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Abstract
We propose a fast algorithm for computing the entire ridge regression regularization 
path in nearly linear time. Our method constructs a basis on which the solution 
of ridge regression can be computed instantly for any value of the regularization 
parameter. Consequently, linear models can be tuned via cross-validation or other 
risk estimation strategies with substantially better efficiency. The algorithm is based 
on iteratively sketching the Krylov subspace with a binomial decomposition over 
the regularization path. We provide a convergence analysis with various sketching 
matrices and show that it improves the state-of-the-art computational complexity. 
We also provide a technique to adaptively estimate the sketching dimension. This 
algorithm works for both the over-determined and under-determined problems. We 
also provide an extension for matrix-valued ridge regression. The numerical results 
on real medium and large-scale ridge regression tasks illustrate the effectiveness 
of the proposed method compared to standard baselines which require super-linear 
computational time.

Keywords  Ridge regression · Randomized algorithms · Kernel ridge regression

1  Introduction

We consider the following ridge regression problem

(1)min
x∈ℝd

f (x) =
1

2
‖Ax − b‖2

2
+

�

2
‖x‖2
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where A ∈ ℝ
n×d is the data matrix, b ∈ ℝ

d is the label vector, and 𝜆 > 0 is a 
regularization parameter.

Typically, one needs to estimate the regularization parameter � from a set Λ 
of possible values and select the � with the best performance on the validation 
set. For moderate size problem, to obtain an estimate for the regularization 
parameter � , one can apply risk estimators such as generalized cross-validation 
[1], Stein’s unbiased risk estimate [2], or unbiased prediction risk estimate [3]. 
Moreover, solving this problem efficiently on a large scale is of great interest in 
model selection [4] and transfer learning [5]. For instance, in deep learning-based 
transfer learning, one needs to tune the last layer of a trained neural network 
to adapt to a different dataset. Essentially, training the last layer of the neural 
network is a ridge regression problem using squared loss, where the previous 
layers of the neural network can be fixed as feature extractors of the raw data.

Classical methods for solving ridge regression include singular value 
decomposition (SVD) method, warm-started conjugate gradient (CG) method, 
warm-started preconditioned conjugate gradient (PCG) method, and warm-
started iterative Hessian (IHS) sketch method [6]. The SVD method constructs 
a decomposition of the data matrix and provides a closed-form parameterization 
of the optimal solution to (1) as a function of � (see e.g., [7]). The warm-
started CG/PCG/IHS method iteratively solves (1) with different values of 
the regularization parameter � . They leverage previous solutions along the 
regularization path as initializers to warm-start the iterations. Besides, for kernel 
ridge regression, Nyström computational regularization (NCR) [8] applies the 
Nyström subsampling approaches to reduce the computation cost for calculating 
the regularization path.

In this paper, we present the iterative Hessian sketch method with binomial 
decomposition (IHS-BIN) for rapidly solving ridge regression with multiple regular-
ization parameters. The idea is to approximate the linear operator (ATA + �I)−1 via 
a polynomial of � constructed by the iterative Hessian sketch method (IHS) [6]. To 
be specific, IHS is an efficient randomized algorithm for solving large-scale least-
square problems. We first focus on the overdetermined case, where n > d , and then 
introduce an extension to the underdetermined case n ≤ d . Suppose that the size of 
Λ is T and Λ ⊆ [𝜆min, 𝜆max] with 0 < 𝜆min < 𝜆max . We compare the computation cost 
of the proposed IHS-BIN method with other classical solvers for ridge regression 
in Table  1. For the case where T is large, IHS-BIN with the computation cost of 
O(Td) is the fastest solver to the best of our knowledge. When T is small, IHS-BIN 
still offers a substantial improvement in complexity. In Figs. 1 and 2, we present the 
results on a randomly generated data example and a matrix-valued ridge regression 
problem with kernel matrix based on the CIFAR-10 dataset. We can observe that 
IHS-BIN can be significantly faster than other solvers.

This paper is organized as follows. In Sect. 2, we review classical methods for solv-
ing ridge regression with multiple � s. As the motivation of IHS-BIN, we introduce gra-
dient descent with binomial decomposition in Sect. 3. We present IHS with binomial 
decomposition and analyze its convergence rate with different sketching matrices in 
Sect. 4. In Sect. 5, we also provide a practical method for estimating an appropriate 
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Table 1   Computational complexity of solving the ridge regression problem (1) for T distinct values 
of the regularization parameter � . Here, � is the condition number of AT

A + �
min

I , and d
e
 is effective 

dimension of AT
A + �

min
I

Method small T large T

IHS-BIN (Ours)
O

(
d
2
e
d + (dd

e
+ nnz(A)) log

(
�max

�min

))
O(Td)

SVD O(nd
2
) O(Td

2
)

Warm-started CG O(Tnnz(A)
√
�) O(Tnnz(A)

√
�)

Warm-started PCG O(d
2
e
d + log(d

e
)nnz(A)) O(Tnnz(A))

Warm-started IHS O(d
2
e
d + log(d

e
)nnz(A)) O(Tnnz(A))

NCR O(d
2
e
n) O(Td

3
e
)

Fig. 1   Training loss, test loss and CPU time on randomly generated data. n = 20000, d = 4000 . �
min

= 1 . 
�
max

= 100 . ‘native’ is the native linear system solver in NumPy. The sketching dimension is set to 
m = 1600
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sketching dimension and extend our algorithm to the under-determined case and 
matrix-valued ridge regression. The numerical results are presented in Sect. 6.

