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Abstract
The Whitham modulation equations for the defocusing nonlinear Schrödinger
(NLS) equation in two, three and higher spatial dimensions are derived using
a two-phase ansatz for the periodic traveling wave solutions and by period-
averaging the conservation laws of the NLS equation. The resulting Whitham
modulation equations are written in vector form, which allows one to show
that they preserve the rotational invariance of the NLS equation, as well as the
invariance with respect to scaling and Galilean transformations, and to imme-
diately generalize the calculations from two spatial dimensions to three. The
transformation to Riemann-type variables is described in detail; the harmonic
and soliton limits of the Whitham modulation equations are explicitly written
down; and the reduction of the Whitham equations to those for the radial NLS
equation is explicitly carried out. Finally, the extension of the theory to higher
spatial dimensions is briefly outlined. The multidimensional NLS-Whitham
equations obtained here may be used to study large amplitude wavetrains in a
variety of applications including nonlinear photonics and matter waves.
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1. Introduction

The nonlinear Schrödinger (NLS) equation in one, two and three spatial dimensions is a ubi-
quitous model in nonlinear science. One reason is its universality as a model for the evolution
of weakly nonlinear dispersive wave trains [9, 18, 53]. The NLS equation arises as the gov-
erning equation in a broad variety of physical contexts, ranging from water waves to optics,
acoustics, Bose–Einstein condensates and beyond [6, 36, 39, 44]. As a result, enormous atten-
tion has been devoted over the last half century to the study of its solutions. It is also the case
that in many physical situations, dispersive effects are much weaker than nonlinear ones and
these scenarios, which can be formulated as small dispersion limits of the governing equations,
give rise to a variety of interesting physical phenomena [25]. In particular, the small disper-
sion limits often lead to the formation of dispersive shock waves (DSWs), a coherent, slowly
modulated and expanding train of nonlinear oscillations.

A powerful tool in the study of small dispersion limits is Whitham modulation theory (also
simply called Whitham theory) [56, 57]. Whitham theory is an asymptotic framework within
which one can derive the Whitham modulation equations or Whitham equations for brevity.
The Whitham equations are a system of first-order, quasi-linear partial differential equations
(PDEs) that govern the evolution of the periodic traveling wave solutions of the original PDE
over spatial and temporal scales that are larger than the traveling wave solution’s wavelength
and period, respectively. Whitham theory does not require integrability of the original PDE,
and therefore it can also be applied to non-integrable PDEs. Thanks to Whitham theory and,
when applicable, the inverse scattering transform, much is known about small dispersion lim-
its for (1+1)-dimensional nonlinear wave equations (e.g. see [13, 21, 25, 30, 38, 45] and
references therein). On the other hand, small dispersion limits for (2+1)-dimensional sys-
tems have been much less studied and (3+1)-dimensional systems apparently have not been
studied at all. Recently, the Whitham modulation equations for the Kadomtsev–Petviashvili
(KP) and two-dimensional Benjamin–Ono equations and, more generally, a class of (2+1)-
dimensional equations of KP type were derived [1–3]. The properties of the resulting KP–
Whitham equations were then studied in [14] and the soliton limit of these equations was used
in [48–50] to study the time evolution of a variety of piecewise-constant initial conditions in
the modulation equations and, in the process, characterize the resulting dynamics of the solu-
tions of the KP equation. Recently, the Whitham equations for the radial NLS equation [4] and
those for focusing and defocusing two-dimensional nonlinear Schrödinger (2DNLS) equations
[5] were also derived using a multiple scales approach.

The goal of this work is to derive and study the Whitham modulation equations for the
defocusing multi-dimensional NLS equation, which we write in the semiclassical scaling as

iεψt+ ε2∇2ψ− 2|ψ|2ψ = 0 (1.1)

for a complex-valued field ψ(x, t), where x= (x1, . . . ,xN)T and ∇2ψ = ψx1x1 + · · ·+ψxNxN
is the spatial Laplacian, and subscripts xj and t denote partial differentiation throughout.
Equation (1.1) arises as a governing equation in water waves [6], optics [44], plasmas [36],
Bose–Einstein condensates [39], magnetic materials [59] and beyond. The small parameter
0< ε≪ 1 quantifies the relative strength of dispersive effects compared to nonlinear ones
and sets a spatial and temporal scale for oscillatory solutions. In the (1+1)-dimensional case,
the Whitham modulation equations have been shown to provide quantitative predictions for
experiments in ultracold quantum fluids [34, 35] and nonlinear optics [8, 10, 55, 58].
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While the Whitham equations for the two-dimensional version of (1.1) (hereafter referred
to as the 2DNLS equation) were obtained in [5], this work differs from [5] in several import-
ant respects. First, our derivation employs a two-phase ansatz for the periodic solutions of
the 2DNLS equation, which has several practical advantages. For one thing, it immediately
yields a second conservation of waves equation in vector form that was missed in [5]. It is
well known that several methods can be used to derive the Whitham equations: averaged con-
servation laws, averaged Lagrangian, and multiple scales perturbation theory. Our derivation
employs averaged conservation laws which are directly tied to the physical symmetries of
the NLS equation, rather than secularity conditions as used in [5]. Moreover, the ability to
take advantage of the second conservation of waves equation also dramatically simplifies the
calculations. In contrast, one of the secularity conditions obtained in [5] is equivalent to the
averaged energy equation, which is more complicated and requires more significant manipula-
tion than the second conservation of waves equation. Our approach simplifies the calculations
and enables us to carry out the whole derivation in vector form. Consequently, the resulting
NLS-Whitham equations are obtained in a simpler way, which lays the groundwork for gen-
eralizations to other NLS-type equations and higher dimensions.

In this work, we also show how our approach allows one to easily generalize the derivation
of the Whitham equations to the NLS equation in an arbitrary number of spatial dimensions.
We primarily concentrate on the two and three dimensional cases, though some of our results
apply to an arbitrary number of spatial dimensions. This generalization to higher dimensions is
particularly relevant because the NLS equation in three spatial dimensions is the zero-potential
version of theGross–Pitaevski equation, and is therefore of fundamental importance in describ-
ing the dynamics of Bose–Einstein condensates [39], so we expect our results to be directly
applicable in that context.

We use our representation of the NLS-Whitham equations to identify several symmetries
and reductions of the Whitham equations. For example, we verify that the Whitham equations
preserve the invariance of the (N+1)-dimensional NLS equation with respect to scaling and
Galilean transformations, and we take advantage of the vector formulation of the modulation
equations, which we use to show that they preserve the rotation symmetry of the multidimen-
sional NLS equation. We also explicitly write down both the harmonic and soliton limits of
theWhitham equations in a mathematically convenient set of independent variables (which we
refer to as Riemann-type variables) and in physical variables. We identify the self-consistent
reduction of the 2DNLS-Whitham equations to the Whitham equations for the radial NLS
equation.

The outline of this work is as follows. In section 2 we write the NLS equation in hydro-
dynamic form, write down its conservation laws, and obtain a representation for the periodic
solutions. In section 3 we average the conservation laws to obtain the Whitham equations in
physical variables. In section 4 we begin to study the reductions of the Whitham equations in
physical variables, including one-dimensional reductions as well as the harmonic and soliton
limits. In section 5 we discuss two different transformations to Riemann-type variables. In
section 6 we derive further symmetries and reductions of theWhitham equations, including the
reduction to the Whitham equations of the radial NLS equation and the harmonic and soliton
limits of the Whitham equations in Riemann-type variables. In section 7 we present the gen-
eralization of the results to the NLS equation in three spatial dimensions, and in section 8 we
end this work with a discussion of the results and some final remarks. The details of various
calculations are relegated to the appendix.
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2. Hydrodynamic form, conservation laws and periodic solutions of the NLS
equation

2.1. Madelung form of the NLS equation and its conservation laws

We begin by writing down the first few conservation laws of the NLS equation (1.1) in an
arbitrary number of dimensions. It is convenient to introduce the Madelung transformation

ψ(x, t) =
√

ρ(x, t)eiΦ(x,t) , (2.1a)

u(x, t) = ε∇Φ(x, t) , (2.1b)

where u= (u1, . . . ,uN)T, x= (x1, . . . ,xN)T and∇= (∂x1 , . . . ,∂xN)
T. Substituting (2.1) into the

NLS equation (1.1), separating into real and imaginary parts, and differentiating the real part
with respect to each of the spatial variables yields the following dispersive hydrodynamic
system of PDEs:

ρt+ 2∇ · (ρu) = 0 , (2.2a)

ut+ 2(u ·∇)u+ 2∇ρ− 1
4ε

2
∇

(

∇2 lnρ+ 1
ρ∇2ρ

)

= 0 . (2.2b)

The conservation laws for (1.1) for the mass E, momentum P and energy H in integrated
form are:

dE
dt

= 0 ,
dP
dt

= 0 ,
dH
dt

= 0 , (2.3a)

where

E=

ˆ

RN

|ψ|2 (dx) , P=
i
2
ε

ˆ

RN

(ψ∇ψ∗ −ψ∗
∇ψ)(dx) , H=

ˆ

RN

(

ε2‖∇ψ‖2 + |ψ|4
)

(dx) ,

(2.3b)

for a suitably decaying field ψ, ‖v‖2 = |v1|2 + · · ·+ |vN|2 is the squared Euclidean vector norm
and (dx) = dx1 · · ·dxN is the volume element in R

N. These conservation laws correspond, via
Noether’s theorem, to the invariance of the NLS equation (1.1) with respect to phase rota-
tions, space and time translations, respectively [53]. In differential form, and in terms of the
Madelung variables, these conservation laws become [37]

ρt+ 2∇ · (ρu) = 0 , (2.4a)

(ρu)t+ 2∇ · (ρu⊗ u)+∇(ρ2) = 1
2ε

2
(

∇(∇2ρ)−∇ ·
(

1
ρ∇ρ⊗∇ρ

))

, (2.4b)

ht+ 2∇ ·
(

(h+ ρ2)u
)

= ε2∇ ·
(

u∇2ρ− 1
ρ
(∇ · ρu)∇ρ

)

, (2.4c)

where ⊗ denotes the dyadic (namely, v⊗w= vwT, so that (v⊗w)i,j = viwj) and the mass
density, momentum density and energy density of (1.1) are, respectively

ρ= |ψ|2, ρu= i2ε(ψ∇ψ∗ −ψ∗
∇ψ), h= ε2∥∇ψ∥2 + |ψ|4 = ρ∥u∥2 + ρ2 +

ε2

4ρ
∥∇ρ∥2 .

(2.5)

The first two of the conservation laws (2.4) are equivalent to the real and imaginary parts of
the NLS equation in hydrodynamic form (2.2), but only up to an extra differentiation, an issue
that we will return to later.
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2.2. Periodic solutions of the NLS equation via a two-phase ansatz

The Whitham modulation equations govern the slow dynamics of the parameters of the peri-
odic solutions of the PDE of interest. Next, we therefore write down the periodic solutions of
the hydrodynamic system (2.2) in arbitrary dimensions. We begin by looking for solutions in
the form of the following two-phase ansatz:

ρ(x, t) = ρ(Z) , Φ(x, t) = ϕ(Z)+ S , (2.6a)

where ρ(Z) and ϕ(Z) are periodic functions of Z with period one, and the ‘fast phases’ Z and
S are

Z(x, t) = (k · x−ωt)/ε, S(x, t) = (v · x−µt)/ε, (2.6b)

where k= (k1, . . . ,kN)T and v= (v1, . . . ,vN)T. The reason for using a two-phase ansatz is the
fact that the solution ψ(x, t) of the NLS equation (1.1) is complex-valued, unlike that of the
Korteweg-deVries (KdV) equation (of which the KP equation mentioned earlier is a two-
dimensional generalization), which is real-valued. Therefore, a one-phase ansatz (e.g. as in
[5]) leads only to a subclass of all periodic solutions, and one would need to apply a Galilean
boost a posteriori in order to capture the most general family of periodic solutions of the NLS
equation. Two-phase ansatzes are standard when deriving the Whitham equations using Lag-
rangian averaging (e.g. see [57]); the novelty here is that such a two-phase ansatz is combined
with the use of averaged conservation laws. A key benefit of this approach is the immediate
deduction of an additional conservation law compared to [5].

