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Abstract
We study the problem of reconstructing a perfect matching M∗ hidden in a randomly
weighted n× n bipartite graph. The edge set includes every node pair in M∗ and each
of the n(n−1) node pairs not inM∗ independently with probability d/n. Theweight of
each edge e is independently drawn from the distributionP if e ∈ M∗ and fromQ if e /∈
M∗. We show that if

√
dB(P,Q) ≤ 1, where B(P,Q) stands for the Bhattacharyya

coefficient, the reconstruction error (average fraction of misclassified edges) of the
maximum likelihood estimator of M∗ converges to 0 as n → ∞. Conversely, if√
dB(P,Q) ≥ 1 + ε for an arbitrarily small constant ε > 0, the reconstruction error

for any estimator is shown to be bounded away from 0 for both the sparse (fixed d) and
dense (growing d) regimes, resolving the conjecture in Moharrami et al. (Ann Appl
Probab 31(6):2663–2720, 2021. https://doi.org/10.1214/20-AAP1660) and Semerjian
et al. (PhysRevE 102:022304, 2020. https://doi.org/10.1103/PhysRevE.102.022304).
Furthermore, in the special case of complete exponentiallyweighted graphwith d = n,
P = exp(λ), and Q = exp(1/n), for which the sharp threshold simplifies to λ = 4,
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we prove that when λ = 4 − ε, the optimal reconstruction error is exp
(−Θ(1/

√
ε)
)
,

confirming the conjectured infinite-order phase transition in Semerjian et al. (2020).

Keywords Planted matching recovery · Information-theoretic threshold · Phase
transition · Linear assignment · Bhattacharyya coefficient

Mathematics Subject Classification 60C05 · 94A15

1 Introduction

Let M denote the set of perfect matchings on the complete bipartite graph Kn,n ,
with left-hand vertices labeled as [n] = {1, . . . , n} and right-hand vertices labeled as
[n]′ = {1′, . . . , n′}. We denote the weights on the edge e = (i, j ′) by Wi, j ′ = We.
Each perfect matching M is understood as a set of edges in Kn,n .

Definition 1 (Planted matching recovery) Consider a weighted bipartite graph G
randomly generated as follows. First sample M∗ uniformly at random from the setM
of all perfect matchings on Kn,n and connect all pairs in M∗. Then for every node pair
(i, j ′) not in M∗, connect them independently with probability d

n . Finally, for edges in
M∗, the edge weights are drawn independently from P. The remaining edge weights
are drawn independently from Q. The goal is to reconstruct the hidden matching M∗
based on G.

This problem is first proposed by [5] and motivated from tracking moving objects
in a video, such as flocks of birds, motile cells, or particles in a fluid. A slight variation
of Definition 1 is studied in [25] for unipartite graphs, where M∗ is chosen uniformly
at random from the set of all perfect matchings on the complete unipartite graph Kn

(with even n) and the edge set of G includes all n/2 node pairs in M∗ and each of the(n
2

) − n/2 node pairs not in M∗ independently with probability d
n ; the edge weights

are still independently distributed according toP for edges in M∗ andQ otherwise. In
this paper, we present our results and analysis for bipartite graphs; nevertheless, the
proof techniques can be straightforwardly extended to the unipartite version and all
conclusions hold verbatim.

Of particular interest are the following two regimes, which are the focus of [25]
and the present paper:

– Sparse model: The average degree d is a constant. In this case, the null (i.e.
unplanted) distributionQ and planted distribution P can be arbitrary distributions
independent of n.

– Densemodel: The average degree d ≡ d(n) → ∞ as n grows. In particular, when
d = n, we observe a complete bipartite graph with weights correlated with the
hidden matching. In this case, we focus on the following special case of weight
distributions, where the planted distributionP has a fixed density p (with respect to
the Lebesgue measure) and the null distributionQ has a density q of the following
form:

q(x) = 1

d
ρ
( x
d

)
(1)

123



The planted matching problem: sharp threshold and...

where ρ is some fixed density on R with ρ(0) > 0.1 This scaling is natural and
meaningful, because the magnitude of each unplanted edge weight is O(d) on
average, and each vertex is incident to an average of d unplanted edges. Under
this scaling, the minimum magnitude of the unplanted edge weights incident to a
given vertex is on the same order of O(1) as the planted edge weight. Of special
interest is the complete graph with exponential weights [21, 25], which we refer
to as the exponential model, where d = n,P = exp(λ) and Q = exp( 1n ).
Note that its unplanted version is the celebrated random assignment model studied
in [1, 14, 18, 19, 23, 27, 29]. Another special case was studied by in [5] where
P = |N(0, κ)| is a folded Gaussian and Q is uniform over [0, n].
Let M̂ ≡ M̂(G) denote an estimator of M∗ that is a set of edges on Kn,n . The

reconstruction error, namely, the fraction of misclassified edges is

�(M̂, M∗) = 1

n
|M∗�M̂|, (2)

where � denotes the symmetric set difference. We say that M̂ achieves almost perfect
recovery if E[�(M∗, M̂)] = o(1). It can be shown (see e.g. [13, Appendix A]) that
achieving a vanishing reconstruction error in expectation is equivalent to that with
high probability. Note that for any estimator M̂ = M̂(G), we have

E
[
�
(
M∗, M̂

)] = 1

n

∑

e∈E(Kn,n)

P
{
e ∈ M∗�M̂

}
. (3)

Thus the average reconstruction error is minimized by the marginal maximum a pos-
teriori (MAP) estimator, where e ∈ M̂ if and only if P {e ∈ M∗|G} ≥ P {e /∈ M∗|G},
since it minimizes each summand in (3). Note that in general the marginal MAP need
not be amatching or even be of size n. Nevertheless, it is easy to see that one can project
any estimator to the set of perfect matchings (in distance metric �) while increasing
the average reconstruction error by a factor of two.

1.1 Main results

The information-theoretic threshold of the planted matching model is determined by
the following key quantity, known has the Bhattacharyya coefficient (or Hellinger
affinity) [4]:

B(P,Q) �
∫ √

f g dμ, (4)

where f , g denote the relative density of P,Q with respect to some common domi-
nating measureμ, respectively. It is well-known that 0 ≤ B(P,Q) ≤ 1, with B(P,Q)

equals 0 (resp. 1) whenP andQ are mutually singular (resp. identical). For simplicity,

1 If ρ(0) = 0, then for each vertex, among its incident edges, the planted edge weight has the smallest
magnitude with high probability, in which case almost perfect recovery is trivially achievable.
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we assume throughout the main body of the paper that P � Q, so that their relative
density, denoted henceforth by P

Q , is well-defined. Nevertheless, even when P 
� Q
(such as the weight distributions considered in [5]), all results continue to hold (see
Appendices E.2 and E.3 for justification).

We first give a sufficient condition for the maximum likelihood estimator (MLE) to
achieve almost perfect recovery. The MLE reduces to the max-weighted matching on
Kn,n where each edge e is weighted by the corresponding log likelihood ratio, namely,

M̂ML ∈ arg max
M∈M

∑

e∈M
log

P
Q (We), (5)

which can be computed in polynomial time (as linear assignment). Note that the MLE
need not be unique. For example, in the unweighted model (see Remark 2), the MLE
is any maximum matching in the observed bipartite graph.

Theorem 1 Assume that

√
d B(P,Q) ≤ 1 + ε (6)

for some ε ≥ 0. Then there exists universal constant C > 0, such that for large enough
n,

E
[
�(M∗, M̂ML)

] ≤ C max

{

log(1 + ε),

√
log n

n

}

.

Note that Theorem 1 allows ε to take arbitrary values, including 0. In particular, if√
dB(P,Q) ≤ 1, then E[�(M∗, M̂ML)] ≤ C

√
log n/n; if (6) holds with ε → 0 as

n → ∞, then M̂ML achieves almost perfect recovery.
Next we proceed to negative results, which are the main focus of this paper. The

following theorem shows the tightness of the condition (6):

Theorem 2 Assume that

√
d B(P,Q) ≥ 1 + ε. (7)

for some arbitrary constant ε > 0. Under the dense model assume that ρ is continuous
at 0 and ρ(0) < ∞. Then in both the sparse and the dense model, for any estimator
M̂ and large n,

E[�(M∗, M̂)] ≥ c, (8)

where c > 0 is a constant independent of n. In the sparse model, c only depends on
ε,P,Q; in the dense model, c only depends on ε,P, ρ.

Theorems 1 and 2 together establish
√
d B(P,Q) = 1 as the sharp threshold for

almost perfect recovery in both the sparse and dense model, proving the conjecture in
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[25].2 In the dense model with the scaling (1), the condition (7) simplifies to

∫ ∞

0

√
p(x)dx ≥ 1 + ε√

ρ(0)
. (9)

Note that this condition depends on the density function ρ in the null case only through
its value at zero. In the special case of exponential weights of p(x) = λe−λx and
ρ(x) = e−x , the condition (9) further simplifies to

λ ≤ 4 − ε. (10)

In view of the positive result in [21], this establishes λ = 4 as the sharp threshold of
almost perfect recovery, resolving a conjecture in [21]. The next result, specialized to

the exponential model, shows that the optimal reconstruction error is in fact e
−Θ( 1√

ε
)
,

resolving a conjecture in [25]. Interestingly, this shows that the phase transition in
the average reconstruction error is of infinite order,3 unlike other well-known planted
problems such as the stochastic block model with two groups (second order) or with
four or more groups (first order) [22].

Theorem 3 (Optimal reconstruction error for exponential model) There exist an abso-
lute constant C0 such that the following holds. Suppose that λ = 4 − ε for some
arbitrary constant ε > 0. Then there exists n0 = n0(ε), such that for all n ≥ n0 and
for any estimator M̂ = M̂(W ),

E[�(M∗, M̂)] ≥ e
− C0√

ε . (11)

Furthermore, let M̂ML be given in (5) (which in this case coincides with the min-weight
bipartite matching). Then

E[�(M∗, M̂ML)] ≤ C0

ε3
e
− 2π√

ε . (12)

We end this section with two remarks on the universality of the sharp threshold and
infinite-order phase transitions.

Remark 1 The sharp threshold
√
d B(P,Q) = 1 does not hold universally for all

d,P,Q.Here is a simple examplewhere this condition is not tight.Consider a complete
graph with Gaussian edge weights drawn from either P = N (μ, 1) or Q = N (0, 1).
This model does not follow the scaling in (1) for the dense regime. In the Gaussian
model,

√
n B(P,Q) = 1 simplifies to μ2 = 4 log n. However, the sharp threshold in

2 To be precise, the conjecture given in [25, eq. (45) and (40)] is stated under the aforementioned unipartite
version of the planted matching problem. Nevertheless, our proof techniques as well as the sharp thresholds
in Theorems 1–3 continue to hold for the unipartite version.
3 In statistical physics parlance, a phase transition is called first-order if the order parameter (in this case,
the average reconstruction error) is discontinuous at the threshold, and of pth order for p ≥ 2 if its (p−2)th
derivative is continuous but its (p − 1)-th derivative is discontinuous [25].
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fact occurs at μ2 = 2 log n. Indeed, when μ2 ≥ (2 + ε) log n, a simple thresholding
algorithm finds a matching that differs from the planted matching by o(n) edges with
high probability; conversely, using the mutual information argument in [10], it is easy
to show that almost perfect recovery is impossible if μ2 ≤ (2 − ε) log n for any
constant ε > 0.

Remark 2 (Finite-order phase transition for unweighted graphs) Although it is pos-
sible that the infinite-order phase transition established in Theorem 3 holds beyond
exponential density, we cannot expect it to be a completely universal phenomenon. In
fact, for sparse unweighted graphs the phase transition is of a finite order. In this case,
the observed graph is a bipartite Erdős-Rényi graph G(n, n, d

n ) with a planted perfect
matching. Applying Theorems 1 and 2 with P = Q, we conclude that the almost
perfect recovery is possible if and only if d ≤ 1. When d = 1 + ε for small ε, on the
one hand, Theorem 1 shows that the average reconstruction error of MLE is at most
O(ε). On the other hand, by slightly modifying the proof of Theorem 2, in Appendix F
we show that the average reconstruction error is at least Ω(ε8). Determining the exact
order of the phase transition for unweighted Erdős-Rényi model is an open problem.

1.2 Proof techniques

The proof of Theorem 1 is a simple application of large-deviation analysis and the
union bound, similar to that of [21, Theorem 1]. The bulk of the paper is devoted to
proving the negative results of Theorems 2 and 3, which are much more challenging.

Our starting point is the simple observation that to prove the impossibility of almost
perfect recovery, it suffices to consider the random matching sampled from the pos-
terior distribution, which reduces the problem to studying the typical behavior of this
Gibbs distribution. We aim to show that with high probability, there is more posterior
mass over the bad matchings (those far away from the hidden one) than that over
the good matchings (those near the hidden one) in the posterior distribution. Via a
first-moment calculation with proper truncation, it is not hard to bound from above
the total posterior mass of good matchings. To bound from below the posterior mass
of bad matchings, a key observation is that for a perfect matching M , the symmetric
difference M∗�M consists of a disjoint union of even cycles which alternate between
planted and unplanted edges. Therefore, a natural idea is to show the existence of
many alternating cycles of length Θ(n) that are augmenting, that is, cycles for which
the unplanted edges have a total log-likelihood that exceeds that of the planted edges.
Unfortunately, a straightforward second-moment calculation fundamentally fails, due
to the excessive correlations among long augmenting cycles. To construct the desired
long augmenting cycles, we instead proceed in two steps: First, we construct many
disjoint alternating paths of constant lengths; then we connect them to form exponen-
tially many distinct augmenting cycles using the remaining edges via sprinkling. The
first step is achieved by greedily exploring the local neighborhoods in analogy to a
super-critical branching process, and the second step can be attained by reducing it to
a problem of finding long cycles in a super-critical Erdős-Rényi bipartite graph with
a planted perfect matching. This two-stage cycle finding scheme suffices to prove the
sharp threshold in Theorem 2.
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Although the above construction suffices for determining the sharp threshold, the
local neighborhood exploration is too wasteful to extract sufficiently long alternating
paths and falls short of proving the optimal reconstruction error bound in Theorem 3
for the exponential model. To resolve this inefficiency, in the first stage, following the
program in [8], we use the truncated first and second moment methods to show the
existence of many alternating paths that are sufficiently long, then applying Turán’s
theorem to extract a large disjoint subcollection. Notably, we further impose extra
uniformity constraints introduced in [7, 9] on the weights of the alternating paths to
reduce the correlations in the second moment calculation, while at the same time
keeping the first moment large.

In passing, we remark that our proof strategy of the impossibility results signif-
icantly deviates from most existing approaches in the literature. In many planted
problems such as community detection in stochastic block models [6] or sparse PCA
[17], the optimal overlap (one minus reconstruction error) exhibits a sharp transition
from zero to strictly positive. Such correlated recovery threshold can be established
via either mutual information arguments or reduction to detection (hypothesis testing)
– see [30] for a survey; however, these techniques are either too loose or inapplicable
for our model, where the optimal overlap undergoes a phase transition from strictly
less than one to one.

1.3 Discussion and open problems

A recent line of work [16, 28] studies the planted matching problem in a geometric
setting, where vertices correspond to random points (e.g. Gaussian) in R

d , and edge
weights are functions (e.g. Euclidean distance, inner product) of the coordinates of the
end points.As such, the edgeweights are correlated, in contrast to the independent edge
weights assumed in this paper. The proof techniques for the positive results and the
behavior of the reconstruction thresholds also differ significantly. On the other hand,
the information-theoretic lower bound for bounded dimension d in [28, Theorem 4] is
established using a similar but simpler argument to that of the present paper. It turns
out that for geometric models it suffices to consider augmenting 4-cycles as opposed
to long cycles. The correlation between these augmenting 4-cycles is mild enough
so that a straightforward second-moment calculation followed by an application of
Turán’s theorem suffices to extract Ω(n) vertex-disjoint augmenting 4-cycles, giving
rise to exponentially many matchings that differ from the true one by Ω(n) vertices.

In this paper we show that the phase transition under the exponential model
(resp. unweighted model) is of infinite order (resp. finite order), by characterizing
the optimal reconstruction error near the sharp threshold. As mentioned in Remark 2,
it is an open problem to determine whether such infinite-order phase transitions hold
for weight densities other than exponential. Furthermore, for the exponential model,
determining the value of the optimal limiting overlap as a function of λ < 4 is an
interesting and challenging question, which likely requires going beyond the MLE
(max-weight matching).

Finally, we briefly discuss the planted k-factor model recently studied in [26]. The
special case of k = 1 is a variant of the planted matching model studied in this
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paper. The conjectured threshold for almost perfect recovery is at
√
kdB(P,Q) = 1.

The positive direction of this conjecture can be established by extending the proof of
Theorem 1. Extending the impossibility results of Theorem 2 to the planted k-factor
model is an interesting future direction.

1.4 Organization

The rest of the paper is organized as follows. In Sect. 2 we prove the positive result
in Theorem 1 by analyzing the MLE. In Sect. 3, we outline the proof of the negative
results in Theorems 2 and 3, which are the main results of this paper. In this section,
we focus on the sparse model and the exponential model (with general dense model
deferred till Appendix E.1). The negative results are proved by analyzing the posterior
distribution, which relies on a cycle-finding scheme involving a path construction
stage (detailed in Sects. 4 and 7 for sparse and exponential models, respectively) and a
sprinkling stage (specified in Sect. 5). Combining results from Sects. 4 and 5, in Sect. 6
we prove the key Lemma 2 previously stated in Sect. 3, thereby finishing the proof of
Theorem 2 under the sparse model. In Sect. 7, we give the details for the exponential
model and complete the proof of the negative part of Theorem 3.

The appendix contains auxiliary technical results and postponed proofs. Appendix
A presents a large deviation result used throughout the paper. Next, two auxiliary
results crucial for proving the negative result under the exponential model (Theorem
3) are given: Appendix B contains Chernoff bounds for the Erlang distribution, and
Appendix C recalls a technical lemma from [8] for controlling the deviation of Exp-
minus-one random bridges. The positive part of Theorem 3 is proved in Appendix D.
Appendix E contains all reduction-type arguments used in our proofs: In Appendix
E.1, we prove Theorem 2 under the dense model by reducing it to the sparse model;
in Appendix E.2 and Appendix E.3, we drop the absolute continuity conditions on
distributions P,Q, which are assumed in the proof given in the main part of the paper.
Appendix F proves the finite-order phase transition for unweighted graphs previously
announced in Remark 2.

2 Positive results via maximum likelihood

To prove Theorem 1, we first consider a general case of complete graph (d = n)
with arbitrary weight distributions, and then deduce the result for the general planted
matching model by refining the weight distribution to incorporate edges not in G.

Theorem 4 For the dense model with parameters (n,P,Q), suppose that

√
n B(P,Q) ≤ 1 + ε. (13)

for some ε ≥ 0. Then there exists a universal constant C > 0, such that for large
enough n,
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E
[
�(M∗, M̂ML)

] ≤ C max

{

log(1 + ε),

√
log n

n

}

.

Proof of Theorem 4 Recall our standing assumption thatP � Q. We give in Appendix
E.2 a reduction-based argument that handles the casewhereP is not absolutely continu-
ous with respect toQ. Under this assumption, the likelihood-ratioP/Q is well-defined
and we can apply the large deviation result (83). We also assume WLOG that ε ≤ 1.
For a fixed M ∈ M for which M∗�M contains 2t edges, we have

P

{
∑

e∈M
log

P
Q (We) ≥

∑

e∈M∗
log

P
Q (We)

}

= P

{
t∑

i=1

(Yi − Xi ) ≥ 0

}

,

where Xi ’s and Yi ’s be two independent sequences of random variables such that Xi ’s
are i.i.d. copies of log(P/Q) under distributionP and Yi ’s are i.i.d. copies of log(P/Q)

under distributionQ. Using standard large-deviation estimates (see (83) in Appendix
A), the RHS of the inequality above is upper bounded by e−tα , where

α � −2 log B(P,Q) (14)

is the Rényi divergence of order 1
2 between distributions P and Q. Since there are at

most
(n
t

)
t ! ≤ nte−t(t−1)/2n perfect matchings differing from the true matching M∗ by

2t edges, it follows from a union bound and the assumption (13) that

P
{|M∗�M̂ML| ≥ βn

} ≤
∑

t≥2βn

(
n

t

)
t !e−tα ≤ e1/2

∑

t≥βn

e−tα+t log n−t2/(2n)

(a)≤ e1/2
∑

t≥βn

(
(1 + ε)2e−β/2

)t

(b)≤ e1/2
e−β2n/4

1 − e−β/4 , (15)

where (a) follows from the assumption
√
nB(P,Q) ≤ 1+ ε; (b) holds for all strictly

positive β ≥ 8 log(1 + ε) so that (1 + ε)2e−β/2 ≤ e−β/4 < 1. Thus,

E
[|M∗�M̂ML|

] = E

[
|M∗�M̂ML|1{|M∗�M̂ML|≤2βn

}
]

+ E

[
|M∗�M̂ML|1{|M∗�M̂ML|>2βn

}
]

≤ 2βn + 2nP
{|M∗�M̂ML| ≥ βn

}

≤ β2n + 2e1/2
e−β2n/4

1 − e−β/4 n.

