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Abstract

We propose a fast algorithm for computing the entire ridge regression regularization
path in nearly linear time. Our method constructs a basis on which the solution
of ridge regression can be computed instantly for any value of the regularization
parameter. Consequently, linear models can be tuned via cross-validation or other
risk estimation strategies with substantially better efficiency. The algorithm is based
on iteratively sketching the Krylov subspace with a binomial decomposition over
the regularization path. We provide a convergence analysis with various sketching
matrices and show that it improves the state-of-the-art computational complexity.
We also provide a technique to adaptively estimate the sketching dimension. This
algorithm works for both the over-determined and under-determined problems. We
also provide an extension for matrix-valued ridge regression. The numerical results
on real medium and large-scale ridge regression tasks illustrate the effectiveness
of the proposed method compared to standard baselines which require super-linear
computational time.

Keywords Ridge regression - Randomized algorithms - Kernel ridge regression

1 Introduction
We consider the following ridge regression problem

min (o) == [l4x = b1 + Zlxl M
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where A € R™“ is the data matrix, b € R? is the label vector, and 4> 0 is a
regularization parameter.

Typically, one needs to estimate the regularization parameter A from a set A
of possible values and select the A with the best performance on the validation
set. For moderate size problem, to obtain an estimate for the regularization
parameter A, one can apply risk estimators such as generalized cross-validation
[1], Stein’s unbiased risk estimate [2], or unbiased prediction risk estimate [3].
Moreover, solving this problem efficiently on a large scale is of great interest in
model selection [4] and transfer learning [5]. For instance, in deep learning-based
transfer learning, one needs to tune the last layer of a trained neural network
to adapt to a different dataset. Essentially, training the last layer of the neural
network is a ridge regression problem using squared loss, where the previous
layers of the neural network can be fixed as feature extractors of the raw data.

Classical methods for solving ridge regression include singular value
decomposition (SVD) method, warm-started conjugate gradient (CG) method,
warm-started preconditioned conjugate gradient (PCG) method, and warm-
started iterative Hessian (IHS) sketch method [6]. The SVD method constructs
a decomposition of the data matrix and provides a closed-form parameterization
of the optimal solution to (1) as a function of A (see e.g., [7]). The warm-
started CG/PCG/IHS method iteratively solves (1) with different values of
the regularization parameter A. They leverage previous solutions along the
regularization path as initializers to warm-start the iterations. Besides, for kernel
ridge regression, Nystrom computational regularization (NCR) [8] applies the
Nystrom subsampling approaches to reduce the computation cost for calculating
the regularization path.

In this paper, we present the iterative Hessian sketch method with binomial
decomposition (IHS-BIN) for rapidly solving ridge regression with multiple regular-
ization parameters. The idea is to approximate the linear operator (ATA + AI)~! via
a polynomial of A constructed by the iterative Hessian sketch method (IHS) [6]. To
be specific, IHS is an efficient randomized algorithm for solving large-scale least-
square problems. We first focus on the overdetermined case, where n > d, and then
introduce an extension to the underdetermined case n < d. Suppose that the size of
ANisTand A C [Ain, Apax] With O < A5 < A.,.. We compare the computation cost
of the proposed IHS-BIN method with other classical solvers for ridge regression
in Table 1. For the case where T is large, IHS-BIN with the computation cost of
O(Td) is the fastest solver to the best of our knowledge. When 7' is small, IHS-BIN
still offers a substantial improvement in complexity. In Figs. 1 and 2, we present the
results on a randomly generated data example and a matrix-valued ridge regression
problem with kernel matrix based on the CIFAR-10 dataset. We can observe that
IHS-BIN can be significantly faster than other solvers.

This paper is organized as follows. In Sect. 2, we review classical methods for solv-
ing ridge regression with multiple As. As the motivation of IHS-BIN, we introduce gra-
dient descent with binomial decomposition in Sect. 3. We present IHS with binomial
decomposition and analyze its convergence rate with different sketching matrices in
Sect. 4. In Sect. 5, we also provide a practical method for estimating an appropriate
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Table 1 Computational complexity of solving the ridge regression problem (1) for T distinct values
of the regularization parameter A. Here, « is the condition number of ATA + A,/ , and d, is effective
dimension of ATA + A,/

Method small T large T
THS-BIN (Ours 2 Amax O(T
(Ours) O(&d + (dd, +nnz(4) log (2= )) 7
SVD O(nd?) o(Td?)
Warm-started CG O(Tnnz(A)/x) O(Tnnz(A)4/x)
Warm-started PCG O(d*d + log(d,)nnz(A)) O(Tnnz(A))
Warm-started THS O(d*d + log(d,)nnz(A)) O(Tnnz(A))
NCR O(d*n) o(Td?)
Eigenvalues of ATA Time
10° === SVD
1000 native
10! ce
—— [HS-BIN
800
107!
600
107 400
1075 200 —,_,_I_,_,_,—I
0{ v
0 1000 2000 3000 4000 0 50 100 150 200
T
Train loss Test loss
SVD SVD
16.25 native 16.01 native
CG CG
| —— IHS-BIN 16001 |Hs-BIN
16.20

15.99

16.15
15.98

16.10 15.97
1605 15.96
.Uo
15.95 _
10° 10 10? 10° 10 10°

Fig. 1 Training loss, test loss and CPU time on randomly generated data. n = 20000, d = 4000. A,,,;, = 1.
Amax = 100. ‘native’ is the native linear system solver in NumPy. The sketching dimension is set to
m = 1600
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Fig.2 Training loss, test loss and CPU time on the CIFAR10 dataset. Matrix-valued kernel ridge regres-
sion. n = 25000, d = 25000. A, = 0.1. A, = 10. We do not calculate the eigenvalues of ATA since d is
large. The sketching dimension is set to m = 10000

sketching dimension and extend our algorithm to the under-determined case and
matrix-valued ridge regression. The numerical results are presented in Sect. 6.