In light of (2.6), the definition (2.1) yields

u(Z) = kϕ ′(Z)+ v , (2.7)

using primes to denote derivatives with respect to Z for brevity. The fact that ϕ(Z) is periodic
implies

u= v , (2.8)

where throughout this work the overbar will denote the integral of a quantity with respect to Z
over the unit period. Moreover, the definition (2.1) implies the irrotationality condition

∇∧ u= 0 . (2.9)

Hereafter, v∧w is the N-dimensional wedge product, which in two and three spatial dimen-
sions can be replaced by the standard cross product [17, 29]. We substitute the two-phase
ansatz (2.6) into the hydrodynamic equations (2.2a) and (2.2b) and collect the leading-order
terms, obtaining:

−ωρ ′ + 2k · (ρu) ′ = 0 , (2.10a)

−ωu ′ + 2(k · u)u ′ + 2kρ ′ − 1
4

(

(lnρ) ′ ′ + ρ ′ ′

ρ

) ′

‖k‖2k= 0 . (2.10b)

Integrating (2.10a) and using (2.7) yields

ϕ ′(Z) =
1

‖k‖

(

U+
J
ρ
− k̂ · ū

)

, (2.11)

where U= ω/(2‖k‖) is the phase speed, k̂= k/‖k‖, and the integration constant J will be
determined later. Using (2.11), we can rewrite (2.7) as:

u(Z) =
(

J
ρ
+U

)

k̂+ ū⊥ , (2.12)
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where u⊥ = u− (k̂ · u) k̂. Importantly, the requirement that ϕ(Z) is periodic implies that ϕ ′(Z)
must have zero mean. Taking the inner product of (2.12) with k̂ and averaging the result over
the wave period yields a relation between ū and U, and therefore determines ω = 2‖k‖U:

U= k̂ · ū− Jρ−1 . (2.13)

Next, substituting (2.11) into (2.10b) and simplifying yields two ODEs for ρ. Note that the
two ODEs are consistent thanks to the constraint (2.9), which becomes, to leading order,

k∧ u ′ = 0 . (2.14)

Integrating the resulting ODE for ρ one obtains (see appendix ‘Calculation of the solution
amplitude and second frequency and simplification of certain terms’ for details)

(ρ ′)2 = P3(ρ) , (2.15)

with

P3(ρ) =
4

‖k‖2 (ρ−λ1)(ρ−λ2)(ρ−λ3) , (2.16)

whose solution is

ρ(Z) = A+ 4m‖k‖2K2
m sn

2(2Kmz|m) , (2.17)

where A is a free parameter, and with

J2 = A
(

A+ 4‖k‖2K2
m

)(

A+ 4m‖k‖2K2
m

)

. (2.18)

The roots λ1, . . . ,λ3 are related to the coefficients in the solution (2.17) as

λ1 = A, λ2 = A+ 4mK2
m‖k‖2, λ3 = A+ 4K2

m‖k‖2. (2.19)

Conversely, when λ1,λ2,λ3 are known, A, ‖k‖ and m are given by

A= λ1 ‖k‖2 = (λ3 −λ1)/4K
2
m , m= (λ2 −λ1)/(λ3 −λ1) . (2.20)

The amplitude of the periodic oscillations of the density is λ2 −λ1. The requirements ρ⩾ 0,
‖k‖⩾ 0 and 0⩽ m⩽ 1 immediately yield the constraints A⩾ 0 as well as

0⩽ λ1 ⩽ λ2 ⩽ λ3 . (2.21)

The symmetric polynomials e1, . . . ,e3 defined by the roots λ1, . . . ,λ3 will also be useful later:

e1 = λ1 +λ2 +λ3 , e2 = λ1λ2 +λ2λ3 +λ3λ1 , e3 = λ1λ2λ3 = J2 . (2.22)

Note that (2.22) only determines J up to a sign, i.e. J= σ
√
λ1λ2λ3, with σ =±1. Both sign

choices lead to valid solutions of the NLS equation (1.1), with the plus sign identifying the
slow branch and the minus sign the fast one. Some care is deserved when determining the
value of σ in the presence of modulations of the periodic solutions, as discussed in section 3.2.

The leading-order periodic solution of the hydrodynamic system (2.2) defined by (2.11)
and (2.17) contains the following independent parameters: A, m, k, ū and µ. However, recall
that, to derive the hydrodynamic equation (2.2b) from the NLS equation (1.1), one differ-
entiates the real part with respect to the spatial variables. Imposing that the solution of the
dispersive hydrodynamic system (2.2) also solves the NLS equation (by substituting into the
undifferentiated imaginary part of the NLS equation (1.1)) yields a constraint that determinesµ
in terms of the other constants. Deriving this relation directly from the above expressions is a bit
cumbersome, but seeking a periodic solution of (1.1) without writing it in hydrodynamic form
(cf appendix ‘Direct derivation of the periodic solutions of the NLS equation’), one obtains

µ= 4(1+m)‖k‖2K2
m+ 3A+ ‖ū‖−

(

Jρ−1
)2
. (2.23)
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One can now verify that adding this relation to the above solution of the hydrodynamic system
does indeed yield a solution of the NLS equation (1.1). Alternatively, one can obtain (2.23)
using the undifferentiated version of (2.10b); see appendix ‘Calculation of the solution amp-
litude and second frequency and simplification of certain terms’. Thus, the periodic solutions
of the NLS equation (1.1) in N spatial dimensions contain 2N+ 2 scalar independent paramet-
ers: A, m, k and v= ū, as one would expect based on the invariances of the PDE (see [53]).

2.3. Harmonic and soliton limits of the periodic solutions

Recall that the harmonic (m= 0) and soliton (m= 1) limits of the Whitham equations for the
one-dimensional NLS (1DNLS) equation have special significance [25]. The same will be true
for the multi-dimensional NLS equation. It is therefore useful to evaluate the corresponding
limits of the above periodic solutions.

In the limitm→ 0 (i.e. λ2 → λ+1 ), the solution (2.1) reduces to a plane wave. Indeed, in this
limit, we have

ρ(Z) = A, B= 0 , µ= 2A+ ‖ū‖2 , J2 = A2(π2‖k‖2 +A) , (2.24)

and

ψ(x, t) =
√
A ei(ū·x−(∥ū∥2+2A)t) . (2.25)

Therefore, the only independent parameters in this case are A and ū.
In the opposite limit (m→ 1, i.e. λ2 → λ−3 ), the solution (2.1) reduces to the soliton solution

of the NLS equation. Indeed, in this limit, (2.17) and (2.20) yield

ρ(Z) = λ1 +(λ3 −λ1) tanh
2 [
√

λ3 −λ1
(

k̂ · x−ωt/‖k‖
)]

, (2.26a)

B= λ3 −λ1 , J2 = λ1λ
2
3 , U= k̂ · ū−σ

√

λ1 , µ= 2λ3 + ‖ū‖2 . (2.26b)

Note that ‖k‖→ 0 as m→ 1, but Km →∞ in such a way that their product remains finite:
‖k‖Km →

√
λ3 −λ1/2. Using (2.11) we then obtain

ϕ(Z) = arctan
[

√

λ3 −λ1 tanh
(

√

λ3 −λ1
(

k̂ · x−ωt/‖k‖
)

)

/
√

λ1

]

, (2.27)

implying

eiϕ+iS = eiS
[

√

λ1 + i
√

λ3 −λ1 tanh
(

√

λ3 −λ1
(

k̂ · x−ωt/‖k‖
)

)]/

√

ρ(Z) , (2.28)

with S= ū · x−µt as before. Putting everything together, we obtain

ψ(x, t) = Aoe
−2iA2

otei(ū·x−∥ū∥2t)
{

cosθ+ isinθ tanh[Ao sinθ [k̂ · x− 2(k̂ · ū−Ao cosθ)t]]
}

,

(2.29)

with ū as in (2.6), Ao =
√
λ3 and θ = arctan

[√

(λ3 −λ1)/λ1
]

. The independent parameters
of the solution in this case are λ1, λ3 (or equivalently Ao or θ), k̂ and ū. One can further
reduce (2.29) to the more familiar form of the dark soliton solutions of the defocusing NLS
equation by choosing ū= 0.

3. Derivation of the NLS-Whitham equation by averaged conservation laws

We are now ready to study slow modulations of the periodic solutions described above and
derive the Whitham modulation equations that govern them.
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3.1. Nonlinear modulations and averaged conservation laws

We begin by introducing the following multiple scales ansatz for the solution of the NLS
equation (1.1):

ρ(x, t) = ρ(Z,X,T) , Φ(x, t) = ϕ(Z,X,T)+ S , (3.1)

where X= x and T = t, with ρ and ϕ periodic in Z with period one and

∇Z=
k(X,T)
ε

, Zt =−ω(X,T)
ε

, (3.2a)

∇S=
v(X,T)
ε

, St =−µ(X,T)
ε

, (3.2b)

where, as per the results of section 2.2, v= ū. The above multiple scales ansatz implies

∇x 7→
k
ε
∂Z+

v
ε
∂S+∇X , ∂t 7→ −ω

ε
∂Z−

µ

ε
∂S+ ∂T . (3.3)

Substituting (3.1) into (1.1), to leading order we recover the periodic solution (2.1), but where
all 2N+ 2 parameters A, m, k and ū are now slowly varying functions of X and t. We then
seek modulation equations to determine the space-time dependence of these parameters. To
avoid complicating the notation unnecessarily, below we will write derivatives in X and T
as derivatives in x and t. Equations (3.2) immediately yield the equations of conservation of
waves:

kt+∇ω = 0 , (3.4a)

∇∧ k= 0 , (3.4b)

ūt+∇µ= 0 , (3.4c)

∇∧ ū= 0 . (3.4d)

Of course only N equations among (3.4a) and (3.4b) are independent, and similarly for (3.4c)
and (3.4d). Equations (3.4a) and (3.4c) form the first two vectorial Whitham modulation
equations, whereas (3.4b) and (3.4d) are compatibility constraints.

Next, we obtain the remaining Whitham modulation equations by averaging the conserva-
tion laws (2.4) over the fast variable Z. Using (3.3) to replace all spatial and temporal derivat-
ives in (2.2) and (2.4), expanding all terms in powers of ε, and averaging, we obtain at order
O(ε0)

(ρ̄)t+ 2∇ · (ρu) = 0 , (3.4e)

(ρu)t+ 2∇ · (ρu⊗ u)+∇(ρ2)+∇

(

(ρ ′)2

2ρ
k⊗ k

)

= 0 , (3.4f )

h̄t+∇ ·
(

2hu+ 2ρ2u+
(

k · ρ
′

ρ
(ρu) ′

)

k−‖k‖2ρ ′ ′u
)

= 0 , (3.4g)

where h̄ denotes the averaged energy density:

h̄= ρ‖u‖2 + ρ2 +
1
4
‖k‖2(ρ ′)2/ρ. (3.5)

Together with (3.4a) and (3.4c), equations (3.4e)–(3.4g) are 3N+ 2 scalar PDEs for the 2N+ 2
dependent variables A, m, k and v= ū subject to the 2N spatial constraints (3.4b), (3.4d), and
are the desired Whitham modulation equations in physical variables in any number of spatial
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dimensions. Of course, not all of these equations are independent. We will see later that choos-
ing different subsets of equations still leads to equivalent results, and in the end the number
of independent modulation equations is 2N+ 2. At the same time, however, we emphasize the
simplicity and directness of this approach compared to [5] in deriving the Whitham equations
in multiple spatial dimensions.

3.2. Modified form of the modulation equations

In preparation for further simplification of the above system of Whitham equations, it is con-
venient to express the periodic solutions in terms of the roots λ1, λ2, λ3, thereby replacing A,
m and ‖k‖2 as dependent variables. Explicitly, (2.12) and (2.17) become:

ρ(Z) = λ1 +(λ2 −λ1) sn
2(2Kmz|m) , (3.6a)

u(Z) = U+
J

ρ(Z)
k̂ , (3.6b)

with

U= ū− Jρ−1 k̂ , (3.6c)

which also implies

ω = 2k ·U , µ= λ1 +λ2 +λ3 + ‖U‖2 + 2UJρ−1 , (3.6d)

with k̂= k/‖k‖ as before and J, A, ‖k‖ andm given in terms of λ1, . . . ,λ3 by (2.18) and (2.20).
In turn, using (3.6), we can write the Whitham modulation equations (3.4) as

kt+ 2∇(k ·U) = 0 , (3.7a)

∇∧ k= 0 , (3.7b)

(

U+ Jρ−1 k̂
)

t
+∇

(

e1 + ‖U‖2 + 2Jρ−1U · k̂
)

= 0 , (3.7c)

∇∧
(

U+ Jρ−1 k̂
)

= 0 , (3.7d)

ρ̄t+ 2∇·
(

Jk̂+ ρ̄U
)

= 0 , (3.7e)

(J k̂+ ρU)t+∇(ρ2)+∇

[(

2ρ̄U+ 2J k̂
)

⊗U+ 2JU⊗ k̂+
2
3

(

2e2 − e1ρ̄
)

k̂⊗ k̂
]

= 0 .

(3.7f )

h̄t+∇ ·
[

2J(2 ρ̄+ ‖u‖2) k̂+ 2(ρ2 + h̄)U+

(

U · k̂
(

(ρ ′)2

ρ

)

− J
2

(

(ρ ′)2

ρ2

))

k

]

= 0 .

