumstances (e.g, non-uniform perturbation as con-

sidered in system (1.1)), the ISRC together with the

LTRC greatly improves the accuracy of the robust-

ness, compared to the ISRC with global timing anal-

ysis given by the IPRC.

2.5 Sensitivity of robustness to other parameters.

In general, the performance of motor control sys-

tems may be affected not only by external param-

eters, such as an applied load, but also be inter-

nal parameters, for instance describing the physical

properties of the biomechanics or neural controllers.

The variational tools used in the previous section to

understand mechanisms of robustness to increases

in applied load – the IPRC, ISRC and LTRC – can

also give insights into the effects of changing internal

model parameters. For instance, in the SLG model,

appropriately varying strengths of protractor or re-

tractor muscles can overcome effects of the increased

mechanical load Fsw → Fsw+ ε. Because of the SLG

model’s relative simplicity, we can relate many of

these changes to specific components of the fitness

equation in detail.

Below, we first consider how varying sensory feed-

back strengths can help restore the reduced seaweed

intake rate due to increased applied load. Then we

examine how changing the strengths of the protrac-

tor and retractor muscles affects robustness to ap-

plied loads.

Varying sensory feedback strengths.

Figure 9 shows the seaweed intake rate and robust-

ness to the increased load Fsw with respect to changes

in sensory feedback strengths εi, i ∈ {0, 1, 2}. The
performance S0 becomes negative when ε0 or ε1 is

relatively small (e.g., smaller than 10−5) or when

ε2 is relatively big (e.g., larger than 10−3), during

which the system is in a fast limit cycle/biting mode

and hence cannot swallow seaweed.

When the system is in the heteroclinic/swallowing

mode, as one might expect, increasing the sensory

feedback (e.g., ε2) improves the performance. Sur-

prisingly, our results show that increasing sensory

feedback strengths to the two protraction-related neu-

ral pools leads to opposite results by decreasing the

performance. These results seem to suggest that to

restore the deficit caused by the increased load and

achieve an increased robustness, we can either in-

crease ε2 or decrease ε0 and/or ε1. However, this is

not true. As shown in Figure 9, a decrease in the

robustness can be induced by either decreasing ε0
or increasing ε2. Moreover, the robustness is largely

insensitive to changes in ε1, despite the fact that

it influences the performance. Understanding these

effects on the robustness would require analysis of

a second-order variational problem and represents a

future direction for understanding neuromodulation.

Varying muscle strengths.

Next we investigate how variations of k0 and |k1|, the
strengths of the protraction and retraction muscles,

affect the robustness to changes in seaweed load.

Figure 10 shows that performance improves with

the increased protractor muscle strength k0 or the in-

creased retractor muscle strength |k1|. This suggests
that increasing k0 or |k1| can help restore the deficit

in the performance due to the increased mechanical

load and hence boost the robustness, which agrees

with our numerical simulations (see Figure 10, top

panel, black curve).

Recall that the robustness can be approximated

as Fsw

(
∆xr,1

∆xr,0
− T1

T0

)
(see equation (2.5)). Understand-

ing the underlying mechanisms of the robustness re-

quires one to investigate how the two quantities in-

volving shifts in shape and timing change with re-

spect to k0 or |k1| (see Figure 10, lower three pan-

els). We find that increasing k0 or |k1| reduces T1 and

−∆xr,1 while T0 and −∆xr,0 are almost unaffected.

Hence, both ∆xr,1/∆xr,0 (the “stronger” effect in

response to perturbations on the seaweed load) and

T1/T0 (the “longer” effect ) are decreased as we in-

crease the muscle strengths. However, the reduction

in the “stronger” effect is smaller than the reduction

in the “longer” effect. As a result, the robustness ap-

proximated by Fsw

(
∆xr,1

∆xr,0
− T1

T0

)
increases as k0 or

|k1| increases.
Together, our analytical tools suggest ways in

which coordinated changes in intrinsic parameters

could maintain fitness and thus enhance robustness.
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Fig. 9 Effects of varying ε0 (top row), ε1 (center row)
and ε2 (bottom row) on the robustness (2.5) to Fsw and
the unperturbed seaweed intake rate S0, when Fsw = 0.01.
Blue curves: Fitness S0. Black curves: Robustness.

3 Methods

In this section, we review the classical variational

theory for limit cycles (e.g., (Filippov, 1988; Bernardo

et al., 2008; Leine and Nijmeijer, 2013; Park et al.,

2018)), and new tools that we recently developed in

Wang et al. (2021) for linear approximation of the ef-

fects of small sustained perturbations on the timing

and shape of a limit cycle trajectory in both smooth

and nonsmooth systems.

In the next two sections we treat the smooth and

nonsmooth cases, respectively. In each case, we con-

sider a one-parameter family of n-dimensional dy-

namical systems

dx

dt
= Fε(x), (3.6)

indexed by a parameter ε representing a static per-

turbation of a reference system

dx

dt
= F0(x). (3.7)

3.1 Timing and shape responses to static

perturbations in smooth systems.