Next, by choosing

β = max

{

8 log(1 + ε), 2

√
log n

n

}

,
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we have e−β2n/4 ≤ β2/4 and 1 − e−β/4 ≥ β/8. Therefore,

E
[
�(M∗, M̂ML)

] = 1

n
E
[|M∗�M̂ML|

] ≤ 2β + 2e1/2
β2/4

β/8
≤ 9β

≤ 18max

{

4 log(1 + ε),

√
log n

n

}

.

��
Theorem 1 follows from Theorem 4 as a corollary.

Proof of Theorem 1 To apply Theorem 4, let us first reformulate the planted matching
model in Definition 1 in a more convenient form. Recall that the observed weight on
the edge e is drawn independently from P or Q depending on whether e belongs to
the planted matching M∗ or not, where P andQ are arbitrary probability measures on
some space X. Let us use a special symbol � /∈ X to signify an edge e that is not in G
and writeWe = �. Therefore, for e ∈ M∗,We is drawn fromP independently; for each
e ∈ E(Kn,n)\M∗, with probability 1 − d

n , We = �; with probability d
n , We is drawn

fromQ independently. In other words, We
i.i.d.∼ Q′ � (1− d

n )δ� + d
nQ for e /∈ M∗. The

model is thus reformulated into a dense model with parameters (n,P,Q′).

By Theorem 4, M̂ML achieves E[�(M∗, M̂ML)] ≤ C max

{
log(1 + ε),

√
log n
n

}
,

provided that
√
nB(P,Q′) ≤ 1 + ε. Since

√
nB(P,Q′) = √

dB(P,Q), Theorem 1
readily follows. ��
Remark 3 We note that when α − log n → +∞, from (15) we have M̂ML = M∗
with high probability, i.e., M̂ML achieves exact recovery. This coincides with the exact
recovery threshold for the hidden Hamiltonian cycle problem [3], in which a (unipar-
tite) weighted graph is observed such that the edge weights on the planted Hamiltonian
cycle are drawn from P and other weights are drawn from Q.

3 Negative results via analyzing posterior distribution

In this section, we prove the impossibility results in Theorems 2 and 3 by directly
analyzing the posterior distribution. For Theorem 2, we focus on the sparse model
where the average degree d is a constant. The impossibility result under the dense
model follows from a reduction argument (see Appendix E.1).

3.1 Proof outline of negative results

In this subsection we outline the proof of the impossibility results in Theorem 2 under
the sparse model, and Theorem 3.

The negative results are proved by studying the posterior distribution of the hidden
matching. Recall in the proof of Theorem 1 the reformulation of the planted matching
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model in Definition 1 in the complete graph model with weight distributions (P,Q′).
In particular, We

i.i.d.∼ Q′ � (1 − d
n )δ� + d

nQ for e /∈ M∗. Here for simplicity we
again assume P � Q (the general case is handled in Appendix E.3). Under this
assumption, P � Q′ and the density P/Q′ is well-defined. The likelihood function
of W = (We : e ∈ E(Kn,n)) given M∗ = m is given by

P
{
W | M∗ = m

} =
∏

e∈m
P(We)

∏

e/∈m
Q′(We) ∝

∏

e∈m

P
Q′ (We) = exp

(
∑

e∈m
log

P
Q′ (We)

)

︸ ︷︷ ︸
�L(m)

,

(16)

where ∝ denotes equality up to multiplicative factors that do not depend on m, log P
Q′

takes extended real-values inR∪{−∞}, and L(m) = ∑
e∈m log P

Q′ (We) is the total log-
likelihood ratio on a setm of edges. Thus, conditioned onW , the posterior distribution
of M∗ is a Gibbs distribution, given by

μW (m) = 1

Z(W )
exp (L(m)) , m ∈ M, (17)

where Z(W ) = ∑
m∈M exp (L(m)) is the normalization factor.

In order to reduce the impossibility proof to a statement on the posterior distribution,
the first observation is that it suffices to consider the estimator M̃ which is sampled
from the posterior distributionμW . Indeed, given any estimator M̂ = M̂(W ), we have

(M̂, M∗) L= (M̂, M̃) (in distribution) and hence

E|M̃�M∗| ≤ E|M̃�M̂ | + E|M∗�M̂| = 2E|M∗�M̂|,
which shows that M̃ is optimal within a factor of two. Thus it suffices to bound
E|M̃�M∗| from below. To this end, fix some δ to be specified later and define the sets
of good and bad solutions respectively as

Mgood = {M ∈ M : �(M, M∗) < 2δ}
Mbad = {M ∈ M : �(M, M∗) ≥ 2δ}.

By the definition of M̃ , we have

E[�(M̃, M∗)] ≥ 2δ · E[μW (Mbad)].
Next we show

Lemma 1 Assume that (7) holds for some arbitrary constant ε > 0. There exist con-
stants n0 = n0(ε) and c = c(δ, ε), such that for all n ≥ n0, in both the sparse and
the dense model, with probability at least 1 − e−cn/ log n,

μW (Mgood)

μW (M∗)
≤ 2ec1n, (18)
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where c1 = 7εδ.

Lemma 2 Consider the sparse model such that (7) holds for some arbitrary constant
ε > 0. There exist constants c0, c, c2, n0 that only depend on ε,P,Q, such that for
all n ≥ n0, and δ ≤ c2, with probability at least 1 − c

n ,

μW (Mbad)

μW (M∗)
≥ ec0n . (19)

Furthermore, in the exponential model with d = n and P = exp(λ) and Q =
exp(1/n) where λ ≤ 4 − ε for some arbitrary constant ε > 0, (19) continues to hold
with probability at least 1

2 − c
n , where all constants c0, c, c2, n0 depend only on ε and

c0, c2 = e−O(1/
√

ε).

Given the above two lemmas, Theorems 2 and 3 readily follow. Indeed, combining
Lemma 1 and Lemma 2 and choosing δ = min{c2, c0/(14ε)} yields that c0 ≥ 2c1
and hence μW (Mbad) ≥ ec1n

2+ec1n with probability at least 1
2 − o(1), which shows that

E[�(M̃, M∗)] � δ as desired in both the sparse and the exponential model on complete
graph.

We prove Lemma 1 in Sect. 3.2, and outline the proof of Lemma 2 in Sect. 3.3. For
the rest of the proof, we will assume WLOG4 that (7) holds with equality. That is,

√
d B(P,Q) = 1 + ε, (20)

for some arbitrary constant ε > 0.

3.2 Upper bounding the posterior mass of goodmatchings

In this section, we prove Lemma 1. Before proceeding with the proof, let us first
introduce some notation that will be used throughout the remainder of the paper. Fix
the true matching M∗. Without loss of generality, we assume that M∗ corresponds to
the identity matching, so that each left vertex i is uniquely matched to i ′ on the right.
We shall represent the planted edges (those in M∗) and the unplanted edges (those
outsideM∗) as red and blue edges, respectively. A cycle in Kn×n is called alternating if
it is an even cycle and alternates between red and blue edges. An important observation
is that the symmetric difference between the truth M∗ and another perfect matching
M is always a disjoint union of alternating cycles. See Fig. 1 for an example.

For any set T of edges in Kn,n , let r(T ) � T ∩ M∗ and b(T ) � T \M∗ denote the
set of red and blue edges in T , respectively. Define the excess weight of T as the total
log-likelihood of blue edges minus that of the red edges:

4 Indeed, suppose that
√
dB(P,Q) = c > 1+ ε. Consider the model parametrized with (d ′,P,Q) where

d ′ = d(1 + ε)2/c2 < d so that
√
d ′B(P,Q) = 1 + ε. From an observed graph G generated from the

(d ′,P,Q) model, one can “densify” G by adding edges independently with edge weight drawn fromQ to
arrive at an instance of the (d,P,Q) model. Therefore, the lower bound on the average reconstruction error
carries over to the (d,P,Q) model.
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Fig. 1 Example of matching and alternating cycle (n = 4, � = 3). The matching M∗ and M matches 1234
to 1′2′3′4′ and 2′3′1′4′, respectively. The difference of their corresponding permutation is a cyclic shift of
length three, i.e., π∗−1π ′ = (123) in the notation of cycle decomposition, and the symmetric difference
graph M∗�M is an alternating 6-cycle that contains 3 planted (red, thick) edges and 3 unplanted (blue,
thin) edges (color figure online)

Δ(T ) =
∑

e∈b(T )

log
P
Q′ (We) −

∑

e∈r(T )

log
P
Q′ (We). (21)

For a perfect matching M ∈ M, we will denote Δ(M�M∗) simply as Δ(M). Recall
the posterior distribution of M∗ given W in (17). Therefore, if M∗ = m∗, we have

Δ(m) =
∑

e∈m\m∗
log

P
Q′ (We) −

∑

e∈m∗\m
log

P
Q′ (We) = L(m) − L(m∗) = log

μW (m)

μW (m∗)
.

Note that in the display above, the likelihood ratio P/Q′ can be replaced by P/Q if
m only contains edges in G. To see this, note the fact that |m\m∗| = |m∗\m| = �

and log P
Q′ (w) = log P

Q (w) + log n
d whenever w 
= �. Moreover, if We = � for some

e ∈ m then μW (m) = 0 and Δ(m) = −∞. Thus, we have

Δ(m) =
{∑

e∈m\m∗ log P
Q (We) −∑e∈m∗\m log P

Q (We) We 
= �,∀e ∈ m\m∗

−∞ else.
(22)

We have the following lemma:

Lemma 3 Let m ∈ M be such that |m�m∗| = 2�. For each x ≥ 0,

P
{
Δ(m) ≥ x� | M∗ = m∗} ≤

(
d

n
e−(α+x/2)

)�

.

Proof From (22), we have

P
{
Δ(m) ≥ x� | M∗ = m∗}

= P

⎧
⎨

⎩

∑

e∈m\m∗
log

P
Q′ (We) −

∑

e∈m∗\m
log

P
Q′ (We) ≥ x� | M∗ = m∗,We 
= �,∀e ∈ m

⎫
⎬

⎭

(
d

n

)�
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(a)= P

⎧
⎨

⎩

∑

e∈m\m∗
log

P
Q (We) −

∑

e∈m∗\m
log

P
Q (We) ≥ x� | M∗ = m∗,We 
= �,∀e ∈ m

⎫
⎬

⎭

(
d

n

)�

(b)= P

{
�∑

i=1

(Yi − Xi ) ≥ x�

}(
d

n

)�
(c)≤ e−(α+x/2)�

(
d

n

)�

,

where (a) follows from (22); in (b) we write Xi and Yi are iid copies of log P
Q under P

andQ respectively; (c) follows from the large deviation bound (83) in Appendix A. ��
We now proceed to the proof of (18). Recall that our standing assumption from (20)

is that

√
d B(P,Q) = 1 + ε,

for some small ε. Throughout the proof we condition on M∗ = m∗.
Note that

μW (Mgood)

μW (M∗)
=

∑

m:|m�m∗|<2δn

eΔ(m) = R1 + R2,

where

R1 �
∑

m:|m�m∗|<2βn/ log n

eΔ(m)

R2 �
∑

m: 2βnlog n ≤|m�m∗|<2δn

eΔ(m)

for some β to be specified. Next we bound R1 and R2 separately.
First, we note that given a perfect matching m, the number of matchings that differ

from m by 2� edges is

|{m ∈ M : |m�m∗| = 2�}| =!� ·
(
n

�

)
, (23)

where !� denotes the number of derangements of � elements, given by

!� = �!
�∑

i=0

(−1)i

i ! =
[
�!
e

]
,

and [·] denotes rounding to the nearest integer. Thus

1

2e
n(n − 1) · · · (n − � + 1) ≤ |{m ∈ M : |m�m∗| = 2�}| ≤ 2

e
n(n − 1) · · · (n − � + 1).

(24)
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Furthermore, for any m,

E[exp (Δ(m))] = 1. (25)

This follows from the definition of log likelihood ratio as

E[exp (Δ(m))] =
∏

e∈m\m∗
EWe∼Q′

[ P
Q′ (We)

]

︸ ︷︷ ︸
=1

∏

e∈m∗\m
EWe∼P

[Q′

P (We)

]

︸ ︷︷ ︸
=1

= 1.

To bound R1, using (24) and (25) we have

E[R1] =
∑

|m�m∗|< 2βn
log n

E

[
eΔ(m)

]
≤

∑

�<
βn
log n

2

e
n� ≤ 2n

e
exp(βn).

By Markov’s inequality,

P

{
R1 ≥ e2βn

}
≤ 2n

e
exp(−βn). (26)

To bound R2, the calculation above shows that directly applying the Markov
inequality is too crude since E[R2] = eΘ(n log n). Note that although Δ(m) is neg-
atively biased, when Δ(m) is atypically large it results in an excessive contribution to
the exponential moments. Thus we truncate on the following event:

Er �
⋂

m:2βn/ log n≤|m�m∗|<2δn

{
Δ(m) ≤ r |m�m∗|/2}

for some constant r to be chosen. Then

P

{
R2 ≥ ec

′n
}

≤ P
{Ecr
}+ P

{
{R2 ≥ ec

′n} ∩ Er
}

≤ P
{Ecr
}+ P

⎧
⎪⎨

⎪⎩

∑

2βn
log n ≤|m�m∗|<2δn

eΔ(m)1{Δ(m)≤r |m�m∗|/2} ≥ ec
′n

⎫
⎪⎬

⎪⎭

≤ P
{Ecr
}+ e−c′n ∑

2βn
log n ≤|m�m∗|<2δn

E

[
eΔ(m)1{Δ(m)≤r |m�m∗|/2}

]
. (27)

To bound the first term, note the fact that if |m�m∗| = 2�, by Lemma 3, we have

P {Δ(m) ≥ x�} ≤
(
d

n
e−(α+x/2)

)�

,
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Therefore, it follows from a union bound and the fact that α = −2 log
∫ √PQ that

P
{Ecr
} ≤

∑

2βn
log n ≤|m�m∗|<2δn

P
{
Δ(m) ≥ r |m�m∗|/2}

≤ 2

e

∑

βn
log n ≤�<δn

n�

(
d

n

(∫ √PQ
)2
)�

e−r�/2

= 2

e

∑

βn
log n ≤�<δn

(
(1 + ε)2e−r/2

)�

Choose r = 8ε. We have

P
{Ecr
} ≤ e−cβn/ log n (28)

for some c = c(ε) and all sufficiently large n.
For the second term in (27), we bound the truncated MGF as follows:

E

[
eΔ(m)1{Δ(m)≤r�}

]
≤ E

[
exp

(
1

2
(Δ(m) + r�)

)]

= E

[
eΔ(m)/2 | We 
= �,∀e ∈ m\m∗]

(
d

n

)�

er�/2

(a)=
∏

e∈m\m∗
EWe∼Q

[√P
Q (We)

]
∏

e∈m∗\m
EWe∼P

[√
Q
P (We)

](
d

n

)�

er�/2

=
(
d

n
B(P,Q)2

)�

er�/2 ≤
(
e6ε

n

)�

where (a) follows from (22). Combining the above with (24), we have

∑

2βn
log n ≤|m�m∗|<2δn

E

[
eΔ(m)1{Δ(m)≤r |m�m∗|/2}

]
≤ 2

e
δne6εδn

Choosing c′ = 7εδ, we get that

e−c′n ∑

2βn
log n ≤|m�m∗|<2δn

E

[
eΔ(m)1{Δ(m)≤r |m�m∗|/2}

]
≤ e−cδn . (29)

for some c = c(ε) and all large n. Substituting (28) and (29) into (27), we get

P

{
R2 ≥ e7εδn

}
≤ e−Ω(n/ log n)
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Combining this with (26) and upon choosing β = εδ, we have P
{
R1+R2≥2e7εδn

} ≤
e−Ω(n/ log n), concluding the proof.

3.3 Lower bounding the posterior mass of badmatchings

In this section, we outline the proof of Lemma 2. Recall that

μW (Mbad)

μW (M∗)
=

∑

m:|m�m∗|≥2δn

eΔ(m).

For any perfect matching m such that |m�m∗| = 2�, the set difference m�m∗ can be
represented by a disjoint union of alternating cycles, denoted by C , where the edges
in m∗\m and m\m∗ are colored red and blue respectively, so that in total there are �

red edges and � blue edges.
Recall from (21) that the excess weight Δ(C) of a cycle C denotes the difference

between the total blue and red edge (log-likelihood) weights. In order to lower bound
the posterior mass of bad matchings, we show that with probability at least 1 − c1/n
under sparse model (1/2 − c1/n under exponential model), there exist at least enc2

distinct alternating cycles C of length at least nc3, so that Δ(C) ≥ nc4, for some
constants c1, c2, c3, c4 that are independent of n and only depend on ε,P,Q. Note
that c1, c2, c3 > 0, while c4 is non-negative and is 0 when P = Q. Since each
alternating cycle C corresponds to a perfect matching in Mbad, we have

μW (Mbad)

μW (M∗)
≥ en(c2+c4). (30)

Let us point out a simple yet useful observation: if a perfect matching m contains
any edges not in G (e with We = �), then it has zero posterior mass. Thus, all
alternating cycles that give rise to a perfect matching inMbad with positive posterior
mass must consist only of edges in G. Therefore, to show (30), it suffices to consider
the alternating cycles in G. Let us also remark that by the same reasoning as (22), for
any set T of edges in G such that |b(T )| = |r(T )|,

Δ(T ) =
∑

e∈b(T )

log
P
Q (We) −

∑

e∈r(T )

log
P
Q (We).

Since for all m on G, m�m∗ contains the same number of red and blue edges, for the
remainder of the proof, we will work directly with P/Q instead of P/Q′.

To show the existence of many alternating cycles in G, one natural idea is to
define S as the set of alternating cycles C satisfying the aforementioned length and
weight requirements; and then bound the cardinality of S from below using the first
and second-moment methods. This boils down to proving that Var(|S|) � (E[|S|])2.
Unfortunately, this idea fails because the variance of |S| turns out to be exponentially
larger than (E[|S|])2, due to the excessive correlations among these long alternating
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cycles. A similar phenomenon is also observed in counting the number of long cycles
in Erdős-Rényi graphs [20, Section 3].

Alternatively, recall that the set difference m�m∗ is allowed to be a disjoint union
of alternating cycles rather than a single alternating cycle. Thus, one can resort to
showing the existence of disjoint unions of many but short alternating cycles satisfying
the total length and weight requirements. However, using the first and second moment
methods, at best we can show that there exists a disjoint union ofΘ(n/ log2 n) desired
alternating cycles of length Θ(log n); thus the total length is only Θ(n/ log n), falling
short of meeting the total length requirement of Ω(n).

To construct the desired alternating cycles, we instead proceed in two steps. We
first reserve a set of vertices and construct many but short alternating paths with the
desired total weight in the subgraph induced by the non-reserved vertices. Thenwe use
the edges incident to the reserved vertices to connect these paths to form the desired
alternating cycles. At a high level, our two-stage cycle finding scheme is inspired by
the previous work [8] in a different context: The goal therein is to find a long path
whose average weight is below a certain threshold in a complete graph with i.i.d.
exponentially weighted edges. More broadly, our second step is similar in spirit to the
sprinkling idea commonly used in random graph theory (see, e.g. [2, Section 11.9]
and [15, Section 2.1.4]).

The specific construction is described in Algorithm 1. Therein, V denotes the set
of reserved left vertices from [n], where |V | = γ n and γ = γ0ε for some small
constant γ0 > 0. Denote by V ′ ⊂ [n]′ its counterpart on the right side defined by the
red edges. We write V c = [n]\V and therefore (V c)′ = [n]′\V ′. Recall that we have
assumed WLOG that M∗ is the identity matching that matches each i to i ′. As such,
the cycle-finding algorithm also assumes knowledge of the true matching M∗.

Algorithm 1 Two-stage cycle finding algorithm
Input: Weighted bipartite graph G on [n] × [n]′ with weight vector w, thresholds τred, τblue, and
parameters γ, s, Δ0, c5, c6, c7.

1: Step 1: Path construction. Reserve an arbitrary set of vertices V of size γ n, e.g. by taking V = [γ n].
Let G1 denote the weighted subgraph of G induced by the edges in V c × (V c)′. Construct a family of
disjoint sets Lk ⊂ V c of left vertices and Rk ⊂ (V c)′ of right vertices for k ∈ K1 ⊂ [K ] such that: (1)
|Lk | = |Rk | = s and K1 � |K1| ≥ nc5; (2) each pair of vertices u ∈ Lk and v′ ∈ Rk are connected via
an alternating path P that starts and ends in red edges, with Δ(P) ≥ Δ0, where Δ(P) is defined in (21).

2: Step 2: Sprinkling. Let V ∗ = {i ∈ V : log(P/Q)(Wi,i ′ ) ≤ τred}. Let G2 be the subgraph of G that
contains every red edge in V ∗ × (V ∗)′ and every blue edge e in V ∗ × (V ∗)′, V c × (V ∗)′, or V ∗ × (V c)′,
if and only if log(P/Q)(We) ≥ τblue. Let {Uk : k ∈ K1} (resp. {V ′

k : k ∈ K1}) be a collection of
disjoint subsets of left (resp. right) vertices, such that every vertex in U ′

k is connected to Lk by at least
one blue edge in G2, and every vertex in Vk is connected to Rk by at least one blue edge in G2. Next,
on a subset K2 ⊂ K1 of size K2 ≥ K1/16, define a bipartite “super graph” Gsuper with vertex sets K2
and K′

2. In Gsuper , there is a red edge between k and k′ for every k ∈ K2, and a blue edge between i

and j ′ if and only if there is at least a blue edge in G2 connecting Ui and V ′
j . Construct e

c6K1 distinct
alternating cycles in Gsuper , each of length at least 2c7K1 for some universal constants c6, c7 > 0.

