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Abstract
Let S(ρ) be the vonNeumann entropy of a densitymatrixρ.Weakmonotonicity asserts
that S(ρAB) − S(ρA) + S(ρBC ) − S(ρC ) ≥ 0 for any tripartite density matrix ρABC ,
a fact that is equivalent to the strong subadditivity of entropy. We prove an operator
inequality, which, upon taking an expectation value with respect to the state ρABC ,
reduces to the weak monotonicity inequality. Generalizations of this inequality to the
one involving two independent densitymatrices, aswell as theirRényi-generalizations,
are also presented.
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1 Introduction

In quantum mechanics, the notion of conditional probability is generally ill-defined.
For example, consider an EPR pair over two qubits. The density matrix of a qubit is
maximally mixed but the global state is pure. Thus, the entropy of the global state
is strictly smaller than the entropy of its marginal. Examples like this show that one
cannot generally ensure S(ρAB)− S(ρB) ≥ 0, where S(ρ):=−Tr(ρ log ρ) is the von
Neumann entropy of a density matrix ρ. Nevertheless, the following inequality is still
true:

S(ρAB) − S(ρA) + S(ρBC ) − S(ρC ) ≥ 0. (1)
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This inequality is known as the weak monotonicity in the literature. We note that weak
monotonicity is equivalent to the strong subadditivity of entropy [1], a fact that can
be shown by considering a purification of ρABC .

In this paper, we prove operator extensions of Eq. (1). Consider a tripartite system
HA ⊗ HB ⊗ HC . For any positive definite density matrix ρABC , we show that

log ρAB − log ρA + log ρBC − log ρC ≤ 0, (2)

where a tensor product with the identity operator is suppressed for notational con-
venience. For instance, log ρAB is a short-hand notation for log ρAB ⊗ IC , where IC
is the identity acting on HC . Note that, by taking the expectation value with respect
to ρABC , Eq. (1) is recovered. Therefore, Eq. (2) is an operator extension of weak
monotonicity. In fact, this inequality can be extended to an inequality involving two
independent density matrices ρ and σ . Let ρAB and σBC be positive definite density
matrices acting on HA ⊗ HB and HB ⊗ HC , respectively. We show that

log ρAB − log ρA + log σBC − log σC ≤ 0, (3)

again suppressing the tensor product with the identity operator.
These inequalities are somewhat surprising because log ρAB − log ρA can have

positive eigenvalues in general. In particular, in Eq. (3), we emphasize again that ρ

and σ need not be related to each other in any way. While log ρAB − log ρA and
log σBC − log σC may have positive eigenvalues, their sum, after accounting for the
tensor product with the identity, apparently cannot.

The proofs of these inequalities are based on a certain operator inequality involving
marginal density matrices and the fact that f (t) = ln t is an operator monotone
function [2, 3]. We remark that this operator inequality has some resemblance to an
inequality known in the algebraic quantum field theory literature [4, 5]. However, as
we discuss later in Sect. 3, there are important differences between the two.

Let us make some historical remarks. Since Lieb and Ruskai’s seminal proof of
strong subadditivity [1], several strengthenings have appeared in the literature. Carlen
and Lieb proved a strengthening which can become nontrivial for entangled quantum
states [6]. One of us proved an operator extension [7, 8]. A strengthening that ensures
a robust form of recoverability was proved in Refs. [9–11]. Our operator extension of
weakmonotonicity can be viewed as yet another strengthening of strong subadditivity.
In particular, we reprove, using this new inequality, the operator extension of strong
subadditivity [7]; see Corollary 1. Thus our new inequality is at least as strong as the
operator extension of strong subadditivity.

Another perspective is that we provide an arguably simplest approach to prove
strong subadditivity of entropy. Our key observation is that a nontrivial inequality
can be obtained by combining Stinespring dilations [12] of the Accardi-Cecchini
coarse graining operator [13]. The proof of this inequality is elementary, and once this
inequality is obtained, the weak monotonicity follows from an elementary application
of Löwner–Heinz’s theorem [2, 3] on matrix monotone functions. The strong subaddi-
tivity then follows by introducing a purifying system, a fact that is well-known in the
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literature. This observation suggests a possibility of deriving new matrix inequalities
from dilations of channels.