2 � Review of classical methods

We briefly review several classical methods for solving (1) with � ∈ Λ , which contains 
T distinct values. We focus on the case where n > d.

Fig. 2   Training loss, test loss and CPU time on the CIFAR10 dataset. Matrix-valued kernel ridge regres-
sion. n = 25000, d = 25000 . �

min
= 0.1 . �

max
= 10 . We do not calculate the eigenvalues of AT

A since d is 
large. The sketching dimension is set to m = 10000



1 3

Sketching the Krylov subspace: faster computation of the entire…

2.1 � Singular value decomposition

Suppose that the singular value decomposition of A is given by A = UΣVT , where 
U ∈ ℝ

n×d,Σ ∈ ℝ
d×d and V ∈ ℝ

d×d . Then, we can calculate the optimal solution to 
(1) by

The above expression shows that x∗(�) can be computed for all values of � when the 
decomposition factors are cached. The total computation cost of the SVD-based 
computation of the ridge regularization path is therefore O(nd2)

⏟⏟⏟
SVD

+ O(d2T)
⏟⏟⏟
updating �

.

2.2 � Warm‑started conjugate gradient method

Suppose that we arrange � ∈ Λ in decreasing order. Then, we can apply the 
conjugate gradient method to solve (1) with � ∈ Λ from large to small values of � . 
We can use the solution for (1) with larger � as initialization for the next value of � . 
From [9], the overall computational cost is given by

Here, nnz(A) denotes the number of nonzero elements in A, � is the 
tolerance of precision to stop the conjugate gradient method, and 
� = (�2

max
(A) + �min)∕(�

2
min

(A) + �min) is the largest condition number of ATA + �I 
with � ∈ Λ . Here, we let �max(A) and �min(A) to represent the largest/smallest 
singular value of A.

2.3 � Warm‑started preconditioned conjugate gradient method

It is well-known that the number of iterations of warmed-started CG heavily depends 
on the condition number � . For ill-conditioned data matrices, the condition number 
� may be very large, which leads to slow convergence of the conjugate gradient 
method, even using the warm-starts. A widely applied approach to deal with the 
large condition number � is to apply a randomized preconditioned conjugate gradient 
(PCG) method [10]. Specifically, we use the random matrix (ATSTSA + �I)−1 as the 
preconditioner, where S ∈ ℝ

m×n is a sketching matrix. The sketching dimension 
m is usually proportional to the effective dimension de , which will be discussed in 
detail in Sect. 4.1. To calculate the preconditioner (ATSTSA + �I)−1 for various � , we 
usually compute the SVD of SA, which takes O(d2

e
d) time. The computational cost 

of computing SA can be O(log(de)nnz(A)) , depending on the type of the sketch as 
shown in Sect. 4. Given the preconditioner (ATSTSA + �I)−1 , the computational cost 
of warm-started PCG is given by

x∗(�) ∶= (ATA + �I)−1ATb = V(Σ2 + �I)−1ΣUTb

O(Tnnz(A)
√
� log(1∕�)).

O(Tnnz(A) log(1∕�)).
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2.4 � Warm‑started iterative Hessian sketch

The iterative Hessian sketch (IHS) method [6] is a randomized sketching method for 
solving least square problems. The update rule of IHS is as follows:

Here, 𝜏 > 0 is the step size. Similarly, to compute (ATSTSA + �I)−1 for various 
� , usually we compute the SVD of SA, which takes O(d2

e
d) time. With carefully 

chosen sketching dimension and sketching matrix, IHS can converge in O(log(1∕�)) 
iterations. Although IHS is simpler, the computational cost of IHS is similar to the 
PCG method, which is given by

We note that the above complexity can be high for large data matrices, especially 
when T, the number of points in the regularization path is also large. In contrast, 
the proposed approach has complexity O(Td log(1∕�)) , which can be significantly 
smaller when n is large.

3 � Gradient descent regularization path

Now, we illustrate the main idea underlying our algorithm. Although this will not be 
practical, our proposed method is inspired by this approach. Recall that for integer r, 
the Krylov subspace K(r) is defined as

The gradient descent method with fixed step size for a small number of iterations can 
be viewed as approximating the minimizer of (1) in the Krylov subspace. Namely, 
consider the updates

Here, we denote M = (I − �(ATA + �I)) . We can express xk in terms of M and x0 by

Therefore, we note that xk+1 ∈ K(k) . The binomial expansion formula for Mk is 
given by

(2)xk+1 = xk − �(ATSTSA + �I)−1AT (Axk − b + �xk)

O(Tnnz(A) log(1∕�)).

K(r) = span{ATb, (ATA + �I)ATb,… , (ATA + �I)r−1ATb}

xk+1 = xk − �
(
AT (Axk − b) + �xk

)

= (I − �(ATA + �I))xk + �ATb

=∶ Mxk + �ATb.

xk = Mkx0 + �Mk−1ATb + �Mk−2ATb +⋯ + �ATb.

Mk =

k∑
j=0

(
k

j

)
�j(−�)j(I − �ATA)k−j.
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For simplicity, we assume that the iterations are initialized at x0 = 0 . Then, we can 
rewrite xk as

Here, we denote uj =
∑k−1−j

i=0

�
i+j

j

�
(I − �ATA)iATb . Note that the above expression 

provides an approximate closed form formula for x(�) for all values of � . More 
specifically, if we compute u0,… , uk−1 , we can instantly compute xk = xk(�) for 
different � parameters. We call this method GD-BIN and summarize it in 
Algorithm 1.