Following Wang et al. (2021), we make the following

assumptions:

Assumption 1

– The vector field Fε(x) : Ω×I → Rn is C1 in both

the coordinates x in some open subset Ω ⊂ Rn

and the perturbation ε ∈ I ⊂ R, where I is an

open neighborhood of zero.

– For ε ∈ I, system (3.6) has a linearly asymptoti-

cally stable limit cycle γε(t), with finite period Tε

depending (at least C1) on ε.

It follows from Assumption 1 that when ε = 0,

F0(x) is C1 in x ∈ Ω and the unperturbed system

(3.7) exhibits a T0-periodic linearly asymptotically

stable limit cycle solution γ0(t) = γ0(t + T0) with

0 < T0 < ∞. Assumption 1 also implies that the

following approximations hold:

Fε(x) = F0(x) + ε
∂Fε

∂ε
(x)

⏐⏐⏐
ε=0

+O(ε2), (3.8)

Tε = T0 + εT1 +O(ε2), (3.9)

γε(τε(t)) = γ0(t) + εγ1(t) +O(ε2) (uniformly in t),

(3.10)

where T1 is the linear shift in the limit cycle pe-

riod in response to the static perturbation of size
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Fig. 10 Effects of varying muscle strengths k0 (left panels) and |k1| (right panels) on the robustness to Fsw (top panels,
black curve) and the unperturbed seaweed intake rate S0 (top panels, blue curve). Default parameters k0 = 1, k1 = −1
represent the strengths and directions of protraction and retraction muscles. The second and third rows of panels show
the effects of muscle strengths on timing (T0, T1) and shape (−∆xr,0,−∆xr,1), respectively. The bottom panels shows
how T1/T0 (blue) and ∆xr,1/∆xr,0 (red) change as muscle strengths vary.

ε. This global timing sensitivity, T1, is strictly pos-

itive if increasing ε increases the period. The per-

turbed time τε(t) satisfies the conditions τ0(t) ≡ t

and τε(t + T0) − τε(t) = Tε; it allows the approxi-

mation (3.10) to be uniform in time1 and permits us

to compare perturbed and unperturbed trajectories

at corresponding time points. The vector function

γ1(t) ≡ ∂γε(τε(t))
∂ε |ε→0 is the linear (i.e. first-order)

shift in the limit cycle shape.

The timing and shape aspects of limit cycles are

complementary, and may be studied together by con-

sidering the infinitesimal phase response curve (IPRC)

and the variational analysis of the limit cycle, re-

spectively.

Infinitesimal Phase Response Curve (IPRC) The IPRC

is a classical analytic tool that measures the timing

response of an oscillator due to an infinitesimally

small perturbation delivered at any given point on

1 That is, the approximation remains valid for arbitrar-
ily long times t. Formally, there exists a constant C > 0,

independent of t, such that
⏐⏐⏐ γε(τε(t))−γ0(t)

ε
− γ1(t)

⏐⏐⏐ < Cε

as ε → 0, for all t > 0.

the limit cycle. It satisfies the adjoint equation (Schwem-

mer and Lewis, 2012)

dz

dt
= −DF0(γ0(t))

⊺z, (3.11)

with the normalization condition

F0(γ0(t)) · z(t) = 1.

The linear shift in period T1 can be calculated using

the IPRC as

T1 = −
∫ T0

0

z(t)⊺
∂Fε(γ0(t))

∂ε

⏐⏐⏐
ε=0

dt. (3.12)

Forward Variational Equation Classical sensitivity

analysis (Wilkins et al., 2009) has been used in many

applications to study the shape sensitivity or re-

sponse of an oscillator to sustained perturbations.

The dynamics of the linear shift

v(t) ≡ lim
ε→0

(γε(t)− γ0(t))/ε (3.13)
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at time t of the periodic orbit γε(t) due to a sustained

parametric perturbation ε initiated at time 0 satisfies

the following forward variational equation:

dv

dt
= DF0(γ0(t))v +

∂Fε(γ0(t))

∂ε

⏐⏐⏐
ε=0

(3.14)

with initial condition v(0) set by the difference in

the perturbed and unperturbed trajectories at the

point where they cross the Poincaré section defined

by the beginning of the closed phase. Specifically,

v(0) = lim
ε→0

(γε(t
close
ε )− γ0(t

close
0 ))/ε. (3.15)

Compared with the homogeneous variational equa-

tion, which studies the shape sensitivity to instan-

taneous perturbations, the forward variational equa-

tion (3.14) contains a non-homogeneous term arising

directly from the parametric perturbation acting on

the vector field.

However, since the perturbed limit cycle has a

different period Tε and hence a different perturbed

time τε due to sustained perturbations, the forward

variational equation which neglects such changes in

timing fails to give a valid comparison between the

perturbed and unperturbed trajectories for times on

the order of a full cycle or longer (see Figure 2C and

D). Hence, we adopt a new tool developed in Wang

et al. (2021), the infinitesimal shape response curve

(ISRC), which incorporates both the shape and tim-

ing aspects and captures a more accurate first-order

approximation to the change in shape of the limit

cycle under a parameteric perturbation.