2 Review of classical methods

We briefly review several classical methods for solving (1) with A € A, which contains
T distinct values. We focus on the case where n > d.
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2.1 Singular value decomposition

Suppose that the singular value decomposition of A is given by A = ULV, where
U e R™ ¥ e R and V € R4, Then, we can calculate the optimal solution to

(1) by
W) = ATA+ AD'ATb = V2 + AD7IZUTD

The above expression shows that x*(4) can be computed for all values of 4 when the
decomposition factors are cached. The total computation cost of the SVD-based

computation of the ridge regularization path is therefore O(nd?) + O(d>T).
N~—— =

SVD updating A
2.2 Warm-started conjugate gradient method

Suppose that we arrange A € A in decreasing order. Then, we can apply the
conjugate gradient method to solve (1) with A € A from large to small values of A.
We can use the solution for (1) with larger A as initialization for the next value of A.
From [9], the overall computational cost is given by

O(Tnnz(A)\/x log(1/€)).

Here, nnz(A) denotes the number of nonzero elements in A, € is the
tolerance of precision to stop the conjugate gradient method, and
Kk = (62, (A) + Ayin)/ (62, (A) + Ayyy) is the largest condition number of ATA + A7
with A € A. Here, we let ¢,,,(A) and o,,,(A) to represent the largest/smallest

singular value of A.

max min

2.3 Warm-started preconditioned conjugate gradient method

It is well-known that the number of iterations of warmed-started CG heavily depends
on the condition number x. For ill-conditioned data matrices, the condition number
k may be very large, which leads to slow convergence of the conjugate gradient
method, even using the warm-starts. A widely applied approach to deal with the
large condition number k is to apply a randomized preconditioned conjugate gradient
(PCG) method [10]. Specifically, we use the random matrix (A”STSA + AI)~! as the
preconditioner, where S € R"™" is a sketching matrix. The sketching dimension
m is usually proportional to the effective dimension d,, which will be discussed in
detail in Sect. 4.1. To calculate the preconditioner (A”S”SA + AI)~! for various A, we
usually compute the SVD of SA, which takes O(dgd) time. The computational cost
of computing SA can be O(log(d,)nnz(A)), depending on the type of the sketch as
shown in Sect. 4. Given the preconditioner (A”STSA + AI)~!, the computational cost
of warm-started PCG is given by

O(Tnnz(A) log(1/¢)).

@ Springer



Y. Wang, M. Pilanci

2.4 Warm-started iterative Hessian sketch

The iterative Hessian sketch (IHS) method [6] is a randomized sketching method for
solving least square problems. The update rule of IHS is as follows:

Xyt = X — (ATSTSA + AN AT(Ax, — b + Axy) @

Here, 7 > 0 is the step size. Similarly, to compute (A7STSA + AI)~! for various
4, usually we compute the SVD of SA, which takes O(dfd) time. With carefully
chosen sketching dimension and sketching matrix, IHS can converge in O(log(1/¢))
iterations. Although IHS is simpler, the computational cost of IHS is similar to the
PCG method, which is given by

O(Tnnz(A)log(1/¢)).

We note that the above complexity can be high for large data matrices, especially
when T, the number of points in the regularization path is also large. In contrast,
the proposed approach has complexity O(7Td log(1/€)), which can be significantly
smaller when 7 is large.

3 Gradient descent regularization path

Now, we illustrate the main idea underlying our algorithm. Although this will not be
practical, our proposed method is inspired by this approach. Recall that for integer r,
the Krylov subspace KC(r) is defined as

KC(r) = span{ATb, (ATA + ADATD, ... ,(ATA + AD)'ATh)

The gradient descent method with fixed step size for a small number of iterations can
be viewed as approximating the minimizer of (1) in the Krylov subspace. Namely,
consider the updates

X = X — z'(AT(Ax,< -b)+ ﬂxk)
= —17(ATA+ AD)x, + AT
=: Mx, + zA"b.

Here, we denote M = (I — (ATA + AI)). We can express x; in terms of M and x,, by
X, = M*xy + tM* AT + MM 2ATD + - 4+ 2ATD.

Therefore, we note that x,,,; € K(k). The binomial expansion formula for M* is
given by

k
M* = Z <§‘> N(=tYU — tATA).

=0
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For simplicity, we assume that the iterations are initialized at x, = 0. Then, we can
rewrite x; as

~
|

1
x,=7 Y M'A"b

(=]

=z Z C) H(=1Y(I — tATAYATD
-

~
—

=0 j=0
-1

=~

M

T

—1-j i
(=7 Ay <’ "J > (I — tATAYATD
i=0 J

Ed TI
|
- O

T (—T/l)juj.