The rest of the paper is organized as follows. The proofs of our claims (and their gen-
eralizations) are presented in Sect. 2. In Sect. 3, we comment on a relation between our
inequalities and a similar inequality in quantum field theory. We end with a discussion
in Sect. 4.

2 Proofs

Let us begin byfirst setting up the notation. LetH be a finite-dimensionalHilbert space.
We denote the set of densitymatrices onH asS (H). The set of densitymatrices which
are strictly positive is denoted as S (H)++. For simplicity, throughout the paper, we
focus on the cases where the density matrices are strictly positive definite. We expect a
generalization of our results for positive semi-definite density matrices would require
a projection onto an appropriate subspace, which we leave for future work.

Given a density matrix, we shall denote its marginals by specifying the subsystem
in the subscript. For instance, ρA is a marginal of a density matrix ρ onHA. We shall
denote the operator norm of M as ‖M‖ and the identity acting on HX as IX .

Here is the key lemma.

Lemma 1 For any ρAB ∈ S (HA ⊗ HB)++ and σBC ∈ S (HB ⊗ HC )++,

ρ−1
A ⊗ σBC ≤ ρ−1

AB ⊗ σC . (4)

Proof Let ρAB ∈ S (HA ⊗ HB)++. Consider an operator V ρ
A→ABB∗ : HA → HA ⊗

HB ⊗ HB∗ defined as follows:

V ρ
A→ABB∗ :=ρ

1
2
ABρ

− 1
2

A

∑

k

|k〉B |k〉B∗ , (5)

where HB∗ is an auxiliary Hilbert space such that dim
(H∗

B

) = dim (HB), and the
summation is taken over a set of orthonormal basis forHB∗ andHB . A straightforward

calculation shows that V ρ
A→ABB∗

†
V ρ
A→ABB∗ = TrB(ρ

− 1
2

A ρABρ
− 1

2
A ) = IA. (We remark

that, more generally, if X is any operator on HA ⊗ HB and X̂ is an operator acting
on HA such that X̂ |ψ〉 = ∑

k X |ψ〉 ⊗ |k〉B ⊗ |k〉B∗ , then X̂† X̂ = TrB(X†X).) Thus,
V ρ
A→ABB∗ is an isometry. Similarly, we can define

V σ
C→BB∗C :=σ

1
2
BCσ

− 1
2

C

∑

k

|k〉B |k〉B∗ , (6)

which is also an isometry.
Let VB→B′ : HB → HB′ be an isometry, where HB′ is an auxiliary Hilbert space

we use in the following argument. Define V ρ

A→AB′B∗ : HA ⊗ HC → HA ⊗ HB′ ⊗

123



68 Page 4 of 9 T.-C. Lin et al.

HB∗ ⊗ HC as follows:

V ρ

A→AB′B∗ :=VB→B′V ρ
A→ABB∗ . (7)

Consider the operator (IA ⊗V †
B→B′ ⊗ IC )(IA ⊗ IB′ ⊗V σ

C→BB∗C
†)(V ρ

A→AB′B∗ ⊗ IB ⊗
IC ) : HA ⊗ HB ⊗ HC → HA ⊗ HB ⊗ HC . Since the operator norm of an isometry
is 1, we conclude

∥∥∥(IA ⊗ V †
B→B′ ⊗ IC )(IA ⊗ IB′ ⊗ V σ

C→BB∗C
†
)(V ρ

A→AB′B∗ ⊗ IB ⊗ IC )

∥∥∥ ≤ 1. (8)

A straightforward calculation shows that

(IA ⊗ V †
B→B′ ⊗ IC )(IA ⊗ IB′ ⊗ V σ

C→BB∗C
†
)(V ρ

A→AB′B∗ ⊗ IB ⊗ IC )

=
∑

k,k′,k′′,k′′′
|k′′′〉B〈k′′′|B′ 〈k′′|B〈k′′|B∗σ

− 1
2

C σ
1
2
BC |k′〉B′ 〈k′|Bρ

1
2
ABρ

− 1
2

A |k〉B |k〉B∗

=
∑

k,k′,k′′
|k′〉B〈k′′|B〈k′′|B∗σ

− 1
2

C σ
1
2
BC 〈k′|Bρ

1
2
ABρ

− 1
2

A |k〉B |k〉B∗

=
∑

k,k′
|k′〉B〈k|Bσ

− 1
2

C σ
1
2
BC 〈k′|Bρ

1
2
ABρ

− 1
2

A |k〉B

=
(

ρ
1
2
AB ⊗ σ

− 1
2

C

)(
ρ

− 1
2

A ⊗ σ
1
2
BC

)
.