Infinitesimal Shape Response Curve (ISRC) Suppose

the rescaled perturbed time can be written as τε(t) =

t/νε ∈ [0, Tε] for t ∈ [0, T0]. It follows that the rela-

tive change in timing denoted by νε = T0/Tε can be

represented as νε = 1− εν1 +O(ε2) where ν1 = T1

T0
.

Wang et al. (2021) denote the linear shift in the

periodic orbit, γ1(t) in (3.10), as the ISRC and adapted

Lighthill’s method of “strained coordinates” (Jordan

et al., 2007) to show it satisfies the following varia-

tional equation. An equation similar to (3.16) can

also be derived by simultaneously Taylor expanding

the state variable x around the limit cycle and its

frequency (Keener, 2018) (see Appendix C for de-

tails).

dγ1(t)

dt
= DF0(γ(t))γ1(t)+ν1F0(γ(t))+

∂Fε(γ(t))

∂ε

⏐⏐⏐
ε=0

.

(3.16)

This equation resembles the forward variational equa-

tion (3.14), but has one additional non-homogeneous

term arising from time rescaling t → τε(t). In con-

trast to the forward variational dynamics ∂γε(t)
∂ε , the

ISRC γ1(t) is periodic with period T0 (see Figure

11, left). To see how well the ISRC approximates

the actual linear shift between the perturbed and

unperturbed trajectories, we plot the linear shift ap-

proximated from the ISRC (black curve) and the ac-

tual displacement (red dashed curve). Overall, they

show good agreement with each other except near

the transition between the grasper-closed and grasper-

open phases. Such discrepancies arise from the fact

that the solution segment at the closing phase has

different timing sensitivity to the parametric pertur-

bation compared with the segment at the opening

phase, as discussed before. While these small errors

are nearly unnoticeable (see Figure 11, right), they

expand when the ISRC result is used to calculate the

robustness (see Figure 8, bottom panel).

Thus, in the case when a parametric perturba-

tion leads to different timing sensitivities in differ-

ent regions, we use the local timing response curve

(LTRC) defined by Wang et al. (2021) to compute

shifts in timing in different regions in order to im-

prove the accuracy of the ISRC, as demonstrated

when considering perturbations to the load applied

to the seaweed (see Figure 12).

Local Timing Response Curve (LTRC) The accu-

racy of the ISRC in approximating the linear change

in the limit cycle shape evidently depends on its

timing sensitivity, that is, the choice of the relative

change in frequency ν1. In (3.16), we chose ν1 to

be the relative change in the full period, by assum-

ing the limit cycle has constant timing sensitivity.

It is natural to expect that different choices of ν1
will be needed for systems with varying timing sen-

sitivities along the limit cycle. To more accurately

capture timing sensitivity of such systems to static

perturbations, Wang et al. (2021) defined a local tim-

ing response curve (LTRC) which is analogous to

the IPRC but measures the linear shift in the time

that the trajectory spends within any given region.

Specifically, the LTRC is the gradient of the time

remaining in a given region until exiting it through

some specified Poincaré section - a local timing sur-
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Fig. 11 Variational analysis with uniform rescaling. The same perturbation as in Figure 2 is applied to the Aplysia

model (1.1). Left: The ISRC γ1(t) with a uniform rescaling over one period. Right: Time series of the difference between
the perturbed and unperturbed solutions along a0-, a2-, and xr-directions. The black curve denotes the numerical
displacement (∆y(t) = yε(τε(t))−y(t)) computed by subtracting the unperturbed solution trajectory from the perturbed
trajectory, after globally rescaling time, and aligning trajectories at the onset of closing. The red dashed curve denotes
the product of the perturbation ε and the ISRC curve. The vertical blue dashed lines indicate the times at which
the unperturbed grasper switches from closed to open. Shaded regions and the vertical magenta lines have the same
meanings as in Figure 2. The perturbation is the same as in Figure 2.

face corresponding to the exit boundary of this re-

gion. Such a section could be given as a bound-

ary where the dynamics changes between regions,

or where a perturbation is applied in one region but

not another. For instance, in the feeding system of

Aplysia californica (Shaw et al., 2015; Lyttle et al.,

2017), the open-closed switching boundary of the

grasper defines a local timing surface.

Let ηI denote the LTRC vector for region I. Sup-

pose that at time tin, the trajectory γ0(t) enters re-

gion I upon crossing the surface Σin at the point xin;

at time tout, γ0(t) exits region I upon crossing the

surface Σout at the point xout. Similar to the IPRC,

the LTRC ηI satisfies the adjoint equation

dηI

dt
= −DF (γ(t))⊺ηI (3.17)

together with the boundary condition at the exit

point

ηI(xout) =
−nout

nout⊺F (xout)
(3.18)

where nout is a normal vector of Σout at the unper-

turbed exit point xout. The linear shift in the total

time spent in region I, T I
1, is given by

T I
1 = ηI(xin)·∂x

in
ε

∂ε

⏐⏐⏐
ε=0

+

∫ tout

tin
ηI(γ(t))·∂Fε(γ(t))

∂ε

⏐⏐⏐
ε=0

dt,

(3.19)

where xin
ε denotes the coordinate of the perturbed

entry point into region I. It follows that the relative

change in frequency local to region I is given by νI1 =

T I
1/(t

out − tin).