Output: Expand each alternating cycle on Gsuper into an alternating cycle on G, by replacing each red
edge (k, k′) in Gsuper by an alternating path between Uk and V ′

k that starts and ends in red edges and
connects Lk and Rk . See Fig. 2 for an illustration. Output all the resulting alternating cycles on G.
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Fig. 2 Example of the sprinkling stage of Algorithm 1. To the left is an alternating cycle Csuper =
(1, 1′, 2, 2′) on the super graph Gsuper . To the right is its expansion to an alternating cycle on G. The
two blue edges in Gsuper correspond to the two long crossed blue edges in G: the blue edge (1, 2′) in
Gsuper means that there exist u1 ∈ U1, v

′
2 ∈ V ′

2 such that (u1, v
′
2) is a blue edge in G2. Similarly, (u2, v

′
1)

is a blue edge for some u2 ∈ U2 and v′
1 ∈ V ′

1. The dashed red edges represent alternating paths P1 and
P2 that start and end in red edges. The existence of P1 and P2 follows from the first stage of Algorithm 1
(color figure online)

We now explain the main idea of Algorithm 1. After disjoint alternating paths
P1, ..., PK are found in step 1 (path construction), step 2 (sprinkling) connects a
subset of these paths into an alternating cycle. As illustrated in Fig. 2, in the sprinkling
step we connect one endpoint of Pi (in Li ) and another endpoint of Pj (in R j ) via
an alternating path that goes through the sets Li ,U ′

i ,Ui , V ′
j , Vj , R j in this order (see

Fig. 2). The definition of U ′
i (resp. Vj ) ensures the existence of blue edges from Li

to every vertex in U ′
i (resp. from every vertex in Vj to R j ). To study the connectivity

fromUi to V ′
j , we introduce the notion of the super graph Gsuper, which is the key step

in Algorithm 1. Whenever there exists a blue edge from i to j ′ in Gsuper, there exists
a blue edge fromUi to V ′

j in G, which completes the alternating path between Pi and
Pj . In this way, each alternating cycle on Gsuper corresponds to a distinct alternating
cycle on G.

We then argue that there are exponentially many alternating cycles on Gsuper by
showing that it is very well-connected. First, we show that the blue edges in Gsuper
are independent. To see this, note that in the construction of Lk, Rk,Uk, Vk , only the
edges in V c × (V c)′, V × (V c)′ and V c × V ′ are inspected. Therefore, whether a
blue edge appears in the super graph is independent of all the steps prior, since it only
depends on edges in V ×V ′. Furthermore, the sets {Uk} and {Vk} are disjoint. Thus the
blue edges in the super graph are all formed independently. Therefore, Gsuper can be
viewed as (or at least contains) an Erdős-Rényi bipartite graph with a planted perfect
matching. We further show that Gsuper contains exponentially many alternating cycles
as long as we are in the very super-critical regime, i.e. the average degree of Gsuper is a
constant much larger than one. To that end, in the path construction stage, we require
that {Lk}, {Rk} to contain sufficiently many vertices so that the sets {Ui } and {V ′

j } are
sufficient large, leading to the super-criticality of Gsuper.
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In addition to finding exponentially many alternating cycles, we also need that they
correspond to matchings with sufficiently large posterior probability. In other words,
we need a lower bound on the total weight (in log-likelihood)Δ(C) for each alternating
cycle C . This task is accomplished as follows: In the path construction stage, each
path Pk satisfies the constraint Δ(Pk) ≥ Δ0. We then choose the thresholds τred small
enough and τblue large enough so that the contributions from the sprinkling edge
weights do not reduce Δ0 by too much. Note that τred and τblue also need to be chosen
carefully so as to not compromise the super-criticality of Gsuper.

In summary, we show that Algorithm 1 finds eΩ(K2) = eΩ(n) many alternating
cycles each of length Ω(n). Each cycle C is formed by connecting paths P1, ..., Pr ,
and we have Δ(C) ≈ ∑

k≤r Δ(Pk) = Ω(n), resulting in the desired (30). In Sects. 4
and 5, we spell out the details of the path construction and the sprinkling respectively
under the sparse model. In Sect. 6, we specify the choices of the parameters including
τred, τblue, and combine the results in Sects. 4 and 5 to prove Lemma 2 under the sparse
model. The analysis for the exponential model is contained in Sect. 7.

We remark that the path construction schemes actually differ for the sparse model
(Theorem2) and the exponentialmodel (Theorem3). Specifically, for the sparsemodel
with bounded average degree, the desired alternating paths are found by exploring the
local neighborhood in G1 using breadth-first-search and constructing two-sided trees
Tk where Lk and Rk correspond to the set of leaves of the left- and right-sided tree,
respectively. This suffices to prove the sharp threshold in Theorem 2 for the sparse
model (and, by a reduction argument, for the dense model as well). However, this path
finding scheme via constructing two-sided trees is wasteful in the sense that the length
of the path extracted is only about the depth of the tree, which is much smaller than
the size of the tree; thus the obtained cycles are not long enough to yield the optimal
reconstruction error bound in Theorem 3 for the exponential model. To remedy this,
we take a more direct approach: Following the program in [8], we use first and second
moment methods combined with Turán’s theorem to show the existence of many
disjoint, short alternating paths in G1 of desired total weights. It is worth noting that
this method results in fewer paths in total and a smaller super graph. Nevertheless,
for the exponential model we can appropriately choose a large enough threshold for
the blue edge weights in G2 in the sprinkling stage, so that the super graph is still
very supercritical (cf. (61)). In contrast, under the sparse model with bounded average
degree, we no longer have the freedom to truncate the blue edge weights at a high
enough threshold to boost the blue edge probability in G2 and hence cannot recoup
of the loss on the number of paths incurred by applying Turán’s theorem. That is why
we need to resort to neighborhood-exploration to find paths in the sparse model.

4 Path construction (under the sparse model)

In this section we construct K disjoint subgraphs on G1, which contain the disjoint
alternating short paths we will later use to form the long cycles. In particular, each
subgraph consists of two trees on G1 whose root nodes are connected via a red edge.
We will refer to the subgraphs as two-sided trees denoted as T1, ..., TK . See Fig. 3
for an illustration. For each k, our construction is such that on either side of Tk , the
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Fig. 3 Example of a two-sided tree Tk . For each u ∈ Lk and v ∈ Rk , there is an alternating path from u to
v that starts and ends in red edges, and passes through the red edge (ik , i

′
k ) (color figure online)

path from any leaf node to its root node is of alternating color that starts in a red edge
and ends in a blue edge. As such, the path from any leaf node on one side to any leaf
node on the other side is also an alternating path. The two-sided trees are constructed
via a greedy neighborhood exploration process. Before elaborating on the exploration
process, the following are a few desirable features that we aim for.

1. The trees are not too small: on either side, we want the exploration process to
survive long enough to yield sufficiently long paths;

2. There is a large number of leaf nodes on each side of the trees, so that there are
plenty of paths to choose from when forming the long cycles via sprinkling.

3. The trees are not “overgrown”: since we need the K trees to be vertex-disjoint,
none of them should have too many vertices;

4. The edge weights on all the alternating paths are well behaved. The definition
of “well behaved” will become clear later. This is to ensure that the long cycles
constructed from these paths occupy sufficiently large posterior probability.

In the remainder of this section, we give the precise construction of the two-sided
trees, and show that sufficiently many of them fulfill all the features above.

4.1 Construction of two-sided trees

As shown in Fig. 3, each two-sided tree is centered at a red edge. We will refer to the
subtree rooted at its left (resp. right) end point as the left (resp. right) subtree of this
two-sided tree. We construct each left or right subtree via a neighborhood exploration
process that starts from the root vertex. To ensure that the paths are alternating in color,
each explored blue edge must be followed by (the unique) red edge (see Fig. 3). In
other words, the vertices are always explored in pairs, where the pairs are identified by
the red edges. Recall that G1 is a bipartite graph with (1− γ )n left and right vertices.
We will have γ n pairs of vertices actively participate in the construction, and leave
(1 − 2γ )n pairs unexplored in the neighborhood exploration process.

The local graph neighborhoods are explored in a fashion analogous to the breadth-
first search (BFS). However, as opposed to the vanilla BFS algorithm, we design
a two-stage exploration-selection scheme, where the neighborhoods (left and right
subtrees) are grown in epochs, where each epoch contains a few exploration steps and
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Fig. 4 Example of the left tree of Tk rooted at ik , with H = 2. The shaded vertices represent the set of
selected vertices in each epoch. The epochs are separated by the horizontal dashed lines. In the figure, after
the first epoch, the set of selected vertices V1 consists of two vertices u, v. Hence the exploration step in
the second epoch is run with root vertices u, v. The set Lk is defined as the set of selected vertices after the
L’th epoch (color figure online)

a leaf node selection step. The selection step is necessary to ensure that the weights
of the paths, and the resulting cycles, fulfill the weight requirement of bad matchings.
Since we need to construct many disjoint two-sided trees, the selection step is done
periodically to prevent each tree from overgrowing and using up too many vertices.

An illustration of the construction of the left tree of Tk is given in Fig. 4. In step 1,
we introduce a set U so that 1{i ∈ U } tracks whether the pair (i, i ′) has been visited
(note that the algorithm always explores vertices in pairs). Every time a vertex is added
to the tree, it is marked as explored so that no edge gets inspected more than once.
This ensures that the edge weights in the constructed trees are independent. In step 1,
we also set a parameter m which controls the maximum number of vertices each tree
explores, in order to prevent “overgrowth”. The tree is initialized at the middle edge
(ik, i ′k) (step 2). We then finish growing the left tree rooted at ik (steps 3–4), followed
by the right tree rooted at i ′k(step 5).

The specific exploration-selection tree construction is described in step 3. In step
3(a), we grow the tree iteratively using BFS, where in each iteration, each leaf node v

finds the set of its unexplored neighbors O ′
v . Since the pair (v, v′) would have already

been marked as explored, we cannot have v ∈ O ′
v . Thus for each u′ ∈ O ′

v , (u′, v)

is a blue edge. We append this blue edge to the tree, along with the red edge (u, u′)
attached to u′. As seen in Fig. 4, the algorithm always explores the edges in alternating
colors.

To prevent each tree from using up too many vertices, we introduce the selection
step 3(b), where we select a subset of the leaf nodes every 2H layers (per epoch) and
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Algorithm 2 Construction of two-sided trees
Input: n, γ , a bipartite graph G1 that contains (1 − γ )n pairs of vertices, threshold ζ , and parameters
H , L, ε, α.

1: Initialize U = {all left vertices of G1} as the set of unexplored left vertices. Define an integer5

m = (1 + ε)2HL exp(3Hα + εH)

that stands for the number of left vertices each of the left and right subtrees will contain. Let K = γ n
2m

be an integer. For k = 1, 2, ...K , repeat the following steps 3-6 to construct Tk .
2: Let ik be the member of Uwith the smallest index. Update U ← U\{ik } to mark ik as explored. Initialize

Tk = {(ik , i ′k )} to be a tree containing only one red edge.
3: Construct the left tree of Tk via L epochs of color-alternating breadth-first search (BFS) on G1. Define

V0 = {ik }. In the i’th epoch, the BFS starts from the the set of vertices in Vi−1. Repeat the following
two steps for i = 1, ..., L:

(a) Exploration: for each v ∈ Vi−1, grow a color-alternating subtree inG1 with v as its root. Concretely,
define the offsprings of v as

O ′
v = {

u′ ∈ U′ : (u′, v) ∈ E(G1)
}
.

For all u′ ∈ O ′
v , append edges (u′, v) and (u, u′) to Tk . Update U ← U\Ov to mark all members

of Ov as explored.
Grow the next 2 layers of the left tree similarly: sequentially (ordered by the vertex indices) for each
u ∈ Ov , define its offsprings as the set of all unexplored vertices that are connected to u via a blue
edge in G1; append to Tk all the blue edges from u to the offsprings and their corresponding red
edges; and mark all the offsprings as explored. Repeat this exploration step above until the tree is of
depth 2H , unless the exploration process becomes extinct or the following termination condition
is met:

Terminate the growth of the left tree of Tk (go to step 5) (31)
when the number of left vertices in the tree exceeds m.

(b) Selection of leaf nodes: for each v ∈ Vi−1, let Lv denote the set of all leaf nodes at depth 2H in
the subtree rooted at v. Among those, select

Lv,sel = {
u ∈ Lv : Δ(Pu,v) ≥ ζH

}
, (32)

where
Pu,v = the path from u to v on the subtree rooted at v.

Let Vi = ∪v∈Vi−1Lv,sel be the set of selected leaf nodes from the i’th epoch. The next epoch of
the construction will start from Vi .

4: Let m̃ be the total pairs of vertices used in the construction of the left tree. Let Ũ be the first m − m̃
indices in U, and update U to be U\Ũ.

5: Construct the right tree via the same scheme, starting from the root i ′k .

continue to grow the tree only from those nodes. The selected leaves are required to
have the highest depth, whose paths to the previous root has a sufficiently large excess
weight Δ.

We repeat this exploration-selection procedure for L epochs. Unless the exploration
process becomes extinct before completing the L epochs, or no leaf node is selected

5 Strictly speaking m needs to be rounded to the nearest integer. To lighten the notation, from here on we
will not explicitly specify the rounding step as it only affects constant factors.
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(Vi = ∅) for some i ≤ L , or the tree becomes overgrown per condition (31), the
exploration-selection process yields a tree of depth 2HL , rooted at ik . As we will
see in Sect. 4.2, the parameters H and L need to be chosen appropriately to ensure
that existence of many two-sided trees that are not overgrown, yet contain sufficiently
many leaf nodes. On one hand, we cannot perform the selection step too frequently,
i.e., H must be large enough. This is to guarantee that the large deviation analysis is
tight, so that P{Δ(P) ≥ ζH} ≈ e−αH for each alternating path of length 2H – see
(36). On the other hand, we also need to select the leaf nodes sufficiently often, i.e. L
must be large enough. This is to ensure that the growth of each tree does not use up
too many vertices, so that the exploration process yields many two-sided trees.

In step 4 of Algorithm 2, if a tree uses up m̃ < m vertices, we mark m − m̃ other
arbitrary vertices as explored. This ensures that each two-sided tree uses up exactly 2m
pairs of vertices, so that the structure (i.e. the isomorphism class) of the K two-sided
trees are independent. Moreover, from the definition

K = γ n

2m
= γ

2(1 + ε)2HL exp(3Hα + εH)
· n, (33)

we have that after all trees are constructed, the total number of unexplored vertex pairs,
i.e., the size of U, equals (1 − 2γ )n.

Finally, we remark that the exploration process is where we use the assumption√
dB(P,Q) ≥ 1 + ε. Since all the red edges are already planted, the survival and

extinction of the trees depend only on the blue edges. Roughly speaking, the average
number of blue neighbors of each vertex is (1−γ )n ·d/n ≈ d. Thus each epoch yields
approximatelydH leaves before the selection criterion in step 3(b) is applied. The prob-
ability that each leaf is selected is roughly P{Δ(H blue edges) − Δ(H red edges) ≥
ζH} ≈ B(P,Q)2 H for H large and ζ small, so that the number of selected leaves is
roughly (dB(P,Q)2)H . Thus to ensure there is at least a constant proportion of trees
survive through all L epochs, we need dB(P,Q)2 > 1. These heuristic calculations
will be made precise in Theorem 5.

4.2 Existence of many two-sided trees

Set s = (1+3ε/4)2HL as the desired number of leaf vertices. For each two-sided tree
Tk constructed from Algorithm 2, define

L̃k = the set of selected leaf vertices at depth 2HL in the left subtree of Tk,

R̃k = the set of selected leaf vertices at depth 2HL in the right subtree of Tk,

and let

Lk =
{
an arbitrary size-s subset of L̃k if |L̃k | ≥ s;
L̃k if |L̃k | < s.

Similarly define Rk . Since the left tree and the right tree are rooted at ik ∈ V c and
i ′k ∈ (V c)′ respectively, we have Lk ⊂ V c and Rk ⊂ (V c)′. From the definition of
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the two-sided trees, each pair of vertices i ∈ Lk and j ∈ Rk are connected via an
alternating path P of length 4HL + 1 on Tk . In this subsection, we show that at least
K1 = Ω(n) of the K two-sided trees yield sufficiently large sets Lk, Rk , and large
enough weight Δ(P).

Theorem 5 Suppose that the condition (7) holds and Algorithm 2 is run with param-
eters

γ ≤ γ0 = ε/32, ζ = min {ε/32, D(P‖Q) + D(Q‖P)} , (34)

and H is a large constant depending only on ε,P,Q. Then with probability at least
1 − e−Ω(n), there exists K1 ⊂ [K ] with

K1 = |K1| = γ

16(1 + ε)2HL exp(7Hα + 3εH/2)
· n,

such that for all k ∈ K1, Tk satisfies

1. |Lk | = |Rk | = s = (1 + 3ε/4)2HL;
2. for all i ∈ Lk and j ∈ Rk, the path P between i and j on Tk has weight Δ(P) ≥

2ζHL − τred, where τred = inf{x : P[log(P/Q) ≤ x] ≥ 1/2} is the median of
log(P/Q) under P.

Before provingTheorem5,we introduce the following auxiliary lemma. The lemma
states that for each two-sided tree Tk , with sufficiently large probability, the termination
condition (31) is not hit and there are sufficiently many leaf nodes at depth 2HL in
both the left and the right subtrees. As a consequence, we get large sets Lk and Rk as
desired in the statement of Theorem 5.

Lemma 4 Under the assumptions of Theorem 5, we have for each k = 1, ..., K, with
probability at least 1

2 exp(−4αH − εH/2), the following hold for both the left and
the right subtree in the two-sided tree Tk.

(a) (not overgrown) The construction of the tree is not terminated by hitting condi-
tion (31).

(b) (many leaf nodes) The number of selected leaf nodes at depth 2HL is at least
s = (1 + 3ε/4)2HL .

With Lemma 4, we are ready to prove Theorem 5. The proof of Lemma 4 is deferred
to the end of this subsection.

Proof of Theorem 5 For each k, each pair of i ∈ Lk and j ∈ Rk , the path P between i
and j on Tk consists of the central edge (ik, i ′k) and 2 L subpaths, each of length H .
By the leaf node selection step (32), each subpath has weight at least ζH . Therefore,

Δ(P) ≥ 2ζHL − log
P
Q
(
Wik ,i ′k

)
.
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From the definition of τred,

P

{
log

P
Q
(
Wik ,i ′k

)
≤ τred

}
≥ 1/2.

Therefore, with probability at least 1/2, the weight of all paths from Lk to Rk have
weight at least 2ζHL − τred.

Let K̃be the set of all k ≤ K such that |Lk | ≥ (1+3ε/4)2HL , |Rk | ≥ (1+3ε/4)2HL ,

and Δ(P) ≥ 2ζHL − τred for all P from Lk to Rk . Since the construction of the trees
are completely independent of the weight of the central edges, we have from property
(b) in Lemma 4,

P
{
k ∈ K̃} ≥ 1

4
exp(−4αH − εH/2).

Moreover, recall that we deliberately ensured that the construction of each tree uses
up a deterministic number of vertices. As a result, the isomorphism class of each two-
sided tree Tk , in particular its total number of vertices and the number of leaf nodes,
are independent of the prior T1, ..., Tk−1. That, combined with the independence of
the red edge weights, yields independence of the events {k ∈ K̃}k≤K . Thus

P

{∣
∣K̃∣∣ <

1

8
exp(−4αH − εH/2)K

}

≤ P

{
Binom

(
K ,

1

4
exp(−4αH − εH/2)

)
<

1

8
exp(−4αH − εH/2)K

}
= exp(−Ω(K ))

by Hoeffding’s inequality. Combine with (33) to conclude that with probability at least
1 − e−Ω(n),

∣
∣K̃∣∣ ≥ 1

8
exp(−4αH − εH/2)K = γ

16(1 + ε)2HL exp(7Hα + 3εH/2)
· n � c5n.

To finish the proof of Theorem 5, let K1 be an arbitrary subset of K̃ of size exactly
c5n. ��
Proof of Lemma 4 For a fixed k, let

AL,k � {The left tree of Tk satisfies condition (a) (not overgrown)} ,

BL,k � {The left tree of Tk satisfies condition (b) (many leaf nodes)} .

Similarly define events AR,k , BR,k . To prove Lemma 4, it suffices to show that for
each k,

P
(AL,k ∩ BL,k ∩ AR,k ∩ BR,k

) ≥ 1
2e

−4αH−εH/2. (35)
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Let us first focus on the analysis of the left tree. Recall that in Algorithm 2, in each
step of the exploration process from vertex v, the set of offsprings of v is defined as all
members of U′ that are incident to v via a blue edge. Thus, the offspring distribution is
Binom(|U|, d/n). The randomness in |U| results in dependence between different steps
of the exploration process, which is technically inconvenient. To resolve this problem,
we utilize the fact that |U| is always between (1 − 2γ )n and n, and couple the tree
with two two-sided trees T (L)

k = T (Lower)
k and T (U)

k = T (Upper)
k , whose offspring

distributions follow Binom((1 − 2γ )n, d/n) and Binom(n, d/n), respectively.
More specifically, in each epoch of the growth of the left tree of T (L)

k , the explo-
ration process follows a branching process with offspring distribution Binom((1 −
2γ )n, d/n), such that it is homomorphic to a subtree of Tk ; the leaf node selection is
done in a similar way that preserves the stochastic ordering, such that each vertex is
selected with probability

psel � P

⎧
⎨

⎩

∑

j≤H

Y j −
∑

j≤H

X j ≥ ζH

⎫
⎬

⎭
, (36)

where Xi ’s are i.i.d. copies of log(P/Q) under distribution P and Y ′
i s are i.i.d. copies

of log(P/Q) under distributionQ. Construct the right tree of T (L)
k , and T (U)

k in similar
fashion.One caveat is that the tree Tk mayhit the termination condition (31),while both
T (L)
k and T (L)

k are assumed to be “free-growing”without any termination conditions.As
a result, on the event that neither subtree of Tk is terminated by hitting the termination
condition (31), we have

T (L)
k ⊂ Tk ⊂ T (U)

k ,

where ⊂ denotes stochastic dominance of the three trees. Let A(L)
L,k,A(L)

R,k,B(L)
L,k,B(L)

R,k

denote the analogue events on the tree T (L)
k , and similarly define the events on T (U)

k .
A key observation is that

A(U)
L,k ∩ B(L)

L,k ⊂ AL,k ∩ BL,k .