(3.7g)

See appendix ‘Calculation of the solution amplitude and second frequency and simplifica-
tion of certain terms’ for details on how to obtain (3.7f ). The next step is the evaluation of the
elliptic integrals in (3.7). To this end, we have [46]

ρ=

ˆ 1

0
ρ(Z)dz= λ3 − (λ3 −λ1)

Em
Km

, (3.8a)

ρ−1 =

ˆ 1

0
ρ−1(Z)dz=

1
λ1Km

Π

(

1− λ2
λ1

∣

∣

∣m

)

, (3.8b)

9
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whereKm = K(m),Em = E(m) andΠ(·|m) are the complete elliptic integrals of the first, second
and third kind respectively. We also note, for convenience, that

ū=

ˆ 1

0
u(Z)dz= U+σ

√
λ2λ3√
λ1Km

Π

(

1− λ2
λ1

∣

∣

∣m

)

k̂ , (3.9a)

ρu=

ˆ 1

0
ρ(Z)u(Z)dz= ρ̄U+ Jk̂=

(

λ3 − (λ3 −λ1)
Em
Km

)

U+σ
√

λ1λ2λ3k̂ . (3.9b)

We reiterate that not all of the equations (3.7) are independent. For example, one can
obtain (3.7d) using (3.7c) and (3.7e). This is relevant because it allows us to work with the
most convenient subset of equations among all the PDEs in (3.7), as long as the compatibility
conditions (3.7b) and (3.7d) are satisfied. To this end, recall that h̄ is given by (3.5), and

‖u‖2 = ‖U‖2 + 2JU · k̂ρ−1 + J2ρ−2 , (3.10a)

ρ‖u‖2 = J2 ρ−1 + 2JU · k̂+ ρ̄‖U‖2 . (3.10b)

Moreover, the terms (ρ ′)2/ρ and (ρ ′)2/ρ2, which appear in (3.7g), can be computed
using (2.15). On the other hand, the averaged energy conservation law (3.7g) is the most com-
plicated among all of the equations (3.7). In section 7 wewill show that, thanks to the use of the
two-phase ansatz and the resulting second conservation of waves equations (3.7c) and (3.7d),
one can avoid having to deal with the averaged energy equation (3.7g), which greatly simplifies
the transformation to Riemann-type variables.

We also point out that the sign of J, as determined by the initial conditions for the system
through the value of σ—see the discussion after (2.22)—affects ū via (3.9a) and ρu via (3.9b).
Therefore, when considering modulations of the periodic solutions, the value of σ depends on
x and t, and its value must be chosen in such a way to ensure smoothness of ρu. In particular,
a sign change of J occurs when the solution hits a vacuum point, i.e. λ1 = 0. At such a point,
ū is singular but ρu is not. See [33] for additional discussion.

4. Symmetries and reductions of the NLS-Whitham system in physical
variables

We now present several reductions of the Whitham modulation system (3.7) in physical vari-
ables in an arbitrary number of spatial dimensions. Further symmetries and reductions in the
two-dimensional case will be discussed in section 6 after we introduce Riemann-type variables
in section 5.

4.1. Unidirectional reductions of the modulation equations

We begin by showing that the NLS-Whitham equations (3.7) reduce to the 1DNLS-Whitham
equations (i.e. the Whitham equations for the 1DNLS equation) when k2 = · · ·= kN = v2 =
· · ·= vN = 0 and all quantities are independent of x2, . . . ,xN. In this case, we have:

‖k‖2 = k21 , u1(Z) =
J
ρ
+U , ω = 2kU , U= ū1 − Jρ−1 , u2(Z) = 0 . (4.1a)

The Whitham equations (3.7b) and (3.7d) and the second components of (3.7a), (3.7c),
and (3.7e) are satisfied trivially, while the rest simplify to:

kt+ 2(kU)x = 0 , (4.2a)

(

U+ Jρ−1
)

t
+
(

e1 + 2JUρ−1 +U2
)

x
= 0 , (4.2b)

10
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(ρ̄)t+ 2(U ρ̄+ J)x = 0 , (4.2c)

(U ρ̄+ J)t+

(

ρ2 + 2U2ρ̄+ 2J2ρ−1 +
k2

2
(ρ ′)2

ρ
+ 4UJ

)

x

= 0 , (4.2d)

(

ρ2 +U2ρ̄+ J2ρ−1 +
k2

4
(ρ ′)2

ρ
+ 2JU

)

t

+

(

3Uk2

2

(

(ρ ′)2

ρ

)

−
k2J
2

(ρ ′)2

ρ2
+ 4Uρ2 +(4J+ 2U3)ρ̄

+ 6JU2 + 6J2Uρ−1 + 2J3ρ−2

)

x

= 0 , (4.2e)

with x= x1. The system (4.2) coincides with the modulation equations for the 1DNLS
equation [34] (cf (4.41) and (4.42) in [34]) upon trivial rescalings resulting from the differ-
ent normalization of the NLS equation in [34] compared to (1.1). Note that (4.2) comprise
five PDEs for the four solution parameters A,m,k&U (or equivalently λ1,λ2,λ3,U). Once
again, one can verify that the modulation equation obtained from (4.2e) is consistent with
those obtained from the first four PDEs above.

The above scenario is not the only one in which the Whitham modulation system (3.7)
reduces to that of the 1DNLS equation. Next we consider so-called ‘rotated’ one-dimensional
reductionswhere the rotated coordinate frame is determined byR, anN×N orthogonalmatrix.
We introduce the rotated vectorw♯ = Rw for any vectorw. Then, the rotated one-dimensional
reduction is obtained through the requirement that k and ū (or equivalently k̂ and U) be par-
allel and that both depend only on t and the first component of x♯. We choose R so that
k̂♯ = (1,0, . . . ,0)T, i.e. k♯2 = · · ·= k♯N = 0, which also implies U♯

2 = · · ·= U♯
N = 0. Since the

Whitham modulation equations (3.7) are invariant under rotations of the coordinate axes (see
below), we recover the one-dimensional reduction (4.2) when all quantities are independent
of x♯2, . . . ,x

♯
N in the rotated coordinate frame, i.e. with x and all modulation variables in (4.2)

replaced by their rotations x♯1, etc.

4.2. Invariances of the modulation equations

The Whitham modulation equations (3.7) are manifestly invariant under translations of the
spatial and temporal coordinates. Next we show that the Whitham system (3.7) preserves the
invariance of the NLS equation under rotations of the Cartesian coordinates. Namely, if x 7→
x♯ = Rx, where R is an arbitrary constant rotation matrix, (3.7) remain unchanged upon U 7→
U♯ = RU and k 7→ k♯ = Rk. One can verify that this is indeed the case using the following
identities:

R∇x =∇x♯ , U · k= U♯ · k♯ , ‖U‖= ‖U♯‖ , (4.3a)

∇x · (αk) =∇x♯ · (αk♯) , ∇x · (αU) =∇x♯ · (αU♯) , (4.3b)

R∇x · (αU⊗U) =∇x♯ · (αU♯ ⊗U♯) , R∇x · (αk⊗ k) =∇x♯ · (αk♯ ⊗ k♯) , (4.3c)

R∇x · (αk⊗U) =∇x♯ · (αk♯ ⊗U♯) . (4.3d)

where α is an arbitrary real number.
Next we show that the Whitham system (3.7) also preserves the invariance of the NLS

equation with respect to scaling and spatial reflections and Galilean transformations. Recall
that, if q(x, t) is any solution of the NLS equation, so are q♯(x, t) = αq(αx,α2t), q♯(x, t) =
q(−x, t) and q♯(x, t) = q(x− 2wt, t)ei(w·x−∥w∥2t) where all transformation parameters are real-
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valued. We next show that the modulation equations (3.7) are invariant under each of these
transformations. Specifically, letting q♯(x, t) = [ρ♯(x, t)]1/2 eiϕ

♯(x,t), we have, for the scaling
symmetry,

ρ♯(x, t) = α2ρ(αx,α2t) , ϕ♯(x, t) = ϕ(αx,α2t) , (4.4)

and the dependent variables of the Whitham equations become

λ♯j (x, t) = α2λj(αx,α2t) , j= 1,2,3 , (4.5a)

k♯(x, t) = αk(αx,α2t) , U♯(x, t) = αU(αx,α2t) , J♯(x, t) = α3J(αx,α2t) . (4.5b)

Using (4.4) and (4.5), one can show that the Whitham modulation equations (3.7) remain
unchanged. Similarly, it can be seen that spatial reflections leave the modulation equations
invariant upon the following transformation of the dependent variables:

ρ♯(x, t) = ρ(−x, t) , λ♯j (x, t) = λj(−x, t) , j= 1,2,3 , k♯(x, t) =−k(−x, t) , (4.6a)

U♯(x, t) =−U(−x, t) , J♯(x, t) = J(−x, t) . (4.6b)

Finally, with regards to Galilean transformations, writing q♯(x, t) =
√

ρ♯(x, t)eiϕ
♯(x,t)

implies

ρ♯(x, t) = ρ(x− 2wt, t) , ϕ♯(x, t) = ϕ(x− 2wt, t)+w · x−‖w‖2t . (4.7)

The dependent variables in the modulation equations (3.7) become

λ♯j (x, t) = λj(x− 2wt, t) , j= 1,2,3 , (4.8a)

k♯(x, t) = k(x− 2wt, t) , U♯(x, t) = U(x− 2wt, t)+w , J♯(x, t) = J(x− 2wt, t) . (4.8b)

Using (4.8), one can verify that the modulation equations (3.7) remain invariant under
the above Galilean transformation. The Riemann-type variables, which will be introduced in
section 5, change as follows under the above transformations:

r♯j (x, t) = αrj(αx,α
2t), r♯j (x, t) = rj(−x, t), r♯j (x, t) = rj(x− 2wt, t)+w · k̂/2, j= 1,2,3,4 .

(4.9)

4.3. Harmonic and soliton limits of the modulation equations in physical variables

The harmonic and soliton limits of the Whitham equations for the KdV and 1DNLS equations
have proven to be quite useful to study various nonlinear dynamical scenarios of practical
interest [20, 42, 52]. The same is true for the harmonic and soliton limits of the KP-Whitham
equations [14, 48–50]. We therefore expect that the same will also be true for the harmonic
and soliton limit of the NLS equation in multiple spatial dimensions.

Like with the periodic solution, the harmonic limit of the Whitham equations is the limit
m→ 0, corresponding to λ2 → λ+1 . Recall that in this limit the solution becomes a plane wave.
The integrals in (3.8) simplify considerably:

ρ= λ1 , ρ2 = λ21 ,
( (ρ ′)2

ρ

)

= 0 , ρ−1 = 1/λ1 , ρ−2 = 1/λ21 , J= σλ1
√

λ3 .

(4.10)

Then, the linear dispersion relation is

ω = 2‖k‖
(

k̂ · ū−σ
√

π2‖k‖2 + ρ̄2
)

, (4.11)
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the averaged energy limits to h̄= ρ̄‖ū‖2 + ρ̄2 and the Whitham Equations (3.7) reduce to:

kt+∇ω = 0 , (4.12a)

ūt+∇
(

2ρ̄+ ‖ū‖2
)

= 0 , ∇× ū= 0 , (4.12b)

ρ̄t+ 2∇ · (ρ̄ū) = 0 , (4.12c)

(ρ̄ū)t+∇(ρ̄2)+ 2∇ ·
(

ρ̄ū⊗ ū
)

= 0 , (4.12d)

h̄t+∇·
(

2(h̄+ ρ̄2)ū
)

= 0 . (4.12e)

Again, not all of these equations are independent. For example, one can derive (4.12d)
using (4.12b) and (4.12c). Also, note that the variable k is immaterial, since its value does
not affect the solution, and (4.12a) is decoupled from the other PDEs. Thus, equations (4.12b)
and (4.12c), which are equivalent to the shallow water equations, are by themselves a closed
system of evolution PDEs for the parameters of the plane wave solution, ρ̄ and ū. Nonetheless,
(4.12a) describes the evolution of a harmonic wave propagating on top of the mean flow.