Piecewise uniform ISRC The existence of different

timing sensitivities of γ(t) in different regions there-

fore leads to a piecewise-specified version of the ISRC

(3.16) with period T0,

dγj
1(t)

dt
= DF j

0 (γ(t))γ
j
1(t)+νj1F

j
0 (γ(t))+

∂F j
ε (γ(t))

∂ε

⏐⏐⏐
ε=0

,

(3.20)

where γj
1, F

j
0 , F

j
ε and νj1 denote the ISRC, the unper-

turbed vector field, the perturbed vector field, and

the relative change in frequency in region j, respec-

tively, with j ∈ {I, II, III, · · · }. Note that in a smooth

system, F j
0 ≡ F0 for all j.

As discussed before, the piecewise-specified ISRC,

where ν1 takes different values in the closing and

opening phases, nicely complements the forward vari-

ational analysis. It provides a more self-consistent

global description of the shape response of the limit

cycle to the mechanical perturbation (see Figure 5).

Displacements between perturbed and unperturbed
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Fig. 12 Displacements between perturbed and unperturbed trajectories estimated from the ISRC γ1 with piece-
wise uniform rescaling (red dashed, εγ1) agree well with the actual displacement ∆y(t) = yε(τε(t)) − y(t) where
y = {a0, a1, a2, u0, u1, xr} (solid black). Shaded regions, vertical magenta and blue lines have the same meanings as
in Figure 11. The perturbation is the same as in Figure 2.

trajectories estimated using the piecewise-specified

ISRC agree well with the actual displacements (see

Figure 12). Moreover, it yields a much better approx-

imation to the robustness compared with the ISRC

with uniform rescaling (see Figure 8).

3.2 Timing and shape responses to static

perturbations in nonsmooth systems.

As discussed before, system (1.1) is a piecewise smooth

system with one transversal crossing boundary Σo/c

and three hard boundaries (Σ0, Σ1, Σ2). The study

of limit cycle motions in such nonsmooth systems

requires analytical tools beyond the standard arse-

nal of phase response curves and variational anal-

ysis, developed for systems with smooth (differen-

tiable) right-hand sides (Spardy et al., 2011a,b; Park

et al., 2017). For small instantaneous displacements,

variational analysis has been extended to nonsmooth

dynamics with both transversal crossing boundaries

and hard boundaries for studying the linearized ef-

fect on the shape of a trajectory (Filippov, 1988;

Bernardo et al., 2008; Leine and Nijmeijer, 2013;

Dieci and Lopez, 2011). Analysis in terms of in-

finitesimal phase response curves (IPRC) has like-

wise been extended to nonsmooth dynamics for study-

ing the linear shift in the timing of a trajectory fol-

lowing a small perturbation, provided the flow is al-

ways transverse to any switching surfaces at which

nonsmooth transitions occur (Shirasaka et al., 2017;

Park et al., 2018; Chartrand et al., 2018; Wilson,

2019). Recently, Wang et al. (2021) extended the

IPRCmethod to nonsmooth systems with hard bound-

aries.

In nonsmooth systems with degree of smooth-

ness one or higher (i.e., Filippov systems), the right-

hand-side changes discontinuously as one or more

switching surfaces are crossed. A trajectory reaching

a switching surface or boundary has two behaviors:

it may cross the boundary transversally or it may

slide along it. Hence, there are two types of bound-

ary crossing points: transversal crossing points, at

which the trajectory crosses a boundary with finite

velocity in the direction normal to the boundary, and

non-transversal crossing points including the landing

point at which a sliding motion along a switching

boundary begins, and the liftoff point at which the

sliding terminates. The time evolutions of the solu-

tions to the variational equation (i.e., the forward

variational dynamics and the ISRC) and the solu-

tions to the adjoint equation (i.e., the IPRC and the

LTRC) may experience discontinuities at a bound-

ary crossing point (Filippov, 1988; Bernardo et al.,

2008; Leine and Nijmeijer, 2013; Park et al., 2018;

Wang et al., 2021).

The discontinuity in the variational dynamics when

a trajectory meets a boundary crossing point xp at

crossing time tp can be expressed with the saltation
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matrix Sp (see Table 1):

v+
p = Sp v

−
p

where v(t) denotes the solution of the forward varia-

tional equation or the ISRC, v−
p = limt→t−p

v(t) and

v+
p = limt→t+p

v(t) represent the solution just before

and just after the crossing, respectively.

The discontinuity in z(t), the solution to the ad-

joint equation, at a boundary crossing point xp may

be expressed with the forward jump matrix (Jp)

z+p = Jpz
−
p (3.21)

where z−p = limt→t−p
z(t) and z+p = limt→t+p

z(t) are

the IPRC or the LTRC just before and just after

crossing the switching boundary at time tp in for-

wards time. However, Wang et al. (2021) showed that

the jump matrix is not well defined at a liftoff point

and hence introduced a time-reversed version of the

jump matrix, denoted as Jp, defined as follows:

z−p = Jpz
+
p (3.22)

Table 1 summarizes the saltation and jump matrices

at different types of boundary crossing points.