To see why, note that Tk ⊂ T (U)
k always holds. Therefore on A(U)

L,k , we have that the

left subtree of Tk never hits the termination condition (31). As a result, T (L)
k ⊂ Tk also

holds, and thus B(L)
L,k implies BL,k . A similar relationship holds for the right tree. It

follows that

P
(AL,k ∩ BL,k ∩ AR,k ∩ BR,k

) ≥P

(
A(U )

L,k ∩ B(L)
L,k ∩ A(U )

R,k ∩ B(L)
R,k

)

(a)=P

(
A(U )

L,k ∩ B(L)
L,k

)2

(b)≥
[
P

(
A(U )

L,k

)
+ P

(
B(L)
L,k

)
− 1

]2
,
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where (a) is from symmetry and independence of the left and right subtrees; (b) is
from the basic inequality P(AB) ≥ P(A)+ P(B)−1 for all probability events A, B,

and that P
(
A(U )

L,k

)
+ P

(
B(L)
L,k

)
− 1 ≥ 0 from the following two inequalities (37),(38)

that we will show.
To prove (35) it suffices to show the following two claims:

P

(
A(U)

L,k

)
≥ 1 − 1

4e
−2αH−εH/4, (37)

P

(
B(L)
L,k

)
≥ e−2αH−εH/4. (38)

We start with the proof of (37). First, we can control the probability psel defined in (36)
from above via the large deviation bound (83):

psel ≤ P

⎧
⎨

⎩

∑

j≤H

Y j −
∑

j≤H

X j ≥ 0

⎫
⎬

⎭
≤ exp (−αH) . (39)

Let W (U)
i denote the number of vertices that are used in the exploration process at

the i’th epoch (before selection) in the left subtree of T (U)
k . Let Z (U)

i denote the number
of leaf nodes at depth i H that are selected. We have for all i ≤ L ,

E(W (U)
i ) = E(Z (U)

i−1) ·
H∑

j=1

d j

=
[(

n · d
n

)H

psel

]i−1

·
H∑

j=1

d j

≤ [
de−α

]H(i−1) ·
H∑

j=1

d j

≤ [
de−α

]H(i−1)
dH d

d − 1
.

Recall that de−α = (1 + ε)2. Therefore, the expected total number of vertices in the
left tree

E

(

1 +
L∑

i=1

W (U)
i

)

≤ 1 +
L∑

i=1

(1 + ε)2H(i−1)dH d

d − 1

(a)≤
L∑

i=0

(1 + ε)2H(i−1)dH d

d − 1

(b)≤ d

d − 1
dH (1 + ε)2H(L−1) 1

1 − (1 + ε)−H

(c)≤ 2d

d − 1
(1 + ε)2HLeHα, (40)
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where (a) is from (1 + ε)−2 HdHd/(d − 1) = eαHd/(d − 1) ≥ 1 since α ≥ 0 and
d/(d − 1) ≥ 1; (b) is by bounding the finite geometric sum by an infinite sum; (c) is
by choosing H to be a sufficiently large constant so that (1+ ε)−H ≤ 1/2. Therefore,

1 − P

(
A(U)

L,k

) (a)≤P

{

1 +
L∑

i=1

W (U)
i ≥ (1 + ε)2HL exp(3Hα + εH)

}

(b)≤
E

(
1 +∑L

i=1 W
(U)
i

)

(1 + ε)2HL exp(3Hα + εH)

(c)≤ 2d

d − 1
exp(−2Hα − εH)

(d)≤ 1

4
exp(−2Hα − εH/4),

where (a) is from the definition of A(U)
L,k ; (b) is from Markov’s inequality; (c) is

from (40); (d) is because by the assumption de−α = (1 + ε)2, and that e−α =
B(P,Q)2 ≤ 1, we have d ≥ (1 + ε)2. Thus 2d/(d − 1) ≤ 2(1 + ε)2/(2ε + ε2) ≤
exp(3εH/4)/4 by choosing H large enough.

Next we show (38). As before, let Z (L)
i denote the number of leaf nodes at depth

i H that are selected in the left subtree of T (L)
k . We have

P

(
B(L)
L,k

)
= P

{
Z (L)
L ≥ (1 + 3ε/4)2HL

}
. (41)

We will bound P{B(L)
L,k} by analyzing the first and second moments of Z (L)

L . Note that
for all i ,

E

(
Z (L)
i

)
=
[
((1 − 2γ )d)H psel

]i
� μi .

We claim the following inequalities on p, μ, and the second moment of Z (L)
L .

psel ≥ exp (−αH − εH/16) , (42)

μ ≥ 2
(
1 + 3

4ε
)2H

, (43)

E

([
Z (L)
L

]2) ≤ μ2L + [(1 − 2γ )d
]2H (1 − 2γ )d

(1 − 2γ )d − 1
· μ2L−2

1 − μ−1 . (44)

Assuming that (42), (43), (44) all hold, we first finish the proof of (38). By combin-
ing (41) and (43), we have

P

{
B(L)
L,k

}
≥ P

{
Z (L)
L > 1

2E(Z (L)
L )
}

. (45)
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By the Paley-Zygmund inequality,

P

{
Z (L)
L > 1

2E(Z (L)
L )
}

≥ 1

4

[
E(Z (L)

L )
]2

E

([
Z (L)
L

]2) ≥ 1

4

1

1 + [(1 − 2γ )d
]2H (1−2γ )d

(1−2γ )d−1
1

μ(μ−1)

,

(46)

where the last inequality follows from (44). From (43), we can choose H large enough
such that μ − 1 ≥ μ/2. Therefore, the right-hand side of (46) is bounded from below
by

1

4

1

1 + 2 (1−2γ )d
(1−2γ )d−1

[
(1 − 2γ )d

]2H
μ−2

(a)≥ 1

4
(
1 + 2 (1−2γ )d

(1−2γ )d−1

) p2sel

(b)≥ 1

4
(
1 + 2 (1−ε/16)(1+ε)2

(1−ε/16)(1+ε)2−1

) exp (−2αH − εH/8)

(c)≥ exp (−2αH − εH/4) ,

where (a) is from the definition of μ, and psel ≤ 1; (b) is from (42), and γ ≤ ε/32,
d ≥ (1+ ε)2 (which follows from (7)); (c) is by choosing H large enough so that the
fractional factor is absorbed into exp(εH/8). Combine the display above with (45)
and (46) to finish the proof of (38).

It remains to prove (42), (43) and (44).
Proof of (42): By (84), we have that for ζ chosen as in (34),

psel ≥ exp (−αH − ζH + o(H)) .

(42) follows by choosing H to be a large enough constant only depending on ε,P,Q.
Proof of (43): By definition of μ and the inequality (42), we have

μ ≥ [(1 − 2γ )d
]H exp (−Hα − εH/16)

≥
[
(1 − ε/16)(1 + ε)2

]H
exp (−εH/16) ≥ 2

(
1 + 3

4ε
)2H

by choosing H to be a large enough constant.
Proof of (44): Following the arguments in [11, Theorem 2.1.6], we can control the

second moment of Z (L)
i with

E

([
Z (L)
i

]2) ≤ μ2i + σ 2 μ2i−2

1 − μ−1 , (47)

123



The planted matching problem: sharp threshold and...

where σ 2 = Var(Z (L)
1 ) ≤ E([Z (L)

1 ]2). For completeness we include a short proof
of (47) here. First, note that

E

(
Z (L)
i | Z (L)

i−1

)
= μZ (L)

i−1, and

Var
(
Z (L)
i | Z (L)

i−1

)
=

∑

j≤Z (L)
i−1

σ 2 = Z (L)
i−1σ

2.

Therefore

E

([
Z (L)
i

]2 | Z (L)
i−1

)
=μ2

(
Z (L)
i−1

)2 + Var
(
Z (L)
i | Z (L)

i−1

)
= μ2

(
Z (L)
i−1

)2 + Z (L)
i−1σ

2.

Take expectation on both sides. We have

E

([
Z (L)
i

]2) = μ2
E

([
Z (L)
i−1

]2)+ μi−1σ 2.

The induction above with Z (L)
0 = 1 yields

E

([
Z (L)
i

]2) = μ2i + σ 2
2i−2∑

j=i−1

μ j ≤ μ2i + σ 2 μ2i−2

1 − μ−1 .

Toboundσ 2, we upper bound Z (L)
1 by the number of leaves at depth H before selection.

Following the same argument as in the derivation of (47), we have

σ 2 ≤ [
(1 − 2γ )d

]2H + [(1 − 2γ )d
]2H−1 1

1 − [(1 − 2γ )d]−1 = [
(1 − 2γ )d

]2H (1 − 2γ )d

(1 − 2γ )d − 1
.

(48)

Combine (47) and (48) to yield (44). ��

5 Sprinkling stage

Recall that we have constructed a family of disjoint sets Lk of left vertices and Rk

of right vertices for k ∈ K1 such that each pair of vertices i ∈ Lk and j ∈ Rk are
connected via an alternating path P of length � through red edge (ik, i ′k) in G1, where
|Lk | = |Rk | = s and K1 � |K1|. Crucially the construction of Lk and Rk does not
involve the vertices in V . Recall from Algorithm 1 that G2 is an unweighted subgraph
of G that does not contain any edges in V c × (V c)′. A blue edge e appears in G2 if and
only if it appears in G, and log(P/Q)(We) ≥ τblue. Therefore, the blue edges in G2
are independently generated with probability η/n, where η = d ·Q[log(P/Q)(We) ≥
τblue].
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Recall from Algorithm 1 that

V ∗ = {i ∈ V : log(P/Q)(Wi,i ′) ≤ τred}

is a subset of the reserved vertices whose incident red edge weight is below threshold.
In this section, we connect the alternating paths between Lk and Rk through vertices
in V ∗ and (V ∗)′ to form long alternating cycles in G. This scheme is referred to as
“sprinkling”, which is detailed in Algorithm 3.

Algorithm 3 Sprinkling
Input: Parameters n, η, s, sets V ∗ ⊂ V ⊂ [n], a bipartite graphG2 whose blue edges are independently
generated with probability η/n, and disjoints sets {Lk }k∈K1 of left vertices and {Rk }k∈K1 of right
vertices with |Lk | = |Rk | = s for all k ∈ K1.

1: Define

A′
k = {v′ ∈ (V ∗)′ : ∃u ∈ Lk , s.t. (u, v′) ∈ E(G2)

}
,

Bk = {v ∈ V ∗ : ∃u′ ∈ Rk , s.t. (u′, v) ∈ E(G2)
}
.

2: For each v ∈ V ∗, let
dv =

∑

k∈K1

1{
v′∈A′

k

} +
∑

k∈K1

1{v∈Bk}.

Define Aoverlap = {v ∈ V ∗ : dv ≥ 2}. For all k ∈ K1, define

U ′
k = A′

k\A′
overlap, Vk = Bk\Aoverlap.

Define β = |V ∗|/n, and let

K2 =
{
k ∈ K1 : |U ′

k | ≥ βsη

4
, |Vk | ≥ βsη

4

}
.

3: Define a bipartite graph Gsuper on K2 × (K2)
′, where there is a red edge between i and i ′ for every

i ∈ K2 and there is a blue edge between i and j ′ if and only if Ui and V ′
j are connected via a blue edge

in G2.
4: For each alternating cycleCsuper = (i1, i

′
1, i2, i

′
2, · · · , ir , i ′r ) in Gsuper , extend it to an alternating cycle

in G as
C = (

v′
1, v1, P1, u

′
1, u1, v

′
2, v2, P2, u

′
2, u2, · · · , v′

r , vr , Pr , u
′
r , ur

)
,

where uk and v′
k+1 are two nodes inUik and V

′
ik+1

that are connected by a blue edge; Pk is an alternating

path connecting Lik and Rik ; and u′
k (resp. vk ) and Pk are connected by a blue edge according to the

definition of U ′
ik

(resp. Vik ).

In step 1 of Algorithm 3, we find all vertices in (V ∗)′ (resp. V ∗) that are connected
to A′

k (resp. Bk) through a blue edge. Note that these sets may contain overlapping
vertices, e.g. v could belong to two different sets Bk1 and Bk2 , or we could have
v ∈ Bk1 and v′ ∈ A′

k2
. To make sure the algorithm yields legitimate cycles, in step 2,

we remove these overlaps. We define Aoverlap as the set of all v ∈ V ∗ such that itself
combined with its pair v′ have more than one connections to {A′

k}, {Bk}. We removed
those overlapping vertices to form the sets {U ′

k}, {Vk}. We then only keep those k ∈ K1
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with large enough sizes of U ′
k and Vk , which helps ensure the super graph has a high

enough average degree.
See Fig. 2 for an illustration of steps 4–5 of Algorithm 3, which extends each

alternating cycle on the super graph into an alternating cycle on G. The following
theorem provides a sufficient condition under which with high probability, Gsuper
contains exponentially many distinct alternating cycles, which correspond to distinct
alternating cycles on G. Note that the theorem also states that K2 = |K2| is of order
Ω(K1). Thus, the sprinkling scheme yields eΩ(K2) = eΩ(K1) distinct alternating
cycles, each of length 3K2/4 = Ω(K1).

Theorem 6 (Sprinkling) Let

β = |V ∗|/n, κ = 2K1sη

n
, b = βsη

4
, dsuper = 1

32n
K1b

2η.

Suppose b ≥ 4, K1 ≥ 8400, κ ≤ 1/162, and dsuper ≥ 256 log(32e). Then condi-

tional on a fixed V ∗, we have with probability at least
(
1 − e−K1/32 − 2

βnκ3

) (
1 −

e−dsuperK1/218
)
, Gsuper obtained by Algorithm 3 contains at least exp(K2/20) distinct

alternating cycles of length at least 3
4K2, and K2 ≥ K1/16.

The proof of Theorem 6 consists of two major steps. First, we show that with high
probability,

∣∣U ′
k

∣∣ ≥ b and |Vk | ≥ b for all k ∈ K2 for some K2 of size K2 ≥ K1/16.
Then conditional on {Uk, V ′

k}k∈K2 , we show that Gsuper contains exponentially many
long alternating cycles with high probability. In the sequel, we present the detailed
proof.

5.1 Existence of largeK2

To show that there exist many indices k ∈ K1 with
∣∣U ′

k

∣∣ ≥ b and |Vk | ≥ b, we first
show in the following Lemma 5 that there exist many indices with large |Ak | and |Bk |.
We then show in Lemma 6 that there are not many indices who lose a large fraction
of vertices when the overlapping vertices are removed.

Lemma 5 If βsη ≥ 4 and sη ≤ n/4, then

P

⎧
⎨

⎩

∑

k∈K1

1{|A′
k |≥ βsη

2 ,|Bk |≥ βsη
2

} ≤ K1

8

⎫
⎬

⎭
≤ exp (−K1/32)

Lemma 6 If κ � 2K1sη/n ≤ 1
162

. Then

P

⎧
⎨

⎩

∑

k∈K1

1{|A′
k |−|U ′

k |≥ βsη
4 , or |Bk |−|Vk |≥ βsη

4

} ≤ K1

16

⎫
⎬

⎭
≥ 1 − 2

βnκ3 .
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Combining Lemma 5 and 6, we conclude that there exists some K2 of size K2 ≥
K1/16, such that for all k ∈ K2, |U ′

k | ≥ βsη
2 − βsη

4 = βsη
4 = b, and |Vk | ≥ b.

Proof of Lemma 5 For each k ∈ K1 and each v′ ∈ (V ∗)′,

P
{∃u ∈ Lk, s.t. (u, v′) ∈ E(G2)

} = 1 −
(
1 − η

n

)|Lk | ≥ 1 −
(
1 − η

n

)s
.

Therefore, |A′
k | is stochastically dominant over a random variable distributed

Binom(βn, 1 − (1 − η
n )s). Since the mean and median of a binomial distribution

differ by at most 1, the median of |A′
k | is lower bounded by

βn
[
1 −

(
1 − η

n

)s]− 1
(a)≥ 3βsη

4
− 1 ≥ βsη

2
,

where (a) holds due to (1 − x)s ≤ e−sx ≤ 1 − 3sx/4 when 0 ≤ sx ≤ 1/4 and
the assumption that sη ≤ n/4; the last inequality follows from the assumption that

βsη ≥ 4. Thus P
{
|A′

k | ≥ βsη
2

}
≥ 1/2. Similarly argue that P{|Bk | ≥ βsη

2 } ≥ 1/2.

By independence of |A′
k | and |Bk |, we have

P

{∣∣A′
k

∣∣ ≥ βsη

2
, |Bk | ≥ βsη

2

}
≥ 1

4
.

Combined with independence across all k ∈ K1, we have

P

⎧
⎨

⎩

∑

k∈K1

1{|A′
k |≥ βsη

2 ,|Bk |≥ βsη
2

} ≤ K1

8

⎫
⎬

⎭

≤ P {Binom (K1, 1/4) ≤ K1/8} ≤ exp(−K1/32)

by Hoeffding’s inequality. ��
Proof of Lemma 6 Recall that for each v ∈ V ∗,

dv =
∑

k∈K1

1{v′∈A′
k} +

∑

k∈K1

1{v∈Bk }.

Since v ∈ Aoverlap if and only if dv ≥ 2, we have

∑

v∈V ∗
dv1{dv≥2} =

∑

v∈Aoverlap

dv

=
∑

v∈Aoverlap

∑

k∈K1

(
1{v′∈A′

k} + 1{v∈Bk }
)

=
∑

k∈K1

⎛

⎝
∑

v∈Aoverlap

1{v′∈A′
k} +

∑

v∈Aoverlap

1{v∈Bk }

⎞

⎠
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=
∑

k∈K1

(∣∣A′
k

∣∣− ∣∣U ′
k

∣∣+ |Bk | − |Vk |
)

≥βsη

4

∑

k∈K1

1{|A′
k |−|U ′

k |+|Bk |−|Vk |≥ βsη
4

}

≥βsη

4

∑

k∈K1

1{|A′
k |−|U ′

k |≥ βsη
4 , or |Bk |−|Vk |≥ βsη

4

}.

In other words,
∑

v∈V ∗ dv1{dv≥2} controls the number of k ∈ K1 for which A′
k or Bk

loses over βsη
4 vertices when Aoverlap is removed. It remains to prove that with high

probability

∑

v∈V ∗
dv1{dv≥2} ≤ βsη

4
× K1

16
.

First, note that the random variables {dv}v∈V ∗ are independent since the blue edges in
G2 are independent. Moreover, for each v ∈ V ∗,

dv =
∑

k∈K1

1{∃u∈Lk ,s.t .(u,v′)∈E(G2)} +
∑

k∈K1

1{∃u′∈Rk ,s.t .(v′,u)∈E(G2)}

∼ Binom
(
2K1, 1 −

(
1 − η

n

)s)
.

Using (1− x)s ≥ 1− sx , we get that 1− (1 − η
n

)s ≤ sη/n. Hence, there exist random

variables d̃v
i .i .d.∼ Binom(2K1, sη/n) such that

∑

v∈V ∗
dv1{dv≥2} ≤

∑

v∈V ∗
d̃v1{d̃v≥2}. (49)

Note that

E

[
d̃v1{d̃v≥2}

]
=E[d̃v] − P

{
d̃v = 1

}

=2K1
sη

n

[
1 −

(
1 − sη

n

)2K1−1
]

≤ (2K1sη/n )2 � κ2.

where the last inequality follows from using (1 − x)a ≥ 1 − ax for 0 ≤ x ≤ 1 and
a ≥ 1.