Finally, we discuss the opposite limit, namely, the soliton limit of the Whitham modulation
system (3.7), obtained for m→ 1 corresponding to λ2 → λ3. In this limit, the integrals in (3.8)
become:

ρ= λ3 , ρ2 = λ23 , ‖k‖2
( (ρ ′)2

ρ

)

= 0 , ρ−1 = 1/λ3 , ρ−2 = 1/λ23 . (4.13)

Then (3.7a) and (3.7b) are trivially satisfied, and the rest simplify to:

ūt+∇
(

2ρ̄+ ‖ū‖2
)

= 0 , (4.14a)

ρ̄t+ 2∇· (ρ̄ū) = 0 , (4.14b)

(ρ̄ū)t+∇(ρ̄2)+ 2∇·
(

ū⊗ ρ̄ū
)

= 0 , (4.14c)

h̄t+∇·
(

2(h̄+ ρ̄2)ū
)

= 0 . (4.14d)

Note that, similar to before, we can derive equation (4.14c) and (4.14d) from (4.14a)
and (4.14b). Therefore, we have a system of N+ 2 PDEs for the dependent variables ū and
ρ̄= λ2. But in this case, we are missing PDEs for λ1 and k̂ that define the soliton amplitude and
its propagation direction, which are needed to completely determine the soliton solution. This
deficiency is also present in the one-dimensional case. The one-dimensional case is simpler,
however, because, in that case, k is a one-component vector, and therefore k̂=±1, constant.
The soliton limit is singular so caremust be taken in its calculation. In any case, both in the one-
dimensional and higher-dimensional situation, the problem is eliminated by the transformation
to Riemann-type variables, as we will see later.

5. 2DNLS-Whitham equations in Riemann-type variables

In this section and the next one we temporarily restrict our attention to the two-dimensional
case and perform suitable changes of dependent variables to simplify the form of the 2DNLS-
Whitham equations.

WhenN= 2, themodulation system (3.7) consists of eight PDEs for six dependent variables
in the independent variables x= (x,y)T and t, plus the two scalar constraints (3.7b) and (3.7d).
We will use the four scalar conservation of waves equations (3.7a) and (3.7c) together with
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the averaged conservation of mass (3.7e) and one of the components of the conservation of
momentum equations (3.7f ), neglecting the compatibility conditions (3.7b) and (3.7d) as well
as the conservation of energy (3.7g). Importantly, however, the resulting Whitham equations
are equivalent to those obtained by working with a different set of averaged equations [5].

As in the one-dimensional case, the transformation involves two steps. The first step is the
change of dependent variables from (A,k1,k2,m, ū1, ū2) to Y= (

√
λ1,

√
λ2,

√
λ3,U1,U2,q),

with

q= k2/k1 = tanφ, (5.1)

similar to [2], where φ= arctan(k2/k1) (not to be confused with the fast phase ϕ(Z) that was
used in sections 2 and 3) identifies the direction of the periodic wave’s fronts:

k̂= (cosφ,sinφ)T . (5.2)

The second step of the transformation is then defined by the map from λ1,λ2,λ3 and U1 to the
‘Riemann-type’ variables ṙ1, ṙ2, ṙ3, ṙ4 via the transformation

U1 =
1
2 cosφ(ṙ1 + ṙ2 + ṙ3 + ṙ4), (5.3a)

λ1 =
1
4 (ṙ1 − ṙ2 − ṙ3 + ṙ4)2, λ2 =

1
4 (ṙ1 − ṙ2 + ṙ3 − ṙ4)2, λ3 =

1
4 (ṙ1 + ṙ2 − ṙ3 − ṙ4)2 .

(5.3b)

The variables ṙ1, . . . , ṙ4 are one possible two-dimensional generalization of the Riemann
invariants of theWhitham equations for the 1DNLS equation. Note that in this work the overdot
does not denote differentiation with respect to time.

Recall that the existence of Riemann invariants for (1+1)-dimensional hydrodynamic-type
systems is intimately tied to the integrability properties of the modulation equations. Using the
one-dimensional Riemann invariants as dependent variables in higher-dimensional systems
diagonalizes their one-dimensional reductions, and makes the equations more advantageous
for analysis (e.g. see [25]). We will show below that, for both the two-dimensional and three-
dimensional cases, a suitable generalization of the one-dimensional Riemann invariants allows
one to write the modulation equations in a concise and convenient form.

In terms of ṙ1, . . . , ṙ4, the periodic solution (2.17) becomes

ρ(Z) = 1
4 (ṙ1 − ṙ2 − ṙ3 + ṙ4)2 +(ṙ2 − ṙ1)(ṙ4 − ṙ3)sn2(2KmZ|m) , (5.4a)

m=
(ṙ2 − ṙ1)(ṙ4 − ṙ3)
(ṙ3 − ṙ1)(ṙ4 − ṙ2)

. (5.4b)

Moreover, Ṙ= (ṙ1, ṙ2, ṙ3, ṙ4,U⊥,q)T satisfies the hydrodynamic system

Ṙt+M1Ṙx+M2Ṙy = 0 . (5.5)

The matricesM1 andM2 are rather complicated, and we therefore omit them for brevity. When
k2 = U⊥ = 0, however, the last two equations in (5.5) are trivially satisfied, and the first four
reduce to the Whitham equations for the 1DNLS equation in Riemann invariant (diagonal)
form [28, 47]:

∂ṙ
∂t

+V
∂ṙ
∂x

= 0 , (5.6)

with

ṙ= (ṙ1, . . . , ṙ4)
T, V̇= diag(V̇), V̇= (V̇1, . . . , V̇4)

T, (5.7)
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V̇1 = 2Vo+
2(ṙ2 − ṙ1)(ṙ4 − ṙ1)Km

(ṙ4 − ṙ2)Em− (ṙ4 − ṙ1)Km
, V̇2 = 2Vo+

2(ṙ2 − ṙ1)(ṙ3 − ṙ2)Km
(ṙ3 − ṙ2)Km− (ṙ3 − ṙ1)Em

, (5.8a)

V̇3 = 2Vo+
2(ṙ3 − ṙ2)(ṙ4 − ṙ3)Km

(ṙ4 − ṙ2)Em− (ṙ3 − ṙ2)Km
, V̇4 = 2Vo+

2(ṙ4 − ṙ1)(ṙ4 − ṙ3)Km
(ṙ4 − ṙ1)Km− (ṙ3 − ṙ1)Em

, (5.8b)

with Vo = U1.
The Whitham modulation system (5.5) can be further simplified by introducing a modified

set of Riemann-type variables:

rj = cosφ ṙj , j= 1, . . . ,4 , (5.9a)

with q= tanφ as before. Moreover, the curl-free constraint (3.4d) yields (see section 7 for
details)

p= secφ U⊥ , (5.9b)

where the perpendicular component of U is defined by

U⊥ = U · k̂⊥ , k̂⊥ = (−sinφ,cosφ)T . (5.10)

The Whitham modulation equations (5.5) then reduce to the following form:

∂R
∂t

+A
∂R
∂x

+B
∂R
∂y

= 0 , (5.11)

where R= (r1, . . . ,r4,q,p)T,

A=

(

A4×4 A4×2

A2×4 A2×2

)

, B=

(

B4×4 B4×2

B2×4 B2×2

)

, (5.12a)

with g= 1+ q2 as in [5] and

A4×4 = V− q2U114 + q2(1⊗ r+ r⊗ 1) , A2×2 = 2

(

(1− q2)U1 −q2
q2(2U2

1 − s2) gU1

)

, (5.12b)

A4×2 =−q
(

2U1r−Vr+ a/g , U11− (2(q2 − 1)r+V)/g
)

, A2×4 = gq
(

− 1 , 2(U11− r)
)T
,

(5.12c)

B4×4 = q(V+U114)+ 2p I4 − q(1⊗ r+ r⊗ 1) , B2×2 = 2

(

p+ 2qU1 q
−q(2U2

1 − s2) p

)

,

(5.12d)

B4×2 = 1/(2g)
(

2a , (1− q2)(4r−V)
)

, B2×4 =−A2×4/q , (5.12e)

with

r= (r1, . . . ,r4)
T, (5.12f )

V= diag(V), V= (V1, . . . ,V4)
T, (5.12g)

a= 1
3

[

4U1(1− 3q2)r− 2U1V− (1+ 3q2)((s2 − 2U2
1)1−Vr)

]

, (5.12h)

where U1 = (r1 + r2 + r3 + r4)/2, V1, . . . ,V4 are as in (5.8) but with (r1, . . . ,r4) instead of
(ṙ1, . . . , ṙ4), 1= (1, . . . ,1)T, In is the n× n identity matrix, 1n denotes the n× n matrix with
all entries equal to one, and

sn = rn1 + rn2 + rn3 + rn4 . (5.13)
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In component form, the Whitham modulation equations (5.11) are [5]

∂rj
∂t

+Vj
∂rj
∂x

+(qVj+ 2p)
∂rj
∂y

+ hj = 0, j= 1,2,3,4, (5.14a)

∂q
∂t

+ 2
(

gU1 + pq
)∂q
∂x

+ 2
D
Dy

[

gU1 + pq
]

= 0 , (5.14b)

∂p
∂t

+ 2gU1
∂p
∂x

+ 2p
∂p
∂y

+
D
Dy

[

g(s2 − 2U2
1)
]

= 0 , (5.14c)

where

hj = 2q(U1 − rj)
DU1

Dy
−

1
2
q
Ds2
Dy

+ q(Vj− 2U1)

(

rj
∂q
∂x

+
1
2
∂p
∂x

)

+
aj
g
Dq
Dy

−
1− q2

2g
(Vj− 4rj)

Dp
Dy

(5.15a)

and Dy is the ‘convective’ derivative as in [2]:

D
Dy

=
∂

∂y
− q

∂

∂x
. (5.15b)

The steps to obtain (5.14) are just a special case of the ones needed to simplify theWhitham
equations for the three-dimensional NLS equation, which will be discussed in section 7. All the
calculations in section 7 can be trivially reduced to the two-dimentional case by simply taking
(q1,q2) = (q,0) and (p1,p2) = (p,0) there. Therefore we omit the details here for brevity.

Note the necessary compatibility condition for equations (5.14) in which the initial data is
subject to the curl-free constraints ∇× ū=∇× k= 0, similarly to the KP equation [2, 5].
In section 7 we will show how these constraints can be written out explicitly in terms of the
Riemann-type variables.

6. Further symmetries and reductions of the 2DNLS-Whitham equations

Both of the sets of Riemann-type variables Ṙ and R introduced in section 5 are useful to study
further symmetries of the 2DNLS-Whitham system.

6.1. Reduction to the Whitham equations for the radial NLS equation

The Whitham equations for the 2DNLS equation admit a self-consistent reduction to the
Whitham equations for the radial NLS equation, which were recently derived [4]. To show
this, we first perform a change of independent variables from the Cartesian coordinates x and
y to the polar coordinates

R=
√

x2 + y2 , θ = arctan(y/x) . (6.1)

Using the definition of the convective derivative Dy in (5.15b), we find

Df
Dy

=
(y− qx)

R
∂f
∂R

+
(x+ qy)
R2

∂f
∂θ

. (6.2)
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Equations (5.14b) and (5.14c) in polar coordinates then become, respectively,

qt+ g
4
∑

i=1

[

(sinθ− qcosθ)(ri)R+
(cosθ+ qsinθ)

R
(ri)θ

]

+ 2q(sinθ− qcosθ)pR

+
2q
R
(cosθ+ qsinθ)pθ +

[

2U1(1− q2)cosθ+ 2(p+ 2qU1)sinθ
]

qR

+
[

2(p+ 2qU1)cosθ− 2U1(1− q2)sinθ
]qθ
R

= 0 , (6.3a)

pt+ 2g
4
∑

i=1

(ri−U1)

[

(sinθ− qcosθ)(ri)r+(cosθ+ qsinθ)
(ri)θ
r

]

+ 2(gU1 cosθ+ psinθ)pR

+ 2(pcosθ− gU1 sinθ)
pθ
R

+ 2q(s2 − 2U2
1)
[

(sinθ− qcosθ)qR+(cosθ+ qsinθ)
qθ
R

]

= 0 .

(6.3b)

We then look for a reduction of (6.3) and the remaining four Whitham equations (5.14a) in
which q= tanθ = y/x. With this assumption, (6.3) simplify considerably. We also seek solu-
tions in which the Riemann-type variables ṙ1, . . . , ṙ4 are independent of the angular coordinate
θ. Recall that the variables r1, . . . ,r4 appearing in (6.3) are related to ṙ1, . . . , ṙ4 by (5.9a). Thus

∂ri
∂R

=
1√
g
∂ṙi
∂R

− qri
g3/2

∂q
∂R

,
∂ri
∂θ

=− qṙi
g3/2

∂q
∂θ

. (6.4)

Substituting the above expression into (6.3a) and (6.3b) yields, respectively,

pθ + cotθp= 0 , (6.5a)

pt+ 2(U1 secθ+ psinθ)pR+ 2(pcosθ− tanθ secθU1)pθ/R= 0 . (6.5b)

Equation (6.5a) yields p(R,θ, t) = C(R, t) cscθ, with C(R, t) to be determined. Then,
substituting this expression into (6.5b) yields Ct+ 2(U1 secθ+C)CR− 2(C cot2 θ−
U1 secθ)C/R= 0, whose only self-consistent solution is C= 0, implying p(R,θ, t) = 0.

