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Abstract

Let S(p) be the von Neumann entropy of a density matrix p. Weak monotonicity asserts
that S(paB) — S(pa) + S(ppc) — S(pc) = 0 for any tripartite density matrix pspc,
a fact that is equivalent to the strong subadditivity of entropy. We prove an operator
inequality, which, upon taking an expectation value with respect to the state papc,
reduces to the weak monotonicity inequality. Generalizations of this inequality to the
one involving two independent density matrices, as well as their Rényi-generalizations,
are also presented.
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1 Introduction

In quantum mechanics, the notion of conditional probability is generally ill-defined.
For example, consider an EPR pair over two qubits. The density matrix of a qubit is
maximally mixed but the global state is pure. Thus, the entropy of the global state
is strictly smaller than the entropy of its marginal. Examples like this show that one
cannot generally ensure S(pap) — S(pp) = 0, where S(p):= — Tr(p log p) is the von
Neumann entropy of a density matrix p. Nevertheless, the following inequality is still
true:

S(paB) — S(pa) + S(ppc) — S(pc) = 0. (1)
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This inequality is known as the weak monotonicity in the literature. We note that weak
monotonicity is equivalent to the strong subadditivity of entropy [1], a fact that can
be shown by considering a purification of p4pc.

In this paper, we prove operator extensions of Eq. (1). Consider a tripartite system
Ha ® Hp ® Hc. For any positive definite density matrix p4pc, we show that

log pag — log pa + log ppc — log pc < 0, (2)

where a tensor product with the identity operator is suppressed for notational con-
venience. For instance, log p4p is a short-hand notation for log pap ® I¢, where I¢
is the identity acting on H¢. Note that, by taking the expectation value with respect
to papc, Eq. (1) is recovered. Therefore, Eq. (2) is an operator extension of weak
monotonicity. In fact, this inequality can be extended to an inequality involving two
independent density matrices p and o. Let psp and opc be positive definite density
matrices acting on H4 ® Hp and Hp ® Hc, respectively. We show that

log pap — log pa + logopc — logoc < 0, (3)

again suppressing the tensor product with the identity operator.

These inequalities are somewhat surprising because log pap — log p4 can have
positive eigenvalues in general. In particular, in Eq. (3), we emphasize again that p
and o need not be related to each other in any way. While log psap — log p4 and
logopc — log oc may have positive eigenvalues, their sum, after accounting for the
tensor product with the identity, apparently cannot.

The proofs of these inequalities are based on a certain operator inequality involving
marginal density matrices and the fact that f(#) = Inz is an operator monotone
function [2, 3]. We remark that this operator inequality has some resemblance to an
inequality known in the algebraic quantum field theory literature [4, 5]. However, as
we discuss later in Sect. 3, there are important differences between the two.

Let us make some historical remarks. Since Lieb and Ruskai’s seminal proof of
strong subadditivity [1], several strengthenings have appeared in the literature. Carlen
and Lieb proved a strengthening which can become nontrivial for entangled quantum
states [6]. One of us proved an operator extension [7, 8]. A strengthening that ensures
arobust form of recoverability was proved in Refs. [9—-11]. Our operator extension of
weak monotonicity can be viewed as yet another strengthening of strong subadditivity.
In particular, we reprove, using this new inequality, the operator extension of strong
subadditivity [7]; see Corollary 1. Thus our new inequality is at least as strong as the
operator extension of strong subadditivity.

Another perspective is that we provide an arguably simplest approach to prove
strong subadditivity of entropy. Our key observation is that a nontrivial inequality
can be obtained by combining Stinespring dilations [12] of the Accardi-Cecchini
coarse graining operator [13]. The proof of this inequality is elementary, and once this
inequality is obtained, the weak monotonicity follows from an elementary application
of Lowner—Heinz’s theorem [2, 3] on matrix monotone functions. The strong subaddi-
tivity then follows by introducing a purifying system, a fact that is well-known in the
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literature. This observation suggests a possibility of deriving new matrix inequalities
from dilations of channels.

The rest of the paper is organized as follows. The proofs of our claims (and their gen-
eralizations) are presented in Sect. 2. In Sect. 3, we comment on a relation between our
inequalities and a similar inequality in quantum field theory. We end with a discussion
in Sect. 4.

2 Proofs

Letus begin by first setting up the notation. Let H be a finite-dimensional Hilbert space.
We denote the set of density matrices on H as S (). The set of density matrices which
are strictly positive is denoted as S (H) . For simplicity, throughout the paper, we
focus on the cases where the density matrices are strictly positive definite. We expect a
generalization of our results for positive semi-definite density matrices would require
a projection onto an appropriate subspace, which we leave for future work.