(9)

We therefore obtain
∥∥∥∥

(
ρ

1
2
AB ⊗ σ

− 1
2

C

)(
ρ

− 1
2

A ⊗ σ
1
2
BC

)∥∥∥∥ ≤ 1 (10)

leading to (
ρ

− 1
2

A ⊗ σ
1
2
BC

)(
ρAB ⊗ σ−1

C

) (
ρ

− 1
2

A ⊗ σ
1
2
BC

)
≤ IABC , (11)

from which the main claim immediately follows. �

A crucial step of the proof is Eq. (9), and here we provide a diagrammatic version

of this argument, in order to provide an intuition to the readers. We shall first denote
V ρ
A→ABB∗ and V σ

C→BB∗C as follows:

V ρ
A→ABB∗ =

ρ
− 1

2
A

ρ
1
2
AB

A A

BB

B∗

, V σ
C→BB∗C =

σ
− 1

2
C

σ
1
2
BC

C C

B

B∗

B .

(12)
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In these diagrams, the input and the output of the maps lie on the left and the right
side of the diagram, respectively. Each leg is labeled by the respective subsystem, and
the curved leg connecting B and B∗ represents

∑
k |k〉B |k〉B∗ .

We can similarly represent V ρ

A→AB′B∗ as follows:

V ρ

A→AB′B∗ =

ρ
− 1

2
A

ρ
1
2
AB

A A

BB

B∗

B ′
, (13)

where the triangle corresponds to VB→B′ and the curved leg connecting B and B∗ is
now

∑
k〈k|B〈k|B∗ . We can thus obtain

(IA ⊗ IB′ ⊗ V σ
C→BB∗C

†
)(V ρ

A→AB′B∗ ⊗ IB ⊗ IC )

=

ρ
− 1

2
A

ρ
1
2
AB

A A

BB

B∗

B ′

σ
− 1

2
C

σ
1
2
BC

CC

B

B∗

B

=

A

B

C

A

B

C

B ′σ
1
2
BC

σ
− 1

2
C

ρ
− 1

2
A

ρ
1
2
AB

,

(14)

where the second line is obtained by simply “straigtening out” the curved leg. At this

point, it is straightforward to see that

(
ρ

1
2
AB ⊗ σ

− 1
2

C

)(
ρ

− 1
2

A ⊗ σ
1
2
BC

)
can be obtained

by applying the inverse of V †
B→B′ , which completes the argument.
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Remark 1 The isometry V ρ
A→ABB∗ is the Stinespring dilation [12] of the Accardi-

Cecchini coarse graining operator [13].

By the Löwner-Heinz theorem [2, 3], f (t) = log t is operator monotone. Thus, we
immediately obtain the following result.

Theorem 2 For any ρAB ∈ S (HA ⊗ HB)++ and σBC ∈ S (HB ⊗ HC )++,

log ρAB − log ρA + log σBC − log σC ≤ 0. (15)

We remark that, by taking ρAB and σBC as the marginal density matrices of ρABC ,
Eq. (2) follows. Moreover, by taking an expectation value with respect to ρABC , weak
monotonicity, and subsequently, the strong subadditivity of entropy [1] follows as
well.

Moreover, Theorem 2 implies the operator extension of strong subadditivity [7, 8].

Corollary 1 For any ρABC ∈ S (HA ⊗ HB ⊗ HC )++,

TrBC (ρABC (log ρABC + log ρB − log ρAB − log ρBC )) ≥ 0. (16)

Proof Consider a purification of ρABC , denoted as |ρ〉ABCD , where D is the purifying
space. By Theorem 2,

log ρBC − log ρB + log ρCD − log ρD ≤ 0. (17)

For any MA acting on HA,

〈ρ|(M†
A ⊗ IBCD)(log ρBC + log ρCD − log ρB − log ρD)(MA ⊗ IBCD)|ρ〉 ≤ 0. (18)

Since log ρCD|ρ〉 = log ρAB |ρ〉 and log ρD|ρ〉 = log ρABC |ρ〉, we get

TrA
(
M†

AMATrBC (ρABC (log ρABC + log ρB − log ρAB − log ρBC ))
)

≥ 0, (19)

which implies the claim. �

The Löwner-Heinz theorem also implies that f (t) = tα is operator monotone for

α ∈ [0, 1]. Thus, the following theorem also follows, which can be viewed as a Rényi
generalization of Theorem 2.