3.3 Simulation codes.

Simulation codes written in Matlab are available at

https://github.com/yangyang-wang/AplysiaModel.

4 Discussion

Overview. Motor systems are robust - they main-

tain their performance despite perturbations. Under-

standing the mechanisms of robustness is important

but challenging. To unravel the contributions of dif-

ferent components of robustness, we adopted tools

we established in Wang et al. (2021) and reviewed

in the methods section (§3) for studying combined

shape and timing responses of both continuous and

nonsmooth limit cycle systems under small sustained

perturbations. We applied these tools to understand

the mechanisms of robustness in a neuromechani-

cal model of triphasic motor patterns in the feed-

ing apparatus of Aplysia developed in (Shaw et al.,

2015; Lyttle et al., 2017). We show in the results

section (§2) that this framework lets us analyze how

a small sustained perturbation alters the shape and

timing of a closed loop system, and thus we began

to describe how the neural and biomechanical com-

ponents interact to contribute to robustness.

The first perturbation we considered was a sus-

tained increase in mechanical load (Fsw → Fsw +

ε). To our surprise, we discovered that long before

sensory feedback affected the system, biomechanics

played an essential role in robustness by producing

an immediate force increase to resist the applied load

(Figure 2, 3 and 4). Furthermore, although the sen-

sory feedback immediately responded to the pertur-

bation, its effect was delayed by the hard bound-

ary properties of the neural firing rates. Our analy-

sis suggests that sensory feedback contributes to the

robustness primarily by shifting the timing of neu-

ral activation as opposed to changing neuronal firing

rate amplitude (Figure 5, 6 and 7). Our methods

can also be readily used to quantify how changes in

timing and shape of trajectory affect the robustness

(Figure 8). We find that sensory feedback and biome-

chanics contribute to the robustness of the system by

generating a stronger retractor muscle force build-up

during the prolonged retraction-closed phase that re-

sists the increased load. The increased retractor mus-

cle force ultimately leads to more seaweed being con-

sumed during the slightly longer cycle time despite

the large opposing forces, thereby contributing to a

robust response. These new insights have refined and

expanded a previous hypothesis that sensory feed-

back is the major mechanism that plays a crucial

role in creating robust behavior (Lyttle et al., 2017).

Robustness is sensitive to other model parame-

ters. For example, in §2.5 we investigated how vary-

ing internal parameters such as strengths of sensory

feedback and muscle activity can help restore the

performance that was reduced by an increased ap-

plied load (Figure 9 and 10). Again, we obtained

some non-intuitive results. For example, increasing

the sensory feedback strength can reduce the ro-

bustness rather than improving it (Figure 9). More-

over, increasing sensory feedback gain has opposite

effects on performance and robustness, whereas in-

creasing the protractor or retractor muscle strength

improves both performance and robustness. Under-

standing sensitivities of performance to mixed pa-

rameters requires us to go beyond our existing meth-

ods. This second-order sensitivity represents an in-

teresting future direction for understanding neuro-

modulation - the coordinated change of multiple sys-

tem parameters in order to most effectively counter

https://github.com/yangyang-wang/AplysiaModel
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Table 1 Saltation matrices and jump matrices at boundary crossing points in Filippov systems (Filippov, 1988; Bernardo
et al., 2008; Leine and Nijmeijer, 2013; Park et al., 2018; Wang et al., 2021)

Landing Point Transversal Crossing Point Liftoff Point

Variational dynamics Sp = I − npn
⊺
p Sp = I +

(F+
p −F−

p )n⊺
p

n⊺
pF

−
p

Sp = I

IPRC & LTRC (forward time) Jp = I Jp = (S−1
p )⊺ Jp is undefined

IPRC & LTRC (time-reversed) Jp = I Jp = J−1
p Jp = I − npn

⊺
p

In the table, Sp, Jp and Jp denote the saltation matrix, the jump matrix, and the time-reversed jump matrix at some
boundary crossing point xp = x(tp), respectively. F

−
p = lim

x→x−
p
F (x) and F+

p = limx→x+
p
F (x) denote the vector fields

of the nonsmooth system just before and just after the crossing at xp, I denotes the identity matrix, np denotes the unit
normal vector of the crossing boundary at xp.

the effect of an external perturbation (Cropper et al.,

2018). There are multiple pathways for neuromodu-

lation, and the simplicity of the model lends itself to

detailed analysis of multifactor sensitivities. In fu-

ture work, we may apply the variational tools used

in the present paper for understanding how changes

in multiple parameters simultaneously could impact

model performance and robustness (cf. §2.5).