Now we turn our attention to the reduction of the first four Whitham modulation equations,
namely (5.14a). Tedious but straightforward calculations show that, when written in the
polar coordinates (6.1), and using q= tanθ and p= 0 as well as (6.4), the four modulation
equations (5.14a) become exactly the Whitham equations for the radial NLS equation derived
in [4]:

∂ṙ
∂t

+ V̇
∂ṙ
∂R

+
ḃ
R
= 0 , (6.6)

with ṙ= (ṙ1, . . . , ṙ4)T and V̇= diag(V̇) as in section 5, with ḃ= (ḃ1, . . . , ḃ4)T,

ḃ1 = 2V2
o− 1

3 (ṙ2 + ṙ3 + ṙ4)V1 − 1
3 [(ṙ2 + ṙ3)2 +(ṙ3 + ṙ4)2 +(ṙ2 + ṙ4)2] , (6.7a)

ḃ2 = 2V2
o− 1

3 (ṙ1 + ṙ3 + ṙ4)V2 − 1
3 [(ṙ1 + ṙ3)2 +(ṙ3 + ṙ4)2 +(ṙ1 + ṙ4)2] , (6.7b)

ḃ3 = 2V2
o− 1

3 (ṙ1 + ṙ2 + ṙ4)V3 − 1
3 [(ṙ1 + ṙ2)2 +(ṙ2 + ṙ4)2 +(ṙ1 + ṙ4)2] , (6.7c)

ḃ4 = 2V2
o− 1

3 (ṙ1 + ṙ2 + ṙ3)V4 − 1
3 [(ṙ1 + ṙ2)2 +(ṙ2 + ṙ3)2 +(ṙ3 + ṙ1)2] , (6.7d)

and Vo = 1
2 (ṙ1 + ṙ2 + ṙ3 + ṙ4) as before. In terms of the physical variables, the assumption

q= tanθ implies that the wavefronts are oriented radially, and the requirement p= 0 means
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that the mean flow has no transversal component either, which are both conditions that are
consistent with a radially symmetric reduction.

6.2. Harmonic limit and soliton limit of the 2DNLS-Whitham equations in Riemann-type
variables

In section 4 we studied the harmonic limit and the soliton limit of the modulation equations in
physical variables, and we saw that the singular soliton limit yields fewer equations than are
needed to describe the parameters of the soliton solutions of the 2DNLS equation. We next
study the corresponding limits of the Whitham modulation equations in Riemann-type vari-
ables, and we show how the transformation to Riemann-type variables eliminates this problem
and yields a closed system of equations.

The harmonic limit (m→ 0) corresponds to either r2 → r+1 or r3 → r−4 . In the former case,
the PDE (5.14a) with j= 1 and the one with j= 2 coincide, as needed for the limit to be a
self-consistent reduction, and the Whitham modulation system (5.11) then becomes

Rt+Ao.1Rx+Bo.1Ry = 0 , (6.8a)

with R= (r1,r3,r4,q,p)T. The matrices Ao.1 and Bo.1 are simply the matrices A and B from
section 5 with r2 = r1 and the second row and column omitted. Moreover, the Riemann speeds
reduce to

V1 = V2 = 4r1 −
(r3 − r4)2

2r1 − r3 − r4
, V3 = 3r3 + r4 , V4 = r3 + 3r4 , (6.8b)

while h1, . . . ,h4 are still given by (5.15a) with r2 = r1. In the latter case (i.e. r3 → r−4 ), the
PDE (5.14a) with j= 3 and the one with j= 4 coincide, and the Whitham modulation sys-
tem (5.11) then becomes

Rt+Ao.2Rx+Bo.2Ry = 0 , (6.9a)

with R= (r1,r2,r3,q,p)T. The matrices Ao.2 and Bo.2 are just the matrices A and B from
section 5 with r4 = r3 and the fourth row and column omitted. The Riemann speeds reduce
to

V1 = 3r1 + r2 , V2 = r1 + 3r2 , V4 = V3 = 4r3 +
(r1 − r2)2

r1 + r2 − 2r3
, (6.9b)

with h1, . . . ,h4 now given by (5.15a) with r4 = r3. In both cases, it is straightforward to
verify that, once the transformation to Riemann-type variables is inverted and the modulation
equations are written back in terms of the physical variables, one recovers the system (4.12).

The soliton limit (m→ 1) corresponds to r3 → r+2 . In this case, the PDEs (5.14a) with j= 3
and the one with j= 2 coincide, and the remaining equations become

Rt+A1Rx+B1Ry = 0 , (6.10a)

with R= (r1,r2,r4,q,p)T. The matrices A1 and B1 are A and B from section 5 with r3 = r2
and the fourth row and column omitted. The Riemann speeds reduce to

V1 = 3r1 + r4 , V2 = V3 = r1 + 2r2 + r4 V4 = r1 + 3r4 , (6.10b)

where h1, . . . ,h4 are still given by (5.15a) with r3 = r2. As in the harmonic limit, it is straight-
forward to verify that, once the transformation to Riemann-type variables is inverted and the
modulation equations are written back in terms of the physical variables, one recovers the
system (4.14). In this case, however, the equations in Riemann-type variables also allow us
to obtain the two previously missing modulation equations, which determine the evolution of
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k̂ and the soliton amplitude a= λ3 −λ1. One of these equations is immediate, since (5.14b)
directly determines q= tanφ and therefore k̂. As for the amplitude equation, note that (5.3b)
yields λ3 −λ1 = sec2φ(r4 − r2)(r3 − r1). Therefore, the modulation equation for r1, r2 = r3,
r4, and q determine the evolution of the soliton amplitude and direction.

7. Whitham modulation equations for the NLS equation in three spatial
dimensions

We now show how, thanks to the rotation-invariant form of all equations in sections 2 and 3,
the results of section 5 are easily generalized to the NLS equation in three spatial dimensions.

7.1. Set-up and resulting 3DNLS-Whitham system

The Madelung transformation (2.1) yields the same hydrodynamic system of PDEs (2.2) as
well as the mass, momentum and energy conservation laws (2.4) in differential form, now
with u= (u1,u2,u3)T, x= (x,y,z)T and ∇= (∂x,∂y,∂z)

T. The two-phase ansatz (2.6) is also
the same, now with k= (k1,k2,k3)T and v= (v1,v2,v3)T, and the curl-free condition (2.9) is
now ∇× u= 0. The only difference is the number of independent parameters in the peri-
odic solutions: eight in three spatial dimensions as opposed to six in two spatial dimensions.
The whole derivation in section 3 also remains the same, including the averaged conservation
laws (3.4) and the Whitham modulation equations (3.7), again the only difference being the
number of equations, which in three dimensions is eleven evolutionary equations.

The first point at which the derivation for the three-dimensional case diverges from the
two-dimensional one is the transformation to Riemann-type variables. Compared to [5], the
process here is made much easier by the availability of the second conservation of waves
equation (3.4c), which allows us to bypass the averaged conservation of energy, which, in
turn, greatly simplifies the calculations even in the presence of a third spatial dimension. We
begin with the natural generalization of the parametrization (5.2) for k̂, namely:

k̂= (cosφ,sinφcosα,sinφsinα)T . (7.1a)

q1 = k2/k1 = tanφ cosα, q2 = k3/k1 = tanφ sinα, (7.1b)

g= 1+ q21 + q22 = 1/k21 = sec2φ. (7.1c)

The leading-order part (2.14) of the curl-free condition (2.9) now consists of three
equations. The first two of them are k1u ′

2 = k2u ′
1 and k1u ′

3 = k3u ′
1, which, when integrated,

yield

u♭(Z) = (u2(Z),u3(Z))
T = u1(Z)q+ p , (7.2)

with q= (q1,q2)T, p= (p1,p2)T, and p1, p2 are additional modulation variables depending on
the slow variables x and t that appear due to integration in Z. For any three-component vec-
tor w= (w1,w2,w3)

T we introduce the ‘flat’ notation w♭ = (w2,w3)
T, which we use extens-

ively, to denote the two-component vector comprised of the second and third components of
the vector w. The third equation, k2u ′

3 = k3u ′
2 is automatically satisfied. Also, averaging (7.2),

we obtain the two additional relations:

ū♭ = ū1q+ p , (7.3a)

U♭ = U1q+ p . (7.3b)
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Similarly, the first component of (3.6b) yields

u1(Z) = U1 + Jk1/(‖k‖ρ(Z)) , (7.3c)

together with

ω = 2k1(gU1 + q · p) . (7.3d)

Finally, we define the Riemann-type variables r1, . . . ,r4 via the same transformation as in
section 5, namely:

U1 =
1
2 (r1 + r2 + r3 + r4), (7.4a)

λ1 =
1
4 g(r1 − r2 − r3 + r4)2, λ2 =

1
4 g(r1 − r2 + r3 − r4)2, λ3 =

1
4 g(r1 + r2 − r3 − r4)2.

(7.4b)

Then, in sections 7.2–7.4 below, we show that the Whitham modulation equations (3.7)
yield the eight-component system of equations

∂r
∂t

+V
∂r
∂x

+(q⊗V+ 2p⊗ I4) ·∇♭r+ h(r,q,p) = 0, (7.5a)

∂q
∂t

+ 2(U1 + q ·U♭)
∂q
∂x

+ 2D♭ (U1 + q ·U♭) = 0 , (7.5b)

∂p
∂t

+ 2(U1 + q ·U♭)
∂p
∂x

+D♭ (g(ẽ1 −U2
1)+ ‖p‖2) = 0 . (7.5c)

Here, as before, r= (r1, . . . ,r4)T,V= diag(V)withV= (V1, . . . ,V4)
T as in (5.12g), and the

dot product in (7.5a) operates on the two-component vectors to its left and its right. That is, in
component form, for each j= 1, . . . ,4 the third term in (7.5a) is the dot product between qVj+
2p and ∇♭rj. Additionally, (7.5b) and (7.5c) contain the three-dimensional generalization of
the convective derivative of [2] and section 5, namely:

D♭ = (Dy,Dz)
T =∇♭ − q∂x , (7.6a)

where∇♭ = (∂y,∂z)
T and

D
Dy

=
∂

∂y
− q1

∂

∂x
,

D
Dz

=
∂

∂z
− q2

∂

∂x
. (7.6b)

The term h(r,q,p) = (h1, . . . ,h4)T in (7.5a) is given by

hj = 2(U1 − rj)q ·D♭U1 − 1
2q ·D♭s2 +(Vj− 2U1)q ·

(

rj
∂q
∂x +

1
2
∂p
∂x

)

− 1
4 (Vj− 4rj)D♭ · p

+ ajD♭ · q+(bj/g) tr[(q⊗ q)(D♭ ⊗ q)] + ((Vj− 4rj)/g) tr[(q⊗ q)(D♭ ⊗ p)], (7.7a)

with

aj = 1
3 [2(2rj−Vj)U1 − s2 + 2U2

1 +Vjrj], bj = rj(Vj− 4U1)− s2 + 2U2
1 + aj, (7.7b)

for j= 1, . . . ,4. The sn are as in (5.13), and ẽ1 = g(λ1 +λ2 +λ3) in (7.5c), is similar to (2.22).
Equations (7.5a)–(7.5c) and (7.7a) should be compared to (5.14a)–(5.14c) and (5.15a) in the
two-dimensional case. Note that, while h4(r,q,p)might give the impression of a forcing term
in (7.5a), that is not the case in reality, as (7.7a) shows that h4(r,q,p) is in fact a homogenous
first-order differential polynomial in r, q and p, and therefore (7.5) is indeed a system of PDEs
of hydrodynamic type like its one-dimensional and two-dimensional counterparts.

Similarly to the two-dimensional case, the 3DNLS-Whitham modulation equations (7.5)
are subject to the compatibility conditions ∇× ū(x,0) = 0 and ∇× k(x,0) = 0 at t= 0. In

20



J. Phys. A: Math. Theor. 56 (2023) 025701 A Abeya et al

appendix ‘Detailed steps in the derivation of the 3DNLS-Whitham system’ we show that, in
terms of the dependent variables defined above, these constraints become, respectively,

k1qx = D♭k1 , k1px = 2((∇rk1)
TR4) ·D♭r− 2U1D♭k1 , (7.8)

where ∇r = (∂r1 , . . . ,∂r4)
T, R4 = diag(r1, . . . ,r4), and the dot product operates on the four-

component vectors to its left and its right. Equations (7.8) are conditions that must be satisfied
by the initial conditions for (7.5) in order for its solutions to represent modulations of actual
one-phase solutions of the NLS equation (1.1).