Moreover,

Var
[
d̃v1{d̃v≥2}

]
≤ E

[
d̃2v
]

≤ κ + κ2 ≤ 2κ,
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where the last inequality follows from κ ≤ 1. Thus by Chebyshev’s inequality and
(49), we have that with probability at least 1 − 2/(βnκ3),

∑

v∈V ∗
dv1{dv≥2} ≤

∑

v∈V ∗
d̃v1{d̃v≥2} ≤ 2βnκ2 = 4K1βsηκ ≤ K1βsη

4 × 16
,

where the last inequality holds by the assumption that κ ≤ 1
162

. ��

5.2 Construction of exponentially many alternating cycles

In this subsection we show the existence of many long alternating cycles in Gsuper.
Recall that in Gsuper there is a planted (red) edge between i and i ′ for every i ∈ K2.
Moreover, there is an unplanted (blue) edge between i and j ′ for i 
= j if and only ifUi

and V ′
j are connected via an edge in G2. In the previous steps, we have not inspected

any of the edges between Ui and V ′
j . Therefore

P
{
(i, j ′) ∈ E(Gsuper)

} = 1 −
(
1 − η

n

)|Ui |·
∣
∣
∣V ′

j

∣
∣
∣ ≥ 1

2

η

n
b2 ≥ dsuper

K2
, (50)

where the first inequality holds by (1 − x)a ≤ 1 − ax/2 for 0 ≤ x ≤ 1/a, and the

assumptions that |Ui | ,
∣∣∣V ′

j

∣∣∣ ≥ b and b2η ≤ n; the last inequality holds by the definition

of dsuper = K1ηb2

32n , and K2 ≥ K1/16 as shown in Sect. 5.1. Moreover, from the
independence of the blue edges inG1, all edges (i, j ′) inGsuper appear independently.
Thus, Gsuper is a bipartite graph onK2 × (K2)

′ with planted red edges between i ′ and
i and unplanted blue edges between i and j ′ appearing independently with probability
at least

dsuper
K2

. Lemma 7 shows that we have Gsuper contains exponentially many long
alternating cycles for dsuper large enough.

Lemma 7 Let G be a bi-colored bipartite graph on [n] × [n]′ whose n red edges are
defined by a perfect matching, and blue edges are generated from a bipartite Erdős-
Rényi graph with edge probability D/n. If n ≥ 525 and D ≥ 256 log(32e), then with
probability at least 1 − exp(−Dn/214), G contains exp(n/20) distinct alternating
cycles of length at least 3n/4.

Proof In order to show the existence of exponentially many long cycles in G, we
construct exponentially many subsets of [n]with relatively small overlaps. For ease of
presentation, we assume n is even; otherwise we replace n/2 by �n/2� in the following
proof.

First, it is well-known that there exists a collectionV of subsets of [n] of cardinality
n/2,

such that for any distinct S, T ∈ V, |S�T | ≥ n/3 and

|V| ≥
( n
n/2

)

∑n/3
i=0

(n
i

) ≥
(

n

n/2

)
e−n(log 3− 2

3 log 2) ≥ en/20, (51)
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where the first inequality is by a volume argument (Gilbert-Varshamov bound)5; the
second inequality follows from the Chernoff bound 2−n∑n/3

i=0

(n
i

) =
P {Binom(n, 1/2) ≤ n/3} ≤ e−nD(Bern(1/3)‖Bern(1/2)); the last inequality is from the
bound on the binomial coefficient

( n
n/2

) ≥ 1√
2n
2n by Stirling’s approximation [24],

and the fact that 1√
2n

exp(−n(log 3 − 5
3 log 2)) ≥ en/20 for all n ≥ 525.

Next we show that for each size-(n/2) subset V of [n], G[V × V ′] contains a long
alternating cycle with high probability. By the same argument as in [12, Theorem 6.8],
we claim that the graph G[V × V ′] contains an alternating cycle of length at least
3n/4, if for all subsets S1× S2 ⊂ V ×V ′ such that |S1|, |S2| ≥ n

32 −1 ≥ n
64 , there is at

least one pair of u ∈ S1, v′ ∈ S2 that are connected by a blue edge. For completeness
we include a proof of this claim below.

The claim is shown by constructing a long alternating path on G[V × V ′] with the
depth-first search (DFS) algorithm. Trace the DFS algorithm with the variables

1. U = The set of unexplored left vertices;
2. D = The set of dead (fully explored) left vertices;
3. P = (v′

1, v1, v
′
2, v2, ..., v

′
r , vr ) = the current path.

Initialize atU = V \{v1}, D = ∅ and P = (v′
1, v1)where v1 is an arbitrarymember

of V , e.g., the one with the smallest index. At each step of the DFS algorithm, we
proceed according to the following two cases:

1. If there is some u′ ∈ U ′ such that (vr , u′) is a blue edge, we update

vr+1 ← u; P ← (P, u′, u); U ← U\{u}; r ← r + 1.

2. If no vertex in U ′ is incident to vr in G, we update

D ← D ∪ {vr }; P ← P\{vr , v′
r }; r ← r − 1.

By definition of the DFS algorithm, a vertex v is only added to D if v is not incident
to any vertex in U ′. Since the algorithm never adds any new vertices to U , the set
D and U ′ are always disconnected in G at any stage of the algorithm. Furthermore
the size of U is non-increasing, and the size of D is non-decreasing, such that |V | =
r + |D| + |U | always holds. Therefore at some time point in the DFS algorithm,
we have |D| = |U | = |U ′|. Assuming that all pairs of S1 × S2 ⊂ V × V ′ of size
S1 ≥ n/32− 1, S2 ≥ n/32− 1 are connected by at least one blue edge, we must have
|D| = |U | ≤ n/32 − 1, hence r = n/2 − |D| − |U | ≥ 7n/16.

Apply the assumption again with S1 = {vr−n/32+1, ..., vr }, S2 = {v′
1, ..., v

′
n/32}.

There exists vi ∈ S1, v′
j ∈ S2 such that (vi , v′

j ) is a blue edge inG.Wehave constructed
a cycle

(v′
j , v j , v

′
j+1, v j+1, ..., v

′
i , vi , v

′
j )

5 Indeed, construct V greedily until no more subsets can be added. Then for any T with |T | = n/2, there
exists some S ∈ V such that |S�T | < n/3. Since for each fixed S, the number of T such that |S�T | < n/3

is at most
∑n/3

i=0

(n
i
)
, the lower bound on |V| follows.
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of length at least 2|i − j | ≥ 2(r − n/16) ≥ 3n/4. It follows that

P
{
G[V , V ′] contains an alternating cycle of length 3n/4

}

≥ P
{∀S1 × S2 ⊂ V × V ′ such that

|S1|, |S2| ≥ n

64
, ∃u ∈ S1, v

′ ∈ S2, such that (u, v′) ∈ E(G)
}

≥ 1 −
(
n/2

n/64

)2 (
1 − D

n

)(n/64)2

≥ 1 −
[

(32e)2
(
1 − D

n

)n/64
]n/64

≥ 1 −
[
exp

(
2 + 2 log 32 − D

64

)]n/64

≥ 1 − exp
(
−Dn/213

)
. (52)

where the last inequality holds by the assumption that D/128 ≥ 2 + 2 log 32.
Finally, since D/214 ≥ 1/20, combining (52)with (51) and applying a union bound,

we get that with probability at least 1 − e−Dn/214 , G[V × V ′] contains an alternating
cycle of length 3n/4 for every subset V ∈ V. Since the number of left vertices visited
by each alternating cycle is at least 3n/8, which exceeds the maximum overlap (at
most n/3 by construction) between distinct subsets inV, these alternating cycles must
be distinct. This complete the proof. ��

We now finish the proof of Theorem 6 by combining the previous results. First,
combining Lemma 5 and Lemma 6 yields that with probability at least 1− e−K1/32 −

2
βnκ3

, there exists a subset K2 ⊂ K1 such that |K2| = K2 ≥ K1/16, and |Uk | ≥ b

and
∣∣V ′

k

∣∣ ≥ b for all k ∈ K2. Thus (50) holds. Conditioning on {Uk, V ′
k}k∈K2 and

applying Lemma 7, we get that with probability at least 1 − exp(−dsuperK2/214),
Gsuper contains exp(K2/20) distinct alternating cycles of length at least 3K2/4. Thus
the conclusion of Theorem 6 readily follows.

6 Proof of Lemma 2 under the sparse model

In this section, we prove Lemma 2, which, as mentioned in Sect. 3.1, completes the
proof of Theorem 2 for the sparse model and, in turn, also for the dense model in view
of the reduction in Appendix E.1.

To prove Lemma 2, we apply Algorithm 1 on G with we = log(P/Q)(We) for e
in G. Define thresholds

τred � inf

{
x : P

(
log

P
Q ≤ x

)
≥ 1/2

}
(53)

τblue � sup

{
x : Q

(
log

P
Q ≥ x

)
≥ 1/2

}
. (54)
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Note that τred and τblue arewell defined under the assumption thatP � Q andQ � P,
which can be assumed WLOG in view of the reduction argument in Appendix E.3.

Assume that Algorithm 1 succeeds. It returns at least ec6K1 distinct alternating
cycles C of the form

C = (
v′
1, v1, P1, u

′
1, u1, v

′
2, v2, P2, u

′
2, u2, · · · , v′

r , vr , Pr , u
′
r , ur

)
,

where r ≥ c7K1 for universal constants c6, c7. Here each Pk is an alternating path of
length � � 4HL + 1 in G1, with Δ(Pk) ≥ ζ(� − 1)/2 − τred. All the other edges
in C are contained in G2. Since K1 = c5n, it follows that |C | ≥ r� ≥ nc2 for some
constant c2. Letm be the perfect matching such thatm�m∗ = C . By choosing δ ≤ c2,
we get that m ∈ Mbad. Moreover, by construction

Δ(C) ≥ 3rτblue − 2rτred +
r∑

k=1

Δ(Pk) ≥ 3rτblue

−3rτred + ζr(� − 1)/2 ≥ ζr(� − 1)/4 ≥ nc4,

for some constant c4 > 0, where the last inequality holds by choosing � large enough
such that ζ(� − 1) ≥ 12(τred − τblue). Since there are at least ec6K1 = ec5c6n distinct
such alternating cycles C , the desired (30) follows. To complete the proof, it suffices
to show that Algorithm 1 succeeds with probability at least 1 − O(1/n).
Path construction Let the family of disjoint sets Lk ⊂ V c and Rk ⊂ (V c)′ be defined
in Sect. 4.2. By Theorem 5, with probability 1 − eΩ(n), there exists K1 ⊂ [K ], such
that K1 = |K1| = c5n with constant

c5 = γ

16(1 + ε)2HL exp (7Hα + 3εH/2)
.

For all k ∈ K1, we have |Lk | = |Rk | = s where s = (1 + 3ε/4)2HL . Moreover, each
pair of vertices u ∈ Lk and v ∈ Rk are connected via an alternating path P of length
� = 4HL + 1 through red edge (ik, i ′k) and Δ(P) ≥ 2ζHL − τred.
Sprinkling We need to check that the sprinkling step yields ec6K1 distinct alternating
cycles of the form

C = (
v′
1, v1, P1, u

′
1, u1, v

′
2, v2, P2, u

′
2, u2, · · · , v′

r , vr , Pr , u
′
r , ur

)

for r ≥ c7K1. We show this using Theorem 6. We start by specifying the parameters
β and η that appear in the statement of Theorem 6.

Recall from Algorithm 1 that V ∗ = {i ∈ V : log(P/Q)(Wi,i ′) ≤ τred}, and
Wi,i ′ ∼ P for all i . By definition of τred given in (53) and the right-continuity of
the cumulative distribution function, we have P{i ∈ V ∗} ≥ 1/2 for all i . By the
independence of the edge weights, Hoeffding’s inequality yields

P

{
|V ∗| <

γ n

4

}
≤ P

{
Binom (γ n, 1/2) ≤ γ n

4

}
≤ e−γ n/8. (55)
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Therefore with probability at least 1 − e−γ n/8, we have β = |V ∗|/n ≥ γ
4 .

To bound the edge probability η/n of the blue edges in G2, note that e appears in
G2 as a blue edge if and only if it is a blue edge in G, and log(P/Q)(We) ≥ τblue.
Therefore η/n ≤ d/n, and

η

n
= d

n
· Q
(
log

P
Q ≥ τblue

)
≥ d

2n
, (56)

where the inequality is from the definition of τblue given in (54) and right-continuity
of the cumulative distribution function. In summary, we have parameters

β ≥ γ

4
,

d

2
≤ η ≤ d, s = (1 + 3ε/4)2HL , K1 = c5n.

Next,we check that these parameters lead to b, K1, κ and dsuper that satisfy the assump-
tions of Theorem 6. Indeed, since d ≥ 1,

b = βsη

4
≥ 1

32
γ d(1 + 3ε/4)2HL ≥ 1

32
γ (1 + 3ε/4)2HL ≥ 4

by choosing H large enough; K1 = c5n ≥ 8400 for large enough n;

κ = 2K1sη

n
≤ (1 + 3ε/4)2HLdγ

8(1 + ε)2HL exp (7Hα + 3εH/2)
(a)≤ (1 + 3ε/4)2HL(1 + ε)2γ

8(1 + ε)2HL exp (6Hα + 3εH/2)

(b)≤ 1

162
,

where (a) is from de−α = (1 + ε)2, (b) holds by choosing H large enough;

dsuper = 1

32n
K1b

2η = 2K1β
2s2η3

322n

≥ γ 3(1 + 3ε/4)4HLd3

324(1 + ε)2HL exp (7Hα + 3εH/2)

=
[
(1+3ε/4)2

1 + ε

]2HL
γ 3(1 + ε)6

324 exp (4Hα + 3εH/2)
≥ 256 log(32e),

where the last inequality is by choosing L to be a large enough constant, since (1 +
3ε/4)2/(1 + ε) > 1. We have checked that all the assumptions of Theorem 6 are
satisfied. Thus for all V ∗ with |V ∗| ≥ γ n/4, Theorem 6 gives that conditional on V ∗,
Gsuper contains at least eK2/20 ≥ ec6K1 distinct alternating cycles of length at least
3K2/4 ≥ c7K1 for universal constants c6, c7, with (conditional) probability at least

(
1 − e−K1/32 − 2

βnκ3

) (
1 − dsuperK1/2

18) =
(
1 − e−Ω(n) − O(1/n)

) (
1 − e−Ω(n)

)

= 1 − O(1/n).
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Combined with P {|V ∗| < γ n/4} = e−Ω(n) from (55), we have shown that the sprin-
kling step inAlgorithm1goes through for constants c6, c7 with probability 1−O(1/n).

7 Exponential model

In this section, we focus on the special case of complete graph with exponential
weights, where d = n, P = exp(λ), and Q = exp(1/n), and prove the lower bound
to the optimal reconstruction error given in (11) in Theorem 3.

As a convention, we call an alternating path a (2� − 1)-alternating path if it con-
sists of � red edges and � − 1 blue edges. Recall that Δ(P) = ∑

e∈b(P) log
P
Q (We) −

∑
e∈r(P) log

P
Q (We) for path P in G. The following result shows that with high prob-

ability there exist many disjoint (2� − 1)-alternating P with large Δ(P).

Theorem 7 Suppose that λ = 4−ε. There exists absolute constants ε0, c1, c2, c3 > 0,
and n0 = n0(ε), such that for all ε ≤ ε0, c1/ε ≤ � ≤ e−c1/

√
ε
√
n, and n ≥ n0, with

probability at least 1
2 − �2ec2/

√
ε

n , there is a set S∗ of disjoint (2�−1)-alternating paths
P with

∣∣S∗∣∣ ≥ n

�2ec3/
√

ε
, (57)

such that for every �/3 ≤ �′ ≤ � and every (2�′ − 1)-alternating subpath Q of P, it
holds that

Δ(Q) ≥ (λ − 1/n)ζ0ε�
′. (58)

with ζ0 = 1
96 .

Theorem 7 provides the needed ingredient for proving the negative part of Theorem
3. The proof of the positive part is deferred till Appendix D.

Proof of Theorem 3: negative part As mentioned in Sect. 3, Theorem 3 is a direct con-
sequence of Lemma 1 and Lemma 2 with c0, c2 = e−O(1/

√
ε). Therefore we only need

to prove Lemma 2 with the desired c0, c2. We choose

γ = ε

8
, ζ0 = 1

192
, τ = eτ0/

√
ε, � = 18τ

ζ0ε
(59)

for some constant τ0 to be specified later. Without loss of generality, we assume that
� is a multiple of 3. By the same argument that we used in the proof of Theorem 2 to
reduce condition (7) to (20), we also assume here that λ = 4 − ε.

In Step 1 of the two-stage cycle finding scheme,wefirst applyTheorem7 tofind a set
S∗ of disjoint (2�−1)-alternating paths inG1 = G[V c×(V c)′]with |V c| = (1−γ )n.
Specifically, by shrinking every edge weight in G1 by a multiplicative factor 1 − γ ,
we arrive at an instance of the exponential model with n′ left (right) vertices, planted
weight distribution exp(λ′) and null weight distribution exp( 1

n′ ), where n′ = (1−γ )n
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and λ′ = λ
1−γ

. Since λ = 4 − ε and γ = ε/8, it follows that λ′ ≤ 4 − ε/2 ≡ 4 − ε′.
Replacing (n, λ, ε) by (n′, λ′, ε′), the same conclusion of Theorem 7 holds for G1
(without weight shrinkage) with ζ0 = 1

192 .
For any alternating path P in S∗, it is centered at a red edge (k, k′) with a (� − 1)-

alternating subpath on each side. Let Lk denote the set of left vertices in the first
(2�/3)-segment of P and Rk denote the right vertices in the last (2�/3)-segment
of P . Then we have |Lk | = |Rk | = s, where s = �/3. Moreover, each pair of
vertices u ∈ Lk and v ∈ Rk is connected via a (2�′ − 1)-subpath Q of P through
the red edge (k, k′) consisting of �′ red edges and �′ − 1 blue edges, where �′ ≥ �/3
and Δ(Q) ≥ (λ − 1/n)ζ0ε�

′. Let K1 denote the collection of such indices k, where
K1 � |K1| = |S∗|. It follows fromTheorem7 thatwith probability at least 1−O(1/n),
K1 ≥ c5n with constant

c5 � 1

�2ec3/
√

ε
.

Following Step 2 of Algorithm 1, we connect {Lk, Rk}k∈K1 to form alternating
cycles in G via sprinkling. Choose

τred = log(nλ), and τblue = log(nλ) − (λ − 1/n) τ.

Note that log P
Q (We) = log(nλ) − (λ − 1/n)We. Thus V ∗ = V and equivalently

subgraph G2 is the subgraph of G that contains every red edge in V × V ′, and every
blue edge e ∈ [n]×[n]′\(V c×V c′

) ifWe ≤ τ . Thenwe applyTheorem6with V ∗ = V
to show there exist exponentially many distinct alternating cycles via sprinkling. We
start by specifying the parameters β and η that appear in the statement of Theorem 6.
Note that β = |V ∗|

n = γ and the average blue degree is

η = nP {exp(1/n) ≤ τ } = n
(
1 − e−τ/n) . (60)

Using e−x ≥ 1− x and e−x ≤ 1− x/2 for x ∈ [0, 1], and τ/n ≤ 1 for all sufficiently
large n, we have τ/2 ≤ η ≤ τ . Next, we check the parameters above lead to b, K1, κ ,
and dsuper that satisfy the assumptions of Theorem 6. In particular,

b = βsη

4
≥ γ �τ

24
= ε�τ

192
≥ 4,

by choosing the constant τ0 in (59) sufficiently large; K1 = c5n ≥ 8400 for all large
enough n;

κ = 2K1sη

n
≤ 2�τ

3�2ec3/
√

ε
= ζ0ε

27ec3/
√

ε
≤ 1

162

for all sufficiently small ε; and
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dsuper = 1

32n
K1b

2η ≥ 1

32�2ec3/
√

ε

(
ε�τ

192

)2
τ

2
= ε2e3τ0/

√
ε

64 · (192)2ec3/
√

ε
≥ 256 log(32e),

(61)

by choosing τ0 to be a sufficiently large constant. Having verified all assumptions of
Theorem6,we conclude thatGsuper contains at least eK2/20 ≥ ec6K1 distinct alternating
cycles of length at least 3K2/4 ≥ c7K1 for universal constants c6, c7, with probability
at least

(
1 − e−K1/32 − 2

βnκ3

)(
1 − dsuperK1/2

18
)

=
(
1 − e−Ω(n) − O(1/n)

) (
1 − e−Ω(n)

)

= 1 − O(1/n).

In conclusion, the sprinkling step yields ec6K1 distinct alternating cycles (in fact here
one such cycle suffices) C ∈ C of the form

C = (
v′
1, v1, P1, u

′
1, u1, v

′
2, v2, P2, u

′
2, u2, · · · , v′

r , vr , Pr , u
′
r , ur

)

for r ≥ c7K1. It follows that |C | ≥ 2r�/3 = c2n, where

c2 � 2c7c5�/3 = 2c7
3�ec3/

√
ε

= c7ζ0ε

27e(c3+τ0)/
√

ε
.

Moreover, by construction of G2,

Δ(C) ≥ 3rτblue − 2rτred +
r∑

k=1

Δ(Pk) ≥ −3r(λ − 1/n)τ + (λ − 1/n)ζ0εr�/3

≥ (λ − 1/n)rζ0ε�/6,

where the last inequality holds by the choice of ζ0ε� = 18τ in (59). It follows that

μW (Mbad)

μW (M∗)
≥ |C| eΔ(C) ≥ ec6K1e(λ−1/n)c7K1ζ0ε�/6 ≥ exp(c0n),

where

c0 ≥ c7K1ζ0ε�/6 ≥ c7ζ0ε�

6�2ec3/
√

ε
= c7ζ 2

0 ε2

6 · 18e(c3+τ0)/
√

ε
.

Theorem 3 then readily follows by combining Lemmas 1 and 2. ��
In the sequel, we proceed to prove Theorem 7. A more direct approach is to define

S as the set of (2� − 1)-alternating paths P with large Δ(P) and show that E[|S|] is
large while Var(|S|) � (E[|S|])2 so that |S| concentrates on its mean. Unfortunately,
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this idea fails as the second moment of |S| blows up for � = Θ(n). This is because
conditioning on finding an alternating path P with largeΔ(P), it is very likely to have
a large number of paths P ′ with large Δ(P ′) overlapping with P . These clusters of
overlapping paths induce an excessive contribution to the second moment. To address
this issue, we adopt the notion of uniformity introduced in [9] for studying minimum
mean-weight cycles.