Nonsmooth dynamics and biological realism. Our

model incorporates two types of nonsmooth dynam-

ics. Both of these features complicate the model anal-

ysis, and one might ask whether an “equivalent”

smooth formulation might have been employed. We

emphasize that both types of nonsmooth dynamics

provide better reflection of the underlying biophysics

than a “smoothed” version would do, and contribute

in fundamental ways to the biological mechanisms

we study. Our model assumes that neurons fire, once

excited, at a nonzero rate, and maintain a rate of

exactly zero (rather than “very small”) when inhib-

ited. Thus our motor pool variables ai have hard

boundaries at zero firing rate. It is well known that

the Hodgkin-Huxley model, for example, fires at very

high rates when provided even relatively small cur-

rents, and slower rates are only possible with ad-

ditional ionic conductances, such as the A current

(see, for example, Hille (2001)). Studies on the ener-

getics of neurons in real brains do not assume that

they can fire at values much lower than a few Hertz.

See, for example, Figure 2 in Laughlin and Sejnowski

(2003), where the minimum firing rate for rat cor-

tex is estimated to be about 3 Hz. Thus, the model

we are using (Lyttle et al., 2017) is more realistic

than one that assumes that neurons can fire infinitely

slowly (e.g., a sigmoid function or a hyperbolic tan-

gent function (Ermentrout, 1998)). Thus, assuming

that neurons fire once excited at a nonzero rate (and

thus have a “hard boundary” at 0 firing frequency)

is more biologically realistic. Moreover, we have at-

tempted to replicate the results in this paper using

an alternative formulation in which we replace the

hard boundary with a “soft” boundary, implemented

using a sigmoidal firing rate function (Harris and Er-

mentrout, 2015) and found that eliminating the hard

boundary drives the system from the so-called “het-

eroclinic cycling” regime (Shaw et al., 2015; Lyttle

et al., 2017) to the “limit cycle regime” in which

it fails to consume seaweed at a rate sufficient to

support survival. In addition to the hard “sliding

boundary” at zero firing rate Wang et al. (2021)

our model has a nonsmooth transverse crossing of a

Poincaré section at the point when the grasper tran-

sitions from “open” to “closed”, and the biomechan-

ics switch from being free of the mechanical loading

to engaging the mechanical load of the seaweed. It is

important to realize that when an animal encounters

a load, that interaction creates a non-linear change

in the dynamics of the system. Although some in-

vestigators attempt to finesse this aspect by trying

to add a smoothly changing load function (such as

a spring with a very stiff spring constant), an en-

tire field devoted to hybrid systems has developed

to study how dynamics evolves when there is a dis-

continuous change due to interaction with the en-

vironment (see, for example, Holmes et al. (2006);

Aihara and Suzuki (2010)).

Experimentally testable predictions. The surprising

result that the length-tension curves of the opposing
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muscles generate an instantaneous response to force

perturbations could be tested, at least initially, using

some of the more realistic biomechanics models that

have been developed of Aplysia feeding.

For example, in a detailed kinetic model that

does not have sensory feedback (Sutton et al., 2004;

Novakovic et al., 2006), one could apply a step in-

crease in force when the odontophore is closed and

the retractor muscle is activated while measuring the

force resistance to that change, and compare that

to a purely passive response in which the retractor

muscle is not activated. The results of this paper pre-

dict that there will be significant differences between

these conditions.

In a model that does have sensory feedback (Webster-

Wood et al., 2020), one could apply a step increase

in force when the odontophore is closed and measure

the change in force and the duration of the cycle to

determine how that perturbation alters fitness. This

paper’s results predict that the response to a sus-

tained perturbation will be smaller in the presence

of sensory feedback and will be larger if sensory feed-

back is removed.

The model suggests that there may be delays

from the time that sensory feedback is available to

the time that force changes. Using the model, sinu-

soidal force changes could be applied at different fre-

quencies to determine the predicted phase lag, and

this effect could be tested in the real animal.

Results shown in Figure 9 suggest that the model

is relatively insensitive to changes in the strength of

sensory feedback over a wide range of gains. Thus,

one experimental test might be to increase or de-

crease the strength of sensory feedback to show that

robustness to changing mechanical loads is not sig-

nificantly affected. One way to test this hypothesis

would be to use the newly developed technology of

carbon fiber electrode arrays, which could be used to

excite, inhibit, and record from many sensory neu-

rons simultaneously (Huan et al., 2021).

In contrast, results shown in Figure 10 suggest

that changing the relative strengths of the muscles

can have larger effects on robustness. Previous stud-

ies have shown that neuromodulators can speed up

and strengthen muscular contractions and thus might

contribute to robustness (Taghert and Nitabach, 2012;

Lu et al., 2015; Cropper et al., 2018). Studies of the

neuromuscular transform (Brezina et al., 2000) sug-

gested that neuromodulation could effectively speed

up and strengthen feeding responses in normal ani-

mals, and thus might contribute to robustness.

Future experimental studies could be guided by

coordinated changes of parameters in this model us-

ing the analysis tools we have presented.

Caveats and limitations. Tracking possible transi-

tions into and out of constraint surfaces becomes

combinatorially complex as the number of distinct

constraint surfaces grows. Here we impose three hard

boundaries at ai ≥ 0, as discussed above, by requir-

ing firing rates to be nonnegative. An earlier model

specification given in (Shaw et al., 2015; Lyttle et

al., 2017) also required firing rates to be bounded via

the constraint ai ≤ 1. Here we relax this constraint

for computational convenience, since the coexistence

of multiple constraints requires encoding entry/exit

conditions and vector field restrictions for all fea-

sible combinations of constraints. In practice, com-

parison of simulations with and without the ai ≤ 1

constraint give qualitatively and quantitatively in-

distinguishable results under most conditions.