However, the convergence rate heavily depends on the condition number � of 
ATA + �minI . To obtain an �-approximate solution to (1), it takes approximately 
k = O(log(1∕�)�) iterations. The overall computation cost is as follows:

The main drawback of the gradient descent method is the condition number � in 
the computation cost, which is often prohibitively large in practice. It is interesting 
to note that the dependence on condition number can be improved to 

√
� using 

conjugate gradient. However, the corresponding regularization path is no longer 
tractable due to non-constant step-sizes and � cannot be updated analogously. To 

xk = �

k−1∑
i=0

MiATb

= �

k−1∑
i=0

i∑
j=0

(
i

j

)
�j(−�)j(I − �ATA)i−jATb

= �

k−1∑
j=0

(−��)j
k−1−j∑
i=0

(
i + j

j

)
(I − �ATA)iATb

= �

k−1∑
j=0

(−��)juj.

O(ndk)
⏟⏟⏟

compute (I−�ATA)iATb and bj

+ O(Tdk)
⏟⏟⏟
evaluate xk

= O(nd(log(1∕�)�)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟

compute(I−�ATA)iATb and bj

+O(Td(log(1∕�)�)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟

evaluate xk
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circumvent these difficulties and the dependence on � , we take a different approach 
and introduce the iterative Hessian sketch (IHS) with binomial decomposition.

4 � IHS with binomial decomposition

Suppose that S ∈ ℝ
m×n is a sketching matrix, where m is the sketching dimension. 

IHS [6] employs a randomized Newton direction ((∇2f )1∕2)TSTS(∇2f )1∕2)−1∇f (x) 
to minimize the objective function f(x) in (1). The sketching dimension m depends 
on the effective dimension of ATA + �I , which will be defined later, and it can be 
significantly smaller than d. Typical choices of sketching matrices include

•	 Gaussian sketch: Each entry of S follows independent and identically 
distributed (i.i.d.) Gaussian distribution N(0,m−1).

•	 CountSketch transform sketch [11]: S is initialized as a matrix of zeros. 
Then, we set Sh(i),i to 1 or −1 with equal probability, where h(i) is chosen from 
{1,… , n} uniformly at random.

•	 Sparse Johnson–Lindenstrauss transform (SJLT) sketch [12]: With column 
sparsity s, S is constructed by concatenating s independent CountSketch 
transforms, each of dimension m∕s × n.

•	 Subsampled randomized Hadamard transform (SRHT) sketch [13]: S is a 
randomized projection matrix.

The update rule of IHS with a fixed regularization parameter is given by

Here, �0 is a fixed parameter. In this case, M = I − �(ATSTSA + �0I)
−1(ATA + �I) . 

Due to the randomized preconditioner, this update can be viewed as a better 
approximation of the optimal solution than the one in the Krylov subspace K(k + 1) 
in a similar spirit to rational Krylov subspace methods [14]. Rational Krylov methods 
apply rational functions to the matrix vector products to construct rational Krylov 
subspaces. The use of randomized preconditioners and the binomial decomposition 
over the regularization path is a novel idea to the best of our knowledge.

Based on the update rule of IHS, we can express xk in terms of M and x0 via

For simplicity, we also assume that the iterations are initialized at x0 = 0 . We denote 
PS = (ATSTSA + �0I)

−1.

(3)

xk+1 = xk − �(ATSTSA + �0I)
−1AT (Axk − b + �xk)

= (I − �(ATSTSA + �0I)
−1(ATA + �I)xk

+ �(ATSTSA + �0I)
−1ATb

= Mxk + �(ATSTSA + �0I)
−1ATb.

xk = Mkx0 + �Mk−1(ATSTSA + �0I)
−1ATb

+⋯ + �(ATSTSA + �0I)
−1ATb.
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Proposition 1  We can express xk as a polynomial function of � as follows:

Here, ũj =
∑k−1

i=j
ui,j , where ui,j ∈ ℝ

d can be recursively computed via

with the initial condition u0,0 = PSA
Tb.

Proof  From the previous derivation, by taking x0 = 0 , we note that

Therefore, it is sufficient to show that MiPSA
Tb can be written as a polynomial 

function of � . We first claim that for all integer i ≥ 0,

We prove this claim by mathematical induction. It is easy to observe that (5) holds 
for i = 0 . Suppose that (5) holds for i. For i + 1 , we note that

Hence, (5) also holds for i + 1.
As a result, we can easily compute that

	�  ◻

xk = 𝜏

k−1∑
j=0

(𝜏𝜆)jũj,

(4)
ui+1,0 = (I − �PSA

TA)ui,0, ui+1,i+1 = −PSui,i,

ui+1,j = (I − �PSA
TA)ui,j − PSui,j−1, 1 ≤ j ≤ i,

xk =

k−1∑
i=0

�MiPSA
Tb.

(5)MiPSA
Tb =

i∑
j=0

(��)jui,j.