Jj=

f=1

5:01 Kl (’:Tj ) — zATA)'ATh. Note that the above expression

provides an approximate closed form formula for x(4) for all values of A. More
specifically, if we compute u,...,u,_;, we can instantly compute x;, = x,(4) for
different A parameters. We call this method GD-BIN and summarize it in
Algorithm 1.

Here, we denote u; = Y

Input: A,b,A = {\}L,, iteration number k.
Compute u; = Zi:ol*j (1;7)(I —T7ATAY ATh for j=0,...,k— 1; for
i=1,...,T do
‘ Compose x; = T Z?;S(*T/\i)ju‘j;
end
Output: {z;}7,
Algorithm 1: Gradient descent with binomial decomposition. (GD-BIN)

However, the convergence rate heavily depends on the condition number k of
ATA + A.;,1. To obtain an e-approximate solution to (1), it takes approximately
k = O(log(1/¢)x) iterations. The overall computation cost is as follows:

O(ndk) + O(Tdk)

N~—— ~——

compute (/—-tATA)YATb and b; evaluate x;,
= O(nd(log(1/e)x) +O(Td(log(1/e)x)

v v
compute(/-tATA)ATb and b; evaluate x;,

The main drawback of the gradient descent method is the condition number x in
the computation cost, which is often prohibitively large in practice. It is interesting
to note that the dependence on condition number can be improved to \/E using
conjugate gradient. However, the corresponding regularization path is no longer
tractable due to non-constant step-sizes and A cannot be updated analogously. To
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circumvent these difficulties and the dependence on «, we take a different approach
and introduce the iterative Hessian sketch (IHS) with binomial decomposition.

4 |HS with binomial decomposition

Suppose that S € R™" is a sketching matrix, where m is the sketching dimension.
IHS [6] employs a randomized Newton direction ((V2f)'/%)TSTS(V2f)1/2)~1Vf(x)
to minimize the objective function f(x) in (1). The sketching dimension m depends
on the effective dimension of ATA + AI, which will be defined later, and it can be
significantly smaller than d. Typical choices of sketching matrices include

e Gaussian sketch: Each entry of S follows independent and identically
distributed (i.i.d.) Gaussian distribution MO, m~1).

o CountSketch transform sketch [11]: S is initialized as a matrix of zeros.
Then, we set S, ; to 1 or —1 with equal probability, where h(i) is chosen from
{1,...,n} uniformly at random.

e Sparse Johnson-Lindenstrauss transform (SJLT) sketch [12]: With column
sparsity s, S is constructed by concatenating s independent CountSketch
transforms, each of dimension m/s X n.

e Subsampled randomized Hadamard transform (SRHT) sketch [13]: § is a
randomized projection matrix.

The update rule of IHS with a fixed regularization parameter is given by

Xpp1 =X — T(ATSTSA + 20D 7' AT(Ax, — b + Ax))
= — t(ATSTSA + 2,)""(ATA + Al)x,
+7(ATSTSA + AoD)'ATD
= Mx, + t(ATSTSA + A,)"'ATb.

3

Here, A, is a fixed parameter. In this case, M = I — t(ATSTSA + A,1)"'(ATA + Al).
Due to the randomized preconditioner, this update can be viewed as a better
approximation of the optimal solution than the one in the Krylov subspace K(k + 1)
in a similar spirit to rational Krylov subspace methods [14]. Rational Krylov methods
apply rational functions to the matrix vector products to construct rational Krylov
subspaces. The use of randomized preconditioners and the binomial decomposition
over the regularization path is a novel idea to the best of our knowledge.
Based on the update rule of IHS, we can express x; in terms of M and x, via

xp = Mxy + tM* Y (ATSTSA + Ao1)"'ATh
+ o+ 7(ATSTSA + 4,1 ATb.

For simplicity, we also assume that the iterations are initialized at x, = 0. We denote
Pg = (ATSTSA + A,1)7".
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Proposition 1 We can express x; as a polynomial function of A as follows:

k-1

X5 =T Z(T/l)id,

J=0

- k-1 . .
Here, ii; = Z[=j u;;, whereu;; € RY can be recursively computed via
— T —

Uppr9 = (I = TPA Ao, Uy iy = —Pgu

Uiy, ;= I — PgA" Ay ; — Pgu

" @)

ij—1> ISjSi,

with the initial condition uy, = PsA”b.

Proof From the previous derivation, by taking x, = 0, we note that
k-1
x = ) tM'PATD.
i=0
Therefore, it is sufficient to show that M'P¢ATh can be written as a polynomial
function of 4. We first claim that for all integeri > 0,

M'PATD =Y (tAYuy;. 5)
=0

We prove this claim by mathematical induction. It is easy to observe that (5) holds
for i = 0. Suppose that (5) holds for i. Fori 4+ 1, we note that

MM PATH = M(M'P;AT D)

= Z ((zAYd = PAT Ayuy; — (2 AV Pguy ;)
j=0

i

(@AY (U = PsAT Ay — Pouy; )

j=1
+U = PA"Auy g — ()M Pguy;
i+1
= Y (@ Wy,
Jj=0

Hence, (5) also holds fori + 1.
As a result, we can easily compute that

k=1 k=1 i k-1
xe= ) tMPATh =17 Y N (cuy; =7 Y (Vi
i=0 i=0 j=0 =0
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To compute (ATSTSA + A,1)~!, we perform the singular value decomposition on
SA,i.e., SA = U,Z,V,. Suppose that m < d. Then, we have

ATSTSA+ 2D = VI(E 4+ 2oD7'V + 451U = V] V).
Thus, for an arbitrary v € R4, we have

ATSTSA+ AgD™ v = v/ 2 + VI(ET + 20D = 45HV.
For m > d, then, we have

ATSTSA + AgD™'v = VI(E2 + A,D7' V.