Theorem 3 For any ρAB ∈ S (HA ⊗ HB)++ and σBC ∈ S (HB ⊗ HC )++,

ρ−α
A ⊗ σα

BC ≤ ρ−α
AB ⊗ σα

C , (20)

for α ∈ [0, 1].
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3 A related inequality from algebraic quantum field theory

We remark that there is a known result in the algebraic quantum field theory liter-
ature [4] which appears similar to Lemma 1. This result dates back to the work of
Petz [14], which was used to prove the data processing inequality. Here we introduce
this result and comment on this similarity. (An introduction to von Neumann algebra
and related concepts can be found in Ref. [5].) LetH be a Hilbert space. Let |�〉 ∈ H
be a cyclic and separating vector for a vonNeumann algebraA onH. Let |�〉, |�〉 ∈ H
be vectors for a von Neumann algebraA onHwhere |�〉 is cyclic and separating over
A. Then we can define a relative modular operator [15] as��|�;A = S�|�;AS†

�|�;A,
where S�|� is an anti-linear operator such that for any a ∈ A,

S�|�;Aa|�〉 = a†|�〉. (21)

Let A1 be an algebra. It is known that, for any algebra A2 ⊂ A1, the following
inequality holds:

��|�;A2 ≥ ��|�;A1 , (22)

which can be found in [4, Equation (2.1.3)], and more recently, [5, Equation (3.36)].
This inequality makes sense only if both sides are well-defined, which requires � to
be cyclic and separating for both A1 and A2.

To show the similarity and the difference between Eq. (22) and Lemma 1, let
us consider the following plausible but incorrect argument to prove Theorem 2. Let
|�〉, |�〉 ∈ HA⊗HB⊗HC⊗HD , whereHA,HB,HC , andHD are finite-dimensional
Hilbert spaces. Let |�〉 be a purification of ρAB and |�〉 be a purification of σBC , both
assumed to be of full rank. Define the following algebras:

A1 = {IA ⊗ MBCD : MBCD ∈ B(HB ⊗ HC ⊗ HD)},
A2 = {IAB ⊗ MCD : MCD ∈ B(HC ⊗ HD)}, (23)

where B(H) is the space of bounded operators acting onH.
If we can find |�〉 which is cyclic and separating for bothA1 andA2, following [5,

Sec. 4], the relative modular operators become

��|�;A2 = ρ−1
AB ⊗ σCD, ��|�;A1 = ρ−1

A ⊗ σBCD . (24)

If Eq. (24) is correct, we could use Eq. (22) and take a partial trace on D over both
sides, obtaining

ρ−1
AB ⊗ σC ≥ ρ−1

A ⊗ σBC , (25)

which is exactly Lemma 1.
Unfortunately, such |�〉 does not exist in general when the Hilbert spaces are finite-

dimensional. This is because dimHA = dim(HB ⊗ HC ⊗ HD) when |�〉 is cyclic
and separating for A1 and dim(HA ⊗ HB) = dim(HC ⊗ HD) when |�〉 is cyclic
and separating for A2. The two conditions cannot simultaneously hold in general for
finite-dimensional Hilbert spaces unless dimHB = 1. Interestingly, this issue does not
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arise in certain states of quantum field theory. For instance, any vacuum state is both
cyclic and separating for any field algebra associated to an open set of the Minkowski
space, thanks to the Reeh-Schlieder theorem [5, 16]. One may hope to circumvent
this issue of cyclic and separating condition by considering a more general definition
of relative modular operators that does not require the state to be cyclic or separating
[17, Appendix A]. However, it is then not obvious if Eq. (22) is true because under
such definition, it is not clear if S�|�;A1 is an extension of S�|�;A2 .

4 Discussion

In this paper, we proved an operator extension of weak monotonicity. It is interesting
to note that our argument also leads to yet another proof of strong subadditivity [1].
What is notable about this new proof is that the strong subadditivity is proved by first
proving the weak monotonicity, not the other way around. The key observation was
Lemma 1, which followed immediately from constructions of certain isometries. We
leave it as an open problem to explore the consequences of this simple but powerful
observation.
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