Recall that for a set T of edges, r(T ) and b(T ) denote the set of red and blue edges
in T , respectively. Furthermore, define

wtr(T ) =
∑

e∈r(T )

We,

wtb(T ) =
∑

e∈b(T )

We.

Let P� denote the set of (2� − 1) alternating paths with � red edges and � − 1 blue
edges. We agree upon that each P ∈ P� is oriented so that it starts in the left vertex
set and ends in the right vertex set. Let φ1, φ2, . . . , φ|r(P)| (resp. ψ1, ψ2, . . . , ψ|b(P)|)
denote the sequence of red (resp. blue) edge weights in this order. Define

devr(P) = sup
1≤k≤|r(P)|

∣∣∣
∣∣∣

k∑

j=1

φ j |r(P)|
wtr(P)

− k

∣∣∣
∣∣∣
,

devb(P) = sup
1≤k≤|b(P)|

∣∣∣∣
∣∣

k∑

j=1

ψ j |b(P)|
wtb(P)

− k

∣∣∣∣
∣∣

which characterize the maximum fluctuation of edge weights on path P .

Definition 2 (Lightness and uniformity)We say an alternating path P is (a, b, η)-light,
if

|wtr(P) − a · |r(P)|| ≤ η/2

|wtb(P) − b · |b(P)|| ≤ η/2;

and A-uniform, if devr(P) ≤ A and devb(P) ≤ A.

Let us proceed to the definition of S. Define

S � {P ∈ P� : P is (a, b, η) -light and A-uniform} .

with

a = 2

λ
, b = 2 − ζ

λ
. (62)

(We will choose η = 1, ζ = ε
4 , and A = Θ( 1√

ε
) later.) Then for any P ∈ P� ∩ S, we

have
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Δ(P) = −(λ − 1/n) [wtb(P) − wtr(P)] ≥ −(λ − 1/n) [b(� − 1) − a� − η]

≥ (λ − 1/n)
ε�

96
.

Furthermore, using the A-uniformity of P , it is not hard to verify that for every
(2�′ − 1)-alternating subpath Q of P with �/3 ≤ �′ ≤ �, Δ(Q) ≥ (λ − 1/n) ε�′

96 (see
forthcoming (82)). Thus, to prove Theorem 7, the key remaining challenge is to show
S contains a large vertex-disjoint subcollection S∗ with |S∗| = Ω(n/�2).

The intuition that we require the mean weight of red (blue) edges in P to be around
2/λ is as follows. Given P ∈ P�, wtr(P) is distributed as a sum of � i.i.d. exp(λ)

random variables, while wtb(P) is distributed as a sum of � − 1 i.i.d. n · exp(1).
Conditional on wtr(P) being close to wtb(P), we expect6 that the mean weight for
both wtr(P) and wtb(P) are close to 2/λ. Moreover, we require the mean weight of
blue edges to be slightly below 2/λ so that Δ(P) is positive.

Note that we further restrict the alternating path P in S to be uniform, in the sense
that the mean weight of red (resp. blue) edges in every subpath Q of P concentrates
around a (resp. b). As we will see in the next section, the uniformity can be interpreted
as requiring an exp-minus-one random walk conditioned on returning to the origin to
have a restricted range, which is shown to hold with a sufficiently large probability.
This implies that after restricting to uniform alternating paths, the first moment E[|S|]
is still large. Moreover, the number of uniform alternating paths has small enough
variance for the second moment method to go through.

7.1 Exponential randomwalks

In order to study the pathwise fluctuation of the edge weights on a given path, let us

consider the following problem. Let X1, X2, . . . , X�
i.i.d.∼ exp(μ) and let X = ∑�

i=1 Xi .
Define a process

R j =
j∑

i=1

(
Xi

X
� − 1

)
, 0 ≤ j ≤ �.

Thanks to the property of the exponential distribution, conditional on any realization of
X , { Xi

X : 1 ≤ i ≤ �} are uniformly distributed on the (� − 1)-dimensional probability

simplex, regardless of the value of μ. In particular, { Xi
X : 1 ≤ i ≤ �} and X are

independent.

Lemma 8 The process (R j : 0 ≤ j ≤ �) is independent of X. Furthermore, (R j : 0 ≤
j ≤ �) is distributed as an exp-minus-one random walk started from the origin and
conditioned to return to the origin at time � (known as the exp-minus-one �-bridge).

6 Indeed, using the density of sum of exponentials (see (87) in Appendix B), the probability that wtr(P)/�

and wtr(P)/(� − 1) are both close to a given value x is proportional to x2�−3e−�x(λ+ �−1
n�

), which, for
large n and �, is approximately maximized at x = 2

λ
.
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Proof Since X = ∑�
i=1 Xi follows the Erlang(�, μ) distribution as defined

in Appendix B, the joint conditional density of X1, ..., X� given X takes the form

f (x1, ..., x� | x) =
∏�

i=1 μ exp (−μxi ) 1{x=∑�
i=1 xi

}

μ�x�−1 exp(−μx)/(� − 1)! = (� − 1)!
x�−1 1{

x=∑�
i=1 xi

}.

Therefore, the distribution of (X j/X : 1 ≤ j ≤ �) conditional on X is uniform on the
(� − 1)-dimensional simplex and does not depend on X . Since (R j : 0 ≤ j ≤ �) is a
function of (X j/X : 1 ≤ j ≤ �), it is also independent of X . We have

(
R j : 0 ≤ j ≤ �

) d= (R j : 0 ≤ j ≤ �
)
conditional on X = �

d=
⎛

⎝
j∑

i=1

(Xi − 1) : 0 ≤ j ≤ �

⎞

⎠ conditional on
�∑

i=1

(Xi − 1) = 0

is an exp-minus-one �-bridge. ��
Fix an alternating path P ∈ P�. Applying Lemma 8, we conclude that, crucially,

wtr(P) and {We/wtr(P) : e ∈ r(P)} are independent. Furthermore, {We/wtr(P) :
e ∈ r(P)} has the same distribution as { Xi

X : 1 ≤ i ≤ �}. Therefore

devr(P)
d= max

0≤ j≤�

∣∣R j
∣∣ . (63)

The similar conclusion applies to blue edge weights wtb(C) and {We/wtb(C) : e ∈
b(C)}.

Adapted from [7, Lemma 2.3], the following lemma bounds the probability that
the range of an exp-minus-one �-bridge is at most A; this result is crucial for lower
bounding the first moment of A-uniform alternating paths. More precise version of
the results can be also found in [9, Lemma 3.9 and Equation (8)].

Lemma 9 There exist universal constants c0, c′
0 > 0 such that for all A ≥ 1 and

� ≥ A2

exp

(
−c0�

A2

)
≤ P

{
max
0≤ j≤�

∣∣R j
∣∣ ≤ A

}
≤ exp

(
−c′

0�

A2

)
. (64)

Applying (64) separately to both red and blue edges, we conclude that for any P ∈ P�,

p� � P {P is A-uniform} ≥ exp

(
−2c0�

A2

)
. (65)

Furthermore, the event that P is A-uniform is independent of {wtr(P),wtb(P)} and
hence also the event that P is (a, b)-light.
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7.2 First moment estimates

In the remainder of this section, all the expectations are conditioned on M∗ = m for
some fixed matching m ∈ M, e.g., the identity.

Lemma 10 Suppose λ ≤ 4 and η ≤ 1. There exist a universal constant c0 > 0, such
that for all A ≥ 1 and � ≥ A2,

E[|S|] ≥ n
η2λ

8e3b�

(
2be− b

n

)�−1
e− �2

n p� (66)

≥ n
η2λ

16e3b2�

(
2be− c0

A2
− �+b

n

)�

. (67)

Proof Recall that the planted edgeweights are i.i.d. exp(λ) and unplanted edgeweights
are i.i.d. exp(1/n). Recall that for � ≥ 1, P� denotes the set of alternating paths of
length 2� − 1 with � red edges and (� − 1) blue edges. We have that

|P�| = n(n − 1) · · · (n − � + 1).

To see this, note that there are n(n−1) · · · (n−�+1) different choices for � left vertices
on P . The right vertices are automatically fixed according to the underlying true

matching M∗. Write |P�| = n� exp
{∑�

k=0 log
(
1 − k

n

)}
. Note that by monotonicity,

−1

�

�−1∑

k=0

log

(
1 − k

n

)
≤ n

�

∫ �/n

0
− log(1 − x)dx = F

(
�

n

)

where

F(δ) � 1

δ
(δ + (1 − δ) log(1 − δ)) (68)

is increasing in δ ∈ [0, 1] and satisfies F(δ) ≤ δ for all δ ∈ [0, 1]. Then

exp

{
�−1∑

k=0

log

(
1 − k

n

)}

≥ exp
{
−�2/n

}
.

In conclusion, we get that

|P�| ≥
(
ne−�/n

)�

. (69)

Fix an alternating path P ∈ P�. Next we bound the probability that P is (a, b, η)-
light. Recall that r(P) denote the set of red (planted) edges and wtr(P) denote the
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total of their weights. Then |r(P)| = � and wtr(P) ∼ Erlang(�, λ). Using the Erlang
density function in (87), we have

P

{
a� − η

2
≤ wtr(P) ≤ a�

}
=
∫ aλ�

aλ�− λη
2

x�−1e−x

(� − 1)! dx

≥ ηλ

2(� − 1)! x
�−1e−x

∣
∣
x=aλ�

= ηλ

2(� − 1)! (aλ�)�−1 e−aλ� = ηλ

2(� − 1)! (2�)�−1 e−2�,

where the inequality holds because x�−1e−x is decreasing for x ≥ � − 1 and by the
assumptions aλ = 2, λ ≤ 4 and η ≤ 1 so that aλ� − ηλ

2 ≥ � − 1.
Similarly, recall that b(P) denote the set of blue (unplanted) edges and wtb(P)

denote the total of their weights. Then |b(P)| = �−1 andwtb(P) ∼ Erlang(�−1, 1
n ).

Thus

P

{
b(� − 1) ≤ wtb(P) ≤ b(� − 1) + η

2

}
=
∫ b(�−1)

n + η
2n

b(�−1)
n

x�−2e−x

(� − 2)! dx

≥ 1

(� − 2)!
(
b(� − 1)

n

)�−2 ∫ b(�−1)
n + η

2n

b(�−1)
n

e−xdx

= 1

(� − 2)!
(
b(� − 1)

n

)�−2

e− b(�−1)
n

(
1 − e− η

2n

)

≥ 1

(� − 2)!
(
b(� − 1)

n

)�−2

e− b(�−1)
n

η

4n
,

where the last inequality holds because 1 − e−x ≥ x/2 for 0 ≤ x ≤ 1.
Since wtr(P) and wtb(P) are independent, it follows from the last two displayed

equations that

P {P is (a, b, η) − light}
≥ P

{
a� − η

2
≤ wtr(P) ≤ a�, b(� − 1) ≤ wtb(P) ≤ b(� − 1) + η

2

}

≥ η2λ�

8b�!(� − 1)!
(
2b�(� − 1)

n

)�−1

e−2�− b(�−1)
n

(a)≥ η2λ

8eb
√

�(� − 1)

(
2be2

n

)�−1

e−2�− b(�−1)
n

≥ η2λ

8e3b�

(
2b

n
e− b

n

)�−1

(70)

where (a) holds due to n! ≤ enn+1/2e−n .
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Finally, combining (69), (65), (70) and using the independence of the events
{P is (a, b, η)-light} and {P is A-uniform}, we get

E[|S|] = |P�| · P {P is (a, b, η)-light} · P {P is A-uniform}

≥
(
ne−�/n

)� · η2λ

8e3b�

(
2b

n
e− b

n

)�−1

· p�

≥ n
η2λ

16e3b2�

(
2be− c0

A2
− �+b

n

)�

.

��

7.3 Second-moment estimates

Lemma 11 There exist absolute constantsC1,C2, and ε0 such that the following holds.
Let λ = 4 − ε for some 0 < ε ≤ ε0. Then there exists n0 = n0(ε) such that upon

choosing A =
⌈
C1√

ε

⌉
, ζ = ε/4, and η = 1, for any � with A2 ≤ � ≤ e−C2A

√
n and

n ≥ n0, it holds that

Var(|S|) ≤ E[|S|] ×
(

1 + eC2/
√

ε�2

n
E[|S|]

)

.

Remark 4 In the above estimate it is crucial to get Var(|S|)−E[|S|]
E[|S|]2 = O

(
�2

n

)
, so that we

can extract from S a vertex-disjoint subcollection S∗ of |S∗| = Ω(n/�2) in Sect. 7.4
by applying Turán’s theorem. This turns out to be instrumental to ensure that the super
graph in the sprinkling stage is supercritical as shown in (61). As a result, we need to
be careful with terms that are polynomial in � in the second moment computation.

Proof Note that

Var (|S|) = E

[
|S|2

]
− (E[|S|])2

=
∑

P,P ′∈P�

(
P
{
P ∈ S, P ′ ∈ S

}− P {P ∈ S}P {P ′ ∈ S
})

(a)=
∑

P∈P�

∑

P ′∈P�:|P∩P ′|≥1

(
P
{
P ∈ S, P ′ ∈ S

}− P {P ∈ S}P {P ′ ∈ S
})

≤
∑

P∈P�

∑

P ′∈P�:|P∩P ′|≥1

P
{
P ∈ S, P ′ ∈ S

}

=
∑

P∈P�

P {P ∈ S}
⎛

⎝1 +
∑

P ′∈P�:|P∩P ′|≥1,P ′ 
=P

P
{
P ′ ∈ S

∣
∣ P ∈ S

}
⎞

⎠ , (71)

where (a) holds because the weights in P and those in P ′ are mutually independent
if P ∩ P ′ = ∅.
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Fig. 5 An example of alternating paths P and P ′, with � = 8, k = 4,m = 8. P ′ is divided into 2k + 1 = 9
segments (subpaths) {P ′

1, P1, P
′
2, P2, . . . , P

′
4, P4, P

′
5}, where in this example P ′

5 is empty. The subpaths
P1, P2, P3, P4 in the intersection P ∩ P ′ lie on the horizontal line; below this horizontal line are the
segments P ′

1, P
′
2, P

′
3, P

′
4 in P ′\P; above the horizontal line are the edges in P\P ′. From the agreement on

the orientation, all the red edges are traversed from left to right in both P and P ′ (color figure online)

Fix any P ∈ P�. Recall that P is alternating paths with � red edges and � − 1 blue
edges which starts from a left vertex and ends with a right vertex, and whose first and
last edge are both red. We group the summands of the inner sum according to how P ′
overlaps with P (see Fig. 5). For each P ′ 
= P with |P ∩ P ′| ≥ 1:

– P ′ ∩ P consists of k disjoint alternating paths P = (P1, . . . , Pk) for some k ≥ 1.
Let |Pi | = mi and m = ∑k

i=1 mi < 2�. Note that the first edge and the last edge
in Pi must be red. Then mi ≥ 1 must be odd and Pi has (mi + 1)/2 red edges and
(mi − 1)/2 blue edges.

– P ′\P consists of k + 1 disjoint alternating paths P′ � (P ′
1, . . . , P

′
k+1),

where we allow P ′
1 and P ′

k+1 to be possibly empty. Let |P ′
i | = m′

i and m′ =
∑k+1

i=1 m
′
i = 2� − 1−m. Note that for i ∈ {1, k + 1}, m′

i must be even and P ′
i has

m′
i/2 red edges and m′

i/2 blue edges. For 2 ≤ i ≤ k, the first edge and the last
edge in each P ′

i must be blue. Hence, m′
i ≥ 1 must be odd and P ′

i has (m′
i − 1)/2

red edges and (m′
i + 1)/2 blue edges.

For the sake of enumeration, let us agree on the orientation so that all alternating
paths with 2�+1 edges start from a left vertex. This way, all the red edges are traversed
from left to right in both P and P ′. Moreover, each Pi starts from a left vertex, and
each P ′

i starts from a right vertex for 2 ≤ i ≤ k + 1; P1 starts from a left vertex.
Since P is fixed, to specify P ′, it suffices to specify the alternating paths P′ that

constitute P ′\P , which further reduces to specifying for each P ′
i its start and end

points, as well as the internal vertices.

– We first specify the start and end points of P ′
i for 2 ≤ i ≤ k, which are chosen

from the vertices on P . It suffices to specify Pi for 1 ≤ i ≤ k. For a given sequence
of lengths (m1,m2, . . . ,mk), to specify Pi for 1 ≤ i ≤ k, it suffices to specify
the starting point of each Pi . In total, there are at most �k choices for the starting
points of Pi , i ∈ [k]. Next, since ∑k

i=1 mi = m and mi ≥ 1, there are at most(m−1
k−1

)
choices of (m1, . . . ,mk). Hence, in total there are at most

(m−1
k−1

)
�k choices

for the start and end points of P ′
i for 1 ≤ i ≤ k.

– Next, we specify the length configuration (m′
1,m

′
2, . . . ,m

′
k+1) of P′. Since m′ =

∑k+1
i=1 m

′
i , m

′
1,m

′
k+1 ≥ 0, and m′

i ≥ 1 for 2 ≤ i ≤ k, in total there are at most
(m′+1

k

)
choices for (m′

1,m
′
2, . . . ,m

′
k+1).

– Next we specify the vertices of P ′
1 ifm

′
1 
= 0. Note that the end point of P ′

1 is on P
and has already been chosen. Thus it remains to choose the starting points of red
edges in P ′

1 which must be in the left vertex set per the agreed-upon orientation.
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Since there are m′
1/2 red edges in P ′

1, there are at most nm
′
1/2 different choices for

the vertices of P ′
1 that are not on P . Analogously we can specify the vertices of

P ′
k+1 if m

′
k+1 
= 0 and there are at most nm

′
k+1/2 different choices for the vertices

of P ′
k+1 that are not on P .

– Finally, we specify the internal vertices of P ′
i for each 2 ≤ i ≤ k. Note that there

are
∑k

i=2(m
′
i −1)/2 red edges in {P ′

i : 2 ≤ i ≤ k}. For each red edge, it suffices to
specify its starting point, which must be in the left vertex set per the agreed-upon
orientation.
Thus in total there are at most

∏k
i=2 n

(m′
i−1)/2 different choices for the interval

vertices of P ′
i for 2 ≤ i ≤ k.

Putting the above points together, we conclude that there are at most

�k
(
m − 1

k − 1

)(
m′ + 1

k

)
n

m′−(k−1)
2 (72)

different choices of alternating paths P ′
1, . . . , P

′
k+1 of total length m′.

Next we bound each conditional probability in (71) from above. Note that P ′ ∈
S means it is (a, b, η)-light and A-uniform (see Definition 2). Since P and P ′ are
overlapping, conditioned on the edge weights on P , the event that P ′ is (a, b, η)-light
and the event that P ′ is A-uniform are no longer independent. Nevertheless, these two
events imply that the i-th alternating path P ′

i satisfies:

(∣∣r(P ′
i )
∣∣− 2A

) (
a − η

2�

)
≤ wtr(P ′

i ) ≤ (∣∣r(P ′
i )
∣∣+ 2A

) (
a + η

2�

)

(∣∣b(P ′
i )
∣∣− 2A

) (
b − η

2(� − 1)

)
≤ wtb(P

′
i ) ≤ (∣∣b(P ′

i )
∣∣+ 2A

) (
b + η

2(� − 1)

)
.

Note that
∑k+1

i=1

∣∣r(P ′
i )
∣∣ = m′−(k−1)

2 � L and
∑k+1

i=1

∣∣b(P ′
i )
∣∣ = m′+(k−1)

2 � M . Thus,
summing over all 1 ≤ i ≤ k + 1 yields that

(L − 2(k + 1)A)
(
a − η

2�

)
≤ wtr(P ′\P) ≤ (L + 2(k + 1)A)

(
a + η

2�

)
,

(M − 2(k + 1)A)

(
b − η

(2� − 1)

)
≤ wtb(P ′\P) ≤ (M + 2(k + 1)A)

(
b + η

(2� − 1)

)
.

Let E denote the event such that the last displayed equation holds. Then

P
{
P ′ ∈ S

∣
∣ P ∈ S

}

= P
{
P ′ is (a, b, η)-light and A-uniform | P ∈ S

}

≤ P
{E ∩ {P ′ is (a, b, η)-light and A-uniform

} | P ∈ S
}

= P {E∩}
{
P ′ is (a, b, η)-light

} | P ∈ S × P
{
P ′ is A-uniform | E, P ′ is (a, b, η)-light, P ∈ S

}

≤ P {E | P ∈ S} × P
{
P ′ is A-uniform | E, P ′ is (a, b, η)-light, P ∈ S

}
. (73)
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We proceed to separately bound the two probability terms in the RHS of the last
displayed equation. First, we bound P {E | P ∈ S}. Note that the edge weights in
P ′\P are independent from the edge weights in P . Thus, P {E | P ∈ S} = P {E}. Let

g�(x) = e−x x�−1/(� − 1)!1{x≥0}

denote the probability density function of Erlang(�, 1) (cf. Appendix B). Then we
have that for L ≥ 1,

P

{
(L − 2(k + 1)A)

(
a − η

2�

)
≤ wtr(P ′\P) ≤ (L + 2(k + 1)A)

(
a + η

2�

)}

=
∫ λ(L+2(k+1)A)(a+ η

2� )

λ(L−2(k+1)A)(a− η
2� )

gL(x)dx .