Our analysis is in principle limited to small per-

turbations. Large perturbations lead to crossing of

bifurcation boundaries in which the behavior switches

to a different dynamical mode. “Robustness” in a

broader sense can mean the distance to a basin of

attraction of another dynamical attractor. For ex-

ample, if the force is increased too much, the model

will collapse into a stable fixed point with overex-

tended protraction, while the animal will engage a

different response to release or sever the seaweed to

avoid damage to its feeding apparatus. This aspect

is not captured in the variational approach. Nonlin-

ear and bifurcation analysis could complement the

present study and is ripe for investigation in future

work.

In this paper we considered a specific perturba-

tion, namely increasing the force opposing seaweed

ingestion Fsw → Fsw + ε. Note that in this formula-

tion, the perturbation parameter ε carries the same

units (force) as Fsw. Consequently, in order to use a

unitless measure of robustness, the expression (2.5)

includes a factor of Fsw/ε. Also, in this formulation,

the timing sensitivity T1 (shift in period per increase

in force) and shape sensitivity γ1 (shift in limit cycle

shape per increase in force) have units including re-

ciprocal force. As an alternative formulation, which

might facilitate comparison of robustness to pertur-
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bations across different modalities, one could rewrite

the force perturbation as Fsw → Fsw(1 + ε). In this

case ε would represent a unitless measure of rela-

tive perturbation size. The subsequent variational,

IPRC, ISRC and LTRC analysis would remain un-

changed, except the resulting quantities Z, T1, γ1,

and η1 would undergo a change in units, hence a

multiplicative (fixed) change in scale. An advantage

of specifying perturbations as a relative or unitless

quantity would be that a similar analysis to that

undertaken in this paper could be applied to other

modalities in the same or system or across disparate

systems.

Generalizability to other systems. Although we fo-

cused in the present work on the robustness of the

mean rate of seaweed intake with respect to increases

in the force opposing ingestion, our analysis carries

over to other objective functions (e.g. calories con-

sumed per energy expenditure) as well as other per-

turbations (e.g. temperature, which may alter the

speed of feeding in Aplysia). The variational ap-

proach to analyzing robustness should apply to any

reasonable (e.g. smoothly differentiable) objective func-

tion and any parameter represented in the system,

e.g. adjustments to changes in speed, steepness, or

right-left asymmetry of walking movements on a (split)

treadmill system (Frigon et al., 2013; Embry et al.,

2018).

Our methods might also provide insights into how

rapidly a system can adjust to small modulation of

forces. One could possibly conduct experiments to

study the linear response of a system to modula-

tion of applied force Fsw, such as an instantaneous

small change from one static force to another, or a

small amplitude sinusoidal modulation of Fsw. The

infinitesimal shape response curve and other varia-

tional tools developed in Wang et al. (2021) might

play a role in the linear response analysis. This treat-

ment could represent an interesting future direction.

The present manuscript applies variational meth-

ods to understand the robustness in a specificAplysia

neuromechanical model (Lyttle et al., 2017). This

model makes significant simplifications to the real

feeding apparatus control system in order to gain

mathematical tractability and analytical and bio-

logical insights. Nonetheless, the framework devel-

oped in (Wang et al., 2021) applies naturally to more

elaborate dynamical models of Aplysia feeding such

as (Webster-Wood et al., 2020) and models incor-

porating conductance-based network descriptions of

the central pattern generator (Cataldo et al., 2006;

Costa et al., 2020). Thus, what we have done here

provides a framework for understanding neural con-

trol of motor behaviors like the one considered in

this paper.

More broadly, motor control beyond the Aplysia

feeding system is also amenable to the analysis of

the sort developed in §3 (Wang et al., 2021). For ex-

ample, the stability of bipedal walking movements

remains a challenge in the field of mobile robotics

Vukobratovic et al. (2012); Westervelt et al. (2018).

Biologically inspired robotics continues to provide

alternative approaches with greater robustness than

conventional devices (Beer, 2009; Pfeifer et al. , 2007;

Beer et al., 1997; Goldsmith et al. , 2019). The varia-

tional framework exhibited here applies to these sys-

tems as well (Fitzpatrick et al., 2020). In the context

of any motor control model, the variational analysis

we present here should allow analysis of robustness

of any reasonable objective function with respect to

any system parameter.
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A Tables for model parameters and initial

conditions

Values for model parameters and initial conditions of state
variables are given in Table 2 and Table 3.