Given a density matrix, we shall denote its marginals by specifying the subsystem
in the subscript. For instance, p4 is a marginal of a density matrix p on H 4. We shall
denote the operator norm of M as || M| and the identity acting on Hy as Ix.

Here is the key lemma.

Lemma 1 Forany pap € S(Ha ® Hp)14 andopc € S(Hp @ Hc) 44

px' ®opc < pyp ®oc. )

Proof Let pap € S (Ha ® Hp), . Consider an operator Vf_)ABB* tHa —> Ha ®
Hp ® Hp+ defined as follows:

1 _1
Vi apg=PapPa’ ) K BIK) 5, )
k

where H p= is an auxiliary Hilbert space such that dim (H’g) = dim (Hp), and the

summation is taken over a set of orthonormal basis for H g+ and H . A straightforward
_1 _1

calculation shows that VX%ABB*T VX%ABB* =Trp(p,° PABP, 2) = I4. (Weremark

that, more generally, if X is any operator on H4 ® Hp and X is an operator acting
on H 4 such that X|y) = 3, X|¢) ® k) ® |k) g+, then XTX = Trp(X'X).) Thus,
V/f% App+ 18 an isometry. Similarly, we can define

L1
Ve pprci=03c0¢ " Z |k) 1K) g+, (6)
k
which is also an isometry.

Let Vg_. g : Hp — Hp' be an isometry, where H g’ is an auxiliary Hilbert space
we use in the following argument. Define V'  , ppe : Ha ® He > Ha @ Hp ®
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‘Hp+ ® Hc as follows:

o o
Vi ap s =VB>BVa_ app+ )

Consider the operator (/4 ® V;_)B, RIc)UaQ1Ip ® VCJ%BB*CT)(VX—)AB’B* RIp®R
Ic)  HaQ® Hp @ He = Ha ® Hp ® Hc. Since the operator norm of an isometry
is 1, we conclude

la@ vy @ 100Ua® Iy © Ve 4y NV sy ® Ir@IO| < 1. ®)
A straightforward calculation shows that
Ua®Vy 5 ®I)Ua® I @ VE ppec YA 4pip @15 ® Ic)

L1 1
= Y WK 1p (K 5K B0 opclK ) 5 (K 1BD; 04 1K) BIK) B>
k,k’,k”,kw
1 1
Z K) sk 150K |50 020K 150230 1K) 51K) 5+ o)
k//

1 1

1 1 _1
Z pUkl80e 203 1503 pox 1)
k,k

1 _1 _1 1
= (Pjs ®Ucz) <PA2 ®Ot§C>'

We therefore obtain

1 1 _1 1
H(pjgéaacz) <,0A2 ®U§C> <1 (10)
leading to
1 1 1 1
( : ®oBc) (,OAB ®GC_1) (,OA2 ®G§C> < Iasc, (In
from which the main claim immediately follows. O

A crucial step of the proof is Eq. (9), and here we provide a diagrammatic version

of this argument, in order to provide an intuition to the readers. We shall first denote
p .
Vi app and VA_ g as follows:

c | -3 L C
Uc :
2
i B B 9pc
Vi aBBs = > Ve pprc = B B .
1
2 (
PaB
L _%_ 7A B*
P
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In these diagrams, the input and the output of the maps lie on the left and the right
side of the diagram, respectively. Each leg is labeled by the respective subsystem, and
the curved leg connecting B and B* represents ), k) p|k) p+.

We can similarly represent Vf _ ap g+ as follows:

B*
L B’
VA app = B %B ; (13)
1
2
0
N I A
Pa

where the triangle corresponds to Vp_, p- and the curved leg connecting B and B* is
now »_, (k| p (k| p+. We can thus obtain

Us ® Iy @ VE, ppec VY 4 ppe ® 15 ® Ic)
C _

1
~ | - )

B B

) (14)
P e I A
Py
c [ 1]c
(o}
% C
(o8
_B || [ BB
1
02
A [ ™A
P

where the second line is obtained by simply “straigtening out” the curved leg. At this
1 1 1 1
point, it is straightforward to see that | p; , ® o 2) (,0 A ® C’éc) can be obtained

by applying the inverse of V;_) p» Which completes the argument.
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Remark 1 The isometry Vf_) App+ 1s the Stinespring dilation [12] of the Accardi-
Cecchini coarse graining operator [13].

By the Lowner-Heinz theorem [2, 3], f(¢) = logt is operator monotone. Thus, we
immediately obtain the following result.

Theorem 2 For any pap € S (Ha ® Hp),. andopc € S (Hp ® Hc)4q,

log pa — log pa 4+ logopc — logoc < 0. (15)
We remark that, by taking p4p and opc as the marginal density matrices of pspc,
Eq. (2) follows. Moreover, by taking an expectation value with respect to p4 pc, weak
monotonicity, and subsequently, the strong subadditivity of entropy [1] follows as

well.
Moreover, Theorem 2 implies the operator extension of strong subadditivity [7, §].