Mi+1PSA
Tb = M(MiPSA

Tb)

=

i∑
j=0

(
(��)j(I − PSA

TA)ui,j − (��)j+1PSui,j
)

=

i∑
j=1

(��)j
(
(I − PSA

TA)ui,j − PSui,j−1
)

+ (I − PSA
TA)ui,0 − (��)i+1PSui,i

=

i+1∑
j=0

(��)jui+1,j.

xk =

k−1∑
i=0

𝜏MiPSA
Tb = 𝜏

k−1∑
i=0

i∑
j=0

(𝜏𝜆)jui,j = 𝜏

k−1∑
j=0

(𝜏𝜆)jũj.
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To compute (ATSTSA + �0I)
−1 , we perform the singular value decomposition on 

SA, i.e., SA = U1Σ1V1 . Suppose that m < d . Then, we have

Thus, for an arbitrary v ∈ ℝ
d , we have

For m ≥ d , then, we have

We summarize the calculation of ũ0,… , ũk−1 in Algorithm 2. For computing the 
sketching SA, we list the computation cost for different sketching matrix as follows:

•	 Gaussian sketch: O(mnd) or O(mnnz(A)) for a sparse matrix.
•	 SRHT sketch: O(log(m)nd) or O(log(m)nnz(A)) for a sparse matrix.
•	 SJLT sketch: O(snd) or O(snnz(A)) for a sparse matrix. Here, s is the sparsity of 

SJLT sketch.

As the sketching dimension is proportional to the effective dimension de , which can 
be significantly smaller than d, here we assume that m < d . Hence, the computation 
cost to compute the SVD of SA is O(m2d) . Ignoring the complexity of sketching, the 
computation cost of IHS-BIN is as follows:

For a sparse matrix A, the computation cost reduces to

(ATSTSA + �0I)
−1 = VT

1
(Σ2

1
+ �0I)

−1V1 + �−1
0
(I − VT

1
V1).

(ATSTSA + �0I)
−1v = v∕�0 + VT

1
((Σ2

1
+ �0I)

−1 − �−1
0
)V1v.

(ATSTSA + �0I)
−1v = VT

1
(Σ2

1
+ �0I)

−1V1v.

O(m2d)
���
SVD of SA

+O((md + nd)k2)
�����������������

compute ũj

+ O(Tdk)
���
evaluate xk

.
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The overall algorithm is summarized in Algorithm 3.

4.1 � Convergence analysis

In this subsection, we analyze the convergence rate of IHS with binomial 
decomposition. We first introduce some notations. Suppose that A = UΣVT is the 
singular value decomposition, and let �1 ≥ ⋯ ≥ �d denote singular values of A. Let 

Ā =

�
A√
𝜆0I,

�
Ã =

�
A√
𝜆I

�
 . Let Ū be a matrix of left singular vectors of Ā . For 

�0 ≥ 0 , we introduce a diagonal matrix D = diag

�
�1√
�2
1
+�0

,… ,
�d√
�2
d
+�0

�
 and define 

the effective dimension by

This will influence the sketching dimension, which will be discussed in detail later. 
Define

Denote S̄ =

[
S 0

0 Id

]
. We define two matrices

O(m2d)
���
SVD of SA

+O((md + nnz(A))k2)
�������������������������

compute ũj

+ O(Tdk)
���
evaluate xk

.

(6)de =
‖D‖2

F

‖D‖2
2

.

Σ̄ = diag

(√
𝜎2
1
+ 𝜆0,… ,

√
𝜎2
d
+ 𝜆0

)
,

Σ̃ = diag

(√
𝜎2
1
+ 𝜆,… ,

√
𝜎2
d
+ 𝜆

)
.

C̃S = Σ̃−1Σ̄CSΣ̄Σ̃
−1, CS = ŪT S̄T S̄Ū.



	 Y. Wang, M. Pilanci 

1 3

Denote �1, �d to be the largest/smallest eigenvalue of CS . For two real numbers 
𝜌1 > 𝜌2 > 0 , we define the S-measurable event ES = {�2 ≤ �d ≤ �1 ≤ �1}. We evalu-
ate the error by 𝛿k =

1

2
‖Ã(xk − x∗)‖2.

Theorem 2  Suppose that we solve (1) for � ∈ [�min, �max] . Denote 𝜅̃ =
𝜌1𝜆max

𝜌2𝜆min

 . By set-

ting �0 =
√
�max�min and taking 𝛼 = 2

�
𝜌−1
1
𝜌−1
2
∕(
√
𝜅̃ +

√
𝜅̃−1) , then, conditioned 

on the event ES , the IHS-BIN satisfies that at each iteration,

Remark 1  If we can estimate the smallest singular value �d of A, we can refine the 
convergence rate as follows. Denote 𝜅̂ =

𝜌1(𝜆max+𝜎
2
d
)

𝜌2(𝜆min+𝜎
2
d
)
 . Assume that we set 

�0 =
√

(�max + �2
d )(�min + �2

d ) − �2
d
 and take a constant step size � = 2

√

�−11 �−12 ∕(
√

�̂ +
√

�̂−1) . 
Then, conditioned on the event ES , the IHS-BIN satisfies that at each iteration

We also note that the convergence only depends on the event ES . In other words, 
as long as the event ES is satisfied, we have the convergence guarantee for solving 
every ridge regression problem along the entire regularization path.

Denote � = �max�
−1
min

 . Thus, to reach an � precision solution, it takes 
k = O(log(1∕𝜖)𝜅̃) = O(log(1∕𝜖)𝛽) iterations. When � is large, the iteration number k 
can be large, which may not be efficient.

To deal with this problem, we split [�min, �max] into L smaller intervals

Here, we let �(i) = �min�
i∕L. For each small interval [�(i), �(i+1)] , it takes approximately 

k = O(log(1∕�)�1∕L) iterations to reach an � precision solution. Compared to the 
computation cost in computing basis ũj , the computation cost of computing SA 
and performing SVD of SA is negligible. Hence, the major computation cost is as 
follows:

Suppose that we take L = ⌊2 log �⌋ . Then, the computation cost writes

Similarly, if A is a sparse matrix, then the computation cost is as follows:

𝛿k+1

𝛿k
≤

(
𝜅̃ − 1

𝜅̃ + 1

)2

.