Input: A,b, Ps,7, k.
Set u; =0 and 4; =0 with i =0,...,k—1;
Calculate ug = —PgATb;
Let ﬁo = ﬁo + ug;
fori=1t k—1do
Calculate u; = —Psu;_1;
for j=i—1to1do
‘ Calculate u; = u; — Ps(TAT Auj + uj_1);
end
Calculate ug = ug — PsTAT Aug;
Update @; = u; +u; for j =0,...,1;

end
Output: {4, ;-“;é
Algorithm 2: Calculation of basis g, ..., 4,_1 for binomial decomposi-
tion.
We summarize the calculation of i, ..., it,_; in Algorithm 2. For computing the

sketching SA, we list the computation cost for different sketching matrix as follows:

Gaussian sketch: O(mnd) or O(mnnz(A)) for a sparse matrix.
SRHT sketch: O(log(m)nd) or O(log(m)nnz(A)) for a sparse matrix.

e SIJLT sketch: O(snd) or O(snnz(A)) for a sparse matrix. Here, s is the sparsity of
SJLT sketch.

As the sketching dimension is proportional to the effective dimension d,, which can
be significantly smaller than d, here we assume that m < d. Hence, the computation
cost to compute the SVD of SA is O(m?d). Ignoring the complexity of sketching, the
computation cost of IHS-BIN is as follows:

O(m*d) + O((md + nd)k*) + O(Tdk) .

—— ——

SVD of SA compute it; evaluate x;

For a sparse matrix A, the computation cost reduces to
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O(m*d) + O((md + nnz(A)Hk?) + O(Tdk) .
~—— ~ Y

SVD of SA compute i; evaluate x;,

The overall algorithm is summarized in Algorithm 3.

Input: A,b,A = {)\;}L,, iteration number k.
Generate the sketching matrix S and compute the SVD of SA; for
i=1,...,T do
Compute {a,}f;& using Algorithm 2; Compose
T =T Ef;é (TAi) 15

end

Output: {z;}L,
Algorithm 3: Iterative Hessian Sketch with binomial decomposition.
(IHS-BIN)

4.1 Convergence analysis

In this subsection, we analyze the convergence rate of IHS with binomial
decomposition. We first introduce some notations. Suppose that A = UZVT is the
singular value decomTosition, and let 6; > -+ > o0, denote singular values of A. Let

A:[m A=

A _ -
ﬁl' Let U be a matrix of left singular vectors of A. For

A, > 0, we introduce a diagonal matrix D = dia Sl — and define
0 g & < \/612+AO \/6§+AO>
the effective dimension by
IDII7
d, = . 6)
‘D 3

This will influence the sketching dimension, which will be discussed in detail later.

Define
¥ = diag <\/612+),0,...,\/O'§+),0>,
i:diag<\/6f+l,...,\/6§+i>.

] . We define two matrices

- S0
Denote § = [0 I,
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Denote y,,7, to be the largest/smallest eigenvalue of Cs. For two real numbers
p1 > p, > 0, we define the S-measurable event £ = {p, <y, <7, < p,}. We evalu-
ate the error by &, = %llA(xk — 9|12

. A
. Denote & = 22mx By get-

P2 Amin

ting Ay = A/ Amax Amin and taking a = 24 /pl‘lpz'l/(\/E+ V&™), then, conditioned

on the event E, the IHS-BIN satisfies that at each iteration,
St (2] )2.
6y, K+1

Remark 1 If we can estimate the smallest singular value o, of A, we can refine the
A, )'max+ 2

convergence rate as follows. Denote & = "‘(—";).
pZ(Amin'HTd)

40 = /O + 02y + 02) = 2 and take a constant step size 4=» /plflpz—l/(\/;+ VD).
Then, conditioned on the event £, the IHS-BIN satisfies that at each iteration

Skt _ <f< —1 )2'
6, ~ \k+1

We also note that the convergence only depends on the event £. In other words,
as long as the event & is satisfied, we have the convergence guarantee for solving
every ridge regression problem along the entire regularization path.

Denote f = Ay, A;. Thus, to reach an e precision solution, it takes
k = O(log(1/e)k) = O(log(1/€)p) iterations. When f is large, the iteration number k
can be large, which may not be efficient.