7.2. Derivation of the 3DNLS-Whitham system: equations for the auxiliary variables

To derive the evolution equation (7.5b) for q, we split the first conservation of waves
equation (3.4a) and rewrite it using the convective derivatives Dy and Dz defined in (7.6b),
to obtain

k1,t+ωx = 0 , qt+(D♭ω)/k1 = 0 , qx = (D♭k1)/k1 , (7.9)

with ω as in (7.3d). The first of equations (7.9) will be used later to derive (7.5a). Substituting
the third equation in (7.9) into the second one and using (7.3d) yields the desired evolution
equation (7.5b). Note also that the third equation in (7.9) is precisely the first of the con-
straints (7.8).

Next, to derive the evolution equation (7.5c) for p, we start with the constraint (3.4d) for
the second conservation of waves equation. Using (7.3), (3.4d) yields

(ū1q+ p)x =∇♭ū1 . (7.10)

Averaging (7.3c) over the unit period, we can rewrite the above as

∂x
[

(U1 + Jρ−1/g1/2)q+ p
]

=∇♭

(

U1 + Jρ−1/g1/2
)

, (7.11)

and simplifying further we obtain

px = D♭U1 +D♭

(

Jρ−1/g1/2
)

−
(

U1 + Jρ−1/g1/2
)

(D♭k1)/k1 . (7.12)

Now we use the second conservation of waves (3.4c), written in the form of (3.7c). From the
second and third components, together with the above relations, we have

∂t
((

U1 + Jρ−1/g1/2
)

q+ p
)

+∇♭

(

g(U2
1 + ẽ1)+ ∥p∥2 + 2U1q · p+ 2(gU1 + q · p)Jρ−1/g1/2

)

= 0 .

(7.13)

Simplifying yields

pt+D♭

(

g(U2
1 + ẽ1)+ ∥p∥2 + 2U1p · q

)

− 2U1D♭(gU1 + p · q)+ 2(gU1 + p · q)
(

D♭

(

Jρ−1/g1/2
)

−
(

U1 + Jρ−1/g1/2
)

(D♭k1)/k1
)

= 0 . (7.14)

Using (7.12) yields the desired equation (7.5c).

7.3. Derivation of the 3DNLS-Whitham system: convective derivatives

It remains to derive the four equations in (7.5a) for the Riemann-type variables r1, . . . ,r4. To
this end, we use the two conservation of waves equations (3.7a) and (3.7c) (as well as the
compatibility conditions (3.7b) and (3.7d)) along with the averaged conservation of mass and
momentum equations (3.7e) and (3.7f ). The process comprises three main steps.

The first step is the further simplification of the averaged conservation laws. Note that

k21 = g(λ3 −λ1)/4K
2
m . (7.15)

21



J. Phys. A: Math. Theor. 56 (2023) 025701 A Abeya et al

For convenience we also introduce the quantity M= ρu/g= (M1,M2,M3)
T, with

M1 := ρu1/g= U1ρ/g+ J̃ , M♭ :=M1q+(ρ/g)p= (ρ/g)U♭ + J̃q , (7.16)

and J̃= k̂1 J/g. Then, using (7.3d) one can rewrite the modulation equations (3.7a) and (3.7e)
as follows:

k1,t+ 2[k1(U1 + q ·U♭)] = 0 , (7.17)

(ρ)t+ 2(gM1)x+ 2∇♭ · (gM♭) = 0 , (7.18)

while the first component of the second conservation of waves equation (3.7c) becomes

(U1 + Jρ−1/g1/2)t+
[

g
(

ẽ1 +U2
1 + 2Jρ−1/g1/2U1

)

+ ‖p‖2 + 2(U1 + Jρ−1/g1/2)p · q
]

x
= 0 .

(7.19)

Moreover, using the equation (A.19b) we can write the averaged momentum equation (3.7f )
in component form as

(gM1)t+
[

g
(

2U1(M1 + J̃)+ ẽ2 − ρ2/g2
)

+ ρ2
]

x
+∇♭ ·

[

2g(M1 + J̃)U♭ − 2gJ̃p+ g(ẽ2 − ρ2/g2)q
]

= 0 ,

(7.20a)

(gM♭)t+
[

g
(

2(M1 + J̃)U♭ +(ẽ2 − ρ2/g2)q− 2J̃p
)

]

x
+∇♭ρ

2)+∇♭

·
[

2gM♭ ⊗U♭ + 2gJ̃U♭ ⊗ q+ g(ẽ2 − ρ2/g2)q⊗ q
]

= 0 . (7.20b)

Next, we perform a second, intermediate step to write the Whitham modulation equations
in terms of convective derivatives. First, we derive some identities that will be useful later.
Equation (3.7b) and the definition of q in (7.1b) yield

qx =
1
k1
D♭k1 , qy =

1
k1
D♭(k1q1) , qz =

1
k1
D♭(k1q2) . (7.21)

Moreover, in appendix ‘Detailed steps in the derivation of the 3DNLS-Whitham system’, we
show that these relations also yield the two constraints

Dyq2 = Dzq1 , (7.22a)

Dyp2 = Dzp1 , (7.22b)

which will prove to be useful. We then define the additional convective derivatives

Dx =
∂

∂x
+ q ·∇♭ , Dt =

∂

∂t
+ 2U1

∂

∂x
+ 2U♭ ·∇♭ . (7.23)

Now we rewrite the evolution equations for q using these convective derivatives. Specific-
ally, in appendix ‘Detailed steps in the derivation of the 3DNLS-Whitham system’ we show
that (7.17) and (7.19) yield, respectively,

Dtk1
k1

+ 2DxU1 +W1 = 0 , (7.24)

Dt(U1 + Jρ−1/g1/2)+ (U1 − Jρ−1/g1/2)
Dtk1
k1

+Dx(ẽ1 +U2
1)+ 2W2 = 0 , (7.25)

where

gW1 = q · [Dtq+ 2U1Dxq+ 2Dxp] , (7.26a)

gW2 = q ·
[

U1Dtq+ s2Dxq+
1
2
Dtp+U1Dxp

]

. (7.26b)
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Moreover, in appendix ‘Detailed steps in the derivation of the 3DNLS-Whitham system’
we also show that the conservation of mass equation (7.18) and conservation of momentum
equation (7.20a) yield, respectively,

g
[

Dt(ρ/g)− (ρ/g)
Dtk1
k1

+ 2DxJ̃
]

+(ρ/g)(q ·Dtq)+ 6J̃q ·Dxq+ 2M1
(

g∇♭ · q− q ·Dxq
)

+ 2(ρ/g)
(

g∇♭ · p− q ·Dxp
)

= 0 , (7.27)

g
[

(ρ/g)DtU1 +DtJ̃− 2J̃
Dtk1
k1

+Dxẽ2
]

+ q · [M1Dtq+(ρ/g)Dtp+ 4ẽ2Dxq] + (ẽ2 − (ρ2/g2)

+ 2U1J̃)
(

g∇♭ · q− q ·Dxq
)

+ 2J̃
(

g∇♭ · p− q ·Dxp
)

= 0 . (7.28)

Equations (7.24), (7.25), (7.27) and (7.28) comprise the four modified modulation equations
written in terms of the variables U1, λ1, λ2 and λ3 and the convective derivatives Dx and Dt.

7.4. Derivation of the 3DNLS-Whitham system: equations for Riemann-type variables

The third and final step in the derivation of (7.5a) is to express the modulation equations in
terms of r1, . . . ,r4. Recall the transformation (7.4) to the Riemann-type variables. Note that
the arrangement of indices in (7.4) is dictated by the requirement that the constraint (2.21) be
satisfied when r1 ⩽ r2 ⩽ r3 ⩽ r4, since

λ2 −λ1 = g(r4 − r3)(r2 − r1) , (7.29a)

λ3 −λ1 = g(r4 − r2)(r3 − r1) , (7.29b)

λ3 −λ2 = g(r4 − r1)(r3 − r2) . (7.29c)

In appendix ‘Detailed steps in the derivation of the 3DNLS-Whitham system’, using the
above definitions, we show that (7.24), (7.25), (7.27) and (7.28) yield, respectively,

(∇r[ logk1])
TDtr+Dxs1 +W1 = 0 , (7.30a)

2(∇r[ logk1])
TR4Dtr+Dxs2 + 2W2 = 0 , (7.30b)

3(∇r[ logk1])
TR2

4Dtr+Dxs3 + 3W3 = 0 , (7.30c)

4(∇r[ logk1])
TR3

4Dtr+Dxs4 + 4W4 = 0 , (7.30d)

where r= (r1, . . . ,r4)T,∇r = (∂r1 , . . . ,∂r4)
T and R4 = diag(r1, . . . ,r4) as before, withW1 and

W2 as in (7.26a) and (7.26b), and

gW3 =
1
4 (s2 − 2U2

1)gW1 +U1gW2 +
1
2q · [(ρ/g)Dtq+ 6J̃Dxq] + (U1ρ̄/g+ J̃)

(

g(∇♭ · q)− q ·Dxq
)

+(ρ/g)
(

g(∇♭ · p)− q ·Dxp
)

, (7.31a)

gW4 =
1
8 (6J̃−U1s2 + 2U3

1)gW1 +
1
4 (s2 − 4U2

1)gW2 +
3
2U1gW3 +

1
4

[

q · (M1Dtq+(ρ/g)Dtp+ 4ẽ2Dxq)

+ (ẽ2 − (ρ2/g2)+ 2U1 J̃)
(

g(∇♭ · q)− q ·Dxq
)

+ 2J̃
(

g(∇♭ · p)− q ·Dxp
)]

. (7.31b)

Importantly, note that, even though the second conservation of waves equation (7.25) con-
tains the third complete elliptic integral Π( · ,m) via ρ−1 (cf (3.8b)), the third elliptic integral
does not appear in the resulting modulation equation (7.30a). Note that Π(·,m) is also con-
tained in the conservation of energy equation. Next, one can collect the four equations (7.30)
and rewrite them in matrix form as

M(r)
(

∇r[logk1] ·Dtr+Dxr
)

+W= 0 , (7.32)

23



J. Phys. A: Math. Theor. 56 (2023) 025701 A Abeya et al

whereW= (W1, · · · ,W4)
T and M(r) is the Vandermonde matrix

M(r) =









1 1 1 1
r1 r2 r3 r4
r21 r22 r23 r24
r31 r32 r33 r34









. (7.33)

Multiplying (7.32) by M−1(r), we then finally obtain (7.5a), with

hj =
(−1)j+1∆ilm

|∆|(∂k/∂rj)/k
[rirlrmW1 − (rirl+ rlrm+ rmri)W2 +(ri+ rl+ rm)W3 −W4], j= 1, . . . ,4 ,

(7.34)

where j 6= i, j 6= l, j 6= m, i< l< m, summation of repeated indices is implied, and

|∆|=
4
∏

j>l

(rj− rl) , ∆ilm = (ri− rl)(rl− rm)(rm− ri) .

Finally, using equations (A.22a) and (A.22b), one can simplify h1, . . . ,h4 in (7.34) to
obtain (7.7a).

8. Discussion and perspectives

In summary, we derived the Whitham modulation equations for the defocusing NLS equation
in two, three and higher spatial dimensions using a two-phase ansatz and the averaged con-
servation laws of the NLS equation written in coordinate-free vector form, and we elucidated
various symmetries and reductions of the resulting equations, including the reduction to the
Whitham equations of the radial NLS equation as well as the harmonic and soliton limits.
We point out that, long after this work was completed, we learned that modulation equations
for multi-dimensional equations of NLS type were written down in physical variables using
a general framework in [7], and the modulation equations were used to study the stability of
the plane wave solutions. On the other hand, no transformation to Riemann-type variables was
carried out in [7].

We reiterate that the use of a two-phase ansatz in this work (as opposed to a one-phase
ansatz as in [5]) greatly simplifies the derivation, since it results in a second conservation of
waves equation that allows us to avoid using the conservation of energy equation, which is
much more complicated in comparison. Moreover, the advantage of using a two-phase ansatz
increases with the number of spatial dimensions. This is because the number of modulation
equations needed is 2N+ 2. Therefore, if one tried to derive the modulation equations in three
spatial dimensionswith a one-phase ansatz, onewould need to use additional conservation laws
for the NLS equation. This would not only lead to a much more complicated derivation, but
one would quickly exhaust the number of available conservation laws, since the NLS equation
in more than one spatial dimensions is not completely integrable, and therefore does not have
hidden symmetries resulting in an infinite number of conservation laws.