𝛿k+1

𝛿k
≤

(
𝜅̂ − 1

𝜅̂ + 1

)2

.

[�(0), �(1)], [�(1), �(2)],… , [�(L−1), �(L)].

O(L(md + nd) log(1∕𝜖)2𝛽2∕L)
�����������������������������������������

compute ũj L times

+O(Td log(1∕𝜖)𝛽1∕L)
�����������������������

evaluate xk

.

O((md + nd) log 𝛽 log(1∕𝜖)2)
�����������������������������������������

compute ũj L times

+O(Td log(1∕𝜖))
�����������������

evaluate xk

.
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Namely, we can improve the dependence of � in computing binomial basis ũj from 
�2 to log �.

4.2 � Proof of theorem 2

For the update rule, we have

We use the notation et = ŨT Ã(xk − x∗) . Here, x∗ is the unique minimizer of

We obtain that

We note that

Then, the convergence rate depends on the condition number of C̃S . For the rest of 
the proof, we assume that the event ES holds. Based on the estimations �1, �2 for the 
extreme eigenvalues of CS , we define 𝜌̃1(𝜆) > 𝜌̃2(𝜆) > 0 as follows: if � ≥ �0 , we let

Otherwise, if � ≤ �0 , we let

Hence, the extreme eigenvalues of C̃S is bounded in [𝜌̃2(𝜆), 𝜌̃1(𝜆)] . Hence, the 
convergence rate is as follows:

O((md + nnz(A)) log 𝛽 log(1∕𝜖)2)
�������������������������������������������������

compute ũj L times

+O(Td log(1∕𝜖))
�����������������

evaluate xk

.

xk+1 = xk − 𝛼
(
ĀT S̄T S̄Ā

)−1
ÃT (Ãxk − b̄).

(7)min
x∈ℝd

1

2
‖Ax − b‖2

2
+

�

2
‖x‖2

2
.

ek+1 = ek − 𝛼ŨT Ã
(
ĀT S̄T S̄Ā

)−1
ÃTŨek

=
(
I − 𝛼Σ̃(Σ̄ŪT S̄T S̄ŪΣ̄)−1Σ̃

)
ek

= (I − 𝛼C̃−1
S
)ek.

√
𝛿k+1 = ‖ek+1‖2 ≤ ‖I − 𝛼C̃−1

S
‖2‖ek‖2

= ‖I − 𝛼C̃−1
S
‖2
√
𝛿k.

𝜌̃2(𝜆) =
𝜎2
d
+ 𝜆0

𝜎2
d
+ 𝜆

𝜌2, 𝜌̃1(𝜆) =
𝜎2
1
+ 𝜆0

𝜎2
1
+ 𝜆

𝜌1.

𝜌̃2(𝜆) =
𝜎2
1
+ 𝜆0

𝜎2
1
+ 𝜆

𝜌2, 𝜌̃1(𝜆) =
𝜎2
d
+ 𝜆0

𝜎2
d
+ 𝜆

𝜌1.

√
𝛿k+1

𝛿k
≤ max{|1 − 𝛼̃𝜌1(𝜆)

−1|, |1 − 𝛼𝜌̃2(𝜆)
−1|}.
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For � ∈ [�min, �max] , we want to minimize the worst convergence rate:

For � ≥ �0 , we have

which yields

This indicates that

For � ≤ �0 , similarly, we have

This indicates that

We further notice that

In short, we have

The above quantity is minimized when

min
𝛼>0,𝜆0∈[𝜆min,𝜆max]

max
𝜆∈[𝜆min,𝜆max]

max{|1 − 𝛼𝜌̃1(𝜆)
−1|, |1 − 𝛼𝜌̃2(𝜆)

−1|}.

𝜌̃2(𝜆) =
𝜎2
d
+ 𝜆0

𝜎2
d
+ 𝜆

𝜌2, 𝜌̃1(𝜆) =
𝜎2
1
+ 𝜆0

𝜎2
1
+ 𝜆

𝜌1,

𝜌̃2(𝜆max) ≤ 𝜌̃2(𝜆) ≤ 𝜌̃1(𝜆) ≤ 𝜌̃1(𝜆max).

max
𝜆∈[𝜆0,𝜆max]

max{|1 − 𝛼𝜌̃1(𝜆)
−1|, |1 − 𝛼𝜌̃2(𝜆)

−1|}
= max{|1 − 𝛼𝜌̃1(𝜆max)

−1|, |1 − 𝛼𝜌̃2(𝜆max)
−1|}.

𝜌̃2(𝜆) =
𝜎2
1
+ 𝜆0

𝜎2
1
+ 𝜆

𝜌2, 𝜌̃1(𝜆) =
𝜎2
d
+ 𝜆0

𝜎2
d
+ 𝜆

𝜌1.

max
𝜆∈[𝜆min,𝜆0]

max{|1 − 𝛼𝜌̃1(𝜆)
−1|, |1 − 𝛼𝜌̃2(𝜆)

−1|}
= max{|1 − 𝛼𝜌̃1(𝜆min)

−1|, |1 − 𝛼𝜌̃2(𝜆min)
−1|}.