To deal with this problem, we split [A

Theorem 2 Suppose that we solve (1) for A € [A

min?® /lmax]

Assume that we set

A into L smaller intervals

min>® max]

(A9, 401, [AD, 2], .. [, 40,

Here, we let A = 4. /. For each small interval [A®), AG+D], it takes approximately
k = O(log(1 /e)ﬁl/L) iterations to reach an e precision solution. Compared to the
computation cost in computing basis ii;, the computation cost of computing SA
and performing SVD of SA is negligible. Hence, the major computation cost is as
follows:

O(L(md + nd)log(1/e)**'*) + O(Td log(1/e)p'/") .

v v
compute it; L times evaluate x;

Suppose that we take L = |21log #]. Then, the computation cost writes

O((md + nd)log flog(1 /€)*) + O(Td log(1 /¢)) .

v v
compute i; L times evaluate x;,

Similarly, if A is a sparse matrix, then the computation cost is as follows:
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O((md + nnz(A)) log f log(1/€)?) + O(Td log(1 /€)) .

v v
compute ii; L times evaluate x;,

Namely, we can improve the dependence of § in computing binomial basis i; from
p? to log p.

4.2 Proof of theorem 2
For the update rule, we have
Xeo1 = %, — a(ATSTSA) AT (Ax, - B).
We use the notation e, = UTA(x, — x*). Here, x* is the unique minimizer of
min 2 l4x = b1 + 5 I ™
We obtain that

€psl = € — af]TA(ATS'TS'A)_IATf]ek
(I - aS(ZUTSTSUL)'S)e,
= —aCyhe,.

We note that

-1
VOis1 = llegsrlls < 11— aCg [l llell
A1 5
= ”I_ aCS ”2 6k‘
Then, the convergence rate depends on the condition number of Cy. For the rest of

the proof, we assume that the event £ holds. Based on the estimations p;, p, for the
extreme eigenvalues of Cg, we define g, (4) > p,(4) > 0 as follows: if 4 > A, we let

o2+ A 0% + Ay
(D =—"—p BH=——0p,.
6d+l 0'1+/1
Otherwise, if 1 < 4, we let
(D) =——p, 5(D)=-"2—0p,.
: 612+l : ! 0'§+/1 !

Hence, the extreme eigenvalues of C‘S is bounded in [p,(4), p;(4)]. Hence, the
convergence rate is as follows:

0
% <max{[1—ap, (D)7 |1 — apr(H)7'}.

k
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For A € [Ayins Amax]s WE Want to minimize the worst convergence rate:

max

min max max{|1 —as, (D)7, |1 = aj, (A}
a>07}'l’)eu'min>)‘max] j'e[/]‘min’j'muxj {| pl( ) | I p2( ) |}

For 4 > 4, we have

p = p ’ p = p >
g 0'5 +4° ! O'f +a

which yields
ﬁZ(Amax) S ﬁZ(A) S ﬁl(/l) S 151 (Amax)'
This indicates that

1—aj -1 | -1
Aegmax]max{l ap (D)7 T —ap,(A) |}

= max{|1 — ap;(Ana) ', 11 = @Pr(Apa) "' |}
For A < A, similarly, we have

D =——p) 5=
o] + A o + A

pr-

This indicates that

max  max{|1 — a5 (D)7, |1 = ap()7']}

A€ Anin, Ao ]
= max{|1 — ap; (Apin) " | 11 = @y (Api) "1}
We further notice that
P2(Amax) < 02 S P2(Amin)s  P1(Ama) < 91 < 51 (Ain)-
In short, we have

1=aj -1 1=ajp -1
aqﬁﬂ"n‘,’im]ma"{l api (D)7 T = app (D)7}

= max { |1 = 5, a]s |1 = 71 (i) |}

2 2

_ 1 6d+’1max - 1 Gd+’1min -1

= max —2—12 B —2—/1‘0](1 .
O'd+ 0 O'd+ 0

The above quantity is minimized when

_ _1y\—1
a/(hg+063) =2((07 + Amin)P]" + (07 + Ama)P3 ")
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Thus, by taking 4, = \/ (Amax + 67)(Apin + 63) — 65, the optimal step size follows

a=2 pl‘lpgl/<\/z + Vil > In summary, we have

A

5k+1 .
— < min max
5k a>0"10€['1min’}'max] Ae[lmin"lmax]

max{|1 — ap; (A7, |1 — ap, (D)7}
k—1
k+1

For the case where o, is unknown, since

max —1

2
A > O-d + Amax

A
—1 > min _—1]

2
—1 O-d+/1min
/1 2 = 2 p2 Z 2 p] = A 1 °
0 6d+/10 O'd+/10 0

we can relax the bound as follows:

max 1_6§+ﬂmax 4 _O'd2+/lmm 4
2—p2 al 2 1 @
A
Smax{’l— ;"axpgla 1- %pl_la }
0 0

Similarly, the above quantity isminimized when @/(49) = 2(Apinp7" + AnaxP )_1.

For Ay = \/AninAmax» the optimal step size writes a = 24/p7'p;"/ (\/E + Vil )

We then have

5k+1 .
< min max
Oy @>0,20€[Amins Amax] A€M mins Amax ]

max{|1 = ap; ()7, |1 = apy (D)7}
-1

F+1

/\

4.3 Sharp estimates of extreme eigenvalues of C¢

We review several sharp estimates of y,, y, and discuss the probability that £ holds.
For the Gaussian case, we have the following theorem introduced in [15].