Corollary 1 For any papc € S(Ha @ Hp @ Hc) 4y,

Trpc (paBc(log papc +log pp —log pap — log ppc)) > 0. (16)

Proof Consider a purification of p4 pc, denoted as |p) s pcp, where D is the purifying
space. By Theorem 2,

log ppc — log pp +log pcp — log pp < 0. a7
For any M4 acting on H 4,
(pl(M ® Iscp)(log psc +log pcp —log pp —log pp) (Ma ® Ipcp)|p) < 0. (18)

Since log pcplp) = log paglp) and log pp|p) = log papclp), we get

Tra (M} MaTrac (pasc(og pagc + log g — log pan — log ppc))) 2 0, (19)

which implies the claim. O
The Lowner-Heinz theorem also implies that f(¢) = ¢* is operator monotone for

a € [0, 1]. Thus, the following theorem also follows, which can be viewed as a Rényi

generalization of Theorem 2.

Theorem 3 For any pap € S(Ha @ Hp), 4 andopc € S (Hp @ Hc) 44

P ®0ge < pag ®OC, (20)

fora € [0, 1].
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3 Arelated inequality from algebraic quantum field theory

We remark that there is a known result in the algebraic quantum field theory liter-
ature [4] which appears similar to Lemma 1. This result dates back to the work of
Petz [14], which was used to prove the data processing inequality. Here we introduce
this result and comment on this similarity. (An introduction to von Neumann algebra
and related concepts can be found in Ref. [5].) Let H be a Hilbert space. Let |¥) € H
be a cyclic and separating vector for a von Neumann algebra A on H. Let |¥), |®) € H
be vectors for a von Neumann algebra .4 on H where | W) is cyclic and separating over
A. Then we can define a relative modular operator [15] as Ay |¢p. 4 = S¢|¢;AS$@;A,
where Sy is an anti-linear operator such that for any a € A,

Syje. 4al¥) = a'|®). 1)

Let A; be an algebra. It is known that, for any algebra A, C .Aj, the following
inequality holds:
Agjo; 4, > Aw|o: A » (22)

which can be found in [4, Equation (2.1.3)], and more recently, [5, Equation (3.36)].
This inequality makes sense only if both sides are well-defined, which requires W to
be cyclic and separating for both A; and A5.

To show the similarity and the difference between Eq. (22) and Lemma 1, let
us consider the following plausible but incorrect argument to prove Theorem 2. Let
W), |®) € HAQHBQHc®Hp, where H 4, Hp, Hc,and H p are finite-dimensional
Hilbert spaces. Let |W) be a purification of p4 g and |®) be a purification of o, both
assumed to be of full rank. Define the following algebras:

A1 ={I4 ® Mpcp : Mpcp € B(Hp ® Hc ® Hp)},

(23)
Az ={Iap ® Mcp : Mcp € B(Hc ® Hp)},
where B(H) is the space of bounded operators acting on .
If we can find | W) which is cyclic and separating for both .4; and A5, following [5,
Sec. 4], the relative modular operators become

Ay, 4, = PX}; ®ocp, Avye.a = ,021 ® ogcp.- (24)

If Eq. (24) is correct, we could use Eq. (22) and take a partial trace on D over both
sides, obtaining
pag ®0c > p,' ® oz, (25)

which is exactly Lemma 1.

Unfortunately, such |¥) does not exist in general when the Hilbert spaces are finite-
dimensional. This is because dim H4 = dim(Hp ® H¢e ® Hp) when |¥) is cyclic
and separating for A; and dim(H4 ® Hp) = dim(H¢c ® Hp) when V) is cyclic
and separating for .A;. The two conditions cannot simultaneously hold in general for
finite-dimensional Hilbert spaces unless dim H p = 1. Interestingly, this issue does not
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arise in certain states of quantum field theory. For instance, any vacuum state is both
cyclic and separating for any field algebra associated to an open set of the Minkowski
space, thanks to the Reeh-Schlieder theorem [5, 16]. One may hope to circumvent
this issue of cyclic and separating condition by considering a more general definition
of relative modular operators that does not require the state to be cyclic or separating
[17, Appendix A]. However, it is then not obvious if Eq. (22) is true because under
such definition, it is not clear if Sy|¢, 4, is an extension of Sy |e. 4,

4 Discussion

In this paper, we proved an operator extension of weak monotonicity. It is interesting
to note that our argument also leads to yet another proof of strong subadditivity [1].
What is notable about this new proof is that the strong subadditivity is proved by first
proving the weak monotonicity, not the other way around. The key observation was
Lemma 1, which followed immediately from constructions of certain isometries. We
leave it as an open problem to explore the consequences of this simple but powerful
observation.
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