𝜌̃2(𝜆max) ≤ 𝜌2 ≤ 𝜌̃2(𝜆min), 𝜌̃1(𝜆max) ≤ 𝜌1 ≤ 𝜌̃1(𝜆min).

max
𝜆∈[𝜆min,𝜆max]

max{|1 − 𝛼𝜌̃1(𝜆)
−1|, |1 − 𝛼𝜌̃2(𝜆)

−1|}

= max
{|||1 − 𝜌̃2(𝜆max)

−1𝛼
|||,
|||1 − 𝜌̃1(𝜆min)

−1𝛼
|||
}

= max

{|||||
1 −

𝜎2
d
+ 𝜆max

𝜎2
d
+ 𝜆0

𝜌−1
2
𝛼
|||||
,
|||||
1 −

𝜎2
d
+ 𝜆min

𝜎2
d
+ 𝜆0

𝜌−1
1
𝛼
|||||

}
.

�∕(�0 + �2
d
) = 2

(
(�2

d
+ �min)�

−1
1

+ (�2
d
+ �max)�

−1
2

)−1
.
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Thus, by taking �0 =
√

(�max + �2
d
)(�min + �2

d
) − �2

d
 , the optimal step size follows 

� = 2

�
�−1
1
�−1
2
∕
�√

� +
√
�−1

�
 . In summary, we have

For the case where �d is unknown, since

we can relax the bound as follows:

Similarly, the above quantity isminimized when �∕(�0) = 2
(
�min�

−1
1

+ �max�
−1
2

)−1 . 
For �0 =

√
�min�max , the optimal step size writes 𝛼 = 2

�
𝜌−1
1
𝜌−1
2
∕
�√

𝜅̃ +
√
𝜅̃−1

�
 . 

We then have

4.3 � Sharp estimates of extreme eigenvalues of C
S

We review several sharp estimates of �1, �d and discuss the probability that ES holds. 
For the Gaussian case, we have the following theorem introduced in [15].

Theorem  3  Suppose that S ∈ ℝ
m×n is a Gaussian sketching matrix. Consider de 

defined in (6) and a parameter � ∈ (0, 1) . If m ≥ de∕� , then for any 

� ∈ (0, (1 −
√
�)2∕4) , with c(�) =

�
1+

√
�

1−
√
�

�2

 and

√
𝛿k+1

𝛿k
≤ min

𝛼>0,𝜆0∈[𝜆min,𝜆max]
max

𝜆∈[𝜆min,𝜆max]

max{|1 − 𝛼𝜌̃1(𝜆)
−1|, |1 − 𝛼𝜌̃2(𝜆)

−1|}
=

𝜅 − 1

𝜅 + 1
.

�max

�0
�−1
2

≥
�2
d
+ �max

�2
d
+ �0

�−1
2

≥
�2
d
+ �min

�2
d
+ �0

�−1
1

≥
�min

�0
�−1
1
,

max

{|||||
1 −

�2
d
+ �max

�2
d
+ �0

�−1
2
�
|||||
,
|||||
1 −

�2
d
+ �min

�2
d
+ �0

�−1
1
�
|||||

}

≤ max

{||||1 −
�max

�0
�−1
2
�
||||,
||||1 −

�min

�0
�−1
1
�
||||
}
.

√
𝛿k+1

𝛿k
≤ min

𝛼>0,𝜆0∈[𝜆min,𝜆max]
max

𝜆∈[𝜆min,𝜆max]

max{|1 − 𝛼𝜌̃1(𝜆)
−1|, |1 − 𝛼𝜌̃2(𝜆)

−1|}
=

𝜅̃ − 1

𝜅̃ + 1
.
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the event ES holds with probability at least 1 − 16e−�
2�m∕2

For the SJLT sketching, following Lemma 3.3 in [16], we have an estimate on �1 and 
�2.

Theorem 4  Suppose that S ∈ ℝ
m×n is an SJLT sketching matrix with sparsity

in each column where 𝛼 > 2, 𝛿 < 1∕2, 𝜖 < 1∕2 . If the sketch size satisfies

then, with probability at least 1 − � , the event ES holds.

For the SRHT case, we introduce the relevant factor

The following theorem in [15] provides a sharp estimate on �1 and �2.

Theorem 5  Suppose that S ∈ ℝ
m×n is an SRHT sketching matrix. Consider de defined 

in (6) and a parameter � ∈ (0, 1) . If m ≥ C(n, de)
de log(de)

�
 . Then, it holds with 

probability at least 9∕de such that ES holds with �1 = 1 + ‖D‖2
2
� and �2 = 1 − ‖D‖2

2
�

.

5 � Estimation of the effective dimension and extensions of IHS‑BIN

5.1 � Estimation of the effective dimension

From previous theorems, an appropriate sketching size depends on the effective 
dimension de . Nevertheless, in practice, usually the estimation of de is available when 
de is small, see [17]. Following the adaptive method described in [15], we propose a 
practical method for finding an appropriate sketching size.

We apply IHS to solve (1) with � = �min . In k-th iteration, we first calculate the 
direction

⎧
⎪⎨⎪⎩

�1 = 1 − ‖D‖2
2
+ ‖D‖2

2
(1 +

√
�)2(1 +

√
�)2,

�2 = 1 − ‖D‖2
2
+ ‖D‖2

2

�
1 −

√
c(�)�

�2

,

(8)s = Ω(log�(de∕�)∕�)

m = Ω(�de log�(de∕�)∕�
2),

C(m, de) =
16

3

⎛⎜⎜⎝
1 +

�
8 log(den)

de

⎞⎟⎟⎠

2

.
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Then, we calculate a step size �k = �
j

1
 satisfying the Armijo condition. Namely, j is 

the smallest non-negative integer satisfying

Here, we write f (x) = 1

2
‖Ax − b‖2

2
+

�min

2
‖x‖2

2
 and �1, �2 ∈ (0, 1) are parameters. 