Theorem 3 Suppose that S € R™" is a Gaussian sketching matrix. Consider d,
defined in (6) and a parameter p € (0,1). If m>d,/p, then for any

2
n € (0, (1—\/—)2/4) with c(n) = ( y) and
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pr=1= 1Dl + IDISA + /p)(1 + /n)?,
2
p2=1=IIDIE + IDI3(1 = Venp) .

the event Eg holds with probability at least 1 — 16e~1"Pm/2

For the SJLT sketching, following Lemma 3.3 in [16], we have an estimate on p, and
P2

Theorem 4 Suppose that S € R™" is an SJLT sketching matrix with sparsity
s = Q(log,(d,/6)/€) ®)
in each column where a > 2,6 < 1/2,e < 1/2. If the sketch size satisfies
m = Q(ad, log,(d,/8)/€%),

then, with probability at least1 — &, the event £ holds.

For the SRHT case, we introduce the relevant factor

2
8log(d,n)
d

e

C(m.d,) = % 1+

The following theorem in [15] provides a sharp estimate on p, and p,.

Theorem 5 Suppose that S € R™" is an SRHT sketching matrix. Consider d, defined
in (6) and a parameter p € (0,1). If m > C(n, de)%. Then, it holds with
probability at least 9 /d, such that Eg holds with p; =1 + ||D||§p andp, =1 — ||D||§p

5 Estimation of the effective dimension and extensions of IHS-BIN
5.1 Estimation of the effective dimension

From previous theorems, an appropriate sketching size depends on the effective
dimension d,. Nevertheless, in practice, usually the estimation of d, is available when
d, is small, see [17]. Following the adaptive method described in [15], we propose a
practical method for finding an appropriate sketching size.

We apply IHS to solve (1) with A = A_... In k-th iteration, we first calculate the
direction

min*
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dy = (ATSTSA + A AT (Axy — b+ ApinXy)-
Then, we calculate a step size 7, = y{ satisfying the Armijo condition. Namely, j is

the smallest non-negative integer satisfying
O = ridy) <f0) = 1oy} d{ Vf (). ©

Here, we write f(x)= %lle - b3+ %llxll% and 7,7, € (0,1) are parameters.
Then, we update x; | = x; — 7,d.
We evaluate the following quantity per iteration:

5 = dIAT(Ax, — b+ Apinxy)-

If 5., > 736, for some y; >0, then we let m =2m and sample the sketching
matrix. We stop the algorithm when 6, < e for some € > 0. The whole algorithm is
described in Algorithm 4. In numerical experiment, we set y; = 0.5.

Input: A, b, o, Amins € 1,72, 73

Set k = 0. Compute dy and 50;

while &g > e do

Calculate a step size 7, = fy{ satisfying the Armijo condition (9);
Update xp1 = o — Trdy;

Calculate dj41 and 5k+1;

end

if 041 > 7305 then

Set m = 2m and sample the sketching matrix S;

Recompute dj based on S;

else
| Setk=Fk+1;
end

Output: m
Algorithm 4: Adaptive estimation of sketching dimension

5.2 Extension to the under-determined case
For the under-determined case where n < d, we consider the dual problem of (1):

.1 A
min EIIATZII2 + EIIZII2 -b'z (10)

zERM

The optimal solution z to the dual problem is related to the optimal solution to the
primal problem by

v=ATz
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Hence, we can apply similar methods in the under-parameterized case to solve (10).

5.3 Extension for matrix-valued ridge-regression
Consider the following matrix-valued ridge-regression problem:

.1 2, Auvn2
=||AX - B =1X11%s
min = |AX - BIZ + ZIIX]| an
where A € R™? and B € R™K. We can easily extend IHS-BIN for solving this
problem.

Input: A, B, Pg, 1, k.
Set U; =0 and U; = 0 with i = 0,...,k — 1;
Calculate Uy = —Ps AT B;
Let Ua = ﬁo + Up;
fori=1t k—1do
Calculate U; = —PsU;_1;
for j=i—1to1do
| Calculate U; = U; — Ps(TATAU; 4+ U;_1);
end
Calculate Uy = Uy — PsT AT AUy;
Update U; = U; + Uj for j =0,...,i;
end
Output: {U; ";;é
Algorithm 5: Calculation of basis iy, . .., tg—1 for IHS-BIN with matrix-
valued ridge regression.

Input: A,b,A = {)\}L,, iteration number k.
Generate the sketching matrix S and compute the SVD of SA;
fori=1,...,T do
Compute {U }?;& using Algorithm 5;
Compose X; =7 Z;:é (X Uj;
end
Output: {X;}7,
Algorithm 6: THS-BIN with matrix-valued ridge regression.

Neglecting the computation cost of computing SA, the computation cost of
IHS-BIN becomes

O(m*d) + O(K(md + nd) log f log(1/€)*) + O(TKd log(1/¢)),
\,—/ < ~ N ~ _

SVD of SA compute ii; L times evaluate x;

for a dense matrix A, or
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O(m*d) + O(K(md + nnz(A)) log f log(1/€)*) + O(TKd log(1/¢)),
N—— ~ J O\ ~ _

SVD of SA compute it; L times evaluate x;,

for a sparse matrix A. For comparison, the computation cost of SVD-based method
is as follows:

O(n*d) +O(d*KT).
——

SVD

The computation cost of CG-based method writes

O(TKnd/x log(1/€)) or O(TKnnz(A)\/x log(1/e)).