Parameter Value Description
γ 2.4 inhibition strength from

next pool
εi 10−4 sensory feedback strength
µ 10−6 neural pool intrinsic exci-

tation
τa 0.05 neural pool time constant
τm 2.45 muscle activation time

constant
br 0.4 grasper damping con-

stant
c0 1.0 position of shortest

length for I2
c1 1.1 position of center of I3
Fsw 0.01 force on the seaweed re-

sisting ingestion
σ0 -1 sign of proproceptive in-

put to a0 motor pool
σ1 1 sign of proproceptive in-

put to a1 motor pool
σ2 1 sign of proproceptive in-

put to a2 motor pool
ξ0 0.5 proprioceptive neutral

position for protraction-
open neural pool

ξ1 0.5 proprioceptive neutral
position for protraction-
closed neural pool

ξ2 0.25 proprioceptive neutral
position for retraction-
closed neural pool

umax 1.0 maximum muscle activa-
tion

w0 2 maximal effective length
of I2

w1 1.1 maximal effective length
of I3

k0 1 strength and direction of
the protrator muscle

k1 -1 strength and direction of
the retractor muscle

Table 2 Model parameters

B Different timing sensitivities to muscle

perturbations

Here we explain why increasing the protractor (resp., re-
tractor) muscle activation during the early closing phase
leads to a phase delay (resp., phase advance), whereas

State
variable

Initial
value

Description

a0 0.9 activity of I2 motor pool
(non-negative)

a1 0.08355 activity of hinge motor
pool (non-negative)

a2 0.00003 activity of I3 motor pool
(non-negative)

u0 0.748 activity of I2 muscle
u1 0.25 activity of I3 muscle
xr 0.65 grasper position (0 is

retracted, 1 is
protracted)

Table 3 State variables

increasing the muscle activations during the late closing
phase lead to the opposite effects (see Figure 6 in §2.3).

Early in the closing phase (i.e., the protraction-closed
phase), increasing u0 leads to a phase delay. This effect
occurs because with larger u0 force, xr protracts more,
which prolongs the inhibition to a0 through sensory feed-
back (feedback to a0 is inhibitory when xr > 0.5). Hence
a0 activates at a later time and the switch from closed
to open is delayed, corresponding to a phase delay (see
Figure 13A).

On the other hand, increasing u1 during the early clos-
ing phase leads to a phase advance, because xr decreases
due to the increased retraction muscle forces and hence
the inhibition switches to excitation earlier than in the
original case (see Figure 13C).

During the late retraction-closed phase, increasing u0

leads to a phase advance (see Figure 13B). With increased
protractor muscle force, xr increases, but soon the state
transitions to protraction-open. Then, the inhibition on
a1 from the sensory feedback (feedback to a1 is inhibitory
when xr < 0.5) will be released earlier than before, be-
cause xr is larger under perturbation and hence a1 acti-
vates earlier. As a result, the system switches from opening
to closing phase earlier and this change corresponds to a
phase advance.

On the other hand, if we increase u1 during the late
closing phase, a phase delay results because xr decreases
with the perturbation. This effect prolongs the inhibition
from sensory feedback to a1, since xr stays below 0.5 for
a longer time (see Figure 13D).

C An alternative derivation of the

infinitesimal shape response curve

Recall that we assume for ε small,

x′ = Fε(x)

has a linearly asymptotically stable limit cycle with fre-
quency w(ε) depending (at least C1) on ε. To incorporate
the unknown period into the problem, we make the change
of variables s = T0w(ε)t. Then we look for period T0 peri-
odic solutions of the new equation

T0w(ε)x′ = Fε(x) (C.23)
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(A)

(B)

(C)

(D)

Fig. 13 Time series of trajectories before (solid) and after (dashed) an instantaneous perturbation of the muscle
activation variables (ui → ui + 0.1, see green arrows). Left panels show trajectories for neural variables, while right
panels show trajectories for mechanical variables. (A) Perturbing the protractor muscle activation u0 at the beginning
of the closing phase leads to a phase delay. (B) Perturbing u0 during the late closing phase leads to a phase advance.
(C) Perturbing the retractor muscle activation u1 at the beginning of the closing phase leads to a phase advance. (D)
Perturbing u1 during the late closing phase leads to a phase delay. Shaded regions and vertical magenta lines have the
same meanings as in Figure 2.
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where the prime ′ denotes the derivative with resepct to
s. We can write

x(t) = x0(t) + εx1(t) + . . .

w(ε) = w0 + εw1 + . . .
(C.24)

We substitute the above expansions into the governing
equation (C.23), collect like powers of ε and obtain the
following equations

x′
0 = F0(x0)

x′
1 −DF0(x0)x1 = G(x0)− T0w1x

′
0

(C.25)

where G(x0) =
∂Fε(x0)

∂ε
|ε→0. The first equation in (C.25)

is just the unperturbed differential equation with x0 rep-
resenting the coordinate of the unperturbed limit cycle.
The second equation is equivalent to the ISRC equation
(2.20) that we derived in (Wang et al., 2021) and x1 de-
notes the coordinates of the linear displacement between
the perturbed and unperturbed limit cycle.

By the Fredholm Alternative, the second equation of
(C.25) has a solution if and only if∫ T0

0

(G(x0(s))− T0w1x
′
0(s)) · z(s) ds = 0

where z is the infinitesimal phase response curve. Hence,
the linear shift in the frequency is given by

w1 =
1

T2
0

∫ T0

0

G(x0(s)) · z(s) ds,

which is equivalent to equation (2.14) in (Wang et al.,
2021).
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