Then, we update xk+1 = xk − �kdk.
We evaluate the following quantity per iteration:

If 𝛿k+1 ≥ 𝛾3𝛿k for some 𝛾3 > 0 , then we let m = 2m and sample the sketching 
matrix. We stop the algorithm when 𝛿k < 𝜖 for some 𝜖 > 0 . The whole algorithm is 
described in Algorithm 4. In numerical experiment, we set �3 = 0.5.

5.2 � Extension to the under‑determined case

For the under-determined case where n < d , we consider the dual problem of (1):

The optimal solution z to the dual problem is related to the optimal solution to the 
primal problem by

dk = (ATSTSA + �minI)
−1AT (Axk − b + �minxk).

(9)f (xk − �
j

1
dk) ≤ f (xk) − �2�

j

1
dT
k
∇f (xk).

𝛿k = dT
k
AT (Axk − b + 𝜆minxk).

(10)min
z∈ℝm

1

2
‖ATz‖2 + �

2
‖z‖2 − bTz.

v = ATz.
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Hence, we can apply similar methods in the under-parameterized case to solve (10).

5.3 � Extension for matrix‑valued ridge‑regression

Consider the following matrix-valued ridge-regression problem:

where A ∈ ℝ
n×d and B ∈ ℝ

n×K . We can easily extend IHS-BIN for solving this 
problem.

Neglecting the computation cost of computing SA, the computation cost of 
IHS-BIN becomes

for a dense matrix A, or

(11)min
x∈ℝd×K

1

2
‖AX − B‖2

F
+

�

2
‖X‖2

F
,

O(m2d)
���
SVD of SA

+O(K(md + nd) log 𝛽 log(1∕𝜖)2)
���������������������������������������������

compute ũj L times

+O(TKd log(1∕𝜖))
�������������������

evaluate xk

,
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for a sparse matrix A. For comparison, the computation cost of SVD-based method 
is as follows:

The computation cost of CG-based method writes

6 � Numerical results

In this section, we present numerical comparisons between IHS-BIN and other 
methods for solving least-square problems with various regularization parameters. 
We test over randomly generated data and real data. For real data, we collect datasets 
from LIBSVM1 under the modified BSD license. We randomly split half of the data 
matrix as the training data A and the other as the test data matrix Ã . We denote b and 
b̃ as the corresponding labels of A and Ã . All numerical experiments are conducted 
on a Dell PowerEdge R840 workstation (64 core, 3TB ram). We provide numerical 
comparisons with the following baseline algorithms. SVD: the singular value 
decomposition-based method., native: the native linear system solver in NumPy, 
CG: warm-started conjugate gradient method. For IHS-BIN, we use the SJLT 
sketching matrices with sparsity 1. In IHS-BIN, we split the interval [�min, �max] into 
L = ⌊2 log(�max∕�min)⌋ small intervals. For each interval [�(i), �(i+1)] , we update the 
set size � by using the backtracking line search with respect to the problem with 
regularization parameter � = �(i) . The source code is available publicly and can be 
found in https://​github.​com/​pilan​cilab/​IHS-​BIN.

6.1 � Datasets setup in the numerical experiments

For the randomly generated data, each row of A follows N(0,Σ2) , where 
Σi,j =

1

nd
�|i−j| . Here, we let � = 0.99 . The training loss and the test loss are as 

follows:

Here, each row of Ã follows N(0,Σ2) . And we let

O(m2d)
���
SVD of SA

+O(K(md + nnz(A)) log 𝛽 log(1∕𝜖)2)
���������������������������������������������������

compute ũj L times

+O(TKd log(1∕𝜖))
�������������������

evaluate xk

,

O(n2d)
⏟⏟⏟

SVD

+O(d2KT).

O(TKnd
√
� log(1∕�)) or O(TKnnz(A)

√
� log(1∕�)).

Ltrain =
1

2
‖Av − b‖2

2
+

𝜆

2
‖v‖2, Ltest =

1

2
‖Ãv − b̃‖2

2
.

1  https://​www.​csie.​ntu.​edu.​tw/​~cjlin/​libsvm/.

https://github.com/pilancilab/IHS-BIN
https://www.csie.ntu.edu.tw/%7ecjlin/libsvm/
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Here, v∗ ∼ N(0, Id∕d) and 𝜂, 𝜂̃ ∼ N(0, 𝜎2) where 𝜎 > 0 is a parameter.
For the randomly generated data with clustered eigenvalue, each row of A follows 

N(0,Σ2) , where Σ is a diagonal matrix whose first d/2 entries follow �i = 2ui and the 
last d/2 entries follow �i = 0.01 ∗ 2ui . Here, ui is uniformly randomly drawn from 
[−1, 1] . The setup of label matrix b and test data pair Ã, b̃ is similar as the previous 
case.

For real data, we linearly rescale the entry of A into [−1, 1] . Besides, for 
CIFAR10, we use the kernel matrix in ridge regression. Namely, A is the kernel 

b = Av∗ + 𝜂, b̃ = Ãv∗ + 𝜂̃.