6 Numerical results

In this section, we present numerical comparisons between IHS-BIN and other
methods for solving least-square problems with various regularization parameters.
We test over randomly generated data and real data. For real data, we collect datasets
from LIBSVM! under the modified BSD license. We randomly split half of the data
matrix as the training data A and the other as the test data matrix A. We denote b and
b as the corresponding labels of A and A. All numerical experiments are conducted
on a Dell PowerEdge R840 workstation (64 core, 3TB ram). We provide numerical
comparisons with the following baseline algorithms. SVD: the singular value
decomposition-based method., native: the native linear system solver in NumPy,
CG: warm-started conjugate gradient method. For IHS-BIN, we use the SJLT
sketching matrices with sparsity 1. In IHS-BIN, we split the interval [4,,;,,, A ] INtO
L = |2102(Anax/ Amin)] small intervals. For each interval [A®), A(*D], we update the
set size 7 by using the backtracking line search with respect to the problem with
regularization parameter A = A®), The source code is available publicly and can be
found in https://github.com/pilancilab/IHS-BIN.

6.1 Datasets setup in the numerical experiments

For the randomly generated data, each row of A follows A0, ¥2), where

%, = ia'i‘ﬂ. Here, we let « = 0.99. The training loss and the test loss are as
follows:
1 A 1.~ -
Lugin = S 14v =Bl + ZIVI%, - Liey = S 114V = BI13.

Here, each row of A follows A0, 2). And we let

! https://www.csie.ntu.edu.tw/~cjlin/libsvm/.
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native
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—— IHS-BIN

%103 Test loss

SVD

native

CcG
—— [HS-BIN

10° 10° 10!
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10% 10* 10!
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Time
25000 - SVD
native
CG
20000 — IHS-BIN
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10000 -
5000+
0-
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T

Fig.3 Training loss, test loss and time. Real vs. Simulated (real-sim). n = 36000, d = 20958, m = 8000.

A

min

100. 4

‘max

b=Av"+n,

= 10*. We do not calculate the eigenvalues of A”A since d is large

b=Av: +1j.

Here, v* ~ M0, 1,/d) and 1, 7j ~ N(0, 6%) where ¢ > 0 is a parameter.

For the randomly generated data with clustered eigenvalue, each row of A follows
MO, =2), where T is a diagonal matrix whose first d/2 entries follow o; = 2" and the
last d/2 entries follow o; = 0.01 * 2*. Here, u; is uniformly randomly drawn from
[—1,1]. The setup of label matrix » and test data pair A, 5 is similar as the previous

case.

For real data, we linearly rescale the entry of A into [—1,1]. Besides, for
CIFARI10, we use the kernel matrix in ridge regression. Namely, A is the kernel
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Train loss x10° Test loss
11500 -
2 CG 2.997- CG
—— [HS-BIN —— IHS-BIN
11450 - 2.2061
2.295
11400 -
2.294-
11350 - 2,203
2.292-
11300 -
2.291
10° 10! 10 10 10! 10
A A
Time
40000+ CcG
—— IHS-BIN
35000 -
30000 -
25000 -
20000 -
15000 -
10000 -
5000
| e
0 20 40 60 80 100
T

Fig.4 Training loss, test loss and time. Avazu’s click-through prediction (avazu).
n = 200000, d = 50000, m = 10000. A, = 1. 4,,,, = 100. We do not calculate the eigenvalues of ATA
since d is large

matrix formulated by the training data and A is the kernel matrix formulated by the
training data and test data. In short, we have

Aij =k f) Ay = k(G f)).

where k(x,y) : R? x R? - R is a positive definite kernel function, f; is the feature
vector of i-th training sample, and f; is the feature vector of j-th test sample. Here,
we use an isotropic Gaussian kernel function
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15000 Train loss L5000 Test loss
CcG G
—— IHS-BIN — IHS-BIN
14500 -
14000 -
14000 -
13000 -
13500 -
12000 - 15000
11000 - 12500 -
1071 10" 100 01 W T
A A
Time
CG
sooo0- —— IHS-BIN
60000 -
40000+
20000+
0-
0 5 10 15

Fig.5 Training loss, test loss and time. MNIST with quadratic feature embedding.
n = 30000, d = 608400, m = 10000. A, = 0.1. 4,,,, = 10. We do not calculate the eigenvalues of AAT
since n is large

- 1
k(x.y) = @rhy P exp (=3Il =13 ).

with bandwidth 42 = 1000.