≤
(
λ (L + 2(k + 1)A)

(
a + η

2�

))L−1

(L − 1)! exp
(
−λ (L − 2(k + 1)A)

(
a − η

2�

))

≤ (λaL)L−1

(L − 1)! e−λLae2(k+1)A(1+λa)+ ηL
2�a (1+λa) = (2L)L−1

(L − 1)! e
−2Le6(k+1)A+ 3ηλL

4� , (74)

where the inequality holds due to

∫ v

u
gL(x)dx ≤ vL−1

(L − 1)!
∫ v

u
e−xdx ≤ vL−1

(L − 1)!e
−u .

Similarly,

P

{
(M − 2(k + 1)A)

(
b − η

(2� − 1)

)
≤ wtb(P ′\P) ≤ (M + 2(k + 1)A)

(
b + η

2� − 1

)}

≤
∫ (M+2(k+1)A)

(
b+ η

2�

)
/n

0
gM (x)dx

≤ 1

nMM !
(
(M + 2(k + 1)A)

(
b + η

2�

))M

≤ (Mb)M

nMM ! exp

(
2(k + 1)A + ηM

2b�

)
, (75)

where the second inequality holds because

∫ u

0
g�(x)dx ≤ 1

(� − 1)!
∫ u

0
xu−1dx = u�

�! , ∀u ≥ 0.
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Note thatwtr(P ′\P) andwtb(P ′\P) are independent. Combining (74) and (75) gives
that7

P {E} ≤
(

(2L)L−1

(L − 1)! 1{L≥1} + 1{L=0}

)

e−2Le6(k+1)A+ 3ηλL
4� × (Mb)M

nMM ! exp

(
2(k + 1)A + ηM

2b�

)

≤
(
1{L≥1}
2
√
L

+ 1{L=0}
)

1√
M

(
2

e

)L ( eb

n

)M

exp (8(k + 1)A + 6η)

=
(

1{k≤m′}√
(m′)2 − (k − 1)2

+ 1{k=m′+1}√
m′

)

n− m′+(k−1)
2 (2b)m

′/2
(
be2

2

) k−1
2

exp (8(k + 1)A + 6η) , (76)

where in the first inequality we bound the LHS of (74) by 1 ≤ e6(k+1)A when L = 0;
the second inequality follows due to n! ≥ √

n(n/e)n , aλ = 2, bλ ≥ 1, and λ ≤ 4.
Next, we bound P

{
P ′ is A-uniform | E, P ′ is (a, b, η)-light, P ∈ S

}
. For ease of

notation, let us denote E′ = E ∩ {P ′ is (a, b, η)-light} ∩ {P ∈ S}. Then we have

P
{
P ′ is A-uniform | E′}

(a)= E
[
P
{
P ′ is A-uniform | wtr(P ′),wtb(P ′), {We : e ∈ P}} | E′]

(b)≤ sup
α:|α−a|≤ η

2�

sup
β:|β−b|≤ η

2(�−1)

sup
we:e∈P

P
{
P ′ is A-uniform | wtr(P ′) = α�,wtb(P

′) = β�, {We = we : e ∈ P}} ,

where (a) is because E′ is measurable with respect to {wtr(P ′),wtb(P ′), {We : e ∈
P}}, and (b) is because on E′, P ′ is (a, b, η)-light so that |wtr(P ′) − a�| ≤ η/2 and
|wtb(P ′) − b�| ≤ η/2.

Fix any α such that |α − a| ≤ η
2� and any β such that |β − b| ≤ η

2(�−1) .
Note that η = 1, a = 2/λ and b = (2 − ζ )/λ with ζ = ε/4 and λ =
4 − ε. By choosing ε0 to be sufficiently small and n0 to be sufficiently large,
we have 1/4 ≤ α, β ≤ 1 for all ε ≤ ε0 and n ≥ n0. We proceed to
bound P

{
P ′ is A-uniform | wtr(P ′) = α�,wtb(P ′) = β�, {We : e ∈ P}}. Applying

[8, Lemma 3.3] (restated as Lemma 14 in Appendix C) with ρ = α or β, we get that

P
{
devr(P ′) ≤ A | wtr(P ′) = α�, {We : e ∈ P}} ≤ √

mec(Ak+m/A2)
P
{
devr(P ′) ≤ A

}

P
{
devb(P ′) ≤ A | wtb(P ′) = β�, {We : e ∈ P}} ≤ √

mec(Ak+m/A2)
P
{
devb(P ′) ≤ A

}
,

where c is a universal constant. Hence, we get that

7 We emphasize that it is crucial to keep the polynomials terms in (76) so that in (79) we can get the upper

bound 4(2�)k−1, which in turn yields the desired �2

n factor in (81).
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P
{
P ′ is A-uniform | wtr(P ′) = α�,wtb(P

′) = β�, {We : e ∈ P}}

≤ me2c(Ak+m/A2) p�, (77)

where p� = P
{
P ′ is A-uniform

} = P
{
devr(P ′) ≤ A

}× P
{
devb(P ′) ≤ A

}
.

Combining (72), (73), (76), and (77), we get

∑

P ′∈P�:|P∩P ′|≥1,P 
=P ′
P
{
P ′ is (a, b, η)-light and A-uniform | P ∈ S

}

≤
2�−2∑

m=1

m∑

k=1

(
m − 1

k − 1

)(
m′ + 1

k

)
�kn

m′−(k−1)
2

×
(

1{k≤m′}√
(m′)2 − (k − 1)2

+ 1{k=m′+1}√
m′

)

n−m′+(k−1)
2 (2b)m

′/2
(
be2

2

) k−1
2

e8(k+1)A+6η

× me2c(Ak+m/A2) p�. (78)

To further bound the RHS, we claim that when � ≥ e2,

(
m′ + 1

k

)(
1{k≤m′}√

(m′)2 − (k − 1)2
+ 1{k=m′+1}√

m′

)

≤ 4(2�)k−1. (79)

To see this, note that if k ≥ (m′ + 1)/2, then
(m′+1

k

) ≤
(
e(m′+1)

k

)k ≤ (2e)k and the

claim holds as (m′)2 − (k − 1)2 ≥ 1 when k ≤ m′ and m′ ≥ 1. If k ≤ (m′ + 1)/2,
then

√
(m′)2 − (k − 1)2 ≥ (m′ + 1)/4. Thus,

(
m′ + 1

k

)
1

√
(m′)2 − (k − 1)2

≤ 4(m′ + 1)k−1 ≤ 4(2�)k−1.

Therefore, plugging (79) into (78) and recalling that m′ = 2� − 1 − m, we get that

∑

P ′∈P�:|P∩P ′|≥1,P 
=P ′
P
{
P ′ is (a, b, η)-light and A-uniform | P ∈ S

}

≤ 4p��e
(16+2c)A+6η

×
2�−2∑

m=1

m (2b)�−1/2−m/2 e2cm/A2
m∑

k=1

(
m − 1

k − 1

)(
2�2

√
b

n
√
2

e(8+2c)A+1

)k−1

= 4p��e
A(16+2c)+6η+2c/A2

(2b)�−1
2�−2∑

m=1

mκm−1,
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where

κ � e2c/A
2

√
2b

(

1 + �2
√
2b

n
e(8+2c)A+1

)

. (80)

Note that b = 2−ζ
λ

with ζ = ε
4 and λ = 4 − ε. Also, A =

⌈
C1√

ε

⌉
and A2 ≤

� ≤ √
ne−C2A, where C1,C2 are absolute constants. By choosing C1,C2, n0 to be

sufficiently large and ε0 to be sufficiently small, we get that κ ≤ 1 − ε/100 for all
n ≥ n0 and ε ≥ ε0. Hence,

∞∑

m=1

mκm−1 ≤
( ∞∑

m=1

κm

)′
=
(

κ

1 − κ

)′
= 1

(1 − κ)2
≤ 104ε−2.

Recall that η = 1. Then we conclude that for universal constants c2, c3 > 0,

∑

P ′∈P�:|P∩P ′|≥1,P 
=P ′
P
{
P ′ is (a, b, η)-light and A-uniform | P ∈ S

}

≤ p��e
c2/

√
ε (2b)� ≤ �2ec3/

√
ε

n
E[|S|] (81)

Substituting the last displayed equation back to (71), we get

Var(|S|) ≤ E[|S|] ×
(

1 + �2ec3/
√

ε

n
E[|S|]

)

.

��

7.4 Extractingmany vertex-disjoint alternating paths via Turán’s Theorem

To extract many disjoint alternating paths from S, following [8], we first construct
a graph under which an independent set corresponds to a set of disjoint alternating
paths, and then use Turán’s theorem to prove the existence of a large independent set.

Specifically, we define a graph H on the set S of alternating paths, where P and P ′
are adjacent if they share at least one common vertex.

Thus any collection of vertex-disjoint paths is an independent set in H . The fol-
lowing result due to Turán (see e.g. [2, Theorem 1, p. 95]), provides a lower bound to
the size of the largest independent set in a general graph.

Lemma 12 (Turán’s Theorem) Let G = (V , E) be a finite, simple graph. Then G
contains an independent subset of size at least |V |2/(2|E | + |V |).

Next we lower bound the number of vertices |V (H)| and upper bound the number
of edges |E(H)| using Lemmas 10 and 11, and then apply Turán’s theorem to finish
the proof of Theorem 7.
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Proof of Theorem 7 Throughout the proof, A =
⌈
C1√

ε

⌉
, A2 ≤ � ≤ e−C2A

√
n, η = 1,

a = 2/λ, b = 2−ζ
λ

with λ = 4 − ε and ζ = ε
4 .

We start by verifying that, by definition of S, each (2� − 1)-alternating path P ∈ S
satisfies the subpath requirement in (58). Recall that P is oriented so that it starts with
a left vertex. In this order, let φ1, φ2, . . . , φ� denote the sequence of red edge weights
and ψ1, ψ2, . . . , ψ�−1 the blue edge weights. Fix any �′ such that �/3 ≤ �′ ≤ �

and a (2�′ − 1)-alternating subpath Q of P that has �′ red edges and �′ − 1 blue
edges. Then Q consists of red edge weights φk+1, . . . , φk+�′ and blue edge weights
ψk+1, . . . , ψk+�′−1 in order for some 0 ≤ k ≤ � − �′. In particular,

wtr(Q) =
�′∑

i=1

φk+i =
k+�′∑

i=1

φi −
k∑

i=1

φi

wtb(Q) =
�′−1∑

i=1

ψk+i =
k+�′−1∑

i=1

ψi −
k∑

i=1

ψi .

Since P is (a, b, η)-light and A-uniform with η = 1, it follows that
∑k+�

i=1 φi ≥(
k + �′ − A

) wtr(P)
�

,
∑k

i=1 φi ≤ (k + A)
wtr(P)

�
, and hence

wtr(Q) ≥ (
�′ − 2A

) wtr(P)

�
≥ (

�′ − 2A
)
(
a − 1

2�

)
.

Analogously, we have

wtb(Q) ≤ (
�′ + 2A

) (
b + 1

2(� − 1)

)
.

Since log P
Q (We) = log(nλ) − (λ − 1/n)We, it follows that

Δ(Q) = −(λ − 1/n) [wtb(Q) − wtr(Q)]

≥ −(λ − 1/n)�′
(
b − a + 1

2�
+ 1

2(� − 1)

)
− 2(λ − 1/n)A

(
b + 1

2(� − 1)
+ a − 1

2�

)

≥ −(λ − 1/n)

[
−�′ ε

4λ
+ 8A

λ
+ 2

]
≥ (λ − 1/n)

ε

96
�′, (82)

where the last inequality holds as �′ ≥ �/3, λ = 4− ε, and � ≥ A2, and A ≥ C1/
√

ε.
Next we apply Turán’s theorem to the graph H to extract a vertex-disjoint subcol-

lection S∗ of S. In view of (67) and A =
⌈
C1√

ε

⌉
, by choosing C1, n0 to be sufficiently

large and ε0 to be sufficiently small, for all 0 < ε ≤ ε0 and n ≥ n0,

E[|V (H)|] = E[|S|] ≥ c4n

�
ec4ε�

123



The planted matching problem: sharp threshold and...

for a universal constant c4 > 0. By Chebyshev’s inequality and Lemma 11,

P

{
|S| ≤ 1

2
E[|S|]

}
≤ 4Var(|S|)

(E[|S|])2 ≤ �2ec2/
√

ε

n

for a universal constant c2 > 0. By (81),

E[|E(H)|] =
∑

P∈P�

P {P ∈ S}
∑

P ′∈P�:|P∩P ′|≥1,P ′ 
=P

P
{
P ′ ∈ S

∣∣ P ∈ S
}

≤ �2ec2/
√

ε

n
(E[|S|])2 .

By Markov’s inequality,

P {|E(H)| ≥ 2E[|E(H)|]} ≤ 1/2.

Hence, with probability at least 1/2 − �2ec2/
√

ε

n , we have that |S| ≥ 1
2E[|S|] and

|E(H)| ≤ 2E[|E(H)|], so that Lemma 12 implies the existence of S∗ ⊂ S of disjoint
alternating paths such that

∣∣S∗∣∣ ≥
1
4 (E[|S|])2

4E[|E(H)|] + 1
2E[|S|] ≥ n

�2ec3/
√

ε

for a universal constant c3 > 0. ��
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Appendix A Large deviation estimates

Lemma 13 Let P,Q be two probability distributions such that P � Q. Let Xi ’s
and Yi ’s be two independent sequences of random variables, where Xi ’s are i.i.d.
copies of log(P/Q) under distribution P and Yi ’s are i.i.d. copies of log(P/Q) under
distribution Q. For all x ≥ 0 and positive integer �, we have

P

{
�∑

i=1

(Yi − Xi ) ≥ x�

}

≤ exp (−�(α + x/2)) , (83)
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where α = −2 log B(P,Q) as defined in (14). Furthermore, if we further assume that
Q � P, then for all 0 ≤ x ≤ D(P‖Q) + D(Q‖P) and positive integer �, we have

P

{
�∑

i=1

(Yi − Xi ) ≥ x�

}

≥ exp (−�(α + x + o�(1))) . (84)

Proof The proof of (83) follows from standard large deviation analysis (cf. [3,
Appendix B]). Let F denote the Legendre transform of the log moment generating
function of Y1 − X1, i.e.,

F(x) = sup
θ≥0

{θx − ψP(−θ) − ψQ(θ)} ,

where ψP(θ) = logE
[
eθX1

]
and ψQ(θ) = logE

[
eθY1

]
. Then from the Chernoff

bound we have the following large deviation inequality:

P

{
�∑

i=1

(Yi − Xi ) ≥ x�

}

≤ exp (−�F(x)) . (85)

Note the following facts:

1. F(0) = −ψP(−1/2) − ψQ(1/2) = −2 log
∫ √PQ = α;

2. F(x) ≥ F(0) + x/2, for all x ≥ 0.

Combining these facts with (85) yields (83).
Next we prove (84). By Cramér’s theorem, we have

P

{
�∑

i=1

(Yi − Xi ) ≥ x�

}

= exp (−F(x)� + o(�)) , (86)

where o(�)/� converges to 0 as � grows to infinity. Second, we have

F(x) ≤ α + x, ∀0 ≤ x ≤ D(P‖Q) + D(Q‖P).

To see this, note that ψP(θ) = ψQ(1 + θ). Thus, the optimal θ is given by

x + ψ ′
Q(1 − θ) − ψ ′

Q(θ) = 0.

Note that ψ ′
Q(0) = −D(Q‖P) and ψ ′

Q(1) = D(P‖Q). Moreover, since ψQ(θ) is
convex, it follows that ψ ′

Q(θ) is non-decreasing in θ . Thus the optimal θ must lie in
[1/2, 1] when 0 ≤ x ≤ D(P‖Q) + D(Q‖P). Hence,

F(x) = sup
θ∈[1/2,1]

{θx − ψP(−θ) − ψQ(θ)} ≤ x + sup
θ∈[1/2,1]

{−ψP(−θ) − ψQ(θ)}
= x + F(0) = x + α.

Combine with (86) to finish the proof of (84). ��
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Appendix B Erlang distribution and Chernoff bounds

The sum of � i.i.d. exp(λ) random variables has an Erlang distribution with parameters
� and λ, denoted by Erlang(�, λ), whose density is given by

f (x) = λ�x�−1e−λx

(� − 1)! , x ≥ 0 (87)

Theorem 8 Let Xi
i.i.d.∼ exp(1). Then

P

{
n∑

i=1

Xi ≥ nξ

}

≤ exp (−n (ξ − log(ξ) − 1)) , ∀ξ > 1

P

{
n∑

i=1

Xi ≤ nξ

}

≤ exp (−n (ξ − log(ξ) − 1)) , ∀ξ < 1

Appendix C Exp-minus-one random bridge

Let X1, X2, . . . , X�
i.i.d.∼ exp(μ) and let X = ∑�

i=1 Xi . Recall from Lemma 8 the
exp-minus-one �-bridge R is defined as

R j =
j∑

i=1

(
Xi

X
� − 1

)
, 0 ≤ j ≤ �.

Define dev(R) = max0≤ j≤�

∣∣R j
∣∣. The following result adapted from [8, Lemma 3.3]

(which is a slight extension of [7, Lemma 3.2]) bounds the probability of dev(R) ≤ A
conditional on the total weight of Xi and the value of Xi for a set of indices i in a
union of intervals, in terms of the unconditional probability p� � P {dev(R) ≤ A}.
This result is crucial for the second moment computation in Sect. 7.3.

Lemma 14 Let 1/4 ≤ ρ ≤ 1 and 1 ≤ Aρ ≤ √
�. Consider the integer intervals

[a1, b1], . . . , [ak, bk] such that 1 ≤ a1 ≤ b1 ≤ · · · ≤ ak ≤ bk ≤ � and m =∑k
i=1(bi − ai + 1). Write J = ∪k

i=1[ai , bi ]. Then

P

{

dev(R) ≤ A |
�∑

i=1

Xi = ρ�, {X j = x j , j ∈ J }
}

≤ c1A
√
m ∧ (� − m)p�10

100k Aec0m/A2
,

where c0, c1 > 0 are two universal constants.
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Appendix DMinimum-weight matching for the exponential model

In this section, we prove the positive part (12) in Theorem 3. Namely, in the complete
graph case with exponentially distributed weights, when λ = 4 − ε, the minimum
weighted matching M̂ML (linear assignment), which corresponds to the maximum

likelihood estimation,misclassifies atmost O

(
1
ε3
e
− 2π√

ε

)
fraction of edges on average.

This together with the negative part (11) in Theorem 3 shows that the minimum
weighted matching achieves the optimal rate 1/

√
ε of the error exponent. Prior work

[21] provides the exact characterization of the asymptotic error of M̂ML in terms of a
system of ordinary differential equations when λ < 4. Our proof follows by analyzing
this system of ODEs when λ = 4 − ε for small ε, and is inspired by the heuristic
arguments in [25, Section VI].

Proof of Theorem 3: positive part First, it has been shown in [21, Theorem 2] that

lim
n→∞E

[
�
(
M∗, M̂ML

)] = 4
∫ ∞

0
(1 −U (x)V (x)) (1 − (1 −U (x))W (x)) V (x)W (x) dx,

where (U , V ,W ) is the unique solution to the following system of equations

dU

dx
= −λU (1 −U ) + (1 −UV ) (1 − (1 −U )W )

dV

dx
= λV (1 −U )

dW

dx
= −λWU

(88)

with initial condition

U (0) = 1

2
, V (0) = W (0) = δ, δ ∈ (0, 1), (89)

and δ is the unique value in (0, 1) such that U (x), V (x) → 1 as x → +∞.
Furthermore, it has been shown in [21, Section B] that UV < 1, (1 − U )W < 1,

0 < U , V ,W < 1, and

V (x) = δ exp

(
λ

∫ x

0
(1 −U (y)) dy

)
, (90)

W (x) = V (x) e−λx . (91)

Therefore, we have that

lim
n→∞E

[
�
(
M∗, M̂ML

)] ≤ 4
∫ ∞

0
V 2(x)e−λx dx,

Let x0 = inf{x ≥ 0 : U (x) < 1
2 } denote the first time thatU (x) crosses 1/2. Therefore

by (90) we have that for all 0 ≤ x ≤ x0, V (x) ≤ δeλx/2. Hence for any 0 ≤ τ ≤ x0,
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∫ ∞

0
V 2(x)e−λx dx =

∫ τ

0
V 2(x)e−λx dx +

∫ ∞

τ

V 2(x)e−λx dx

≤ δ2τ +
∫ ∞

τ

e−λx dx

= δ2τ + 1

λ
e−λτ .

Weclaim thatλx0 ≥ 2 log ε
8δ . Suppose not. Then e

λx0/2 < ε
8δ , in particular, x0 < +∞.