Fig. 3   Training loss, test loss and time. Real vs. Simulated (real-sim). n = 36000, d = 20958,m = 8000 . 
�
min

= 100 . �
max

= 10
4 . We do not calculate the eigenvalues of AT

A since d is large
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matrix formulated by the training data and Ã is the kernel matrix formulated by the 
training data and test data. In short, we have

where k(x, y) ∶ ℝ
d ×ℝ

d
→ ℝ is a positive definite kernel function, fi is the feature 

vector of i-th training sample, and f̃j is the feature vector of j-th test sample. Here, 
we use an isotropic Gaussian kernel function

Ai,j = k(fi, fj), Ãi,j = k(f̃i, fj),

Fig. 4   Training loss, test loss and time. Avazu’s click-through prediction (avazu). 
n = 200000, d = 50000,m = 10000 . �

min
= 1 . �

max
= 100 . We do not calculate the eigenvalues of AT

A 
since d is large
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with bandwidth h = 1000.

6.2 � Over‑determined case

We present numerical results on randomly generated data and real data in Figs. 1, 
3 and 4. In Fig. 2, we present results on matrix-valued ridge regression with kernel 
matrix. For the problem with medium-size d (randomly generated data), we plot the 
eigenvalues of ATA . The curves of train loss and test loss from IHS-BIN overlap 

k(x, y) = (2�h)−d∕2 exp
�
−

1

2h
‖x − y‖2

2

�
,

Fig. 5   Training loss, test loss and time. MNIST with quadratic feature embedding. 
n = 30000, d = 608400,m = 10000 . �

min
= 0.1 . �

max
= 10 . We do not calculate the eigenvalues of AAT 

since n is large
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with curves from other solvers. This indicates that IHS-BIN yields correct solutions 
along the regularization path. For medium-scale problems like randomly generated 
data and real-sim, CG and IHS-BIN outperform SVD and native. For the large-scale 
problem avazu and matrix-valued ridge regression, IHS-BIN can be significantly 
faster than CG.

6.3 � Under‑determined case

We also perform numerical comparisons on under-determined data matrices. We 
present numerical results in Figs. 5, 6, 7, 8 and 9. For the problems with medium-
size n (randomly generated data, gisette, RCV1, tifdf), we plot the eigenvalues of 
AAT . Similar to the over-determined case, IHS-BIN is faster than other compared 

Fig. 6   Training loss, test loss and time. NIPS 2003 feature selection challenge (gisette). 
n = 3000, d = 5000 , m = 800 , �

min
= 10

5 . �
max

= 10
7
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methods, especially for large-scale examples. The curves of train loss and test loss 
from IHS-BIN overlap with curves from other solvers, which implies the accuracy 
of IHS-BIN.

6.4 � Robustness evaluation on synthetic data

We further compare our algorithm with Ridge-Sketch Python package introduced 
in [18] on synthetic data with different spectral properties. For IHS-BIN and Ridge-
Sketch, we run for five independent trials and plot the standard deviation as shaded 
area. In Figs. 10 and 11, we present the performance of compared algorithms on data-
sets with decaying spectral and clustered spectral, respectively. We note that our pro-
posed method is significantly faster than Ridge-Sketch. Also, IHS-BIN achieves con-
sistently good performance on different trials. As the spectral distribution is clustered 

Fig. 7   Training loss, test loss and time. Randomly generated data. n = 4000, d = 20000 , m = 2400 . 
� = 0.02 . �

min
= 1 . �

max
= 100
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in Fig. 11, CG is slightly faster than our proposed IHS-BIN. This is expected since it 
is well-known that CG is ideal on data with clustered spectral distributions. However, 
our method is still competitive with CG even in this case. We emphasize that in all 
other datasets we considered in this section with the exception of the clustered data in 
Fig. 11, CG performs significantly worse than our method.

7 � Conclusion

We presented IHS-BIN for rapidly computing the entire ridge regularization path. 
The algorithm is based on analyzing the gradient descent regularization path 
and accelerating convergence via randomized sketching. Our method improves 
the state-of-the-art computational complexity of obtaining the solution of ridge 

Fig. 8   Training loss, test loss and time. RCV1: A new benchmark collection for text categorization 
research. n = 10000, d = 47236,m = 3000 , � = 0.03 . �

min
= 100 . �

max
= 10

4
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regression for T values of the regularization parameter from O(Td2) or O(Tnnz(A)) 
to O(Td) , when T is large. The numerical experiments also demonstrate that IHS-
BIN is significantly faster than other solvers, especially for large-scale problems. 
Our method also leverages the low effective dimensionality of real datasets, 
which can be used to reduce the sketching dimension. We also investigated 
adaptively picking the sketch dimension based on the progress of the algorithm. 
We believe that our algorithm will be quite effective in automatically tuning the 
regularization parameters of linear models. Moreover, our method can be used 

Fig. 9   Training loss, test loss and time. 10-K Corpus (E2006-tfidf). n = 8000, d = 150360,m = 2000 . 
�
min

= 0.1 . �
max

= 10



1 3

Sketching the Krylov subspace: faster computation of the entire…

in transfer learning and deep feature embedding for training a final linear layer 
and tuning the regularization parameter efficiently. One potential limitation of 
the proposed approach is that for medium-size data matrices with high effective 
dimensions, direct methods such as SVD can be more effective.

Fig. 10   Training loss, test loss and time. Randomly generated data. n = 2000, d = 400,m = 160, � = 0.4 . 
�
min

= 10 . �
max

= 1000
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Fig. 11   Training loss, test loss and time. Randomly generated data with clustered spectral distribution. 
n = 2000, d = 400,m = 160, � = 0.1 . �

min
= 1 . �

max
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