6.2 Over-determined case

We present numerical results on randomly generated data and real data in Figs. 1,
3 and 4. In Fig. 2, we present results on matrix-valued ridge regression with kernel
matrix. For the problem with medium-size d (randomly generated data), we plot the
eigenvalues of ATA. The curves of train loss and test loss from THS-BIN overlap
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eigenvalues of AA” Time
. 500
107 SVD
native
6
10% 400- CG
—— IHS-BIN
IU'),
300-
10%:
103+ 200~
10%-
100 -
10"
0-
0 500 1000 1500 2000 2500 3000 0 20 40 60 80 100
T
Train loss 100 Test loss
1500 B
SVD 5.3 SVD
native B native
5.2
1400 - CcG CcG
—— IHS-BIN 5.1- —— IHS-BIN
1300~ 5.0-
4.9-
1200 -
4.8
1100 - 1.7
4.6-
1000 -
4.5
10° 10° 107 10° 10° 107
A A

Fig.6 Training loss, test loss and time. NIPS 2003 feature selection challenge (gisette).
n = 3000,d = 5000, m = 800, A, = 10°. 4., = 107

‘min max

with curves from other solvers. This indicates that IHS-BIN yields correct solutions
along the regularization path. For medium-scale problems like randomly generated
data and real-sim, CG and IHS-BIN outperform SVD and native. For the large-scale
problem avazu and matrix-valued ridge regression, IHS-BIN can be significantly
faster than CG.

6.3 Under-determined case

We also perform numerical comparisons on under-determined data matrices. We
present numerical results in Figs. 5, 6, 7, 8 and 9. For the problems with medium-
size n (randomly generated data, gisette, RCV1, tifdf), we plot the eigenvalues of
AAT. Similar to the over-determined case, THS-BIN is faster than other compared
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eigenvalues of AAT Time
2 SVD
10% 1200 - ;
native
10t CG
1000 -
100 —— IHS-BIN
- 800-
1072- 600 -
—3
10 400-
1074
200-
1072
0-
0 1000 2000 3000 4000 0 50 100 150 200
T
Train loss Test loss
SVD _ SVD
0.900- . 0.85- )
native native
0.875 CG CG
ReT ks Bt

—— IHS-BIN —— IHS-BIN

0.84-
0.850-
0.825- 0.83-

0.800-

0.81-

100 10! 10% 100 10! 10
A A

Fig.7 Training loss, test loss and time. Randomly generated data. n = 4000,d = 20000, m = 2400.
0 =0.02. A, = 1. A = 100

min ‘max

methods, especially for large-scale examples. The curves of train loss and test loss
from IHS-BIN overlap with curves from other solvers, which implies the accuracy
of IHS-BIN.

6.4 Robustness evaluation on synthetic data

We further compare our algorithm with Ridge-Sketch Python package introduced
in [18] on synthetic data with different spectral properties. For IHS-BIN and Ridge-
Sketch, we run for five independent trials and plot the standard deviation as shaded
area. In Figs. 10 and 11, we present the performance of compared algorithms on data-
sets with decaying spectral and clustered spectral, respectively. We note that our pro-
posed method is significantly faster than Ridge-Sketch. Also, IHS-BIN achieves con-
sistently good performance on different trials. As the spectral distribution is clustered
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Eigenvalues of ATA Time
10
, 3500
102 ’
. 3000
1077
2500
10712 ’ SVD
i 2000 native
10717 CcG
1500 ——— [HS-BIN
1072
1000
107%
500
10732 e ———
0
0 10000 20000 30000 40000 0 20 40 60 80 100
T
Train loss <107 Test loss
5000 540 D
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SVD 5.10
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—— [HS-BIN -
3800 5 5.00
10 10° 10* 10° 10° 10*
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Fig.8 Training loss, test loss and time. RCV1: A new benchmark collection for text categorization
research. n = 10000, d = 47236, m = 3000, ¢ = 0.03. 4,,;, = 100. A, = 10*

in Fig. 11, CG is slightly faster than our proposed IHS-BIN. This is expected since it
is well-known that CG is ideal on data with clustered spectral distributions. However,
our method is still competitive with CG even in this case. We emphasize that in all
other datasets we considered in this section with the exception of the clustered data in
Fig. 11, CG performs significantly worse than our method.

7 Conclusion
We presented IHS-BIN for rapidly computing the entire ridge regularization path.
The algorithm is based on analyzing the gradient descent regularization path

and accelerating convergence via randomized sketching. Our method improves
the state-of-the-art computational complexity of obtaining the solution of ridge
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Fig.9 Training loss, test loss and time. 10-K Corpus (E2006-tfidf). n = 8000, d = 150360, m = 2000.

Amin = 0.1. 4

min

‘max

=10

regression for T values of the regularization parameter from O(7d?) or O(Tnnz(A))
to O(Td), when T is large. The numerical experiments also demonstrate that IHS-
BIN is significantly faster than other solvers, especially for large-scale problems.
Our method also leverages the low effective dimensionality of real datasets,
which can be used to reduce the sketching dimension. We also investigated
adaptively picking the sketch dimension based on the progress of the algorithm.
We believe that our algorithm will be quite effective in automatically tuning the
regularization parameters of linear models. Moreover, our method can be used
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Fig. 10 Training loss, test loss and time. Randomly generated data. n = 2000, d = 400, m = 160, 0 = 0.4.

= 1000

‘max

Amin = 10. 4

min

in transfer learning and deep feature embeddi

ng for training a final linear layer

and tuning the regularization parameter efficiently. One potential limitation of
the proposed approach is that for medium-size data matrices with high effective
dimensions, direct methods such as SVD can be more effective.
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Fig. 11 Training loss, test loss and time. Randomly generated data with clustered spectral distribution.
n =2000,d = 400,m = 160,06 = 0.1. 4,;, = 1. 4, = 100
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