By continuity, we have U (x0) = 1
2 , U

′(x0) ≤ 0. But we have

U ′(x0) = − λU (x0) (1 −U (x0)) + (1 −U (x0)V (x0)) (1 − (1 −U (x0))W (x0))

= − λ/4 +
(
1 − 1

2
V (x0)

)(
1 − 1

2
W (x0)

)

≥ − λ/4 + 1 − V (x0)

≥ ε/4 − δeλx0/2 > ε/8 > 0,

which is the needed contradiction. Therefore, by setting τ = 2
λ
log ε

8δ , we get that

∫ ∞

0
V 2(x)e−λx dx ≤ 2δ2

λ
log

ε

8δ
+ 1

λ

(
8δ

ε

)2

≤ c

ε3
exp

(
− 2π√

ε

)
,

where c > 0 is a universal constant and the last inequality follows from the claim that

δ ≤ c′
√

ε
exp

(
− π√

ε

)
, (92)

where c′ > 0 is a universal constant.
It remains to prove (92). In view of V < 1 and (90), we have that

δ exp

(
λ

∫ ∞

0
(1 −U (y)) dy

)
≤ 1. (93)

To proceed, we derive an upper bound to U (x). Let Ũ (x) denote the unique solution
of the following ODE:

dŨ

dx
= −λŨ (1 − Ũ ) + 1, Ũ (0) = 1

2
. (94)

We claim thatU (x) ≤ Ũ (x) for all x ≥ 0. To show this, let f = Ũ −U . Then we have
(a) f (0) = 0; (b) f ′(0) > 0; (c) f ′(x) > 0 whenever f (x) = 0. Thus f (δ0) > 0 for
some small δ0. Let x1 = inf{x ≥ 0 : f (x) < 0}. Suppose for the sake of contradiction
that x1 < ∞. Then x1 is the first time that f crosses zero. Thus f ′(x1) ≤ 0. But by
continuity we have f (x1) = 0 and hence f ′(x1) > 0, which is a contradiction.
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Solving the ODE (94), we get that

Ũ (x) = 1

2
+ 1

2

√
4 − λ

λ
tan
( x
2

√
λ(4 − λ)

)
, 0 ≤ x <

π√
λ(4 − λ)

.

Therefore, for some 0 ≤ a < π√
λ(4−λ)

to be determined,

∫ ∞

0
(1 −U (y)) dy ≥

∫ a

0
(1 −U (y)) dy

≥
∫ a

0

(
1 − Ũ (y)

)
dy

= a

2
+ 1

λ
log cos

(a
2

√
λ(4 − λ)

)
,

where the last inequality holds due to
∫ x
0 tan(y)dy = − log cos(x) for 0 ≤ x < π/2.

Combining the last displayed equation with (93) yields that

δ ≤ 1

cos
( a
2

√
λ(4 − λ)

) exp
(
−λ

a

2

)
.

Recall that λ = 4 − ε. Choose a = π−√
ε√

λ(4−λ)
. Then we get

δ ≤ 1

sin
(√

ε

2

) exp

(
−√

λ
π − √

ε

2
√

ε

)
≤ c′

√
ε
exp

(
− π√

ε

)
,

for a universal constant c′ > 0. ��

Appendix E Reduction arguments

E.1 Reduction from dense to sparsemodel

In this subsection, we prove Theorem 2 for the densemodel by reducing it to the sparse
model. Suppose Theorem 2 holds under the sparse model. Recall that in the dense
model, the plantedweight density is p(x) and the nullweight density isq(x) = 1

d ρ( xd ),
where p and ρ are fixed probability densities on R and d → ∞. In this case the
impossibility condition (7) simplifies to:

∫ ∞

−∞

√
p(x)ρ(0)dx ≥ 1 + ε. (95)

Define a sparse model with parameter (d ′,P′,Q′), where

d ′ = Γ ρ(0)
(
1 − ε

2

)2
, P′ = P, Q′ = Unif[−Γ /2, Γ /2],
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and for some positive constant Γ to be specified. Note that d ′,P′,Q′ are all indepen-
dent of n. Next we show that, given graph G ′ drawn from the (d ′,P′,Q′) model with
planted matching M∗, there exists a (randomized) mapping f such that G � f (G ′)
is distributed according to the (d,P,Q) model with the same planted matching M∗.
Note that crucially such a mapping needs to be agnostic to the latent M∗.

To construct the mapping f , we first express Q as a mixture ofQ′ and some other
distribution Q, that is Q = tQ′ + (1 − t)Q, where t = d ′

d = Γ
d ρ(0)

(
1 − ε

2

)2 and Q
has density q(x) � q(x)−tq ′(x)

1−t . We claim that q is well-defined density for large d.

Indeed, note that q(x) = 1
d ρ( xd ), q ′(x) = 1{|x |≤Γ /2}/Γ and d → ∞. By continuity

of ρ at 0, ρ(0)(1− ε
2 )

2 ≤ ρ( xd ) holds for all |x | ≤ Γ /2, provided that d is sufficiently
large. Thus tq ′(x) ≤ q(x) for all x .

Next, given G ′, we generate a denser graph G = f (G ′) as follows. For each edge
e in G ′, we leave its edge weight unchanged. For each edge e not in G ′, we connect
it in G independently with probability r/n and draw its edge weight We ∼ Q, where
r � d−d ′

1−d ′/n . The choice of r is such that for each e ∈ [n] × [n]′\M∗, the probability
that e is an unplanted edge in G (namely, e ∈ E(G)\M∗) equals (1− d ′

n ) rn + d ′
n = d

n .
Furthermore, for each unplanted e in G, it is an unplanted edge in G ′ with probability
d ′/n
d/n = d ′

d = t . As a result, conditioned on e being an unplanted edge in G, the

distribution of We is tQ′ + (1 − t)Q = Q. Also, by construction, conditioned on
the true matching M∗ of G ′, the edge weights of G are independent. In other words,
G = f (G ′) is distributed according the dense (d,P,Q) model with M∗ being the
plantedmatching. Thus, it remains to verify the impossibility for the sparse (d ′,P′,Q′)
model by verifying the condition of Theorem 2. Indeed,

√
d ′B(P′,Q′) =√

td
∫ Γ /2

−Γ /2

√

p(x)
1

Γ
dx =

(
1 − ε

2

)√
ρ(0)

∫ Γ /2

−Γ /2

√
p(x)dx ≥ 1 + ε

4
,

where the last inequality holds as a consequence of the condition (95) and by choosing
a large enough Γ . This completes the proof of Theorem 2 for dense models.

E.2 Reduction for general weight distributions: positive result

In Sect. 2, we proved Theorem 4 under the assumption P � Q. Here, we prove
the theorem for general P,Q. Note that our main positive result Theorem 1 follows
directly from Theorem 4, per the argument in Sect. 2.

Recall that in (4), f and g denote the densities of P and Q with respect to a
common dominatingmeasureμ, respectively. Under this generalmodel, themaximum
likelihood estimator M̂ML takes the form

M̂ML ∈ arg max
M∈M

∏

e∈M
f (We)

∏

e/∈M
g(We).
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Let p = P{g > 0}. If p = 0, then P and Q are mutually singular. In this case, it is
easy to see that M̂ML = M∗ with probability one. Next, suppose p > 0. Let P′ denote
the distribution P conditioned on the support of Q, with density f ′ = f 1{g>0}/p.
Then we have P′ � Q.

Let V = {i ∈ [n] : g(Wi,i ′) > 0}. Therefore, g(Wi,i ′) = 0 for all i ∈ V c. We
first observe that if a perfect matching M ∈ M does not contain all the red edges
{(i, i ′) : i ∈ V c}, then it has a zero likelihood. Thus, M̂ML reduces to:

M̂ML = {
(i, i ′) : i ∈ V c} ∪ M̂ML,V , (96)

where for MV defined as the set of perfect matchings on V × V ′,

M̂ML,V ∈ arg max
M∈MV

∏

e∈M
f (We)

∏

e/∈M
g(We).

In other words, M̂ML,V is the maximum likelihood estimator over the subgraph G ′ =
G[V × V ′]. Moreover, conditional on the set V , all the red edges weights on G ′ are
i.i.d. following distribution P′, and all the blue edge weights are i .i .d. according to
Q. Denote M∗

V = {(i, i ′) : i ∈ V } for the true matching on G ′, and let n′ = |V |.
We can therefore apply Theorem 4 on G ′ with B(P′,Q) = B(P,Q)/

√
p. Under the

condition
√
nB(P,Q) ≤ 1 + ε, we have

√
n′B(P′,Q) = √

nB(P,Q)

√
n′
np

≤ (1 + ε)

√
n′
np

.

Theorem 4 yields

E

[
|M̂ML,V�M∗

V |
∣∣∣∣ V
]

≤ Cn′ max

{

log(1 + ε′),
√
log n′
n′

}

,

where ε′ is such that

2 log(1 + ε′) = 2 log(1 + ε) + log
n′

np
.

Thus,

E

[
|M̂ML,V�M∗

V |
∣∣∣∣ V
]

≤ C max

{
n′ log(1 + ε) + n′

2
log

n′

np
,
√
n′ log n′

}

≤ C max

{
n log(1 + ε) + n′

2
log

n′

np
,
√
n log n

}
, (97)

where the last inequality is from n′ = |V | ≤ n. Next, we average over V to obtain that
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E
[|M̂ML,V�M∗

V |] ≤CE

[
max

{
n log(1 + ε) + n′

2
log

n′

np
,
√
n log n

}]

≤C

[
n log(1 + ε) + E

[
n′

2
log

n′

np

]
+√n log n

]
.

Under our model, Wi,i ′ ∼ P for all i . Therefore n′ = |V | ∼ Binom(n, p). To bound
E
[
n′ log n′], note that for any u > 0, and x ≥ 0, log(x/u) ≤ x/u − 1 so that

x log x ≤ x2/u + x log(u/e). Thus,

E
[
n′ log n′] ≤ E

[
(n′)2

]
/u + E

[
n′] log(u/e) ≤ E

[
n′] log

E
[
(n′)2

]

E[n′]
≤ np log(np + 1),

where the first inequality holds by optimally choosing u = E
[
(n′)2

]
/E
[
n′] . Hence,

E

[
n′ log n′

np

]
≤ np log(1 + 1/(np)) ≤ 1 and consequently,

E
[|M̂ML,V�M∗

V |] ≤ C
[
n log(1 + ε) + 1/2 +√n log n

]

≤ C1 max
{
n log(1 + ε),

√
n log n

}

for some universal constantC1. This finishes the proof of Theorem 4 for generalP,Q.

E.3 Reduction for general weight distributions: negative results

In Appendix E.1 we have already reduced the impossibility result Theorem 2 from
the dense model to the sparse model. In this section, we show that for the sparse
model (d,P,Q), we can assume WLOG that P � Q and Q � P. In other words,
assuming Theorem 2 holds under the sparse model with P andQmutually absolutely
continuous, we prove Theorem 2 for general (fixed) P, Q.

Recall that μ is a common dominating measure of P,Q, and f , g are densities of
P,Q respectively. As in the reduction argument for the positive result, we first define
distribution P′ with density f 1{g>0}/p, and distribution Q′ with density g1{ f >0}/q,
where p = P{g > 0} and q = Q{ f > 0} are the normalizing constants. Note that
since B(P,Q) > 0, both p, q are strictly positive, so that P′ andQ′ are well-defined.
Then we have P′ � Q′, and Q′ � P′.

Wefirst reduce theoriginal (d,P,Q)model to the (d ′,P,Q′)modelwhered ′ = dq.
Note that for edges e that either do not appear in G (in which case recall that we set
We = � for a special symbol � to signify that e is not inG), or are such that f (We) = 0,
we have ( f /g)(We) = 0. Thus the posterior distribution of M∗ under the (d,P,Q)

model is identical to the posterior distribution under the (d ′,P,Q′) model.
Therefore, we only need to show that the conclusion of Theorem2 holds for graphG

withweights (We) that follow the (d ′,P,Q′)model. Let V = {i ∈ [n] : g(Wi,i ′) > 0}.
We can bound the optimal overlap as follows:
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sup
M̂

E

⎛

⎝
∑

i≤n

1{(i,i ′)∈M̂}

⎞

⎠ ≤ sup
M̂

[

E
(
V c)+ E

(
∑

i∈V
1{(i,i ′)∈M̂}

)]

≤ n(1 − p) + E

[

sup
M̂

E

(
∑

i∈V
1{(i,i ′)∈M̂}

∣∣∣
∣ V

)]

. (98)

Conditional on V , the subgraph G̃ = G[V ×V ′] follows the (d ′|V |/n,P′,Q′)model.
To see that, note that the red edges in G̃ are distributed i.i.d. P′; the blue edges follow
distributionQ′, and appear independently with probability d ′/n = (d ′|V |/n)/|V |. To
apply the impossibility result under the (d ′|V |/n,P′,Q′) model, we need to establish
a lower bound on |V |. Let

A =
{
|V | ≥

(
1 − ε

2

)2
pn

}
.

Recall that under the sparse model, P,Q are fixed distributions that do not depend
on n. Therefore p does not depend on n, and since |V | ∼ Binom(n, p), we have
P(A) = 1 − o(1).

Furthermore, note that

B(P′,Q′) =
∫ √

f gdμ√
pq

= B(P,Q)√
pq

.

Therefore on A, we have

√
d ′|V |
n

B
(P′,Q′) =

√
d|V |
np

B (P,Q) ≥ (1 + ε)(1 − ε/2) ≥ 1 + ε/3

for ε ≤ 1/3. Therefore, we can invoke the conclusion of Theorem 2 under the
(d ′|V |/n,P′,Q′) model to deduce that on A, for some constant c > 0 and large
enough n,

sup
M̂

E

(
∑

i∈V
1{(i,i ′)∈M̂}

∣∣∣
∣ V

)

≤ (1 − c)|V |,

where the supremum is over all (possibly random) mappings from G[V ×V ′] toMV ,
the set of perfect matchings on V × V ′. Conditional on V , the edges in G[V × V ′]
are independent of those in G \ G[V × V ′]. Thus, we can replace the range of the
supremum with all (random) mappings from G to MV without changing its value,
allowing us to continue upper bounding (98) with

n(1 − p) + E [(1 − c)|V |1A] + nP
(Ac) ≤ ((1 − p) + (1 − c)p + o(1)) n

= (1 − cp + o(1)) n.
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In other words, the fraction of misclassified edges is lower bounded by cp + o(1).
Under the sparse model, cp is a positive constant that only depends on d,P,Q. We
have proved Theorem 2 under the (d ′,P,Q′) model. The conclusion of Theorem 2
under the (d,P,Q) model immediately follows.

AppendixFFinite-orderphase transitionunder theunweightedmodel

In this section, we prove that in the unweighted case P = Q, under the impossibility
condition (7), which translates to

√
d ≥ 1 + ε, the minimal reconstruction error is at

least Ω(ε8) for small ε. Similar to the proof of Theorem 2, we can assume WLOG
that

√
d = 1 + ε. As in the proof under general weight distributions, this result is

again proven via the two-stage cycle finding scheme described in Algorithm 1. Recall
from Algorithm 1 that we reserve a set V of γ n left vertices from [n]. We will first
construct many disjoint alternating paths on the subgraph G1 = G[V c × (V c)′], and
then use the reserved vertices to connect the paths into alternating cycles.

F.1 Path construction

The sets Lk and Rk and the alternating paths will again be constructed using two-sided
trees. However, unlike the model with general weight distribution, we do not need to
keep track of the weights of the paths, hence the construction is much simpler. For
example, the leaf node selection step is no longer necessary. Moreover, in the previous
sections we needed the paths to be long enough, so that the weights on the paths
dominate the weights of the sprinkling edges. In the unweighted case, that restriction
is also lifted. Therefore we can define Lk (resp. Rk) to be all the left (resp. right)
vertices in the left (resp. right) subtree, instead of only the selected leaf nodes. The
detailed construction is given in Algorithm 4 below.

Algorithm 4 Construction of two-sided trees (under the unweighted model)
1: Input: n, γ , a bipartite graph G1 that contains (1 − γ )n pairs of vertices, and parameter �.
2: Initialize U = {all left vertices of G1} as the set of unexplored left vertices.
3: For k = 1, 2, ..., repeat the following steps 4-7 to construct the two-sided tree Tk , until |U| = (1−2γ )n.
4: Let ik be the member of U with the smallest index. Update U ← U\{ik }. Initialize Tk = {(ik , i ′k )} to be

a tree containing only one red edge.
5: Construct the left tree of Tk via a color-alternating breadth-first search on G1. Concretely, define the

offsprings of ik as
O ′
ik

= {u′ ∈ (U)′ : (u′, ik ) ∈ E(G1)}.
For all u′ ∈ O ′

ik
, append edges (u′, v) and (u, u′) to Tk . Update U ← U\O ′

ik
. To construct the next 2

layers of the left tree, sequentially (ordering defined by the vertex indices) for all u ∈ O ′
ik
, define its

offsprings as the set of unexplored vertices that are connected to u via a blue edge in G1; append to Tk
all the blue edges from u to the offsprings and their corresponding red edges; and mark all the offsprings
as explored. Repeat this process until the branching process dies, or the left tree contains � vertices in
total.

6: Construct the right tree of Tk via the same scheme, starting from the vertex i ′k .
7: Let Lk be the set of all left vertices in the left tree of Tk ; let Rk be the set of all right vertices in the right

tree of Tk .
8: Define K1 = {k : |Lk | = |Rk | = 2�}.
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Note that Algorithm 4 explores γ n pairs of vertices in total. Next, we show that
with high probability, the size K1 of the set K1 is at least c3n/� for some constant
c3 = Ω(ε3). That is, a constant proportion of two-sided trees contain exactly 2� pairs
of vertices in both the left and the right tree.

By construction, for each k, |Lk | can only be strictly smaller than 2� if the breadth-
first search cannot find more vertices to explore, namely, the branching process dies.
Since the number |U| of unused vertices to explore is at least (1 − 2γ )n, we have

P {|Lk | < 2�} ≤ Probability of extinction for a branching process

with offspring distribution Binom((1 − 2γ )n, d/n) =: 1 − c4.

By choosing γ = ε/2, the mean of the offspring distribution is (1 − 2γ )d = (1 −
ε)(1 + ε)2 ≥ 1 + ε/2 for ε smaller than some universal constant ε0. Therefore,
according to the standard Branching process theory (see e.g. [12, Theorem 25.1]),
1 − c4 is the unique solution ρ < 1 so that φ(ρ) = ρ, where φ(ρ) = E

[
ρX
]
with

X ∼ Binom((1 − 2γ )n, d/n). In particular, the probability of survival c4 is strictly
positive, and it can be further shown that c4 ≥ c5ε for some universal constant c5 for
small enough ε.

Note that the argument would be simplified if the events {|Lk | = 2�} and
{|Rk | = 2�} were independent. This, however, is not true since when constructing Rk ,
the number of unexplored vertices depends on |Lk |. To resolve this technicality, note
that there are always at least (1−2γ )n unused vertices, and that the construction never
reuses vertices. Therefore we can couple the construction of Lk , Rk with two indepen-
dent branching processes, each with offspring distribution Binom((1 − 2γ )n, d/n),
such that

P {|Lk | = |Rk | = 2�} ≥ P {both branching processes survive} = c24.

Since the algorithm uses γ n pairs of vertices in total, and at most 2� pairs are used for
each k, we have K � the total number of two-sided trees ≥ γ n/(2�). Thus

P

⎧
⎨

⎩

∑

k≤K

1{|Lk |=|Rk |=2�} <
c24γ n

4�

⎫
⎬

⎭
≤P

{

Binom(K , c24) <
c24γ n

4�

}

≤ exp

(

−c44γ

4�
n

)

by Hoeffding’s inequality. We have shown that with probability 1 − exp(−Ω(n)),
K1 ≥ c3n/�, with constant c3 � c24γ /4 ≥ c25ε

3/8.

F.2 Sprinkling stage

In this subsection, we apply Algorithm 3 and Theorem 6 to show the existence of
exponentially alternating cycles inG. Since there are no weights, we set the thresholds
in Algorithm 3 as τred = τblue = 0. SinceP = Q, these thresholds yield V ∗ = V , and
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G2 contains all edges in G except those in V c × (V c)′. The parameters in Theorem 6
are specified as follows. Since |V | = γ n, we have β = γ = ε/2. The blue edge
probability in G2 is d/n, so that η = d. In the path construction stage, we showed that
the set K1 is of size at least c25ε

3n/(8�). By taking its subset, we can assume WLOG
that K1 = |K1| = c25ε

3n/(8�) = c6ε3n/� for some universal constant c6.
Let � = c7/ε5 for some universal constant c7 that will be chosen later. Next, we

check the assumptions of Theorem 6. Note that s = 2� and

b = βsη

4
= c7(1 + ε)2

4ε4
≥ 4

for all ε < ε0 for small enough ε0;

K1 = c6ε3n

�
≥ 8400

for large enough n;

κ = 2K1sη

n
= 4c6ε

3(1 + ε)2 ≤ 1

162

for small enough ε0;

dsuper = K1b2η

32n
= c6c7(1 + ε)6

512
≥ 256 log(32e)

for c7 chosen large enough.We have checked that all the assumptions of Theorem 6 are
satisfied. Therefore, with high probability, Algorithm 1 yields at least exp(K2/20) =
exp(c6ε8n/(320c7)) alternating cycles of length at least 3K2/4 = 3c6ε8n/(64c7).
Each alternating cycle corresponds to a perfect matching in G. By taking δ =
3K2/8 = 3c6ε8n/(128c7), all these perfect matchings are in Mbad. Note that under
the unweightedmodel, all the perfect matchings that appear inG occupy the same pos-
terior mass. Thus we have shown that with high probability, μW (Mbad)/μW (M∗) ≥
exp(c6ε8n/(320c7)). By Lemma 1, μW (Mgood)/μW (M∗) ≤ 2e7εδn with high prob-
ability. Thus we conclude that E[�(M̃, M∗)] � δ = Ω(ε8).
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