In contrast, the results of section 7 can be generalized in a straightforward way to
obtain the Whitham modulation equations in simplified form in an arbitrary number of spa-
tial dimensions. The system of modulation equations (7.5) is already written in vectorial,
dimension-independent form, with the only caveat that, with N spatial dimensions, q and
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p have N− 1 components. Moreover, all the steps of the derivation in section 7 are writ-
ten in a way that generalizes to any number of spatial dimensions. Indeed, one can intro-
duce spherical coordinates in N spatial dimensions by generalizing (7.1a) as k̂1 = cosφ1, k̂2 =
sinφ1 cosφ2, k̂3 = sinφ1 sinφ2 cosφ3, etc up to k̂N−1 = sinφ1 · · ·sinφN−2 cosφN−1 and k̂N =
sinφ1 · · ·sinφN−2 sinφN−1. Then, one introduces q1, . . . ,qN via the generalization of (7.1b),
namely, q1 = k2/k1, q2 = k3/k1, etc up to qN−1 = kN/k1, as well as p1, . . . ,pN via the nat-
ural generalization of (7.2). In this way, one obtains the generalization of (7.1c) as g=
1+ q21 + · · ·+ q2N = secφ1, and all the calculations and equations in section 7 remain valid
as long as one also redefines the operators∇♭ and D♭ accordingly.

We point out that, even though we have not done so explicitly in this work, it would be
straightforward to obtain the reduction to the Whitham equations for the radial NLS equation
from the 3DNLS-Whitham equations derived in section 7 using spherical coordinates. It would
also be straightforward to write down explicitly the harmonic and soliton limits in three spatial
dimensions, as well as all of these corresponding limits in higher dimensions.

We should comment on the importance of the constraints∇∧ k= 0 and∇∧ ū= 0. On one
hand, these constraints play a key role in the derivation. On the other hand, the final Whitham
equations (e.g. (7.5a)–(7.5c)) do not automatically ensure that these constraints are satisfied,
only that their time derivative is (similar to [2]). Because of this, the compatibility between
solutions of theWhitham system andmodulated one-phase solutions of theNLS equation is not
guaranteed a priori, and, similar to [2], onemust give initial conditions that are compatible with
the one-phase assumption. These constraints are also likely to be related to the integrability
properties of the system, as discussed below.

We emphasize that this work is foundational and that, similar to [2], the results presented
here open up a number of interesting problems, which are expected to lead to several further
advances in the near future. Specifically, we next mention and briefly discuss some of these
possible of avenues for further research.

One direction for future work is the derivation of the Whitham equations for the focus-
ing NLS equation in three spatial dimensions. We expect that this will be straightforward.
Indeed, the Whitham equations in the two-dimensional focusing case were already written in
[5] (although not in rotation-invariant form). Once the derivation of the one-phase solutions
of the NLS equation is done in dimension-invariant form, as was the case in section 2.2, the
rest of the machinery presented in this work will carry over to the case of the focusing case in
three and higher dimensions without significant changes. Of course, as in the one-dimensional
case, the resulting Whitham equations will be elliptic (i.e. the characteristic velocities will be
complex), and therefore require suitable interpretation of initial value problems; see [15, 23,
32–34, 40] as well as [13, 25] and references therein. The Whitham equations for the NLS
equation in one spatial dimension have also proved to be useful in some situations, even in the
focusing case [11, 16, 24], so one can expect that those in two and three spatial dimensions
will be useful as well.

Another important direction for future work is a study to determine whether the Whitham
modulation system derived here, or any of its reductions, are completely integrable. A notion
of integrability for multidimensional systems was put forth in [26, 27], based on the exist-
ence of infinitely many N-component reductions. Of course, the NLS equation in more than
one spatial dimension is not integrable, and therefore one would have no reason to expect
that the corresponding NLS-Whitham systems are. Still, the reductions to one-dimensional
NLS-Whitham equations are indeed integrable, and therefore it is a natural question whether
there are other integrable reductions. In this regard, we should point out that, even for the
KP equation (which is integrable), the original Whitham system derived in [2] appears not
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to be integrable, but its harmonic and soliton limits are [14]. Moreover, so are various less-
trivial one-dimensional reductions beyond the obvious reduction to the Whitham system for
the KdV equation, once one properly takes into account the analogue of the compatibility
conditions (3.4a) and (3.4b) [12].

Yet another interesting problem for future work is the issue of whether one can establish a
precise relation between the 2DNLS-Whitham system and the KP–Whitham system. It is well
known that the 1DNLS-Whitham system admits a reduction to the KdV-Whitham system [32].
It is also well known that the 2DNLS equation admits a reduction to the KP equation [41]. A
natural question is therefore whether the 2DNLS-Whitham system admits a reduction to the
KP–Whitham system. It is straightforward to see that, if one considers the same reduction
as in [32], the PDEs for r1, . . . ,r4 in the 2DNLS-Whitham system naturally reduce to those
for r1, . . . ,r3 in the KP–Whitham system. The PDE for q also reduces to the corresponding
equation in the KP–Whitham system, since it just comes from the second component of the
conservation of waves equation in both systems. The open question, however, is how one can
obtain a PDE for p that does not contain a time derivative, as prescribed in the KP–Whitham
system.

Finally, and most importantly from a practical point of view, an obvious opportunity for
future work will be the use of the modulation equations derived here to characterize the
dynamical behavior in physically significant scenarios. One important application is to the
description of DSWs [13, 32]. Some of the earliest experiments on DSWs in nonlinear optics
and Bose–Einstein condensates (BECs)—where the defocusing NLS equation is an excellent
model—involved inherently multidimensional nonlinear wave propagation [22, 34, 51, 55].
One intriguing feature, observed in both BEC and optics [34, 55], is the coherent propagation
of multidimensional DSWs with stable ring/spherical and elliptical/ellipsoidal patterns. These
observations are at odds with the known transverse instability of planar cnoidal wave solu-
tions of (1.1) [54]. Further analysis of the 2D and 3DNLS-Whitham modulation equations
may provide some analytical insight in this. Moreover, BECs are three-dimensional, so the
(3+1)-dimensional modulation equations derived here are needed to describe large amplitude
matter waves. Three-dimensional effects have been shown to be decisive in some BEC DSW
experiments [19, 43].

Various applications of the Whitham equations for the focusing and defocusing NLS
equations in one spatial dimension were already mentioned above. We should also note that,
while the full modulation system composed of equations (7.5a)–(7.5c) might appear complic-
ated, even its reductions can be useful in this regard. For example, of particular interest from
an applicative point of view are the harmonic and soliton limits. In the one-dimensional case,
soliton modulation theory and its applications were studied for the KdV equation in [42] and
for the defocusing NLS equation in [52], while the harmonic limit of the Whitham equations
for the KdV equation was studied in [20]. Similarly, the harmonic and soliton limits of the
Whitham equations for the KP equation, which were derived and analyzed in [2, 14] have
found concrete applications in [48–50]. These reductions analytically describe the evolution
of a soliton or linear waves in the presence of the slowly varying mean field ρ̄, ū. Obtaining
these modulation equations using multiple scales and a soliton ansatz is quite tedious and, to
our knowledge, has apparently only been carried out for the KdV equation in [31]. We believe
that, like with Whitham equations for the KP equation [2], the modulation equations derived
in this work will prove to be an effective tool to study several physically significant problems.
The soliton limit should prove to be particularly important in this respect, similar to the KP
equation [48–50].

We hope that the results of this work and the present discussion will provide a stimulus for
several further studies on these and related problems.

26



J. Phys. A: Math. Theor. 56 (2023) 025701 A Abeya et al

Data availability statement

No new data were created or analysed in this study.

Acknowledgments

We thank Alexandr Chernyavskiy and Dmitri Kireyev for many useful discussions on topics
related to this work. This research was partially supported by the National Science Foundation
under Grant Numbers DMS-1816934 and DMS-2009487.

Appendix

Direct derivation of the periodic solutions of the NLS equation

Herewe derive the periodic solutions of theNLS equation in an arbitrary number of dimensions
directly, without using the hydrodynamic system. We start with the one-phase ansatz

ψ(x, t) =
√

ρ(z/ε)eiΦ(z/ε) , (A.1)

where, as before, the ‘fast variable’ is Z= k · x−ωt. Substituting (A.1) into (1.1) and separ-
ating into real and imaginary parts yields respectively:

(
√
ρ) ′ ′ −√

ρ(Φ ′)2 +
ω

‖k‖2
√
ρΦ ′ − 2

‖k‖2 ρ
3/2 = 0 , (A.2a)

√
ρΦ ′ ′ +

(

2Φ ′ − ω

‖k‖2
)

(
√
ρ) ′ = 0 , (A.2b)

where, for brevity in this section, we denote a= ‖k‖2. Integrating (A.2b) yields Φ ′ up to an
integration constant J

Φ ′ =
J

‖k‖ρ +
ω

2a
. (A.3)

Substituting the phase relation (A.3), the real part (A.2a) reduces to:

(
√
ρ) ′ ′ − J2

aρ3/2
+
( ω

2a

)2√
ρ− 2

a
ρ3/2 = 0. (A.4)

Multiplying by 2(
√
ρ) ′ and integrating with respect to Z and letting f= ρ yields:

( f ′)2 =
4
a
f 3 − 4

( ω

2a

)2
f 2 + 4c1f−

4J2

a
. (A.5)

By substituting f(Z) = A+By2(Z), we get the following ODE for y:

(y ′)2 =
1
B2

[

A3

a
−A2

( ω

2a

)2
+Ac1 −

J2

a

]

1
y2

+
1
B

[

3A2

a
− 2A

( ω

2a

)2
+ c1

]

+

[

3A
a

−
( ω

2a

)2
]

y2 +
B
a
y4.

(A.6)

Now recall that the Jacobian elliptic sine y(Z) = sn(cZ|m) solves the ODE (y ′/c)2 = (1−
y2)(1−my2). By requiring that (A.6) matches the ODE for the elliptic sine, one then
obtains (2.17), with B= 4m‖k‖2K2

m as before, and with

J2 = 4aK2
mA

(

1+
A

4K2
ma

)

(A+ 4mK2
ma) , (A.7a)
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( ω

2a

)2
= 4K2

m(1+m)+
3A
a
, c1 =

1
a

[(

4mK2
ma+A

)

(4K2
ma+ 2A)+A

(

4K2
ma+A

)]

.

(A.7b)

Similar to section 2.2, we write the ODE (A.5) as ( f ′)2 = P3( f), where

P3( f) =
4
a

[

f 3 − a
( ω

2a

)2
f 2 + c1 af− J2

]

=
4
a
( f−λ1)( f−λ2)( f−λ3) , (A.8)

with λ1, . . . ,λ3 given by (2.19). Note that the requirements a⩾ 0 and 0⩽ m⩽ 1 again imme-
diately imply (2.21). The symmetric polynomials defined by λ1, λ2, and λ3 are related to the
above constants as

e1 = λ1 +λ2 +λ3 = ω2/4a , e2 = λ1λ2 +λ2λ3 +λ3λ1 = c1 a , e3 = λ1λ2λ3 = J2, (A.9)

which also allow one to recover A, a, andmwhen λ1, λ2, and λ3 are known. The above solution
contains N+ 2 independent parameters: A, m and k (since J and ω are determined by (A.7a),
(A.7b)). Next we employ the Galilean invariance of the NLS equation to apply a Galilean boost
and thereby obtain the more general family of solutions

ψ̃(x, t) = ψ(x− 2vt, t)ei(v·x−∥v∥2t)/ε =
√

ρ(z̃/ε)eiΦ̃(̃z/ε,x,t) , (A.10a)

where z̃= k · x− ω̃t , with ω̃ = ω+ 2k · v, and where

Φ̃(z̃/ε,x, t) = Φ(z̃/ε)+ (v · x−‖v‖2t)/ε. (A.10b)

The transformation adds the N new independent parameters v1, . . . ,vN. Therefore, the peri-
odic solution of the NLS equation (1.1) in N spatial dimensions contains 2N+ 2 independent
real parameters: A, m, k and v, as expected.

Calculation of the solution amplitude and second frequency and simplification of certain
terms

Here we give a few additional details on the calculation of the fluid density. Starting
from (2.10b), using (2.12) and simplifying the resulting ODE, one has

aρ ′ ′ ′ + aρ ′ (ρ
′)2 − 2ρρ ′ ′

ρ2
− 4ρρ ′ +

4J2ρ ′

ρ2
= 0 , (A.11)

where a= ‖k‖2 for brevity. Integrating w.r.t. Z yields

aρ ′ ′ − a
(ρ ′)2

ρ
− 2ρ2 + 2c1 −

4J2

ρ
= 0 , (A.12)

where c1 is an arbitrary integration constant. Multiplying (A.12) by 2ρ ′/ρ2 and integrating
with respect to Z again yields

a(ρ ′)2 = 4ρ3 − 4c2ρ
2 + 4c1ρ− 4J2 , (A.13)

with c2 another arbitrary integration constant. Letting ρ(Z) = A+By2(Z) yields the following
ODE:

(y ′)2 =
1
B2a

(A3 −A2c2 +Ac1 − J2)
1
y2

+
1
Ba

(3A2 − 2Ac2 + c1)+
(3A
a

− c2
a

)

y2 +
B
a
y4.

(A.14)

Now recall that the Jacobi elliptic sine y(Z) = sn(cz|m) solves the ODE (y ′/c)2 = (1− y2)
(1−my2). By requiring that (A.14) matches the ODE for the elliptic sine, one obtains (2.17),
with the coefficients as in (A.7a).
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Next we obtain (2.23), which determines the frequencyµ of the second phase. Asmentioned
in section 2, to this end one can use the undifferentiated version of (2.10b) (obtained from the
real part of (1.1) using (2.1) and (2.6)), which is

−ωϕ ′ + 2(k · ū)ϕ ′ + a(ϕ ′)2 + 2ρ−µ+ ‖ū‖2 − a
4

(

(lnρ) ′ ′ +
ρ ′ ′

ρ

)

= 0 . (A.15)

Differentiating (A.15) w.r.t. x and y and collecting leading-order terms yields (2.10b). How-
ever, (A.15) allows us to determine µ in a more straightforward manner. Indeed, substitut-
ing (2.11) into equation (A.15) and simplifying yields,

2aρ ′ ′ − a
(ρ ′)2

ρ
− 8ρ2 +Cρ− 4J2

ρ
= 0 , (A.16a)

where

C= 4µ− 4
(

‖ū‖2 − (Jρ−1/g1/2)2
)

. (A.16b)

Multiplying (A.16a) by ρ ′/ρ and integrating with respect to Z yields

a(ρ ′)2 = 4ρ3 −Cρ2 + 4c3ρ− 4J2 , (A.17)

with an arbitrary integration constant c3. Comparing the coefficients in (A.13) and (A.17) we
have C= 4c2 (as well as c1 = c3), which, when inserted in (A.16b), finally yields (2.23) for µ.

Finally, we provide further details on how to simplify the modulation equations (3.4) and in
particular on how to obtain (3.7f ). The averaged conservation of momentum equation (3.4f ),
when written in terms of λ1, . . . ,λ3 and U, is

(J k̂+ ρ̄U)t+∇(ρ2)+∇ ·

[

2ρ̄U⊗U+ 2J(k̂⊗U+U⊗ k̂)+
((

(ρ ′)2

2ρ

)

+ 2
J2ρ−1

∥k∥2

)

k
)

⊗ k
]

= 0 .

(A.18)

Notice that averages containing ρz can be evaluated by recalling that ρ(Z) satisfies the
ODE (2.15). Differentiating (2.15) and using the definition of the symmetric polynomials
yields

‖k‖2
2

ρ ′ ′ = 3ρ2 − 2e1ρ+ e2 , (A.19a)

and averaging over the fast variable Z gives

ρ2 =
2e1ρ− e2

3
. (A.19b)

Reordering the ODE (2.15) gives us

‖k‖2ρ22 + 4J2

ρ
= 4ρ2 − 4e1ρ+ 4e2 . (A.19c)

Averaging again over the fast variable Z and using (A.19b) yields

‖k‖2
4

(

(

(ρ ′)2

ρ

)

+
4J2

‖k‖2 ρ
−1

)

=
1
3
(2e2 − e1ρ) . (A.19d)

Finally, using (A.19d), equation (A.18) yields (3.7f ).
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Detailed steps in the derivation of the 3DNLS-Whitham system

We begin by expressing the modulation equations in terms of convective derivatives.
Using (7.21) one can see that

Dy(q2) = q2,y− q1q2,x =
Dz(k1q1)

k1
− q1

Dzk1
k1

= Dz(q1) , (A.20)

which proves (7.22a). Moreover, using (3.4d) and the fact that p= ū♭ − ū1q, one has

Dy(p2) = (ū3 − q2ū1)y− q1(ū3 − q2ū1)x = ū3,y− q1ū3,x− q2ū1,y+ q1q2ū1,x− ū1Dy(q2) ,

= ū2,z− q1ū1,z− q2ū2,x+ q1q2ū1,x− ū1Dz(q1) = Dz(p1) . (A.21a)

which yields (7.22b).
Using the identity (7.22a) and straightforward algebra, we can rewrite (7.5b) and (7.5c) as

Dtq+ 2gD♭U1 + 2q1(U1D♭q1 +D♭p1)+ 2q2(U1D♭q2 +D♭p2) = 0 , (A.22a)

Dtp− 2q1U1Dyp− 2q2U1Dzp+D♭(g(ẽ1 −U2
1)) = 0 , (A.22b)

where Dt is as in (7.23).
Next, we express the first conservation of waves equation in convective derivative form.

Recalling equations (7.17) and using (7.21) one can obtain the following,

Dtk1
k1

+ 2(U1)x+ 2q · (U♭)x = 0 . (A.23)

Simplifying further we have (7.24), with Dx as in (7.23) and with

W1 = U1(‖q‖2)x− 2q ·D♭U1 + 2q · px . (A.24)

Moreover, using (A.22a) one can simplify W1 further and obtain (7.26a).
Next, it can be easily seen that (7.19) becomes

Dt(U1 + Jρ−1/g1/2)+ g(ẽ1)x+ 2gJρ−1/g1/2(U1)x+ 2U1∥q∥
2(Jρ−1/g1/2 +U1)x− 2(U1q+ p)

·∇♭(Jρ−1/g1/2 +U1)+ 2p ·
(

(Jρ−1/g1/2 +U1)q
)

x
+(ẽ1 +U2

1 + 2Jρ−1/g1/2U1)∥q∥
2
x

+ 2(p+U1q+ Jρ−1/g1/2q) · px = 0 . (A.25)

As a direct consequence of equation (3.7d) we obtain

px =∇♭(U1 + Jρ−1/g1/2)−
(

(U1 + Jρ−1/g1/2)q
)

x
. (A.26)

Using the above relation for px and eliminating (U1)x with the help of (A.23), one can obtain
the simplified second wave conservation equation (7.25) in terms of convective derivatives,
where

W2 =
1
2

[

(ẽ1 +U2
1)‖q‖x+ 2U1q ·

(

2(U♭)x−∇♭U1 + Jρ−1/g1/2qx−D♭S
)

− q ·D♭(ẽ1 +U2
1)− (U2

1‖q‖2)x
]

.

(A.27)

Equation (A.26) yields

Jρ−1/g1/2qx−D♭

(

Jρ−1/g1/2
)

= D♭U1 − px−U1qx . (A.28)

Using the above relation along with equations (A.22a), (A.22b), (7.22b), (7.22a) and some
tedious but straightforward algebra, one obtains (7.26b).
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To express the averaged mass equation (7.18) in terms of convective derivatives, first we
replace M using (7.16) and obtain:

Dt(ρ)+ 2ρ
(

(U1)x+∇♭ ·U♭

)

+ 2
(

(gJ̃)x+∇♭ · (gJ̃q)
)

= 0 , (A.29)

Simplifying further we obtain

Dt(ρ)+ 2ρDxU1 + 2Dx(gJ̃)+ 2gM1(∇♭ · q)+ 2ρ(∇♭ · p) = 0 . (A.30)

To rewrite (A.30) in simpler form, we consider the combination (A.30)− g(ρ/g)(7.24), which
yields (7.27).

Finally, we consider the first component of the averagedmomentum equation (7.20a), using
a similar approach as before one can rewrite it as follows:

Dt(gM1)+ 2g(M1 + J̃)DxU1 + 2U1Dx(gJ̃)+Dx(gẽ2)− q ·D♭(g(ρ
2/g2))+ 2(ρ2/g2)g(q · qx)

+ g
(

ẽ2 − (ρ2/g2)+ 2U1(M1 + J̃)
)

∇♭ · q+ 2M1g∇♭ · p= 0 . (A.31)

Next, taking the combination (A.31) − U1(A.30) yields

g(ρ/g)DtU1 +Dt(gJ̃)+ 4gJ̃DxU1 +Dx(gẽ2)− q ·D♭(g(ρ
2/g2))+ 2g(ρ2/g2)(q · qx)

+ g(ẽ2 − (ρ2/g2)− 2U1J̃)+ 2gJ̃∇♭ · p= 0 . (A.32)

To simplify this equation more we consider the combination (7.20b)−(7.20a)q−(7.18)p and
obtain the following vector equation:

M1Dtq+(ρ/g)Dtp+(2U1J̃+ ẽ2)Dxq+ 2J̃Dxp− (ρ2/g2)Dxq+ gD♭((ρ
2/g2))+ 2(ρ2/g2)D♭g= 0 .

(A.33)

Finally, we consider the combination (A.32)−2gJ̃ (7.24)+q· (A.33). Using (7.22a) and after
extensive simplifications, we obtain (7.28).

Next we show that, using the transformation to Riemann-type variables (7.4), (7.24), (7.25),
(7.27) and (7.28) yield (7.30). Note first that, using (7.4), we have the following identities:

U1 =
1
2 s1 , (A.34a)

ẽ1 = s2 − 1
4 s

2
1 , (A.34b)

ẽ2 = s4 + 1
16 [−16s3s1 − 4s22 + 8s21s2 − s41] , (A.34c)

J̃= 1
3 s3 − 1

24 s1(6s2 − s21) , (A.34d)

(where again the sn are as in (5.13)), which allow us to express ẽ1, . . . , ẽ3 in terms of the
Riemann invariants via s1, . . . ,s4. The identity (A.34d) is especially important, since it allows
us to eliminate square roots from the modulation equations. Recall that (2.22) only determines
J2, and J= σ(λ1λ2λ3)

1/2, with σ =±1. On the other hand, (7.4) yields σλ1/21 = 1
2
√
g(r1 −

r2 − r3 + r4), where the sign σ here is needed because but one needs λ3 ⩾ λ2 ⩾ λ1 ⩾ 0 (cf
section 2.2), but r1 − r2 − r3 + r4 can be either positive or negative depending on the relative
magnitude of r1, . . . ,r4. (In contrast, no ambiguity arises for λ1/22 and λ1/23 when r1, . . . ,r4 are
well-ordered.) One can verify that, with this choices, the sign of both the left-hand side and
right-hand side of (A.34d) equal σ. The following formulae are also useful:

k1 =

√

(r4 − r2)(r3 − r1)

2Km
, (A.35a)
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(

∂k1
∂r1

, . . . ,
∂k1
∂r4

)T

=

√

(r4 − r2)(r3 − r1)

4K2
m

(

(r1 − r4)Km+(r4 − r2)Em
(r2 − r1)(r4 − r1)

,
(r3 − r2)Km+(r1 − r3)Em

(r2 − r1)(r3 − r2)
,

(r3 − r2)Km+(r2 − r4)Em
(r3 − r2)(r3 − r4)

,
(r4 − r1)Km+(r1 − r3)Em

(r4 − r1)(r4 − r3)

)T

.

(A.35b)

We are now ready to present the final steps of the derivation. We begin by deriving (7.24),
which is the simplest of the four equations. In this case we simply need to express Dtk1 in
terms of the Riemann invariants, i.e.

Dtk=
4
∑

j=1

∂k1
∂rj

Dtrj , (A.36)

which immediately yields (7.30a), withW1 as in (7.26a). Next, equation (7.25) simplifies due
to the identity

Dt(U1 + Jρ−1/g1/2)+ (U1 − Jρ−1/g1/2)
Dtk1
k1

=
2
k1

4
∑

j=1

rj
∂k1
∂rj

Dtrj , (A.37)

and takes the form of (7.30b), with W2 as in (7.26b). Next, taking the combina-
tion (7.27)/2+ gU1/2×(7.25)+ g(s2 − 2U2

1)/4×(7.24) and using identities (A.34) and (A.37),
yields (7.30c), whereW3 is as in (7.31a). Finally, considering the linear combination (7.28)/2
+ 3U1/2×(7.27) g(s2 + 2U2

1)/4×(7.25) + g(3J̃+U1s2 − 2U3
1)/2×(7.24), and using iden-

tities (A.34), (A.37) again, and after some tedious algebra, one finds (7.30d), with W4 as
in (7.31b).

Our last task is to show that the compatibility relations∇× k=∇× ū= 0, when written
in terms of the Riemann-type variables r= (r1, . . . ,r4)T as well as q and p, yield (7.8). To
this end, we first use the definition of q as in (7.1b) along with the compatibility condition
∇× k= 0. It can be easily seen that

k1qx = (k♭)x− k1,xq=∇♭k1 − k1,xq= D♭k1 (A.38)

(cf the third equation in (7.9)), which yields the first half of (7.8). Next, using the compatibility
condition∇× ū= 0 with the definition of ū1 as in (7.3c) one can derive (7.12), namely,

px = D♭

(

U1 + Jρ−1/g1/2
)

+
(

U1 − Jρ−1/g1/2
)D♭k1
k1

− 2U1
D♭k1
k1

. (A.39)

Using the identity (A.37), one then obtains the second half of (7.8).
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